WO2013186049A1 - Method and arrangement for marking cells in a suspension of cells - Google Patents

Method and arrangement for marking cells in a suspension of cells Download PDF

Info

Publication number
WO2013186049A1
WO2013186049A1 PCT/EP2013/061011 EP2013061011W WO2013186049A1 WO 2013186049 A1 WO2013186049 A1 WO 2013186049A1 EP 2013061011 W EP2013061011 W EP 2013061011W WO 2013186049 A1 WO2013186049 A1 WO 2013186049A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
suspension
particles
mixing chamber
marking
Prior art date
Application number
PCT/EP2013/061011
Other languages
German (de)
French (fr)
Inventor
Oliver Hayden
Lukas RICHTER
Manfred Rührig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013186049A1 publication Critical patent/WO2013186049A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/54333Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers

Definitions

  • the invention relates to a method and an arrangement for marking cells in a cell suspension with superparamagnetic micro- or nanoparticles.
  • Cells of a cell suspension in body fluids such as whole blood or urine are ensured by means of superparamagnetic micro- or nanoparticles connected to antibodies. These particles are preferably presented in an isotonic solution, which causes the dilution of body fluids and their rheological properties, especially those of the blood, in favor of their miscibility influenced.
  • Spinning magnetic trap for automated microfluidic assay systems is a cell-marking system known that uses a rotating cell and marker particles star-shaped magnetic system against the flow direction in a channel moves.
  • the space required by the rotation is considerably increased compared to the pure flow channel.
  • moving parts are needed, which often negatively affects the service life.
  • a particle suspension with the superparamagnetic particles is provided, the particles being connected to antibodies or further cells.
  • This particle suspension and the cell suspension with the cells to be marked are introduced into a mixing chamber.
  • cells of the cell suspension combine with particles of the suspension, to assist in this connection reaction a controlled movement of the particles is carried out by means of at least two electromagnets or a permanent magnet and an electromagnet, the magnets being spatially fixed relative to the mixing chamber by the magnets be electrically controlled.
  • the inventive arrangement is adapted for carrying out the method according to the invention and comprises a mixing ⁇ chamber for receiving the cell suspension and the particle suspension and at least two spatially to the mixing chamber un- movably arranged magnets, of which at least one is an electromagnet.
  • Cells and marking particles are kept in motion and mixed by the electromagnets. Cells that are already marked by binding of marking particles are also moved by the force of the electromagnets. They thereby come into contact with more of the same particles. This continues to happen through electrical control, so automatically.
  • a manual contribution, i. Processing of the cell suspension by a human operator is advantageously not required. Furthermore, this advantageously shortens the duration of the mixing of a sample, thus increasing the efficiency of the labeling of cells.
  • Shear rate is increased in favor of miscibility of, for example, non-Newtonian fluids such as blood.
  • Compared to known methods of marking is also obtained that no additional particle to the analyte are introduced ⁇ introduced that could interfere with a subsequent measurement.
  • the electromagnets are preferably switched on alternately.
  • a single solenoid is switched on and off with respect to a permanent magnet.
  • the particles are moved back and forth between side walls of the mixing chamber. It is expedient if the electromagnets or the permanent magnet and the electromagnet are arranged on opposite sides of the mixing chamber.
  • the liquid can also be moved by an external pump system.
  • the arrangement comprises a piston system and a channel system connected to the mixing chamber.
  • FIG. 1 shows a cell measuring system with a mixing chamber with fixed electromagnets
  • FIG. 2 shows the mixing chamber with electromagnets in side view.
  • FIG. 1 shows a top view of a cell measuring system 10 with a mixing chamber 13 with fixed electromagnets 22, 23.
  • FIG. 2 shows a section of the cell measuring system 10 in a schematic side view.
  • the cell measuring system 10 comprises a substrate 11, on which the further components are arranged. Further components are a receptacle 12 for a liquid, wherein the liquid contains the cells to be measured. On ⁇ means 12 may for example be a needle unit, by means of which at finger print produces a drop of blood 25 and recorded.
  • the receiving device 12 is connected via a first fluid channel 14 with the mixing chamber 13. Above and below the mixing chamber electromagnets 22, 23 are arranged.
  • the mixing chamber 13 is further connected via a second fluid channel 15 with a piston system 16 with slide 17.
  • a third fluid channel 18 connects the mixing chamber 13 with a measuring chamber 19 with a GMR sensor 20.
  • the GMR sensor 20 carries out a single cell detection by means of magnetoresistive measurement and the background is filtered out during the enrichment of labeled cells with ferromagnetic flux strips in situ.
  • one of the electromagnets 22 replaced by a permanent magnet become. This is then not switchable, however, a sufficient movement of the analytes by switching on and off ⁇ the remaining electromagnet 23 can be achieved.
  • the control unit 24 is of course only connected to the electromagnet 23.
  • the mixing chamber 13 is in this case made for single use and which includes a marker solution for the provision, that is, a suspension of superparamagnetic marking particles 21.
  • a marker solution for the provision that is, a suspension of superparamagnetic marking particles 21.
  • a sufficient amount of the blood drop 25 in the mixing chamber 13 is located, then the electromagnets 22, 23 Toggle from ⁇ alternately on and off.
  • the circuit is made such that only one of the electromagnets 22, 23 is simultaneously on.
  • Characterized the marking particles 21 are moved up and down in the mixing chamber 13. This causes a mixing of the marking particles 21 is effected with the cells from the blood drop 25, which ensures a faster and more complete marking of the cells. Even those cells that are already marked, experience the force of the magnets, so they are moved.
  • the necessary for the mixture and marking time during ge ⁇ showed cell measurement system 10 independently of the user, since the control of the electromagnets 22, 23 is carried out automatically and in a predetermined manner by a control unit 24th
  • the cells After a short time of labeling and mixing via the electromagnets 22, 23, the cells are forwarded into the measuring chamber 19 and via the GMR sensor 20, which carries out a counting of the marked cells in this example. All components which were in contact with the cell suspension, that is, the drop of blood 25, are after single use disposed of (disposable cartridge).
  • the cell measurement system 10 is advantageous well suited for integration in near-patient diagnostic procedures ( "Point of Care") for fast Mar ⁇ k ist and subsequent analysis in a time frame of less than one hour, with no trained staff is really necessary.
  • a GMR sensor 20 was assumed. In its place, other magnetic field-based sensors (AMR, TMR) can also be used.
  • AMR magnetic field-based sensors
  • TMR magnetic field-based sensors
  • the use of the magnetic marker in conjunction with a buffer system also allows dilution and thus a favorable influencing particular rheological properties of body fluids, such as blood, based on their miscibility. These will be used as a marker solution superparamagnetic microparticles or nanoparticles that ⁇ If you use pre in a buffer solution.

Abstract

The invention relates to a method for marking cells in a suspension of cells with superparamagnetic micro or nano particles, which method comprises the following steps: - providing a particle suspension with the particles; the particles being bound to antibodies or further cells; - placing the suspension of cells and the particle suspension into a mixing chamber; - binding cells of the suspension of cells to particles of the suspension; - controlled movement of the particles by means of at least two magnets, of which at least one is an electromagnet, wherein the magnets are disposed in a physically fixed manner with respect to the mixing chamber.

Description

Beschreibung description
Verfahren und Anordnung zur Markierung von Zellen in einer ZellSuspension Method and arrangement for marking cells in a cell suspension
Die Erfindung betrifft ein Verfahren sowie eine Anordnung zur Markierung von Zellen in einer Zellsuspension mit superpara- magnetischen Mikro- oder Nanopartikeln . Die selektive und effiziente immunchemische Markierung vonThe invention relates to a method and an arrangement for marking cells in a cell suspension with superparamagnetic micro- or nanoparticles. The selective and efficient immunochemical labeling of
Zellen einer Zellsuspension in Körperflüssigkeiten wie Vollblut oder Urin wird mittels mit Antikörpern verbundener su- perparamagnetischer Mikro- oder Nanopartikel gewährleistet. Diese Partikel sind vorzugsweise in einer isotonen Lösung vorgelegt, welche die Verdünnung von Körperflüssigkeiten bewirkt und deren rheologische Eigenschaften, besonders die des Blutes, zugunsten deren Mischbarkeit beeinflusst. Cells of a cell suspension in body fluids such as whole blood or urine are ensured by means of superparamagnetic micro- or nanoparticles connected to antibodies. These particles are preferably presented in an isotonic solution, which causes the dilution of body fluids and their rheological properties, especially those of the blood, in favor of their miscibility influenced.
Der Vorgang der Markierung ist mit einem erheblichen techni- sehen und personellen Aufwand verbunden. Die Effizienz und benötigte Dauer der Markierung ist bei heutigen Markierungs¬ methoden von der Diffusionsgeschwindigkeit der verwendeten Partikel abhängig. Aus der US 2009/0325822 AI ist bekannt, magnetische Mikro- oder Nanopartikel in Verbindung mit magnetischen Spulen zur aktiven Durchmischung für die Probenmarkierung auf einer planeren Oberfläche in einem Bioarray mit DNA/RNA-Molekülen oder Proteinen zu verwenden. Dadurch wird die benötigte Reaktions- zeit verkürzt. Nachteilig ist, dass bei dieser Vorgehensweise mit den Partikeln Stoffe in die Probe eingebracht werden, die eine nachfolgende Messung, beispielsweise mittels GMR, TMR oder AMR, erschweren oder verfälschen. Aus der Schrift J. Verbarg et al . , „Spinning magnetic trap for automated microfluidic assay Systems", Lab Chip, 2012, 12, 1793 ist ein System zur Zellmarkierung bekannt, das die Zellen und Markierungspartikel mittels einem rotierenden sternartig aufgebauten Magnetensystem entgegen der Flussrichtung in einem Kanal bewegt. Hierbei ist der Platzbedarf durch die Rotation erheblich gegenüber dem reinen Flusskanal vergrößert. Weiterhin werden bewegliche Teile benötigt, was häu- fig die Lebensdauer negativ beeinflusst. The process of marking is associated with a considerable technical and human effort. The efficiency and required duration of the marking is dependent on the diffusion rate of the particles used in today's marking ¬ methods. It is known from US 2009/0325822 Al to use magnetic microparticles or nanoparticles in combination with magnetic coils for active mixing for the sample marking on a planar surface in a bioarray with DNA / RNA molecules or proteins. This shortens the required reaction time. The disadvantage is that in this procedure substances are introduced into the sample with the particles, which complicate or falsify a subsequent measurement, for example by means of GMR, TMR or AMR. From the document J. Verbarg et al. , "Spinning magnetic trap for automated microfluidic assay systems", Lab Chip, 2012, 12, 1793 is a cell-marking system known that uses a rotating cell and marker particles star-shaped magnetic system against the flow direction in a channel moves. Here, the space required by the rotation is considerably increased compared to the pure flow channel. Furthermore, moving parts are needed, which often negatively affects the service life.
Es ist Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren sowie eine entsprechende Anordnung zur Markierung von Zellen in einer Zellsuspension anzugeben, bei denen der eingangs genannte Nachteil verringert oder vermieden wird. It is an object of the present invention to provide an improved method and a corresponding arrangement for marking cells in a cell suspension, in which the aforementioned disadvantage is reduced or avoided.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen von Anspruch 1 gelöst. Die Unteransprüche betreffen vorteilhafte Ausgestaltungen der Erfindung. Weiterhin wird die Aufgabe hinsichtlich der Anordnung durch eine Anordnung mit den Merkmalen von Anspruch 3 gelöst. This object is achieved by a method having the features of claim 1. The subclaims relate to advantageous embodiments of the invention. Furthermore, the object is achieved with respect to the arrangement by an arrangement with the features of claim 3.
Bei dem erfindungsgemäßen Verfahren zur Markierung von Zellen in einer Zellsuspension mit superparamagnetischen Mikro- oder Nanopartikeln werden die folgenden Schritte durchgeführt: Es wird eine Partikel-Suspension mit den superparamagnetischen Partikeln bereitgestellt, wobei die Partikel mit Antikörpern oder weiteren Zellen verbunden sind. Diese Partikel-Suspension sowie die Zellsuspension mit den zu markierenden Zellen werden in eine Mischkammer eingebracht. In der Mischkammer verbinden sich Zellen der Zellsuspension mit Partikeln der Suspension, wobei zur Unterstützung dieser Verbindungsreaktion eine gesteuerte Bewegung der Partikel mittels wenigstens zweier Elektromagnete oder eines Permanentmagneten und eines Elektromagneten durchgeführt wird, wobei die Magnete räumlich fest gegenüber der Mischkammer angeordnet sind, indem die Magnete elektrisch gesteuert werden. In the method according to the invention for labeling cells in a cell suspension with superparamagnetic microparticles or nanoparticles, the following steps are carried out: A particle suspension with the superparamagnetic particles is provided, the particles being connected to antibodies or further cells. This particle suspension and the cell suspension with the cells to be marked are introduced into a mixing chamber. In the mixing chamber, cells of the cell suspension combine with particles of the suspension, to assist in this connection reaction a controlled movement of the particles is carried out by means of at least two electromagnets or a permanent magnet and an electromagnet, the magnets being spatially fixed relative to the mixing chamber by the magnets be electrically controlled.
Die erfindungsgemäße Anordnung ist ausgestaltet zur Durchfüh- rung des erfindungsgemäßen Verfahrens und umfasst eine Misch¬ kammer zur Aufnahme der Zellsuspension und der Partikel- Suspension sowie wenigstens zwei räumlich zur Mischkammer un- beweglich angeordnete Magnete, von denen wenigstens einer ein Elektromagnet ist. The inventive arrangement is adapted for carrying out the method according to the invention and comprises a mixing ¬ chamber for receiving the cell suspension and the particle suspension and at least two spatially to the mixing chamber un- movably arranged magnets, of which at least one is an electromagnet.
Dadurch wird eine Möglichkeit geschaffen, eine verbesserte Markierung der Zellen der Zellsuspension zu erreichen, daThis creates a possibility to achieve an improved labeling of the cells of the cell suspension, since
Zellen und Markierungspartikel mittels der Elektromagnete in Bewegung gehalten und durchmischt werden. Zellen, die durch Anbindung von Markierungspartikeln bereits markiert sind, werden durch die Krafteinwirkung der Elektromagnete ebenfalls bewegt. Sie kommen dadurch mit mehr derselben Partikel in Berührung. Dies passiert weiterhin durch elektrische Steuerung, also automatisch. Ein manueller Beitrag, d.h. eine Bearbeitung der Zellsuspension durch einen menschlichen Bediener ist vorteilhafterweise nicht erforderlich. Weiterhin wird dadurch vorteilhaft die Dauer der Mischung einer Probe verkürzt, also die Effizienz der Markierung von Zellen gesteigert. Die Cells and marking particles are kept in motion and mixed by the electromagnets. Cells that are already marked by binding of marking particles are also moved by the force of the electromagnets. They thereby come into contact with more of the same particles. This continues to happen through electrical control, so automatically. A manual contribution, i. Processing of the cell suspension by a human operator is advantageously not required. Furthermore, this advantageously shortens the duration of the mixing of a sample, thus increasing the efficiency of the labeling of cells. The
Scherrate wird zugunsten der Mischbarkeit z.B. nicht- Newtonischer Flüssigkeiten wie Blut erhöht. Gegenüber bekannten Methoden der Markierung wird auch erreicht, dass keine zusätzlichen Partikel zum Analyten einge¬ bracht werden, die eine nachfolgende Messung stören könnten. Shear rate is increased in favor of miscibility of, for example, non-Newtonian fluids such as blood. Compared to known methods of marking is also obtained that no additional particle to the analyte are introduced ¬ introduced that could interfere with a subsequent measurement.
Bevorzugt werden die Elektromagnete abwechselnd eingeschal- tet. Alternativ dazu wird ein einzelner Elektromagnet gegenüber einem Permanentmagneten ein und aus geschalten. Dadurch werden die Partikel zwischen Seitenwänden der Mischkammer hin und her bewegt. Zweckmäßig ist es, wenn die Elektromagnete bzw. der Permanentmagnet und der Elektromagnet an gegenüber liegenden Seiten der Mischkammer angeordnet sind. The electromagnets are preferably switched on alternately. Alternatively, a single solenoid is switched on and off with respect to a permanent magnet. As a result, the particles are moved back and forth between side walls of the mixing chamber. It is expedient if the electromagnets or the permanent magnet and the electromagnet are arranged on opposite sides of the mixing chamber.
Alternativ zur Schaltung der Magnete kann die Flüssigkeit auch durch ein externes Pumpensystem bewegt werden. Vorteilhaft umfasst die Anordnung ein Kolbensystem und ein mit der Mischkammer verbundenes Kanalsystem. Damit wird die reproduzierbare Entnahme kleiner Probenmengen ohne großen Aufwand durch einen ungeschulten Anwender ermöglicht. Ein bevorzugtes, jedoch keinesfalls einschränkendes Ausfüh¬ rungsbeispiel für die Erfindung wird nunmehr anhand der Figu¬ ren der Zeichnung näher erläutert. Dabei sind die Merkmale schematisiert dargestellt. Es zeigen As an alternative to switching the magnets, the liquid can also be moved by an external pump system. Advantageously, the arrangement comprises a piston system and a channel system connected to the mixing chamber. Thus, the reproducible removal of small amounts of sample is made possible without great effort by an untrained user. A preferred, but by no means limitative exporting ¬ approximately example of the invention will now be further explained with reference to Figu ¬ ren the drawing. The features are shown schematically. Show it
Figur 1 ein Zell-Messsystem mit einer Mischkammer mit fest angeordneten Elektromagneten, 1 shows a cell measuring system with a mixing chamber with fixed electromagnets,
Figur 2 die Mischkammer mit Elektromagneten in Seitenan- sieht. FIG. 2 shows the mixing chamber with electromagnets in side view.
Figur 1 zeigt eine Draufsicht auf ein Zell-Messsystem 10 mit einer Mischkammer 13 mit fest angeordneten Elektromagneten 22, 23. Figur 2 zeigt einen Ausschnitt des Zell-Messsystems 10 in einer schematisierten Seitenansicht. 1 shows a top view of a cell measuring system 10 with a mixing chamber 13 with fixed electromagnets 22, 23. FIG. 2 shows a section of the cell measuring system 10 in a schematic side view.
Das Zell-Messsystem 10 umfasst ein Substrat 11, auf dem die weiteren Komponenten angeordnet sind. Weitere Komponenten sind eine Aufnahmeeinrichtung 12 für eine Flüssigkeit, wobei die Flüssigkeit die zu vermessenden Zellen enthält. Die Auf¬ nahmeeinrichtung 12 kann beispielsweise eine Nadeleinheit sein, mittels derer bei Fingeraufdruck ein Blutstropfen 25 erzeugt und aufgenommen wird. Die Aufnahmeeinrichtung 12 ist über einen ersten Fluidkanal 14 mit der Mischkammer 13 verbunden. Oberhalb und unterhalb der Mischkammer sind Elektromagnete 22, 23 angeordnet. Die Mischkammer 13 ist weiterhin über einen zweiten Fluidkanal 15 mit einem Kolbensystem 16 mit Schieber 17 verbunden. Ein dritter Fluidkanal 18 verbindet die Mischkammer 13 mit einer Messkammer 19 mit einem GMR-Sensor 20. Der GMR-Sensor 20 führt eine Einzelzelldetektion mittels magnetoresistiver Messung durch und der Hintergrund wird bei der Anreicherung von markierten Zellen mit ferromagnetischen Flussstreifen in-situ herausgefiltert. The cell measuring system 10 comprises a substrate 11, on which the further components are arranged. Further components are a receptacle 12 for a liquid, wherein the liquid contains the cells to be measured. On ¬ means 12 may for example be a needle unit, by means of which at finger print produces a drop of blood 25 and recorded. The receiving device 12 is connected via a first fluid channel 14 with the mixing chamber 13. Above and below the mixing chamber electromagnets 22, 23 are arranged. The mixing chamber 13 is further connected via a second fluid channel 15 with a piston system 16 with slide 17. A third fluid channel 18 connects the mixing chamber 13 with a measuring chamber 19 with a GMR sensor 20. The GMR sensor 20 carries out a single cell detection by means of magnetoresistive measurement and the background is filtered out during the enrichment of labeled cells with ferromagnetic flux strips in situ.
In einer alternativen Ausgestaltung kann beispielsweise einer der Elektromagnete 22 durch einen Permanentmagneten ersetzt werden. Dieser ist dann nicht schaltbar, allerdings kann eine ausreichende Bewegung der Analyte durch ein Ein- und Aus¬ schalten des verbleibenden Elektromagneten 23 erreicht werden. In diesem Fall ist die Steuereinheit 24 natürlich nur mit dem Elektromagneten 23 verbunden. In an alternative embodiment, for example, one of the electromagnets 22 replaced by a permanent magnet become. This is then not switchable, however, a sufficient movement of the analytes by switching on and off ¬ the remaining electromagnet 23 can be achieved. In this case, the control unit 24 is of course only connected to the electromagnet 23.
Die Mischkammer 13 wird dabei für die Einmalverwendung angefertigt und umfasst bei Bereitstellung eine Markerlösung, d.h. eine Suspension superparamagnetischer Markierungs- Partikel 21. Im Betrieb des Zell-Messsystems 10 wird im vor¬ liegenden Beispiel an der Aufnahmeeinrichtung 12 ein Blutstropfen 25 erzeugt. Sodann wird manuell der Schieber 17 bewegt, wodurch ein Unterdruck erzeugt wird, der den Blutstrop¬ fen über den ersten Fluidkanal 14 in die Mischkammer 13 zieht. The mixing chamber 13 is in this case made for single use and which includes a marker solution for the provision, that is, a suspension of superparamagnetic marking particles 21. During operation of the cell measurement system 10 is in the generated before ¬ lying example on the receiving device 12, a drop of blood 25th Then, the slider 17 is manually moved, whereby a negative pressure is generated which pulls the Blutstrop ¬ fen via the first fluid passage 14 into the mixing chamber 13.
Befindet sich eine ausreichende Menge des Blutstropfens 25 in der Mischkammer 13, so werden die Elektromagnete 22, 23 ab¬ wechselnd an- und ausgeschaltet. Dabei wird die Schaltung derart vorgenommen, dass immer nur einer der Elektromagnete 22, 23 gleichzeitig an ist. Dadurch werden die Markierungs- Partikel 21 herauf- und herunterbewegt in der Mischkammer 13. Hierdurch wird eine Durchmischung der Markierungs-Partikel 21 mit den Zellen aus dem Blutstropfen 25 bewirkt, was für eine schnellere und vollständigere Markierung der Zellen sorgt. Auch solche Zellen, die bereits markiert sind, erfahren die Krafteinwirkung der Magnete, wodurch auch sie bewegt werden. Die für die Mischung und Markierung nötige Zeit ist beim ge¬ zeigten Zell-Messsystem 10 unabhängig vom Anwender, da die Steuerung der Elektromagnete 22, 23 automatisch und in festgelegter Weise durch eine Steuereinheit 24 erfolgt. A sufficient amount of the blood drop 25 in the mixing chamber 13 is located, then the electromagnets 22, 23 Toggle from ¬ alternately on and off. In this case, the circuit is made such that only one of the electromagnets 22, 23 is simultaneously on. Characterized the marking particles 21 are moved up and down in the mixing chamber 13. This causes a mixing of the marking particles 21 is effected with the cells from the blood drop 25, which ensures a faster and more complete marking of the cells. Even those cells that are already marked, experience the force of the magnets, so they are moved. The necessary for the mixture and marking time during ge ¬ showed cell measurement system 10 independently of the user, since the control of the electromagnets 22, 23 is carried out automatically and in a predetermined manner by a control unit 24th
Nach einer kurzen Zeit der Markierung und Durchmischung über die Elektromagnete 22, 23 werden die Zellen weitergeleitet in die Messkammer 19 und über den GMR-Sensor 20, der in diesem Beispiel eine Zählung der markierten Zellen vornimmt. Alle Komponenten, die mit der Zellsuspension, also dem Blutstropfen 25 in Kontakt waren, werden nach der Einmalverwendung entsorgt (disposable Cartridge) . Das Zell-Messsystem 10 ist vorteilhaft gut geeignet für die Einbindung in patientennahe diagnostische Verfahren („Point of Care") für schnelle Mar¬ kierung und anschließende Analysen in einem Zeitrahmen von weniger als 1 h, wobei kein geschultes Personal von Nöten ist . After a short time of labeling and mixing via the electromagnets 22, 23, the cells are forwarded into the measuring chamber 19 and via the GMR sensor 20, which carries out a counting of the marked cells in this example. All components which were in contact with the cell suspension, that is, the drop of blood 25, are after single use disposed of (disposable cartridge). The cell measurement system 10 is advantageous well suited for integration in near-patient diagnostic procedures ( "Point of Care") for fast Mar ¬ kierung and subsequent analysis in a time frame of less than one hour, with no trained staff is really necessary.
Im vorliegenden Beispiel wurde von einem GMR-Sensor 20 ausgegangen. An dessen Stelle können auch andere magnetfeldbasier- te Sensoren (AMR, TMR) zum Einsatz kommen. Die Verwendung der magnetischen Markierung in Verbindung mit einem Puffersystem ermöglicht zudem eine Verdünnung und so eine begünstigende Beeinflussung besonderer rheologischer Eigenschaften von Körperflüssigkeiten, wie z.B. Blut, bezogen auf deren Mischbar- keit. Dazu wird als Markerlösung superparamagnetische Mikro- oder Nanopartikel verwendet, die in einer Pufferlösung vorge¬ legt sind. In the present example, a GMR sensor 20 was assumed. In its place, other magnetic field-based sensors (AMR, TMR) can also be used. The use of the magnetic marker in conjunction with a buffer system also allows dilution and thus a favorable influencing particular rheological properties of body fluids, such as blood, based on their miscibility. These will be used as a marker solution superparamagnetic microparticles or nanoparticles that ¬ If you use pre in a buffer solution.

Claims

Patentansprüche claims
1. Verfahren zur Markierung von Zellen in einer Zellsuspension (25) mit superparamagnetischen Mikro- oder Nanopartikeln mit den Schritten: A method of labeling cells in a cell suspension (25) with superparamagnetic microparticles or nanoparticles comprising the steps of:
- Bereitstellen einer Partikel-Suspension mit den Partikeln, wobei die Partikel mit Antikörpern oder weiteren Zellen verbunden sind,  Providing a particle suspension with the particles, the particles being associated with antibodies or other cells,
- Einbringen der Zellsuspension sowie der Partikel-Suspension (21) in eine Mischkammer (13),  - introducing the cell suspension and the particle suspension (21) into a mixing chamber (13),
- Verbindung von Zellen der Zellsuspension (25) mit Partikeln der Partikel-Suspension (21),  - Connecting cells of the cell suspension (25) with particles of the particle suspension (21),
- gesteuerte Bewegung der Partikel mittels wenigstens zweier Elektromagnete (22, 23) oder mittels eines Permanentmagne- ten und wenigstens eines Elektromagneten (22, 23),  controlled movement of the particles by means of at least two electromagnets (22, 23) or by means of a permanent magnet and at least one electromagnet (22, 23),
wobei die Magnete (22, 23) räumlich fest gegenüber der Mischkammer (13) angeordnet sind. wherein the magnets (22, 23) are arranged spatially fixed relative to the mixing chamber (13).
2. Verfahren gemäß Anspruch 1, bei dem die Elektromagnete (22, 23) abwechselnd eingeschaltet werden. 2. The method according to claim 1, wherein the electromagnets (22, 23) are switched on alternately.
3. Anordnung (10) zur Durchführung des Verfahrens gemäß einem der vorangehenden Ansprüche, mit: 3. Arrangement (10) for carrying out the method according to one of the preceding claims, comprising:
- einer Mischkammer (13) zur Aufnahme der Zellsuspension (25) und der Partikel-Suspension (21),  a mixing chamber (13) for receiving the cell suspension (25) and the particle suspension (21),
- wenigstens zwei räumlich zur Mischkammer (13) unbeweglich angeordneten Magneten (22, 23), von denen wenigstens einer ein Elektromagnet (22, 23) ist.  - At least two spatially to the mixing chamber (13) immovably arranged magnets (22, 23), of which at least one is an electromagnet (22, 23).
4. Anordnung (10) gemäß Anspruch 3 mit einem Kolben-System (16, 17) . 4. Arrangement (10) according to claim 3 with a piston system (16, 17).
PCT/EP2013/061011 2012-06-15 2013-05-29 Method and arrangement for marking cells in a suspension of cells WO2013186049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012210077.6 2012-06-15
DE102012210077A DE102012210077A1 (en) 2012-06-15 2012-06-15 Method and device for labeling cells in a cell suspension

Publications (1)

Publication Number Publication Date
WO2013186049A1 true WO2013186049A1 (en) 2013-12-19

Family

ID=48576388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/061011 WO2013186049A1 (en) 2012-06-15 2013-05-29 Method and arrangement for marking cells in a suspension of cells

Country Status (2)

Country Link
DE (1) DE102012210077A1 (en)
WO (1) WO2013186049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015150113A1 (en) * 2014-04-03 2015-10-08 Siemens Aktiengesellschaft Method for molecular diagnostics for concentrating a nucleic acid from a biological sample

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681478A (en) * 1989-12-07 1997-10-28 Diatec Instruments A/S Method and apparatus for magnetically separating and resuspending super-paramagnetic particles in a solution
EP1658890A2 (en) * 2004-11-23 2006-05-24 Samsung Electronics Co., Ltd. Microfluidic device including microchannel on which plurality of electromagnets are disposed, and methods of mixing sample and lysing cells using the microfluidic device
US20090325822A1 (en) 2006-04-13 2009-12-31 Austrian Research Centers Gmbh - Arc Apparatus For Increasing The Reaction Efficiency, Especially The Binding Efficiency, Between Molecules And Molecular Moieties
US20100159556A1 (en) * 2008-12-19 2010-06-24 Amar Rida Method for Manipulating Magnetic Particles in a Liquid Medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623983B1 (en) * 1997-03-25 2003-09-23 Immunivest Corporation Apparatus and methods for capture and analysis of particulate entities
DE19836109A1 (en) * 1998-08-10 2000-03-02 Biotul Bio Instr Gmbh Device and method for the near-surface mixing of samples in biosensor systems
DE10020376A1 (en) * 2000-04-26 2001-11-08 Inst Zelltechnologie E V Dynamic markers
US8283912B2 (en) * 2007-04-03 2012-10-09 Koninklijke Philips Electronics N.V. Sensor device with magnetic washing means
WO2009047714A1 (en) * 2007-10-11 2009-04-16 Koninklijke Philips Electronics N. V. Magnetic manipulation device for magnetic beads
US9656271B2 (en) * 2007-12-04 2017-05-23 Headway Technologies, Inc. Guided transport of magnetically labeled biological molecules and cells
DE102009004086A1 (en) * 2009-01-05 2010-07-22 Gottfried Wilhelm Leibniz Universität Hannover Electromagnetic microsystem for manipulating magnetic micro- or nanobeads
CH700770A2 (en) * 2009-04-15 2010-10-15 Philippe Saint Ger Ag A method for supporting and / or intensifying a physical and / or chemical reaction and a reaction device for performing the method.
DE102010041833B4 (en) * 2010-09-30 2014-05-15 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Microfluidic chip with multiple cylinder-piston arrangements
DE102010060498B4 (en) * 2010-11-11 2013-04-18 Caprotec Bioanalytics Gmbh Isolation and functional identification of whole cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681478A (en) * 1989-12-07 1997-10-28 Diatec Instruments A/S Method and apparatus for magnetically separating and resuspending super-paramagnetic particles in a solution
EP1658890A2 (en) * 2004-11-23 2006-05-24 Samsung Electronics Co., Ltd. Microfluidic device including microchannel on which plurality of electromagnets are disposed, and methods of mixing sample and lysing cells using the microfluidic device
US20090325822A1 (en) 2006-04-13 2009-12-31 Austrian Research Centers Gmbh - Arc Apparatus For Increasing The Reaction Efficiency, Especially The Binding Efficiency, Between Molecules And Molecular Moieties
US20100159556A1 (en) * 2008-12-19 2010-06-24 Amar Rida Method for Manipulating Magnetic Particles in a Liquid Medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. VERBARG ET AL.: "Spinning magnetic trap for automated microfluidic assay systems", LAB CHIP, vol. 12, 2012, pages 1793
JASENKA VERBARG ET AL: "Spinning magnetic trap for automated microfluidic assay systems", LAB ON A CHIP, vol. 12, no. 10, 1 January 2012 (2012-01-01), pages 1793, XP055072588, ISSN: 1473-0197, DOI: 10.1039/c2lc21189k *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015150113A1 (en) * 2014-04-03 2015-10-08 Siemens Aktiengesellschaft Method for molecular diagnostics for concentrating a nucleic acid from a biological sample

Also Published As

Publication number Publication date
DE102012210077A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
EP1843854B1 (en) Device and method for the elimination of magnetic or magnetizable particles from a liquid
EP2830763B1 (en) Integrated disposable chip cartridge system for mobile multiparameter analyses of chemical and/or biological substances
DE102005029809B4 (en) Apparatus and method for preparing a sample for analysis and apparatus and method for analyzing a sample
EP2369343B1 (en) Device and method for manipulating or examining a liquid sample
DE10319045A1 (en) Device and method for processing liquids containing biopolymers
DE10057396C1 (en) Separation of e.g. biomolecules from dispersion or solution, employs magnetic particles onto which substance is sorbed, and electromagnet for their extraction
EP2404155A1 (en) Device and method for concentrating and detecting magnetically marked cells in laminarly flowing media
WO1999027367A1 (en) Device and method for detecting analytes
DE112006001894T5 (en) Electromagnetic acoustic transducer
WO2011015454A1 (en) Diagnostic system
DE10112505C1 (en) Sensor arrangement and device for amperometric and / or potentiometric, pharmacological site and / or drug testing and method for amperometric and / or potentiometric, pharmacological site and / or drug testing
EP2099568A1 (en) Arrangement for processing a plurality of samples for analysis
DE112014006687T5 (en) Cartridge for a magnetic flow cytometer, magnetic flow cytometer and method for analyzing a sample with such a cartridge
WO2020011793A1 (en) Fluidic detection system
DE102009004086A1 (en) Electromagnetic microsystem for manipulating magnetic micro- or nanobeads
WO2013186049A1 (en) Method and arrangement for marking cells in a suspension of cells
EP1685404B1 (en) Method and device for improved cleaning of a substance bound to paramagnetic microparticles
DE102012210457A1 (en) Method and device for partial labeling and subsequent quantification of cells of a cell suspension
EP2501475B1 (en) System and a method for detecting analyte molecules contained in liquid samples
EP3391026A1 (en) Method for detecting particles in a sample, detection device, and microfluidic system for examining a sample
DE102006046776B4 (en) Arrangement and method for the detection of small substance concentrations
DE102008009185A1 (en) Apparatus and method for detecting liquids or substances from liquids and use of the apparatus
DE102011088741A1 (en) Separating cells from cell suspension by marking target cells using functionalized magnetic beads and separating, comprises e.g. immersing two-fluid sensor in container, and transporting mixture with buffer through incubation conductor
DE102013100494B4 (en) Method of separating paramagnetic material from drops on demand and a system for separating paramagnetic material from drops on demand
WO2006056001A1 (en) Device for qualitatively and quantitatively analyzing analytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13726740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13726740

Country of ref document: EP

Kind code of ref document: A1