WO2013185726A2 - 一种高速移动环境下终端的随机接入方法及随机接入系统 - Google Patents

一种高速移动环境下终端的随机接入方法及随机接入系统 Download PDF

Info

Publication number
WO2013185726A2
WO2013185726A2 PCT/CN2013/081023 CN2013081023W WO2013185726A2 WO 2013185726 A2 WO2013185726 A2 WO 2013185726A2 CN 2013081023 W CN2013081023 W CN 2013081023W WO 2013185726 A2 WO2013185726 A2 WO 2013185726A2
Authority
WO
WIPO (PCT)
Prior art keywords
random access
cyclic shift
coverage radius
cell coverage
target value
Prior art date
Application number
PCT/CN2013/081023
Other languages
English (en)
French (fr)
Other versions
WO2013185726A3 (zh
Inventor
李磊
刘晓晓
李斌
秦洪峰
王雪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/350,378 priority Critical patent/US9622268B2/en
Priority to AU2013275770A priority patent/AU2013275770B2/en
Priority to RU2014114374/07A priority patent/RU2572585C1/ru
Priority to EP13803583.7A priority patent/EP2750471B1/en
Publication of WO2013185726A2 publication Critical patent/WO2013185726A2/zh
Publication of WO2013185726A3 publication Critical patent/WO2013185726A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a random access method and a random access system for a terminal in a high-speed mobile environment.
  • the random access technology is an important technology for access control of User Equipment (UE) in the communication system.
  • the random access preamble of LTE generally uses the ZC (Zadoff-Chu) sequence, and the random access preamble is based on the ZC sequence by selecting different cyclic shifts.
  • the random access subframe consists of three parts, namely CP (Cyclic Prefix), preamble sequence ( Sequence), and GT (Guard Time, guard interval;), as shown in Figure 1.
  • the PRACH of the existing LTE system supports five random access preamble formats, namely FormatO to Format4, where FDD (Frequency Division Duplexing) supports formatO to format3, and TDD (Time Division Duplexing) supports formatO to format 4, different random accesses.
  • the preamble format corresponds to different CP lengths (TCP), sequence lengths (or the number of samples of the preamble sequence, referred to as TSEQ) and GT length (or the number of guard points, TGT for short).
  • TCP CP lengths
  • TSEQ sequence lengths
  • GT length or the number of guard points
  • Format 0 to Format 3 are transmitted in a normal uplink subframe, the length of the ZC sequence (NZC) is 839, Format 4 is transmitted in the UpPTS, and the NZC is 139.
  • the value of the cyclic shift amount (NSS) in each random access preamble format is configured, and in the case of Format 0 to Format 3, a cyclic shift amount (NSS) set is configured, which is divided into a restricted set. And non-restricted sets, for Format 0 to Format 3, the value of NCS is shown in Table 2, where 0 in the unrestricted set represents 839.
  • the existing LTE system uses a cyclic shift restriction, that is, when the terminal is in a high-speed mobile environment, only the NCS values in the restricted set in Table 2 are allowed to be used.
  • the value of NCS in the restricted set is generally small, and the maximum is only 237.
  • Such NCS value determines the smaller cell coverage radius. Therefore, the existing random access technology cannot simultaneously satisfy the requirements of high-speed mobile terminal and large cell coverage radius.
  • the embodiments of the present invention provide a more random access method and a random access system for a terminal in a high-speed mobile environment, so as to solve the technical problem that a terminal can obtain a large cell coverage radius under high-speed mobility.
  • a random access method for a terminal in a high-speed mobile environment comprising: selecting a random access preamble format according to a preset cell coverage radius target value; determining a pre-configured cyclic shift amount under the selected random access preamble format Restricting whether the set satisfies the requirement of the cell coverage radius target value; if not, selecting a cyclic shift amount that satisfies the cell coverage radius target value requirement from a non-limiting set of pre-configured cyclic shift amounts; The cyclic shift amount and the pre-configured mother code generate a random access signal, and the random access signal is used for access.
  • the step of selecting a random access preamble format according to the preset cell coverage radius target value includes: calculating, according to the length of the guard interval in the random access subframe in each random access preamble format, the largest cell supported by the corresponding format Coverage radius; select a random access preamble format in which the supported maximum cell coverage radius is greater than or equal to the cell coverage radius target value.
  • the step of determining whether the restricted set of the preset cyclic shift amount meets the requirement of the cell coverage radius target value in the selected random access preamble format comprises: according to the cyclic shift in the restricted set The maximum value calculates the maximum cell coverage radius supported by the selected random access preamble format; if the calculated maximum cell coverage radius is smaller than the cell coverage radius target value, the restriction set does not satisfy the cell coverage radius target value Requirements.
  • the step of selecting a cyclic shift amount that meets the cell coverage radius target value requirement from the unconstrained set of pre-configured cyclic shift amounts comprises: calculating the selected random connection according to the cell coverage radius target value And a minimum value of the cyclic shift amount that satisfies the requirement of the cell coverage radius target value in the preamble format; and a cyclic shift amount greater than or equal to the minimum value is selected from the unrestricted set.
  • the step of selecting a cyclic shift amount that satisfies the cell coverage radius target value requirement from the unconstrained set of pre-configured cyclic shift amounts comprises: preselecting from the non-restricted set to be greater than the limit set At least one cyclic shift amount of the maximum value of the cyclic shift amount; calculating the maximum cell coverage half supported by the selected random access preamble format according to each of the preselected cyclic shift amounts A path is selected from the preselected cyclic shift amount, and the obtained maximum cell coverage radius is greater than or equal to the cyclic shift amount of the cell coverage radius target value.
  • the step of configuring the mother code further includes: pre-configuring a mother code table, where the mother code table records required by the cell network a mapping relationship between the number of the mother code, the logical root sequence index group, and the cyclic shift value corresponding to the Doppler shift.
  • Each logical root sequence index group includes the same number of mother codes as the cell network. Number of logical root sequence indexes;
  • the corresponding mother code is generated according to the selected logical root sequence index.
  • a random access system comprising: a base station and a terminal in a high-speed mobile environment, where the base station is configured to select a random access preamble format according to a preset cell coverage radius target value; the terminal is set as a judging station In the random access preamble format, whether the restricted set of the pre-configured cyclic shift amount satisfies the requirement of the cell coverage radius target value; if the cell coverage radius target value requirement is not met, the pre-configured loop is used.
  • the base station includes a first calculating module and a first selecting module, where the first calculating module is configured to calculate, according to the length of the guard interval in the random access subframe in each random access preamble format, The maximum cell coverage radius supported by the format; the first comparison module is configured to select a random access preamble format in which the supported maximum cell coverage radius is greater than or equal to the cell coverage radius target value.
  • the terminal includes a second computing module and a first determining module, where the second calculating module is configured to calculate a selected random access preamble format according to a maximum value of a cyclic shift amount in the restricted set.
  • the maximum cell coverage radius supported by the first determining module is configured to determine that the limit set is not satisfied under the condition that the maximum cell coverage radius calculated by the second calculating module is smaller than the cell coverage radius target value.
  • the cell covers the requirement of a radius target value.
  • the terminal includes a third calculation module and a second selection module, where the third a calculation module, configured to calculate, according to the cell coverage radius target value, a minimum value of a cyclic shift amount that satisfies a requirement of the cell coverage radius target value in the selected random access preamble format; and the second selection module is set to be A cyclic shift amount greater than or equal to the minimum value is selected in the non-limiting set.
  • the terminal includes a third selection module, a fourth calculation module, and a fourth selection module, where the third selection module is configured to pre-select from the non-restricted set that is greater than the limit set. At least one cyclic shift amount of the maximum value of the cyclic shift amount; the fourth calculating module is configured to separately calculate a maximum cell coverage radius supported by the selected random access preamble format according to the pre-selected cyclic shift amounts; The fourth selection module is configured to select, from the pre-selected cyclic shift amount, a cyclic shift amount that the obtained maximum cell coverage radius is greater than or equal to the cell coverage radius target value.
  • the base station further includes a mother code table configuration module, a mother code table search module, and a mother code table generation module, where the mother code table configuration module is configured as a pre-configured mother code table, and the mother code table Recording a mapping relationship between the number of the mother code required by the cell network, the logical root sequence index group, and the cyclic shift value corresponding to the Doppler frequency shift, and each logical root sequence index group includes the network networking required by the cell The number of logical root sequences of the same number of mother codes;
  • the mother code table searching module is configured to search for a corresponding logical root sequence index group from the mother code table according to the number of mother codes required by the actual cell networking, and select a logical root sequence from the logical root sequence index group.
  • the mother code table generating module is configured to generate a corresponding mother code according to the selected logical root sequence index.
  • the beneficial effects of the embodiment of the present invention are: when the terminal is in a high-speed mobile environment, if the preset set of the cyclic shift amount is used, the set of the cyclic coverage amount cannot meet the requirement of the cell coverage radius target value in the selected random access preamble format. Then, a cyclic shift amount that satisfies the cell coverage radius target value requirement is selected from a non-limiting set of pre-configured cyclic shift amounts, and a random access signal is generated according to the cyclic shift amount and the pre-configured mother code. In this way, without changing the frame structure and system processing, the high-speed movement of the terminal is satisfied, and a large cell coverage radius can also be obtained.
  • 1 is a schematic structural diagram of a random access subframe
  • FIG. 2 is a flow chart of a method for random access of a terminal in a high-speed mobile environment according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for random access of a terminal in a high-speed mobile environment according to another embodiment of the present application
  • FIG. 4 is a schematic diagram of a random access system according to an embodiment of the present application. Preferred embodiment of the invention
  • the terminal when the terminal is in a high-speed mobile environment, if the restricted set of the pre-configured cyclic shift amount cannot meet the requirement of the cell coverage radius target value in the selected random access preamble format,
  • the cyclic shift amount that satisfies the requirement of the cell coverage radius target value is selected from the unrestricted set of the configured cyclic shift amount, and the random access signal is generated according to the cyclic shift amount and the pre-configured mother code.
  • the embodiment of the present invention first needs to set a cell coverage radius target value and a mother code required for a cell network according to actual conditions.
  • the cell coverage radius target value is used to determine the selection of the cyclic shift amount, and the configuration of the mother code required for the cell network is followed.
  • the pre-configured limit set of the cyclic shift amount, the unrestricted set includes but is not limited to the table 2, and the limit set shown in Table 2 is the related access.
  • the technology is applied to the NCS value in the high-speed mobile environment of the terminal, and the unrestricted set is the NCS value used in the low-speed mobile environment of the terminal in the related access technology.
  • S21 to S24 are included:
  • the base station selects a random access preamble format according to the preset cell coverage radius target value. 522.
  • the terminal determines, according to the selected random access preamble format, whether the preset set of the cyclic shift amount is used to meet the requirement of the cell coverage radius target value; if not, the process proceeds to step S23.
  • the terminal selects, from a non-limiting set of pre-configured cyclic shift amounts, a cyclic shift amount that satisfies a requirement of the cell coverage radius target value;
  • the terminal generates a random access signal according to the selected cyclic shift amount and the pre-configured mother code, and uses the random access signal to perform access.
  • step S22 determines whether the requirement set of the coverage radius target value is met by using the preset set of the cyclic shift amount.
  • the terminal selects, from the set of restrictions, a cyclic shift amount that satisfies the target value of the coverage radius of the cell, and then proceeds to step S24.
  • Step S23 includes: selecting any cyclic shift amount that satisfies the cell coverage radius target value requirement from the unrestricted set, or selecting a cyclic shift amount that satisfies the cell coverage radius target value requirement and is the smallest from the unrestricted set.
  • step S25 includes: selecting, from the set of restrictions, any cyclic shift amount that satisfies the target value of the coverage radius of the cell, or selecting a cyclic shift amount that satisfies the target value of the coverage radius of the cell from the set of limits. .
  • the cyclic shift amount determines whether the cell edge user can distinguish different cyclic shift windows, and the cyclic shift amount must be selected to ensure that the preamble sequence and the local sequence correlation peak of the cell edge user fall in the cyclic shift amount.
  • NZC is the length of the ZC sequence.
  • NZC is 839
  • NZC is 139
  • TSEQ is the Sequence length (or the number of samples of the preamble sequence).
  • TSEQ is 2*24576Ts, which essentially repeats two Preamble blocks.
  • TSEQ of Format 0 to Format 3 takes 24576Ts
  • TSEQ of Format 4 takes 4096Ts
  • NCS is the cyclic shift amount, for any random
  • the access preamble format as shown in Table 2, has multiple values and needs to be selected. Therefore, when the random access preamble format is selected, both NZC and TSEQ in Equation 1) are known numbers, only Ncs and cell coverage radius CellRadius1 are unknown, and the cell coverage radius
  • CellRadiusl is proportional to the value of Ncs.
  • the calculation formula of the cell coverage radius determined by GT can be:
  • TGT is the length of the guard interval in the random access subframe (or the number of guard points in the guard interval).
  • the value is known.
  • Table 1 The value of TGT corresponding to Format 0 is 2976Ts, the value of TGT corresponding to Format 1 is 15840Ts, the value of TGT corresponding to Format 2 is 6048Ts, and the value of TGT corresponding to Format 3 is 21984Ts.
  • the value of TGT corresponding to Format 4 is 614Ts. Therefore, according to the TGT corresponding to each random access preamble format, the cell coverage radius CellRadius2 supported by each random access preamble format can be calculated. Therefore, step S21 may specifically be:
  • the base station calculates a maximum cell coverage radius supported by the corresponding format according to the length of the guard interval (or the number of sample points of the guard interval) TGT in the random access subframe in each random access preamble format.
  • the base station selects a random access preamble format that the supported maximum cell coverage radius is greater than or equal to a preset cell coverage radius target value.
  • step S212 can select any of Format 1 and Format 3.
  • Equation 1) when the random access preamble format is selected, the NZC in Equation 1)
  • TSEQ is a known number, only Ncs and the cell coverage radius CellRadius1 are unknown, and the cell coverage radius CellRadius1 is proportional to the value. Therefore, for the restricted set, if the cell coverage radius CellRadius1 obtained according to the maximum value of the cyclic shift amount (Ncs-Max) in the restricted set cannot reach the preset cell coverage radius target value, then the other in the restricted set Cyclic shift Neither can the cell coverage radius reach the cell coverage radius target value. Therefore, in step S22, it is determined that the implementation method of using the pre-configured cyclic shift amount limit set to meet the cell coverage radius target value requirement in the format selected in step S21 may be:
  • the terminal selects Ncs-Max from the restricted set.
  • the terminal determines whether the cell coverage radius CellRadius1 obtained in step S222 is smaller than a preset cell coverage radius target value. If the CellRadius1 is smaller than the preset cell coverage radius target value, it indicates that all the cyclic shift amounts in the restriction set cannot be If the cell coverage radius reaches the target, that is, the restriction set does not meet the cell coverage radius target value requirement, the process proceeds to step S23; if the CellRadius1 is not smaller than the preset cell coverage radius target value, it indicates that the cell is still satisfied in the restriction set.
  • the loop shift amount required to cover the radius target value, that is, the limit set satisfies the requirement of the cell coverage radius target value proceeds to step S25.
  • Step S23 selects from the unrestricted set of pre-configured cyclic shift amounts to satisfy the cell coverage
  • One of the ways includes S231 a and S232a:
  • the terminal substitutes the cell coverage radius target value, the NZC and the TSEQ corresponding to the random access preamble format selected in step S21 into the formula 1), and calculates the Ncs of the selected random access preamble format that satisfies the target value of the coverage radius of the cell.
  • Min minimum cyclic shift amount
  • the terminal selects a cyclic shift amount greater than or equal to Ncs-Min from the unrestricted set. Since the cell coverage radius CellRadius1 in Equation 1) is proportional to the value of the cell coverage radius, for any unrestricted set, the cell coverage radius CellRadius1 can be greater than any cyclic shift amount greater than or equal to Ncs-Min. Or equal to the cell coverage radius target value. Another way is to include S231b, S232b, and S233b:
  • the terminal preselects a cyclic shift amount larger than the Ncs-Max in the restricted set from the unrestricted set, and the pre-selected cyclic shift amount may be one or more.
  • S233b The terminal selects, from the preselected cyclic shift amount, a cyclic shift amount that the obtained maximum cell coverage radius is greater than or equal to the cell coverage radius target value.
  • a method for selecting a cyclic shift amount that satisfies the target coverage radius target value from the restricted set may refer to the above steps S231 to S232, or S231b to S233b.
  • Step A The terminal pre-configures a mother code table, where the mother code table records the number of mother codes and the logical root sequence index group required for the cell network.
  • the mapping relationship between the cyclic shift values corresponding to the Doppler shift As shown in Table 4.
  • Step B The terminal searches for a corresponding logical root sequence index group from the mother code table according to the number of mother codes required by the actual cell networking, and selects a logical root sequence index from the logical root sequence index group.
  • Step C Terminal The corresponding mother code is generated according to the selected logical root sequence index.
  • the number of mother codes in the column is the same, taking the number of mother codes as an example.
  • the corresponding logical root sequence index group includes six logical root sequence indexes, which are "22", “23”, “826”, “827”, “830”, "831".
  • Table 4 shows only the portion of the total mother code table with a small value of du.
  • the system will generate a large frequency offset, and the random access Z-peak will have a fixed offset of du/-du, according to 3GPP.
  • the TA (Time Adjustment) estimation deviation can be reduced by selecting the value of the mother code. Since a fixed value is selected when the fixed mother code is selected, before step B, the total mother code table may be traversed to select a portion with a smaller value, and step B may be from a partial mother code having a smaller value. The mother code is selected, so that the high-speed mobile environment of the UE is satisfied without changing the existing frame format and processing mode, the cell coverage radius is expanded, and the TA estimation deviation is reduced.
  • a mother code when the UE needs to access, there are the following methods for selecting a mother code, such as: randomly selecting a logical root sequence index from the total mother code table to generate a mother code; or according to actual cell networking requirements
  • the number of mother codes find the corresponding logical root sequence index group from the total mother code table, select a logical root sequence index from the logical root sequence index group to generate the mother code; or select the du value from the total mother code table first.
  • the small part and randomly selects a logical root sequence index from the partial mother code with a smaller du value to generate a mother code; or, preferably, first selects a part with a smaller du value from the total mother code table, and then according to the actual
  • the number of mother codes required for the cell networking is searched for a corresponding logical root sequence index group from a partial mother code having a smaller du value, and a logical root sequence index is selected from the logical root sequence index group to generate a mother code.
  • the random access signal is generated according to the cyclic shift amount obtained in step S23 or step S25, and the access is performed.
  • the following describes the random access with the cell coverage radius target value of 60 km as an example.
  • the random access process is as shown in Figure 3, including:
  • the base station randomly accesses the guard interval in the subframe according to Format 0 to Format 4 in Table 1. Degree (or the number of sample points of the guard interval) TGT, calculate the maximum cell coverage radius supported by the corresponding format, or directly check Table 3.
  • the base station selects a random access preamble format that supports a maximum cell coverage radius greater than or equal to a preset cell coverage radius target value.
  • the system requires the cell coverage radius target value to be 60 km.
  • formatl or format3 may be selected here. , first assume that you choose formatl. If Format2 or Format3 is selected, although its TSEQ is 2*24576Ts in Table 1, for Equation 1, the substituted TSEQ is 24576Ts.
  • the terminal selects Ncs-Max from the preset set of cyclic shift amounts pre-configured in Table 2. From Table 2, the Ncs-Max in the restricted set is 237, and the NZC corresponding to formatl is 839. The corresponding TSEQ is 24576 Ts.
  • the terminal substitutes the Ncs-Max and the NZC and TSEQ corresponding to the formatl into the formula 1) to obtain:
  • the Ncs-Min required by the cell coverage radius target value is equal to 419.5 S37a, and the terminal selects a cyclic shift amount greater than or equal to Ncs-Min from the unrestricted set shown in Table 2.
  • Query Table 2 shows that only 839 is greater than 419.5. Therefore, the value of the cyclic shift amount is selected to be 839. Since the cell coverage radius CellRadiusl in Equation 1) is proportional to the value of Ncs, cyclic shift When the bit size is 419.5, the obtained cell coverage radius CellRadius1 is equal to the cell coverage radius target value. Therefore, when the cyclic shift amount is 839, the obtained cell coverage radius CellRadius1 must be greater than the cell coverage radius target value.
  • the terminal actually needs the number of mother codes for the cell network to be 12, observe Table 4, and randomly select one of the logical root sequence index groups corresponding to the number of mother codes to generate a mother code.
  • the terminal generates a random access signal according to the cyclic shift amount determined in step S37 and the mother code generated in step S38, and uses the random access signal to perform access.
  • the random access uses the formatl format and the value of the cyclic shift amount is 839.
  • the supported cell coverage radius reaches the target coverage radius target value of 60 km or more, and the TA estimation deviation is reduced.
  • the logical root sequence index may be randomly selected from the total mother code table or a part of the mother code with a small du value. For example, any one of the logical root sequence index groups corresponding to the number 16 of the mother code is randomly selected. .
  • Steps S36a to S37a may be replaced by the following steps S36b to S37b:
  • S36b preselecting a cyclic shift amount larger than Ncs-Max in the restricted set from the unrestricted set shown in Table 2, since the Ncs-Max in the restricted set is 237, this step can be from the unrestricted shown in Table 2.
  • the pre-selected amount of cyclic shift in the set is 279, 419, and 839.
  • the cell coverage radius CellRadius1 in Equation 1) is proportional to the value of the cell, the non-limiting set, after only the cyclic shift amount greater than 237 is substituted into the formula 1), it is possible to obtain a cell coverage radius target value greater than or equal to The cell coverage radius CellRadiusl.
  • the maximum cell coverage radius supported by formatl which is determined by the amount of cyclic shift, is approximately 39 km.
  • the maximum cell coverage radius supported by formatl which is determined by the amount of cyclic shift, is approximately 59 km.
  • the maximum cell coverage radius supported by formatl determined by the amount of cyclic shift is approximately
  • the obtained maximum cell coverage radius is greater than or equal to the cyclic shift amount of the cell coverage radius target value.
  • the embodiment of the present invention further provides a random access system.
  • the random access system includes: a base station 41 and a terminal 42 in a high-speed mobile environment, where the base station 41 is configured to The cell coverage radius target value is selected to select a random access preamble format; the terminal 42 is configured to determine, according to the selected random access preamble format, whether the restricted set of the pre-configured cyclic shift amount satisfies the requirement of the cell coverage radius target value.
  • the base station 41 may include a first calculation module 411 and a first selection module 412, where the first calculation module 411 is configured to calculate the corresponding format according to the length of the guard interval in the random access subframe in each random access preamble format.
  • the maximum cell coverage radius; the first comparison module 412 is configured to select a random access preamble format in which the supported maximum cell coverage radius is greater than or equal to the cell coverage radius target value.
  • the base station 41 may further include a mother code table configuration module 413, a mother code table search module 414, and a mother code table generation module 415.
  • the mother code table configuration module 413 is configured to pre-configure a mother code table, and the mother code table records the cell.
  • the mapping relationship between the number of mother codes required by the networking, the logical root sequence index group, and the cyclic shift value corresponding to the Doppler shift, and each logical root sequence index group includes and
  • the number of mother codes required by the cell networking is the same number of logical root sequence indexes; the mother code table search module
  • the mother code table generating module 415 configured to generate a corresponding mother code according to the selected logical root sequence index.
  • the terminal 42 may include a second calculating module 421 and a first determining module 422, where the second calculating module 421 is configured to calculate a maximum cell supported by the selected random access preamble format according to a maximum value of the cyclic shift amount in the restricted set.
  • the first determining module 422 is configured to determine that the restricted set does not satisfy the cell coverage radius target value, if the maximum cell coverage radius calculated by the second calculating module 421 is smaller than the cell coverage radius target value. Requirements.
  • the terminal 42 may further include a third calculating module 423 and a second selecting module 424, where the third calculating module 423 is configured to calculate, according to the cell coverage radius target value, that the cell coverage is satisfied in the selected random access preamble format.
  • the terminal 42 may further include a third selection module, a fourth calculation module, and a fourth selection module, where the third selection module is configured to pre-select from the non-restricted set to be greater than a cyclic shift in the restricted set At least one cyclic shift amount of the maximum value; a fourth calculating module, configured to separately calculate a maximum cell coverage radius supported by the selected random access preamble format according to the pre-selected cyclic shift amounts; fourth selecting module, setting In order to select from the pre-selected cyclic shift amounts, the obtained maximum cell coverage radius is greater than or equal to the cyclic shift amount of the cell coverage radius target value.
  • the third selection module is configured to pre-select from the non-restricted set to be greater than a cyclic shift in the restricted set At least one cyclic shift amount of the maximum value
  • a fourth calculating module configured to separately calculate a maximum cell coverage radius supported by the selected random access preamble format according to the pre-selected cyclic shift amounts
  • the terminal 42 may further include a random access signal generating module 425 and a random access module 426, and the random access signal generating module 425 is configured to generate random access according to the cyclic shift amount selected by the terminal 42 and the mother code pre-configured by the base station.
  • the signal, random access module 426 is configured to access using the random access signal.
  • the beneficial effects of the embodiments of the present invention are: when the terminal is in a high-speed mobile environment, if the preset set of cyclic shift amount is used, the cell coverage radius target value cannot be satisfied in the selected random access preamble format. a request, selecting, from a non-limiting set of pre-configured cyclic shift amounts, a cyclic shift amount that satisfies a requirement of the cell coverage radius target value, and performing random access signals according to the cyclic shift amount and the pre-configured mother code generate. In this way, without changing the frame structure and system processing, the high-speed movement of the terminal is satisfied, and a large cell coverage radius can also be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种高速移动环境下终端的随机接入方法及随机接入系统,其中,方法包括根据预设的小区覆盖半径目标值选择随机接入前导格式;判断所选随机接入前导格式下,使用预先配置的循环移位量的限制集合是否满足所述小区覆盖半径目标值的要求;若不满足,则从预先配置的循环移位量的非限制集合中选择满足所述小区覆盖半径目标值要求的循环移位量;根据所述循环移位量和预先配置的母码生成随机接入信号,使用所述随机接入信号进行接入。本发明实施例通过以上技术方案,提供一种更加完善的高速移动环境下终端的随机接入方法及随机接入系统。

Description

一种高速移动环境下终端的随机接入方法及随机接入系统
技术领域
本发明涉及通信领域, 尤其涉及一种高速移动环境下终端的随机接入方 法及随机接入系统。
背景技术
在 LTE(Long Term Evolution , 长期演进)系统中, 随机接入技术是通信系 统中用户终端(User Equipment,简称 UE )接入控制的一项重要技术。 LTE 的 随机接入前导普遍使用的是 ZC ( Zadoff-Chu )序列, 随机接入前导码是基于 ZC序列通过选取不同的循环移位^ ί汙生的。 随机接入子帧由三部分组成, 分别 是 CP(Cyclic Prefix, 循环嵌缀)、 前导序列 ( Sequence )和 GT(Guard Time , 保护间隔;), 如图 1所示。
现有 LTE系统的 PRACH支持五种随机接入前导格式, 分别是 FormatO 至 Format4 ,其中 FDD( Frequency Division Duplexing )支持 formatO至 format3 , TDD ( Time Division Duplexing)支持 formatO至 format 4, 不同的随机接入前导 格式对应不同的 CP长度( TCP ) 、 Sequence长度(或者说前导序列的釆样点 数目, 简称 TSEQ )和 GT长度(或者说保护间隔的釆样点数目, 简称 TGT ) 。 目前 LTE系统中 TDD模式所支持的随机接入前导格式的种类, 以及各格式 对应的 TCP、 TSEQ, TGT如表 1所示。
表 1
Figure imgf000003_0001
在表 1所示的随机接入前导格式中 , Format 0至 Format 3在普通上行子 帧中传输, ZC序列的长度(NZC )为 839, Format 4在 UpPTS内传输, NZC 为 139。
现有 LTE系统中, 配置了各随机接入前导格式下循环移位量( NCS ) 的 取值, 以 Format 0至 Format 3为例, 配置有循环移位量( NCS ) 集合, 分为 限制集合和非限制集合,对于 Format 0至 Format 3 , NCS的取值如表 2所示, 其中非限制集合中的 0表示 839。
表 2
Figure imgf000004_0001
现有 LTE系统为了对抗终端的高速移动所产生的频偏, 使用了循环移位 限制,即当终端处于高速移动环境下时,仅允许使用表 2中限制集合中的 NCS 取值。 而限制集合中的 NCS取值普遍较小, 最大才只有 237, 这样的 NCS 取值决定了较小的小区覆盖半径。 因此, 现有的随机接入技术不能同时满足 终端的高速移动和较大的小区覆盖半径的需求。 发明内容
本发明实施例提供一种更加完善的高速移动环境下终端的随机接入方法 及随机接入系统, 以解决终端在高速移动下能够得到一个较大的小区覆盖半 径的技术问题。
为解决上述技术问题, 本发明实施例釆取以下技术方案。
一种高速移动环境下终端的随机接入方法, 包括: 根据预设的小区覆盖 半径目标值选择随机接入前导格式; 判断所选随机接入前导格式下, 使用预 先配置的循环移位量的限制集合是否满足所述小区覆盖半径目标值的要求; 若否, 则从预先配置的循环移位量的非限制集合中选择满足所述小区覆盖半 径目标值要求的循环移位量; 根据所述循环移位量和预先配置的母码生成随 机接入信号, 使用所述随机接入信号进行接入。
可选地, 根据预设的小区覆盖半径目标值选择随机接入前导格式的步骤 包括: 根据各随机接入前导格式下随机接入子帧中保护间隔的长度, 计算相 应格式所支持的最大小区覆盖半径; 选择所支持的最大小区覆盖半径大于或 等于所述小区覆盖半径目标值的随机接入前导格式。
可选地, 判断所选随机接入前导格式下, 使用预先配置的循环移位量的 限制集合是否满足所述小区覆盖半径目标值的要求的步骤包括: 根据所述限 制集合中的循环移位量最大值计算所选随机接入前导格式所支持的最大小区 覆盖半径; 若计算得到的最大小区覆盖半径小于所述小区覆盖半径目标值, 则所述限制集合不满足所述小区覆盖半径目标值的要求。
可选地, 从预先配置的循环移位量的非限制集合中选择满足所述小区覆 盖半径目标值要求的循环移位量的步骤包括:根据所述小区覆盖半径目标值, 计算所选随机接入前导格式下满足所述小区覆盖半径目标值要求的循环移位 量最小值; 从所述非限制集合中选择大于或等于所述最小值的循环移位量。
可选地, 从预先配置的循环移位量的非限制集合中选择满足所述小区覆 盖半径目标值要求的循环移位量的步骤包括: 从所述非限制集合中预选出大 于所述限制集合中的循环移位量最大值的至少一个循环移位量; 分别根据预 选出的各循环移位量计算所选随机接入前导格式所支持的最大小区覆盖半 径; 从预选出的循环移位量中, 选择所得到的最大小区覆盖半径大于或等于 所述小区覆盖半径目标值的循环移位量。
可选地,根据所述循环移位量和预先配置的母码生成随机接入信号之前, 还包括母码配置步骤, 包括: 预先配置母码表, 所述母码表记录小区组网需 要的母码个数、 逻辑根序列索引组和多普勒频移对应的循环移位值之间的映 射关系, 每个逻辑根序列索引组中包括与所述小区组网需要的母码个数相同 数目的逻辑根序列索引;
根据实际小区组网需要的母码个数, 从所述母码表中查找对应的逻辑根 序列索引组, 从该逻辑根序列索引组选择一个逻辑根序列索引;
根据所选的逻辑根序列索引生成相应的母码。
一种随机接入系统, 包括: 基站和高速移动环境下的终端, 其中, 所述 基站, 设置为根据预设的小区覆盖半径目标值选择随机接入前导格式; 所述 终端, 设置为判断所选随机接入前导格式下, 使用预先配置的循环移位量的 限制集合是否满足所述小区覆盖半径目标值的要求; 若不满足所述小区覆盖 半径目标值的要求, 则从预先配置的循环移位量的非限制集合中选择满足所 述小区覆盖半径目标值要求的循环移位量; 根据所述循环移位量和预先配置 的母码生成随机接入信号, 使用所述随机接入信号进行接入。
可选地, 所述基站包括第一计算模块和第一选择模块, 其中, 所述第一 计算模块, 设置为根据各随机接入前导格式下随机接入子帧中保护间隔的长 度, 计算相应格式所支持的最大小区覆盖半径; 所述第一比较模块, 设置为 选择所支持的最大小区覆盖半径大于或等于所述小区覆盖半径目标值的随机 接入前导格式。
可选地, 所述终端包括第二计算模块和第一判断模块, 其中, 所述第二 计算模块, 设置为根据所述限制集合中的循环移位量最大值计算所选随机接 入前导格式所支持的最大小区覆盖半径; 所述第一判断模块, 设置为在所述 第二计算模块计算得到的最大小区覆盖半径小于所述小区覆盖半径目标值的 条件下, 判断所述限制集合不满足所述小区覆盖半径目标值的要求。
可选地, 所述终端包括第三计算模块和第二选择模块, 其中, 所述第三 计算模块, 设置为根据所述小区覆盖半径目标值, 计算所选随机接入前导格 式下满足所述小区覆盖半径目标值要求的循环移位量最小值; 所述第二选择 模块,设置为从所述非限制集合中选择大于或等于所述最小值的循环移位量。
可选地, 所述终端包括第三选择模块、 第四计算模块和第四选择模块, 其中, 所述第三选择模块, 设置为从所述非限制集合中预选出大于所述限制 集合中的循环移位量最大值的至少一个循环移位量; 所述第四计算模块, 设 置为根据预选出的各循环移位量分别计算所选随机接入前导格式所支持的最 大小区覆盖半径; 所述第四选择模块, 设置为从预选出的循环移位量中, 选 择所得到的最大小区覆盖半径大于或等于所述小区覆盖半径目标值的循环移 位量。
可选地, 所述基站还包括母码表配置模块、 母码表查找模块和母码表生 成模块, 其中, 所述母码表配置模块, 设置为预先配置母码表, 所述母码表 记录小区组网需要的母码个数、 逻辑根序列索引组和多普勒频移对应的循环 移位值之间的映射关系, 每个逻辑根序列索引组中包括与所述小区组网需要 的母码个数相同数目的逻辑根序列索引;
所述母码表查找模块, 设置为根据实际小区组网需要的母码个数, 从所 述母码表中查找对应的逻辑根序列索引组, 从该逻辑根序列索引组选择一个 逻辑根序列索引;
所述母码表生成模块, 设置为根据所选的逻辑根序列索引生成相应的母 码。
本发明实施例的有益效果是: 当终端处于高速移动环境下时, 在选定的 随机接入前导格式下如果使用预先配置的循环移位量的限制集合不能满足小 区覆盖半径目标值的要求, 则从预先配置的循环移位量的非限制集合中选择 满足该小区覆盖半径目标值要求的循环移位量, 根据该循环移位量和预先配 置的母码进行随机接入信号的生成。 这样在不改变帧结构及系统处理的前提 下, 满足了终端的高速移动, 也能够得到一个较大的小区覆盖半径。 附图概述
图 1为随机接入子帧的结构示意图;
图 2为本申请一实施例提供的高速移动环境下终端的随机接入方法的流 程图;
图 3为本申请另一实施例提供的高速移动环境下终端的随机接入方法的 流程图;
图 4为本申请一实施例提供的随机接入系统的示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例中: 当终端处于高速移动环境下时, 在选定的随机接入前 导格式下如果使用预先配置的循环移位量的限制集合不能满足小区覆盖半径 目标值的要求, 则从预先配置的循环移位量的非限制集合中选择满足该小区 覆盖半径目标值要求的循环移位量, 根据该循环移位量和预先配置的母码进 行随机接入信号的生成。 本发明实施例首先需要根据实际情况设定小区覆盖 半径目标值和小区组网需要的母码, 小区覆盖半径目标值用于决定循环移位 量的选取,小区组网需要的母码的配置遵循以下原则:使用 du值较小的母码, 且相邻小区母码不重复以减少临区干 4尤。 对于 Format 0至 Format 3而言, 本 发明实施例中, 预先配置的循环移位量的限制集合、 非限制集合包括但不局 限于表 2所示, 表 2所示的限制集合为相关接入技术中应用于终端高速移动 环境下的 NCS取值,非限制集合为相关接入技术中应用于终端低速移动环境 下的 NCS取值。
图 2为本申请一实施例提供的高速移动环境下终端的随机接入方法, 根 据实际情况设定小区覆盖半径目标值和小区组网需要的母码之后, 包括以下 S21至 S24:
S21、 基站根据预设的小区覆盖半径目标值选择随机接入前导格式。 522、终端判断所选随机接入前导格式下,使用预先配置的循环移位量的 限制集合是否满足所述小区覆盖半径目标值的要求;若不满足,进入步骤 S23。
523、终端从预先配置的循环移位量的非限制集合中选择满足该小区覆盖 半径目标值要求的循环移位量;
S24、 终端根据选出的循环移位量和预先配置的母码生成随机接入信号, 使用所述随机接入信号进行接入。
可选, 若上述流程中, 步骤 S22的判断结果为使用预先配置的循环移位 量的限制集合满足该小区覆盖半径目标值的要求, 则还可包括以下步骤:
S25、终端从该限制集合中选择满足该小区覆盖半径目标值要求的循环移 位量, 之后进入步骤 S24。
步骤 S23包括: 从非限制集合中选择任一满足该小区覆盖半径目标值要 求的循环移位量, 或者从非限制集合中选择满足该小区覆盖半径目标值要求 且最小的循环移位量。 同样, 步骤 S25包括: 从该限制集合中选择任一满足 该小区覆盖半径目标值要求的循环移位量, 或者从该限制集合中选择满足该 小区覆盖半径目标值要求且最小的循环移位量。
小区覆盖半径与序列的循环移位量和 GT有关。 假设由序列的循环移位 量决定的小区覆盖半径为 CellRadiusl , 由 GT 决定的小区覆盖半径为 CellRadius2 , 那么由序列的循环移位量和 GT 共同决定的小区覆盖半径 CellRadius 为 : CellRadius = min(CellRadiusl,CellRadius2) , 即取 CellRadiusl 与 CellRadius2中的较小者。 其中, 由序列的循环移位量决定的小区覆盖半径的计算公式为:
CellRadiusl = 0.5x— Twn x °'°l x3x\05km / s 公式 1 )
Nzc SEQ 3072007; 循环移位量决定了小区边缘用户能否区分不同的循环移位窗, 循环移位 量的选取必须保证, 小区边缘用户的前导序列和本地序列相关峰值落在该循 环移位量对应 的 时 间 窗 内 , 该 时 间 窗 的 长度为 Τ^ , 且 T^= ^x x^^。 由于下行同步完成后, 到达 UE的时间基准已经有 "1的延时, UE上发随机接入子帧到基站后, 又有" 2的延时, D = D\-D1 , 所以一个循环移位对应的时间窗 T^要吸收两个延时 ( 2D ) , 故所支持的小 区半径同样要减半。 所以, 由1^决定的小区覆盖半径的计算公式可以为: CellRadms^ O.Sx^xSxlO5^/, 将公式 τ = χ7 χ^1^代入公式
Ncs Nzc SEQ 3072007;
CellRadiusl = 0.5x7^ x3xl05Am , 则得到公式 1 ) 。 公式 1 )中, NZC为 ZC序列的长度, 对于表 1中的 Format 0至 Format 3 而言, NZC为 839,对于 Format 4, NZC为 139。 TSEQ 为 Sequence长度(或 者说前导序列的釆样点数目 ) , 对于任一随机接入前导格式而言, 其取值是 已知的,如表 1所示,虽然在表 1中 Format2和 Format3的 TSEQ为 2*24576Ts, 其实质是重复了两个 Preamble块, 代入公式 1时, Format 0至 Format 3的 TSEQ均取 24576Ts, Format 4的 TSEQ取 4096Ts, NCS为循环移位量, 对于 任一随机接入前导格式, 如表 2所示, 其取值有多个, 需要选择其中一个。 因此, 当选定随机接入前导格式之后, 公式 1) 中的 NZC和 TSEQ均为已知 数, 只有 Ncs 和小区覆盖半径 CellRadiusl为未知数, 而且小区覆盖半径
CellRadiusl与 Ncs的取值成正比。
由 GT决定的小区覆盖半径的计算公式可以为:
Cell adius2 = 0.5 χ ΤΓΤ x °01s x3xl05Jtm/s 公式 2 )
307200TS 公式 2) 中, TGT为随机接入子帧中保护间隔的长度(或者说保护间隔 的釆样点数目 ) , 对于任一随机接入前导格式而言, 其取值是已知的, 如表 1所示: Format 0对应的 TGT的取值为 2976Ts、 Format 1对应的 TGT的取值 为 15840Ts、 Format 2对应的 TGT的取值为 6048Ts、 Format 3对应的 TGT的 取值为 21984Ts、 Format 4对应的 TGT的取值为 614Ts。 因此, 根据各随机 接入前导格式对应的 TGT, 便可计算出各随机接入前导格式所支持的小区覆 盖半径 CellRadius2。 由此, 步骤 S21具体可以为:
S211、 基站根据各随机接入前导格式下随机接入子帧中保护间隔的长度 (或者说保护间隔的釆样点数目 ) TGT, 计算相应格式所支持的最大小区覆 盖半径。
将表 1中各随机接入前导格式所对应的 TGT的取值代入按照公式 2 ) , 分别计算出 Format 0至 Format 4所支持的最大小区覆盖半径, 计算结果如表 3所示:
表 3
Figure imgf000011_0001
S212、 基站选择所支持的最大小区覆盖半径大于或等于预设的小区覆盖 半径目标值的随机接入前导格式。
以表 3示出的各随机接入前导格式所支持的最大小区覆盖半径为例, 假 设预设的小区覆盖半径目标值为 60km,那么只有 Format 1和 Format 3所支持 的最大小区覆盖半径满足以下条件: 大于或等于 60km, 因此, 步骤 S212可 以选择 Format 1和 Format 3中的任一种。
由公式 1 )可知, 当选定随机接入前导格式之后, 公式 1 ) 中的 NZC和
TSEQ均为已知数, 只有 Ncs和小区覆盖半径 CellRadiusl为未知数, 而且小 区覆盖半径 CellRadiusl与 的取值成正比。 因此, 对于限制集合而言, 若根 据限制集合中的循环移位量最大值 ( Ncs-Max )求得的小区覆盖半径 CellRadiusl 不能达到预设的小区覆盖半径目标值, 那么该限制集合中的其他循环移位量 均不能使得小区覆盖半径达到该小区覆盖半径目标值。 因此, 步骤 S22判断 步骤 S21所选的格式下, 使用预先配置的循环移位量的限制集合是否满足小 区覆盖半径目标值要求的实现方法具体可以为:
S221、 终端从该限制集合中选出 Ncs-Max。
S222、 终端将所述 Ncs-Max、 步骤 S21所选的随机接入前导格式对应的
NZC 和 TSEQ 代入公式 1 ) , 求取对应于所述 Ncs-Max 的小区覆盖半径 CellRadiusl。
S223、 终端判断步骤 S222求得的小区覆盖半径 CellRadiusl是否小于预设 的小区覆盖半径目标值, 若 CellRadiusl小于预设的小区覆盖半径目标值, 则说 明该限制集合中所有的循环移位量均不能使得小区覆盖半径达到目标, 即该 限制集合不满足该小区覆盖半径目标值的要求, 进入步骤 S23; 若 CellRadiusl 不小于预设的小区覆盖半径目标值, 则说明该限制集合中还存在满足该小区 覆盖半径目标值要求的循环移位量, 即该限制集合满足该小区覆盖半径目标 值的要求, 进入步骤 S25。
步骤 S23从预先配置的循环移位量的非限制集合中选择满足该小区覆盖
其中一种方式包括 S231 a和 S232a:
S231a、终端将小区覆盖半径目标值、 步骤 S21所选的随机接入前导格式 对应的 NZC和 TSEQ代入公式 1 ) , 计算所选随机接入前导格式下满足该小 区覆盖半径目标值要求的 Ncs-Min (循环移位量最小值 )
S232a、终端从非限制集合中选择大于或等于 Ncs-Min的循环移位量。 由 于公式 1 ) 中小区覆盖半径 CellRadiusl与 的取值成正比, 因此, 对于非限 制集合而言, 大于或等于 Ncs-Min的任一循环移位量, 所求得的小区覆盖半 径 CellRadiusl均能大于或等于小区覆盖半径目标值。 另一种方式包括 S231b、 S232b和 S233b:
S231b、 终端从非限制集合中预选出大于限制集合中的 Ncs-Max的循环 移位量, 此步骤预选出的循环移位量可能是一个或多个。
由于公式 1 ) 中小区覆盖半径 CellRadiusl与 的取值成正比, 因此, 对 于非限制集合而言, 只有大于 Ncs-Max的循环移位量代入公式 1 )之后, 才 可能得到大于或等于小区覆盖半径目标值的小区覆盖半径 CellRadiusl。
S232b、终端对于所预选出的各循环移位量, 结合步骤 S21所选的随机接 入前导格式对应的 NZC和 TSEQ代入公式 1 ) , 计算循环移位量为当前取值 时, 所选随机接入前导格式所支持的最大小区覆盖半径;
S233b、终端从预选出的循环移位量中,选择所得到的最大小区覆盖半径 大于或等于该小区覆盖半径目标值的循环移位量。
同样, 步骤 S25从该限制集合中选择满足该小区覆盖半径目标值要求的 循环移位量的方法可参考上述步骤 S231至 S232, 或者 S231b至 S233b。
在另一实施例中, 步骤 S24之前, 还可以包括以下母码配置步骤: 步骤 A、 终端预先配置母码表, 该母码表记录小区组网需要的母码个数、 逻辑根序列索引组和多普勒频移对应的循环移位值之间的映射关系。 如表 4 所示。
步骤 B、 终端根据实际小区组网需要的母码个数, 从所述母码表中查找 对应的逻辑根序列索引组,从该逻辑根序列索引组选择一个逻辑根序列索引; 步骤 C、 终端根据所选的逻辑根序列索引生成相应的母码。
表 4
Figure imgf000013_0001
16 1 4 5 6 7 8 2 3 22 23 6 7 8 9 2 3 4 5 12 13 826 827 830 831
列中母码个数相同, 以母码个数 6为例, 对应的逻辑根序列索引组包括 6个 逻辑根序列索引,分别是 "22" 、 "23" 、 "826" 、 "827" 、 "830" 、 "831 " 。
表 4仅示出总母码表中 du值较小的部分。在高速移动模式下系统会产生 大频偏, 随机接入 Z 关峰便会存在 du/-du的固定偏移, 根据 3GPP
TS 36.21 1协议规定:
Figure imgf000014_0001
- P otherwise , 且 ( )mod Nzc = 1 , 为了减小 峰值偏移引起的误差, 可通过选择母码取值, 来减小 TA ( Time Adjustment, 时域校正)估计偏差。 由于当选择固定母码时, 会有一个固定 值与之对应, 因此, 步骤 B之前, 可首先遍历总母码表选择 ^值较小的部分, 步骤 B可从 值较小的部分母码中选择母码, 这样在不改变现有帧格式及处理方式的前 提下, 满足了 UE的高速移动环境, 扩大了小区覆盖半径, 而且减小了 TA估 计偏差。 因此, 实际应用中, 当 UE需要接入时, 有以下几种选择母码的方 式, 如: 直接从总母码表随机的选取一个逻辑根序列索引生成母码; 或者根 据实际小区组网需要的母码个数, 从总母码表中查找对应的逻辑根序列索引 组, 从该逻辑根序列索引组选择一个逻辑根序列索引生成母码; 或者先从总 母码表中选择 du值较小的部分, 再从 du值较小的部分母码中随机的选取一 个逻辑根序列索引生成母码; 或者, 优选的, 先从总母码表中选择 du值较小 的部分, 再根据实际小区组网需要的母码个数, 从 du值较小的部分母码中查 找对应的逻辑根序列索引组, 从该逻辑根序列索引组选择一个逻辑根序列索 引生成母码。
生成母码之后, 根据步骤 S23或步骤 S25中得到的循环移位量和该母码 生成随机接入信号, 进行接入。
下面以实现小区覆盖半径目标值为 60km的随机接入为例进行描述, 随 机接入过程如图 3所示, 包括:
S31、基站根据表 1中 Format 0至 Format 4随机接入子帧中保护间隔的长 度(或者说保护间隔的釆样点数目 ) TGT , 计算相应格式所支持的最大小区 覆盖半径, 或者直接查表 3。
532、基站选择所支持的最大小区覆盖半径大于或等于预设的小区覆盖半 径目标值的随机接入前导格式。 该系统要求小区覆盖半径目标值为 60km, 根 据表 3所示的不同格式所支持的小区覆盖半径, 只有 formatl和 format3所支 持的最大小区覆盖半径大于或等于 60km, 因此此处可选 formatl或 format3 , 先假定选择 formatl。 如果选择的是 Format2或 Format3 , 虽然表 1中其 TSEQ 为 2*24576Ts , 但对于公式 1而言, 代入的 TSEQ为 24576Ts。
533、 终端从表 2中预先配置的循环移位量的限制集合中选出 Ncs-Max, 由表 2可知限制集合中的 Ncs-Max为 237 , formatl对应的 NZC为 839 , 查找 表 1可知 formatl对应的 TSEQ为 24576Ts。
534、 终端将上述 Ncs-Max、 formatl对应的 NZC和 TSEQ代入公式 1 ) , 得到:
CellRadiusl = 0.5x— X 24576T x °'°ls x3xl 05 n / s ^ 33
839 s 3072007; 由此可知, 求得对应于所述 Ncs-Max 的小区覆盖半径 CellRadiusl大约为
33km,
535、 由于 33 km < 60 km, 说明该限制集合中所有的循环移位量均不能 使得小区覆盖半径达到目标, 即该限制集合不满足该小区覆盖半径目标值的 要求, 进入步骤 S36a。 S 36 a、终端将小区覆盖半径目标值、步骤 S32所选的 formatl对应的 NZC 和 TSEQ 代入公式 1 ) , 即将小区覆盖半径目标值 60 km、 NZC=839、 TSEQ=24576Ts , 代入公式 1 ) , 得到:
60km = 0.5 X Ncs"Mn x 24576T x ° °ls x3 x\05km / s , 计算 formatl下满足该
839 s 3072007;
小区覆盖半径目标值要求的 Ncs-Min等于 419.5 S37a、 终端从表 2所示的非限制集合中选择大于或等于 Ncs-Min的循环 移位量。 查询表 2可知只有 839大于 419.5 , 因此, 循环移位量的取值选择 839。 由于公式 1 ) 中小区覆盖半径 CellRadiusl与 Ncs的取值成正比, 循环移 位量取 419.5时,所求得的小区覆盖半径 CellRadiusl等于小区覆盖半径目标值, 因此, 循环移位量为 839时, 所求得的小区覆盖半径 CellRadiusl必能大于小区 覆盖半径目标值。
538、 终端若实际该小区组网需要的母码个数为 12, 观察表 4, 从母码个 数为 12所对应的逻辑根序列索引组中随机选择一个, 生成母码。
539、终端根据步骤 S37中确定的循环移位量和步骤 S38中生成的母码生 成随机接入信号, 使用该随机接入信号进行接入。
在该实施例中,随机接入使用 formatl格式并使循环移位量的取值为 839, 此时所支持的小区覆盖半径达到区覆盖半径目标值 60km之上,且减小 TA估 计偏差。
步骤 S38中还可以是从总母码表或 du值较小的部分母码中随机选择逻辑 根序列索引,比如随机选择的是母码个数 16所对应的逻辑根序列索引组中的 任一个。
步骤 S36a至 S37a可以釆用下述步骤 S36b至 S37b来替代:
S36b、 从表 2所示的非限制集合中预选出大于限制集合中的 Ncs-Max的 循环移位量, 由于限制集合中的 Ncs-Max为 237 , 此步骤可以从表 2所示的 非限制集合中预选出的循环移位量的取值为 279、 419和 839。
由于公式 1 ) 中小区覆盖半径 CellRadiusl与 的取值成正比, 因此, 对 于非限制集合而言, 只有大于 237的循环移位量代入公式 1 )之后, 才可能 得到大于或等于小区覆盖半径目标值的小区覆盖半径 CellRadiusl。
S37b、对于所预选出的各循环移位量,结合步骤 S32所选的 formatl对应 的 NZC和 TSEQ代入公式 1 ) , 计算所选随机接入前导格式所支持的最大小 区覆盖半径。
具体的, 将循环移位量 =279、 formatl对应的 NZC=839、 formatl对应的 TSEQ=24576Ts , 代 入 公 式 1 ) , 得 :
CellRadiusl = 0.5x—x24576T x ° °ls x3x\05km / s , 计算当循环移位量 =279
839 8 3072007;
时, 由循环移位量决定的 formatl所支持的最大小区覆盖半径约为 39 km。
将循环移位量 =419、 formatl 对应的 NZC=839、 formatl 对应的 TSEQ=24576Ts, 代入公式 1 ) , 得到:
CellRadiusl = 0.5χ— Χ 24576Τ χ ° °lS x3x\05km / s , 计算当循环移位量
839 s 3072007;
=419时,由循环移位量决定的 formatl所支持的最大小区覆盖半径约为 59km。
将循环移位量 =839、 formatl 对应的 NZC=839、 formatl 对应的 TSEQ=24576Ts, 代入公式 1 ) , 得到:
CellRadiusl = 0.5x—x24576T x ° °lS x3x\05km / s , 计算当循环移位量
839 8 3072007;
=839 时, 由循环移位量决定的 formatl 所支持的最大小区覆盖半径约为
120km。
从预选出的循环移位量中, 选择所得到的最大小区覆盖半径大于或等于 该小区覆盖半径目标值的循环移位量,该实施例中,只有循环移位量 =839时, formatl 所支持的最大小区覆盖半径才大于小区覆盖半径目标值 60km, 因此 选择循环移位量 =839。
本发明实施例还提供随机接入系统, 如图 4所示, 为本发明实施例提供 的随机接入系统, 包括: 基站 41和高速移动环境下的终端 42, 其中, 基站 41用于根据预设的小区覆盖半径目标值选择随机接入前导格式; 终端 42用 于判断所选随机接入前导格式下, 使用预先配置的循环移位量的限制集合是 否满足所述小区覆盖半径目标值的要求; 若否, 则从预先配置的循环移位量 的非限制集合中选择满足所述小区覆盖半径目标值要求的循环移位量; 根据 所述循环移位量和预先配置的母码生成随机接入信号, 使用所述随机接入信 号进行接入。
基站 41可以包括第一计算模块 411和第一选择模块 412, 其中, 第一计 算模块 411 , 设置为根据各随机接入前导格式下随机接入子帧中保护间隔的 长度, 计算相应格式所支持的最大小区覆盖半径; 第一比较模块 412, 设置 为选择所支持的最大小区覆盖半径大于或等于所述小区覆盖半径目标值的随 机接入前导格式。 基站 41还可以包括母码表配置模块 413、 母码表查找模块 414和母码表生成模块 415 , 其中, 母码表配置模块 413 , 设置为预先配置母 码表, 所述母码表记录小区组网需要的母码个数、 逻辑根序列索引组和多普 勒频移对应的循环移位值之间的映射关系, 每个逻辑根序列索引组中包括与 所述小区组网需要的母码个数相同数目的逻辑根序列索引; 母码表查找模块
414,设置为根据实际小区组网需要的母码个数从所述母码表中查找对应的逻 辑根序列索引组, 从该逻辑根序列索引组选择一个逻辑根序列索引; 母码表 生成模块 415 , 设置为根据所选的逻辑根序列索引生成相应的母码。
终端 42可以包括第二计算模块 421和第一判断模块 422, 其中, 第二计 算模块 421 , 设置为根据限制集合中的循环移位量最大值计算所选随机接入 前导格式所支持的最大小区覆盖半径; 第一判断模块 422, 设置为在第二计 算模块 421计算得到的最大小区覆盖半径小于所述小区覆盖半径目标值的条 件下, 判断所述限制集合不满足所述小区覆盖半径目标值的要求。
终端 42还可以包括第三计算模块 423和第二选择模块 424, 其中, 第三 计算模块 423 , 设置为根据所述小区覆盖半径目标值, 计算所选随机接入前 导格式下满足所述小区覆盖半径目标值要求的循环移位量最小值; 第二选择 模块 424 , 设置为从所述非限制集合中选择大于或等于所述最小值的循环移 位量。 或者, 终端 42还可以包括第三选择模块、 第四计算模块和第四选择模 块, 其中, 第三选择模块, 设置为从所述非限制集合中预选出大于所述限制 集合中的循环移位量最大值的至少一个循环移位量; 第四计算模块, 设置为 根据预选出的各循环移位量分别计算所选随机接入前导格式所支持的最大小 区覆盖半径; 第四选择模块, 设置为从预选出的循环移位量中, 选择所得到 的最大小区覆盖半径大于或等于所述小区覆盖半径目标值的循环移位量。
终端 42还可以包括随机接入信号生成模块 425和随机接入模块 426,随 机接入信号生成模块 425 , 设置为根据终端 42选择出的循环移位量和基站预 先配置的母码生成随机接入信号, 随机接入模块 426, 设置为使用所述随机 接入信号进行接入。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明实施例不限 制于任何特定形式的硬件和软件的结合。
以上实施例仅用以说明本申请的技术方案而非限制, 仅仅参照较佳实施 例对本申请进行了详细说明。 本领域的普通技术人员应当理解, 可以对本申 请的技术方案进行修改或者等同替换, 而不脱离本申请技术方案的精神和范 围, 均应涵盖在本申请的权利要求范围当中。
工业实用性 本发明实施例的有益效果是: 当终端处于高速移动环境下时, 在选定的 随机接入前导格式下如果使用预先配置的循环移位量的限制集合不能满足小 区覆盖半径目标值的要求, 则从预先配置的循环移位量的非限制集合中选择 满足该小区覆盖半径目标值要求的循环移位量, 根据该循环移位量和预先配 置的母码进行随机接入信号的生成。 这样在不改变帧结构及系统处理的前提 下, 满足了终端的高速移动, 也能够得到一个较大的小区覆盖半径。

Claims

权 利 要 求 书
1、 一种高速移动环境下终端的随机接入方法, 包括:
根据预设的小区覆盖半径目标值选择随机接入前导格式;
判断所选随机接入前导格式下, 使用预先配置的循环移位量的限制集合 是否满足所述小区覆盖半径目标值的要求, 若所述限制集合不满足所述小区 覆盖半径目标值的要求, 则从预先配置的循环移位量的非限制集合中选择满 足所述小区覆盖半径目标值要求的循环移位量;
根据所选择的循环移位量和预先配置的母码生成随机接入信号, 使用所 述随机接入信号进行接入。
2、 如权利要求 1所述的高速移动环境下 UE的随机接入方法, 其中, 根 据预设的小区覆盖半径目标值选择随机接入前导格式的步骤包括:
根据各随机接入前导格式下随机接入子帧中保护间隔的长度, 计算相应 格式所支持的最大小区覆盖半径;
选择所支持的最大小区覆盖半径大于或等于所述小区覆盖半径目标值的 随机接入前导格式。
3、 如权利要求 1所述的高速移动环境下 UE的随机接入方法, 其中, 判 断所选随机接入前导格式下, 使用预先配置的循环移位量的限制集合是否满 足所述小区覆盖半径目标值的要求的步骤包括:
根据所述限制集合中的循环移位量最大值计算所选随机接入前导格式所 支持的最大小区覆盖半径;
若计算得到的最大小区覆盖半径小于所述小区覆盖半径目标值, 则所述 限制集合不满足所述小区覆盖半径目标值的要求。
4、 如权利要求 1所述的高速移动环境下 UE的随机接入方法, 其中, 从 预先配置的循环移位量的非限制集合中选择满足所述小区覆盖半径目标值要 求的循环移位量的步骤包括:
根据所述小区覆盖半径目标值, 计算所选随机接入前导格式下满足所述 小区覆盖半径目标值要求的循环移位量最小值; 从所述非限制集合中选择大于或等于所述最小值的循环移位量。
5、 如权利要求 1所述的高速移动环境下 UE的随机接入方法, 其中, 从 预先配置的循环移位量的非限制集合中选择满足所述小区覆盖半径目标值要 求的循环移位量的步骤包括:
从所述非限制集合中预选出大于所述限制集合中的循环移位量最大值的 至少一个循环移位量;
分别根据预选出的各循环移位量计算所选随机接入前导格式所支持的最 大小区覆盖半径;
从预选出的循环移位量中, 选择所得到的最大小区覆盖半径大于或等于 所述小区覆盖半径目标值的循环移位量。
6、 如权利要求 1所述的高速移动环境下 UE的随机接入方法, 其中, 根 据所述循环移位量和预先配置的母码生成随机接入信号之前, 该方法还包括 母码配置步骤, 包括:
预先配置母码表, 所述母码表记录小区组网需要的母码个数、 逻辑根序 列索引组和多普勒频移对应的循环移位值之间的映射关系, 每个逻辑根序列 索引组中包括与所述小区组网需要的母码个数相同数目的逻辑根序列索引; 根据实际小区组网需要的母码个数, 从所述母码表中查找对应的逻辑根 序列索引组, 从该逻辑根序列索引组选择一个逻辑根序列索引;
根据所选的逻辑根序列索引生成相应的母码。
7、 一种随机接入系统, 包括: 基站和高速移动环境下的终端, 其中, 所述基站, 设置为根据预设的小区覆盖半径目标值选择随机接入前导格 式;
所述终端, 设置为判断所述基站选择的随机接入前导格式格式下, 使用 预先配置的循环移位量的限制集合是否满足所述小区覆盖半径目标值的要 求; 若所述限制集合不满足所述小区覆盖半径目标值的要求, 则从预先配置 的循环移位量的非限制集合中选择满足所述小区覆盖半径目标值要求的循环 移位量; 根据所选择的循环移位量和预先配置的母码生成随机接入信号, 使 用所述随机接入信号进行接入。
8、 如权利要求 7所述的随机接入系统, 其中, 所述基站包括第一计算模 块和第一选择模块, 其中,
所述第一计算模块, 设置为根据各随机接入前导格式下随机接入子帧中 保护间隔的长度, 计算相应格式所支持的最大小区覆盖半径;
所述第一比较模块, 设置为选择所支持的最大小区覆盖半径大于或等于 所述小区覆盖半径目标值的随机接入前导格式。
9、 如权利要求 7所述的随机接入系统, 其中, 所述终端包括第二计算模 块和第一判断模块, 其中,
所述第二计算模块, 设置为根据所述限制集合中的循环移位量最大值计 算所选随机接入前导格式所支持的最大小区覆盖半径;
所述第一判断模块, 设置为在所述第二计算模块计算得到的最大小区覆 盖半径小于所述小区覆盖半径目标值的条件下, 判断所述限制集合是否满足 所述小区覆盖半径目标值的要求。
10、 如权利要求 7所述的随机接入系统, 其中, 所述终端包括第三计算 模块和第二选择模块, 其中,
所述第三计算模块, 设置为根据所述小区覆盖半径目标值, 计算所选随 机接入前导格式下满足所述小区覆盖半径目标值要求的循环移位量最小值; 所述第二选择模块, 设置为从所述非限制集合中选择大于或等于所述最 小值的循环移位量。
11、 如权利要求 7所述的随机接入系统, 其中, 所述终端包括第三选择 模块、 第四计算模块和第四选择模块, 其中,
所述第三选择模块, 设备为从所述非限制集合中预选出大于所述限制集 合中的循环移位量最大值的至少一个循环移位量;
所述第四计算模块, 设置为根据预选出的各循环移位量分别计算所选随 机接入前导格式所支持的最大小区覆盖半径;
所述第四选择模块, 设置为从预选出的循环移位量中, 选择所得到的最 大小区覆盖半径大于或等于所述小区覆盖半径目标值的循环移位量。
12、 如权利要求 7所述的随机接入系统, 其中, 所述基站还包括母码表 配置模块、 母码表查找模块和母码表生成模块, 其中,
所述母码表配置模块, 设置为预先配置母码表, 所述母码表记录小区组 网需要的母码个数、 逻辑根序列索引组和多普勒频移对应的循环移位值之间 的映射关系, 每个逻辑根序列索引组中包括与所述小区组网需要的母码个数 相同数目的逻辑根序列索引;
所述母码表查找模块, 设置为根据实际小区组网需要的母码个数, 从所 述母码表中查找对应的逻辑根序列索引组, 从该逻辑根序列索引组选择一个 逻辑根序列索引;
所述母码表生成模块, 设置为根据所选的逻辑根序列索引生成相应的母 码。
PCT/CN2013/081023 2012-08-29 2013-08-07 一种高速移动环境下终端的随机接入方法及随机接入系统 WO2013185726A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/350,378 US9622268B2 (en) 2012-08-29 2013-08-07 Random access method and random access system for terminal in high-speed mobile environment
AU2013275770A AU2013275770B2 (en) 2012-08-29 2013-08-07 Random access method and random access system for terminal in high-speed mobile environment
RU2014114374/07A RU2572585C1 (ru) 2012-08-29 2013-08-07 Способ и система произвольного доступа для терминала в среде связи с высокоскоростными подвижными объектами
EP13803583.7A EP2750471B1 (en) 2012-08-29 2013-08-07 Random access method and random access system for terminal in high-speed mobile environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210312236.XA CN103634926B (zh) 2012-08-29 2012-08-29 一种高速移动环境下终端的随机接入方法及随机接入系统
CN201210312236.X 2012-08-29

Publications (2)

Publication Number Publication Date
WO2013185726A2 true WO2013185726A2 (zh) 2013-12-19
WO2013185726A3 WO2013185726A3 (zh) 2014-02-06

Family

ID=49758794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081023 WO2013185726A2 (zh) 2012-08-29 2013-08-07 一种高速移动环境下终端的随机接入方法及随机接入系统

Country Status (6)

Country Link
US (1) US9622268B2 (zh)
EP (1) EP2750471B1 (zh)
CN (1) CN103634926B (zh)
AU (1) AU2013275770B2 (zh)
RU (1) RU2572585C1 (zh)
WO (1) WO2013185726A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673680C1 (ru) * 2017-10-16 2018-11-29 Акционерное общество "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU2727155C1 (ru) * 2017-03-20 2020-07-21 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и пользовательское оборудование для передачи преамбулы произвольного доступа, способ и базовая станция для приема преамбулы произвольного доступа

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9801209B2 (en) * 2012-05-09 2017-10-24 Lg Electronics Inc. Method for transmitting random access preamble, and wireless device
EP3404860B1 (en) 2014-06-03 2023-08-02 Huawei Technologies Co., Ltd. Method for generating random access channel zc sequence, and apparatus
CN105208669B (zh) * 2014-06-27 2019-01-01 中国移动通信集团公司 Zc根序列的选择方法、装置、相关设备和系统
CN106162921A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 一种随机接入的方法、节点以及系统
CN109845378B (zh) * 2016-09-28 2023-10-10 索尼公司 下一代无线系统中的随机接入
CN115720380B (zh) * 2016-09-29 2023-08-22 华为技术有限公司 一种随机接入前导序列的生成方法及用户设备
KR102239615B1 (ko) 2016-10-26 2021-04-12 후아웨이 테크놀러지 컴퍼니 리미티드 랜덤 액세스 프리앰블 시퀀스 송신 방법, 장치 및 시스템
CN108243427B (zh) * 2016-12-27 2021-07-23 北京亿阳信通科技有限公司 一种半径参数的优化方法及装置
CN109475010B (zh) * 2017-09-08 2024-06-18 华为技术有限公司 信息传输的方法和装置
CN109510693B (zh) * 2017-09-11 2020-11-24 电信科学技术研究院 一种生成前导码序列的方法、基站及终端
US11147102B2 (en) 2018-04-23 2021-10-12 Qualcomm Incorporated Random access coverage extension in wireless communications
RU2690494C1 (ru) * 2018-09-11 2019-06-04 Акционерное общество "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
CN113497650B (zh) * 2020-04-02 2023-07-21 海能达通信股份有限公司 一种基于卫星通信的prach配置方法及基站、终端
US11683841B2 (en) * 2020-11-24 2023-06-20 Sprint Spectrum Llc Dynamic control of PRACH format based on RRC-connection-establishment-failure history

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299620A (zh) * 2007-04-30 2008-11-05 华为技术有限公司 确定零相关区长度集合的方法、装置及移动通信系统
KR101430462B1 (ko) * 2007-08-09 2014-08-19 엘지전자 주식회사 Rach 프리엠블 구성방법 및 전송방법
US20090073944A1 (en) * 2007-09-17 2009-03-19 Jing Jiang Restricted Cyclic Shift Configuration for Random Access Preambles in Wireless Networks
US8295229B2 (en) * 2007-10-10 2012-10-23 Lg Electronics Inc. High speed access system and method in a mobile communications network
WO2009149760A1 (en) 2008-06-12 2009-12-17 Telefonaktiebolaget Lm Ericsson (Publ) Random access mode control method and entity
CN101345577B (zh) * 2008-08-21 2014-03-12 中兴通讯股份有限公司 生成前导序列的方法及确定循环移位的方法
CN101873714A (zh) * 2009-04-27 2010-10-27 中兴通讯股份有限公司 一种物理随机接入信道循环移位限制的配置方法和系统
CN102316601B (zh) * 2011-09-28 2014-05-07 北京北方烽火科技有限公司 一种随机接入信道的前导序列检测方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2750471A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727155C1 (ru) * 2017-03-20 2020-07-21 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и пользовательское оборудование для передачи преамбулы произвольного доступа, способ и базовая станция для приема преамбулы произвольного доступа
US11184210B2 (en) 2017-03-20 2021-11-23 Lg Electronics Inc. Method and user equipment for transmitting random access preamble, and method and base station for receiving random access preamble
RU2673680C1 (ru) * 2017-10-16 2018-11-29 Акционерное общество "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами

Also Published As

Publication number Publication date
AU2013275770B2 (en) 2015-10-01
CN103634926B (zh) 2016-09-07
EP2750471B1 (en) 2018-02-28
CN103634926A (zh) 2014-03-12
RU2572585C1 (ru) 2016-01-20
US20150163829A1 (en) 2015-06-11
US9622268B2 (en) 2017-04-11
AU2013275770A1 (en) 2014-05-01
WO2013185726A3 (zh) 2014-02-06
EP2750471A2 (en) 2014-07-02
EP2750471A4 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2013185726A2 (zh) 一种高速移动环境下终端的随机接入方法及随机接入系统
TWI716790B (zh) 用於在毫米波基地台處進行波束整形和無線設備處的快速天線子陣列選擇的技術
KR101385495B1 (ko) 단말의 액세스 방법, 시스템 및 관련 장치
US20150003427A1 (en) Random access method, terminal, base station and system
CN108811119B (zh) 随机接入方法、设备和系统
US20170353951A1 (en) Preamble sets matched to uplink transmission conditions
US9674872B2 (en) Method, apparatus and system for processing very-high-speed random access
RU2493658C2 (ru) Способ и устройство для осуществления связи по радиоканалу
EP2171965B1 (en) Ip service configuration in wireless communications networks
WO2020151705A1 (zh) 随机接入资源的选择方法及终端
RU2758784C1 (ru) Пользовательское устройство
WO2015117283A1 (zh) Prach资源配置方法及资源配置的获取方法、基站及用户设备
TWM316584U (en) Wireless communication system for adjusting uplink transmission timing for long term evolution handover
RU2740706C1 (ru) Способ и устройство беспроводной связи
RU2725174C1 (ru) Способ передачи данных, оконечное устройство и сетевое устройство
CN111757503A (zh) 一种资源确定方法和装置
WO2013185671A1 (zh) 随机接入子帧格式的获得方法及接收机
WO2020052646A1 (zh) 生成参考信号的方法和装置
JP7496834B2 (ja) 2ステップのランダムアクセスのための方法、端末デバイス及びネットワークデバイス
WO2013185674A1 (zh) 随机接入方法及接收机
WO2014084910A1 (en) Techniques for roaming between heterogeneous wireless networks
WO2020030003A1 (zh) 随机接入的方法和装置
WO2010015150A1 (zh) 一种指示发送和发送前导序列的方法、系统及装置
JP2020532150A (ja) ランダムアクセスのための方法及び端末デバイス
TW201129203A (en) Method and apparatus for avoiding physical random access channel collisions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803583

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14350378

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013275770

Country of ref document: AU

Date of ref document: 20130807

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014114374

Country of ref document: RU

Kind code of ref document: A