WO2013187084A1 - Compressor and air conditioner - Google Patents

Compressor and air conditioner Download PDF

Info

Publication number
WO2013187084A1
WO2013187084A1 PCT/JP2013/053351 JP2013053351W WO2013187084A1 WO 2013187084 A1 WO2013187084 A1 WO 2013187084A1 JP 2013053351 W JP2013053351 W JP 2013053351W WO 2013187084 A1 WO2013187084 A1 WO 2013187084A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compressor
polyol ester
refrigerant
ester oil
Prior art date
Application number
PCT/JP2013/053351
Other languages
French (fr)
Japanese (ja)
Inventor
亮 太田
井関 崇
荒木 邦成
村上 晃啓
高藤 亮一
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN201380031349.5A priority Critical patent/CN104379713B/en
Publication of WO2013187084A1 publication Critical patent/WO2013187084A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • C10M2205/0225Ethene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/301Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/70Soluble oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a compressor and an air conditioner.
  • HFO 1234yf (Hydrofluoroolefin)
  • refrigerants include hydrocarbons such as propane and propylene, and Low GWP hydrofluorocarbons such as fluoroethane (HFC 161), difluoroethane (HFC 152a), etc.
  • HFC 161 fluoroethane
  • HFC 152a difluoroethane
  • Difluoromethane (HFC32) is the best.
  • Refrigerant oil is used in a hermetic electric compressor and plays a role of lubricating, sealing, cooling and the like of the sliding portion thereof.
  • One of the important characteristics of refrigeration oil is its compatibility with the refrigerant.
  • Patent Literature 1 and Patent Literature 2 disclose refrigeration oil having improved compatibility with HFC32.
  • An object of the present invention is to suppress refrigerant leakage to improve compressor efficiency.
  • the present invention provides a compressor provided with a compression chamber having a sliding portion and containing difluoromethane as a refrigerant and refrigeration oil, wherein the refrigeration oil is represented by the following chemical formula (1) And a second polyol ester oil represented by the following chemical formula (2) (wherein, R 1 to R 6 are an alkyl group having 3 to 8 carbon atoms):
  • the low-temperature critical solution temperature of the refrigerant and the mixture of the first polyol ester oil and the second polyol ester oil, which contains 20 mol% or more of the second polyol ester oil, is + 10 ° C. or less; kinematic viscosity at ° C.
  • the compression seal material exceed 180 mm 2 / s, the compression seal material is 1 to 30 parts by weight with respect to the 100 parts by weight of the mixture, kinematic viscosity at 40 ° C. of the refrigerating machine oil Characterized in that it is a 30 ⁇ 90mm 2 / s.
  • FIG. 1 is a cross-sectional view showing a scroll-type hermetic compressor.
  • the compressor is provided with a compression chamber having a sliding portion, in which difluoromethane as a refrigerant and refrigerant oil are enclosed.
  • the refrigerator oil includes a first polyol ester oil represented by the following chemical formula (1) and a second polyol ester oil represented by the following chemical formula (2) (wherein, R 1 to R 6 Is an alkyl group having 3 to 8 carbon atoms) and 20 mol% or more of the second polyol ester oil.
  • the low temperature side critical solution temperature of the refrigerant and the mixture of the first polyol ester oil and the second polyol ester oil is + 10 ° C. or less
  • the refrigerator oil has a kinematic viscosity at 40 ° C. exceeding 180 mm 2 / s
  • the compressor seal further comprises 1 to 30 parts by weight with respect to 100 parts by weight of the mixture, and the kinematic viscosity at 40 ° C. of the refrigerator oil is 30 to 90 mm 2 / s.
  • the present embodiment discloses a compressor using difluoromethane and an air conditioner using the same.
  • the refrigerant is difluoromethane
  • the refrigerator oil is a polyol ester oil.
  • the polyol ester oil is obtained by the condensation reaction of a polyhydric alcohol and a monohydric fatty acid.
  • a hindered type excellent in thermal stability is preferable, and as the raw material polyhydric alcohol, preferable are pentaerythritol and dipentaerythritol.
  • n-butanoic acid As a monovalent fatty acid to be a raw material, n-butanoic acid, n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-methylpropionic acid, 2-methylbutanoic acid, 3- Methylbutanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, isooctanoic acid, 3,5,5-trimethylhexanoic acid, etc., and these may be used alone or in combination of two or more Mix and use.
  • the viscosity grade of the refrigerator oil varies depending on the type of compressor, but in the scroll compressor, the kinematic viscosity at 40 ° C. is preferably in the range of 46 to 90 mm 2 / s. In the rotary compressor, the kinematic viscosity at 40 ° C. is preferably in the range of 30 to 70 mm 2 / s.
  • the compression part sealing agent is a liquid compound having a kinematic viscosity at 40 ° C. of more than 180 mm 2 / s.
  • dipentaerythritol-based fatty acid ester (a compound represented by the following chemical formula (3) (wherein R 7 and R 8 each have 7 to 8 carbon atoms) as a compressed part sealing agent It is preferable to use an alkyl group). This is because the viscosity tends to be high and refrigerant leakage can be reduced. Dipentaerythritol is not a pure substance because it contains a large amount of pentaerythritol, tripentaerythritol and the like as a raw material, but here, it is referred to as dipentaerythritol-based.
  • complex type polyol ester oil which is a compression unit sealing agent (a compound represented by the following chemical formula (4) (in the formula, R 9 and R 10 each represent an alkyl group having 3 to 9 carbon atoms, R 11 represents an alkyl group having 1 to 9 carbon atoms, n represents a positive number)
  • R 9 and R 10 each represent an alkyl group having 3 to 9 carbon atoms
  • R 11 represents an alkyl group having 1 to 9 carbon atoms
  • n represents a positive number
  • preferable polyhydric alcohols as raw materials are, for example, neopentyl glycol, trimethylolpropane and pentaerythritol.
  • a monovalent fatty acid to be a raw material n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-methylbutanoic acid, 2-methylpentanoic acid, 2-methylhexanoic acid, 2 -Ethyl hexanoic acid, iso-octanoic acid, 3,5,5-trimethyl hexanoic acid and the like, and these may be used alone or in combination of two or more.
  • a divalent fatty acid to be a raw material there are propane diacid, butane di acid, pentane di acid, hexane di acid, heptane di acid, octane di acid and the like, and these may be used alone or in combination of two or more Use.
  • the above-mentioned dipentaerythritol-based fatty acid ester may be mixed, or a conventional polyol ester oil component may be mixed for viscosity adjustment.
  • the ethylene- ⁇ -olefin copolymer which is a compressed part sealing agent, is easy to obtain an arbitrary high viscosity, is excellent in shear stability, and preferably has a number average molecular weight of 800 to 4,000.
  • the ⁇ -olefin constituting the ethylene- ⁇ -olefin copolymer one having 3 to 10 carbon atoms is used, and propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-octene, 1 -A decene etc. are mentioned. These ⁇ -olefins may be used alone or in combination of two or more.
  • the ethylene content is more preferably 20 to 80 mol%, and may be any of random and block copolymerization with an ⁇ -olefin.
  • DBPC 2,6-di-t-butyl-p-cresol
  • the acid scavenger an aliphatic epoxy compound or a carbodiimide compound which is a compound having an epoxy ring is generally used.
  • the carbodiimide type compound has extremely high reactivity with fatty acid and captures hydrogen ions dissociated from fatty acid, the effect of suppressing the hydrolysis reaction of the polyol ester oil is very large.
  • Examples of carbodiimide compounds include bis (2,6-isopropylphenyl) carbodiimide.
  • the blending amount of the acid scavenger is preferably 0.05 to 1.0% by weight with respect to the refrigerator oil.
  • FIG. 1 shows an outline of the air conditioner.
  • the air conditioner includes an indoor unit 1 and an outdoor unit 2.
  • the indoor unit 1 incorporates an indoor heat exchanger 5.
  • the outdoor unit 2 incorporates a compressor 3, a four-way valve 4, an outdoor heat exchanger 7 and an expansion device 6.
  • the high-temperature, high-pressure refrigerant gas adiabatically compressed by the compressor 3 passes through the discharge pipe and the four-way valve 4 and is cooled by the indoor heat exchanger 5 (used as a condensing unit) It becomes a high pressure liquid refrigerant.
  • This refrigerant is expanded by the expansion device 6 (for example, a temperature type expansion valve or other expansion valve) and becomes a low-temperature low-pressure liquid containing a slight amount of gas, leading to the outdoor heat exchanger 7 (used as evaporation means) Then, heat is obtained from the air in the room, and in the state of low temperature gas, it passes through the four-way valve 4 again to the compressor 3.
  • the flow of the refrigerant is changed in the reverse direction by the four-way valve 4 to cause the reverse action.
  • FIG. 2 shows a schematic structure of a scroll compressor.
  • the compressor 3 includes a fixed scroll member 8 having a spiral wrap 10 vertically provided on the end plate 9, a orbiting scroll member 11 having a wrap 12 substantially the same shape as the stationary scroll member 8, and a orbiting scroll. It includes a frame 16 for supporting the member 11, a crankshaft 13 for pivoting movement of the orbiting scroll member 11, an electric motor 19, and a pressure vessel 17 incorporating these components.
  • the spiral wrap 10 and the wrap 12 face each other and are engaged with each other to form a compression portion.
  • the compression chamber 14 located at the outermost side among the compression chambers 14 formed between the fixed scroll member 8 and the orbiting scroll member 11 performs a orbiting motion While moving toward the center of the fixed scroll member 8 and the orbiting scroll member 11 while gradually reducing the volume.
  • the compression chamber 14 communicates with the discharge port 15, and the compressed gas inside the compression chamber 14 is discharged from the discharge pipe 18 to the outside of the compressor 3. Is discharged.
  • the crankshaft 13 is rotated at a constant speed or at a rotational speed corresponding to a voltage controlled by an inverter (not shown) to perform a compression operation.
  • An oil reservoir 22 is provided below the electric motor 19, and the oil in the oil reservoir 22 passes through an oil hole 21 provided in the crankshaft 13 due to a pressure difference, and the orbiting scroll member 11 and The sliding portion with the crankshaft 13 and the sliding bearing 20 are lubricated.
  • Example 1 to 3 and Comparative Examples 1 and 2 The annual energy consumption efficiency APF was calculated based on Japanese Industrial Standards (JIS C 9612-2005: Room Air Conditioner). In addition, a performance test of the compressor was separately conducted to measure volumetric efficiency from representative conditions.
  • the refrigerant used in the examples is difluoromethane, and a refrigerant oil as a main ingredient and a compression part sealing agent as an additive are shown below.
  • Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C.
  • kinematic viscosity 68.7 mm 2 / s (B) Hindered-type polyol ester oil (pentaerythritol-based 2-ethylhexanoic acid / 3,5,5-trimethylhexanoic acid mixed fatty acid ester oil): 40 ° C.
  • Hindered-type polyol ester oil (a mixed fatty acid ester oil of 2-ethylhexanoic acid / 3,5,5-trimethylhexanoic acid of dipentaerythritol type): 40 ° C.
  • kinematic viscosity 217 mm 2 / s (G) Complex type polyol ester oil (an ester in which neopentyl glycol, a dicarboxylic acid and a monocarboxylic acid are bonded, an ester using adipic acid as the dicarboxylic acid and 3,5,5-trimethylhexanoic acid as the monocarboxylic acid Oil): 40 ° C kinematic viscosity 260 mm 2 / s
  • H Ethylene- ⁇ -olefin copolymer (trade name: LUCANT HC-40: made by Mitsui Chemicals, Inc., LUCANT is a registered trademark of the company): 40 ° C.
  • the refrigerator oil (A) is a refrigerator oil which has a low temperature side critical solution temperature with difluoromethane of ⁇ 2 ° C. and shows compatibility. As described above, the compatibility of the refrigerant and the refrigeration oil enclosed in the compressor is the reliability of the compressor, such as oil return from the refrigeration cycle to the compressor (retaining the amount of oil inside the compressor) or maintenance of heat exchange efficiency.
  • the compatibility evaluation of difluoromethane and a refrigerator oil was measured according to JIS K 2211.
  • a graph was created in which the concentration (oil concentration) of the oil mixed with the refrigerant was taken as the abscissa and the dissolution temperature as the ordinate.
  • This graph generally shows the oil concentration dependency of the temperature of separation into two layers, and is a curve having a maximum value. This maximum value was defined as the low temperature side critical solution temperature.
  • Comparative Example 1 was set as the combination using refrigerant
  • the low temperature side critical solution temperature is + 9 ° C., and the compression part sealing agent is not blended.
  • This comparative example 1 was taken as the efficiency reference value (APF ratio) 100%.
  • Comparative Example 2 was a combination in which the compressor sealing agent was not blended from Examples 1 to 3. The measurement items were compared between the yearly energy consumption efficiency APF and the volumetric efficiency ratio of the compressor under the four conditions of the heating rating, the heating middle, the cooling rating, and the cooling middle, which are representative operating conditions of the air conditioner. The volumetric efficiency ratio of the APFs of Examples 1 to 3 and Comparative Example 2 was examined with the current apparatus of Comparative Example 1 as 100%.
  • Comparative Example 1 shows that the APF is improved by about 1.0% when difluoromethane is used. This is considered to be because the latent heat of difluoromethane is large and the pressure loss is small, so that the APF is improved.
  • the volumetric efficiency decreases under any conditions. Since the difluoromethane has a small adiabatic index and a high discharge temperature, the temperature of the compressor also becomes high, and it is easy to cause an overheat loss at the time of suction.
  • Example 4 to 6 and Comparative Examples 3 and 4 The lubricity of the refrigerator oil was evaluated in Examples 4 to 6.
  • the lubricity of the refrigerator oil was evaluated using a shell type four ball friction and wear tester. The wear scar diameter (average of 3 pieces) and friction of a fixed test piece after testing with a 1/2 inch SUJ2 steel ball as a test piece, load: 280 N, temperature: 120 ° C., rotational speed: 1200 / min, time: 10 min. The coefficients were measured.
  • the refrigerator oil (B) and the compression part sealing agent (F) are the same as those of Examples 1 to 3.
  • Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C.
  • Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C.
  • Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C.
  • Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C.
  • (A), (C) and (D) contain 20 mol% or more of dipentaerythritol, and 5.0 wt% of (F) as compression part sealing agent in any refrigeration oil ing.
  • Table 2 shows the results of evaluating the lubricity of each refrigerator oil.
  • Comparative Example 4 when dipentaerythritol is not blended in the refrigerator oil component, the wear trace diameter is large and the friction coefficient is high.
  • Examples 4 to 6 when 20 weight% or more of dipentaerythritol is blended in the refrigerator oil component, the wear mark diameter and the friction coefficient are suppressed, and the lubricity is excellent. . This is because the adsorption ability of dipentaerythritol to the friction surface is large, the surface energy of the friction surface is reduced, and the effects of reducing the wear resistance and the friction coefficient are obtained.
  • Comparative Example 3 when the blending amount of dipentaerythritol in the refrigerator oil component is less than 20% by weight, the wear trace diameter is large, the friction coefficient is also high, and sufficient lubricity can not be obtained.
  • Examples 7 to 9 and Comparative Examples 5 and 6 Next, using the refrigerator oil and the compression unit sealing agent whose effects were confirmed in Example 1, the compounding amount of the compressor sealing agent was examined.
  • the measurement items, the measurement method, the refrigerator oil (A) and the compression unit seal agent (F) are the same as those of Examples 1 to 3.
  • (F) was blended in the range of 1 to 30% by weight as a compressor part sealing agent to the refrigerator oil (A).
  • (F) was set to 0.5% by weight as the compressed part sealing agent, and in Comparative Example 6, 40% by weight of (F) was mixed as the compressed part sealing agent to conduct the test.
  • the present invention is applicable to a compressor and an air conditioner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a compressor which comprises a compression chamber having a sliding portion and in which difluoromethane which is a refrigerant and a refrigerating machine oil are enclosed, wherein the refrigerating machine oil contains two prescribed types of polyol ester oils (a first polyol ester oil and a second polyol ester oil) and contains 20 mol% or more of the second polyol ester oil. The lower temperature side critical solution temperature of the mixture of the refrigerant and the first polyol ester oil and the second polyol ester oil is +10°C or less. The refrigerating machine oil further contains a compression portion sealing agent which has a kinematic viscosity at 40°C of over 180 mm2/s and which is contained in an amount of 1 to 30 parts by weight with respect to 100 parts by weight of the mixture. The kinematic viscosity of the refrigerating machine oil at 40°C is 30 to 90 mm2/s. According to the above, refrigerant leakage can be suppressed and efficiency of the compressor can be improved.

Description

圧縮機及び空調装置Compressor and air conditioner
 本発明は、圧縮機及び空調装置に関する。 The present invention relates to a compressor and an air conditioner.
 空調機器分野に使用される冷媒のR410Aは、HFC(Hydrofluorocarbons)32/HFC125(50/50重量%)の混合物であり、GWP(Global Warming Potential)=2088と高いため、GWPが低い代替冷媒を用いた空調装置の開発が急務である。 Refrigerant R410A used in the air conditioning field is a mixture of HFC (Hydrofluorocarbons) 32 / HFC 125 (50/50 wt%), and GWP (Global Warming Potential) = 2088, so alternative refrigerants with low GWP are used. There is an urgent need to develop an air conditioner that
 この代替冷媒としては、熱物性、低GWP、低毒性、低可燃性などの理由から、2,3,3,3-テトラフルオロプロペン(HFO1234yf(Hydrofluoroolefin)(GWP=4)、1,3,3,3-テトラフルオロプロペン(HFO1234ze)(GWP=10)若しくはジフルオロメタン(HFC32)の単独冷媒又はこれらの混合冷媒が候補とされている。その他の冷媒としては、プロパン、プロピレンなどのハイドロカーボン、及びフルオロエタン(HFC161)、ジフルオロエタン(HFC152a)などの低GWPのハイドロフルオロカーボンが挙げられている。これらの冷媒候補の中で、可燃性、冷暖房能力、非共沸冷媒の温度勾配による機器効率低下、取り扱い易さ、冷媒コスト、機器の変更(開発)などを考慮すると、ジフルオロメタン(HFC32)が最も良い。 As this alternative refrigerant, 2,3,3,3-tetrafluoropropene (HFO 1234yf (Hydrofluoroolefin) (GWP = 4), 1, 3, 3 because of thermal properties, low GWP, low toxicity, low flammability, etc. -3-, 3-tetrafluoropropene (HFO 1234ze) (GWP = 10) or difluoromethane (HFC 32) as a single refrigerant or a mixed refrigerant of these is a candidate. Other refrigerants include hydrocarbons such as propane and propylene, and Low GWP hydrofluorocarbons such as fluoroethane (HFC 161), difluoroethane (HFC 152a), etc. Among these refrigerant candidates, flammability, heating and cooling capacity, equipment efficiency decrease due to non-azeotropic refrigerant temperature gradient, handling Considering ease, refrigerant cost, equipment change (development), etc. Difluoromethane (HFC32) is the best.
 冷凍機油は、密閉型電動圧縮機に使用され、その摺動部の潤滑、密封、冷却等の役割を果たすものである。冷凍機油で重要な特性の一つが、冷媒との相溶性である。しかし、HFC32では冷凍機油との相溶性が低いため、例えば特許文献1及び特許文献2には、HFC32との相溶性を向上した冷凍機油が開示されている。 Refrigerant oil is used in a hermetic electric compressor and plays a role of lubricating, sealing, cooling and the like of the sliding portion thereof. One of the important characteristics of refrigeration oil is its compatibility with the refrigerant. However, since HFC32 has low compatibility with refrigeration oil, for example, Patent Literature 1 and Patent Literature 2 disclose refrigeration oil having improved compatibility with HFC32.
特開2010-235960号公報JP, 2010-235960, A 特開2002-129178号公報JP 2002-129178 A
 HFC32は、断熱指数が小さいため、吐出温度が高くなり、これによって圧縮機の温度も高くなる。このため、冷媒吸い込みの際に過熱損失が起こる。さらに、分子量が小さく分子速度が速いため、圧縮機の圧縮部からの冷媒漏れが生じ易い。このため、体積効率低下に起因する圧縮機効率の低下が発生してしまう。特許文献1及び2に記載の冷凍機油は、いずれも冷媒漏れについて十分考慮されていない。 Since the HFC 32 has a low adiabatic index, the discharge temperature is high, which also increases the temperature of the compressor. For this reason, an overheat loss occurs at the time of refrigerant suction. Furthermore, since the molecular weight is small and the molecular velocity is high, refrigerant leakage from the compression unit of the compressor is likely to occur. For this reason, a reduction in compressor efficiency due to a reduction in volumetric efficiency occurs. The refrigeration oil described in Patent Documents 1 and 2 is not sufficiently considered for refrigerant leakage.
 本発明の目的は、冷媒漏れを抑制して圧縮機効率を向上することにある。 An object of the present invention is to suppress refrigerant leakage to improve compressor efficiency.
 上記目的を達成するために、本発明は、摺動部を有する圧縮室を備え、冷媒であるジフルオロメタンと、冷凍機油とを封入した圧縮機において、冷凍機油は、下記化学式(1)で表される第一のポリオールエステル油と下記化学式(2)で表される第二のポリオールエステル油とを含み(式中、R~Rは炭素数3~8のアルキル基である。)、第二のポリオールエステル油を20モル%以上含み、冷媒と第一のポリオールエステル油及び第二のポリオールエステル油の混合物との低温側臨界溶解温度は、+10℃以下であり、冷凍機油は、40℃における動粘度が180mm/sを超える圧縮部シール剤を更に含み、圧縮部シール剤は、当該混合物100重量部に対して1~30重量部であり、冷凍機油の40℃における動粘度は、30~90mm/sであることを特徴とする。 In order to achieve the above object, the present invention provides a compressor provided with a compression chamber having a sliding portion and containing difluoromethane as a refrigerant and refrigeration oil, wherein the refrigeration oil is represented by the following chemical formula (1) And a second polyol ester oil represented by the following chemical formula (2) (wherein, R 1 to R 6 are an alkyl group having 3 to 8 carbon atoms): The low-temperature critical solution temperature of the refrigerant and the mixture of the first polyol ester oil and the second polyol ester oil, which contains 20 mol% or more of the second polyol ester oil, is + 10 ° C. or less; kinematic viscosity at ° C. further comprises a compression seal material exceeding 180 mm 2 / s, the compression seal material is 1 to 30 parts by weight with respect to the 100 parts by weight of the mixture, kinematic viscosity at 40 ° C. of the refrigerating machine oil Characterized in that it is a 30 ~ 90mm 2 / s.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本発明によれば、冷媒漏れを抑制して圧縮機効率を向上することができる。 According to the present invention, it is possible to suppress the refrigerant leakage and improve the compressor efficiency.
空調装置の構成を示す概略図である。It is the schematic which shows the structure of an air conditioner. スクロール式密閉型圧縮機を示す断面図である。1 is a cross-sectional view showing a scroll-type hermetic compressor.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 圧縮機は、摺動部を有する圧縮室を備え、冷媒であるジフルオロメタンと、冷凍機油とを封入したものである。ここで、冷凍機油は、下記化学式(1)で表される第一のポリオールエステル油と下記化学式(2)で表される第二のポリオールエステル油とを含み(式中、R~Rは炭素数3~8のアルキル基である。)、第二のポリオールエステル油を20モル%以上含む。そして、冷媒と第一のポリオールエステル油及び第二のポリオールエステル油の混合物との低温側臨界溶解温度は、+10℃以下であり、冷凍機油は、40℃における動粘度が180mm/sを超える圧縮部シール剤を更に含み、圧縮部シール剤は、当該混合物100重量部に対して1~30重量部であり、冷凍機油の40℃における動粘度は、30~90mm/sである。 The compressor is provided with a compression chamber having a sliding portion, in which difluoromethane as a refrigerant and refrigerant oil are enclosed. Here, the refrigerator oil includes a first polyol ester oil represented by the following chemical formula (1) and a second polyol ester oil represented by the following chemical formula (2) (wherein, R 1 to R 6 Is an alkyl group having 3 to 8 carbon atoms) and 20 mol% or more of the second polyol ester oil. And the low temperature side critical solution temperature of the refrigerant and the mixture of the first polyol ester oil and the second polyol ester oil is + 10 ° C. or less, and the refrigerator oil has a kinematic viscosity at 40 ° C. exceeding 180 mm 2 / s The compressor seal further comprises 1 to 30 parts by weight with respect to 100 parts by weight of the mixture, and the kinematic viscosity at 40 ° C. of the refrigerator oil is 30 to 90 mm 2 / s.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本実施形態は、ジフルオロメタンを用いた圧縮機及びこれを用いた空調装置について開示するものである。冷媒は、ジフルオロメタンであり、冷凍機油は、ポリオールエステル油である。 The present embodiment discloses a compressor using difluoromethane and an air conditioner using the same. The refrigerant is difluoromethane, and the refrigerator oil is a polyol ester oil.
 ポリオールエステル油は、多価アルコールと一価の脂肪酸との縮合反応により得られる。ポリオールエステル油としては、熱安定性に優れるヒンダードタイプが好ましく、原料となる多価アルコールとして好ましいものは、ペンタエリスリトール及びジペンタエリスリトールである。 The polyol ester oil is obtained by the condensation reaction of a polyhydric alcohol and a monohydric fatty acid. As the polyol ester oil, a hindered type excellent in thermal stability is preferable, and as the raw material polyhydric alcohol, preferable are pentaerythritol and dipentaerythritol.
 また、原料となる一価の脂肪酸としては、n-ブタン酸、n-ペンタン酸、n-ヘキサン酸、n-ヘプタン酸、n-オクタン酸、2-メチルプロピオン酸、2-メチルブタン酸、3-メチルブタン酸、2-メチルペンタン酸、2-エチルブタン酸、2-メチルヘキサン酸、2-エチルヘキサン酸、イソオクタン酸、3,5,5-トリメチルヘキサン酸等があり、これらを単独又は2種類以上を混合して用いる。 In addition, as a monovalent fatty acid to be a raw material, n-butanoic acid, n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-methylpropionic acid, 2-methylbutanoic acid, 3- Methylbutanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, isooctanoic acid, 3,5,5-trimethylhexanoic acid, etc., and these may be used alone or in combination of two or more Mix and use.
 冷凍機油の粘度グレードは、圧縮機の種類により異なるが、スクロール式圧縮機においては、40℃における動粘度が46~90mm/sの範囲であることが好ましい。また、ロータリー式圧縮機においては、40℃における動粘度が30~70mm/sの範囲であることが好ましい。 The viscosity grade of the refrigerator oil varies depending on the type of compressor, but in the scroll compressor, the kinematic viscosity at 40 ° C. is preferably in the range of 46 to 90 mm 2 / s. In the rotary compressor, the kinematic viscosity at 40 ° C. is preferably in the range of 30 to 70 mm 2 / s.
 圧縮部シール剤は、40℃における動粘度が180mm/sを超える液状化合物である。 The compression part sealing agent is a liquid compound having a kinematic viscosity at 40 ° C. of more than 180 mm 2 / s.
 ヒンダードタイプのポリオールエステル油の場合は、圧縮部シール剤としてジペンタエリスリトール系の脂肪酸エステル(下記化学式(3)で表される化合物(式中、R、Rは炭素数7~8のアルキル基))を用いることが好ましい。高粘度となりやすく、冷媒漏れを低減することができるからである。ジペンタエリスリトールは、原料にペンタエリスリトールやトリペンタエリスリトールなどを多く含むため純物質ではないが、ここではジペンタエリスリトール系と表記することにする。 In the case of a hindered type polyol ester oil, a dipentaerythritol-based fatty acid ester (a compound represented by the following chemical formula (3) (wherein R 7 and R 8 each have 7 to 8 carbon atoms) as a compressed part sealing agent It is preferable to use an alkyl group). This is because the viscosity tends to be high and refrigerant leakage can be reduced. Dipentaerythritol is not a pure substance because it contains a large amount of pentaerythritol, tripentaerythritol and the like as a raw material, but here, it is referred to as dipentaerythritol-based.
 また、圧縮部シール剤であるコンプレックスタイプのポリオールエステル油(コンプレックスエステル油)(下記化学式(4)で表される化合物(式中、R、R10は炭素数3~9のアルキル基、R11は炭素数1~9のアルキル基、nは正数))は、多価アルコールと二価の脂肪酸と一価の脂肪酸とが結合したエステル化合物である。 In addition, complex type polyol ester oil (complex ester oil) which is a compression unit sealing agent (a compound represented by the following chemical formula (4) (in the formula, R 9 and R 10 each represent an alkyl group having 3 to 9 carbon atoms, R 11 represents an alkyl group having 1 to 9 carbon atoms, n represents a positive number)) is an ester compound in which a polyhydric alcohol, a divalent fatty acid and a monovalent fatty acid are bonded.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ここで、原料となる多価アルコールとして好ましいものは、例えば、ネオペンチルグリコール、トリメチロールプロパン及びペンタエリスリトールである。また、原料となる一価の脂肪酸としては、n-ペンタン酸、n-ヘキサン酸、n-ヘプタン酸、n-オクタン酸、2-メチルブタン酸、2-メチルペンタン酸、2-メチルヘキサン酸、2-エチルヘキサン酸、イソオクタン酸、3,5,5-トリメチルヘキサン酸等があり、これらを単独又は2種類以上を混合して用いる。さらに、原料となる二価の脂肪酸としては、プロパン二酸、ブタン二酸、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸等があり、これらを単独又は2種類以上を混合して用いる。前記したジペンタエリスリトール系の脂肪酸エステルを混合してもよく、また、粘度調整用として通常のポリオールエステル油成分などを混ぜてもよい。 Here, preferable polyhydric alcohols as raw materials are, for example, neopentyl glycol, trimethylolpropane and pentaerythritol. In addition, as a monovalent fatty acid to be a raw material, n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-methylbutanoic acid, 2-methylpentanoic acid, 2-methylhexanoic acid, 2 -Ethyl hexanoic acid, iso-octanoic acid, 3,5,5-trimethyl hexanoic acid and the like, and these may be used alone or in combination of two or more. Furthermore, as a divalent fatty acid to be a raw material, there are propane diacid, butane di acid, pentane di acid, hexane di acid, heptane di acid, octane di acid and the like, and these may be used alone or in combination of two or more Use. The above-mentioned dipentaerythritol-based fatty acid ester may be mixed, or a conventional polyol ester oil component may be mixed for viscosity adjustment.
 また、圧縮部シール剤であるエチレン-α-オレフィン共重合体は、任意の高粘度が得られやすく、せん断安定性にも優れており、数平均分子量が800~4000のものが良い。エチレン-α-オレフィン共重合体を構成するα-オレフィンとしては、炭素数が3~10のものが用いられ、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセンなどが挙げられる。これらのα-オレフィンは、一種を用いてもよく、二種以上を組合せて用いてもよい。また、エチレンの含有量は、20~80モル%がより好ましく、α-オレフィンとランダム及びブロック共重合のいずれであってもよい。 Further, the ethylene-α-olefin copolymer, which is a compressed part sealing agent, is easy to obtain an arbitrary high viscosity, is excellent in shear stability, and preferably has a number average molecular weight of 800 to 4,000. As the α-olefin constituting the ethylene-α-olefin copolymer, one having 3 to 10 carbon atoms is used, and propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-octene, 1 -A decene etc. are mentioned. These α-olefins may be used alone or in combination of two or more. The ethylene content is more preferably 20 to 80 mol%, and may be any of random and block copolymerization with an α-olefin.
 前記した冷凍機油に潤滑性向上剤、酸化防止剤、酸捕捉剤、消泡剤、金属不活性剤等を添加しても全く問題はない。特に、ポリオールエステル油は、水分共存下で加水分解に起因する劣化が生じるため、酸化防止剤及び酸捕捉剤の配合が望ましい。 There is no problem at all even if a lubricity improver, an antioxidant, an acid scavenger, an antifoamer, a metal deactivator, etc. are added to the above-mentioned refrigerator oil. In particular, since polyol ester oils cause deterioration due to hydrolysis in the presence of water, it is desirable to incorporate an antioxidant and an acid scavenger.
 酸化防止剤としては、フェノール系であるDBPC(2,6-ジ-t-ブチル-p-クレゾール)が好ましい。酸捕捉剤としては、一般に、エポキシ環を有する化合物である脂肪族のエポキシ系化合物やカルボジイミド系化合物が使用される。特に、カルボジイミド系化合物は、脂肪酸との反応性が極めて高く、脂肪酸から解離した水素イオンを捕捉することから、ポリオールエステル油の加水分解反応が抑制される効果が非常に大きい。カルボジイミド系化合物としては、ビス(2,6-イソプロピルフェニル)カルボジイミドが挙げられる。酸捕捉剤の配合量は、冷凍機油に対して0.05~1.0重量%とすることが好ましい。 As the antioxidant, DBPC (2,6-di-t-butyl-p-cresol) which is a phenol type is preferable. As the acid scavenger, an aliphatic epoxy compound or a carbodiimide compound which is a compound having an epoxy ring is generally used. In particular, since the carbodiimide type compound has extremely high reactivity with fatty acid and captures hydrogen ions dissociated from fatty acid, the effect of suppressing the hydrolysis reaction of the polyol ester oil is very large. Examples of carbodiimide compounds include bis (2,6-isopropylphenyl) carbodiimide. The blending amount of the acid scavenger is preferably 0.05 to 1.0% by weight with respect to the refrigerator oil.
 図1は、空調装置の概略を示したものである。 FIG. 1 shows an outline of the air conditioner.
 空調装置は、室内機1と室外機2とを備えている。室内機1には、室内熱交換器5が内蔵されている。また、室外機2には、圧縮機3、四方弁4、室外熱交換器7及び膨張装置6が内蔵されている。 The air conditioner includes an indoor unit 1 and an outdoor unit 2. The indoor unit 1 incorporates an indoor heat exchanger 5. Further, the outdoor unit 2 incorporates a compressor 3, a four-way valve 4, an outdoor heat exchanger 7 and an expansion device 6.
 室内を冷房する場合、圧縮機3にて断熱的に圧縮された高温高圧の冷媒ガスは、吐出パイプ及び四方弁4を通って室内熱交換器5(凝縮手段として使用される)で冷却され、高圧の液冷媒となる。この冷媒は、膨張装置6(例えば、温度式膨張弁その他の膨張弁など)で膨張し、僅かにガスを含む低温低圧液となって室外熱交換器7(蒸発手段として使用される)に至り、室内の空気から熱を得て低温ガスの状態で再び四方弁4を通って圧縮機3に至る。室内を暖房する場合は、四方弁4によって冷媒の流れが逆方向に変えられ、逆作用となる。 When cooling the room, the high-temperature, high-pressure refrigerant gas adiabatically compressed by the compressor 3 passes through the discharge pipe and the four-way valve 4 and is cooled by the indoor heat exchanger 5 (used as a condensing unit) It becomes a high pressure liquid refrigerant. This refrigerant is expanded by the expansion device 6 (for example, a temperature type expansion valve or other expansion valve) and becomes a low-temperature low-pressure liquid containing a slight amount of gas, leading to the outdoor heat exchanger 7 (used as evaporation means) Then, heat is obtained from the air in the room, and in the state of low temperature gas, it passes through the four-way valve 4 again to the compressor 3. When the room is heated, the flow of the refrigerant is changed in the reverse direction by the four-way valve 4 to cause the reverse action.
 圧縮機3としては、スクロール式圧縮機を用いた。 As the compressor 3, a scroll compressor was used.
 図2は、スクロール式圧縮機の概略構造を示したものである。 FIG. 2 shows a schematic structure of a scroll compressor.
 圧縮機3は、端板9に垂直に設けられた渦巻状ラップ10を有する固定スクロール部材8と、この固定スクロール部材8と実質的に同一形状のラップ12を有する旋回スクロール部材11と、旋回スクロール部材11を支持するフレーム16と、旋回スクロール部材11を旋回運動させるクランクシャフト13と、電動モータ19と、これらを内蔵する圧力容器17とを含む。渦巻状ラップ10とラップ12とは、互いに向かい合わせにして噛み合わせ、圧縮部を形成してある。 The compressor 3 includes a fixed scroll member 8 having a spiral wrap 10 vertically provided on the end plate 9, a orbiting scroll member 11 having a wrap 12 substantially the same shape as the stationary scroll member 8, and a orbiting scroll. It includes a frame 16 for supporting the member 11, a crankshaft 13 for pivoting movement of the orbiting scroll member 11, an electric motor 19, and a pressure vessel 17 incorporating these components. The spiral wrap 10 and the wrap 12 face each other and are engaged with each other to form a compression portion.
 旋回スクロール部材11は、クランクシャフト13によって旋回運動させると、固定スクロール部材8と旋回スクロール部材11との間に形成される圧縮室14のうち、最も外側に位置している圧縮室14が旋回運動に伴って容積を次第に縮小しながら、固定スクロール部材8及び旋回スクロール部材11の中心部に向かって移動していく。圧縮室14が固定スクロール部材8及び旋回スクロール部材11の中心部近傍に達すると、圧縮室14が吐出口15と連通し、圧縮室14の内部の圧縮ガスが吐出パイプ18から圧縮機3の外部に吐出される。 When the orbiting scroll member 11 is caused to pivot by the crankshaft 13, the compression chamber 14 located at the outermost side among the compression chambers 14 formed between the fixed scroll member 8 and the orbiting scroll member 11 performs a orbiting motion While moving toward the center of the fixed scroll member 8 and the orbiting scroll member 11 while gradually reducing the volume. When the compression chamber 14 reaches near the center of the fixed scroll member 8 and the orbiting scroll member 11, the compression chamber 14 communicates with the discharge port 15, and the compressed gas inside the compression chamber 14 is discharged from the discharge pipe 18 to the outside of the compressor 3. Is discharged.
 圧縮機3においては、一定速あるいは図示していないインバータによって制御された電圧に応じた回転速度でクランクシャフト13が回転し、圧縮動作を行う。また、電動モータ19の下方には、油溜め部22が設けられており、油溜め部22の油は、圧力差によってクランクシャフト13に設けられた油孔21を通って、旋回スクロール部材11とクランクシャフト13との摺動部、滑り軸受け20等の潤滑に供される。 In the compressor 3, the crankshaft 13 is rotated at a constant speed or at a rotational speed corresponding to a voltage controlled by an inverter (not shown) to perform a compression operation. An oil reservoir 22 is provided below the electric motor 19, and the oil in the oil reservoir 22 passes through an oil hole 21 provided in the crankshaft 13 due to a pressure difference, and the orbiting scroll member 11 and The sliding portion with the crankshaft 13 and the sliding bearing 20 are lubricated.
 以下、冷凍機油の構成について実施例及び比較例を用いて説明する。 Hereinafter, the configuration of the refrigerating machine oil will be described using examples and comparative examples.
 (実施例1~3及び比較例1、2)
 日本工業規格(JIS C 9612-2005:ルームエアコンディショナ)に基づき、通年エネルギー消費効率APFを算出した。また、別途、圧縮機の性能試験を実施し、代表条件からの体積効率を測定した。実施例に用いた冷媒は、ジフルオロメタンであり、主剤である冷凍機油と添加剤である圧縮部シール剤を下記に示す。
(Examples 1 to 3 and Comparative Examples 1 and 2)
The annual energy consumption efficiency APF was calculated based on Japanese Industrial Standards (JIS C 9612-2005: Room Air Conditioner). In addition, a performance test of the compressor was separately conducted to measure volumetric efficiency from representative conditions. The refrigerant used in the examples is difluoromethane, and a refrigerant oil as a main ingredient and a compression part sealing agent as an additive are shown below.
 (冷凍機油)
 (A)ヒンダードタイプポリオールエステル油(ペンタエリスリトール/ジペンタエリスリトール系の2-メチルブタン酸/2-エチルヘキサン酸の混合脂肪酸エステル油):40℃動粘度68.7mm/s
 (B)ヒンダードタイプポリオールエステル油(ペンタエリスリトール系の2-エチルヘキサン酸/3,5,5-トリメチルヘキサン酸の混合脂肪酸エステル油):40℃動粘度64.9mm/s
 (圧縮部シール剤)
 (F)ヒンダードタイプポリオールエステル油(ジペンタエリスリトール系の2-エチルヘキサン酸/3,5,5-トリメチルヘキサン酸の混合脂肪酸エステル油):40℃動粘度217mm/s
 (G)コンプレックスタイプポリオールエステル油(ネオペンチルグリコールとジカルボン酸とモノカルボン酸とが結合したエステルであり、ジカルボン酸としてアジピン酸、モノカルボン酸として3,5,5-トリメチルヘキサン酸を用いたエステル油):40℃動粘度260mm/s
 (H)エチレン-α-オレフィン共重合体(商品名:ルーカントHC-40:三井化学株式会社製、ルーカントは同社の登録商標):40℃動粘度380mm/s
 実施例1~3では、冷凍機油(A)に圧縮部シール剤として(F)、(G)及び(H)をそれぞれ5.0重量%配合した。いずれも配合後の冷凍機油の動粘度は70mm/s近傍である。冷凍機油(A)は、ジフルオロメタンとの低温側臨界溶解温度が-2℃であり、相溶性を示す冷凍機油である。圧縮機に封入される冷媒及び冷凍機油の相溶性は、前述したように冷凍サイクルから圧縮機への油戻り(圧縮機内部の油量を確保)あるいは熱交換効率の維持等、圧縮機の信頼性を保証する面で重要な特性の一つである。ジフルオロメタンと冷凍機油との相溶性評価は、JIS K 2211に準じて測定した。相溶性評価においては、冷媒に混合した油の濃度(油濃度)を横軸とし、溶解温度を縦軸としたグラフを作成した。このグラフは、一般に、二層に分離する温度の油濃度依存性を示すものであり、極大値を有する曲線となる。この極大値を低温側臨界溶解温度と定義した。
(Refrigerator oil)
(A) Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C. kinematic viscosity 68.7 mm 2 / s
(B) Hindered-type polyol ester oil (pentaerythritol-based 2-ethylhexanoic acid / 3,5,5-trimethylhexanoic acid mixed fatty acid ester oil): 40 ° C. kinematic viscosity 64.9 mm 2 / s
(Compressor seal agent)
(F) Hindered-type polyol ester oil (a mixed fatty acid ester oil of 2-ethylhexanoic acid / 3,5,5-trimethylhexanoic acid of dipentaerythritol type): 40 ° C. kinematic viscosity 217 mm 2 / s
(G) Complex type polyol ester oil (an ester in which neopentyl glycol, a dicarboxylic acid and a monocarboxylic acid are bonded, an ester using adipic acid as the dicarboxylic acid and 3,5,5-trimethylhexanoic acid as the monocarboxylic acid Oil): 40 ° C kinematic viscosity 260 mm 2 / s
(H) Ethylene-α-olefin copolymer (trade name: LUCANT HC-40: made by Mitsui Chemicals, Inc., LUCANT is a registered trademark of the company): 40 ° C. kinematic viscosity 380 mm 2 / s
In Examples 1 to 3, 5.0% by weight of each of (F), (G) and (H) was blended with the refrigerator oil (A) as a seal for the compression part. In all cases, the kinematic viscosity of the refrigerator oil after blending is around 70 mm 2 / s. The refrigerator oil (A) is a refrigerator oil which has a low temperature side critical solution temperature with difluoromethane of −2 ° C. and shows compatibility. As described above, the compatibility of the refrigerant and the refrigeration oil enclosed in the compressor is the reliability of the compressor, such as oil return from the refrigeration cycle to the compressor (retaining the amount of oil inside the compressor) or maintenance of heat exchange efficiency. It is one of the important characteristics in terms of guaranteeing gender. The compatibility evaluation of difluoromethane and a refrigerator oil was measured according to JIS K 2211. In the compatibility evaluation, a graph was created in which the concentration (oil concentration) of the oil mixed with the refrigerant was taken as the abscissa and the dissolution temperature as the ordinate. This graph generally shows the oil concentration dependency of the temperature of separation into two layers, and is a curve having a maximum value. This maximum value was defined as the low temperature side critical solution temperature.
 比較例1では、現行の機器で使用される冷媒R410Aと冷凍機油(B)を用いた組合せとした。低温側臨界溶解温度は+9℃であり、圧縮部シール剤は配合されていない。この比較例1を効率の基準値(APF比)100%とした。比較例2は、実施例1~3から圧縮機シール剤が配合されていない組合せとした。測定項目は、通年エネルギー消費効率APFと圧縮機の体積効率比を空調装置の代表運転条件である暖房定格、暖房中間、冷房定格、冷房中間の4条件において比較した。比較例1の現行機器を基準100%として、実施例1~3と比較例2のAPFと体積効率比を検討した。 In the comparative example 1, it was set as the combination using refrigerant | coolant R410A and refrigeration oil (B) which are used with the present apparatus. The low temperature side critical solution temperature is + 9 ° C., and the compression part sealing agent is not blended. This comparative example 1 was taken as the efficiency reference value (APF ratio) 100%. Comparative Example 2 was a combination in which the compressor sealing agent was not blended from Examples 1 to 3. The measurement items were compared between the yearly energy consumption efficiency APF and the volumetric efficiency ratio of the compressor under the four conditions of the heating rating, the heating middle, the cooling rating, and the cooling middle, which are representative operating conditions of the air conditioner. The volumetric efficiency ratio of the APFs of Examples 1 to 3 and Comparative Example 2 was examined with the current apparatus of Comparative Example 1 as 100%.
 表1に結果を示す。 Table 1 shows the results.
 比較例1と比較例2とを比べると、ジフルオロメタンを用いた場合、APFが約1.0%向上している。これは、ジフルオロメタンの潜熱が大きく、圧力損失が小さいためにAPFが向上すると考えられる。しかし、圧縮機の体積効率をみると、APFは向上したにもかかわらず、ジフルオロメタンを用いた圧縮機では、体積効率がいずれの条件においても低下する。ジフルオロメタンは断熱指数が小さく吐出温度が高くなるため圧縮機の温度も高くなり、吸い込み時の過熱損失が生じ易い。さらに、分子量が小さく分子速度が速いため、圧縮機の圧縮部から冷媒が漏れやすい。このため、体積効率低下が発生してしまう。これに対して、実施例1~3で示すようにジフルオロメタンと冷凍機油(A)に圧縮部シール剤を5重量%配合した空調機器では、比較例2と比べて圧縮機の体積効率が向上しており、機器のAPFも増加することがわかった。 Comparison of Comparative Example 1 and Comparative Example 2 shows that the APF is improved by about 1.0% when difluoromethane is used. This is considered to be because the latent heat of difluoromethane is large and the pressure loss is small, so that the APF is improved. However, when looking at the volumetric efficiency of the compressor, although the APF has been improved, in the compressor using difluoromethane, the volumetric efficiency decreases under any conditions. Since the difluoromethane has a small adiabatic index and a high discharge temperature, the temperature of the compressor also becomes high, and it is easy to cause an overheat loss at the time of suction. Furthermore, since the molecular weight is small and the molecular velocity is high, the refrigerant is likely to leak from the compression unit of the compressor. As a result, volumetric efficiency decreases. On the other hand, as shown in Examples 1 to 3, in the air conditioner in which 5% by weight of the compressed part sealing agent is mixed with difluoromethane and the refrigerator oil (A), the volumetric efficiency of the compressor is improved compared to Comparative Example 2. And the APF of the equipment was also found to increase.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (実施例4~6及び比較例3、4)
 実施例4~6で冷凍機油の潤滑性を評価した。シェル式四球摩擦摩耗試験機を用い、冷凍機油の潤滑性を評価した。1/2インチSUJ2鋼球を試験片とし、荷重:280N、温度:120℃、回転速度:1200/min、時間:10minで試験した後の固定試験片の摩耗痕径(3個平均)と摩擦係数を測定した。冷凍機油(B)及び圧縮部シール剤(F)は、実施例1~3のものと同じである。
(Examples 4 to 6 and Comparative Examples 3 and 4)
The lubricity of the refrigerator oil was evaluated in Examples 4 to 6. The lubricity of the refrigerator oil was evaluated using a shell type four ball friction and wear tester. The wear scar diameter (average of 3 pieces) and friction of a fixed test piece after testing with a 1/2 inch SUJ2 steel ball as a test piece, load: 280 N, temperature: 120 ° C., rotational speed: 1200 / min, time: 10 min. The coefficients were measured. The refrigerator oil (B) and the compression part sealing agent (F) are the same as those of Examples 1 to 3.
 (冷凍機油)
 (A)ヒンダードタイプポリオールエステル油(ペンタエリスリトール/ジペンタエリスリトール系の2-メチルブタン酸/2-エチルヘキサン酸の混合脂肪酸エステル油):40℃動粘度68.7mm/s
 ジペンタエリスリトール配合量約50モル%
 (C)ヒンダードタイプポリオールエステル油(ペンタエリスリトール/ジペンタエリスリトール系の2-メチルブタン酸/2-エチルヘキサン酸の混合脂肪酸エステル油):40℃動粘度67.3mm/s
 ジペンタエリスリトール配合量約35モル%
 (D)ヒンダードタイプポリオールエステル油(ペンタエリスリトール/ジペンタエリスリトール系の2-メチルブタン酸/2-エチルヘキサン酸の混合脂肪酸エステル油):40℃動粘度66.2mm/s
 ジペンタエリスリトール配合量約25モル%
 (E)ヒンダードタイプポリオールエステル油(ペンタエリスリトール/ジペンタエリスリトール系の2-メチルブタン酸/2-エチルヘキサン酸の混合脂肪酸エステル油):40℃動粘度65.3mm/s
 ジペンタエリスリトール配合量約10モル%
 冷凍機油として、(A)、(C)及び(D)は、ジペンタエリスリトールを20モル%以上配合し、いずれの冷凍機油にも圧縮部シール剤として(F)を5.0重量%配合している。
(Refrigerator oil)
(A) Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C. kinematic viscosity 68.7 mm 2 / s
About 50 mol% of dipentaerythritol compounding amount
(C) Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C. kinematic viscosity 67.3 mm 2 / s
About 35 mol% of dipentaerythritol compounding amount
(D) Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C. kinematic viscosity 66.2 mm 2 / s
About 25 mol% of dipentaerythritol blending amount
(E) Hindered-type polyol ester oil (mixed fatty acid ester oil of 2-methylbutanoic acid / 2-ethylhexanoic acid based on pentaerythritol / dipentaerythritol): 40 ° C. kinematic viscosity 65.3 mm 2 / s
About 10 mol% of dipentaerythritol compounding amount
As refrigeration oil, (A), (C) and (D) contain 20 mol% or more of dipentaerythritol, and 5.0 wt% of (F) as compression part sealing agent in any refrigeration oil ing.
 表2は、各冷凍機油の潤滑性を評価した結果を示したものである。 Table 2 shows the results of evaluating the lubricity of each refrigerator oil.
 比較例4で示すように、冷凍機油成分にジペンタエリスリトールが配合されていない場合は、摩耗痕径が大きく、摩擦係数が高い。これに対して、実施例4~6で示すように冷凍機油成分にジペンタエリスリトールが20重量%以上配合されたものは、摩耗痕径と摩擦係数が抑制されており、潤滑性が優れている。これはジペンタエリスリトールの摩擦面に対する吸着能力が大きく、摩擦面の表面エネルギーが低下し、耐摩耗性と摩擦係数の低減効果が得られたことによる。比較例3で示すように、冷凍機油成分にジペンタエリスリトール配合量が20重量%未満のものは、摩耗痕径が大きく、摩擦係数も高く、十分な潤滑性が得られない。 As shown in Comparative Example 4, when dipentaerythritol is not blended in the refrigerator oil component, the wear trace diameter is large and the friction coefficient is high. On the other hand, as shown in Examples 4 to 6, when 20 weight% or more of dipentaerythritol is blended in the refrigerator oil component, the wear mark diameter and the friction coefficient are suppressed, and the lubricity is excellent. . This is because the adsorption ability of dipentaerythritol to the friction surface is large, the surface energy of the friction surface is reduced, and the effects of reducing the wear resistance and the friction coefficient are obtained. As shown in Comparative Example 3, when the blending amount of dipentaerythritol in the refrigerator oil component is less than 20% by weight, the wear trace diameter is large, the friction coefficient is also high, and sufficient lubricity can not be obtained.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (実施例7~9及び比較例5、6)
 次に、実施例1で効果を確認した冷凍機油と圧縮部シール剤を用いて、圧縮機シール剤の配合量についての検討を行った。測定項目、測定方法、冷凍機油(A)及び圧縮部シール剤(F)は、実施例1~3のものと同じである。
(Examples 7 to 9 and Comparative Examples 5 and 6)
Next, using the refrigerator oil and the compression unit sealing agent whose effects were confirmed in Example 1, the compounding amount of the compressor sealing agent was examined. The measurement items, the measurement method, the refrigerator oil (A) and the compression unit seal agent (F) are the same as those of Examples 1 to 3.
 実施例7~9では、冷凍機油(A)に圧縮部シール剤として(F)を1~30重量%の範囲で配合した。比較例5では圧縮部シール剤として(F)を0.5重量%とし、比較例6では圧縮部シール剤として(F)を40重量%配合して、試験を実施した。 In Examples 7 to 9, (F) was blended in the range of 1 to 30% by weight as a compressor part sealing agent to the refrigerator oil (A). In Comparative Example 5, (F) was set to 0.5% by weight as the compressed part sealing agent, and in Comparative Example 6, 40% by weight of (F) was mixed as the compressed part sealing agent to conduct the test.
 結果を表3に示す。 The results are shown in Table 3.
 比較例2と比べると、実施例7~9では、APFが0.5~1.0%向上している。これは、圧縮部シール剤により圧縮機の圧縮部のシール性が向上した効果による。これに対して比較例5で示すように、圧縮部シール剤として(F)を0.5重量%とした実施形態では、比較例2と比べて圧縮機の体積効率やAPFの向上は得られていない。また、比較例6で示すように圧縮部シール剤として(F)を40重量%も配合してしまうと、冷凍機油の動粘度も大きく増加してしまい、粘性抵抗が増大することによるAPFが低下する。このことから、冷凍機油に対して圧縮部シール剤の配合量は、1.0~30重量%の範囲が良い。 As compared with Comparative Example 2, in Examples 7 to 9, the APF is improved by 0.5 to 1.0%. This is due to the effect that the sealability of the compression section of the compressor is improved by the compression section seal agent. On the other hand, as shown in Comparative Example 5, in the embodiment in which (F) is set to 0.5% by weight as the compression part sealing agent, improvement of the volumetric efficiency and APF of the compressor can be obtained compared to Comparative Example 2. Not. In addition, as shown in Comparative Example 6, when 40% by weight of (F) is blended as a sealing agent for the compression section, the kinematic viscosity of the refrigerating machine oil is also greatly increased, and the APF is decreased due to the increase of the viscosity resistance. Do. From this, it is preferable that the blending amount of the compression part sealing agent is in the range of 1.0 to 30% by weight with respect to the refrigeration oil.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 以上の結果から、圧縮機の圧縮部からの冷媒漏れを低減し、圧縮機の体積効率を向上させることができ、空調装置の通年エネルギー消費効率APFを向上させることができる。 From the above results, it is possible to reduce the refrigerant leakage from the compression unit of the compressor, to improve the volumetric efficiency of the compressor, and to improve the annual energy consumption efficiency APF of the air conditioner.
 圧縮機としては、スクロール式圧縮機の他、ロータリー式圧縮機、ツインロータリー式圧縮機、2段圧縮ロータリー式圧縮機、及びローラとベーンが一体化されたスイング式圧縮機においても同様の効果が得られることを確認した。 As a compressor, the same effect can be obtained in a rotary compressor, a twin rotary compressor, a two-stage compression rotary compressor, and a swing compressor in which a roller and a vane are integrated, in addition to a scroll compressor. It confirmed that it could be obtained.
 本発明は、圧縮機及び空調装置に適用可能である。 The present invention is applicable to a compressor and an air conditioner.
 1:室内機,2:室外機,3:圧縮機,4:四方弁,5:室内熱交換器,6:膨張装置,7:室外熱交換器,8:固定スクロール部材,9:端板,10:渦巻状ラップ,11:旋回スクロール部材,12:ラップ,13:クランクシャフト,14:圧縮室,15:吐出口,16:フレーム,17:圧力容器,18:吐出パイプ,19:電動モータ,20:滑り軸受け,21:油孔,22:油溜め部。 1: indoor unit, 2: outdoor unit, 3: compressor, 4: four-way valve, 5: indoor heat exchanger, 6: expansion device, 7: outdoor heat exchanger, 8: fixed scroll member, 9: end plate, 10: Spiral wrap, 11: orbiting scroll member, 12: lap, 13: crankshaft, 14: compression chamber, 15: discharge port, 16: frame, 17: pressure vessel, 18: discharge pipe, 19: electric motor, 20: Slide bearing, 21: Oil hole, 22: Oil reservoir.

Claims (4)

  1.  摺動部を有する圧縮室を備え、冷媒であるジフルオロメタンと、冷凍機油とを封入した圧縮機において、
     前記冷凍機油は、下記化学式(1)で表される第一のポリオールエステル油と下記化学式(2)で表される第二のポリオールエステル油とを含み(式中、R~Rは炭素数3~8のアルキル基である。)、前記第二のポリオールエステル油を20モル%以上含み、
     前記冷媒と前記第一のポリオールエステル油及び前記第二のポリオールエステル油の混合物との低温側臨界溶解温度は、+10℃以下であり、
     前記冷凍機油は、40℃における動粘度が180mm/sを超える圧縮部シール剤を更に含み、前記圧縮部シール剤は、前記混合物100重量部に対して1~30重量部であり、前記冷凍機油の40℃における動粘度は、30~90mm/sであることを特徴とする圧縮機。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    In a compressor provided with a compression chamber having a sliding portion, in which difluoromethane as a refrigerant and refrigeration oil are enclosed,
    The refrigeration oil includes a first polyol ester oil represented by the following chemical formula (1) and a second polyol ester oil represented by the following chemical formula (2) (wherein R 1 to R 6 are carbon (3 to 8 alkyl groups) and 20 mol% or more of the second polyol ester oil,
    The low temperature side critical solution temperature of the refrigerant and the mixture of the first polyol ester oil and the second polyol ester oil is + 10 ° C. or less,
    The refrigerating machine oil further includes a compressed part sealing agent having a kinematic viscosity at 180C of more than 180 mm 2 / s, and the compressed part sealing agent is 1 to 30 parts by weight with respect to 100 parts by weight of the mixture. A compressor characterized in that the kinematic viscosity of the machine oil at 40 ° C. is 30 to 90 mm 2 / s.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  2.  前記圧縮部シール剤は、下記化学式(3)で表される化合物(式中、R、Rは、炭素数7~8のアルキル基である。)若しくは下記化学式(4)で表わされる化合物(式中、R、R10は炭素数3~9のアルキル基であり、R11は炭素数1~9のアルキル基であり、nは正数である。)又は数平均分子量が800~4000のエチレン-α-オレフィン共重合体であることを特徴とする請求項1記載の圧縮機。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    The compressed part sealing agent is a compound represented by the following chemical formula (3) (wherein R 7 and R 8 are alkyl groups having 7 to 8 carbon atoms) or a compound represented by the following chemical formula (4) (Wherein, R 9 and R 10 are alkyl groups having 3 to 9 carbon atoms, R 11 is an alkyl group having 1 to 9 carbon atoms, and n is a positive number) or the number average molecular weight is 800 to The compressor according to claim 1, which is a 4000 ethylene-α-olefin copolymer.
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  3.  前記圧縮室は、旋回スクロール部材と固定スクロール部材とで形成され、前記冷凍機油は、40℃における動粘度が46~90mm/sであることを特徴とする請求項1記載の圧縮機。 The compressor according to claim 1, wherein the compression chamber is formed by a orbiting scroll member and a fixed scroll member, and the refrigerating machine oil has a kinematic viscosity at 40 属 C of 46 to 90 mm 2 / s.
  4.  請求項1乃至3のいずれか一項に記載の圧縮機と、凝縮器と、膨張装置と、蒸発器とが配管で接続された空調装置。 An air conditioner in which the compressor according to any one of claims 1 to 3, a condenser, an expansion device, and an evaporator are connected by piping.
PCT/JP2013/053351 2012-06-15 2013-02-13 Compressor and air conditioner WO2013187084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380031349.5A CN104379713B (en) 2012-06-15 2013-02-13 Compressor and air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012135295A JP5872387B2 (en) 2012-06-15 2012-06-15 Compressor and air conditioner
JP2012-135295 2012-06-15

Publications (1)

Publication Number Publication Date
WO2013187084A1 true WO2013187084A1 (en) 2013-12-19

Family

ID=49757926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053351 WO2013187084A1 (en) 2012-06-15 2013-02-13 Compressor and air conditioner

Country Status (3)

Country Link
JP (1) JP5872387B2 (en)
CN (1) CN104379713B (en)
WO (1) WO2013187084A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098869A1 (en) * 2013-12-25 2015-07-02 Jx日鉱日石エネルギー株式会社 Working fluid composition for refrigerator, and refrigerator oil
EP3342845A1 (en) * 2016-12-28 2018-07-04 JXTG Nippon Oil & Energy Corporation Lubricating oil composition for refrigerating machines

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023902A (en) * 2014-07-24 2016-02-08 日立アプライアンス株式会社 Air conditioner
JP2016151256A (en) * 2015-02-19 2016-08-22 三菱電機株式会社 Compressor
EP3460356B1 (en) * 2016-05-17 2021-01-20 Mitsubishi Electric Corporation Refrigeration cycle device
CN106833536B (en) * 2016-12-26 2019-08-20 浙江衢化氟化学有限公司 A kind of refrigerant composition containing HF hydrocarbon
JP6908082B2 (en) * 2019-09-27 2021-07-21 株式会社富士通ゼネラル Refrigeration cycle equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322386A (en) * 1993-05-14 1994-11-22 Hitachi Ltd Working medium for refrigerator and freezing device using the same
JPH09208980A (en) * 1996-02-02 1997-08-12 Nippon Oil Co Ltd Refrigerating machine oil composition and fluid composition for refrigerating machine
JPH10298572A (en) * 1997-02-13 1998-11-10 Japan Energy Corp Compression type freezer and refrigerator oil used therefor
JP2000008072A (en) * 1998-06-26 2000-01-11 Nippon Mitsubishi Oil Corp Lubricant composition for compressor using hfc-32 as cooling medium
JP2002129178A (en) * 2000-10-30 2002-05-09 Nippon Mitsubishi Oil Corp Refrigerator oil and fluid composition for refrigerator
JP2012031239A (en) * 2010-07-29 2012-02-16 Hitachi Appliances Inc Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus
JP2012052135A (en) * 2003-11-21 2012-03-15 Nof Corp Lubricant composition for refrigerating machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322386A (en) * 1993-05-14 1994-11-22 Hitachi Ltd Working medium for refrigerator and freezing device using the same
JPH09208980A (en) * 1996-02-02 1997-08-12 Nippon Oil Co Ltd Refrigerating machine oil composition and fluid composition for refrigerating machine
JPH10298572A (en) * 1997-02-13 1998-11-10 Japan Energy Corp Compression type freezer and refrigerator oil used therefor
JP2000008072A (en) * 1998-06-26 2000-01-11 Nippon Mitsubishi Oil Corp Lubricant composition for compressor using hfc-32 as cooling medium
JP2002129178A (en) * 2000-10-30 2002-05-09 Nippon Mitsubishi Oil Corp Refrigerator oil and fluid composition for refrigerator
JP2012052135A (en) * 2003-11-21 2012-03-15 Nof Corp Lubricant composition for refrigerating machine
JP2012031239A (en) * 2010-07-29 2012-02-16 Hitachi Appliances Inc Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098869A1 (en) * 2013-12-25 2015-07-02 Jx日鉱日石エネルギー株式会社 Working fluid composition for refrigerator, and refrigerator oil
US20170037337A1 (en) * 2013-12-25 2017-02-09 Denso Corporation Working fluid composition for refrigerator, and refrigerator oil
JPWO2015098869A1 (en) * 2013-12-25 2017-03-23 株式会社デンソー Working fluid composition for refrigerator and refrigerator oil
US10053647B2 (en) 2013-12-25 2018-08-21 Denso Corporation Working fluid composition for refrigerator, and refrigerator oil
EP3342845A1 (en) * 2016-12-28 2018-07-04 JXTG Nippon Oil & Energy Corporation Lubricating oil composition for refrigerating machines
CN108251183A (en) * 2016-12-28 2018-07-06 Jxtg能源株式会社 Refrigerator oil and working fluid composition for refrigerating machine

Also Published As

Publication number Publication date
JP2014001255A (en) 2014-01-09
CN104379713B (en) 2016-07-06
CN104379713A (en) 2015-02-25
JP5872387B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6545337B1 (en) Refrigeration cycle device
WO2013187084A1 (en) Compressor and air conditioner
WO2012086518A1 (en) Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus
KR101280701B1 (en) Compressor for refrigerating air conditioning and refrigerating air conditioner
EP2566930B1 (en) Use of compositions for refrigeration
AU2015256314B2 (en) Low GWP heat transfer compositions
JP6017437B2 (en) Low GWP heat transfer composition
JP5562920B2 (en) Compressor for refrigeration and air-conditioning equipment
CN109072895B (en) Electric compressor and refrigerating and air-conditioning device
JP2011052032A (en) Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene
WO2014134821A1 (en) Low gwp heat transfer compositions including co2
JP2015529262A (en) Low GWP heat transfer composition
JPWO2019239528A1 (en) Refrigerant composition and refrigeration cycle apparatus using the same
JP2015014395A (en) Air conditioner
JP6522345B2 (en) Refrigerating apparatus and sealed electric compressor
JP2000129275A (en) Working fluid composition for refrigerating/air- conditioning machine and refrigerating/air-conditioning apparatus using same
JP2016023902A (en) Air conditioner
JP2002194369A (en) Working medium composition for air conditioning and air conditioner using the same composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804486

Country of ref document: EP

Kind code of ref document: A1