WO2013186883A1 - Poly(lactic acid) resin composition, method for producing molded article, molded article, and holder for electronic device - Google Patents

Poly(lactic acid) resin composition, method for producing molded article, molded article, and holder for electronic device Download PDF

Info

Publication number
WO2013186883A1
WO2013186883A1 PCT/JP2012/065147 JP2012065147W WO2013186883A1 WO 2013186883 A1 WO2013186883 A1 WO 2013186883A1 JP 2012065147 W JP2012065147 W JP 2012065147W WO 2013186883 A1 WO2013186883 A1 WO 2013186883A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
resin composition
composition according
acid resin
mass
Prior art date
Application number
PCT/JP2012/065147
Other languages
French (fr)
Japanese (ja)
Inventor
千尋 竹内
山本 広志
斉藤 英一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2012/065147 priority Critical patent/WO2013186883A1/en
Priority to CN201280073934.7A priority patent/CN104364319A/en
Publication of WO2013186883A1 publication Critical patent/WO2013186883A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention relates to a polylactic acid resin composition, a method for producing a molded article using the polylactic acid resin composition, a molded article formed from the polylactic acid resin composition, and an electronic device formed from the polylactic acid resin composition. For holders.
  • plastic materials using biomass initially attracted attention as biodegradable plastics, but recently they have been re-evaluated as carbon-neutral plant plastics and have been put into practical use in some areas.
  • One type of typical plant plastic is polylactic acid resin.
  • polylactic acid resin composition By injection-molding the polylactic acid resin composition, it is expected to obtain various molded articles such as an electronic device holder, an electronic device internal chassis component, an electronic device casing, and an electronic device internal component.
  • Patent Document 1 discloses that polylactic acid resin is 5 to 75% by mass, ABS resin is 20 to 60% by mass, (meth) acrylic acid ester polymer is 2 to 10% by mass, and talc is 3 to 25% by mass.
  • the composition containing is disclosed.
  • the present invention has been made in view of the above-described reasons, and contains polylactic acid, has good moldability, suppresses the appearance defect of the molded product, and further improves the durability of the molded product.
  • An object is to provide a molded article and a holder for electronic equipment with high durability.
  • the polylactic acid resin composition according to the first embodiment of the present invention contains polylactic acid and a thermoplastic resin other than polylactic acid, and the ratio of the polylactic acid is in the range of 4% by mass to less than 15% by mass.
  • the degree of dispersion of the polylactic acid is 4.0 or less.
  • the polylactic acid has a weight average molecular weight of 7 million or more.
  • the ratio of the polylactic acid is in the range of 4 to 7% by mass.
  • thermoplastic resin contains an ABS resin.
  • the ABS resin contains an ABS resin regenerated from a used product.
  • the ABS resin contains a flame retardant ABS resin.
  • the polylactic acid resin composition according to the seventh embodiment further contains a polymethyl methacrylate resin in any one of the fourth to sixth embodiments.
  • the polylactic acid contains D-lactic acid units in a proportion of 8 to 15 mol%.
  • the polylactic acid is a polylactic acid that does not crystallize even when heated at 100 ° C. for 2 hours.
  • the average particle diameter of the ABS resin is 0.3 ⁇ m or less.
  • a melt flow rate (220 ° C., 10 kg) defined by ISO 1133 of the ABS resin is 15 to 35 g / 10 minutes, and the ABS The Charpy impact strength (notched) specified by ISO 179 of the resin is 10 to 30 kJ / m 2 .
  • the polylactic acid resin composition according to the twelfth aspect further contains a polycarbonate resin in any one of the fourth to eleventh aspects.
  • thermoplastic resin contains a polycarbonate resin.
  • the polylactic acid resin composition according to the fourteenth embodiment contains, in the thirteenth embodiment, an elastomer having an Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less in a proportion of 1% by mass or more. .
  • the pH of the elastomer is in the range of 6-8.
  • the polycarbonate resin has a melt flow rate (300 ° C., 1.2 kg) as defined in ISO ASTM D1238 of 10 to 25 g / 10 min. It is a range.
  • the polylactic acid resin composition according to the seventeenth aspect further contains a flame retardant in any one of the thirteenth to sixteenth aspects.
  • thermoplastic resin contains a polymethyl methacrylate resin.
  • thermoplastic resin contains a polypropylene resin.
  • thermoplastic resin contains a low density polyethylene resin.
  • the polylactic acid resin composition according to the twenty-first aspect further comprises polybutylene adipate terephthalate and an organic peroxide in any one of the first to fourth aspects.
  • the polylactic acid resin composition according to the twenty-second aspect further contains a copolymer of alkyl methacrylate and alkyl acrylate in any one of the first to twenty-first aspects.
  • the polylactic acid resin composition according to the twenty-third form further contains a carbodiimide compound in any one of the first to twenty-second forms.
  • the polylactic acid resin composition according to the twenty-fourth form further contains a carbodiimide compound having no isocyanate group in the twenty-third form.
  • the polylactic acid resin composition according to the twenty-fifth aspect further contains a core-shell rubber in any one of the first to twenty-fourth aspects.
  • the polylactic acid resin composition according to the twenty-sixth aspect has a tensile strength retention of 80% or more when exposed in an atmosphere of 60 ° C. and 95% RH for 1000 hours in any one of the first to twenty-fifth aspects. Is formed. It is more preferable if a molded article having a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours is formed.
  • the polylactic acid resin composition according to any one of the first to twenty-sixth aspects is prepared, and the polylactic acid resin composition is molded.
  • the molded product according to the twenty-eighth aspect is formed by molding the polylactic acid resin composition according to any one of the first to twenty-seventh aspects.
  • the molded product according to the twenty-ninth aspect has a tensile strength retention of 80% or more when exposed in an atmosphere of 60 ° C. and 95% RH for 1000 hours in the twenty-eighth aspect. More preferably, the tensile strength retention when exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours is 80% or more.
  • the electronic device holder according to the thirtieth embodiment is formed by molding the polylactic acid resin composition according to any one of the fourth to twelfth embodiments.
  • the moldability is good, the appearance defect of the molded product is suppressed, and the durability of the molded product is further improved, the polylactic acid resin composition Manufacturing method of molded product for forming molded product with good appearance and high durability from product with good moldability, and molded product and electronic device holder with good appearance and high durability formed from said polylactic acid resin composition Is obtained.
  • the polylactic acid resin composition according to the present embodiment contains polylactic acid and a thermoplastic resin other than polylactic acid. Further, the proportion of polylactic acid in the polylactic acid resin composition is in the range of 4 to 15% by mass, preferably in the range of 4 to 12% by mass, more preferably in the range of 4 to 10% by mass, particularly The range is preferably 4 to 7% by mass. And the dispersion degree of this polylactic acid is 4.0 or less.
  • the polylactic acid preferably has a weight average molecular weight of 7 million or more.
  • the polylactic acid contained in the polylactic acid resin composition preferably has a weight average molecular weight (Mw) of 70,000 or more.
  • Mw weight average molecular weight
  • the degree of dispersion (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), of this polylactic acid is 4.0 or less.
  • the content of polylactic acid in the polylactic acid resin composition is in the range of 4 to 10% by mass, preferably in the range of 4 to 7% by mass.
  • the content of the ABS resin in the polylactic acid resin composition is reduced, and accordingly, the proportion of unsaturated double bonds in the butadiene units in the ABS resin is also reduced. For this reason, it is expected that the light resistance of the molded product is improved.
  • thermoplastic resin such as an ABS resin with polylactic acid
  • a molding shrinkage rate when molding the polylactic acid resin composition and a thermoplastic resin such as an ABS resin are molded.
  • the difference with the molding shrinkage at the time becomes small.
  • a polylactic acid resin composition is molded under the same conditions as in the case of molding a thermoplastic resin such as an ABS resin, using a molding die having the same structure as that for molding a thermoplastic resin such as an ABS resin. It becomes possible to do.
  • the weight average molecular weight of polylactic acid is more preferably in the range of 70,000 to 500,000, more preferably in the range of 70,000 to 300,000, and in the range of 70,000 to 100,000. Particularly preferred.
  • the polylactic acid dispersity (Mw / Mn) is preferably 4 or less, more preferably 3.5 or less, further preferably 3.0 or less, and further preferably 2.5 or less. preferable.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of polylactic acid are calculated by converting the measurement results by gel permeation chromatography using hexafluoroisopropanol as a solvent (mobile phase) by a calibration curve using standard polystyrene. Calculated.
  • 0.036 g of polylactic acid was dissolved in 9 mL of HFIP (hexafluoroisopropanol) over 48 hours, and the resulting solution was filtered with a filter. A sample for measurement is obtained. When this sample is measured with a high-speed GPC device (model number HLC-8220) manufactured by Tosoh Corporation, the weight average molecular weight and number average molecular weight of polylactic acid are calculated based on the measurement result.
  • polylactic acid examples include a homopolymer of lactic acid and a copolymer of lactic acid and a hydroxycarboxylic acid other than lactic acid.
  • Polylactic acid is obtained by polymerizing lactic acid.
  • Lactic acid is obtained, for example, by fermenting starch derived from plants such as corn.
  • lactic acid examples include L-lactic acid, D-lactic acid, and a lactone that is a dimer of lactic acid.
  • hydroxycarboxylic acids other than lactic acid that can be copolymerized with lactic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, and hydroxycaproic acid. These hydroxycarboxylic acids may be used alone or in combination of two or more.
  • the polylactic acid preferably contains at least one of poly-L-lactic acid, which is a polymer of L-lactic acid, and stereocomplex polylactic acid.
  • poly-L-lactic acid which is a polymer of L-lactic acid
  • stereocomplex polylactic acid when the polylactic acid is composed solely of stereocomplex type polylactic acid, or composed only of poly-L-lactic acid and stereocomplex type polylactic acid, it is a molded product with excellent appearance, water resistance, impact resistance and other properties. Is obtained.
  • Polylactic acid substantially consists of an L-lactic acid unit and a D-lactic acid unit represented by the following formula [Chemical Formula 1].
  • the poly-L-lactic acid is preferably composed of 90 to 100 mol%, more preferably 95 to 100 mol%, and still more preferably 99 to 100 mol% of L-lactic acid units.
  • L-lactic acid units When the proportion of L-lactic acid units is high, the durability of the molded product is further improved.
  • units other than L-lactic acid include D-lactic acid units and units other than lactic acid.
  • Polylactic acid may contain units other than lactic acid.
  • Units other than lactic acid include units derived from dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, lactones and the like having functional groups capable of forming two or more ester bonds, and various polyesters and various polyesters composed of these various components. Examples are units derived from ether, various polycarbonates and the like.
  • DSC differential scanning calorimetry
  • the proportion of D-lactic acid units in the polylactic acid is preferably in the range of 8 to 15 mol%, more preferably in the range of 8 to 13 mol%, and further in the range of 8 to 12 mol% as described above. The range is preferable, and the range of 8.6 to 11.6 mol% is particularly preferable.
  • the ratio of D-lactic acid units in polylactic acid is measured by an optical rotation method.
  • a 1% by mass trichloromethane solution of polylactic acid to be measured is prepared, and the ratio of D-lactic acid units in the polylactic acid in this solution is measured by a digital polarimeter (for example, manufactured by SHANGHAI CHANGFANG OPTICAL INSTRUMENT CO., DLTD. , Model number WZZ-2S).
  • Polylactic acid is produced by a known method.
  • L- or D-lactide is produced by heating and ring-opening polymerization in the presence of a metal polymerization catalyst.
  • Polylactic acid can also be produced by crystallizing a low molecular weight polylactic acid containing a metal polymerization catalyst, followed by solid phase polymerization by heating under reduced pressure or in an inert gas stream.
  • polylactic acid is also produced by a direct polymerization method in which lactic acid is dehydrated and condensed in the presence / absence of an organic solvent.
  • the melt flow rate of polylactic acid (190 ° C., 2.16 kg) is preferably in the range of 1 to 16 g / 10 min. In this case, the moldability (fluidity) of the polylactic acid resin composition is particularly improved.
  • ABS resin ABS resin, PC resin, PMMA resin, PP resin, and LDPE resin
  • Thermoplastic resins other than polylactic acid in the polylactic acid resin composition are ABS resin (acrylonitrile / butadiene / styrene copolymer resin), PC resin (polycarbonate resin), PMMA resin (polymethyl methacrylate resin), PP resin (polypropylene resin).
  • LDPE resin low density polyethylene resin
  • ABS resin Since the polylactic acid resin composition contains an ABS resin, the durability, dimensional stability, impact resistance, heat resistance, and moldability of the polylactic acid resin composition during molding are high. Become. Also, from the viewpoint of replacing the ABS resin with polylactic acid, the content of the ABS resin in the polylactic acid resin composition is reduced, and the proportion of unsaturated double bonds in the butadiene unit in the ABS resin is accordingly reduced. To do. For this reason, it is expected that the light resistance of the molded product is improved.
  • the content of the ABS resin in the polylactic acid resin composition is appropriately set, but it is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition.
  • the content of the ABS resin is set according to the kind of the thermoplastic resin in the polylactic acid resin composition when the polylactic acid resin composition contains a thermoplastic resin other than polylactic acid and the ABS resin.
  • the ABS resin content is preferably in the range of 80 to 95% by mass, and preferably in the range of 20 to 80% by mass.
  • the polylactic acid resin composition may contain only polylactic acid and ABS resin as the thermoplastic resin.
  • ABS resin it is preferable to use a resin synthesized by a continuous bulk polymerization method (bulk polymerization) without using an emulsifier and a coagulant.
  • the ABS resin synthesized by this method has few additional components at the time of synthesis, so that hydrolysis of the polylactic acid resin is hardly caused.
  • Examples of such ABS resin include Santac AT-05 and Santac AT-08 manufactured by Nippon A & L Co., Ltd.
  • the ABS resin not only a virgin raw material but also an ABS resin regenerated from a used product may be used.
  • used products various home appliances can be cited.
  • ABS resin is widely used in home appliances and is suitable as a recycled material.
  • the polylactic acid resin composition preferably contains a core-shell rubber as will be described later in order to improve the impact resistance of the molded product.
  • the ABS resin may contain a flame retardant ABS resin containing a flame retardant.
  • the flame retardancy of the molded product is improved.
  • the flame retardant contained in the flame retardant ABS resin include tetrabromobisphenol A, antimony oxide, and triphenyl phosphate.
  • the proportion of styrene units constituting the ABS resin is preferably 72% by mass or less, and more preferably 70% by mass or less. It is preferable that it is 62 mass% or less especially. Furthermore, the proportion of styrene units is preferably 40% by mass or more, more preferably 55% by mass or more, and particularly preferably 58% by mass or more. That is, the proportion of styrene units is preferably in the range of 40 to 72% by mass, more preferably in the range of 55 to 70% by mass, and still more preferably in the range of 58 to 62% by mass.
  • the proportion of the butadiene units constituting the ABS resin is preferably in the range of 16 to 23% by mass, and preferably 16 to 19% by mass. If it is a range, it is still more preferable.
  • the proportion of acrylonitrile units in the ABS resin depends on the proportion of styrene units and butadiene units, but is preferably in the range of 1.5 to 30% by mass, and more preferably in the range of 15 to 30% by mass.
  • the ratio of acrylonitrile units is preferably in the range of 15 to 30% by mass.
  • the structural unit of the ABS resin may include a structural unit other than the acrylonitrile unit, the butadiene unit, and the styrene unit.
  • the structural unit of the ABS resin may include a methyl methacrylate unit.
  • the proportion of structural units such as acrylonitrile units, styrene units, butadiene units, and methyl methacrylate units in the ABS resin is measured by the NMR measurement results of the ABS resin, and the gradient polymer elution chromatography (GPEC) of the ABS resin. Derived based on the result.
  • GPEC gradient polymer elution chromatography
  • the particle size of the ABS resin is not particularly limited, but it is preferable that the particle size is smaller from the viewpoint of maintaining a good appearance of the molded product over a long period of time.
  • the particle size of the ABS resin is small, the molded product is less likely to be whitened even if the molded product is exposed to a high temperature for a long period of time. Such suppression of whitening is considered to be due to the fact that the components in the molded product are finely dispersed due to the small particle size of the ABS resin and the squeeze effect is reduced.
  • the average particle size of the ABS resin is preferably 0.4 ⁇ m or less, more preferably 0.35 ⁇ m or less, and particularly preferably 0.3 ⁇ m or less.
  • the lower limit of the average particle diameter is not particularly limited, but is preferably 0.1 ⁇ m or more.
  • This average particle size is a number-based arithmetic average particle size measured by dyeing ABS resin particles, photographing the particles with a transmission electron microscope (TEM), and analyzing the photographed image. is there.
  • TEM transmission electron microscope
  • the particle diameter of the particles is an area equivalent diameter obtained by converting the projected area of the particles into a circle.
  • the melt flow rate (220 ° C., 10 kg) specified by ISO 1133 of ABS resin is preferably in the range of 15 to 35 g / 10 minutes. In this case, the moldability of the polylactic acid resin composition is further improved. Further, the Charpy impact strength (notched) defined in ISO 179 of ABS resin is preferably 10 to 30 kJ / m 2 . Thereby, mechanical characteristics such as impact resistance of the molded product are further improved.
  • the content of the polycarbonate resin in the polylactic acid resin composition is appropriately set, but is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition.
  • the content of the polycarbonate resin is set according to the type of the thermoplastic resin in the polylactic acid resin composition when the polylactic acid resin composition contains a thermoplastic resin other than polylactic acid and the polycarbonate resin.
  • the content of the polycarbonate resin is preferably in the range of 80 to 95% by mass, and preferably in the range of 20 to 80% by mass.
  • the polylactic acid resin composition may contain only polylactic acid and a polycarbonate resin as the thermoplastic resin.
  • the thermoplastic resin other than polylactic acid in the polylactic acid resin composition contains an ABS resin and further contains a polycarbonate resin.
  • the heat resistance of the molded product is further improved.
  • the content of the polycarbonate resin in the polylactic acid resin composition is appropriately set, but the mass ratio of the ABS resin to the polycarbonate resin in the polylactic acid resin composition is in the range of 99: 1 to 30:70.
  • the range of 60:40 to 40:60 is more preferable, and the range of 55:45 to 45:55 is particularly preferable.
  • polycarbonate resin examples include aromatic polycarbonate resins obtained by reacting a dihydric phenol and a carbonate precursor.
  • reaction method include an interfacial polycondensation method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • dihydric phenols include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, bisphenol A, 2,2-bis (4-hydroxy-3- Methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1, 1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) pentane, 4,4 ′-(p-phenylenediisopropylidene) diphenol, 4, 4 ′-(m-phenylenediisopropylidene) diphenol, 1,1-bis (4-hydroxyphenyl) -4 Isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) s
  • Examples of the carbonate precursor include carbonyl halide, carbonic acid diester, and haloformate. Specific examples include phosgene, diphenyl carbonate, and dihaloformate of dihydric phenol.
  • an aromatic polycarbonate resin is produced from a dihydric phenol and a carbonate precursor by an interfacial polymerization method
  • a catalyst, a terminal terminator, an antioxidant for the oxidation of the dihydric phenol, etc. are used as necessary. May be.
  • polycarbonate resin branched polycarbonate resin copolymerized with trifunctional or higher polyfunctional aromatic compound, polyester carbonate resin copolymerized with aromatic or aliphatic (including alicyclic) difunctional carboxylic acid, bifunctional A copolymer polycarbonate resin obtained by copolymerizing a functional alcohol (including an alicyclic), and a polyester carbonate resin obtained by copolymerizing the bifunctional carboxylic acid and the difunctional alcohol together may be used. Two or more kinds of polycarbonate resins may be used.
  • the melt tension of the polylactic acid resin composition increases, thereby improving molding processability in extrusion molding, foam molding, blow molding and the like. As a result, a molded product having superior dimensional accuracy can be obtained.
  • Examples of the trifunctional or higher polyfunctional aromatic compound used for obtaining the branched polycarbonate resin include 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2,4, 6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, , 1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- ⁇ 4- [1,1
  • a preferred example is trisphenol such as -bis (4-hydroxyphenyl) ethyl] benzene ⁇ - ⁇ , ⁇ -dimethylbenzylphenol.
  • polyfunctional aromatic compounds include phloroglucin, phloroglucid, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl)
  • Examples include benzene, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, and acid chlorides thereof.
  • 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (4 -Hydroxyphenyl) ethane is preferred.
  • the proportion of the structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate resin is 100% by mole in total of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound. 0.03 to 1 mol%, preferably 0.07 to 0.7 mol%, particularly preferably 0.1 to 0.4 mol%.
  • the branched structural unit is not only derived from a polyfunctional aromatic compound, but also derived from a side reaction during a melt transesterification reaction without using a polyfunctional aromatic compound. Also good.
  • the ratio of this branched structure can be calculated by 1 H-NMR measurement.
  • the aliphatic bifunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid, and specific examples thereof include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosane diacid.
  • sebacic acid decanedioic acid
  • dodecanedioic acid dodecanedioic acid
  • tetradecanedioic acid tetradecanedioic acid
  • octadecanedioic acid icosane diacid.
  • linear saturated aliphatic dicarboxylic acids such as acids and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid.
  • an alicyclic diol is suitable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol. Further, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units can also be used.
  • polycarbonate resin two or more kinds of polycarbonates having different dihydric phenol components, polycarbonates containing branched components, various polyester carbonates, polycarbonate-polyorganosiloxane copolymers, and the like may be used. Further, two or more kinds of polycarbonates having different production methods, polycarbonates having different end stoppers, and the like may be used.
  • Reaction methods such as interfacial polymerization, molten transesterification, solid phase transesterification of carbonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds, which are polycarbonate resin production methods, are well known in various documents and patent publications. It is the method that has been.
  • the polycarbonate resin not only virgin raw materials but also polycarbonate resins regenerated from used products, so-called material-recycled aromatic polycarbonates may be used.
  • Used products include soundproof walls, glass windows, translucent roofing materials, various glazing materials such as automobile sunroofs, transparent members such as windshields and automobile headlamp lenses, containers such as water bottles, optical recording media, etc. are preferred. These do not contain a large amount of additives or other resins, and the desired quality is easily obtained stably.
  • an automobile headlamp lens, an optical recording medium, and the like are preferable as the preferred embodiment because they satisfy the more preferable conditions of the viscosity average molecular weight described below.
  • said virgin raw material is a raw material which is not yet used in the market after the manufacture.
  • the viscosity average molecular weight of the polycarbonate resin is preferably 1 ⁇ 10 4 to 5 ⁇ 10 4 , more preferably 1.4 ⁇ 10 4 to 3 ⁇ 10 4 , and even more preferably 1.8 ⁇ 10 4 to 2.5 ⁇ 10. 4 .
  • the viscosity average molecular weight is in the range of 1.8 ⁇ 10 4 to 2.5 ⁇ 10 4
  • the polylactic acid resin composition is particularly excellent in both good fluidity and impact resistance of the molded product.
  • the viscosity average molecular weight is in the range of 1.9 ⁇ 10 4 to 2.4 ⁇ 10 4 .
  • the viscosity average molecular weight only needs to satisfy the entire polycarbonate resin, and a mixture of two or more polycarbonate resins having different molecular weights may satisfy this range.
  • the specific viscosity calculated by the following formula (a) was measured using an Ostwald viscometer for a sample solution prepared by dissolving 0.7 g of a polycarbonate resin in 100 ml of methylene chloride at 20 ° C. Obtained from measurement results.
  • the viscosity average molecular weight M is determined from the specific viscosity obtained using the following formulas (b) to (d).
  • melt flow rate (300 ° C., 1.2 kg) defined by ISO ASTM D1238 of the polycarbonate resin is preferably in the range of 10 to 25 g / 10 minutes. In this case, the durability of the molded product is improved.
  • the melt flow rate (1.2 ° C. at 300 ° C.) is preferably in the range of 10 to 20 g / 10 minutes.
  • PMMA resin polymethyl methacrylate resin
  • the dimensional stability, impact resistance, and heat resistance of the molded product are improved.
  • the transparency of the molded product is increased, and the weather resistance of the molded product is improved.
  • the content of the PMMA resin in the polylactic acid resin composition is appropriately set, but is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition.
  • the content of the PMMA resin is set according to the type of the thermoplastic resin in the polylactic acid resin composition.
  • the content of the PMMA resin is preferably in the range of 80 to 95% by mass, and preferably in the range of 20 to 80% by mass.
  • the polylactic acid resin composition may contain only polylactic acid and a PMMA resin as the thermoplastic resin.
  • PMMA resin may be a polymethyl methacrylate resin elastomer (PMMA resin elastomer).
  • the PMMA resin has a notch Charpy impact value defined in JIS K7111 of 5 kJ / m 2 or more.
  • This notched Charpy impact value is particularly preferably 5.3 kJ / m 2 or more.
  • the upper limit of the notched Charpy impact value is not particularly limited.
  • the melt flow rate (230 ° C., 3.8 kg) of PMMA resin defined by ISO ASTM D1238 is 1.5 g / 10 min or more. Furthermore, the melt flow rate is preferably 5 g / 10 min or more. When the melt flow rate is 1.5 g / 10 min or more, the compatibility of the PMMA resin with polylactic acid is increased in the polylactic acid resin composition, thereby further improving the appearance of the molded product and improving the impact resistance. Further improvement.
  • the weight average molecular weight of PMMA resin is preferably in the range of 60,000 to 80,000, and more preferably in the range of 65,000 to 75,000.
  • the compatibility of the PMMA resin with the polylactic acid is increased, thereby further improving the appearance of the molded product and further improving the impact resistance.
  • This weight average molecular weight is a standard polystyrene equivalent weight average molecular weight determined by gel permeation chromatography using chloroform as a solvent (mobile phase).
  • PMMA resin examples include Sumitomo Chemical Co., Ltd. trade name Sumipex HT03Y, Sumipex HT01X, and the like.
  • the content when the content is 5% by mass or less, the high fluidity of the polylactic acid resin composition and the good appearance of the molded product are maintained by maintaining the proper fluidity of the polylactic acid resin composition. The durability of the product is less likely to decrease.
  • the PMMA resin content is preferably in the range of 1 to 2% by mass.
  • the polylactic acid has a ratio of “D-lactic acid units in the range of 8 to 15 mol% with respect to all units (monomer units) constituting the polylactic acid.
  • “Polylactic acid”, “Polylactic acid that does not crystallize even when heated at 100 ° C for 2 hours”, or “D-lactic acid unit ratio is in the range of 8 to 15 mol% with respect to all the units constituting polylactic acid.
  • “polylactic acid that does not crystallize even when heated at 100 ° C. for 2 hours” is particularly preferable. In this case, the crystallization of polylactic acid in the injection molded product is difficult to proceed.
  • the thermal shrinkage with time in the high temperature environment of the injection molded product is greatly suppressed.
  • the molding cycle is shortened and welds and flow marks are less likely to occur in the injection molded product.
  • the injection molded product has characteristics required for the molded product such as sufficiently high durability, impact resistance, heat resistance and the like. For this reason, the injection-molded product can be used in a wide range of fields such as the home appliance field, the building material, and the sanitary field, which are expected to be used for a long time.
  • the content of the PMMA resin in the polylactic acid resin composition is preferably in the range of 0.5 to 10% by mass, and more preferably in the range of 2 to 10% by mass.
  • the content is 2% by mass or more, the dimensional stability, impact resistance, and heat resistance of the injection molded product are particularly improved.
  • the content is 10% by mass or less, the high fluidity of the polylactic acid resin composition is maintained, and the high moldability of the polylactic acid resin composition and the good appearance of the injection molded product are maintained.
  • the content of the PMMA resin is preferably in the range of 1 to 5% by mass, and more preferably in the range of 1 to 2% by mass.
  • the polylactic acid resin composition contains a polypropylene resin
  • the specific gravity of the molded product is lowered, and weight reduction of the molded product can be expected.
  • the content of the polypropylene resin in the polylactic acid resin composition is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition.
  • the polylactic acid resin composition contains a low-density polyethylene resin
  • the electrical insulation properties of the molded article are improved.
  • the content of the low density polyethylene resin in the polylactic acid resin composition is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition.
  • the polylactic acid resin composition also preferably contains a carbodiimide compound such as a polycarbodiimide compound or a monocarbodiimide compound.
  • a carbodiimide compound such as a polycarbodiimide compound or a monocarbodiimide compound.
  • these compounds react with some or all of the carboxyl group ends of polylactic acid to exert a blocking action, thereby further improving the durability of the molded product in a high-temperature and high-humidity environment.
  • polycarbodiimide compound examples include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, poly (1,3 , 5-triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide.
  • monocarbodiimide compound include N, N′-di-2,6-diisopropylphenylcarbodiimide.
  • carbodiimide compound a commercially available product can be used as appropriate.
  • specific examples of the carbodiimide compound include trade name carbodilite LA-1 (poly (4,4'-dicyclohexylmethanecarbodiimide)), carbodilite HMV-8CA, carbodilite HMV-15CA, etc., manufactured by Nisshinbo Chemical Co., Ltd.
  • the carbodiimide compound does not have an isocyanate group. That the carbodiimide compound does not have an isocyanate group means that the compound having an isocyanate group is not mixed in the carbodiimide compound. That is, in the carbodiimide compound, a compound having an isocyanate group may be mixed, but it is preferable that such a compound having an isocyanate group is not contained in the polylactic acid or the resin composition. In this case, the durability of the molded product is further improved. This is considered because the reactivity of an isocyanate group is too high compared with a carbodiimide group. That is, it is considered that the isocyanate group reacts and is consumed quickly in the molded product, and therefore, the function of blocking the carboxyl group terminal of polylactic acid is quickly lost.
  • polycarbodiimide compound having no isocyanate group examples include trade name Carbodilite HMV-15CA manufactured by Nisshinbo Chemical Co., Ltd.
  • the content of the carbodiimide compound in the polylactic acid resin composition is preferably in the range of 0.1 to 5% by mass.
  • the content is 0.1% by mass or more, the durability of the molded product is further improved, and when the content is 5% by mass or less, high mechanical strength of the molded product is maintained.
  • the content of the carbodiimide compound is preferably 3% by mass or less.
  • the content of the carbodiimide compound is particularly preferably in the range of 0.1 to 1.0% by mass, and more preferably in the range of 0.1 to 0.5% by mass.
  • the polylactic acid resin composition preferably also contains a copolymer of alkyl methacrylate and alkyl acrylate. In this case, mechanical properties such as impact resistance of the molded product are further improved.
  • alkyl methacrylate examples include methyl methacrylate and ethyl methacrylate.
  • alkyl acrylate examples include methyl acrylate, ethyl acrylate, butyl acrylate and the like.
  • the polymerization molar ratio of alkyl methacrylate to alkyl acrylate is preferably in the range of 40:60 to 95: 5.
  • the weight average molecular weight of the copolymer of alkyl methacrylate and alkyl acrylate is preferably in the range of 1 million to 5 million. This weight average molecular weight is a standard polystyrene equivalent weight average molecular weight determined by gel permeation chromatography using chloroform as a solvent (mobile phase).
  • the content of the copolymer of alkyl methacrylate and alkyl acrylate in the thermoplastic resin composition is 0.5% by mass to 5% by mass. It is preferable to be within the range.
  • the content is 1.0% by mass or more and 3.0% by mass or less, the impact resistance of the molded product is particularly improved. The reason is that the melt viscosity of the thermoplastic resin composition is sufficiently increased within the above range, thereby forming an amorphous sea-island structure in the microstructure of the molded product, which leads to an improvement in impact resistance of the molded product. For this reason.
  • the polylactic acid resin composition preferably further contains polybutylene adipate terephthalate.
  • Polybutylene adipate terephthalate is a copolymer of 1,4-butanediol, adipic acid and terephthalic acid. Specific examples thereof include trade name Ecoflex manufactured by BASF.
  • the polylactic acid resin composition contains polybutylene adipate terephthalate
  • the polylactic acid is cross-linked by polybutylene adipate terephthalate by the reaction between polylactic acid and polybutylene adipate terephthalate when the polylactic acid resin composition is molded. .
  • the content in the polylactic acid resin composition is preferably 0.1 to 10% by mass.
  • the polylactic acid resin composition contains polybutylene adipate terephthalate
  • the polylactic acid resin composition further contains an organic peroxide.
  • an organic peroxide for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (trade name Perhexa 25B manufactured by NOF Corporation) is used.
  • the content of the organic peroxide in the polylactic acid resin composition is not particularly limited, but is preferably 0.01 to 1% by mass, for example.
  • the polylactic acid resin composition contains a core-shell rubber.
  • the core-shell rubber is a polymer having a multilayer structure, and an innermost layer (core layer) made of the polymer and one or more layers (shell layer) covering the core layer and made of a polymer different from the core layer. ).
  • Examples of the core-shell rubber include a resin obtained by polymerizing a monomer such as a styrene monomer or a vinyl cyanide monomer in the presence of a rubbery polymer.
  • the content of the polylactic acid resin composition as a whole is not limited, but from the viewpoint of improving the durability of the molded product, this content is preferably 1% by mass or more, If it is 3 mass% or more, it is still more preferable. From the viewpoint of improving the flowability of the polylactic acid resin composition and improving the moldability, workability, handling, etc. of the polylactic acid resin composition, the content of the core-shell rubber is preferably 12% by mass or less.
  • the core shell rubber will be described in more detail.
  • Examples of the core shell rubber include Si-containing core shell rubber. When the core-shell rubber containing Si is used, the flame retardancy of the molded product is further improved.
  • Examples of the core-shell rubber containing Si include polyorganosiloxane-containing graft copolymers and epoxy-modified silicone / acrylic rubber. As the epoxy-modified silicone / acrylic rubber, commercially available products can be used as appropriate. As a specific example, trade name Metabrene S2200 manufactured by Mitsubishi Rayon Co., Ltd., which is a core-shell structure containing glycidyl methacrylate in the shell, can be mentioned.
  • the polylactic acid resin composition may contain core-shell rubber other than Si-containing core-shell rubber, that is, core-shell rubber not containing Si.
  • core-shell rubber not containing Si include an unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer.
  • the unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer is a core-shell rubber containing Si. All or a part of these functions can be exhibited instead of the core-shell rubber containing Si. In this case, the cost is advantageous.
  • the unsaturated carboxylic acid alkyl ester used to obtain the unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer includes methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate. Etc.
  • the diene rubber component include rubbers having a glass transition point of 10 ° C. or less, such as polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene, and the like.
  • aromatic vinyl examples include nuclei substituted styrene such as styrene, ⁇ -methylstyrene and p-methylstyrene. These unsaturated carboxylic acid alkyl esters, diene rubbers, and aromatic vinyls can be used alone or in combination of two or more.
  • a representative example of this unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer is methyl methacrylate-butadiene-styrene copolymer (MBS resin).
  • MBS resin methyl methacrylate-butadiene-styrene copolymer
  • the methyl methacrylate-butadiene-styrene copolymer is preferably a multilayer polymer comprising a core layer composed of a butadiene / styrene polymer and a shell layer composed of a methyl methacrylate polymer.
  • the structural formula of the butadiene / styrene polymer is shown in the following formula [Chemical Formula 2].
  • the left part of this structural formula is a butadiene unit derived from butadiene, and the right part is a styrene unit derived from styrene.
  • the structural formula of the methacrylic polymer constituting the shell layer is shown in the following formula [Chemical Formula 3].
  • Examples of the method for producing the unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer include various methods such as bulk polymerization, suspension polymerization, and emulsion polymerization.
  • the emulsion polymerization method is particularly preferable. is there.
  • the core-shell type graft rubber-like elastic body thus obtained preferably contains 50% by mass or more of the diene rubber component.
  • a commercially available product may be used as appropriate.
  • the methyl methacrylate-butadiene-styrene copolymer include trade names of Metabrene C-223A, Metabrene C-323A, Metabrene C-215A, Metabrene C-201A, and Metabrene C-202 manufactured by Mitsubishi Rayon Co., Ltd.
  • Examples include METABLEN C-102, METABLEN C-140A, METABLEN C-132, etc., trade name Kane Ace M-600 manufactured by Kaneka Corporation, and trade name Paraloid EXL-2638 manufactured by Rohm & Haas Co., Ltd.
  • the polylactic acid resin composition contains a polycarbonate resin
  • the polylactic acid resin composition further contains an elastomer having an Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less in a proportion of 1% by mass or more. It is preferable to contain. In this case, mechanical properties such as impact resistance of the molded product are further improved by the elastomer.
  • an elastomer having a small content of Na and K having a small atomic number and a small sulfur component is used, hydrolysis of polylactic acid is suppressed and discoloration of the polycarbonate resin is suppressed.
  • the ratio of the elastomer in the polylactic acid resin composition is particularly preferably in the range of 2 to 9% by mass.
  • the Na content, K content, and S content of the elastomer are measured by fluorescent X-ray analysis.
  • a fluorescent X-ray analyzer (product number XEPOS) manufactured by Spectro Corporation is used.
  • a methyl methacrylate-butadiene-styrene copolymer having a Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less is preferably used.
  • the pH of this elastomer is preferably in the range of 6-8. In this case, hydrolysis of polylactic acid is further suppressed. For this reason, the durability of the molded product is further improved.
  • the elastomer preferably has a functional group that reacts with an ester bond.
  • the appearance of the molded product is improved.
  • the reason is considered as follows.
  • a polycarbonate resin and polylactic acid are used in combination, the difference in fluidity between the two is usually large, so that a sea-island structure of polylactic acid and the polycarbonate resin is easily formed in the molded product. This sea-island structure causes flow marks in the molded product.
  • the elastomer has a functional group that reacts with an ester bond as described above, the polylactic acid is thickened, thereby reducing the difference in fluidity between the polylactic acid and the polycarbonate resin. For this reason, it is considered that the compatibility between the polylactic acid and the polycarbonate resin is improved, thereby improving the appearance of the molded product.
  • the polylactic acid resin composition contains a flame retardant
  • the polylactic acid resin composition contains PET (plant-derived PET) synthesized from a raw material including a plant-derived raw material.
  • PET plant-derived PET
  • the ratio of biomonoethylene glycol to the total monoethylene glycol in the plant-derived PET raw material is not particularly limited, but is preferably in the range of 1 to 100% by mass, and more preferably in the range of 5 to 100% by mass.
  • the ratio of biomonoethylene glycol to the total monoethylene glycol in the raw material is measured by ASTM D6866-11 METHOD B.
  • the proportion of plant-derived PET in the polylactic acid resin composition is not particularly limited, but is preferably in the range of 1 to 30% by mass.
  • the polylactic acid resin composition various thermoplastic resins other than the above may be contained.
  • the polylactic acid resin composition is made of polyethylene terephthalate resin (PET resin), polybutylene terephthalate resin (PBT resin), cyclohexanedimethanol copolymerized polyethylene terephthalate resin (so-called PET-G resin), polyethylene naphthalate resin, polybutylene naphthalate.
  • Aromatic polyester resins such as resins; cyclic polyolefin resins; polycaprolactone resins; thermoplastic fluororesins typified by polyvinylidene fluoride resins; polyethylene resins, ethylene- ( ⁇ -olefin) copolymer resins, etc. .
  • the polylactic acid resin composition may contain only one kind of resin as described above, or may contain two or more kinds.
  • Such various thermoplastic resins can further improve the impact resistance of the molded product.
  • the content thereof is preferably in the range of 3 to 12% by mass with respect to the polylactic acid resin composition.
  • the polylactic acid resin composition preferably contains an antioxidant.
  • an antioxidant include 2,2-methylenebis- (4-methyl-6-tert-butylphenol), octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanoate, and bis (3 It is preferable to use at least one selected from the group consisting of (t-butyl-4-hydroxy-5-methyl-phenyl) dicyclopentadiene.
  • the polylactic acid resin composition may contain a filler.
  • a filler for example, talc, wollastonite, mica, clay, montmon lilonite, smectite, kaolin, zeolite (aluminum silicate), anhydrous amorphous aluminum silicate obtained by subjecting zeolite to acid treatment and heat treatment, etc.
  • An inorganic filler is mentioned. Talc and wollastonite are particularly preferable.
  • these fillers only one type may be used, or two or more types may be used in combination.
  • the average particle size of talc is usually preferably in the range of 0.1 to 10 ⁇ m.
  • This average particle diameter is a value measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size analyzer (such as Microtrack MT3000II series manufactured by Nikkiso Co., Ltd.).
  • the content of talc in the polylactic acid resin composition is not particularly limited, but is preferably in the range of 1 to 30% by mass. If this content is 1% by mass or more, the tensile modulus of the molded product is improved, and if this content is 30% by mass or less, the penetration of talc into the screw during kneading of the polylactic acid resin composition is suppressed. Thus, good workability and moldability are maintained.
  • the talc content is preferably in the range of 1 to 15% by mass, more preferably in the range of 3 to 8% by mass.
  • the polylactic acid resin composition may contain a dye or a pigment as a colorant.
  • dyes coumarin fluorescent dyes, benzopyran fluorescent dyes, perylene fluorescent dyes, anthraquinone fluorescent dyes, thioindigo fluorescent dyes, xanthene fluorescent dyes, xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes , Thiazine fluorescent dyes, diaminostilbene fluorescent dyes, fluorescent dyes (including fluorescent brighteners); perylene dyes; coumarin dyes; thioindigo dyes; anthraquinone dyes; thioxanthone dyes; Peranone dyes; quinoline dyes; quinacridone dyes; dioxazine dyes; isoindolinone dyes; phthalocyanine dyes.
  • fluorescent dyes coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes that have good heat resistance and little deterioration during molding of the polycarbonate resin are suitable.
  • metallic pigments such as various plate fillers having a metal film or a metal oxide film, carbon, and the like can be used.
  • the content of the colorant in the polylactic acid resin composition is preferably 2% by mass or less and more preferably 1.5% by mass or less with respect to 100 parts by mass of the total amount of the resin components. Furthermore, the content of the colorant is preferably 0.00001 parts by mass or more, more preferably 0.00005 parts by mass or more, and 0.5 parts by mass or more with respect to 100 parts by mass of the total amount of the resin components. If it is more preferable.
  • the polylactic acid resin composition preferably further contains a flame retardant.
  • a flame retardant a Br flame retardant, an organic phosphorus flame retardant, or antimony oxide is preferably used.
  • the content of the Br flame retardant in the polylactic acid resin composition is preferably 1 to 30% by mass, and the content of the organophosphorus flame retardant is preferably in the range of 1 to 30% by mass, A range of 3 to 12% by mass is more preferable.
  • the content of antimony oxide is preferably 0.1 to 3% by mass. In such a range, the flame retardancy of the molded product formed from the polylactic acid resin composition is improved.
  • the polylactic acid resin composition contains a polycarbonate resin and further contains an elastomer having an Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less in a proportion of 1% by mass or more
  • the lactic acid resin composition further contains a flame retardant, the flame retardancy of the molded product is further improved. For this reason, even if there is little usage-amount of a flame retardant, high flame retardance is provided to a molded article.
  • a desirable ratio of the flame retardant in this case is in the range of 5 to 10% by mass with respect to the total amount of the polylactic acid resin composition.
  • Such a molded product having high flame retardancy is suitable as a member for an electronic device such as a battery pack housing, a personal computer housing, and a multifunction device part.
  • organic phosphorus flame retardant it is particularly preferable to use a cyclic phosphazene compound represented by the following [Chemical Formula 4].
  • R 1 and R 2 are each independently an aryl group or a (meth) acrylic acid ester group having an unsaturated bond at the terminal, and R 1 and R 2 may be the same or different.
  • n is an integer of 3 to 25.
  • cyclic phosphazene compound represented by [Chemical Formula 4] an appropriate commercially available product may be used, for example, product numbers SPB100 and SPB100L manufactured by Otsuka Chemical Co., Ltd., trade name Ravitor FP-100 manufactured by Fushimi Pharmaceutical Co., Ltd. May be used.
  • the cyclic phosphazene compound represented by [Chemical Formula 4] is particularly preferably liquid.
  • the dispersibility of the cyclic phosphazene compound in the polylactic acid resin composition is improved, and the flame retardancy of the molded product is particularly improved.
  • the flame retardance of a molded article can be improved while reducing the content of the cyclic phosphazene compound represented by [Chemical Formula 4].
  • the cyclic phosphazene compound represented by the liquid [Chemical Formula 4] it is preferable to use a product number SPB100L manufactured by Otsuka Chemical Co., Ltd.
  • part or all of the organophosphorus flame retardant in the polylactic acid resin composition is a cyclic phosphazene compound represented by [Chemical Formula 4].
  • the content of the cyclic phosphazene compound represented by [Chemical Formula 4] in the polylactic acid resin composition is preferably in the range of 1 to 30% by mass, and more preferably in the range of 3 to 12% by mass. .
  • organic phosphorus flame retardants other than the cyclic phosphazene compound represented by [Chemical Formula 4] include phosphate ester compounds represented by the following Formula [Chemical Formula 5]. When such a phosphoric ester compound is used, the flame retardancy of the molded product is greatly improved while maintaining high impact resistance of the molded product.
  • N in the formula [Chemical Formula 5] represents an integer of 0 to 5.
  • the phosphate ester compound represented by the formula [Chemical Formula 5] may be a mixture of compounds having different n numbers.
  • the average n number is preferably 0.5 to 1.5, more preferably 0.8 to 1.2, and still more preferably 0.95 to 1.15. Particularly preferably, it is in the range of 1 to 1.14.
  • X in the above formula [Chemical Formula 5] represents a divalent group obtained by removing a hydroxyl group from a dihydroxy compound selected from the group consisting of hydroquinone, resorcinol, bisphenol A, and dihydroxydiphenyl.
  • X is particularly preferably a divalent group derived from resorcinol, bisphenol A, or dihydroxydiphenyl.
  • R 1 , R 2 , R 3 , and R 4 each independently represents an aryl group having 6 to 12 carbon atoms.
  • R 1 , R 2 , R 3 , and R 4 include monovalent groups derived from hydroxy compounds such as phenol, cresol, xylenol, isopropylphenol, butylphenol, and p-cumylphenol. Illustrated. Of these, R 1 , R 2 , R 3 , and R 4 are preferably a phenyl group or a 2,6-dimethylphenyl group.
  • this phenyl group may have a substituent having a halogen atom.
  • Specific examples of the phosphate compound having a group derived from this phenyl group include tris (2,4,6-tribromophenyl) phosphate, tris (2,4-dibromophenyl) phosphate, and tris (4-bromophenyl). Examples include phosphate.
  • phosphate compound having a halogen atom and having no substituent examples include monophosphate compounds such as triphenyl phosphate and tri (2,6-xylyl) phosphate; resorcinol bisdi (2,6-xylyl) phosphate)
  • a phosphate oligomer mainly composed of bisphenol A; a phosphate oligomer mainly composed of 4,4-dihydroxydiphenylbis (diphenylphosphate); a phosphate ester oligomer mainly composed of bisphenol A bis (diphenylphosphate) and the like are suitable.
  • the acid value of the phosphate ester compound is preferably 0.2 mgKOH / g or less, more preferably 0.15 mgKOH / g or less, still more preferably 0.1 mgKOH / g or less, and particularly preferably 0.05 mgKOH / g. It is as follows.
  • the lower limit of the acid value can be substantially 0, and is preferably 0.01 mgKOH / g or more practically.
  • the polylactic acid resin contains a phosphate ester compound represented by the formula [Chemical Formula 5] and having an acid value of 0.2 mgKOH / g or less, the thermal stability of the polylactic acid resin composition is particularly high, and the polylactic acid resin composition The hydrolysis resistance of the product is improved and the water resistance of the molded article is increased.
  • the content of the half ester in the phosphate ester compound is more preferably 1.1% by mass or less, and still more preferably 0.9% by mass or less. As a minimum, 0.1 mass% or more is preferable practically, and 0.2 mass% or more is more preferable.
  • the acid value exceeds 0.2 mg KOH / g, or when the half ester content exceeds 1.5 mg, the thermal stability at the time of molding becomes inferior, and the polylactic acid resin composition accompanying the decomposition of the aromatic polycarbonate The hydrolysis resistance of the product decreases.
  • phosphate ester compounds include product number PX202 manufactured by Daihachi Chemical Industry Co., Ltd.
  • the organophosphorous flame retardant is a compound represented by the following structural formula (1-1) (resorcinol dixylenyl phosphate) and a structural formula (1-2) shown below as a phosphoric ester compound represented by [Chemical Formula 5]. It is preferable to contain at least one of the compounds (bisphenol A bis (diphenyl phosphate)).
  • the organic phosphorus compound contains a compound represented by the structural formula (1-1), not only the flame retardancy of the molded product is improved, but also the heat resistance and durability of the molded product are improved.
  • ammonium phosphate As an organic phosphorus flame retardant other than the cyclic phosphazene compound represented by [Chemical Formula 4], ammonium phosphate may also be mentioned. As a specific example of ammonium phosphate, product number AP422 manufactured by Clariant Japan Co., Ltd. may be mentioned. Even when such an ammonium phosphate is used, the flame retardancy of the molded product is greatly improved while maintaining high impact resistance of the molded product.
  • the polylactic acid resin composition preferably further contains a fluorine-containing anti-dripping agent.
  • the fluorine-containing anti-drip agent is used in order to prevent melting and dropping at the time of combustion of the molded product and further improve the flame retardancy.
  • the content of the fluorine-containing anti-dripping agent in the polylactic acid resin composition is preferably in the range of 0.2 to 3% by mass, and more preferably in the range of 0.2 to 1% by mass. In such a range, it is possible to achieve both high mechanical strength and high flame resistance of the molded product.
  • polytetrafluoroethylene (PTFE) having fibril forming ability is preferably used as the fluorine-containing anti-drip agent.
  • PTFE having a fibril-forming ability has a very high molecular weight and tends to form a fibrous form by bonding PTFE to each other by an external action such as shearing force.
  • the number average molecular weight determined from the standard specific gravity of PTFE is preferably in the range of 1 million to 10 million, and more preferably in the range of 2 million to 9 million.
  • This PTFE may be in solid form or in the form of an aqueous dispersion.
  • a PTFE mixture may be constituted by mixing PTFE with other resins for the purpose of improving dispersibility and further improving flame retardancy and mechanical properties of the molded product.
  • PTFE having fibril forming ability include Teflon (registered trademark) 6J manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and Polyflon MPA FA500, F-201L manufactured by Daikin Chemical Industries, Ltd.
  • Commercially available PTFE aqueous dispersions include Asahi IC Fluoropolymers' Fullon AD-1, AD-936, Daikin Industries, Ltd., Fullon D-1, D-2, Mitsui DuPont Fluorochemical Co., Ltd.
  • a typical example is Teflon (registered trademark) 30J manufactured by the company.
  • Examples of commercially available PTFE in a mixed form include “Metablene A3800” (trade name) manufactured by Mitsubishi Rayon Co., Ltd. and “BLENDEX B449” (trade name) manufactured by GE Specialty Chemicals.
  • the proportion of PTFE in 100% by mass of the PTFE mixture is preferably 1 to 60% by mass, more preferably 5 to 55% by mass.
  • the ratio of PTFE is in the above range, good dispersibility of PTFE can be achieved.
  • the particle diameter of PTFE is small. In this case, the dispersibility of PTFE in the polylactic acid resin composition is improved, thereby further improving the durability and flame retardancy of the molded product.
  • the average particle size of PTFE is preferably in the range of 20 to 100 ⁇ m. The average particle diameter of this PTFE is a value measured by ASTM D4895.
  • the stabilizer, the ultraviolet absorber, the lubricant, the release agent, the plasticizer, the antistatic agent, the inorganic and the You may contain well-known additives, such as an organic type antibacterial agent. These additives may be added at the time of kneading the polylactic acid resin composition, or may be added at the time of molding or the like.
  • the polylactic acid resin composition is prepared by mixing and kneading the raw materials of the polylactic acid resin composition as described above by an arbitrary method.
  • a twin screw extruder for example, a twin screw extruder, a Banbury mixer, a heating roll, or the like is used. Among them, melt kneading using a twin screw extruder is preferable.
  • the heating temperature at the time of melt kneading is appropriately set according to the composition of the polylactic acid resin composition, but is preferably in the range of 200 to 260 ° C.
  • a liquid injection apparatus when a raw material has a liquid component, what is called a liquid injection apparatus, a liquid addition apparatus, etc. may be used at the time of supply of the liquid component to a melt extruder.
  • the polylactic acid resin composition may be formed into pellets as necessary.
  • a polylactic acid resin composition extruded by a melt extruder is directly cut and pelletized, or after a strand of the polylactic acid resin composition is formed, the strand is cut by a pelletizer or the like and pelletized.
  • a pellet-shaped polylactic acid resin composition may be obtained.
  • an appropriate molding method such as injection molding, rotational molding, blow molding, vacuum molding or the like can be adopted.
  • injection molding is preferred.
  • injection molding not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, bicolor Molding, sandwich molding, ultra-high speed injection molding, or the like may be employed.
  • an appropriate injection molding apparatus can be used.
  • a mold having an electric heater in order to control the cavity surface temperature of the mold at the time of injection, it is preferable to use a mold having an electric heater. In this case, when the polylactic acid resin composition is injected, the temperature of the cavity surface is accurately and quickly adjusted by an electric heater.
  • the molded product obtained in this way can be used in a wide range of fields such as home appliances, building materials, and sanitary, which are expected to be used for a long time.
  • sink marks and unevenness are less likely to occur in the molded product according to the present embodiment, and thus the appearance is improved. Further, even when the molded product is heated, it is difficult to cause appearance defects such as whitening. Furthermore, when a molded product is formed by mold molding, mold contamination is less likely to occur, so that mass productivity of the molded product is high. Furthermore, despite the use of polylactic acid, the durability of the molded article is unlikely to decrease.
  • a molded product having a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 1000 hours is formed by molding the polylactic acid resin composition. More preferably, a molded article having a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours is formed. That is, it is preferable that the retention rate of the tensile strength when the molded article formed from the polylactic acid resin is exposed for 1000 hours in an atmosphere of 60 ° C. and 95% RH is 80% or more. More preferably, the molded article has a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C.
  • the tensile strength retention is the ratio of the tensile strength of the molded article after the exposure treatment under the above conditions to the tensile strength of the molded article before the exposure treatment under the above conditions.
  • Tensile strength is measured according to ISO 179.
  • the use of the molded product is not particularly limited.
  • a particularly preferable specific example of the molded product is a holder for an electronic device such as a mobile phone. And internal components such as an internal chassis component in an electronic device such as a mobile phone, and a housing for electronic devices such as an outer casing.
  • the molded product is formed from a polylactic acid resin composition containing a PC resin
  • particularly preferred specific examples of the molded product include in-vehicle components, electronic components, home appliance housings, and the like.
  • the molded article is formed from a polylactic acid resin composition containing a PMMA resin
  • particularly preferred specific examples of the molded article include home appliance parts and electronic parts.
  • the molded product is formed from a polylactic acid resin composition containing a PP resin
  • specific examples of the molded product include in-vehicle interior parts, home appliance parts, and tableware applications.
  • a particularly preferred specific example of the molded article is a blood sugar level puncture needle.
  • FIG. 1 shows a holder 2 for an electronic device as an example of a molded product 1 formed from a polylactic acid resin composition containing an ABS resin.
  • the electronic device holder 2 has a function of holding and fixing an electronic device such as a mobile phone on a desktop or the like, or further has a function as a charger for charging a battery in the electronic device.
  • a region (mounting region 3) on which the electronic device is placed and a holding rib 4 protruding from the outer edge of the placement region 3 are formed.
  • the electronic device placed on the placement region 3 is further supported by the holding rib 4, whereby the electronic device is held and fixed to the electronic device holder 2.
  • the electronic device holder 2 is formed to match the shape and dimensions of the electronic device.
  • the electronic device holder 2 is not limited to such a structure, and may have an appropriate structure capable of holding the electronic device.
  • the electronic device holder 2 is formed to match the shape and dimensions of the electronic device.
  • the molded product may be subjected to various surface treatments.
  • Surface treatment includes forming a new layer on the surface of the molded product, such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. Is mentioned.
  • Specific examples of the surface treatment include hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, metalizing (evaporation, etc.) and the like.
  • This poly-D-lactic acid and poly-L-lactic acid manufactured by Nature Works LLC, trade name: NatureWorks 4042D, optical purity 95% or higher, melting point 150 ° C., weight average molecular weight 210,000), twin screw extruder of 32 mm diameter (Coperion, ZSK 32) was used, and melt kneading was performed under conditions of a cylinder temperature of 200 ° C. to 250 ° C. and a rotation speed of 200 rpm to obtain a stereocomplex polylactic acid.
  • the resulting stereocomplex polylactic acid had a melting point of 213 ° C. and a stereogenicity of 100%.
  • Examples and Comparative Examples For each Example and Comparative Example, the components shown in the following table were used, and the resin components were dried in advance, and then these components were mixed with a tumbler for 10 minutes. The obtained mixture was extruded with a twin-screw extruder under conditions of a die vicinity temperature of 190 ° C. and an inlet vicinity temperature of 200 ° C. to obtain a strand.
  • the strand was quickly cooled in a cooling tank and then cut with a cutter to obtain a pellet-shaped resin composition having a length of 2 to 4 mm.
  • the resin composition was dried by heating at 80 ° C. for 4 hours in a dehumidifying dryer, and then a 100-ton injection molding machine and an ISO-compliant test piece mold (color plate, 60 mm ⁇ 60 mm ⁇ 2 mm, 2
  • the cylinder temperature was set to 230 ° C. near the head and 220 ° C. near the material inlet, and the mold temperature was set to 70 ° C. and injection molding was performed to obtain a molded product.
  • the resin composition containing the carbon black was molded by an injection molding machine to obtain a molded product having a size of 90 mm ⁇ 150 mm ⁇ 3 mm.
  • the L * value of the surface of the molded product was measured using a spectrophotometer (Murakami Color Research Laboratory).
  • A was evaluated when no change was observed in the appearance, and B was evaluated when whitening occurred on the surface of the molded product after the treatment.
  • the flame retardant class was evaluated by performing a combustion test according to UL94 on the molded product.
  • the following table shows the thickness of the molded article subjected to the test and the flame retardance class.
  • the holder for electronic devices which has the external shape shown in FIG. 1 was formed by injection-molding the resin composition. Thereby, the holder for electronic devices with a favorable external appearance was obtained.
  • Polylactic acid A manufactured by Nature Works LLC, trade name: NatureWorks 3001D, D-lactic acid unit ratio 1.5 mol%, weight average molecular weight 64,000, number average molecular weight 26,000, dispersity 2.5.
  • Polylactic acid B manufactured by Nature Works LLC, trade name: NatureWorks 4032D, D-lactic acid unit ratio of 1.9 mol%, dispersity of 4.0 or less.
  • Polylactic acid C manufactured by Nature Works LLC, trade name: NatureWorks 4060D, D-lactic acid unit ratio 11.5 mol%, weight average molecular weight 86,000, number average molecular weight 21,000, dispersity 4.1.
  • Polylactic acid D polylactic acid obtained in Production Example 1, ratio of D-lactic acid unit 1.9 mol%, weight average molecular weight 75,000, number average molecular weight 31,000, dispersity 2.4, ISO Melt flow rate as defined in ASTM D1238 (190 ° C. 2.16 kg) 5.0 g / 10 min.
  • Polylactic acid E Stereocomplex polylactic acid obtained in Production Example 2, weight average molecular weight 98,000, number average molecular weight 36,000, dispersity 2.7.
  • Polylactic acid F Polylactic acid obtained in Production Example 1, ratio of L-lactic acid unit of 99.7 mol% or more, weight average molecular weight 109000, number average molecular weight 44,000, dispersity 2.4.
  • Polylactic acid G Polylactic acid obtained in Production Example 1, D-lactic acid unit ratio 11.6 mol%, weight average molecular weight 92,000, number average molecular weight 25,000, dispersity 3.4.
  • Plant-derived PET 18% of plant-derived MEG content, sold by Toyota Tsusho Corporation, trade name EastPET PW1, ASTM D6866-11.
  • PBAT polybutylene adipate terephthalate.
  • ABS resin A acrylonitrile unit ratio 20.5% by mass, styrene unit ratio 69% by mass, butadiene unit ratio 10.5% by mass, synthetic product by bulk polymerization, average particle size 0.46 ⁇ m, melt specified by ISO 1133
  • the flow rate (220 ° C., 10 kg) is 32 g / 10 minutes, and the Charpy impact strength (notched) specified in ISO 179 is 14 kJ / m 2 .
  • ABS resin B 22% by mass of acrylonitrile unit ratio, 58% by mass of styrene unit, 18% by mass of butadiene unit, synthetic product by emulsion polymerization, average particle size 0.30 ⁇ m, ISO The melt flow rate (220 ° C.
  • ABS resin C acrylotolyl unit ratio 24% by mass, styrene unit ratio 62% by mass, butadiene unit ratio 14.5% by mass, synthetic product by emulsion polymerization, average particle size 0.30 ⁇ m, melt flow rate specified by ISO 1133 (220 ° C., 10 kg) is 16 g / 10 min, and Charpy impact strength (with notch) specified in ISO 179 is 15 kJ / m 2 .
  • -Recycled ABS resin A ABS resin recovered from household electrical appliance waste.
  • Recycled ABS resin B A mixture of ABS resin A (50% by mass) and recycled ABS resin A (50% by mass).
  • Flame retardant ABS resin A Acrylonitrile unit ratio 15 mass%, styrene unit ratio 43 mass%, butadiene unit ratio 15 mass%, tetrabromobisphenol A 17% mass%, antimony oxide 6% mass%, synthetic product by emulsion and bulk polymerization Average particle size 0.10 and 0.30 ⁇ m.
  • Flame retardant ABS resin B manufactured by Daicel Polymer Co., Ltd., VF512, flammability UL-94 1.5 mm thickness V-2, melt flow rate (220 ° C.
  • Polycarbonate resin A Melt flow rate specified in ISO ASTM D1238 (300 ° C., 1.2 kg) 15 g / 10 min, load deflection temperature specified in ISO 306, 128 ° C.
  • Polycarbonate resin B Melt flow rate (300 ° C., 1.2 kg) defined by ISO ASTM D1238 22 g / 10 min, load deflection temperature defined by ISO 306, 128 ° C.
  • PMMA1 Polymethylmethacrylate, melt flow rate (230 ° C. 3.8 kg) 16 g / 10 min as specified in ISO ASTM D1238, load deflection temperature 78 ° C. as specified in ISO 306.
  • PMMA2 Polymethylmethacrylate, melt flow rate (230 ° C., 3.8 kg) defined by ISO ASTM D1238, 1.8 g / 10 min, deflection temperature under load defined by ISO 306, 87 ° C.
  • Polypropylene resin Prime Polymer Co., Ltd., product number J-466HP.
  • Low density polyethylene resin Asahi Kasei Chemicals Corporation, part number Suntec LD.
  • Carbodiimide compound A Carbodiimide compound having an isocyanate group, poly (4,4′-dicyclohexylmethanecarbodiimide), carbodiimide equivalent 248, carbodiimide group: isocyanate group molar ratio 15: 2, LA-1 manufactured by Nisshinbo Chemical Co., Ltd.
  • Carbodiimide compound B Carbodiimide compound having no isocyanate group, carbodiimide equivalent 262, Nisshinbo Chemical Co., Ltd., HMV-15CA.
  • Elastomer A Core shell rubber (MBS resin) having a functional group that reacts with ester, pH 7.1, electric conductivity 47 mS / m, Na content 15 ppm, K content 15 ppm, S content 13 ppm.
  • Elastomer B Core shell rubber (MBS resin), pH 6.0, electric conductivity 7 mS / m, Na content 15 ppm, K content 15 ppm, S content 13 ppm.
  • -Elastomer C Copolymer of alkyl methacrylate and alkyl acrylate, trade name Metabrene C223A manufactured by Mitsubishi Rayon Co., Ltd., pH 4.6, electric conductivity 47 mS / m, Na content 95 ppm, K content 85 ppm, S Content 1610ppm.
  • PTFEA polytetrafluoroethylene, average particle size 470 ⁇ m, apparent density 470 g / l, manufactured by Mitsui DuPont Fluorochemical Co., Ltd., product number PTFE 6-J.
  • PTFEB polytetrafluoroethylene, average particle size 28 ⁇ m, melting point 327 ° C.
  • Organic peroxide trade name Perhexa 25B manufactured by Nippon Oil & Fat Co., Ltd.
  • the average particle size of the ABS resin is the arithmetic average particle size based on the number.
  • the ABS resin particles dyed with the dye are photographed with a transmission electron microscope (model number H-7650, manufactured by Hitachi, Ltd.), and the image is imaged. It derived
  • the particle diameter of the particles is equal to the diameter of a circle having the same area as the projected area of the particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a poly(lactic acid) resin composition that contains a poly(lactic acid) and can be formed into a molded article in which appearance defects are suppressed and which has a high molded article productivity and high durability. This poly(lactic acid) resin composition contains a poly(lactic acid) and a thermoplastic resin other than the poly(lactic acid). The proportion of the poly(lactic acid) in the poly(lactic acid) resin composition is 4 to 15 mass % inclusive. The degree of dispersion of the poly(lactic acid) is 4.0 or lower.

Description

ポリ乳酸樹脂組成物、成形品の製造方法、成形品、及び電子機器用ホルダーPolylactic acid resin composition, method for producing molded product, molded product, and holder for electronic device
 本発明は、ポリ乳酸樹脂組成物、前記ポリ乳酸樹脂組成物を用いる成形品の製造方法、前記ポリ乳酸樹脂組成物から形成される成形品、及び前記ポリ乳酸樹脂組成物から形成される電子機器用ホルダーに関する。 The present invention relates to a polylactic acid resin composition, a method for producing a molded article using the polylactic acid resin composition, a molded article formed from the polylactic acid resin composition, and an electronic device formed from the polylactic acid resin composition. For holders.
 近年、地球温暖化の要因として、大気中における炭酸ガス濃度の上昇が指摘され、地球規模での炭酸ガス排出規制の必要性が唱えられている。炭酸ガスが発生する原因としては、生物の呼吸、バクテリアによる腐敗・発酵なども挙げられるが、石油資源に由来する物質の燃焼により発生する炭酸ガスの量は多く、現状の大気中の炭酸ガスによる温度上昇現象は、人間による産業革命以後の石油資源を浪費した経済活動によってもたらされているといっても過言ではない。更に、石油資源は有限な資源であり、将来的に枯渇することが予測される。 In recent years, an increase in the concentration of carbon dioxide in the atmosphere has been pointed out as a cause of global warming, and the need for carbon dioxide emission regulations on a global scale has been advocated. Causes of carbon dioxide generation include respiration of organisms, rot and fermentation by bacteria, etc., but the amount of carbon dioxide generated by combustion of substances derived from petroleum resources is large, and it is due to carbon dioxide in the current atmosphere It is no exaggeration to say that the temperature rise phenomenon is caused by economic activity that wasted oil resources after human revolution. Furthermore, petroleum resources are limited resources and are expected to be depleted in the future.
 一方、近年、カーボンニュートラルな材料として、成長過程で大気中の炭酸ガスを吸収、固定する植物資源の有効活用が注目されている。植物資源を得る際には植物の植生によって大気中の炭酸ガスが吸収され、この植物資源で石油資源を代替することが試みられている。 On the other hand, in recent years, the effective use of plant resources that absorb and fix carbon dioxide in the atmosphere during the growth process has attracted attention as a carbon-neutral material. When obtaining plant resources, carbon dioxide in the atmosphere is absorbed by plant vegetation, and attempts have been made to replace petroleum resources with these plant resources.
 プラスチック材料の分野においても、従来の石油を基礎原料とする材料から、バイオマスを利用した材料への転換が試みられている。バイオマスを利用したプラスチック材料は、当初は生分解性プラスチックとして注目を集めていたが、最近ではカーボンニュートラルな植物系プラスチックとしての価値が見直されており、一部で実用化されている。代表的な植物系プラスチックの一種として、ポリ乳酸樹脂が挙げられる。ポリ乳酸樹脂組成物を射出成形することにより、電子機器用ホルダー、電子機器の内部シャーシ部品、電子機器用筐体、電子機器用内部部品などの、種々の成形品を得ることが期待される。 Also in the field of plastic materials, attempts are being made to switch from conventional materials based on petroleum to materials using biomass. Plastic materials using biomass initially attracted attention as biodegradable plastics, but recently they have been re-evaluated as carbon-neutral plant plastics and have been put into practical use in some areas. One type of typical plant plastic is polylactic acid resin. By injection-molding the polylactic acid resin composition, it is expected to obtain various molded articles such as an electronic device holder, an electronic device internal chassis component, an electronic device casing, and an electronic device internal component.
 例えば特許文献1には、ポリ乳酸樹脂を5~75質量%、ABS樹脂を20~60質量%、(メタ)アクリル酸エステル重合体を2~10質量%、タルクを3~25質量%の割合で含有する組成物が開示されている。 For example, Patent Document 1 discloses that polylactic acid resin is 5 to 75% by mass, ABS resin is 20 to 60% by mass, (meth) acrylic acid ester polymer is 2 to 10% by mass, and talc is 3 to 25% by mass. The composition containing is disclosed.
 しかしながら、従来前記のような分野で広く使用されているABS樹脂などの熱可塑性樹脂をポリ乳酸で代替することを考えると、解決しなければならない問題がある。すなわち、ポリ乳酸樹脂組成物を成形する際には、ABS樹脂などの熱可塑性樹脂を成形する場合と比べて、硬化収縮が大きくなったり金型に汚れの付着が生じて連続成形が困難になったりするなどして成形性が悪化しやすくなり、また成形品にはヒケやムラなどの外観不良が生じやすくなってしまう。更に、成形品の耐久性が低くなるという問題もある。これらの事実はポリ乳酸の普及の妨げとなっている。 However, there is a problem that needs to be solved in view of substituting polylactic acid for a thermoplastic resin such as an ABS resin that has been widely used in the fields as described above. That is, when molding a polylactic acid resin composition, compared with molding of a thermoplastic resin such as ABS resin, curing shrinkage becomes large and dirt adheres to the mold, making continuous molding difficult. Or the like, the moldability is liable to deteriorate, and the molded product tends to have poor appearance such as sink marks and unevenness. Further, there is a problem that the durability of the molded product is lowered. These facts hinder the spread of polylactic acid.
日本国特許公開公報2011-6639号Japanese Patent Publication No. 2011-6669
 本発明は上記事由に鑑みてなされたものであり、ポリ乳酸を含有しながら、成形性が良好であり、成形品の外観不良が抑制され、更に成形品の耐久性が良好になるポリ乳酸樹脂組成物、前記ポリ乳酸樹脂組成物から外観が良好であり且つ耐久性の高い成形品を量産性よく形成する成形品の製造方法、並びに前記ポリ乳酸樹脂組成物から形成される外観が良好で且つ耐久性の高い成形品及び電子機器用ホルダーを提供することを目的とする。 The present invention has been made in view of the above-described reasons, and contains polylactic acid, has good moldability, suppresses the appearance defect of the molded product, and further improves the durability of the molded product. A composition, a method for producing a molded product having a good appearance from the polylactic acid resin composition and forming a highly durable molded product with high productivity, and a good appearance formed from the polylactic acid resin composition; An object is to provide a molded article and a holder for electronic equipment with high durability.
 本発明の第1の形態に係るポリ乳酸樹脂組成物は、ポリ乳酸と、ポリ乳酸以外の熱可塑性樹脂とを含有し、前記ポリ乳酸の割合が4質量%以上15質量%未満の範囲であり、前記ポリ乳酸の分散度が4.0以下である。 The polylactic acid resin composition according to the first embodiment of the present invention contains polylactic acid and a thermoplastic resin other than polylactic acid, and the ratio of the polylactic acid is in the range of 4% by mass to less than 15% by mass. The degree of dispersion of the polylactic acid is 4.0 or less.
 第2の形態では、第1の形態において、前記ポリ乳酸の重量平均分子量が7.0万以上である。 In the second form, in the first form, the polylactic acid has a weight average molecular weight of 7 million or more.
 第3の形態では、第1又は第2の形態において、前記ポリ乳酸の割合が4~7質量%の範囲である。 In the third form, in the first or second form, the ratio of the polylactic acid is in the range of 4 to 7% by mass.
 第4の形態では、第1乃至第3のいずれか一の形態において、前記熱可塑性樹脂がABS樹脂を含有する。 In the fourth aspect, in any one of the first to third aspects, the thermoplastic resin contains an ABS resin.
 第5の形態では、第4の形態において、前記ABS樹脂が、使用済みの製品から再生されたABS樹脂を含有する。 In the fifth embodiment, in the fourth embodiment, the ABS resin contains an ABS resin regenerated from a used product.
 第6の形態では、第4又は第5の形態において、前記ABS樹脂が、難燃ABS樹脂を含有する。 In the sixth embodiment, in the fourth or fifth embodiment, the ABS resin contains a flame retardant ABS resin.
 第7の形態に係るポリ乳酸樹脂組成物は、第4乃至第6のいずれか一の形態において、ポリメタクリル酸メチル樹脂を更に含有する。 The polylactic acid resin composition according to the seventh embodiment further contains a polymethyl methacrylate resin in any one of the fourth to sixth embodiments.
 第8の形態では、第7の形態において、前記ポリ乳酸がD-乳酸単位を8~15モル%の割合で含む。 In the eighth form, in the seventh form, the polylactic acid contains D-lactic acid units in a proportion of 8 to 15 mol%.
 第9の形態では、第7の形態において、前記ポリ乳酸が、100℃で2時間加熱されても結晶化しないポリ乳酸である。 In the ninth embodiment, in the seventh embodiment, the polylactic acid is a polylactic acid that does not crystallize even when heated at 100 ° C. for 2 hours.
 第10の形態では、第4乃至第9のいずれか一の形態において、前記ABS樹脂の平均粒径が0.3μm以下である。 In the tenth embodiment, in any one of the fourth to ninth embodiments, the average particle diameter of the ABS resin is 0.3 μm or less.
 第11の形態では、第4乃至第10のいずれか一の形態において、前記ABS樹脂のISO 1133に規定されるメルトフローレート(220℃ 10kg)が15~35g/10分であり、且つ前記ABS樹脂のISO179に規定されるシャルピー衝撃強度(ノッチ有)が10~30kJ/m2である。 In an eleventh aspect, in any one of the fourth to tenth aspects, a melt flow rate (220 ° C., 10 kg) defined by ISO 1133 of the ABS resin is 15 to 35 g / 10 minutes, and the ABS The Charpy impact strength (notched) specified by ISO 179 of the resin is 10 to 30 kJ / m 2 .
 第12の形態に係るポリ乳酸樹脂組成物は、第4乃至第11のいずれか一の形態において、ポリカーボネート樹脂を更に含有する。 The polylactic acid resin composition according to the twelfth aspect further contains a polycarbonate resin in any one of the fourth to eleventh aspects.
 第13の形態では、第1乃至第3のいずれか一の形態において、前記熱可塑性樹脂がポリカーボネート樹脂を含有する。 In a thirteenth aspect, in any one of the first to third aspects, the thermoplastic resin contains a polycarbonate resin.
 第14の形態に係るポリ乳酸樹脂組成物は、第13の形態において、Na含有量15ppm以下、K含有量15ppm以下、S含有量13ppm以下であるエラストマーを、1質量%以上の割合で含有する。 The polylactic acid resin composition according to the fourteenth embodiment contains, in the thirteenth embodiment, an elastomer having an Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less in a proportion of 1% by mass or more. .
 第15の形態では、第14の形態において、前記エラストマーのpHが、6~8の範囲である。 In the fifteenth form, in the fourteenth form, the pH of the elastomer is in the range of 6-8.
 第16の形態では、第13乃至第15のいずれか一の形態において、前記ポリカーボネート樹脂の、ISO ASTM D1238に規定されるメルトフローレート(300℃ 1.2kg)が、10~25g/10分の範囲である。 In a sixteenth aspect, in any one of the thirteenth to fifteenth aspects, the polycarbonate resin has a melt flow rate (300 ° C., 1.2 kg) as defined in ISO ASTM D1238 of 10 to 25 g / 10 min. It is a range.
 第17の形態に係るポリ乳酸樹脂組成物は、第13乃至第16のいずれか一の形態において、難燃剤を更に含有する。 The polylactic acid resin composition according to the seventeenth aspect further contains a flame retardant in any one of the thirteenth to sixteenth aspects.
 第18の形態では、第1乃至第3のいずれか一の形態において、前記熱可塑性樹脂がポリメチルメタクリレート樹脂を含有する。 According to an eighteenth aspect, in any one of the first to third aspects, the thermoplastic resin contains a polymethyl methacrylate resin.
 第19の形態では、第1乃至第3のいずれか一の形態において、前記熱可塑性樹脂がポリプロピレン樹脂を含有する。 In a nineteenth aspect, in any one of the first to third aspects, the thermoplastic resin contains a polypropylene resin.
 第20の形態では、第1乃至第3のいずれか一の形態において、前記熱可塑性樹脂が低密度ポリエチレン樹脂を含有する。 In a twentieth aspect, in any one of the first to third aspects, the thermoplastic resin contains a low density polyethylene resin.
 第21の形態に係るポリ乳酸樹脂組成物は、第1乃至第4のいずれか一の形態において、ポリブチレンアジペートテレフタレート及び有機過酸化物を更に含有する。 The polylactic acid resin composition according to the twenty-first aspect further comprises polybutylene adipate terephthalate and an organic peroxide in any one of the first to fourth aspects.
 第22の形態に係るポリ乳酸樹脂組成物は、第1乃至第21のいずれか一の形態において、メタクリル酸アルキルとアクリル酸アルキルとの共重合体を更に含有する。 The polylactic acid resin composition according to the twenty-second aspect further contains a copolymer of alkyl methacrylate and alkyl acrylate in any one of the first to twenty-first aspects.
 第23の形態に係るポリ乳酸樹脂組成物は、第1乃至第22のいずれか一の形態において、カルボジイミド化合物を更に含有する。 The polylactic acid resin composition according to the twenty-third form further contains a carbodiimide compound in any one of the first to twenty-second forms.
 第24の形態に係るポリ乳酸樹脂組成物は、第23の形態において、イソシアネート基を有さないカルボジイミド化合物を更に含有する。 The polylactic acid resin composition according to the twenty-fourth form further contains a carbodiimide compound having no isocyanate group in the twenty-third form.
 第25の形態に係るポリ乳酸樹脂組成物は、第1乃至第24のいずれか一の形態において、コアシェルゴムを更に含有する。 The polylactic acid resin composition according to the twenty-fifth aspect further contains a core-shell rubber in any one of the first to twenty-fourth aspects.
 第26の形態に係るポリ乳酸樹脂組成物は、第1乃至第25のいずれか一の形態において、60℃95%RHの雰囲気下1000時間曝露される場合の引張強度の保持率が80%以上である成形品が形成される。60℃95%RHの雰囲気下3000時間曝露される場合の引張強度の保持率が80%以上である成形品が形成されるならば、より好ましい。 The polylactic acid resin composition according to the twenty-sixth aspect has a tensile strength retention of 80% or more when exposed in an atmosphere of 60 ° C. and 95% RH for 1000 hours in any one of the first to twenty-fifth aspects. Is formed. It is more preferable if a molded article having a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours is formed.
 第27の形態に係る成形品の製造方法では、第1乃至第26のいずれか一の形態に係るポリ乳酸樹脂組成物を準備し、前記ポリ乳酸樹脂組成物を成形する。 In the method for producing a molded product according to the twenty-seventh aspect, the polylactic acid resin composition according to any one of the first to twenty-sixth aspects is prepared, and the polylactic acid resin composition is molded.
 第28の形態に係る成形品は、第1乃至第27のいずれか一の形態に係るポリ乳酸樹脂組成物を成形することにより形成される。 The molded product according to the twenty-eighth aspect is formed by molding the polylactic acid resin composition according to any one of the first to twenty-seventh aspects.
 第29の形態に係る係る成形品は、第28の形態において、60℃95%RHの雰囲気下1000時間曝露される場合の引張強度の保持率が80%以上である。60℃95%RHの雰囲気下3000時間曝露される場合の引張強度の保持率が80%以上であるならば、より好ましい。 The molded product according to the twenty-ninth aspect has a tensile strength retention of 80% or more when exposed in an atmosphere of 60 ° C. and 95% RH for 1000 hours in the twenty-eighth aspect. More preferably, the tensile strength retention when exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours is 80% or more.
 第30の形態に係る電子機器用ホルダーは、第4乃至第12のいずれか一の形態に係るポリ乳酸樹脂組成物を成形することにより形成される。 The electronic device holder according to the thirtieth embodiment is formed by molding the polylactic acid resin composition according to any one of the fourth to twelfth embodiments.
 本発明によれば、ポリ乳酸を含有しながら、成形性が良好であり、成形品の外観不良が抑制され、更に成形品の耐久性が良好になるポリ乳酸樹脂組成物、前記ポリ乳酸樹脂組成物から外観が良好で耐久性の高い成形品を成形性よく形成する成形品の製造方法、並びに前記ポリ乳酸樹脂組成物から形成される外観が良好で耐久性の高い成形品及び電子機器用ホルダーが得られる。 According to the present invention, while containing polylactic acid, the moldability is good, the appearance defect of the molded product is suppressed, and the durability of the molded product is further improved, the polylactic acid resin composition Manufacturing method of molded product for forming molded product with good appearance and high durability from product with good moldability, and molded product and electronic device holder with good appearance and high durability formed from said polylactic acid resin composition Is obtained.
本発明の一実施形態における電子機器用ホルダーの外観を示す斜視図である。It is a perspective view which shows the external appearance of the holder for electronic devices in one Embodiment of this invention.
 [ポリ乳酸樹脂組成物中の成分]
 本実施形態によるポリ乳酸樹脂組成物は、ポリ乳酸及びポリ乳酸以外の熱可塑性樹脂を含有する。更に、ポリ乳酸樹脂組成物中のポリ乳酸の割合は4質量%以上15質量%未満の範囲、好ましくは4~12質量%の範囲、更に好ましくは4質量%以上10質量%未満の範囲、特に好ましくは4~7質量%の範囲である。且つ、このポリ乳酸の分散度が4.0以下である。このポリ乳酸の重量平均分子量は7.0万以上であることが好ましい。
[Ingredients in polylactic acid resin composition]
The polylactic acid resin composition according to the present embodiment contains polylactic acid and a thermoplastic resin other than polylactic acid. Further, the proportion of polylactic acid in the polylactic acid resin composition is in the range of 4 to 15% by mass, preferably in the range of 4 to 12% by mass, more preferably in the range of 4 to 10% by mass, particularly The range is preferably 4 to 7% by mass. And the dispersion degree of this polylactic acid is 4.0 or less. The polylactic acid preferably has a weight average molecular weight of 7 million or more.
 以下、本実施形態によるポリ乳酸樹脂組成物が含有し得る成分について更に詳しく説明する。 Hereinafter, components that can be contained in the polylactic acid resin composition according to the present embodiment will be described in more detail.
 (ポリ乳酸)
 ポリ乳酸樹脂組成物が含有するポリ乳酸の重量平均分子量(Mw)は7.0万以上であることが好ましい。この場合、ポリ乳酸樹脂組成物の流動性と成形品の耐久性が射出成形材料として更に適したものになる。このポリ乳酸の重量平均分子量(Mw)と数平均分子量(Mn)との比である分散度(Mw/Mn)は、4.0以下である。更に、ポリ乳酸樹脂組成物中のポリ乳酸の含有量は、4質量%以上10質量%未満の範囲であり、好ましくは4~7質量%の範囲である。
(Polylactic acid)
The polylactic acid contained in the polylactic acid resin composition preferably has a weight average molecular weight (Mw) of 70,000 or more. In this case, the fluidity of the polylactic acid resin composition and the durability of the molded product become more suitable as an injection molding material. The degree of dispersion (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), of this polylactic acid is 4.0 or less. Furthermore, the content of polylactic acid in the polylactic acid resin composition is in the range of 4 to 10% by mass, preferably in the range of 4 to 7% by mass.
 このような条件を満たすことで、ポリ乳酸に適度な流動性が付与されてポリ乳酸樹脂組成物の良好な成形性が確保されると共に、成形時にポリ乳酸からガスが発生しにくくなる。これにより、成形品にヒケやムラなどが生じにくくなり、その外観が良好になる。更に、成形品が加熱されても白化などの外観不良が生じにくくなる。更に、金型成形時に金型汚れが生じにくくなり、このためポリ乳酸樹脂組成物の連続成形が可能となって成形品の量産性が向上する。更に、ポリ乳酸が使用されているにもかかわらず、成形品の耐久性が低下しにくくなる。尚、本発明は、耐久性向上の観点からポリ乳酸樹脂組成物が加水分解防止剤を含有することを、妨げるものではない。但し、たとえ加水分解防止剤が使用されなくても、前記のとおり成形品の耐久性が低下しにくくなる。このため加水分解防止剤を使用せず或いは使用量を抑制することにより製造コストを低減しつつ、良好な耐久性を有する成形品を得ることも可能となる。 By satisfying such conditions, an appropriate fluidity is imparted to the polylactic acid to ensure good moldability of the polylactic acid resin composition, and gas is hardly generated from the polylactic acid during molding. Thereby, sink marks and unevenness are less likely to occur in the molded product, and the appearance is improved. Further, even when the molded product is heated, it is difficult to cause appearance defects such as whitening. Furthermore, mold stains are less likely to occur during mold molding, so that the polylactic acid resin composition can be continuously molded and the mass productivity of the molded product is improved. Furthermore, despite the use of polylactic acid, the durability of the molded article is unlikely to decrease. In addition, this invention does not prevent that a polylactic acid resin composition contains a hydrolysis inhibiting agent from a viewpoint of a durable improvement. However, even if no hydrolysis inhibitor is used, the durability of the molded product is unlikely to decrease as described above. For this reason, it is also possible to obtain a molded article having good durability while reducing the production cost without using a hydrolysis inhibitor or suppressing the amount used.
 更に、ポリ乳酸が使用されることでポリ乳酸樹脂組成物中のABS樹脂の含有量が低減し、それに伴ってABS樹脂中のブタジエン単位における不飽和二重結合の割合も低減する。このため、成形品の耐光性が向上することも期待される。 Furthermore, by using polylactic acid, the content of the ABS resin in the polylactic acid resin composition is reduced, and accordingly, the proportion of unsaturated double bonds in the butadiene units in the ABS resin is also reduced. For this reason, it is expected that the light resistance of the molded product is improved.
 更に、ABS樹脂などの熱可塑性樹脂をポリ乳酸で代替するという観点からすると、本実施形態では、ポリ乳酸樹脂組成物を成形する際の成形収縮率と、ABS樹脂などの熱可塑性樹脂を成形する際の成形収縮率との差が小さくなる。このため、ABS樹脂などの熱可塑性樹脂を成形する場合と同様の構成を有する成形金型を用いて、ABS樹脂などの熱可塑性樹脂を成形する場合と同様の条件でポリ乳酸樹脂組成物を成形することが可能となる。 Furthermore, from the viewpoint of substituting a thermoplastic resin such as an ABS resin with polylactic acid, in the present embodiment, a molding shrinkage rate when molding the polylactic acid resin composition and a thermoplastic resin such as an ABS resin are molded. The difference with the molding shrinkage at the time becomes small. For this reason, a polylactic acid resin composition is molded under the same conditions as in the case of molding a thermoplastic resin such as an ABS resin, using a molding die having the same structure as that for molding a thermoplastic resin such as an ABS resin. It becomes possible to do.
 ポリ乳酸の重量平均分子量は、7.0万~50万の範囲であれば更に好ましく、7.0万~30万の範囲であれば更に好ましく、7.0万~10万の範囲であれば特に好ましい。更に、ポリ乳酸の分散度(Mw/Mn)が、4以下であることが好ましく、3.5以下であれば更に好ましく、3.0以下であれば更に好ましく、2.5以下であれば更に好ましい。 The weight average molecular weight of polylactic acid is more preferably in the range of 70,000 to 500,000, more preferably in the range of 70,000 to 300,000, and in the range of 70,000 to 100,000. Particularly preferred. Further, the polylactic acid dispersity (Mw / Mn) is preferably 4 or less, more preferably 3.5 or less, further preferably 3.0 or less, and further preferably 2.5 or less. preferable.
 ポリ乳酸の重量平均分子量(Mw)及び数平均分子量(Mn)は、溶媒(移動相)としてヘキサフルオロイソプロパノールを用いるゲルパーミエーションクロマトグラフィーによる測定結果を、標準ポリスチレンを使用した検量線により換算して算出される。ポリ乳酸の重量平均分子量及び数平均分子量の測定にあたっては、ポリ乳酸0.036gをHFIP(ヘキサフルオロイソプロパノール)9mLに48時間以上かけて溶解させ、これにより得られる溶液をフィルターで濾過することで、測定用のサンプルが得られる。このサンプルを東ソー株式会社製の高速GPC装置(型番HLC-8220)で測定すると、その測定結果に基づいて、ポリ乳酸の重量平均分子量、数平均分子量が算出される。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of polylactic acid are calculated by converting the measurement results by gel permeation chromatography using hexafluoroisopropanol as a solvent (mobile phase) by a calibration curve using standard polystyrene. Calculated. In measuring the weight average molecular weight and number average molecular weight of polylactic acid, 0.036 g of polylactic acid was dissolved in 9 mL of HFIP (hexafluoroisopropanol) over 48 hours, and the resulting solution was filtered with a filter. A sample for measurement is obtained. When this sample is measured with a high-speed GPC device (model number HLC-8220) manufactured by Tosoh Corporation, the weight average molecular weight and number average molecular weight of polylactic acid are calculated based on the measurement result.
 ポリ乳酸としては、乳酸の単独重合体と、乳酸と乳酸以外のヒドロキシカルボン酸との共重合体とが挙げられる。ポリ乳酸は乳酸がポリマー化することで得られる。乳酸は、例えばトウモロコシなどの植物に由来するデンプンが発酵することで得られる。 Examples of polylactic acid include a homopolymer of lactic acid and a copolymer of lactic acid and a hydroxycarboxylic acid other than lactic acid. Polylactic acid is obtained by polymerizing lactic acid. Lactic acid is obtained, for example, by fermenting starch derived from plants such as corn.
 乳酸としては、L-乳酸、D-乳酸、乳酸の二量体であるラクトン等が挙げられる。 Examples of lactic acid include L-lactic acid, D-lactic acid, and a lactone that is a dimer of lactic acid.
 乳酸と共重合可能な乳酸以外のヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸等が挙げられる。これらのヒドロキシカルボン酸は、一種のみが用いられても、二種以上が併用されてもよい。 Examples of hydroxycarboxylic acids other than lactic acid that can be copolymerized with lactic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, and hydroxycaproic acid. These hydroxycarboxylic acids may be used alone or in combination of two or more.
 ポリ乳酸は、L-乳酸の重合体であるポリ-L-乳酸と、ステレオコンプレックス型ポリ乳酸との少なくとも一方を含んでいることが好ましい。特にポリ乳酸がステレオコンプレックス型ポリ乳酸のみからなり、或いはポリ-L-乳酸とステレオコンプレックス型ポリ乳酸のみからなる場合には、外観並びに耐水性、耐衝撃性等の特性が非常に優れた成形品が得られる。 The polylactic acid preferably contains at least one of poly-L-lactic acid, which is a polymer of L-lactic acid, and stereocomplex polylactic acid. In particular, when the polylactic acid is composed solely of stereocomplex type polylactic acid, or composed only of poly-L-lactic acid and stereocomplex type polylactic acid, it is a molded product with excellent appearance, water resistance, impact resistance and other properties. Is obtained.
 ポリ乳酸は、実質的に、下記式[化1]で表されるL-乳酸単位及びD-乳酸単位からなる。 Polylactic acid substantially consists of an L-lactic acid unit and a D-lactic acid unit represented by the following formula [Chemical Formula 1].
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ポリ-L-乳酸は、好ましくは90~100モル%、より好ましくは95~100モル%、さらに好ましくは99~100モル%のL-乳酸単位から構成される。L-乳酸単位の割合が高いと、成形品の耐久性が更に向上する。L-乳酸以外の単位としては、D-乳酸単位、乳酸以外の単位が挙げられる。 The poly-L-lactic acid is preferably composed of 90 to 100 mol%, more preferably 95 to 100 mol%, and still more preferably 99 to 100 mol% of L-lactic acid units. When the proportion of L-lactic acid units is high, the durability of the molded product is further improved. Examples of units other than L-lactic acid include D-lactic acid units and units other than lactic acid.
 ポリ乳酸は、乳酸以外の単位を含んでいてもよい。乳酸以外の単位としては、2個以上のエステル結合形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等由来の単位、及びこれら種々の構成成分からなる各種ポリエステル、各種ポリエーテル、各種ポリカーボネート等由来の単位が例示される。 Polylactic acid may contain units other than lactic acid. Units other than lactic acid include units derived from dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, lactones and the like having functional groups capable of forming two or more ester bonds, and various polyesters and various polyesters composed of these various components. Examples are units derived from ether, various polycarbonates and the like.
 ポリ乳酸が、D-乳酸単位の割合がポリ乳酸を構成する全単位(モノマー単位)に対して8~15モル%の範囲であるポリ乳酸、100℃で2時間加熱されても結晶化しないポリ乳酸、或いはD-乳酸単位の割合がポリ乳酸を構成する全単位に対して8~15モル%の範囲であり且つ100℃で2時間加熱されても結晶化しないポリ乳酸であることも、好ましい。ポリ乳酸が結晶化しているか否かは、示差走査熱量測定(DSC)による測定結果から確認される。ポリ乳酸が結晶化している場合、示差走査熱量測定(DSC)によって160℃付近に融解による吸熱ピークが認められるが、結晶化していない場合にはこのような吸熱ピークは認められない。これらのようなポリ乳酸が用いられることが、射出成形品の熱収縮を抑制する上で重要である。これらのポリ乳酸は結晶化が非常に進行しにくいという特性を有する。このため、ポリ乳酸樹脂組成物から形成される射出成形品中でポリ乳酸の結晶化が進行しにくくなり、このためポリ乳酸の結晶化に起因する射出成形品の熱収縮が大きく抑制される。ポリ乳酸中のD-乳酸単位の割合は、上記のように8~15モル%の範囲であることが好ましく、更に8~13モル%の範囲であることが好ましく、更に8~12モル%の範囲であることが好ましく、特に8.6~11.6モル%の範囲であることが好ましい。 Polylactic acid in which the proportion of D-lactic acid units is in the range of 8 to 15 mol% with respect to the total units (monomer units) constituting polylactic acid, poly which does not crystallize even when heated at 100 ° C. for 2 hours It is also preferable that the ratio of the lactic acid or D-lactic acid unit is in the range of 8 to 15 mol% with respect to all the units constituting the polylactic acid and the polylactic acid does not crystallize even when heated at 100 ° C. for 2 hours. . Whether or not polylactic acid is crystallized is confirmed from the measurement result by differential scanning calorimetry (DSC). When polylactic acid is crystallized, an endothermic peak due to melting is observed at around 160 ° C. by differential scanning calorimetry (DSC), but such an endothermic peak is not observed when it is not crystallized. Use of such polylactic acid is important for suppressing thermal shrinkage of the injection molded product. These polylactic acids have the property that crystallization is very difficult to proceed. For this reason, it becomes difficult for crystallization of polylactic acid to proceed in an injection-molded product formed from the polylactic acid resin composition, and therefore, thermal shrinkage of the injection-molded product due to crystallization of polylactic acid is greatly suppressed. The proportion of D-lactic acid units in the polylactic acid is preferably in the range of 8 to 15 mol%, more preferably in the range of 8 to 13 mol%, and further in the range of 8 to 12 mol% as described above. The range is preferable, and the range of 8.6 to 11.6 mol% is particularly preferable.
 尚、ポリ乳酸中のD-乳酸単位の割合は、旋光度法により測定される。例えば測定対象であるポリ乳酸の1質量%トリクロロメタン溶液が調製され、この溶液中のポリ乳酸中のD-乳酸単位の割合が、デジタル旋光度計(例えばSHANGHAI CHANGFANG OPTICAL INSTRUMENT CO. , LTD.製、型番WZZ―2S)により、測定される。 The ratio of D-lactic acid units in polylactic acid is measured by an optical rotation method. For example, a 1% by mass trichloromethane solution of polylactic acid to be measured is prepared, and the ratio of D-lactic acid units in the polylactic acid in this solution is measured by a digital polarimeter (for example, manufactured by SHANGHAI CHANGFANG OPTICAL INSTRUMENT CO., DLTD. , Model number WZZ-2S).
 ポリ乳酸は、公知の方法で製造される。例えば、L-またはD-ラクチドが金属重合触媒の存在下、加熱されて開環重合することで製造される。ポリ乳酸は、金属重合触媒を含有する低分子量のポリ乳酸が結晶化した後、減圧下または不活性ガス気流下で加熱されて固相重合することによっても製造される。さらに、有機溶媒の存在/非存在下で、乳酸が脱水縮合する直接重合法によっても、ポリ乳酸が製造される。 Polylactic acid is produced by a known method. For example, L- or D-lactide is produced by heating and ring-opening polymerization in the presence of a metal polymerization catalyst. Polylactic acid can also be produced by crystallizing a low molecular weight polylactic acid containing a metal polymerization catalyst, followed by solid phase polymerization by heating under reduced pressure or in an inert gas stream. Furthermore, polylactic acid is also produced by a direct polymerization method in which lactic acid is dehydrated and condensed in the presence / absence of an organic solvent.
 ポリ乳酸のメルトフローレート(190℃ 2.16kg)は1~16g/10分の範囲であることが好ましい。この場合、ポリ乳酸樹脂組成物の成形性(流動性)が特に向上する。 The melt flow rate of polylactic acid (190 ° C., 2.16 kg) is preferably in the range of 1 to 16 g / 10 min. In this case, the moldability (fluidity) of the polylactic acid resin composition is particularly improved.
 (ABS樹脂、PC樹脂、PMMA樹脂、PP樹脂、及びLDPE樹脂)
 ポリ乳酸樹脂組成物中のポリ乳酸以外の熱可塑性樹脂は、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合樹脂)、PC樹脂(ポリカーボネート樹脂)、PMMA樹脂(ポリメチルメタクリレート樹脂)、PP樹脂(ポリプロピレン樹脂)、LDPE樹脂(低密度ポリエチレン樹脂)のうち、少なくとも一種を含有することが好ましい。
(ABS resin, PC resin, PMMA resin, PP resin, and LDPE resin)
Thermoplastic resins other than polylactic acid in the polylactic acid resin composition are ABS resin (acrylonitrile / butadiene / styrene copolymer resin), PC resin (polycarbonate resin), PMMA resin (polymethyl methacrylate resin), PP resin (polypropylene resin). ) Or LDPE resin (low density polyethylene resin).
 (1)ABS樹脂
 ポリ乳酸樹脂組成物がABS樹脂を含有することで、成形品の耐久性、寸法安定性、耐衝撃性、耐熱性、並びにポリ乳酸樹脂組成物の成形時の成形性が高くなる。また、ABS樹脂をポリ乳酸で代替するという観点からは、ポリ乳酸樹脂組成物中のABS樹脂の含有量が低減し、それに伴ってABS樹脂中のブタジエン単位における不飽和二重結合の割合も低減する。このため、成形品の耐光性が向上することも期待される。
(1) ABS resin Since the polylactic acid resin composition contains an ABS resin, the durability, dimensional stability, impact resistance, heat resistance, and moldability of the polylactic acid resin composition during molding are high. Become. Also, from the viewpoint of replacing the ABS resin with polylactic acid, the content of the ABS resin in the polylactic acid resin composition is reduced, and the proportion of unsaturated double bonds in the butadiene unit in the ABS resin is accordingly reduced. To do. For this reason, it is expected that the light resistance of the molded product is improved.
 ABS樹脂としては、市販品が適宜使用される。ABS樹脂が使用される場合、ポリ乳酸樹脂組成物中のABS樹脂の含有量は適宜設定されるが、ポリ乳酸樹脂組成物全体に対して20~97%の範囲であることが好ましい。ABS樹脂の含有量は、ポリ乳酸樹脂組成物がポリ乳酸及びABS樹脂以外の熱可塑性樹脂を含有する場合にはポリ乳酸樹脂組成物中の熱可塑性樹脂の種類に応じて設定される。例えばポリ乳酸樹脂組成物中の熱可塑性樹脂の種類によっては、ABS樹脂の含有量が80~95質量%の範囲であることも好ましく、20~80質量%の範囲であることも好ましい。ポリ乳酸樹脂組成物が熱可塑性樹脂としてポリ乳酸とABS樹脂のみを含有してもよい。 Commercially available products are appropriately used as the ABS resin. When an ABS resin is used, the content of the ABS resin in the polylactic acid resin composition is appropriately set, but it is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition. The content of the ABS resin is set according to the kind of the thermoplastic resin in the polylactic acid resin composition when the polylactic acid resin composition contains a thermoplastic resin other than polylactic acid and the ABS resin. For example, depending on the type of thermoplastic resin in the polylactic acid resin composition, the ABS resin content is preferably in the range of 80 to 95% by mass, and preferably in the range of 20 to 80% by mass. The polylactic acid resin composition may contain only polylactic acid and ABS resin as the thermoplastic resin.
 このABS樹脂として、特に乳化剤、凝固剤が使用されることなく連続塊重合法(バルク重合)により合成された樹脂が使用されることが好ましい。この方法で合成されるABS樹脂は、合成時の添加成分が少なく、このためポリ乳酸樹脂の加水分解が引き起こされにくくなる。このようなABS樹脂としては、日本エイアンドエル株式会社製のサンタックAT-05,サンタックAT-08等が挙げられる。 As the ABS resin, it is preferable to use a resin synthesized by a continuous bulk polymerization method (bulk polymerization) without using an emulsifier and a coagulant. The ABS resin synthesized by this method has few additional components at the time of synthesis, so that hydrolysis of the polylactic acid resin is hardly caused. Examples of such ABS resin include Santac AT-05 and Santac AT-08 manufactured by Nippon A & L Co., Ltd.
 ABS樹脂として、バージン原料だけでなく、使用済みの製品から再生されたABS樹脂が用いられてもよい。使用済みの製品としては各種家電製品が挙げられる。ABS樹脂は、家電製品で多用されており、リサイクル原料として好適である。使用済みの製品から再生されたABS樹脂が用いられる場合には、成形品の耐衝撃性向上のために、後述のようにポリ乳酸樹脂組成物がコアシェルゴムを含有することが好ましい。 As the ABS resin, not only a virgin raw material but also an ABS resin regenerated from a used product may be used. As used products, various home appliances can be cited. ABS resin is widely used in home appliances and is suitable as a recycled material. When an ABS resin regenerated from a used product is used, the polylactic acid resin composition preferably contains a core-shell rubber as will be described later in order to improve the impact resistance of the molded product.
 また、ABS樹脂が、難燃剤を含有する難燃ABS樹脂を含有してもよい。この場合、成形品の難燃性が向上する。難燃ABS樹脂に含有される難燃剤としては、テトラブロモビスフェノールA、酸化アンチモン、リン酸トリフェニル等が挙げられる。 Further, the ABS resin may contain a flame retardant ABS resin containing a flame retardant. In this case, the flame retardancy of the molded product is improved. Examples of the flame retardant contained in the flame retardant ABS resin include tetrabromobisphenol A, antimony oxide, and triphenyl phosphate.
 射出成形により得られる成形品の耐衝撃性等の機械的特性を充分に向上する観点からは、ABS樹脂を構成するスチレン単位の割合は72質量%以下であることが好ましく、更に70質量%以下であることが好ましく、特に62質量%以下であることが好ましい。更にスチレン単位の割合は40質量%以上であることが好ましく、55質量%以上であることがより好ましく、特に58質量%以上であることが好ましい。すなわちスチレン単位の割合は40~72質量%の範囲が好ましく、55~70質量%の範囲であればより好ましく、58~62質量%の範囲であれば更に好ましい。 From the viewpoint of sufficiently improving the mechanical properties such as impact resistance of the molded product obtained by injection molding, the proportion of styrene units constituting the ABS resin is preferably 72% by mass or less, and more preferably 70% by mass or less. It is preferable that it is 62 mass% or less especially. Furthermore, the proportion of styrene units is preferably 40% by mass or more, more preferably 55% by mass or more, and particularly preferably 58% by mass or more. That is, the proportion of styrene units is preferably in the range of 40 to 72% by mass, more preferably in the range of 55 to 70% by mass, and still more preferably in the range of 58 to 62% by mass.
 射出成形により得られる成形品のウエルド及びフローマークを充分に抑制する観点からは、ABS樹脂を構成するブタジエン単位の割合は16~23質量%の範囲であることが好ましく、16~19質量%の範囲であれば更に好ましい。 From the viewpoint of sufficiently suppressing welds and flow marks in the molded product obtained by injection molding, the proportion of the butadiene units constituting the ABS resin is preferably in the range of 16 to 23% by mass, and preferably 16 to 19% by mass. If it is a range, it is still more preferable.
 ABS樹脂中のアクリロニトリル単位の割合は、スチレン単位及びブタジエン単位の割合に依存するが、1.5~30質量%の範囲であることが好ましく、15~30質量%の範囲であれば更に好ましい。特にABS樹脂が実質的にアクリロニトリル単位、ブタジエン単位及びスチレン単位のみから構成される場合にはアクリロニトリル単位の割合は15~30質量%の範囲であることが好ましい。 The proportion of acrylonitrile units in the ABS resin depends on the proportion of styrene units and butadiene units, but is preferably in the range of 1.5 to 30% by mass, and more preferably in the range of 15 to 30% by mass. In particular, when the ABS resin is substantially composed only of acrylonitrile units, butadiene units, and styrene units, the ratio of acrylonitrile units is preferably in the range of 15 to 30% by mass.
 ABS樹脂の構成単位には、アクリロニトリル単位、ブタジエン単位及びスチレン単位以外の構成単位が含まれていてもよい。例えばABS樹脂の構成単位には、メチルメタクリレート単位が含まれていてもよい。 The structural unit of the ABS resin may include a structural unit other than the acrylonitrile unit, the butadiene unit, and the styrene unit. For example, the structural unit of the ABS resin may include a methyl methacrylate unit.
 ABS樹脂中のアクリロニトリル単位、スチレン単位、ブタジエン単位、メチルメタクリレート単位等の構成単位の割合は、ABS樹脂のNMR測定結果、並びにABS樹脂のグラジエント・ポリマー溶出クロマトグラフィ(GPEC:gradient polymer elution chromatography)による測定結果に基づいて導出される。 The proportion of structural units such as acrylonitrile units, styrene units, butadiene units, and methyl methacrylate units in the ABS resin is measured by the NMR measurement results of the ABS resin, and the gradient polymer elution chromatography (GPEC) of the ABS resin. Derived based on the result.
 ABS樹脂の粒径は特に制限されないが、成形品の外観を長期に亘って良好に維持する観点からは、粒径が小さいほど好ましい。ABS樹脂の粒径が小さいと、成形品が高温下に長期間曝されても成形品に白化が生じにくくなる。このような白化の抑制は、ABS樹脂の粒径が小さいことで成形品中の成分が微細に分散すること、並びにスクイーズ効果が低減することによると、考えられる。成形品の白化が充分に抑制されるためにはABS樹脂の平均粒径は0.4μm以下であることが好ましく、更に0.35μm以下であることが好ましく、特に0.3μm以下であることが好ましい。この平均粒径の下限は特に制限されないが、0.1μm以上であることが好ましい。この平均粒径は、ABS樹脂の粒子を染色した上でその粒子を透過型電子顕微鏡(TEM)により撮影し、撮影された画像を画像解析することで測定される個数基準の算術平均粒径である。この平均粒径の測定にあたり、粒子の粒径は粒子の投影面積を円に換算した面積相当径とする。 The particle size of the ABS resin is not particularly limited, but it is preferable that the particle size is smaller from the viewpoint of maintaining a good appearance of the molded product over a long period of time. When the particle size of the ABS resin is small, the molded product is less likely to be whitened even if the molded product is exposed to a high temperature for a long period of time. Such suppression of whitening is considered to be due to the fact that the components in the molded product are finely dispersed due to the small particle size of the ABS resin and the squeeze effect is reduced. In order to sufficiently suppress whitening of the molded product, the average particle size of the ABS resin is preferably 0.4 μm or less, more preferably 0.35 μm or less, and particularly preferably 0.3 μm or less. preferable. The lower limit of the average particle diameter is not particularly limited, but is preferably 0.1 μm or more. This average particle size is a number-based arithmetic average particle size measured by dyeing ABS resin particles, photographing the particles with a transmission electron microscope (TEM), and analyzing the photographed image. is there. In the measurement of the average particle diameter, the particle diameter of the particles is an area equivalent diameter obtained by converting the projected area of the particles into a circle.
 ABS樹脂のISO 1133に規定されるメルトフローレート(220℃ 10kg)は15~35g/10分の範囲であることが好ましい。この場合、ポリ乳酸樹脂組成物の成形性が更に向上する。また、ABS樹脂のISO179に規定されるシャルピー衝撃強度(ノッチ有)が10~30kJ/m2であることが好ましい。これにより、成形品の耐衝撃性等の機械的特性が更に向上する。 The melt flow rate (220 ° C., 10 kg) specified by ISO 1133 of ABS resin is preferably in the range of 15 to 35 g / 10 minutes. In this case, the moldability of the polylactic acid resin composition is further improved. Further, the Charpy impact strength (notched) defined in ISO 179 of ABS resin is preferably 10 to 30 kJ / m 2 . Thereby, mechanical characteristics such as impact resistance of the molded product are further improved.
 (2)PC樹脂
 ポリ乳酸樹脂組成物がポリカーボネート樹脂を含有する場合、成形品の耐熱性及び耐衝撃性が向上する。
(2) PC resin When the polylactic acid resin composition contains a polycarbonate resin, the heat resistance and impact resistance of the molded product are improved.
 ポリカーボネート樹脂が使用される場合、ポリ乳酸樹脂組成物中のポリカーボネート樹脂の含有量は適宜設定されるが、ポリ乳酸樹脂組成物全体に対して20~97%の範囲であることが好ましい。ポリカーボネート樹脂の含有量は、ポリ乳酸樹脂組成物がポリ乳酸及びポリカーボネート樹脂以外の熱可塑性樹脂を含有する場合にはポリ乳酸樹脂組成物中の熱可塑性樹脂の種類に応じて設定される。例えばポリ乳酸樹脂組成物中の熱可塑性樹脂の種類によっては、ポリカーボネート樹脂の含有量が80~95質量%の範囲であることも好ましく、20~80質量%の範囲であることも好ましい。ポリ乳酸樹脂組成物が熱可塑性樹脂としてポリ乳酸とポリカーボネート樹脂のみを含有してもよい。 When a polycarbonate resin is used, the content of the polycarbonate resin in the polylactic acid resin composition is appropriately set, but is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition. The content of the polycarbonate resin is set according to the type of the thermoplastic resin in the polylactic acid resin composition when the polylactic acid resin composition contains a thermoplastic resin other than polylactic acid and the polycarbonate resin. For example, depending on the type of thermoplastic resin in the polylactic acid resin composition, the content of the polycarbonate resin is preferably in the range of 80 to 95% by mass, and preferably in the range of 20 to 80% by mass. The polylactic acid resin composition may contain only polylactic acid and a polycarbonate resin as the thermoplastic resin.
 ポリ乳酸樹脂組成物中のポリ乳酸以外の熱可塑性樹脂がABS樹脂を含有し、更にポリカーボネート樹脂も含有することも好ましい。この場合、成形品の耐熱性が更に向上する。この場合のポリ乳酸樹脂組成物中のポリカーボネート樹脂の含有量は適宜設定されるが、ポリ乳酸樹脂組成物中のABS樹脂とポリカーボネート樹脂との質量比が99:1~30:70の範囲であることが好ましく、60:40~40:60の範囲であれば更に好ましく、55:45~45:55の範囲であれば特に好ましい。 It is also preferred that the thermoplastic resin other than polylactic acid in the polylactic acid resin composition contains an ABS resin and further contains a polycarbonate resin. In this case, the heat resistance of the molded product is further improved. In this case, the content of the polycarbonate resin in the polylactic acid resin composition is appropriately set, but the mass ratio of the ABS resin to the polycarbonate resin in the polylactic acid resin composition is in the range of 99: 1 to 30:70. The range of 60:40 to 40:60 is more preferable, and the range of 55:45 to 45:55 is particularly preferable.
 ポリカーボネート樹脂としては、例えば二価フェノールとカーボネート前駆体とが反応することで得られる芳香族ポリカーボネート樹脂が挙げられる。反応の方法としては界面重縮合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、環状カーボネート化合物の開環重合法などが挙げられる。 Examples of the polycarbonate resin include aromatic polycarbonate resins obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polycondensation method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
 二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、ビスフェノールA、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4’-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが、挙げられる。好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、なかでも成形品の靭性を向上させることができる点でビスフェノールAが特に好ましい。 Representative examples of dihydric phenols include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, bisphenol A, 2,2-bis (4-hydroxy-3- Methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1, 1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) pentane, 4,4 ′-(p-phenylenediisopropylidene) diphenol, 4, 4 ′-(m-phenylenediisopropylidene) diphenol, 1,1-bis (4-hydroxyphenyl) -4 Isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis ( 4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, etc. Is mentioned. A preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred because it can improve the toughness of the molded product.
 カーボネート前駆体としてはカルボニルハライド、炭酸ジエステル、ハロホルメートなどが挙げられる。具体的にはホスゲン、ジフェニルカーボネート、二価フェノールのジハロホルメートなどが挙げられる。 Examples of the carbonate precursor include carbonyl halide, carbonic acid diester, and haloformate. Specific examples include phosgene, diphenyl carbonate, and dihaloformate of dihydric phenol.
 二価フェノールとカーボネート前駆体から界面重合法によって芳香族ポリカーボネート樹脂が製造される際には、必要に応じて触媒、末端停止剤、二価フェノールの酸化防止のための酸化防止剤などが使用されてもよい。 When an aromatic polycarbonate resin is produced from a dihydric phenol and a carbonate precursor by an interfacial polymerization method, a catalyst, a terminal terminator, an antioxidant for the oxidation of the dihydric phenol, etc. are used as necessary. May be.
 ポリカーボネート樹脂として、三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにこの二官能性カルボン酸及び二官能性アルコールを共に共重合したポリエステルカーボネート樹脂などが用いられてもよい。また、2種以上のポリカーボネート樹脂が用いられてもよい。 As polycarbonate resin, branched polycarbonate resin copolymerized with trifunctional or higher polyfunctional aromatic compound, polyester carbonate resin copolymerized with aromatic or aliphatic (including alicyclic) difunctional carboxylic acid, bifunctional A copolymer polycarbonate resin obtained by copolymerizing a functional alcohol (including an alicyclic), and a polyester carbonate resin obtained by copolymerizing the bifunctional carboxylic acid and the difunctional alcohol together may be used. Two or more kinds of polycarbonate resins may be used.
 分岐ポリカーボネート樹脂が使用される場合、ポリ乳酸樹脂組成物の溶融張力が増加し、それにより押出成形、発泡成形、ブロー成形等における成形加工性が改善する。その結果、寸法精度により優れる成形品が得られる。分岐ポリカーボネート樹脂を得るために使用される三官能以上の多官能性芳香族化合物としては、4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノールが好適に例示される。その他の多官能性芳香族化合物としては、フロログルシン、フロログルシド、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、並びにトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、及びこれらの酸クロライド等が例示される。中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、及び1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 When a branched polycarbonate resin is used, the melt tension of the polylactic acid resin composition increases, thereby improving molding processability in extrusion molding, foam molding, blow molding and the like. As a result, a molded product having superior dimensional accuracy can be obtained. Examples of the trifunctional or higher polyfunctional aromatic compound used for obtaining the branched polycarbonate resin include 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2,4, 6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, , 1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [1,1 A preferred example is trisphenol such as -bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol. Other polyfunctional aromatic compounds include phloroglucin, phloroglucid, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) Examples include benzene, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, and acid chlorides thereof. Of these, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (4 -Hydroxyphenyl) ethane is preferred.
 分岐ポリカーボネート樹脂における多官能性芳香族化合物から誘導される構成単位の割合は、二価フェノールから誘導される構成単位とこの多官能性芳香族化合物から誘導される構成単位との合計100モル%中、0.03~1モル%、好ましくは0.07~0.7モル%、特に好ましくは0.1~0.4モル%である。また、この分岐構造単位は、多官能性芳香族化合物から誘導されるだけでなく、溶融エステル交換反応時の副反応の如き、多官能性芳香族化合物を用いることなく誘導されるものであってもよい。尚、この分岐構造の割合はH-NMR測定により算出されることが可能である。 The proportion of the structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate resin is 100% by mole in total of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound. 0.03 to 1 mol%, preferably 0.07 to 0.7 mol%, particularly preferably 0.1 to 0.4 mol%. The branched structural unit is not only derived from a polyfunctional aromatic compound, but also derived from a side reaction during a melt transesterification reaction without using a polyfunctional aromatic compound. Also good. The ratio of this branched structure can be calculated by 1 H-NMR measurement.
 一方、脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましく、その具体例としては、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸等の直鎖飽和脂肪族ジカルボン酸並びにシクロヘキサンジカルボン酸等の脂環族ジカルボン酸が挙げられる。二官能性アルコールとしては脂環族ジオールが好適であり、例えば、シクロヘキサンジメタノール、シクロヘキサンジオール、トリシクロデカンジメタノール等が例示される。さらに、ポリオルガノシロキサン単位を共重合したポリカーボネート-ポリオルガノシロキサン共重合体の使用も可能である。 On the other hand, the aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid, and specific examples thereof include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosane diacid. Examples thereof include linear saturated aliphatic dicarboxylic acids such as acids and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. As the bifunctional alcohol, an alicyclic diol is suitable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol. Further, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units can also be used.
 ポリカーボネート樹脂として、二価フェノール成分が異なるポリカーボネート、分岐成分を含有するポリカーボネート、各種のポリエステルカーボネート、ポリカーボネート-ポリオルガノシロキサン共重合体等が2種以上用いられてもよい。さらに、製造法の異なるポリカーボネート、末端停止剤の異なるポリカーボネート等が2種以上用いられてもよい。 As the polycarbonate resin, two or more kinds of polycarbonates having different dihydric phenol components, polycarbonates containing branched components, various polyester carbonates, polycarbonate-polyorganosiloxane copolymers, and the like may be used. Further, two or more kinds of polycarbonates having different production methods, polycarbonates having different end stoppers, and the like may be used.
 ポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、環状カーボネート化合物の開環重合法などの反応形式は、各種の文献及び特許公報などで良く知られている方法である。 Reaction methods such as interfacial polymerization, molten transesterification, solid phase transesterification of carbonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds, which are polycarbonate resin production methods, are well known in various documents and patent publications. It is the method that has been.
 ポリカーボネート樹脂として、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂、いわゆるマテリアルリサイクルされた芳香族ポリカーボネートが用いられてもよい。使用済みの製品としては防音壁、ガラス窓、透光屋根材、自動車サンルーフなどに代表される各種グレージング材、風防や自動車ヘッドランプレンズなどの透明部材、水ボトルなどの容器、並びに光記録媒体などが好ましく挙げられる。これらは多量の添加剤や他樹脂などを含むことがなく、目的の品質が安定して得られやすい。殊に自動車ヘッドランプレンズや光記録媒体などは、下記粘度平均分子量のより好ましい条件を満足するため、好ましい態様として挙げられる。尚、上記のバージン原料とは、その製造後に未だ市場において使用されていない原料である。 As the polycarbonate resin, not only virgin raw materials but also polycarbonate resins regenerated from used products, so-called material-recycled aromatic polycarbonates may be used. Used products include soundproof walls, glass windows, translucent roofing materials, various glazing materials such as automobile sunroofs, transparent members such as windshields and automobile headlamp lenses, containers such as water bottles, optical recording media, etc. Are preferred. These do not contain a large amount of additives or other resins, and the desired quality is easily obtained stably. In particular, an automobile headlamp lens, an optical recording medium, and the like are preferable as the preferred embodiment because they satisfy the more preferable conditions of the viscosity average molecular weight described below. In addition, said virgin raw material is a raw material which is not yet used in the market after the manufacture.
 ポリカーボネート樹脂の粘度平均分子量は、好ましくは1×10~5×10、より好ましくは1.4×10~3×10、更に好ましくは1.8×10~2.5×10である。粘度平均分子量が1.8×10~2.5×10の範囲においては、ポリ乳酸樹脂組成物が特に良好な流動性と成形品の耐衝撃性との両立に優れる。最も好適には、粘度平均分子量が1.9×10~2.4×10の範囲である。尚、この粘度平均分子量はポリカーボネート樹脂全体が満足すればよく、分子量の異なる2種以上のポリカーボネート樹脂の混合物がこの範囲を満足してもよい。 The viscosity average molecular weight of the polycarbonate resin is preferably 1 × 10 4 to 5 × 10 4 , more preferably 1.4 × 10 4 to 3 × 10 4 , and even more preferably 1.8 × 10 4 to 2.5 × 10. 4 . When the viscosity average molecular weight is in the range of 1.8 × 10 4 to 2.5 × 10 4 , the polylactic acid resin composition is particularly excellent in both good fluidity and impact resistance of the molded product. Most preferably, the viscosity average molecular weight is in the range of 1.9 × 10 4 to 2.4 × 10 4 . The viscosity average molecular weight only needs to satisfy the entire polycarbonate resin, and a mixture of two or more polycarbonate resins having different molecular weights may satisfy this range.
 粘度平均分子量の算出にあたっては、まず次式(a)にて算出される比粘度を、塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解して調製される試料溶液についてのオストワルド粘度計による測定結果から求める。次に得られた比粘度から、次式(b)~(d)を用いて粘度平均分子量Mを求める。
比粘度(ηSP)=(t-t0)/t  …(a)
[t0は塩化メチレンの落下秒数、tは試料溶液の落下秒数]
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度) …(b)
[η]=1.23×10-40.83 …(c)
c=0.7 …(d)
 ポリカーボネート樹脂の、ISO ASTM D1238に規定されるメルトフローレート(300℃ 1.2kg)は、10~25g/10分の範囲であることが好ましい。この場合、成形品の耐久性が向上する。このメルトフローレート(300℃ 1.2kg)は、更に10~20g/10分の範囲であることが好ましい。
In calculating the viscosity average molecular weight, first, the specific viscosity calculated by the following formula (a) was measured using an Ostwald viscometer for a sample solution prepared by dissolving 0.7 g of a polycarbonate resin in 100 ml of methylene chloride at 20 ° C. Obtained from measurement results. Next, the viscosity average molecular weight M is determined from the specific viscosity obtained using the following formulas (b) to (d).
Specific viscosity (ηSP) = (t−t0) / t (a)
[T0 is the drop time of methylene chloride, t is the drop time of the sample solution]
ηSP / c = [η] + 0.45 × [η] 2 c (where [η] is the intrinsic viscosity) (b)
[Η] = 1.23 × 10 −4 M 0.83 (c)
c = 0.7 (d)
The melt flow rate (300 ° C., 1.2 kg) defined by ISO ASTM D1238 of the polycarbonate resin is preferably in the range of 10 to 25 g / 10 minutes. In this case, the durability of the molded product is improved. The melt flow rate (1.2 ° C. at 300 ° C.) is preferably in the range of 10 to 20 g / 10 minutes.
 (3)PMMA樹脂
 ポリ乳酸樹脂組成物がポリメタクリル酸メチル樹脂(PMMA樹脂)を含有すると、成形品の寸法安定性、耐衝撃性、耐熱性が向上する。また、成形品の透明性が高くなると共に、成形品の耐候性が向上する。
(3) PMMA resin When the polylactic acid resin composition contains a polymethyl methacrylate resin (PMMA resin), the dimensional stability, impact resistance, and heat resistance of the molded product are improved. In addition, the transparency of the molded product is increased, and the weather resistance of the molded product is improved.
 PMMA樹脂が使用される場合、ポリ乳酸樹脂組成物中のPMMA樹脂の含有量は適宜設定されるが、ポリ乳酸樹脂組成物全体に対して20~97%の範囲であることが好ましい。PMMA樹脂の含有量は、ポリ乳酸樹脂組成物がポリ乳酸及びPMMA樹脂以外の熱可塑性樹脂を含有する場合にはポリ乳酸樹脂組成物中の熱可塑性樹脂の種類に応じて設定される。例えばポリ乳酸樹脂組成物中の熱可塑性樹脂の種類によっては、PMMA樹脂の含有量が80~95質量%の範囲であることも好ましく、20~80質量%の範囲であることも好ましい。ポリ乳酸樹脂組成物が熱可塑性樹脂としてポリ乳酸とPMMA樹脂のみを含有してもよい。 When the PMMA resin is used, the content of the PMMA resin in the polylactic acid resin composition is appropriately set, but is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition. When the polylactic acid resin composition contains a thermoplastic resin other than polylactic acid and PMMA resin, the content of the PMMA resin is set according to the type of the thermoplastic resin in the polylactic acid resin composition. For example, depending on the type of thermoplastic resin in the polylactic acid resin composition, the content of the PMMA resin is preferably in the range of 80 to 95% by mass, and preferably in the range of 20 to 80% by mass. The polylactic acid resin composition may contain only polylactic acid and a PMMA resin as the thermoplastic resin.
 ポリメタクリル酸メチル樹脂(PMMA樹脂)の一部又は全部は、ポリメタクリル酸メチル樹脂エラストマー(PMMA樹脂エラストマー)であってもよい。 Part or all of the polymethyl methacrylate resin (PMMA resin) may be a polymethyl methacrylate resin elastomer (PMMA resin elastomer).
 特にABS樹脂とPMMA樹脂とが併用される場合、PMMA樹脂の、JIS K7111に規定されるノッチ付シャルピー衝撃値は、5kJ/m2以上であることが好ましい。このノッチ付シャルピー衝撃値は特に5.3kJ/m2以上であることが好ましい。ノッチ付シャルピー衝撃値の上限は特に制限されない。 In particular, when ABS resin and PMMA resin are used in combination, it is preferable that the PMMA resin has a notch Charpy impact value defined in JIS K7111 of 5 kJ / m 2 or more. This notched Charpy impact value is particularly preferably 5.3 kJ / m 2 or more. The upper limit of the notched Charpy impact value is not particularly limited.
 PMMA樹脂の、ISO ASTM D1238に規定されるメルトフローレート(230℃ 3.8kg)が1.5g/10分以上であることが好ましい。さらにこのメルトフローレートが5g/10分以上であることが好ましい。このメルトフローレートが1.5g/10分以上であるとポリ乳酸樹脂組成物中でPMMA樹脂のポリ乳酸への相溶性が高まり、これにより成形品の外観が更に向上すると共に、耐衝撃性が更に向上する。 It is preferable that the melt flow rate (230 ° C., 3.8 kg) of PMMA resin defined by ISO ASTM D1238 is 1.5 g / 10 min or more. Furthermore, the melt flow rate is preferably 5 g / 10 min or more. When the melt flow rate is 1.5 g / 10 min or more, the compatibility of the PMMA resin with polylactic acid is increased in the polylactic acid resin composition, thereby further improving the appearance of the molded product and improving the impact resistance. Further improvement.
 特にABS樹脂とPMMA樹脂とが併用される場合、PMMA樹脂の重量平均分子量は6万~8万の範囲であることが好ましく、更に6万5千~7万5千の範囲であることが好ましい。この場合、ポリ乳酸樹脂組成物中でPMMA樹脂のポリ乳酸への相溶性が高まり、これにより成形品の外観が更に向上すると共に、耐衝撃性が更に向上する。この重量平均分子量は、溶媒(移動相)としてクロロホルムを用いたゲルパーミエーションクロマトグラフィーにより求められる、標準ポリスチレン換算の重量平均分子量である。 Particularly when ABS resin and PMMA resin are used in combination, the weight average molecular weight of PMMA resin is preferably in the range of 60,000 to 80,000, and more preferably in the range of 65,000 to 75,000. . In this case, in the polylactic acid resin composition, the compatibility of the PMMA resin with the polylactic acid is increased, thereby further improving the appearance of the molded product and further improving the impact resistance. This weight average molecular weight is a standard polystyrene equivalent weight average molecular weight determined by gel permeation chromatography using chloroform as a solvent (mobile phase).
 PMMA樹脂の具体例としては、住友化学株式会社製の商品名スミペックスHT03Y、スミペックスHT01X等が挙げられる。 Specific examples of PMMA resin include Sumitomo Chemical Co., Ltd. trade name Sumipex HT03Y, Sumipex HT01X, and the like.
 また、特にABS樹脂とPMMA樹脂とが併用される場合、ポリ乳酸樹脂組成物中のPMMA樹脂の含有量は0.5質量%以上であることが好ましく、1質量%以上であれば更に好ましい。5質量%以下であることが好ましく、3質量%以下であればより好ましく、2質量%以下であれば更に好ましい。特にポリ乳酸樹脂組成物中のPMMA樹脂の含有量は1~5質量%の範囲であることが好ましい。この含有量が1質量%以上であると成形品の寸法安定性、耐衝撃性、耐熱性が特に向上する。またこの含有量が5質量%以下であるとポリ乳酸樹脂組成物の適度な流動性が維持されることでポリ乳酸樹脂組成物の高い成形性と成形品の良好な外観が維持され、更に成形品の耐久性が低下しにくくなる。このPMMA樹脂の含有量は更に1~2質量%の範囲であることが好ましい。 In particular, when an ABS resin and a PMMA resin are used in combination, the content of the PMMA resin in the polylactic acid resin composition is preferably 0.5% by mass or more, and more preferably 1% by mass or more. It is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less. In particular, the content of the PMMA resin in the polylactic acid resin composition is preferably in the range of 1 to 5% by mass. When the content is 1% by mass or more, the dimensional stability, impact resistance, and heat resistance of the molded product are particularly improved. In addition, when the content is 5% by mass or less, the high fluidity of the polylactic acid resin composition and the good appearance of the molded product are maintained by maintaining the proper fluidity of the polylactic acid resin composition. The durability of the product is less likely to decrease. The PMMA resin content is preferably in the range of 1 to 2% by mass.
 また、特にABS樹脂とPMMA樹脂とが併用される場合に、ポリ乳酸が、「D-乳酸単位の割合がポリ乳酸を構成する全単位(モノマー単位)に対して8~15モル%の範囲であるポリ乳酸」、「100℃で2時間加熱されても結晶化しないポリ乳酸」、或いは「D-乳酸単位の割合がポリ乳酸を構成する全単位に対して8~15モル%の範囲であり且つ100℃で2時間加熱されても結晶化しないポリ乳酸」であることが、特に好ましい。この場合、射出成形品中のポリ乳酸の結晶化が進行しにくくなる。このため、射出成形品の高温環境下における経時的な熱収縮が大きく抑制される。しかも、射出成形時にポリ乳酸の結晶化を進行させる必要がなくなるため、成形サイクルが短くなると共に、射出成形品にウエルド及びフローマークが生じにくくなる。更に、この射出成形品は、充分に高い耐久性、耐衝撃性、耐熱性等という、成形品に必要とされる特性を有するようになる。このため、射出成形品は、長期間の使用が想定される家電分野や建材、サニタリー分野など、広範囲の分野に使用され得る。この場合、ポリ乳酸樹脂組成物中のPMMA樹脂の含有量は0.5~10質量%の範囲であることが好ましく、更に2~10質量%の範囲であることが好ましい。この含有量が2質量%以上であると射出成形品の寸法安定性、耐衝撃製、耐熱性が特に向上する。またこの含有量が10質量%以下であるとポリ乳酸樹脂組成物の高い流動性が維持され、ポリ乳酸樹脂組成物の高い成形性と射出成形品の良好な外観が維持される。このPMMA樹脂の含有量は更に1~5質量%の範囲であることが好ましく、1~2質量%の範囲であれば特に好ましい。 In particular, when an ABS resin and a PMMA resin are used in combination, the polylactic acid has a ratio of “D-lactic acid units in the range of 8 to 15 mol% with respect to all units (monomer units) constituting the polylactic acid. "Polylactic acid", "Polylactic acid that does not crystallize even when heated at 100 ° C for 2 hours", or "D-lactic acid unit ratio is in the range of 8 to 15 mol% with respect to all the units constituting polylactic acid. In addition, “polylactic acid that does not crystallize even when heated at 100 ° C. for 2 hours” is particularly preferable. In this case, the crystallization of polylactic acid in the injection molded product is difficult to proceed. For this reason, the thermal shrinkage with time in the high temperature environment of the injection molded product is greatly suppressed. In addition, since there is no need to advance crystallization of polylactic acid during injection molding, the molding cycle is shortened and welds and flow marks are less likely to occur in the injection molded product. Further, the injection molded product has characteristics required for the molded product such as sufficiently high durability, impact resistance, heat resistance and the like. For this reason, the injection-molded product can be used in a wide range of fields such as the home appliance field, the building material, and the sanitary field, which are expected to be used for a long time. In this case, the content of the PMMA resin in the polylactic acid resin composition is preferably in the range of 0.5 to 10% by mass, and more preferably in the range of 2 to 10% by mass. When the content is 2% by mass or more, the dimensional stability, impact resistance, and heat resistance of the injection molded product are particularly improved. When the content is 10% by mass or less, the high fluidity of the polylactic acid resin composition is maintained, and the high moldability of the polylactic acid resin composition and the good appearance of the injection molded product are maintained. The content of the PMMA resin is preferably in the range of 1 to 5% by mass, and more preferably in the range of 1 to 2% by mass.
 (4)PP樹脂
 ポリ乳酸樹脂組成物がポリプロピレン樹脂を含有すると、成形品の比重が低くなり、成形品の軽量化が期待できる。ポリ乳酸樹脂組成物中のポリプロピレン樹脂の含有量は、ポリ乳酸樹脂組成物全体に対して20~97%の範囲であることが好ましい。
(4) PP resin When the polylactic acid resin composition contains a polypropylene resin, the specific gravity of the molded product is lowered, and weight reduction of the molded product can be expected. The content of the polypropylene resin in the polylactic acid resin composition is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition.
 (5)LDPE樹脂
 ポリ乳酸樹脂組成物が低密度ポリエチレン樹脂を含有すると、成形品の電気的絶縁特性が良好となる。ポリ乳酸樹脂組成物中の低密度ポリエチレン樹脂の含有量は、ポリ乳酸樹脂組成物全体に対して20~97%の範囲であることが好ましい。
(5) LDPE resin When the polylactic acid resin composition contains a low-density polyethylene resin, the electrical insulation properties of the molded article are improved. The content of the low density polyethylene resin in the polylactic acid resin composition is preferably in the range of 20 to 97% with respect to the entire polylactic acid resin composition.
 (カルボジイミド化合物)
 ポリ乳酸樹脂組成物は、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物を含有することも好ましい。この場合、これらの化合物が、ポリ乳酸のカルボキシル基末端の一部または全部と反応して封鎖する働きを発揮し、これにより成形品の高温高湿環境下での耐久性が更に向上する。
(Carbodiimide compound)
The polylactic acid resin composition also preferably contains a carbodiimide compound such as a polycarbodiimide compound or a monocarbodiimide compound. In this case, these compounds react with some or all of the carboxyl group ends of polylactic acid to exert a blocking action, thereby further improving the durability of the molded product in a high-temperature and high-humidity environment.
 ポリカルボジイミド化合物としては、例えばポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5-トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5-トリイソプロピルベンゼン及び1,5-ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられる。モノカルボジイミド化合物としては、例えばN,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド等が挙げられる。 Examples of the polycarbodiimide compound include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, poly (1,3 , 5-triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide. Examples of the monocarbodiimide compound include N, N′-di-2,6-diisopropylphenylcarbodiimide.
 このようなカルボジイミド化合物としては、市販品が適宜使用され得る。カルボジイミド化合物の具体例としては、日清紡ケミカル株式会社製の商品名カルボジライトLA-1(ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド))、カルボジライトHMV-8CA,カルボジライトHMV-15CA等が挙げられる。 As such a carbodiimide compound, a commercially available product can be used as appropriate. Specific examples of the carbodiimide compound include trade name carbodilite LA-1 (poly (4,4'-dicyclohexylmethanecarbodiimide)), carbodilite HMV-8CA, carbodilite HMV-15CA, etc., manufactured by Nisshinbo Chemical Co., Ltd.
 カルボジイミド化合物は、イソシアネート基を有しないことが好ましい。カルボジイミド化合物がイソシアネート基を有しないとは、カルボジイミド化合物中にイソシアネート基を有する化合物が混入していないことを意味する。すなわち、カルボジイミド化合物中には、イソシアネート基を有する化合物が混入していることがあるが、このようなイソシアネート基を有する化合物がポリ乳酸か樹脂組成物に含まれないことが好ましい。この場合、成形品の耐久性が更に向上する。これは、イソシアネート基の反応性が、カルボジイミド基と比べて高すぎるためであると考えられる。すなわち、イソシアネート基は成形品中で速やかに反応して消費されてしまい、このためポリ乳酸のカルボキシル基末端を封鎖する働きが速やかに失われてしまうものと考えられる。 It is preferable that the carbodiimide compound does not have an isocyanate group. That the carbodiimide compound does not have an isocyanate group means that the compound having an isocyanate group is not mixed in the carbodiimide compound. That is, in the carbodiimide compound, a compound having an isocyanate group may be mixed, but it is preferable that such a compound having an isocyanate group is not contained in the polylactic acid or the resin composition. In this case, the durability of the molded product is further improved. This is considered because the reactivity of an isocyanate group is too high compared with a carbodiimide group. That is, it is considered that the isocyanate group reacts and is consumed quickly in the molded product, and therefore, the function of blocking the carboxyl group terminal of polylactic acid is quickly lost.
 イソシアネート基を有しないポリカルボジイミド化合物としては、日清紡ケミカル株式会社製の商品名カルボジライトHMV-15CAなどが、挙げられる。 Examples of the polycarbodiimide compound having no isocyanate group include trade name Carbodilite HMV-15CA manufactured by Nisshinbo Chemical Co., Ltd.
 カルボジイミド化合物が使用される場合、ポリ乳酸樹脂組成物中のカルボジイミド化合物の含有量は0.1~5質量%の範囲内であることが好ましい。この含有量が0.1質量%以上であることで成形品の耐久性が更に向上し、5質量%以下であることで成形品の高い機械的強度が維持される。カルボジイミド化合物の含有量は更に3質量%以下であることが好ましい。カルボジイミド化合物の含有量が0.1~1.0質量%の範囲であれば特に好ましく、0.1~0.5質量%の範囲であれば更に好ましい。 When a carbodiimide compound is used, the content of the carbodiimide compound in the polylactic acid resin composition is preferably in the range of 0.1 to 5% by mass. When the content is 0.1% by mass or more, the durability of the molded product is further improved, and when the content is 5% by mass or less, high mechanical strength of the molded product is maintained. The content of the carbodiimide compound is preferably 3% by mass or less. The content of the carbodiimide compound is particularly preferably in the range of 0.1 to 1.0% by mass, and more preferably in the range of 0.1 to 0.5% by mass.
 カルボジイミド化合物が使用される場合、ポリ乳酸樹脂組成物の調製時にポリ乳酸とカルボジイミド化合物のみが予め混合されることでマスターバッチが調製されると、カルボジイミド化合物が使用されることによる前記作用が特に効果的に発揮される。 When a carbodiimide compound is used, when the master batch is prepared by premixing only polylactic acid and a carbodiimide compound during the preparation of the polylactic acid resin composition, the above-mentioned action due to the use of the carbodiimide compound is particularly effective. Is demonstrated.
 (メタクリル酸アルキルとアクリル酸アルキルとの共重合体)
 ポリ乳酸樹脂組成物は、メタクリル酸アルキルとアクリル酸アルキルとの共重合体を含有することも好ましい。この場合、成形品の耐衝撃性等の機械的特性が更に改善される。
(Copolymer of alkyl methacrylate and alkyl acrylate)
The polylactic acid resin composition preferably also contains a copolymer of alkyl methacrylate and alkyl acrylate. In this case, mechanical properties such as impact resistance of the molded product are further improved.
 メタクリル酸アルキルとしては、メタアクリル酸メチル、メタアクリル酸エチルなどが挙げられる。アクリル酸アルキルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどが挙げられる。メタクリル酸アルキルとアクリル酸アルキルとの重合モル比は40:60~95:5の範囲であることが好ましい。メタクリル酸アルキルとアクリル酸アルキルとの共重合体の重量平均分子量は100万~500万の範囲であることが好ましい。この重量平均分子量は、溶媒(移動相)としてクロロホルムを用いたゲルパーミエーションクロマトグラフィーにより求められる、標準ポリスチレン換算の重量平均分子量である。 Examples of the alkyl methacrylate include methyl methacrylate and ethyl methacrylate. Examples of the alkyl acrylate include methyl acrylate, ethyl acrylate, butyl acrylate and the like. The polymerization molar ratio of alkyl methacrylate to alkyl acrylate is preferably in the range of 40:60 to 95: 5. The weight average molecular weight of the copolymer of alkyl methacrylate and alkyl acrylate is preferably in the range of 1 million to 5 million. This weight average molecular weight is a standard polystyrene equivalent weight average molecular weight determined by gel permeation chromatography using chloroform as a solvent (mobile phase).
 このようなメタクリル酸アルキルとアクリル酸アルキルとの共重合体の具体例としては、三菱レイヨン株式会社製の商品名メタブレンP530が挙げられる。 As a specific example of such a copolymer of alkyl methacrylate and alkyl acrylate, trade name Metabrene P530 manufactured by Mitsubishi Rayon Co., Ltd. may be mentioned.
 メタクリル酸アルキルとアクリル酸アルキルとの共重合体が使用される場合、熱可塑性樹脂組成物中のメタクリル酸アルキルとアクリル酸アルキルとの共重合体の含有量は0.5質量%~5質量%の範囲内であることが好ましい。この含有量が1.0質量%以上、3.0質量%以下であることで、成形品の耐衝撃性が特に向上する。その理由は、前記範囲において熱可塑性樹脂組成物の溶融粘度が充分に上昇し、これにより成形品の微細構造中に不定形な海島構造が形成され、これが成形品の耐衝撃性の向上をもたらすためと、考えられる。 When a copolymer of alkyl methacrylate and alkyl acrylate is used, the content of the copolymer of alkyl methacrylate and alkyl acrylate in the thermoplastic resin composition is 0.5% by mass to 5% by mass. It is preferable to be within the range. When the content is 1.0% by mass or more and 3.0% by mass or less, the impact resistance of the molded product is particularly improved. The reason is that the melt viscosity of the thermoplastic resin composition is sufficiently increased within the above range, thereby forming an amorphous sea-island structure in the microstructure of the molded product, which leads to an improvement in impact resistance of the molded product. For this reason.
 (ポリブチレンアジペートテレフタレート)
 ポリ乳酸樹脂組成物は、更にポリブチレンアジペートテレフタレートを含有することが好ましい。ポリブチレンアジペートテレフタレートは1,4-ブタンジオールとアジピン酸とテレフタル酸の共重合体であり、その具体例としてはBASF社製の商品名エコフレックスが挙げられる。
(Polybutylene adipate terephthalate)
The polylactic acid resin composition preferably further contains polybutylene adipate terephthalate. Polybutylene adipate terephthalate is a copolymer of 1,4-butanediol, adipic acid and terephthalic acid. Specific examples thereof include trade name Ecoflex manufactured by BASF.
 ポリ乳酸樹脂組成物がポリブチレンアジペートテレフタレートを含有すると、ポリ乳酸樹脂組成物が成形される際に、ポリ乳酸とポリブチレンアジペートテレフタレートとが反応することでポリ乳酸がポリブチレンアジペートテレフタレートによって架橋される。これにより成形品中の組織が強固となり、その結果、成形品の耐久性や機械的特性が更に向上する。 When the polylactic acid resin composition contains polybutylene adipate terephthalate, the polylactic acid is cross-linked by polybutylene adipate terephthalate by the reaction between polylactic acid and polybutylene adipate terephthalate when the polylactic acid resin composition is molded. . This strengthens the structure in the molded product, and as a result, the durability and mechanical properties of the molded product are further improved.
 ポリブチレンアジペートテレフタレートが使用される場合、そのポリ乳酸樹脂組成物中の含有量は0.1~10質量%であることが好ましい。 When polybutylene adipate terephthalate is used, the content in the polylactic acid resin composition is preferably 0.1 to 10% by mass.
 ポリ乳酸樹脂組成物がポリブチレンアジペートテレフタレートを含有する場合には、更にポリ乳酸樹脂組成物が有機過酸化物を含有することが好ましい。この場合、ポリ乳酸樹脂組成物が成形される際に有機過酸化物からフリーラジカルが生成することで、ポリ乳酸とポリブチレンアジペートテレフタレートとのラジカル反応が促進され、成形品の耐久性や機械的特性が更に向上する。有機過酸化物としては、例えば2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(日本油脂株式会社製の商品名パーヘキサ25B)が使用される。ポリ乳酸樹脂組成物中の有機過酸化物の含有量は特に制限されないが、例えば0.01~1質量%が好ましい。 When the polylactic acid resin composition contains polybutylene adipate terephthalate, it is preferable that the polylactic acid resin composition further contains an organic peroxide. In this case, free radicals are generated from the organic peroxide when the polylactic acid resin composition is molded, so that the radical reaction between polylactic acid and polybutylene adipate terephthalate is promoted, and the durability and mechanical properties of the molded product are increased. The characteristics are further improved. As the organic peroxide, for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (trade name Perhexa 25B manufactured by NOF Corporation) is used. The content of the organic peroxide in the polylactic acid resin composition is not particularly limited, but is preferably 0.01 to 1% by mass, for example.
 (コアシェルゴム)
 ポリ乳酸樹脂組成物がコアシェルゴムを含有することも好ましい。この場合、成形品の耐衝撃性等の機械的特性が更に向上する。コアシェルゴムは多層構造の重合体であって、重合体で構成される最内層(コア層)と、コア層を覆い且つコア層とは異種の重合体から構成される1以上の層(シェル層)とを有する。コアシェルゴムとしては、例えばゴム状重合体の存在下で、スチレン系単量体、シアン化ビニル系単量体などの単量体が重合してなる樹脂が挙げられる。
(Core shell rubber)
It is also preferable that the polylactic acid resin composition contains a core-shell rubber. In this case, mechanical properties such as impact resistance of the molded product are further improved. The core-shell rubber is a polymer having a multilayer structure, and an innermost layer (core layer) made of the polymer and one or more layers (shell layer) covering the core layer and made of a polymer different from the core layer. ). Examples of the core-shell rubber include a resin obtained by polymerizing a monomer such as a styrene monomer or a vinyl cyanide monomer in the presence of a rubbery polymer.
 コアシェルゴムが用いられる場合の、そのポリ乳酸樹脂組成物全体に対する含有量に制限はないが、成形品の耐久性向上の観点からは、この含有量は特に1質量%以上であることが好ましく、3質量%以上であれば更に好ましい。ポリ乳酸樹脂組成物の流動性を向上してポリ乳酸樹脂組成物の成形性、加工性、取り扱い性等を向上する観点からは、コアシェルゴムの含有量は12質量%以下であることが好ましい。 When the core-shell rubber is used, the content of the polylactic acid resin composition as a whole is not limited, but from the viewpoint of improving the durability of the molded product, this content is preferably 1% by mass or more, If it is 3 mass% or more, it is still more preferable. From the viewpoint of improving the flowability of the polylactic acid resin composition and improving the moldability, workability, handling, etc. of the polylactic acid resin composition, the content of the core-shell rubber is preferably 12% by mass or less.
 コアシェルゴムについて、更に詳細に説明する。 The core shell rubber will be described in more detail.
 コアシェルゴムとして、Siを含有するコアシェルゴムが挙げられる。Siを含有するコアシェルゴムが使用される場合、成形品の難燃性が更に向上する。Siを含有するコアシェルゴムとして、ポリオルガノシロキサン含有グラフト共重合体、エポキシ変性シリコーン・アクリルゴムなどが挙げられる。エポキシ変性シリコーン・アクリルゴムとしては、市販品が適宜使用され得る。その具体例としては、グリシジルメタクリレートをシェルに含有するコアシェル構造体である三菱レイヨン株式会社製の商品名メタブレンS2200が挙げられる。 Examples of the core shell rubber include Si-containing core shell rubber. When the core-shell rubber containing Si is used, the flame retardancy of the molded product is further improved. Examples of the core-shell rubber containing Si include polyorganosiloxane-containing graft copolymers and epoxy-modified silicone / acrylic rubber. As the epoxy-modified silicone / acrylic rubber, commercially available products can be used as appropriate. As a specific example, trade name Metabrene S2200 manufactured by Mitsubishi Rayon Co., Ltd., which is a core-shell structure containing glycidyl methacrylate in the shell, can be mentioned.
 ポリ乳酸樹脂組成物は、Siを含有するコアシェルゴム以外のコアシェルゴム、すなわちSiを含有しないコアシェルゴムを含有してもよい。Siを含有しないコアシェルゴムの例として、不飽和カルボン酸アルキルエステル-ジエン系ゴム-芳香族ビニルグラフト共重合体が挙げられる。 The polylactic acid resin composition may contain core-shell rubber other than Si-containing core-shell rubber, that is, core-shell rubber not containing Si. Examples of the core-shell rubber not containing Si include an unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer.
 不飽和カルボン酸アルキルエステル-ジエン系ゴム-芳香族ビニルグラフト共重合体が使用される場合、不飽和カルボン酸アルキルエステル-ジエン系ゴム-芳香族ビニルグラフト共重合体は、Siを含有するコアシェルゴムの機能の全部又は一部を、Siを含有するコアシェルゴムに代わって発揮し得る。尚、この場合、コスト面でも有利となる。 When an unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer is used, the unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer is a core-shell rubber containing Si. All or a part of these functions can be exhibited instead of the core-shell rubber containing Si. In this case, the cost is advantageous.
 不飽和カルボン酸アルキルエステル-ジエン系ゴム-芳香族ビニルグラフト共重合体を得るために用いられる不飽和カルボン酸アルキルエステルとしては、メチルアクリレート、エチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート等が挙げられる。ジエン系ゴム成分としては、例えばポリブタジエン、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン等の、ガラス転移点が10℃以下のゴムが挙げられる。芳香族ビニルとしては、例えばスチレン、α-メチルスチレン及びp-メチルスチレン等の核置換スチレンが挙げられる。これら不飽和カルボン酸アルキルエステル、ジエン系ゴム、芳香族ビニルは、それぞれ1種または2種以上使用することができる。 The unsaturated carboxylic acid alkyl ester used to obtain the unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer includes methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate. Etc. Examples of the diene rubber component include rubbers having a glass transition point of 10 ° C. or less, such as polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene, and the like. Examples of the aromatic vinyl include nuclei substituted styrene such as styrene, α-methylstyrene and p-methylstyrene. These unsaturated carboxylic acid alkyl esters, diene rubbers, and aromatic vinyls can be used alone or in combination of two or more.
 この不飽和カルボン酸アルキルエステル-ジエン系ゴム-芳香族ビニルグラフト共重合体の代表例として、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS樹脂)が挙げられる。メチルメタクリレート-ブタジエン-スチレン共重合体は、ブタジエン・スチレン重合体で構成されるコア層と、メタクリル酸メチル重合体で構成されるシェル層とを備える多層構造重合体であることが好ましい。 A representative example of this unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer is methyl methacrylate-butadiene-styrene copolymer (MBS resin). The methyl methacrylate-butadiene-styrene copolymer is preferably a multilayer polymer comprising a core layer composed of a butadiene / styrene polymer and a shell layer composed of a methyl methacrylate polymer.
 ブタジエン・スチレン重合体の構造式を下記式[化2]に示す。この構造式の左側部分がブタジエンに由来するブタジエン単位であり、右側部分がスチレンに由来するスチレン単位である。 The structural formula of the butadiene / styrene polymer is shown in the following formula [Chemical Formula 2]. The left part of this structural formula is a butadiene unit derived from butadiene, and the right part is a styrene unit derived from styrene.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 シェル層を構成するメタクリル重合体の構造式を下記式[化3]に示す。 The structural formula of the methacrylic polymer constituting the shell layer is shown in the following formula [Chemical Formula 3].
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 不飽和カルボン酸アルキルエステル-ジエン系ゴム-芳香族ビニルグラフト共重合体の製造法としては、例えば塊状重合、懸濁重合、乳化重合などの各種方法が挙げられる、特に、乳化重合法が好適である。このようにして得られるコアシェルタイプグラフトゴム状弾性体は、前記ジエン系ゴム成分を50質量%以上含有していることが好ましい。 Examples of the method for producing the unsaturated carboxylic acid alkyl ester-diene rubber-aromatic vinyl graft copolymer include various methods such as bulk polymerization, suspension polymerization, and emulsion polymerization. The emulsion polymerization method is particularly preferable. is there. The core-shell type graft rubber-like elastic body thus obtained preferably contains 50% by mass or more of the diene rubber component.
 このようなメチルメタクリレート-ブタジエン-スチレン共重合体として、市販品が適宜使用されてもよい。メチルメタクリレート-ブタジエン-スチレン共重合体の好適な具体例としては、三菱レイヨン株式会社製の商品名メタブレンC-223A、メタブレンC-323A、メタブレンC-215A、メタブレンC-201A、メタブレンC-202、メタブレンC-102、メタブレンC-140A、メタブレンC-132等、株式会社カネカ製の商品名カネエースM-600、ローム・アンド・ハース株式会社製の商品名パラロイドEXL-2638等が挙げられる。 As such a methyl methacrylate-butadiene-styrene copolymer, a commercially available product may be used as appropriate. Preferable specific examples of the methyl methacrylate-butadiene-styrene copolymer include trade names of Metabrene C-223A, Metabrene C-323A, Metabrene C-215A, Metabrene C-201A, and Metabrene C-202 manufactured by Mitsubishi Rayon Co., Ltd. Examples include METABLEN C-102, METABLEN C-140A, METABLEN C-132, etc., trade name Kane Ace M-600 manufactured by Kaneka Corporation, and trade name Paraloid EXL-2638 manufactured by Rohm & Haas Co., Ltd.
 ポリ乳酸樹脂組成物がポリカーボネート樹脂を含有する場合、ポリ乳酸樹脂組成物が、更に、Na含有量15ppm以下、K含有量15ppm以下、S含有量13ppm以下であるエラストマーを、1質量%以上の割合で含有することが、好ましい。この場合、エラストマーによって成形品の耐衝撃性等の機械的特性が更に向上する。しかも、このように原子番号が小さいNa及びKの含有量が少なく、且つ硫黄成分が少ないエラストマーが用いられると、ポリ乳酸の加水分解が抑制されると共に、ポリカーボネート樹脂の変色が抑制される。尚、エラストマーに硫黄成分が多く含まれると、ポリカーボネート樹脂の変色が促進されてしまう。また、このようなエラストマーが用いられることで、ポリカーボネート樹脂の分解も抑制される。このため、成形品の耐久性が、より向上する。このエラストマーの、ポリ乳酸樹脂組成物中の割合は、特に2~9質量%の範囲であることが好ましい。 When the polylactic acid resin composition contains a polycarbonate resin, the polylactic acid resin composition further contains an elastomer having an Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less in a proportion of 1% by mass or more. It is preferable to contain. In this case, mechanical properties such as impact resistance of the molded product are further improved by the elastomer. In addition, when an elastomer having a small content of Na and K having a small atomic number and a small sulfur component is used, hydrolysis of polylactic acid is suppressed and discoloration of the polycarbonate resin is suppressed. If the elastomer contains a large amount of sulfur component, discoloration of the polycarbonate resin is promoted. Moreover, decomposition | disassembly of polycarbonate resin is also suppressed by using such an elastomer. For this reason, the durability of the molded product is further improved. The ratio of the elastomer in the polylactic acid resin composition is particularly preferably in the range of 2 to 9% by mass.
 尚、エラストマーのNa含有量、K含有量、及びS含有量は、蛍光X線分析により測定される。測定装置としては、例えばスペクトロ社製の蛍光X線分析装置(品番XEPOS)が用いられる。 The Na content, K content, and S content of the elastomer are measured by fluorescent X-ray analysis. As the measuring device, for example, a fluorescent X-ray analyzer (product number XEPOS) manufactured by Spectro Corporation is used.
 このようなエラストマーとしては、例えばNa含有量15ppm以下、K含有量15ppm以下、S含有量13ppm以下であるメチルメタクリレート-ブタジエン-スチレン共重合体(MBS樹脂)が用いられることが好ましい。 As such an elastomer, for example, a methyl methacrylate-butadiene-styrene copolymer (MBS resin) having a Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less is preferably used.
 また、このエラストマーのpHが6~8の範囲であることが好ましい。この場合、ポリ乳酸の加水分解が更に抑制される。このため成形品の耐久性が更に向上する。 In addition, the pH of this elastomer is preferably in the range of 6-8. In this case, hydrolysis of polylactic acid is further suppressed. For this reason, the durability of the molded product is further improved.
 また、エラストマーは、エステル結合と反応する官能基を備えることが好ましい。この場合、成形品の外観が向上する。その理由は次の通りであると考えられる。ポリカーボネート樹脂とポリ乳酸とが併用される場合、通常は両者間の流動性の差が大きいため、成形品中にポリ乳酸とポリカーボネート樹脂による海島構造が形成されやすくなる。この海島構造が、成形品にフローマークが発生する原因となる。しかし、前記のようにエラストマーがエステル結合と反応する官能基を備えると、ポリ乳酸が増粘し、それによってポリ乳酸とポリカーボネート樹脂との間の流動性の差が小さくなる。このためポリ乳酸とポリカーボネート樹脂との相溶性が向上し、これにより、成形品の外観が向上すると、考えられる。 The elastomer preferably has a functional group that reacts with an ester bond. In this case, the appearance of the molded product is improved. The reason is considered as follows. When a polycarbonate resin and polylactic acid are used in combination, the difference in fluidity between the two is usually large, so that a sea-island structure of polylactic acid and the polycarbonate resin is easily formed in the molded product. This sea-island structure causes flow marks in the molded product. However, when the elastomer has a functional group that reacts with an ester bond as described above, the polylactic acid is thickened, thereby reducing the difference in fluidity between the polylactic acid and the polycarbonate resin. For this reason, it is considered that the compatibility between the polylactic acid and the polycarbonate resin is improved, thereby improving the appearance of the molded product.
 また、このようなエラストマーが用いられると、ポリ乳酸樹脂組成物が難燃剤を含有する場合に、難燃剤の割合を低減しつつ、成形品に高い難燃性を付与することができる。これも、ポリ乳酸の加水分解が抑制されるためであると、考えられる。 In addition, when such an elastomer is used, when the polylactic acid resin composition contains a flame retardant, it is possible to impart high flame retardancy to the molded product while reducing the ratio of the flame retardant. This is also considered to be because hydrolysis of polylactic acid is suppressed.
 (植物由来PET)
 ポリ乳酸樹脂組成物が、植物由来原料を含む原料から合成されたPET(植物由来PET)を含有することも好ましい。このような植物由来PETは、例えばテレフタル酸と、サトウキビなどの植物由来のエタノール(いわゆるバイオエタノール)から製造されたモノエチレングリコール(バイオモノエチレングリコール)を含むモノエチレングリコールとが、脱水縮合することで合成される。
(Plant-derived PET)
It is also preferable that the polylactic acid resin composition contains PET (plant-derived PET) synthesized from a raw material including a plant-derived raw material. In such plant-derived PET, for example, terephthalic acid and monoethylene glycol containing monoethylene glycol (biomonoethylene glycol) produced from plant-derived ethanol such as sugar cane (so-called bioethanol) undergo dehydration condensation. Is synthesized.
 このような植物由来PETが使用されることで、ポリ乳酸樹脂組成物及びその成形品における石油由来資源の使用量が削減され、このため石油由来資源の削減が可能となり、このことが環境問題の解決のために貢献する。 By using such plant-derived PET, the amount of petroleum-derived resources used in the polylactic acid resin composition and its molded product is reduced, which makes it possible to reduce petroleum-derived resources, which is an environmental problem. Contribute to the solution.
 植物由来PETの原料における、モノエチレングリコール全体に対するバイオモノエチレングリコールの割合は特に制限されないが、1~100質量%の範囲であることが好ましく、5~100質量%の範囲であれば更に好ましい。尚、植物由来PETに関し、その原料におけるモノエチレングリコール全体に対するバイオモノエチレングリコールの割合は、ASTM D6866-11 METHOD Bにより測定される。 The ratio of biomonoethylene glycol to the total monoethylene glycol in the plant-derived PET raw material is not particularly limited, but is preferably in the range of 1 to 100% by mass, and more preferably in the range of 5 to 100% by mass. For plant-derived PET, the ratio of biomonoethylene glycol to the total monoethylene glycol in the raw material is measured by ASTM D6866-11 METHOD B.
 植物由来PETが使用される場合、ポリ乳酸樹脂組成物中の植物由来PETの割合は特に制限されないが、1~30質量%の範囲であることが好ましい。 When plant-derived PET is used, the proportion of plant-derived PET in the polylactic acid resin composition is not particularly limited, but is preferably in the range of 1 to 30% by mass.
 (他の熱可塑性樹脂)
 ポリ乳酸樹脂組成物中には、上記以外の種々の熱可塑性樹脂が含まれてもよい。例えばポリ乳酸樹脂組成物が、ポリエチレンテレフタレート樹脂(PET樹脂)、ポリブチレンテレフタレート樹脂(PBT樹脂)、シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂(いわゆるPET-G樹脂)、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂などの芳香族ポリエステル樹脂;環状ポリオレフィン樹脂;ポリカプロラクトン樹脂;ポリフッ化ビニリデン樹脂に代表される熱可塑性フッ素樹脂;ポリエチレン樹脂、エチレン-(α-オレフィン)共重合体樹脂などを含有してもよい。ポリ乳酸樹脂組成物中には前記のような樹脂が一種のみ含まれていてもよく、二種以上が含まれていてもよい。このような種々の熱可塑性樹脂により、成形品の耐衝撃性が更に向上し得る。これらの熱可塑性樹脂が使用される場合、その含有量は、ポリ乳酸樹脂組成物に対して3~12質量%の範囲であることが好ましい。
(Other thermoplastic resins)
In the polylactic acid resin composition, various thermoplastic resins other than the above may be contained. For example, the polylactic acid resin composition is made of polyethylene terephthalate resin (PET resin), polybutylene terephthalate resin (PBT resin), cyclohexanedimethanol copolymerized polyethylene terephthalate resin (so-called PET-G resin), polyethylene naphthalate resin, polybutylene naphthalate. Aromatic polyester resins such as resins; cyclic polyolefin resins; polycaprolactone resins; thermoplastic fluororesins typified by polyvinylidene fluoride resins; polyethylene resins, ethylene- (α-olefin) copolymer resins, etc. . The polylactic acid resin composition may contain only one kind of resin as described above, or may contain two or more kinds. Such various thermoplastic resins can further improve the impact resistance of the molded product. When these thermoplastic resins are used, the content thereof is preferably in the range of 3 to 12% by mass with respect to the polylactic acid resin composition.
 (酸化防止剤)
 ポリ乳酸樹脂組成物は、酸化防止剤を含有することが好ましい。この場合、成形品中のポリ乳酸の加水分解が更に抑制されることで、成形品の耐久性が更に向上する。酸化防止剤としては、2,2-メチレンビス-(4-メチル-6-t-ブチルフェノール)、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロパン酸オクタデシル、及びビス(3-t-ブチル-4-ヒドロキシ-5-メチル-フェニル)ジシクロペンタジエンからなる群から選択される少なくとも一種が使用されることが好ましい。
(Antioxidant)
The polylactic acid resin composition preferably contains an antioxidant. In this case, the durability of the molded product is further improved by further suppressing hydrolysis of polylactic acid in the molded product. Antioxidants include 2,2-methylenebis- (4-methyl-6-tert-butylphenol), octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanoate, and bis (3 It is preferable to use at least one selected from the group consisting of (t-butyl-4-hydroxy-5-methyl-phenyl) dicyclopentadiene.
 (充填材等)
 ポリ乳酸樹脂組成物は充填材を含有してもよい。充填材としては、例えば、タルク、ワラストナイト、マイカ、クレー、モンモンリロナイト、スメクタイト、カオリン、ゼオライト(珪酸アルミニウム)、ゼオライトを酸処理及び加熱処理して得られる無水非晶質珪酸アルミニウムなどの無機充填材が挙げられる。特にタルク、ワラストナイトが好ましい。これらの充填剤のうち、一種のみが用いられても、二種以上が併用されてもよい。
(Fillers, etc.)
The polylactic acid resin composition may contain a filler. As the filler, for example, talc, wollastonite, mica, clay, montmon lilonite, smectite, kaolin, zeolite (aluminum silicate), anhydrous amorphous aluminum silicate obtained by subjecting zeolite to acid treatment and heat treatment, etc. An inorganic filler is mentioned. Talc and wollastonite are particularly preferable. Among these fillers, only one type may be used, or two or more types may be used in combination.
 タルクの平均粒径は、通常は0.1~10μmの範囲内であることが好ましい。この平均粒径は、レーザー回折・散乱式粒度分析計(日機装株式会社製のマイクロトラックMT3000IIシリーズなど)などを用いるレーザー回折散乱法により測定される値である。 The average particle size of talc is usually preferably in the range of 0.1 to 10 μm. This average particle diameter is a value measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size analyzer (such as Microtrack MT3000II series manufactured by Nikkiso Co., Ltd.).
 ポリ乳酸樹脂組成物中のタルクの含有量は特に制限されないが、1~30質量%の範囲内であることが好ましい。この含有量が1質量%以上であれば成形品の引張り弾性率が向上し、この含有量が30質量%以下であればポリ乳酸樹脂組成物の混練時におけるスクリューへのタルクの食い込みが抑制されて、良好な加工性、成形性が維持される。このタルクの含有量は、好ましくは1~15質量%の範囲であり、更に好ましくは3~8質量%の範囲である。この含有量が8質量%以下であると、複雑な形状の成形品を得る場合であってもウエルドやフローマークの発生が充分に抑制され、この含有量が3質量%以上であるとタルクの添加の効果が特に発揮される。 The content of talc in the polylactic acid resin composition is not particularly limited, but is preferably in the range of 1 to 30% by mass. If this content is 1% by mass or more, the tensile modulus of the molded product is improved, and if this content is 30% by mass or less, the penetration of talc into the screw during kneading of the polylactic acid resin composition is suppressed. Thus, good workability and moldability are maintained. The talc content is preferably in the range of 1 to 15% by mass, more preferably in the range of 3 to 8% by mass. When this content is 8% by mass or less, the occurrence of welds and flow marks is sufficiently suppressed even when a molded product having a complicated shape is obtained, and when this content is 3% by mass or more, talc The effect of addition is particularly demonstrated.
 ポリ乳酸樹脂組成物は着色剤として染料や顔料などを含有してもよい。染料としては、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、ジアミノスチルベン系蛍光染料などの、蛍光染料(蛍光増白剤を含む);ペリレン系染料;クマリン系染料;チオインジゴ系染料;アンスラキノン系染料;チオキサントン系染料;紺青等のフェロシアン化物;ペリノン系染料;キノリン系染料;キナクリドン系染料;ジオキサジン系染料;イソインドリノン系染料;フタロシアニン系染料などが挙げられる。蛍光染料のうちでは、耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、及びペリレン系蛍光染料が好適である。顔料としては、金属被膜または金属酸化物被膜を有する各種板状フィラーなどのメタリック顔料、カーボンなどが、使用可能である。 The polylactic acid resin composition may contain a dye or a pigment as a colorant. As dyes, coumarin fluorescent dyes, benzopyran fluorescent dyes, perylene fluorescent dyes, anthraquinone fluorescent dyes, thioindigo fluorescent dyes, xanthene fluorescent dyes, xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes , Thiazine fluorescent dyes, diaminostilbene fluorescent dyes, fluorescent dyes (including fluorescent brighteners); perylene dyes; coumarin dyes; thioindigo dyes; anthraquinone dyes; thioxanthone dyes; Peranone dyes; quinoline dyes; quinacridone dyes; dioxazine dyes; isoindolinone dyes; phthalocyanine dyes. Of the fluorescent dyes, coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes that have good heat resistance and little deterioration during molding of the polycarbonate resin are suitable. As the pigment, metallic pigments such as various plate fillers having a metal film or a metal oxide film, carbon, and the like can be used.
 ポリ乳酸樹脂組成物中の着色剤の含有量は、樹脂成分の合計量100質量部に対して、2質量%以下であることが好ましく、1.5質量%以下であれば更に好ましい。更に、着色剤の含有量は、樹脂成分の合計量100質量部に対して、0.00001質量部以上であれば好ましく、0.00005質量部以上であれば更に好ましく、0.5質量部以上であれば更に好ましい。 The content of the colorant in the polylactic acid resin composition is preferably 2% by mass or less and more preferably 1.5% by mass or less with respect to 100 parts by mass of the total amount of the resin components. Furthermore, the content of the colorant is preferably 0.00001 parts by mass or more, more preferably 0.00005 parts by mass or more, and 0.5 parts by mass or more with respect to 100 parts by mass of the total amount of the resin components. If it is more preferable.
 (難燃剤)
 ポリ乳酸樹脂組成物は、更に難燃剤を含有することも好ましい。この場合、成形品の難燃性が向上する。難燃剤としては、Br系難燃剤、有機リン系難燃剤、酸化アンチモンが用いられることが好ましい。ポリ乳酸樹脂組成物中のBr系難燃剤の含有量は、1~30質量%であることが好ましく、有機リン系難燃剤の含有量は、1~30質量%の範囲であることが好ましく、3~12質量%の範囲であれば更に好ましい。また、酸化アンチモンの含有量は、0.1~3質量%であることが好ましい。このような範囲において、ポリ乳酸樹脂組成物から形成される成形品の難燃性が向上する。
(Flame retardants)
The polylactic acid resin composition preferably further contains a flame retardant. In this case, the flame retardancy of the molded product is improved. As the flame retardant, a Br flame retardant, an organic phosphorus flame retardant, or antimony oxide is preferably used. The content of the Br flame retardant in the polylactic acid resin composition is preferably 1 to 30% by mass, and the content of the organophosphorus flame retardant is preferably in the range of 1 to 30% by mass, A range of 3 to 12% by mass is more preferable. The content of antimony oxide is preferably 0.1 to 3% by mass. In such a range, the flame retardancy of the molded product formed from the polylactic acid resin composition is improved.
 また、ポリ乳酸樹脂組成物が、ポリカーボネート樹脂を含有し、更にNa含有量15ppm以下、K含有量15ppm以下、S含有量13ppm以下であるエラストマーを1質量%以上の割合で含有する場合に、ポリ乳酸樹脂組成物が更に難燃剤を含有すると、成形品の難燃性が更に向上する。このため、難燃剤の使用量が少なくても、成形品に高い難燃性が付与される。この場合の難燃剤の好ましい割合は、ポリ乳酸樹脂組成物全量に対して、5~10質量%の範囲である。 When the polylactic acid resin composition contains a polycarbonate resin and further contains an elastomer having an Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less in a proportion of 1% by mass or more, When the lactic acid resin composition further contains a flame retardant, the flame retardancy of the molded product is further improved. For this reason, even if there is little usage-amount of a flame retardant, high flame retardance is provided to a molded article. A desirable ratio of the flame retardant in this case is in the range of 5 to 10% by mass with respect to the total amount of the polylactic acid resin composition.
 このような高い難燃性を有する成形品は、電池パック用筐体、パソコン用筐体、複合機部品等の、電子機器用の部材として、好適である。 Such a molded product having high flame retardancy is suitable as a member for an electronic device such as a battery pack housing, a personal computer housing, and a multifunction device part.
 有機リン系難燃剤として、特に下記[化4]に示される環状ホスファゼン化合物が用いられることが好ましい。 As the organic phosphorus flame retardant, it is particularly preferable to use a cyclic phosphazene compound represented by the following [Chemical Formula 4].
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 R及びRはそれぞれ独立にアリール基又は末端に不飽和結合を有する(メタ)アクリル酸エステル基であり、R及びRは同じであっても異なっていてもよい。nは、3~25の整数である。 R 1 and R 2 are each independently an aryl group or a (meth) acrylic acid ester group having an unsaturated bond at the terminal, and R 1 and R 2 may be the same or different. n is an integer of 3 to 25.
 [化4]に示される環状ホスファゼン化合物として、適宜の市販品が使用されてもよく、例えば大塚化学株式会社製の品番SPB100、SPB100L、株式会社伏見製薬所製の商品名ラビトルFP-100などが使用されてもよい。 As the cyclic phosphazene compound represented by [Chemical Formula 4], an appropriate commercially available product may be used, for example, product numbers SPB100 and SPB100L manufactured by Otsuka Chemical Co., Ltd., trade name Ravitor FP-100 manufactured by Fushimi Pharmaceutical Co., Ltd. May be used.
 この[化4]に示される環状ホスファゼン化合物は、液状であることが特に好ましい。この場合、ポリ乳酸樹脂組成物中での環状ホスファゼン化合物の分散性が向上し、成形品の難燃性が特に向上する。また、[化4]に示される環状ホスファゼン化合物の含有量を低減しつつ、成形品の難燃性を向上することもできる。特に液状の[化4]に示される環状ホスファゼン化合物として、大塚化学株式会社製の品番SPB100Lが使用されることが好ましい。 The cyclic phosphazene compound represented by [Chemical Formula 4] is particularly preferably liquid. In this case, the dispersibility of the cyclic phosphazene compound in the polylactic acid resin composition is improved, and the flame retardancy of the molded product is particularly improved. Moreover, the flame retardance of a molded article can be improved while reducing the content of the cyclic phosphazene compound represented by [Chemical Formula 4]. In particular, as the cyclic phosphazene compound represented by the liquid [Chemical Formula 4], it is preferable to use a product number SPB100L manufactured by Otsuka Chemical Co., Ltd.
 ポリ乳酸樹脂組成物中の有機リン系難燃剤の一部又は全部が[化4]に示される環状ホスファゼン化合物であることが特に好ましい。この場合、ポリ乳酸樹脂組成物中の[化4]に示される環状ホスファゼン化合物の含有量は、1~30質量%の範囲であることが好ましく、3~12質量%の範囲であれば更に好ましい。 It is particularly preferable that part or all of the organophosphorus flame retardant in the polylactic acid resin composition is a cyclic phosphazene compound represented by [Chemical Formula 4]. In this case, the content of the cyclic phosphazene compound represented by [Chemical Formula 4] in the polylactic acid resin composition is preferably in the range of 1 to 30% by mass, and more preferably in the range of 3 to 12% by mass. .
 [化4]に示される環状ホスファゼン化合物以外の有機リン系難燃剤として、下記式[化5]で表されるリン酸エステル化合物が挙げられる。このようなリン酸エステル化合物が使用されると、成形品の高い耐衝撃性が維持されながら、この成形品の難燃性が大きく向上する。 Examples of organic phosphorus flame retardants other than the cyclic phosphazene compound represented by [Chemical Formula 4] include phosphate ester compounds represented by the following Formula [Chemical Formula 5]. When such a phosphoric ester compound is used, the flame retardancy of the molded product is greatly improved while maintaining high impact resistance of the molded product.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式[化5]中のnは、0~5の整数を示す。この式[化5]に示されるリン酸エステル化合物は、異なるn数を有する化合物の混合物であってもよい。リン酸エステル化合物が前記のような混合物である場合、平均のn数は好ましくは0.5~1.5、より好ましくは0.8~1.2、更に好ましくは0.95~1.15、特に好ましくは1~1.14の範囲である。 N in the formula [Chemical Formula 5] represents an integer of 0 to 5. The phosphate ester compound represented by the formula [Chemical Formula 5] may be a mixture of compounds having different n numbers. When the phosphate ester compound is a mixture as described above, the average n number is preferably 0.5 to 1.5, more preferably 0.8 to 1.2, and still more preferably 0.95 to 1.15. Particularly preferably, it is in the range of 1 to 1.14.
 上記式[化5]中のXは、ハイドロキノン、レゾルシノール、ビスフェノールA、及びジヒドロキシジフェニルよりなる群より選ばれるジヒドロキシ化合物から水酸基が除去された二価の基を示す。Xは特にレゾルシノール、ビスフェノールA、又はジヒドロキシジフェニルから誘導される二価の基であることが好ましい。 X in the above formula [Chemical Formula 5] represents a divalent group obtained by removing a hydroxyl group from a dihydroxy compound selected from the group consisting of hydroquinone, resorcinol, bisphenol A, and dihydroxydiphenyl. X is particularly preferably a divalent group derived from resorcinol, bisphenol A, or dihydroxydiphenyl.
 上記式[化5]中のR、R、R、及びRはそれぞれ独立して、炭素数6~12のアリール基を表す。このR、R、R、及びRとしては、具体的にはフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、p-クミルフェノールなどのヒドロキシ化合物から誘導される、一価の基が例示される。中でもR、R、R、及びRがフェニル基、又は2,6-ジメチルフェニル基であることが好ましい。 In the above formula [Chemical Formula 5], R 1 , R 2 , R 3 , and R 4 each independently represents an aryl group having 6 to 12 carbon atoms. Specific examples of R 1 , R 2 , R 3 , and R 4 include monovalent groups derived from hydroxy compounds such as phenol, cresol, xylenol, isopropylphenol, butylphenol, and p-cumylphenol. Illustrated. Of these, R 1 , R 2 , R 3 , and R 4 are preferably a phenyl group or a 2,6-dimethylphenyl group.
 尚、このフェニル基はハロゲン原子を有する置換基を有してもよい。このフェニル基から誘導される基を有するホスフェート化合物の具体例としては、トリス(2,4,6-トリブロモフェニル)ホスフェート、トリス(2,4-ジブロモフェニル)ホスフェート、トリス(4-ブロモフェニル)ホスフェートなどが例示される。 In addition, this phenyl group may have a substituent having a halogen atom. Specific examples of the phosphate compound having a group derived from this phenyl group include tris (2,4,6-tribromophenyl) phosphate, tris (2,4-dibromophenyl) phosphate, and tris (4-bromophenyl). Examples include phosphate.
 一方、ハロゲン原子を有する置換基を有しないホスフェート化合物の具体例としては、トリフェニルホスフェート、トリ(2,6-キシリル)ホスフェート等のモノホスフェート化合物;レゾルシノールビスジ(2,6-キシリル)ホスフェート)を主体とするホスフェートオリゴマー;4,4-ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー;ビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマー等が、好適である。ここで主体とするとは、重合度の異なる他の成分を少量含んでよいことであり、より好適には上記式[化5]におけるn=1の成分が80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上含有されることである。 On the other hand, specific examples of the phosphate compound having a halogen atom and having no substituent include monophosphate compounds such as triphenyl phosphate and tri (2,6-xylyl) phosphate; resorcinol bisdi (2,6-xylyl) phosphate) A phosphate oligomer mainly composed of bisphenol A; a phosphate oligomer mainly composed of 4,4-dihydroxydiphenylbis (diphenylphosphate); a phosphate ester oligomer mainly composed of bisphenol A bis (diphenylphosphate) and the like are suitable. Here, “mainly” means that a small amount of other components having different degrees of polymerization may be included. More preferably, the component of n = 1 in the above formula [Chemical Formula 5] is 80% by mass or more, more preferably 85% by mass. % Or more, more preferably 90% by mass or more.
 リン酸エステル化合物の酸価は、0.2mgKOH/g以下が好ましく、より好ましくは0.15mgKOH/g以下であり、更に好ましくは0.1mgKOH/g以下であり、特に好ましくは0.05mgKOH/g以下である。この酸価の下限は実質的に0とすることも可能であり、実用上0.01mgKOH/g以上が好ましい。ポリ乳酸樹脂が式[化5]で示され酸価が0.2mgKOH/g以下であるリン酸エステル化合物を含有すると、ポリ乳酸樹脂組成物の熱安定性が特に高くなり、またポリ乳酸樹脂組成物の耐加水分解性が向上して成形品の耐水性が高くなる。リン酸エステル化合物中のハーフエステルの含有量は1.1質量%以下がより好ましく、0.9質量%以下が更に好ましい。下限としては実用上0.1質量%以上が好ましく、0.2質量%以上がより好ましい。酸価が0.2mgKOH/gを超える場合、またはハーフエステル含有量が1.5mgを超える場合には、成形時の熱安定性に劣るようになり、芳香族ポリカーボネートの分解に伴いポリ乳酸樹脂組成物の耐加水分解性が低下する。 The acid value of the phosphate ester compound is preferably 0.2 mgKOH / g or less, more preferably 0.15 mgKOH / g or less, still more preferably 0.1 mgKOH / g or less, and particularly preferably 0.05 mgKOH / g. It is as follows. The lower limit of the acid value can be substantially 0, and is preferably 0.01 mgKOH / g or more practically. When the polylactic acid resin contains a phosphate ester compound represented by the formula [Chemical Formula 5] and having an acid value of 0.2 mgKOH / g or less, the thermal stability of the polylactic acid resin composition is particularly high, and the polylactic acid resin composition The hydrolysis resistance of the product is improved and the water resistance of the molded article is increased. The content of the half ester in the phosphate ester compound is more preferably 1.1% by mass or less, and still more preferably 0.9% by mass or less. As a minimum, 0.1 mass% or more is preferable practically, and 0.2 mass% or more is more preferable. When the acid value exceeds 0.2 mg KOH / g, or when the half ester content exceeds 1.5 mg, the thermal stability at the time of molding becomes inferior, and the polylactic acid resin composition accompanying the decomposition of the aromatic polycarbonate The hydrolysis resistance of the product decreases.
 このようなリン酸エステル化合物の具体例としては、大八化学工業株式会社製、品番PX202が挙げられる。 Specific examples of such phosphate ester compounds include product number PX202 manufactured by Daihachi Chemical Industry Co., Ltd.
 有機リン系難燃剤は、[化5]で表されるリン酸エステル化合物として、特に下記構造式(1-1)に示す化合物(レゾルシノールジキシレニルホスフェート)と、下記構造式(1-2)に示す化合物(ビスフェノールAビス(ジフェニルホスフェート))とのうち、少なくとも一方を含有することが好ましい。 The organophosphorous flame retardant is a compound represented by the following structural formula (1-1) (resorcinol dixylenyl phosphate) and a structural formula (1-2) shown below as a phosphoric ester compound represented by [Chemical Formula 5]. It is preferable to contain at least one of the compounds (bisphenol A bis (diphenyl phosphate)).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 特に有機燐化合物が構造式(1-1)に示す化合物を含有すると、成形品の難燃性が向上するだけでなく、成形品の耐熱性及び耐久性も向上する。 In particular, when the organic phosphorus compound contains a compound represented by the structural formula (1-1), not only the flame retardancy of the molded product is improved, but also the heat resistance and durability of the molded product are improved.
 [化4]に示される環状ホスファゼン化合物以外の有機リン系難燃剤として、リン酸アンモニウムも挙げられる。リン酸アンモニウムの具体例としては、クラリアントジャパン株式会社製の品番AP422が挙げられる。このようなリン酸アンモニウムが使用される場合も、成形品の高い耐衝撃性が維持されながら、この成形品の難燃性が大きく向上する。 As an organic phosphorus flame retardant other than the cyclic phosphazene compound represented by [Chemical Formula 4], ammonium phosphate may also be mentioned. As a specific example of ammonium phosphate, product number AP422 manufactured by Clariant Japan Co., Ltd. may be mentioned. Even when such an ammonium phosphate is used, the flame retardancy of the molded product is greatly improved while maintaining high impact resistance of the molded product.
 (含フッ素滴下防止剤)
 ポリ乳酸樹脂組成物は、更に含フッ素滴下防止剤を含有することも好ましい。含フッ素滴下防止剤は、成形品の燃焼時の溶融滴下を防止して難燃性を更に向上させるために使用される。
(Fluorine-containing anti-dripping agent)
The polylactic acid resin composition preferably further contains a fluorine-containing anti-dripping agent. The fluorine-containing anti-drip agent is used in order to prevent melting and dropping at the time of combustion of the molded product and further improve the flame retardancy.
 ポリ乳酸樹脂組成物中の含フッ素滴下防止剤の含有量は、0.2~3質量%の範囲であることが好ましく、0.2~1質量%の範囲であれば更に好ましい。このような範囲において、成形品の高い機械的強度と高い難燃性とを両立させることができる。 The content of the fluorine-containing anti-dripping agent in the polylactic acid resin composition is preferably in the range of 0.2 to 3% by mass, and more preferably in the range of 0.2 to 1% by mass. In such a range, it is possible to achieve both high mechanical strength and high flame resistance of the molded product.
 含フッ素滴下防止剤として、フィブリル形成能を有するポリテトラフルオロエチレン(PTFE)が好ましく使用される。フィブリル形成能を有するPTFEは極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示す。PTFEの、標準比重から求められる数平均分子量は、100万~1000万の範囲が好ましく、200万~900万の範囲であれば更に好ましい。このPTFEは、固体形状であっても、水性分散液形態であってもよい。分散性の向上と成形品の更なる難燃性及び機械的特性の向上を目的として、PTFEが他の樹脂と混合されることでPTFE混合物を構成していてもよい。フィブリル形成能を有するPTFEの市販品としては例えば三井・デュポンフロロケミカル株式会社製のテフロン(登録商標)6J、ダイキン化学工業株式会社製のポリフロンMPA FA500,F-201Lなどが挙げられる。PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ株式会社製のフルオンAD-1、AD-936、ダイキン工業株式会社製のフルオンD-1、D-2、三井・デュポンフロロケミカル株式会社製のテフロン(登録商標)30Jなどが代表として挙げられる。 As the fluorine-containing anti-drip agent, polytetrafluoroethylene (PTFE) having fibril forming ability is preferably used. PTFE having a fibril-forming ability has a very high molecular weight and tends to form a fibrous form by bonding PTFE to each other by an external action such as shearing force. The number average molecular weight determined from the standard specific gravity of PTFE is preferably in the range of 1 million to 10 million, and more preferably in the range of 2 million to 9 million. This PTFE may be in solid form or in the form of an aqueous dispersion. A PTFE mixture may be constituted by mixing PTFE with other resins for the purpose of improving dispersibility and further improving flame retardancy and mechanical properties of the molded product. Examples of commercially available PTFE having fibril forming ability include Teflon (registered trademark) 6J manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and Polyflon MPA FA500, F-201L manufactured by Daikin Chemical Industries, Ltd. Commercially available PTFE aqueous dispersions include Asahi IC Fluoropolymers' Fullon AD-1, AD-936, Daikin Industries, Ltd., Fullon D-1, D-2, Mitsui DuPont Fluorochemical Co., Ltd. A typical example is Teflon (registered trademark) 30J manufactured by the company.
 混合形態のPTFEの市販品としては、三菱レイヨン株式会社の「メタブレン A3800」(商品名)、GEスペシャリティーケミカルズ社製の「BLENDEX B449」(商品名)などが挙げられる。 Examples of commercially available PTFE in a mixed form include “Metablene A3800” (trade name) manufactured by Mitsubishi Rayon Co., Ltd. and “BLENDEX B449” (trade name) manufactured by GE Specialty Chemicals.
 混合形態のPTFEの場合、PTFE混合物100質量%中のPTFEの割合は1~60質量%が好ましく、より好ましくは5~55質量%である。PTFEの割合が前記範囲にある場合は、PTFEの良好な分散性を達成することができる。 In the case of PTFE in a mixed form, the proportion of PTFE in 100% by mass of the PTFE mixture is preferably 1 to 60% by mass, more preferably 5 to 55% by mass. When the ratio of PTFE is in the above range, good dispersibility of PTFE can be achieved.
 PTFEの粒子径は小さいことが好ましい。この場合、ポリ乳酸樹脂組成物中でのPTFEの分散性が向上し、それにより成形品の耐久性及び難燃性が更に向上する。特にPTFEの平均粒径が20~100μmの範囲であることが好ましい。このPTFEの平均粒径は、ASTM D4895により測定される値である。 It is preferable that the particle diameter of PTFE is small. In this case, the dispersibility of PTFE in the polylactic acid resin composition is improved, thereby further improving the durability and flame retardancy of the molded product. In particular, the average particle size of PTFE is preferably in the range of 20 to 100 μm. The average particle diameter of this PTFE is a value measured by ASTM D4895.
 (その他)
 ポリ乳酸樹脂組成物は、本発明の目的に反せず、その効果を損なわない限りにおいて、必要に応じて、安定剤、紫外線吸収剤、滑剤、離型剤、可塑剤、帯電防止剤、無機および有機系抗菌剤等の、公知の添加剤を含有してもよい。これらの添加剤は、ポリ乳酸樹脂組成物の混練時に加えられても、成形時等に加えられてもよい。
(Other)
As long as the polylactic acid resin composition does not contradict the purpose of the present invention and does not impair the effect thereof, the stabilizer, the ultraviolet absorber, the lubricant, the release agent, the plasticizer, the antistatic agent, the inorganic and the You may contain well-known additives, such as an organic type antibacterial agent. These additives may be added at the time of kneading the polylactic acid resin composition, or may be added at the time of molding or the like.
 [ポリ乳酸樹脂組成物及び成形品]
 ポリ乳酸樹脂組成物は、上記のようなポリ乳酸樹脂組成物の原料が任意の方法で混合、混練されることによって調製される。前記混合、混練にあたっては、例えば、二軸押出機、バンバリーミキサー、加熱ロール等が用いられるが、中でも二軸押出機による溶融混練が好ましい。
[Polylactic acid resin composition and molded product]
The polylactic acid resin composition is prepared by mixing and kneading the raw materials of the polylactic acid resin composition as described above by an arbitrary method. In the mixing and kneading, for example, a twin screw extruder, a Banbury mixer, a heating roll, or the like is used. Among them, melt kneading using a twin screw extruder is preferable.
 例えばポリ乳酸樹脂組成物の調製にあたって、ポリ乳酸樹脂組成物の原料をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、原料のうちの一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法が採用されてもよい。また、原料の一部を溶融混練機に供給した後、残りの原料を溶融押出機の途中から供給する方法が採用されてもよい。溶融混練に際しての加熱温度は、ポリ乳酸樹脂組成物の組成に応じて適宜設定されるが、200~260℃の範囲であることが好ましい。 For example, in preparing a polylactic acid resin composition, a method of supplying the raw materials of the polylactic acid resin composition independently to a melt kneader represented by a vent type twin screw extruder, or a part of the raw materials was premixed Thereafter, a method of supplying to the melt kneader independently of the remaining components may be employed. Moreover, after supplying a part of raw material to a melt kneader, the method of supplying the remaining raw material from the middle of a melt extruder may be employ | adopted. The heating temperature at the time of melt kneading is appropriately set according to the composition of the polylactic acid resin composition, but is preferably in the range of 200 to 260 ° C.
 尚、原料中に液状の成分がある場合には、溶融押出機への液状の成分の供給の際に、いわゆる液注装置、液添装置等が使用されてもよい。 In addition, when a raw material has a liquid component, what is called a liquid injection apparatus, a liquid addition apparatus, etc. may be used at the time of supply of the liquid component to a melt extruder.
 ポリ乳酸樹脂組成物が必要に応じてペレット状に成形されてもよい。例えば溶融押出機により押し出されたポリ乳酸樹脂組成物が直接切断されてペレット化され、或いはこのポリ乳酸樹脂組成物のストランドが形成された後、このストランドがペレタイザー等で切断されてペレット化されることで、ペレット状のポリ乳酸樹脂組成物が得られてもよい。 The polylactic acid resin composition may be formed into pellets as necessary. For example, a polylactic acid resin composition extruded by a melt extruder is directly cut and pelletized, or after a strand of the polylactic acid resin composition is formed, the strand is cut by a pelletizer or the like and pelletized. Thus, a pellet-shaped polylactic acid resin composition may be obtained.
 ポリ乳酸樹脂組成物の成形法としては、射出成形、回転成形、ブロー成形、真空成形などの適宜の成形方法が採用され得る。特に射出成形が好ましい。射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、二色成形、サンドイッチ成形、超高速射出成形などが採用されてもよい。 As a molding method of the polylactic acid resin composition, an appropriate molding method such as injection molding, rotational molding, blow molding, vacuum molding or the like can be adopted. In particular, injection molding is preferred. In injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, bicolor Molding, sandwich molding, ultra-high speed injection molding, or the like may be employed.
 ポリ乳酸樹脂組成物の射出成形にあたっては、適宜の射出成形装置が使用され得る。特に、射出時の金型のキャビティ表面温度が制御されるためは、電気式のヒータを備える金型が用いられることが好ましい。この場合、ポリ乳酸樹脂組成物の射出時に、電気式のヒータによってキャビティ表面の温度が正確且つ速やかに調整される。 In the injection molding of the polylactic acid resin composition, an appropriate injection molding apparatus can be used. In particular, in order to control the cavity surface temperature of the mold at the time of injection, it is preferable to use a mold having an electric heater. In this case, when the polylactic acid resin composition is injected, the temperature of the cavity surface is accurately and quickly adjusted by an electric heater.
 このようにして得られる成形品は、長期間の使用が想定される家電分野や建材、サニタリー分野など、広範囲の分野に使用され得る。 The molded product obtained in this way can be used in a wide range of fields such as home appliances, building materials, and sanitary, which are expected to be used for a long time.
 本実施形態による成形品には、上記のとおりヒケやムラなどが生じにくくなり、このためその外観が良好になる。更に、成形品が加熱されても白化などの外観不良が生じにくくなる。更に、金型成形によって成形品が形成される際に金型汚れが生じにくくなり、このため成形品の量産性が高い。更に、ポリ乳酸が使用されているにもかかわらず、成形品の耐久性が低下しにくくなる。 As described above, sink marks and unevenness are less likely to occur in the molded product according to the present embodiment, and thus the appearance is improved. Further, even when the molded product is heated, it is difficult to cause appearance defects such as whitening. Furthermore, when a molded product is formed by mold molding, mold contamination is less likely to occur, so that mass productivity of the molded product is high. Furthermore, despite the use of polylactic acid, the durability of the molded article is unlikely to decrease.
 ポリ乳酸樹脂組成物が成形されることで、60℃95%RHの雰囲気下1000時間曝露される場合の引張強度の保持率が80%以上である成形品が形成されることが好ましい。60℃95%RHの雰囲気下3000時間曝露される場合の引張強度の保持率が80%以上である成形品が形成されることが、更に好ましい。すなわち、ポリ乳酸樹脂から形成される成形品の、60℃95%RHの雰囲気下1000時間曝露される場合の引張強度の保持率が80%以上であることが好ましい。この成形品の、60℃95%RHの雰囲気下3000時間曝露される場合の引張強度の保持率が80%以上であることが、更に好ましい。引張強度の保持率とは、前記条件での曝露処理が施される前の成形品の引張強度に対する、前記条件での曝露処理が施された後の成形品の引張強度の比率である。引張強度はISO 179に従って測定される。 It is preferable that a molded product having a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 1000 hours is formed by molding the polylactic acid resin composition. More preferably, a molded article having a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours is formed. That is, it is preferable that the retention rate of the tensile strength when the molded article formed from the polylactic acid resin is exposed for 1000 hours in an atmosphere of 60 ° C. and 95% RH is 80% or more. More preferably, the molded article has a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours. The tensile strength retention is the ratio of the tensile strength of the molded article after the exposure treatment under the above conditions to the tensile strength of the molded article before the exposure treatment under the above conditions. Tensile strength is measured according to ISO 179.
 成形品の用途は特に制限されないが、例えば成形品がABS樹脂を含有するポリ乳酸樹脂組成物から形成される場合には、成形品の特に好ましい具体例として、携帯電話機等の電子機器機用ホルダーの外装などの電子機器用筐体や、携帯電話機などの電子機器における内部シャーシ部品などの内部部品が挙げられる。成形品がPC樹脂を含有するポリ乳酸樹脂組成物から形成される場合には、成形品の特に好ましい具体例としては、車載用部品、電子部品、家電筐体等が挙げられる。成形品がPMMA樹脂を含有するポリ乳酸樹脂組成物から形成される場合には、成形品の特に好ましい具体例としては、家電部品、電子部品等が挙げられる。成形品がPP樹脂を含有するポリ乳酸樹脂組成物から形成される場合には、成形品の特に好ましい具体例としては、車載内装部品、家電部品、食器用途等が挙げられる。成形品がLDPE樹脂を含有するポリ乳酸樹脂組成物から形成される場合には、成形品の特に好ましい具体例としては、血糖値検査用穿刺針等が挙げられる。 The use of the molded product is not particularly limited. For example, when the molded product is formed from a polylactic acid resin composition containing an ABS resin, a particularly preferable specific example of the molded product is a holder for an electronic device such as a mobile phone. And internal components such as an internal chassis component in an electronic device such as a mobile phone, and a housing for electronic devices such as an outer casing. When the molded product is formed from a polylactic acid resin composition containing a PC resin, particularly preferred specific examples of the molded product include in-vehicle components, electronic components, home appliance housings, and the like. When the molded article is formed from a polylactic acid resin composition containing a PMMA resin, particularly preferred specific examples of the molded article include home appliance parts and electronic parts. When the molded product is formed from a polylactic acid resin composition containing a PP resin, specific examples of the molded product include in-vehicle interior parts, home appliance parts, and tableware applications. When the molded article is formed from a polylactic acid resin composition containing an LDPE resin, a particularly preferred specific example of the molded article is a blood sugar level puncture needle.
 図1に、ABS樹脂を含有するポリ乳酸樹脂組成物から形成される成形品1の一例として、電子機器用ホルダー2を示す。電子機器用ホルダー2は卓上等において携帯電話機等の電子機器を保持固定する機能を有し、或いは更に電子機器内のバッテリーを充電するための充電器としての機能を併せ持つ。この電子機器用ホルダー2には、電子機器が載置される領域(載置領域3)と、この載置領域3の外縁から突出する保持リブ4とが形成されている。載置領域3上に載置される電子機器が更に保持リブ4によって支えられることで、電子機器が電子機器用ホルダー2に保持固定される。このため、電子機器用ホルダー2は、電子機器の形状及び寸法と合致するように形成される。電子機器用ホルダー2はこのような構造には限られず、電子機器を保持可能な適宜の構造を有していればよいが、そのために電子機器の形状及び寸法と合致するように形成される。 FIG. 1 shows a holder 2 for an electronic device as an example of a molded product 1 formed from a polylactic acid resin composition containing an ABS resin. The electronic device holder 2 has a function of holding and fixing an electronic device such as a mobile phone on a desktop or the like, or further has a function as a charger for charging a battery in the electronic device. In the electronic device holder 2, a region (mounting region 3) on which the electronic device is placed and a holding rib 4 protruding from the outer edge of the placement region 3 are formed. The electronic device placed on the placement region 3 is further supported by the holding rib 4, whereby the electronic device is held and fixed to the electronic device holder 2. For this reason, the electronic device holder 2 is formed to match the shape and dimensions of the electronic device. The electronic device holder 2 is not limited to such a structure, and may have an appropriate structure capable of holding the electronic device. For this purpose, the electronic device holder 2 is formed to match the shape and dimensions of the electronic device.
 成形品には、各種の表面処理が施されてもよい。表面処理としては、蒸着(物理蒸着、化学蒸着など)、めっき(電気めっき、無電解めっき、溶融めっきなど)、塗装、コーティング、印刷などの、成形品の表面上に新たな層を形成する処理が挙げられる。表面処理の具体例としては、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、メタライジング(蒸着など)などが挙げられる。 The molded product may be subjected to various surface treatments. Surface treatment includes forming a new layer on the surface of the molded product, such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. Is mentioned. Specific examples of the surface treatment include hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, metalizing (evaporation, etc.) and the like.
 [製造例1]
 Lラクチド及びDラクチドの混合物を、金属重合触媒及びアルコールの存在下で、窒素雰囲気下、撹拌翼を備える反応機内で加熱することで反応させた後、反応機内を減圧して混合物中に残存するラクチドを除去した。更にこの混合物をチップ化することで、ポリ乳酸を調製した。このポリ乳酸の調製にあたり、LラクチドとDラクチドの配合比を変更することで、後述する組成を有するポリ乳酸D及びポリ乳酸Fを調製した。
[Production Example 1]
The mixture of L-lactide and D-lactide is reacted by heating in a reactor equipped with a stirring blade in a nitrogen atmosphere in the presence of a metal polymerization catalyst and alcohol, and then the pressure in the reactor is reduced to remain in the mixture. Lactide was removed. Furthermore, polylactic acid was prepared by chipping this mixture. In preparing this polylactic acid, polylactic acid D and polylactic acid F having the composition described later were prepared by changing the blending ratio of L-lactide and D-lactide.
 [製造例2]
 Dラクチド(株式会社武蔵野化学研究所製、光学純度99%以上)100重量部に対し、オクチル酸スズを0.006重量部、オクタデシルアルコール0.37重量部を加え、窒素雰囲気下、撹拌翼のついた反応機にて、190℃で2時間反応し、その後、エステル交換抑制剤(ジヘキシルホスホノエチルアセテートDHPA)0.01重量部を加えた後、減圧して残存するラクチドを除去し、チップ化し、ポリ-D-乳酸を得た。得られたポリ-D-乳酸の重量平均分子量は13万、ガラス転移点(Tg)60℃、融点は170℃であった。
[Production Example 2]
To 100 parts by weight of D-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 99% or more), 0.006 part by weight of octylate and 0.37 part by weight of octadecyl alcohol are added. The reaction was carried out at 190 ° C. for 2 hours in a connected reactor, after which 0.01 parts by weight of a transesterification inhibitor (dihexylphosphonoethyl acetate DHPA) was added, and the remaining lactide was removed by reducing the pressure, To obtain poly-D-lactic acid. The obtained poly-D-lactic acid had a weight average molecular weight of 130,000, a glass transition point (Tg) of 60 ° C., and a melting point of 170 ° C.
 このポリ-D-乳酸と、ポリ-L-乳酸(Nature Works LLC社製、商品名NatureWorks4042D、光学純度95%以上、融点150℃、重量平均分子量21万)とを、32mm径の二軸押出機(Coperion製、ZSK 32)を用い、シリンダー温度200℃~250℃、回転数200rpmの条件で溶融混練を行い、ステレオコンプレックス型ポリ乳酸を得た。得られたステレオコンプレックス型ポリ乳酸の融点は213℃、ステレオ化度は100%であった。 This poly-D-lactic acid and poly-L-lactic acid (manufactured by Nature Works LLC, trade name: NatureWorks 4042D, optical purity 95% or higher, melting point 150 ° C., weight average molecular weight 210,000), twin screw extruder of 32 mm diameter (Coperion, ZSK 32) was used, and melt kneading was performed under conditions of a cylinder temperature of 200 ° C. to 250 ° C. and a rotation speed of 200 rpm to obtain a stereocomplex polylactic acid. The resulting stereocomplex polylactic acid had a melting point of 213 ° C. and a stereogenicity of 100%.
 [実施例及び比較例]
 各実施例及び比較例について、下記表に示す成分を用い、樹脂成分については予め乾燥処理を施した上で、これらの成分をタンブラーで10分間混合した。得られた混合物を二軸押出機で、ダイス付近温度190℃、投入口付近温度200℃の条件で押し出してストランドを得た。
[Examples and Comparative Examples]
For each Example and Comparative Example, the components shown in the following table were used, and the resin components were dried in advance, and then these components were mixed with a tumbler for 10 minutes. The obtained mixture was extruded with a twin-screw extruder under conditions of a die vicinity temperature of 190 ° C. and an inlet vicinity temperature of 200 ° C. to obtain a strand.
 このストランドを速やかに冷却槽で冷却した後、カッターで切断して、長さ2~4mmのペレット状の樹脂組成物を得た。 The strand was quickly cooled in a cooling tank and then cut with a cutter to obtain a pellet-shaped resin composition having a length of 2 to 4 mm.
 この樹脂組成物を、除湿乾燥機にて80℃で4時間加熱することにより乾燥処理を施した後、100トン射出成形機及びISO準拠試験片金型(カラープレート、60mm×60mm×2mm、2個取り)を用い、シリンダーの温度をヘッド付近で230℃、材料投入口付近で220℃に設定すると共に、金型温度を70℃に設定して射出成形し、成形品を得た。 The resin composition was dried by heating at 80 ° C. for 4 hours in a dehumidifying dryer, and then a 100-ton injection molding machine and an ISO-compliant test piece mold (color plate, 60 mm × 60 mm × 2 mm, 2 The cylinder temperature was set to 230 ° C. near the head and 220 ° C. near the material inlet, and the mold temperature was set to 70 ° C. and injection molding was performed to obtain a molded product.
 [成形サイクル評価]
 各実施例及び比較例につき、樹脂組成物の射出成形時に一点ゲートの金型を用い、成形品の寸法を60mm×60mm×2mmとした。この場合の金型への樹脂組成物の射出後、金型から成形品を変形が生じることなく取り出すことが可能となるまでに要した保持時間(冷却時間)を測定し、これを成形サイクルの指標とした。
[Molding cycle evaluation]
For each example and comparative example, a single-point gate mold was used during injection molding of the resin composition, and the dimensions of the molded product were 60 mm × 60 mm × 2 mm. In this case, after the injection of the resin composition into the mold, the holding time (cooling time) required until the molded product can be taken out from the mold without deformation is measured, and this is measured in the molding cycle. It was used as an index.
 [外観及び金型汚れの評価]
 各実施例及び比較例につき、樹脂組成物の射出成形時に1点ゲートの金型を用い、成形品の寸法を60mm×60mm×2mmとした。各実施例及び比較例において100個のサンプルについて試験をおこなった。
[Evaluation of appearance and mold contamination]
For each example and comparative example, a single-point gate mold was used during injection molding of the resin composition, and the dimensions of the molded product were 60 mm × 60 mm × 2 mm. In each example and comparative example, 100 samples were tested.
 このサンプルのシワ及びヒケの有無を確認し、シワ又はヒケが生じている成形品の数(不良数)を確認した。 The presence or absence of wrinkles and sink marks in this sample was confirmed, and the number of molded products (number of defects) in which wrinkles or sink marks had occurred was confirmed.
 更に、サンプル中央部でのウエルド及びフローマークの有無を確認し、ウエルド又はフローマークが認められたサンプル数(不良数)を確認した。 Furthermore, the presence or absence of welds and flow marks in the center of the sample was confirmed, and the number of samples (number of defects) in which welds or flow marks were observed was confirmed.
 更に、サンプルを成形するごとに金型汚れの有無を確認し、金型汚れが認められた回数を確認した。 Furthermore, every time a sample was molded, the presence or absence of mold contamination was confirmed, and the number of times mold contamination was observed was confirmed.
 [発色性評価]
 各実施例において、組成物の調製時にカーボンブラック(三菱化学株式会社製のカーボンブラックMA600B)を、下記表に示される原料成分の総量100質量部に対して1質量部の割合で配合した。
[Color development evaluation]
In each Example, carbon black (carbon black MA600B manufactured by Mitsubishi Chemical Corporation) was blended at a ratio of 1 part by mass with respect to 100 parts by mass of the total amount of raw material components shown in the following table when the composition was prepared.
 このカーボンブラックが配合された樹脂組成物を射出成形機で成形して90mm×150mm×3mmの寸法の成形品を得た。分光光度計(村上色彩技術研究所製)を用いて前記の成形品の表面のL値を測定した。 The resin composition containing the carbon black was molded by an injection molding machine to obtain a molded product having a size of 90 mm × 150 mm × 3 mm. The L * value of the surface of the molded product was measured using a spectrophotometer (Murakami Color Research Laboratory).
 その結果L値が10以下の場合をA、11~15の場合をB、16以下をCと評価した。 As a result, the case where the L * value was 10 or less was evaluated as A, the case of 11 to 15 as B, and the case of 16 or less as C.
 [耐衝撃性評価]
 各実施例及び比較例で得られた成形品のノッチ付きのシャルピー衝撃値を、ISO 179に従って測定した。
[Impact resistance evaluation]
The notched Charpy impact value of the molded product obtained in each example and comparative example was measured according to ISO 179.
 [耐熱性評価]
 各実施例及び比較例における成形品の荷重たわみ温度を、ISO 75-1及び75-2に従って測定した。測定荷重は0.45MPaとした。
[Heat resistance evaluation]
The deflection temperature under load of the molded product in each example and comparative example was measured according to ISO 75-1 and 75-2. The measurement load was 0.45 MPa.
 [耐久性評価]
 (耐久性A)
 各実施例及び比較例で得られた成形品を60℃、95%RHの雰囲気下に3000時間曝露した後、この成形品の引張強度を、ISO 179に従って測定した。曝露処理が施される前の成形品の引張強度に対する、曝露処理が施された後の成形品の引張強度の比率(引張強度の保持率)を導出し、これを耐久性の指標とした。
[Durability evaluation]
(Durability A)
After the molded products obtained in each of the examples and comparative examples were exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours, the tensile strength of the molded products was measured according to ISO 179. The ratio (tensile strength retention ratio) of the molded product after the exposure treatment to the tensile strength of the molded product before the exposure treatment was derived, and this was used as an index of durability.
 (耐久性B)
 各実施例及び比較例で得られた成形品を75℃、80%RHの雰囲気下に3000時間曝露した後、この成形品の引張強度を、ISO 179に従って測定した。曝露処理が施される前の成形品の引張強度に対する、曝露処理が施された後の成形品の引張強度の比率(引張強度の保持率)を導出し、これを耐久性の指標とした。
(Durability B)
The molded products obtained in each Example and Comparative Example were exposed to an atmosphere of 75 ° C. and 80% RH for 3000 hours, and then the tensile strength of the molded products was measured according to ISO 179. The ratio (tensile strength retention ratio) of the molded product after the exposure treatment to the tensile strength of the molded product before the exposure treatment was derived, and this was used as an index of durability.
 (耐久性C)
 各実施例及び比較例で得られた成形品を60℃、95%RHの雰囲気下、1000時間曝露した後、この成形品の引張強度を、ISO 179に従って測定した。曝露処理が施される前の成形品の引張強度に対する、曝露処理が施された後の成形品の引張強度の比率(引張強度の保持率)を導出し、これを耐久性の指標とした。
(Durability C)
The molded products obtained in each Example and Comparative Example were exposed to an atmosphere of 60 ° C. and 95% RH for 1000 hours, and then the tensile strength of the molded products was measured according to ISO 179. The ratio (tensile strength retention ratio) of the molded product after the exposure treatment to the tensile strength of the molded product before the exposure treatment was derived, and this was used as an index of durability.
 [80℃処理後の外観]
 成形品を80℃の雰囲気下に48時間曝露する処理を施した。処理前の成形品と処理後の成形品の外観を目視で観察して比較した。
[Appearance after 80 ° C treatment]
The molded article was subjected to a treatment for 48 hours in an atmosphere at 80 ° C. The appearances of the molded product before treatment and the molded product after treatment were visually observed and compared.
 その結果、外観に特に変化が認められない場合をA、処理後の成形品の表面に白化が生じた場合をBと評価した。 As a result, A was evaluated when no change was observed in the appearance, and B was evaluated when whitening occurred on the surface of the molded product after the treatment.
 [難燃性]
 成形品に対し、UL94に従った燃焼試験を実施することで、難燃性のクラスを評価した。下記表に試験に供した成形品の厚み、並びに難燃性のクラスを示す。
[Flame retardance]
The flame retardant class was evaluated by performing a combustion test according to UL94 on the molded product. The following table shows the thickness of the molded article subjected to the test and the flame retardance class.
 [後収縮率]
 成形品を80℃の雰囲気下に48時間曝露する処理を施した。処理前の成形品の寸法(a)及び処理後の成形品の寸法(b)から、次の式により成形収縮率を算出した。
[Post-shrinkage]
The molded article was subjected to a treatment for 48 hours in an atmosphere at 80 ° C. From the dimension (a) of the molded product before the treatment and the dimension (b) of the molded product after the treatment, the molding shrinkage rate was calculated by the following formula.
 {(b-a)/b}×100(%)
 [評価結果]
 以上の評価試験の結果を、各実施例及び比較例における配合組成と共に下記表に示す。
{(Ba) / b} × 100 (%)
[Evaluation results]
The result of the above evaluation test is shown in the following table together with the blending composition in each example and comparative example.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 尚、上記結果によると、ポリカーボネート樹脂が使用される場合には、エラストマーAの割合が1質量%以上である場合に、外観の評価が特に良好になった。これは、エラストマーAがエステル結合と反応する官能基を有することで、ポリ乳酸とポリカーボネート樹脂との相溶性が向上したためであると、考えられる。 In addition, according to the said result, when polycarbonate resin was used, when the ratio of the elastomer A was 1 mass% or more, the external appearance evaluation became especially favorable. This is considered to be because the compatibility between the polylactic acid and the polycarbonate resin was improved because the elastomer A has a functional group that reacts with an ester bond.
 また、各実施例において、樹脂組成物を射出成形することにより、図1に示す外観形状を有する電子機器用ホルダーを形成した。これにより、外観が良好な電子機器用ホルダーが得られた。 Moreover, in each Example, the holder for electronic devices which has the external shape shown in FIG. 1 was formed by injection-molding the resin composition. Thereby, the holder for electronic devices with a favorable external appearance was obtained.
 表に示される各成分の詳細は次の通りである。
・ポリ乳酸A:Nature Works LLC社製、商品名NatureWorks3001D、D-乳酸単位の割合1.5モル%、重量平均分子量6.4万、数平均分子量2.6万、分散度2.5。
・ポリ乳酸B:Nature Works LLC社製、商品名NatureWorks4032D、D-乳酸単位の割合1.9モル%、分散度4.0以下。
・ポリ乳酸C:Nature Works LLC社製、商品名NatureWorks4060D、D-乳酸単位の割合11.5モル%、重量平均分子量8.6万、数平均分子量2.1万、分散度4.1。
・ポリ乳酸D:製造例1で得られたポリ乳酸、D-乳酸単位の割合1.9モル%、重量平均分子量7.5万、数平均分子量3.1万、分散度2.4、ISO ASTM D1238に規定されるメルトフローレート(190℃ 2.16kg)5.0g/10分。
・ポリ乳酸E:製造例2で得られたステレオコンプレックス型ポリ乳酸、重量平均分子量9.8万、数平均分子量3.6万、分散度2.7。
・ポリ乳酸F:製造例1で得られたポリ乳酸、L-乳酸単位の割合99.7モル%以上、重量平均分子量10.9万、数量平均分子量4.4万、分散度2.4。
・ポリ乳酸G:製造例1で得られたポリ乳酸、D-乳酸単位の割合11.6モル%、重量平均分子量9.2万、数平均分子量2.5万、分散度3.4。
・植物由来PET:豊田通商株式会社販売、商品名EastPET PW1、ASTM D6866-11による植物由来MEG含有率18%。
・PBAT:ポリブチレンアジペートテレフタレート。
・ABS樹脂A:アクリロニトリル単位割合20.5質量%、スチレン単位割合69質量%、ブタジエン単位割合10.5質量%、バルク重合による合成品、平均粒径0.46μm、ISO 1133に規定されるメルトフローレート(220℃ 10kg)が32g/10分、ISO179に規定されるシャルピー衝撃強度(ノッチ有)が14kJ/m2
・ABS樹脂B:アクリロニトリル単位割合22質量%、スチレン単位割合58質量%、ブタジエン単位割合18質量%、乳化重合による合成品、平均粒径0.30μm、ISO
 1133に規定されるメルトフローレート(220℃ 10kg)が29g/10分、ISO179に規定されるシャルピー衝撃強度(ノッチ有)が21kJ/m2
・ABS樹脂C:アクリロトリル単位割合24質量%、スチレン単位割合62質量%、ブタジエン単位割合14.5質量%、乳化重合による合成品、平均粒径0.30μm、ISO 1133に規定されるメルトフローレート(220℃ 10kg)が16g/10分、ISO179に規定されるシャルピー衝撃強度(ノッチ有)が15kJ/m2
・リサイクルABS樹脂A:家電製品の廃棄物から回収したABS樹脂。
・リサイクルABS樹脂B:ABS樹脂A(50質量%)とリサイクルABS樹脂A(50質量%)との混合物。
・難燃ABS樹脂A:アクリロニトリル単位割合15質量%、スチレン単位割合43質量%、ブタジエン単位割合15質量%、テトラブロモビスフェノールA17%質量%、酸化アンチモン6%質量%、乳化およびバルク重合による合成品、平均粒径0.10および0.30μm。
・難燃ABS樹脂B:ダイセルポリマー株式会社製、VF512、燃焼性UL-94 1.5mm厚みでV-2、ISO 1133に規定されるメルトフローレート(220℃ 10kg)が35g/10分、ISO179に規定されるシャルピー衝撃強度(ノッチ有)が18kJ/m2
・難燃ABS樹脂C:ダイセルポリマー株式会社製、VF790、燃焼性UL-94 1.7mm厚みでV-2、ISO 1133に規定されるメルトフローレート(220℃ 10kg)が26g/10分、ISO179に規定されるシャルピー衝撃強度(ノッチ有)が20kJ/m2
・ポリカーボネートABS樹脂:東レ株式会社製、品番PX10。
・ポリカーボネート樹脂A:ISO ASTM D1238に規定されるメルトフローレート(300℃ 1.2kg)15g/10分、ISO 306に規定される荷重たわみ温度128℃。
・ポリカーボネート樹脂B:ISO ASTM D1238に規定されるメルトフローレート(300℃ 1.2kg)22g/10分、ISO 306に規定される荷重たわみ温度128℃。
・PMMA1:ポリメチルメタクリレート、ISO ASTM D1238に規定されるメルトフローレート(230℃ 3.8kg)16g/10分、ISO 306に規定される荷重たわみ温度78℃。
・PMMA2:ポリメチルメタクリレート、ISO ASTM D1238に規定されるメルトフローレート(230℃ 3.8kg)1.8g/10分、ISO 306に規定される荷重たわみ温度87℃。
・ポリプロピレン樹脂:プライムポリマー株式会社、品番J-466HP。
・低密度ポリエチレン樹脂:旭化成ケミカルズ株式会社、品番サンテックLD。
・カルボジイミド化合物A:イソシアネート基を有するカルボジイミド化合物、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)、カルボジイミド当量248、カルボジイミド基:イソシアネート基のモル比15:2、日清紡ケミカル株式会社製 LA-1。
・カルボジイミド化合物B:イソシアネート基を有さないカルボジイミド化合物、カルボジイミド当量262、日清紡ケミカル株式会社製、HMV-15CA。
・エラストマーA:エステルと反応する官能基を有するコアシェルゴム(MBS樹脂)、pH7.1、電気伝導度47mS/m、Na含有量15ppm、K含有量15ppm、S含有量13ppm。
・エラストマーB:コアシェルゴム(MBS樹脂)、pH6.0、電気伝導度7mS/m、Na含有量15ppm、K含有量15ppm、S含有量13ppm。
・エラストマーC:メタクリル酸アルキルとアクリル酸アルキルとの共重合体、三菱レイヨン株式会社製の商品名メタブレンC223A、pH4.6、電気伝導度47mS/m、Na含有量95ppm、K含有量85ppm、S含有量1610ppm。
・PTFEA:ポリテトラフルオロエチレン、平均粒子径470μm、見掛密度470g/l、三井・デュポンフロロケミカル株式会社製、品番PTFE 6-J。
・PTFEB:ポリテトラフルオロエチレン、平均粒子径28μm、融点327℃。
・有機過酸化物:日本油脂株式会社製の商品名パーヘキサ25B。
Details of each component shown in the table are as follows.
Polylactic acid A: manufactured by Nature Works LLC, trade name: NatureWorks 3001D, D-lactic acid unit ratio 1.5 mol%, weight average molecular weight 64,000, number average molecular weight 26,000, dispersity 2.5.
Polylactic acid B: manufactured by Nature Works LLC, trade name: NatureWorks 4032D, D-lactic acid unit ratio of 1.9 mol%, dispersity of 4.0 or less.
Polylactic acid C: manufactured by Nature Works LLC, trade name: NatureWorks 4060D, D-lactic acid unit ratio 11.5 mol%, weight average molecular weight 86,000, number average molecular weight 21,000, dispersity 4.1.
Polylactic acid D: polylactic acid obtained in Production Example 1, ratio of D-lactic acid unit 1.9 mol%, weight average molecular weight 75,000, number average molecular weight 31,000, dispersity 2.4, ISO Melt flow rate as defined in ASTM D1238 (190 ° C. 2.16 kg) 5.0 g / 10 min.
Polylactic acid E: Stereocomplex polylactic acid obtained in Production Example 2, weight average molecular weight 98,000, number average molecular weight 36,000, dispersity 2.7.
Polylactic acid F: Polylactic acid obtained in Production Example 1, ratio of L-lactic acid unit of 99.7 mol% or more, weight average molecular weight 109000, number average molecular weight 44,000, dispersity 2.4.
Polylactic acid G: Polylactic acid obtained in Production Example 1, D-lactic acid unit ratio 11.6 mol%, weight average molecular weight 92,000, number average molecular weight 25,000, dispersity 3.4.
Plant-derived PET: 18% of plant-derived MEG content, sold by Toyota Tsusho Corporation, trade name EastPET PW1, ASTM D6866-11.
PBAT: polybutylene adipate terephthalate.
ABS resin A: acrylonitrile unit ratio 20.5% by mass, styrene unit ratio 69% by mass, butadiene unit ratio 10.5% by mass, synthetic product by bulk polymerization, average particle size 0.46 μm, melt specified by ISO 1133 The flow rate (220 ° C., 10 kg) is 32 g / 10 minutes, and the Charpy impact strength (notched) specified in ISO 179 is 14 kJ / m 2 .
ABS resin B: 22% by mass of acrylonitrile unit ratio, 58% by mass of styrene unit, 18% by mass of butadiene unit, synthetic product by emulsion polymerization, average particle size 0.30 μm, ISO
The melt flow rate (220 ° C. 10 kg) specified in 1133 is 29 g / 10 min, and the Charpy impact strength (notched) specified in ISO 179 is 21 kJ / m 2 .
ABS resin C: acrylotolyl unit ratio 24% by mass, styrene unit ratio 62% by mass, butadiene unit ratio 14.5% by mass, synthetic product by emulsion polymerization, average particle size 0.30 μm, melt flow rate specified by ISO 1133 (220 ° C., 10 kg) is 16 g / 10 min, and Charpy impact strength (with notch) specified in ISO 179 is 15 kJ / m 2 .
-Recycled ABS resin A: ABS resin recovered from household electrical appliance waste.
Recycled ABS resin B: A mixture of ABS resin A (50% by mass) and recycled ABS resin A (50% by mass).
Flame retardant ABS resin A: Acrylonitrile unit ratio 15 mass%, styrene unit ratio 43 mass%, butadiene unit ratio 15 mass%, tetrabromobisphenol A 17% mass%, antimony oxide 6% mass%, synthetic product by emulsion and bulk polymerization Average particle size 0.10 and 0.30 μm.
Flame retardant ABS resin B: manufactured by Daicel Polymer Co., Ltd., VF512, flammability UL-94 1.5 mm thickness V-2, melt flow rate (220 ° C. 10 kg) defined by ISO 1133 is 35 g / 10 min, ISO 179 The Charpy impact strength (with notch) specified in Table 1 is 18 kJ / m 2 .
Flame retardant ABS resin C: manufactured by Daicel Polymer Co., Ltd., VF790, flammability UL-94 1.7 mm thickness, V-2, melt flow rate (220 ° C. 10 kg) defined by ISO 1133 is 26 g / 10 min, ISO179 The Charpy impact strength (with notch) specified in Table 2 is 20 kJ / m 2 .
Polycarbonate ABS resin: product number PX10 manufactured by Toray Industries, Inc.
Polycarbonate resin A: Melt flow rate specified in ISO ASTM D1238 (300 ° C., 1.2 kg) 15 g / 10 min, load deflection temperature specified in ISO 306, 128 ° C.
Polycarbonate resin B: Melt flow rate (300 ° C., 1.2 kg) defined by ISO ASTM D1238 22 g / 10 min, load deflection temperature defined by ISO 306, 128 ° C.
PMMA1: Polymethylmethacrylate, melt flow rate (230 ° C. 3.8 kg) 16 g / 10 min as specified in ISO ASTM D1238, load deflection temperature 78 ° C. as specified in ISO 306.
PMMA2: Polymethylmethacrylate, melt flow rate (230 ° C., 3.8 kg) defined by ISO ASTM D1238, 1.8 g / 10 min, deflection temperature under load defined by ISO 306, 87 ° C.
Polypropylene resin: Prime Polymer Co., Ltd., product number J-466HP.
Low density polyethylene resin: Asahi Kasei Chemicals Corporation, part number Suntec LD.
Carbodiimide compound A: Carbodiimide compound having an isocyanate group, poly (4,4′-dicyclohexylmethanecarbodiimide), carbodiimide equivalent 248, carbodiimide group: isocyanate group molar ratio 15: 2, LA-1 manufactured by Nisshinbo Chemical Co., Ltd.
Carbodiimide compound B: Carbodiimide compound having no isocyanate group, carbodiimide equivalent 262, Nisshinbo Chemical Co., Ltd., HMV-15CA.
Elastomer A: Core shell rubber (MBS resin) having a functional group that reacts with ester, pH 7.1, electric conductivity 47 mS / m, Na content 15 ppm, K content 15 ppm, S content 13 ppm.
Elastomer B: Core shell rubber (MBS resin), pH 6.0, electric conductivity 7 mS / m, Na content 15 ppm, K content 15 ppm, S content 13 ppm.
-Elastomer C: Copolymer of alkyl methacrylate and alkyl acrylate, trade name Metabrene C223A manufactured by Mitsubishi Rayon Co., Ltd., pH 4.6, electric conductivity 47 mS / m, Na content 95 ppm, K content 85 ppm, S Content 1610ppm.
PTFEA: polytetrafluoroethylene, average particle size 470 μm, apparent density 470 g / l, manufactured by Mitsui DuPont Fluorochemical Co., Ltd., product number PTFE 6-J.
PTFEB: polytetrafluoroethylene, average particle size 28 μm, melting point 327 ° C.
Organic peroxide: trade name Perhexa 25B manufactured by Nippon Oil & Fat Co., Ltd.
 上記ポリ乳酸の重量平均分子量(Mw)及び数平均分子量(Mn)を算出するにあたっては、まずポリ乳酸0.036gをHFIP(ヘキサフルオロイソプロパノール)9mLに48時間以上かけて溶解させ、これにより得られる溶液をフィルターで濾過することで、測定用のサンプルを調製した。このサンプルを東ソー株式会社製の高速GPC装置(型番HLC-8220)で、移動相としてヘキサフルオロイソプロパノールを用いて測定した。その測定結果を標準ポリスチレンを使用した検量線により換算して、ポリ乳酸の重量平均分子量(Mw)及び数平均分子量(Mn)を算出した。 In calculating the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic acid, 0.036 g of polylactic acid is first dissolved in 9 mL of HFIP (hexafluoroisopropanol) over 48 hours, and thereby obtained. A sample for measurement was prepared by filtering the solution through a filter. This sample was measured with a high-speed GPC apparatus (model number HLC-8220) manufactured by Tosoh Corporation using hexafluoroisopropanol as a mobile phase. The measurement results were converted by a calibration curve using standard polystyrene, and the weight average molecular weight (Mw) and number average molecular weight (Mn) of polylactic acid were calculated.
 上記ABS樹脂の平均粒径は個数基準の算術平均粒径であり、染料で染色されたABS樹脂の粒子を透過型電子顕微鏡(日立製作所製、型番H-7650)で撮影し、その画像を画像解析装置(ニコレ株式会社製、ルーゼックスAP)を用いて画像解析処理することで導出した。平均粒径を導出するにあたり、粒子の粒径は、粒子の投影面積と同じ面積を有する円の径に等しいものとした。 The average particle size of the ABS resin is the arithmetic average particle size based on the number. The ABS resin particles dyed with the dye are photographed with a transmission electron microscope (model number H-7650, manufactured by Hitachi, Ltd.), and the image is imaged. It derived | led-out by carrying out an image analysis process using the analyzer (the Nicole Corporation make, Luzex AP). In deriving the average particle diameter, the particle diameter of the particles is equal to the diameter of a circle having the same area as the projected area of the particles.

Claims (28)

  1. ポリ乳酸と、ポリ乳酸以外の熱可塑性樹脂とを含有し、
    前記ポリ乳酸の割合が4質量%以上15質量%未満の範囲であり、
    前記ポリ乳酸の分散度が4.0以下であるポリ乳酸樹脂組成物。
    Containing polylactic acid and a thermoplastic resin other than polylactic acid,
    The ratio of the polylactic acid is in the range of 4% by weight to less than 15% by weight
    A polylactic acid resin composition, wherein the polylactic acid has a degree of dispersion of 4.0 or less.
  2. 前記ポリ乳酸の重量平均分子量が7.0万以上である請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, wherein the polylactic acid has a weight average molecular weight of 7 million or more.
  3. 前記ポリ乳酸の割合が4~12質量%の範囲である請求項1又は2に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1 or 2, wherein the ratio of the polylactic acid is in the range of 4 to 12% by mass.
  4. 前記熱可塑性樹脂がABS樹脂を含有する請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, wherein the thermoplastic resin contains an ABS resin.
  5. 前記ABS樹脂が、使用済みの製品から再生されたABS樹脂を含有する請求項4に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 4, wherein the ABS resin contains an ABS resin regenerated from a used product.
  6. 前記ABS樹脂が、難燃ABS樹脂を含有する請求項4に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 4, wherein the ABS resin contains a flame-retardant ABS resin.
  7. ポリメタクリル酸メチル樹脂を更に含有する請求項4に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 4, further comprising a polymethyl methacrylate resin.
  8. 前記ポリ乳酸が、D-乳酸単位を8~15モル%の割合で含む請求項7に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 7, wherein the polylactic acid contains 8 to 15 mol% of D-lactic acid units.
  9. 前記ポリ乳酸が、100℃で2時間加熱されても結晶化しないポリ乳酸である請求項7に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 7, wherein the polylactic acid is polylactic acid that does not crystallize even when heated at 100 ° C. for 2 hours.
  10. 前記ABS樹脂の平均粒径が0.3μm以下である請求項4に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 4, wherein the average particle diameter of the ABS resin is 0.3 μm or less.
  11. 前記ABS樹脂のISO 1133に規定されるメルトフローレート(220℃ 10kg)が15~35g/10分であり、且つ前記ABS樹脂のISO179に規定されるシャルピー衝撃強度(ノッチ有)が10~30kJ/m2である請求項4に記載のポリ乳酸樹脂組成物。 The melt flow rate (220 ° C., 10 kg) specified by ISO 1133 of the ABS resin is 15 to 35 g / 10 minutes, and the Charpy impact strength (notched) specified by ISO 179 of the ABS resin is 10 to 30 kJ / The polylactic acid resin composition according to claim 4, which is m 2 .
  12. ポリカーボネート樹脂を更に含有する請求項4に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 4, further comprising a polycarbonate resin.
  13. 前記熱可塑性樹脂がポリカーボネート樹脂を含有する請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, wherein the thermoplastic resin contains a polycarbonate resin.
  14. Na含有量15ppm以下、K含有量15ppm以下、S含有量13ppm以下であるエラストマーを、1質量%以上の割合で含有する請求項13に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 13, comprising an elastomer having a Na content of 15 ppm or less, a K content of 15 ppm or less, and an S content of 13 ppm or less in a proportion of 1% by mass or more.
  15. 前記エラストマーのpHが、6~8の範囲である請求項14に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 14, wherein the elastomer has a pH of 6 to 8.
  16. 前記ポリカーボネート樹脂の、ISO ASTM D1238に規定されるメルトフローレート(300℃ 1.2kg)が、10~25g/10分の範囲である請求項13に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 13, wherein the polycarbonate resin has a melt flow rate (300 ° C, 1.2 kg) as defined in ISO ASTM D1238 in the range of 10 to 25 g / 10 minutes.
  17. 難燃剤を更に含有する請求項13乃至16のいずれか一項に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to any one of claims 13 to 16, further comprising a flame retardant.
  18. 前記熱可塑性樹脂がポリメチルメタクリレート樹脂を含有する請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, wherein the thermoplastic resin contains a polymethyl methacrylate resin.
  19. ポリブチレンアジペートテレフタレート及び有機過酸化物を更に含有する請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, further comprising polybutylene adipate terephthalate and an organic peroxide.
  20. メタクリル酸アルキルとアクリル酸アルキルとの共重合体を更に含有する請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, further comprising a copolymer of an alkyl methacrylate and an alkyl acrylate.
  21. カルボジイミド化合物を更に含有する請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, further comprising a carbodiimide compound.
  22. 前記カルボジイミド化合物が、イソシアネート基を有さない請求項21に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 21, wherein the carbodiimide compound does not have an isocyanate group.
  23. コアシェルゴムを更に含有する請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, further comprising a core-shell rubber.
  24. 60℃95%RHの雰囲気下3000時間曝露される場合の引張強度の保持率が80%以上である成形品が形成される請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, wherein a molded article having a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 3000 hours is formed.
  25. 請求項1に記載のポリ乳酸樹脂組成物を成形する成形品の製造方法。 The manufacturing method of the molded article which shape | molds the polylactic acid resin composition of Claim 1.
  26. 請求項1に記載のポリ乳酸樹脂組成物を成形することにより形成される成形品。 A molded article formed by molding the polylactic acid resin composition according to claim 1.
  27. 60℃95%RHの雰囲気下1000時間曝露される場合の引張強度の保持率が80%以上である請求項26に記載の成形品。 27. The molded article according to claim 26, which has a tensile strength retention of 80% or more when exposed to an atmosphere of 60 ° C. and 95% RH for 1000 hours.
  28. 請求項4に記載のポリ乳酸樹脂組成物を成形することにより形成される電子機器用ホルダー。 The holder for electronic devices formed by shape | molding the polylactic acid resin composition of Claim 4.
PCT/JP2012/065147 2012-06-13 2012-06-13 Poly(lactic acid) resin composition, method for producing molded article, molded article, and holder for electronic device WO2013186883A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/065147 WO2013186883A1 (en) 2012-06-13 2012-06-13 Poly(lactic acid) resin composition, method for producing molded article, molded article, and holder for electronic device
CN201280073934.7A CN104364319A (en) 2012-06-13 2012-06-13 Poly(lactic acid) resin composition, method for producing molded article, molded article, and holder for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065147 WO2013186883A1 (en) 2012-06-13 2012-06-13 Poly(lactic acid) resin composition, method for producing molded article, molded article, and holder for electronic device

Publications (1)

Publication Number Publication Date
WO2013186883A1 true WO2013186883A1 (en) 2013-12-19

Family

ID=49757745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065147 WO2013186883A1 (en) 2012-06-13 2012-06-13 Poly(lactic acid) resin composition, method for producing molded article, molded article, and holder for electronic device

Country Status (2)

Country Link
CN (1) CN104364319A (en)
WO (1) WO2013186883A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174999A1 (en) * 2015-04-27 2016-11-03 Canon Kabushiki Kaisha Resin composition and method of producing the same
JP2016199654A (en) * 2015-04-09 2016-12-01 東洋スチレン株式会社 Styrene resin composition and molding
JP2016208849A (en) * 2015-04-29 2016-12-15 アキレス株式会社 Biodegradable film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106147158A (en) * 2015-03-26 2016-11-23 汉达精密电子(昆山)有限公司 Bioerodible Wood-plastic material and products thereof
CN106147157A (en) * 2015-03-26 2016-11-23 汉达精密电子(昆山)有限公司 Lactic acid composite material and products thereof
CN104945837B (en) * 2015-07-15 2017-11-24 上海锦湖日丽塑料有限公司 A kind of ABS/PLA alloy resin compositions for 3D printing and preparation method thereof
CN109794073A (en) * 2019-02-28 2019-05-24 成都理工大学 A kind of novel smog generation device and its control method
CN109646972A (en) * 2019-02-28 2019-04-19 成都理工大学 A kind of smog generator and its control method
CN111138800B (en) * 2019-12-31 2021-09-17 金发科技股份有限公司 ABS/polyester alloy composition and preparation method thereof
GB2591121A (en) * 2020-01-16 2021-07-21 Floreon Transf Packaging Limited Polylactic acid flame resistant blend
CN111777845A (en) * 2020-07-21 2020-10-16 苏州环诺新材料科技有限公司 Food-grade antibacterial antistatic PLA material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045486A (en) * 2004-07-02 2006-02-16 Nippon A & L Kk Thermoplastic resin composition
JP2007063360A (en) * 2005-08-30 2007-03-15 Sumitomo Electric Fine Polymer Inc Biodegradable crosslinked product and method for producing the same
WO2009037974A1 (en) * 2007-09-21 2009-03-26 Idemitsu Kosan Co., Ltd. Thermoplastic resin composition and molded body obtained from the same
JP2010280910A (en) * 2005-05-12 2010-12-16 Mitsui Chemicals Inc Molded article comprising lactic acid polymer composition and method for producing thermoformed article
JP2011006639A (en) * 2009-06-29 2011-01-13 Panasonic Electric Works Co Ltd Thermoplastic resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204472B2 (en) * 2007-02-02 2013-06-05 富士ゼロックス株式会社 Resin composition, resin molded body and method for producing the same
KR101233373B1 (en) * 2008-12-30 2013-02-18 제일모직주식회사 Polylactic acid resin composition
CN102417699A (en) * 2010-09-27 2012-04-18 比亚迪股份有限公司 Plastic alloy material composition, plastic alloy material and injection molding part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045486A (en) * 2004-07-02 2006-02-16 Nippon A & L Kk Thermoplastic resin composition
JP2010280910A (en) * 2005-05-12 2010-12-16 Mitsui Chemicals Inc Molded article comprising lactic acid polymer composition and method for producing thermoformed article
JP2007063360A (en) * 2005-08-30 2007-03-15 Sumitomo Electric Fine Polymer Inc Biodegradable crosslinked product and method for producing the same
WO2009037974A1 (en) * 2007-09-21 2009-03-26 Idemitsu Kosan Co., Ltd. Thermoplastic resin composition and molded body obtained from the same
JP2011006639A (en) * 2009-06-29 2011-01-13 Panasonic Electric Works Co Ltd Thermoplastic resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199654A (en) * 2015-04-09 2016-12-01 東洋スチレン株式会社 Styrene resin composition and molding
WO2016174999A1 (en) * 2015-04-27 2016-11-03 Canon Kabushiki Kaisha Resin composition and method of producing the same
JP2016204572A (en) * 2015-04-27 2016-12-08 キヤノン株式会社 Resin composition and manufacturing method therefor
JP2016208849A (en) * 2015-04-29 2016-12-15 アキレス株式会社 Biodegradable film

Also Published As

Publication number Publication date
CN104364319A (en) 2015-02-18

Similar Documents

Publication Publication Date Title
WO2013186883A1 (en) Poly(lactic acid) resin composition, method for producing molded article, molded article, and holder for electronic device
JP4378130B2 (en) Aromatic polycarbonate resin composition
JP5111458B2 (en) Method for reducing pearl luster of aromatic polycarbonate resin composition
US11180652B2 (en) Thermoplastic resin composition and molded product using same
JP5427703B2 (en) Aromatic polycarbonate resin composition and molded article
US9988530B2 (en) Polycarbonate resin composition and a molded product produced from the same
KR20110000440A (en) Polylactic acid resin composition and molded product using the same
KR20180078908A (en) Polycarbonate resin composition and article produced therefrom
JP5457876B2 (en) POLYLACTIC ACID RESIN COMPOSITION, MOLDED ARTICLE OBTAINED BY MOLDING THE POLYLACTIC ACID RESIN, ELECTRIC PRODUCT CASE, AND ELECTRIC PRODUCT INTERNAL COMPONENT
JP5893848B2 (en) Aromatic polycarbonate resin composition and molded article thereof
JP5919536B2 (en) Polylactic acid resin composition, method for producing molded product, molded product, and holder for electronic device
JP5716274B2 (en) Resin composition and film, plate and injection molded product formed from the same
JP2007191538A (en) Thermoplastic resin composition and resin molded product
JP2012144694A (en) Polylactic acid resin composition, method of producing injection-molded article, injection-molded article, and holder for electronic device
JP5821021B2 (en) Manufacturing method of molded products
JP5111456B2 (en) Method for using aromatic polycarbonate resin composition for exterior material of OA equipment or home appliance
JP2009270006A (en) Aromatic polycarbonate resin composition and molded article of the same
JP2011246558A (en) Polylactic acid resin composition, molded article, desktop mobile phone holder, internal chassis part for mobile phone, electronic equipment housing, and internal part for electronic equipment
JP5958857B2 (en) Polylactic acid resin composition, method for producing molded product, and molded product
JP6612144B2 (en) Method for producing recycled polycarbonate resin composition
JP2007211113A (en) Thermoplastic resin composition and resin-molded article
JP2013237765A (en) Polycarbonate resin composition
JP2018016756A (en) Polycarbonate resin composition
JP5108231B2 (en) Electronic device exterior parts made of aromatic polycarbonate resin composition
JP5427111B2 (en) POLYLACTIC ACID RESIN COMPOSITION, MOLDED ARTICLE OBTAINED BY MOLDING THE POLYLACTIC ACID RESIN, ELECTRIC PRODUCT CASE, AND ELECTRIC PRODUCT INTERNAL COMPONENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP