WO2013185622A1 - 自动工作系统及其控制方法 - Google Patents

自动工作系统及其控制方法 Download PDF

Info

Publication number
WO2013185622A1
WO2013185622A1 PCT/CN2013/077198 CN2013077198W WO2013185622A1 WO 2013185622 A1 WO2013185622 A1 WO 2013185622A1 CN 2013077198 W CN2013077198 W CN 2013077198W WO 2013185622 A1 WO2013185622 A1 WO 2013185622A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
automatic
preset
boundary
working system
Prior art date
Application number
PCT/CN2013/077198
Other languages
English (en)
French (fr)
Inventor
田角峰
周昶
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2013185622A1 publication Critical patent/WO2013185622A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation

Definitions

  • the invention relates to an automatic working system.
  • the invention also relates to a method of controlling an automatic working system.
  • the automatic working system is usually used to control the walking path of the automatic walking device.
  • the automatic working system includes: a signal generating device that generates a preset boundary signal; a boundary line electrically connected to the signal generating device, the preset boundary signal is transmitted along the boundary line, and generates a preset magnetic field signal; the signal detecting unit, Provided in the automatic walking device, for detecting a magnetic field signal in the environment, and generating a detection signal; the signal processing unit is electrically connected to the signal detecting unit, receives the detection signal, and processes the detection signal to generate Processing signals;
  • the control unit receives the processing signal, and confirms the position of the automatic walking device relative to the boundary line according to the information represented by the processing signal, and controls the automatic walking device to timely change the walking direction of the automatic walking device when crossing the boundary line to prevent the automatic walking device from moving. Walk outside the boundary line so that the autonomous vehicle always works within the boundary line.
  • the preset boundary signal sent by the early automatic working system is a pulse signal.
  • the solution to the problem is to provide a boundary signal comprising at least two sine wave signals, the sine wave signal 14 having a frequency of 8K and the sine wave signal 15 having a frequency of 16K, respectively, to ensure two The relative relationship of signal stability, the two signals are synchronized from the starting point, and the phases of the two signals at the starting point are 90 degrees out of phase.
  • the signal detecting unit detects the signals 14' and 15' accordingly.
  • the signals 14 and 15 have a fixed correspondence when the signal 14 crosses the zero point, the signals 14' and 15' also have corresponding correspondences, and the control unit according to the signal 14
  • the signal 15' at the zero crossing is positive or negative to determine whether the autonomous walking device is in the boundary line or outside the boundary line, thereby effectively controlling the walking path of the autonomous walking device so that it always remains in the boundary line.
  • the sine wave signal has the advantage of strong anti-interference ability compared with the pulse signal, the automatic working system can effectively overcome the interference of the external signal, but in the actual use process, there is still interference problem.
  • the two automatic working systems are all composed of the above-mentioned automatic working system with a sine wave as a boundary signal.
  • the automatic walking device of the first automatic working system can detect the signal of the first boundary line, and A signal of the second boundary line can be detected. If the automatic walking device of the first automatic working system is in the first boundary line at this time, the second boundary line is outside the second boundary line.
  • the autonomous walking device detects both the signals 14' and 15' from the first boundary line, and the signal 15' is positive at the 14' zero crossing; at the same time, the signals 14' and 15 from the second boundary line are detected. ', and the signal 15' is negative at 14' zero crossing.
  • the control unit can not distinguish 14' and 15' from the first boundary line or the second boundary line when detecting the signals 14' and 15', and the control unit according to the signal 14 'When the zero-crossing signal 15' is positive or negative to judge whether the automatic walking equipment is inside or outside the boundary line, the judgment result is that the automatic walking equipment is both outside the boundary line and within the boundary line, causing chaos or even stopping of the automatic walking equipment. jobs.
  • the phase of the two signals at the starting point is 90 degrees out of phase.
  • the signal detection unit detects A' accordingly And ⁇ ' , and when signal A 'zero crossing, signal B ' is positive or negative.
  • the control unit determines whether the automatic walking device is within the boundary line or outside the boundary line according to the correspondence between the signals A' and B'.
  • the control unit does not distinguish whether the signals A and B are boundary signals according to the signals A 'and B ' it receives, so that even if the signals A and B are not boundary signals, the control unit will control the automatic walking device according to the information carried by the control unit. Walking paths lead to erroneous judgments.
  • the technical problem solved by the present invention is to provide a control method of an automatic working system, which can generate a boundary signal different from a signal in the environment according to a signal existing in the environment.
  • the technical solution of the present invention is: A control method of an automatic working system, the automatic working system comprising a signal generating device for delineating a boundary line of a working area for an automatic working system and transmitting a boundary signal to the boundary line And an automatic walking device working under the guidance of a boundary signal, wherein the automatic working system stores at least two preset parameters, the preset parameter sets a form of a boundary signal, and the automatic working system has a setting mode,
  • the automatic working system in the setting mode performs the following steps: a) receiving an environmental signal existing in the surrounding environment; b) determining whether the environmental signal includes a signal corresponding to the preset parameter; c) when step b) is YES, recording The preset parameter; d) selecting a preset parameter, the selected preset parameter is different from the recorded preset parameter, and the signal generating device generates a boundary signal according to the selected preset parameter.
  • the preset parameter is a preset code, and different preset codes correspond to different coding rules.
  • the boundary signals generated by the signal generating device according to different preset codes have different frequencies.
  • the preset parameter is a preset frequency.
  • step a) comprises the steps of: a) the autonomous walking device walking along the boundary line, a2) the autonomous walking device receiving the environmental signal during walking along the boundary line.
  • the automatic working system further stores at least one test parameter, where the test parameter is different from the preset parameter, in the step a), the boundary of the automatic walking device generated according to the test parameter Guided by the signal, walk along the boundary line.
  • the automatic working system further has an operating mode.
  • the signal generating device generates a boundary signal according to the preset parameter selected in the setting mode, and sends the boundary signal to the boundary line
  • the automatic walking device determines the relative working area according to the boundary signal. The position, walking in the working area, performing preset work, the automatic working system can switch between the working mode and the setting mode.
  • the automatic walking device determines that it is in the working area at the first position in the working area, and judges that it is outside the working area in the second position in the working area, the automatic working system switches to Set mode.
  • the automatic working system enters the setting mode when it is first started.
  • the automatic working system further comprises a resetting device, and when the resetting device is triggered, the automatic working system enters the setting mode.
  • the technical problem also solved by the present invention is: Providing an automatic working system that can generate a boundary signal different from an environmental signal according to an environmental signal existing in the environment.
  • an automatic working system comprising: a boundary line, defining a working area of the automatic working system; a signal generating device electrically connected to the boundary line and transmitting a boundary signal thereto
  • the automatic walking device operates under the guidance of the boundary signal;
  • the signal detecting unit is disposed on the automatic walking device;
  • the signal processing unit is electrically connected to the signal detecting unit;
  • the recording unit is electrically connected to the signal processing unit;
  • the control unit Electrically connected to the recording unit;
  • the automatic working system stores at least two preset parameters, the preset parameter sets a form of a boundary signal, and the automatic working system has a setting mode, and in the setting mode,
  • the signal detecting unit receives the ambient signal existing in the surrounding environment;
  • the signal processing unit determines, according to the signal transmitted by the signal detecting unit, whether the environment signal includes a signal corresponding to the preset parameter; and the signal processing unit determines that the environmental signal includes the preset parameter When the corresponding signal is recorded, the recording unit records the
  • the preset parameter is a preset code
  • different preset codes correspond to different coding rules.
  • the boundary signals generated by the signal generating device according to different preset codes have different frequencies.
  • the preset parameter is a preset frequency.
  • the automatic walking device walks along the boundary line under the guidance of the boundary signal, and the signal detecting unit receives the environmental signal in the surrounding environment during the walking of the automatic walking device along the boundary line.
  • the automatic working system further stores at least one test parameter, the test parameter is different from the preset parameter, and the automatic walking device walks along the boundary line under the guidance of the boundary signal generated according to the test parameter.
  • the automatic working system further has an operating mode.
  • the signal generating device generates a boundary signal according to the preset parameter selected in the setting mode, and sends the boundary signal to the boundary line
  • the automatic walking device determines the relative working area according to the boundary signal. The position, walking in the working area, performing preset work, the automatic working system can switch between the working mode and the setting mode.
  • the automatic walking device determines that it is in the working area at the first position in the working area, and judges that it is outside the working area in the second position in the working area, the automatic working system switches to Set mode.
  • the automatic working system enters the setting mode when it is first started.
  • the automatic working system further comprises a resetting device, and when the resetting device is triggered, the automatic working system enters the setting mode.
  • the beneficial effects of the present invention are as follows:
  • the automatic working system and the control method thereof provided by the invention can generate a boundary signal different from an environmental signal by recognizing an environmental signal existing in the environment, thereby avoiding interference of the environmental signal to the automatic working system, and improving the system. Anti-interference ability.
  • FIG. 1 is a schematic view of an automatic working system in accordance with a preferred embodiment of the present invention
  • Figure 2 is an environmental signal present around the automatic working system shown in Figure 1;
  • FIG. 3 is a circuit block diagram of the first preferred embodiment of the automatic walking device shown in Figure 1;
  • FIG. 4 is a circuit block diagram of the determination module shown in FIG. 3;
  • FIG. 5 is a signal conversion process of the environmental signal of the first preferred embodiment of the automatic working system shown in FIG. 1 flowing through the block diagram of the circuit shown in FIG. 3;
  • FIG. 6 is a signal group obtained after grouping the characteristic signals shown in FIG. 5;
  • Figure 7 is a block diagram of a signal transmission circuit between the automatic walking device and the signal generating device shown in Figure 1;
  • Figure 8 is a flow chart of the first preferred embodiment of the automatic working system shown in Figure 1;
  • Figure 9 is shown in Figure 1.
  • Figure 10 is a flow chart showing the operation of the second preferred embodiment of the automatic working system shown in Figure 1.
  • the automatic working system shown in Fig. 1 includes a signal generating device 6, an autonomous walking device 2, and a boundary line 3.
  • the boundary line 3 is used to divide a specific area into a work area 4 located within the boundary line 3 and a non-work area 5 located outside the boundary line 3.
  • the signal generating device 6 is electrically connected to the boundary line 3, the signal generating device 6 generates a preset boundary signal to the boundary line 3, and the boundary signal flows through the boundary line 3 to generate a preset magnetic field 7.
  • the automatic working system stores at least two preset parameters, and the preset parameters are used to set the side In the form of a boundary signal, the at least two preset parameters may be stored in the signal generating device 6, or may be stored in the autonomous walking device 2.
  • the automatic working system has a setting mode and an operating mode.
  • the setting mode the automatic working system can identify the preset parameters of the environmental signal according to the environmental signals existing in the surrounding environment, and select preset parameters different from the environmental signals. Finally, the boundary signal is generated according to the selected preset parameter, so that the generated boundary signal is different from the ambient signal; in the working mode, the signal generating device 6 generates the boundary signal according to the preset parameter selected in the setting mode, and the automatic walking device 2 is The preset operation is performed in the working area 4 under the guidance of the boundary signal, thereby avoiding interference of the environmental signal to the automatic working system in the working mode.
  • the following focuses on the circuit structure and operation of the automatic working system setting mode.
  • the autonomous walking apparatus 2 includes a signal detecting unit 8, a signal processing unit 10, a recording unit 12, and a control unit 14.
  • the signal detecting unit 8 is for detecting an environmental signal in the surrounding environment, and transmits the detected environmental signal to the signal processing unit 10 electrically connected thereto.
  • the signal processing unit 10 is electrically connected to the signal detecting unit 8. After receiving the signal transmitted by the signal detecting unit 8, it is determined whether the environment signal includes a signal corresponding to the preset parameter.
  • the recording unit 12 is electrically connected to the signal processing unit 10. When the signal processing unit 10 determines that the environment signal includes a signal corresponding to the preset parameter, the preset parameter is recorded.
  • the signal corresponding to the preset parameter included in the environmental signal may be a signal having a preset parameter or a signal having a corresponding relationship with the preset parameter, and the corresponding relationship may be through a specific The function relationship is determined.
  • the control unit 14 is electrically connected to the recording unit 12, selects a preset parameter, and sends the selected preset parameter to the signal generating device 6, and the selected preset parameter is different from the recorded preset parameter.
  • the signal generating means 6 generates a boundary signal based on the selected preset parameters.
  • control unit 14 sends the selected preset parameters to the signal generating device 6 may be wired or wireless; the signal processing unit 10, the recording unit 12, and the control One or all of the units 14 may be located within the autonomous vehicle 2, or on the signal generating device 6, or at any other location.
  • the signal detecting unit 8 detects all the signals existing in the surrounding environment, and transmits all the detected environmental signals to the signal processing unit 10, and then passes through the signal processing unit 10 to further transmit to the recording unit 12 and the control unit 14,
  • the preset parameter selected by the control unit 14 is different from the preset parameter of the environmental signal, and the signal generating device 6 according to the The boundary signal generated by the selected preset parameters is different from the signal already existing in the environment, thereby avoiding interference of the environmental signal to the automatic working system in the working mode.
  • the signal detecting unit 8 can only detect the environmental signal existing around it, that is, when the automatic walking device 2 is in a specific position in the working area 4, it can only detect the environmental signal around the specific position, Unable to detect environmental signals in the 3 - ⁇ range of the boundary line.
  • the control unit 14 In order to make the preset parameters selected by the control unit 14 different from all the environmental signals in the range of the boundary line 3, the automatic walking device 2 does not have the same boundary signal pair as the boundary signal in the entire working area 4. The operation is disturbed.
  • the automatic walking device 2 walks along the boundary line 3 under the guidance of the boundary signal sent by the signal generating device 6, and continuously detects the environmental signal during the walking, so that the signal detecting unit 8 can detect
  • the boundary line 3 - all existing environmental signals in the range of ⁇
  • the control unit 14 selects preset parameters according to all existing environmental signals in the boundary line 3 - ,, so that the selected preset parameters are different from all the boundaries in the boundary line 3 - ⁇ The preset parameters of the existing environmental signal.
  • the control unit 14 transmits the selection result to the signal generating device 6, and the signal generating device 6 generates a corresponding boundary signal based on the selected preset parameter of the control unit 14, so that the generated boundary signal is different from all the boundaries in the boundary line 3 - ⁇ The environmental signal avoids interference of the environmental signal to the automatic working system in the working mode.
  • the boundary signal has the same parameters as the stored preset parameters
  • the second option is The boundary signal has a different parameter than the stored preset parameters.
  • the automatic working system stores at least one test parameter
  • the test parameter is different from the stored preset parameter
  • the automatic walking device 2 leads along the boundary line under the guidance of the boundary signal generated according to the test parameter. 3 walk a trip.
  • the automatic The boundary signal of the working system is the same as the boundary signal of the adjacent automatic working system, which may cause the automatic working system to fail to complete the work along the boundary line 3.
  • the automatic working is performed.
  • the boundary signal of the system has different test parameters than the boundary parameters of the adjacent automatic working system, so that it can avoid the interference of the adjacent automatic working system and smoothly complete the work along the boundary.
  • the preset parameter sets the form of the boundary signal, including the frequency of the boundary signal and the boundary signal Related parameters such as the type and number of basic signals, and the time interval between adjacent basic signals. Different types of boundary signals are set based on different preset parameters. Therefore, different preset parameters stored in the automatic working system may respectively correspond to the frequency of the boundary signal, the type of the basic signal included in the boundary signal, the number of adjacent signals, and the adjacent basic signals. The parameters such as the time interval are set differently so that the form of the boundary signal corresponding to the different preset parameters is different.
  • the manner in which the signal processing unit 10 identifies whether the environment signal includes a signal corresponding to the preset parameter is different, in order to simplify the structure of the signal processing unit 10, different
  • the preset parameters only make different settings for the specific parameters of the boundary signal.
  • only the preset parameters are preset codes and preset frequencies are taken as an example for description.
  • the preset parameter is a preset code.
  • Different preset codes correspond to different encoding rules.
  • the boundary signals set according to different coding rules have different symbol combination forms, such as the boundary signal includes different symbol types, the number of symbols, the timing of the arrangement between the symbols, and the specific symbols have different Signal form, etc.
  • the following uses the preset code "1001" as an example to illustrate the meaning of each information of the above symbols.
  • the preset code "1001" contains two symbols, "0” and “1", respectively, and the number of symbols included is 4, respectively "1", "0", "0", "1"
  • the timing of the arrangement between the set symbols is that the symbol "1" appears first, then two adjacent symbols "0” appear, and finally a symbol "1" appears.
  • the preset code also implicitly sets the signal form that a particular symbol has, that is, the basic signal having what form has the symbol "0" and the symbol "1".
  • the signal form of the set symbol is arbitrary, and can be arbitrarily set according to the inventor's preference and the complexity of the circuit.
  • a sine wave signal having a frequency f0 may be used to represent a symbol "0"
  • a sine wave signal having a frequency fl may represent a symbol "1”
  • a sawtooth signal having a slope K0 may be used to represent a symbol "0”
  • a sawtooth signal with a slope of K1 represents a symbol "1”
  • a square wave signal consisting of a low level of the T1 time width, a high level of the T1 time width, and a low level of the T1 time width represents a symbol "0" "
  • a square wave signal consisting of a high level of the T1 time width and a low level of the 2*T1 time width represents the symbol "1" and the like.
  • Different preset codes may mean that the preset code contains different numbers of symbols, such as preset code “1” and preset code “ ⁇ ” respectively represent different preset codes; may also refer to symbols included in the preset code Different types, such as preset code “10” and preset code “11” respectively represent different preset codes; it can also mean that the arrangement timing of symbols is different, such as preset code "1001” and preset code “1100” respectively Representing different preset codes; it is also possible to point to the same symbol, and its signal form is different, such as using a sine wave signal with frequency f0 to represent symbol "0", a sine wave signal representative code with frequency fl
  • the preset code "10” of the element “1” represents the symbol “0” with respect to the sawtooth signal having the slope ⁇ 0, and the sawtooth signal having the slope K1 represents the preset code "10" of the symbol "1".
  • different preset codes can also be expressed by combining the above various differences. It can be understood by those skilled in the art that among the above-mentioned information of the preset encoding, the more different types, the more complicated the structure of the signal processing unit 10 is. In order to simplify the structure of the signal processing unit 10, different preset encodings are only The arrangement timing of symbols (the type of symbols appearing at a specific time point) is set differently, and the same setting is taken for the symbol type, the number, and the signal form of the symbol. Considering that in the actual working environment, the number of adjacent boundary systems is up to eight, and the different preset codes are uniformly set to include four symbols, up to two symbols, wherein the first symbol is "0.
  • the second symbol is "1", which can get 8 different preset codes "1000", “1001”, “1010”, “1011”, “1100”, which are the same as the first symbol. 1101” , "1110” , “1111”, so that adjacent automatic working systems have different boundary signals, each of which uses the same signal form to set the symbol "0" between the basic signals Correspondence relationship and the correspondence between the symbol "1" and the basic signal.
  • the square wave signal composed of the low level of the T1 time width, the high level of the T1 time width, and the low level of the T1 time width is represented by the encoding rule "0", by the T1 time.
  • the square wave signal composed of the high level of the width and the low level of the 2* ⁇ 1 time width represents the symbol "1" as an example.
  • the preset parameters are preset codes, and the symbol arrangement timings of the boundary signals set by different preset codes (that is, different kinds of symbols appear at a specific time point), the foregoing
  • the present invention will be described by taking a square wave signal having different timings to express different symbols as an example.
  • the signal processing unit 10 includes an identification module 16, a grouping module 18, and a judging module 20.
  • the identification module 16 is electrically connected to the signal detecting unit 8 to identify a point in time at which the basic signal appears in the environmental signal.
  • the grouping module 18 is electrically connected to the identification module 16, and groups the basic signals according to the time interval between the basic signals to generate a plurality of signal groups.
  • the judging module 20 is electrically connected to the grouping module 18 to determine whether the signal group has a preset encoding. When the signal processing unit 10 determines that the environmental signal contains a signal corresponding to the preset code, the recording unit 12 records the preset code.
  • the signal corresponding to the preset encoding included in the environmental signal may be a signal having a preset encoding or a signal having a corresponding relationship with the preset encoding, and the correspondence may be through a specific functional relationship. determine.
  • a signal corresponding to a preset code included in an environmental signal is a signal having a preset code as an example.
  • the identification module 16 recognizes the function of the time point at which the basic signal appears in the environmental signal, and can recognize This is achieved by the point in time at which a complete basic signal appears in the ambient signal, or by identifying the point in time at which the characteristic portion of the basic signal appears. In this embodiment, only the recognition module 16 identifies the time point at which the basic signal appears according to the time point at which the characteristic portion of the basic signal in the environmental signal appears.
  • the circuit component form of the signal recognition module 16 is introduced. As shown in FIG. 3, the identification module 16 includes an amplifier 160, a first comparator 162, and a second comparator 164.
  • the amplifier 160 is electrically connected to the signal detecting unit 8, and amplifies the environmental signal transmitted by the signal detecting unit 8, so as to facilitate the processing of the subsequent circuit, and the signal at this time still belongs to the analog signal.
  • the first comparator 162 and the second comparator 164 are electrically connected to the amplifier 160, and a signal representing the number of occurrences of the basic signal and the time point of occurrence is generated by the first comparator 162 and the second comparator 164.
  • the first comparator 162 is set as a high level comparator
  • the second comparator 164 is set as a low level comparator
  • the first comparator 162 has a first reference voltage RH
  • the second comparator 164 has a second reference.
  • the voltage RL, the first reference voltage RH is higher than the second reference voltage RL.
  • the first comparator 162 when the amplitude of the input signal is higher than the first reference voltage RH, the first comparator 162 outputs a high level signal, and conversely, when the amplitude of the input signal is lower than the first reference voltage RH The first comparator 162 outputs a low level signal.
  • the second comparator 164 when the amplitude of the input signal is higher than the second reference voltage RL, the second comparator 164 outputs a high level signal, and conversely, when the amplitude of the input signal is lower than the second reference voltage RL The second comparator 164 outputs a low level signal.
  • the high level signal and the low level signal respectively represent the number of occurrences of the portion of the basic signal whose amplitude is RH and the amplitude of RL and the time point of occurrence, and the subsequent circuit can know the number of occurrences of the basic signal and the occurrence of the basic signal. Time point.
  • the environmental signal includes the magnetic field 7 signal generated by the boundary signal of the automatic working system itself when flowing through the boundary line 3, and the magnetic field generated by the boundary signal of the surrounding automatic working system flowing through the boundary line 3
  • the signal therefore the main form of the environmental signal is in the form of a sine wave. As shown in FIG.
  • the process in which the ambient signal is a sine wave is amplified by the amplifier 160, and the first comparator 162 and the second comparator 164 generate a signal representing the number of occurrences of the basic signal and the time point of occurrence, wherein the environmental signal For the signal SC, the signal amplified by the amplifier 160 is the signal SA, the output signal of the first comparator 162 is the signal SH, and the output signal of the second comparator 164 is the signal SL.
  • the grouping module 18 is electrically connected to the first comparator 162 and the second comparator 164, and performs signals on the first comparator 162 and the second comparator 164, that is, the number of times the basic signal appears and the time point of occurrence. Grouping. Since the grouping module 18 receives both the output signal of the first comparator 162 and the output signal of the second comparator 164, the grouping module 18 first needs to select which of the comparator's output signals as the signals to be grouped, and then determines the grouping to be grouped. How signals are grouped.
  • the grouping module 18 selects the pair from the first comparator 162 or the second comparator according to the received sequence of the high level of the signals of the first comparator 162 and the second comparator 164.
  • the signal of 164 is used as the signal to be grouped. Specifically, when the signal output by the first comparator 162 first appears higher than the signal output by the second comparator 164, the grouping module 18 selects the output signal of the second comparator 164 as the signal to be grouped. Conversely, when the signal output by the second comparator 164 is higher than the signal output by the first comparator 162, the packet module 18 selects the output signal of the first comparator 162 as the signal to be grouped.
  • the grouping module 18 groups the grouping signals according to the time interval between the basic signals determined by the preset encoding stored in the automatic working system to generate a plurality of signal groups. Specifically, when the time interval of the previous signal and the latter signal is greater than a specific time interval, the grouping module 18 divides the previous signal and the latter signal into different signal groups. When the time interval between the current signal and the latter signal is less than a specific time interval, the grouping module 18 divides the previous signal and the latter signal into the same signal group. The grouping module 18 groups the received signals based on the above rules to obtain a number of signal groups. Fig.
  • the packet module 18 groups the signals to be grouped into a signal group when the time interval between the basic signals expressed by the preset codes is 100 uos.
  • the signal to be grouped is the signal SH, and the obtained signal group is the signal SZ1 and the signal SZ2.
  • the grouping module 18 can be an analog circuit, a digital circuit, or a software module that implements a grouping function, and the specific circuit of the grouping module 18 is not described.
  • the judging module 20 is electrically connected to the grouping module 18, receives the signal group transmitted by the grouping module 18, and determines whether the signal group has a preset encoding. Since the preset encoding sets the number of symbols, the type, the signal form, and the type of symbols appearing at a specific time point, based on this, the preset encoding sets the number of basic signals included in the boundary signal and the adjacent The time interval between the basic signals. Therefore, determining whether the signal group has a preset code can determine whether it has a preset code by judging the number of signals included in the signal group and the time interval between adjacent signals. As shown in FIG. 4, the determining module 20 includes a number determining circuit 202 and a time determining circuit 204.
  • the number determining circuit 202 is electrically connected to the identifying module 16, and the number determining circuit 202 determines the basic signals included in the signal group. Whether the number is the same as the number of basic signals determined by the preset code, the time judging circuit 204 is electrically connected to the identification module 16, and determines the time interval between the basic signals included in the signal group and the basic signal determined by the preset encoding. Whether the time interval is the same.
  • the signal group transmitted by the grouping module 18 can be simultaneously transmitted to the number judging circuit 202 and the time judging circuit 204, which respectively judge the number of basic signals included in the signal group and the time interval between adjacent basic signals.
  • the signal group may also be first passed to the number judgment circuit 202 for the number determination.
  • the signal is further transmitted to the time.
  • the inter-determination circuit 204 performs the determination of the time interval.
  • the signal group is first transmitted to the time judging circuit 204.
  • the data is transmitted to the number judging circuit 202 to determine whether the signal group has the preset code.
  • the signal group is first passed to the number judgment circuit 202 for the number determination.
  • the judgment result is YES, it is further transmitted to the time judgment circuit 204 for the judgment of the time interval.
  • the scheme is more preferable.
  • the judging module 20 When the determination result of the number judging circuit 202 and the time judging circuit 204 is YES, the judging module 20 outputs a signal indicating that the result is yes to the recording module, and the recording module records the preset code included in the signal group, and the preset of the recording is performed.
  • the code is passed to a control unit 14 that is electrically connected thereto.
  • the control unit 14 compares the recorded preset codes one by one with the preset codes stored by the automatic working system, thereby selecting a preset code different from the recorded preset codes, and transmitting the selected preset codes to the signal generating device. 6.
  • the signal generating means 6 generates a boundary signal based on the preset code transmitted from the control unit 14, whereby the generated boundary signal is different from the ambient signal in the surrounding environment, thereby preventing the automatic working system from being disturbed by the environmental signal in the operating mode.
  • the boundary signals generated by the signal generating means 6 according to different preset codes may have the same frequency or different frequencies. Compared with different preset codes, the boundary signals have the same frequency scheme. The scheme with different frequencies can further avoid the overlap of the automatic working system with the environmental signals during the working process, and play a better anti-interference effect.
  • the control unit 14 needs to transmit the selected preset code to the signal generating device 6, and there are various signal transmission modes between the two, and the signal can be transmitted through contact, for example, in the automatic walking.
  • a terminal is provided between the device 2 and the signal generating device 6, and the signal is transmitted through the electrical connection between the terminal and the terminal.
  • the signal transmission can also be realized in a non-contact manner, such as setting the signal transmitter and the signal receiver simultaneously on the autonomous walking device 2 and the signal generating device 6, respectively.
  • the signal transmitter on the autonomous walking device 2 is for transmitting a signal to the signal generating device 6, the signal receiver on the automatic walking device 2 is for receiving the signal transmitted by the signal generating device 6, and the signal transmitter on the signal generating device 6 is for automatically walking
  • the device 2 transmits a signal
  • the signal receiver on the signal generating device 6 is for receiving a signal transmitted by the autonomous walking device 2.
  • the docking terminal group 26 is disposed on the autonomous traveling device 2
  • the conductive terminal group 28 is disposed on the signal generating device 6, and the signal is transmitted through the electrical connection between the docking terminal group 26 and the conductive terminal group 28.
  • the automatic walking device 2 further includes a control unit 14 and a docking terminal.
  • the first signal conversion unit 22 between the groups 26.
  • the first signal conversion unit 22 is for receiving a signal from the control unit 14, amplifying the flowed signal, and further transmitting the amplified signal to the docking terminal group 26.
  • the first signal conversion unit 22 has a function of signal amplification so that deformation of the signal due to attenuation during subsequent transmission can be effectively prevented. Of course, in the case where the signal transmitted by the control unit 14 is sufficiently strong, or the subsequent transmission has little attenuation to the signal, the first signal conversion unit 22 may not be provided.
  • the signal generating device 6 further includes a second signal conversion unit 24 that is electrically coupled to the set of conductive terminals 28.
  • the second signal conversion unit 24 is for receiving a signal from the conductive terminal group 28, and reducing the signal flowing therethrough, and further transmitting the reduced signal to the signal generating device 6.
  • the second signal conversion unit 24 has a function of reducing the signal so that it can adjust the signal from the conductive terminal group 28 to be converted into a signal suitable for reception by the signal generating device 6, avoiding damage to the signal generating device 6.
  • the signal transmitted by the conductive terminal group 28 is a signal suitable for reception by the signal generating device 6, it is not necessary to provide the second signal conversion unit 24 having the signal reduction function between the conductive terminal group 28 and the signal generating device 6.
  • the second signal conversion unit 24 may also be provided with a signal isolation function, and the isolation signal generating device 6 and the conductive terminal group 28 The signal passed between.
  • the first signal conversion unit 22 and the second signal conversion unit 24 may be analog circuits or digital circuits, and specific circuit forms are not described in detail herein.
  • the automatic working system can automatically set the boundary signal different from the environmental signal according to the signal existing in the environment, so that the boundary obtained after the setting mode is obtained
  • the signal can be distinguished from all signals present in the surrounding environment, reducing the possibility of environmental signals interfering with the automatic working system.
  • the interference of the environmental signal to the automatic working system is mainly reflected in the working mode.
  • the automatic walking device 2 walks in the working area 4 under the guidance of the boundary signal generated according to the preset parameter selected by the setting mode, and performs the pre-operation. Set up work. Since the preset parameter selected in the setting mode is different from the preset parameter that the environmental signal has, the boundary signal generated according to the selected preset parameter is also different from the ambient signal of the surrounding environment, so the automatic walking device 2 does not work. Interfered with environmental signals.
  • the automatic working system has an operating mode and a setting mode, and the two modes can be switched to each other. There are several ways to switch between the working mode and the setting mode. First, a reset device is set on the automatic working system. When the reset device is triggered, the automatic working system enters the setting mode, and the reset device is triggered because the manual triggering by the operator through the contact mode is detected. It may also be because a reset command sent by the operator in a non-contact manner is received.
  • the received boundary signal has a first direction, which determines that the automatic walking device 2 is located in the working area 4, and the non-working area outside the working area 4 5
  • the received boundary signal has a second direction.
  • the first direction is opposite to the second direction, and it is judged that the automatic walking device 2 is located outside the working area 4.
  • the automatic walking device 2 When the automatic walking device 2 walks in the working area 4, when two adjacent first positions and second positions pass, if it is detected at the first position that the boundary signal has the first direction, it is determined that it is in the working area 4, When the boundary signal detected at the second position has the second direction and it is judged that it is outside the working area 4, the automatic working system automatically enters the setting mode to set a boundary signal different from the adjacent automatic working system. Because normally, the two adjacent positions of the autonomous walking device 2 are in the same area, either the working area 4 or the non-working area 5, and the detected boundary signals should have the same direction, that is, At two adjacent moments, it is judged that the position of the working area 4 is identical.
  • the actual situation is that the detected boundary signals have opposite directions, and the judgment result is that the autonomous walking device 2 is in the working area 4 at the last moment, and is outside the working area 4 at the next adjacent moment, indicating
  • the boundary signal of the automatic working system has the same possibility as the boundary signal of the adjacent automatic working system, because when the automatic walking device 2 is in the working area 4 of the automatic working system, its relatively adjacent automatic working system is in the non- Within the working area, the autonomous vehicle detects a boundary signal having an opposite direction at two adjacent positions, and judges that the position relative to the working area has an opposite result.
  • the third type is that when the automatic working system is started for the first time, in order to ensure that the boundary signal in its working mode is different from the ambient signal of the surrounding environment, that is, the boundary signal of the adjacent automatic working system is not the same, the setting is first entered. Mode, after selecting a preset parameter different from the environmental signal, enter the working mode. Other switching methods, such as switching between the preset working mode and the setting mode starting mode, etc., will not be described again.
  • Step S O shows that the automatic working system is initialized.
  • the current state may be the working mode, whether the automatic walking device 2 detects the boundary signals in opposite directions respectively at two adjacent positions; whether the automatic working system belongs to the first start; whether the reset device of the automatic working system is triggered Wait.
  • step S4 proceeds to step S6 to enter the work mode; otherwise, if the result of the determination is yes, the process proceeds to step S8.
  • step S8 the signal generating means 6 transmits a boundary signal having a test code which is different from the preset code stored in the control unit 14.
  • step S8 the process proceeds to step S10, the signal detecting unit 8 detects the environmental signal, and transmits the detected environmental signal to the identification module 16.
  • step S12 the identification module 16 identifies the time point at which the basic signal appears in the environmental signal.
  • the identification module 16 For the specific identification method and implementation circuit, refer to the description of the identification module 16.
  • the grouping module 18 groups the basic signals according to the time interval between the basic signals to generate a plurality of signal groups.
  • the time interval between two adjacent basic signals is less than or equal to a preset time interval
  • the two adjacent basic signals are divided into the same signal group, and the preset time interval is determined according to a preset code.
  • the maximum time interval setting between adjacent basic signals, the specific grouping method and the implementation circuit are described in the description of the grouping module 18.
  • step S16 the number judging circuit 202 judges whether the number of basic signals included in the signal group is the same as the number of basic signals determined by the preset encoding.
  • the process proceeds to step S18, and if the result of the determination is NO, the process proceeds to step S22.
  • step S18 the time judging circuit 204 judges whether or not the time interval between the basic signals included in the signal group and the basic signal determined by the preset encoding are the same.
  • the process proceeds to step S20.
  • the determined result in the step S18 is NO, the flow proceeds to a step S22.
  • step S20 the recording module records the preset code included in the signal group.
  • step S22 the autonomous walking device 2 walks along the boundary line 3 under the guidance of the boundary signal, the boundary signal having a test code different from the preset code stored by the automatic working system.
  • step S22 the process proceeds to step S24, and it is judged whether or not the automatic traveling device 2 travels around the boundary line 3.
  • step S24 the process returns to step S10 to continue detecting the environmental signal; otherwise, when the determination result is YES, the process proceeds to step S26.
  • step S26 the control unit 14 compares the recorded preset code with the stored preset code. Proceeding to step S28, the control unit 14 selects a preset code from the preset codes stored by the automatic working system, the preset code being different from the recorded preset code.
  • the selected preset code is transmitted to the signal generating device 6.
  • the signal generating means 6 generates a corresponding boundary signal based on the received preset code.
  • the boundary signal generated by the signal generating device 6 is a signal having a preset frequency composed of a basic signal, and the basic signal is a square wave signal and a sine wave signal. One of a triangular wave signal or a sawtooth wave signal. Therefore, in order to avoid interference of the environmental signal to the working mode of the automatic working system, the automatic working system needs to identify the preset frequency of the environmental signal and generate a boundary signal of a preset frequency different from the environmental signal.
  • the signal processing unit 10 Since the preset frequency expresses the frequency value of the signal, such as 10HZ, 30HZ, 70HZ, 1 KHZ, etc., the specific preset frequency determines the specific time interval at which the same signal appears again. Therefore, the signal processing unit 10 only needs to recognize the time point at which the basic signal appears, and judge whether or not the basic signal appears again at the preset time interval, thereby identifying the preset frequency that the environmental signal has. Based on this, in the present embodiment, the signal processing unit 10 has a circuit structure different from that of the first preferred embodiment, but the circuit structure of the signal detecting unit 8', the recording unit 12', and the control unit 14' The functions are the same as the implementation in which the preset parameters are preset codes.
  • the working flow chart of the automatic working system in this embodiment mode is the same as the first preferred embodiment except that the part related to the signal processing unit 10' is different.
  • the following is a detailed description of the specific structure and the corresponding process of the signal processing unit 10'. For other parts, reference may be made to the first preferred embodiment, and details are not described herein again.
  • the signal processing unit 10' includes an identification module 16' and a determination module 20'.
  • the identification module 16' identifies a time point at which the basic signal appears in the environmental signal, and the determination module 20' determines whether it appears again at the preset time interval.
  • the basic signal, the preset time interval is set according to a preset frequency.
  • the identification module 16' in the embodiment in which the preset parameter is the preset encoding may be referred to, and details are not described herein again.
  • the judging module 20' detects the presence of the basic signal again at a specific time interval point after receiving the basic signal for the first time.
  • step S'10 of the working flow chart is the same as the step S0 to the step S10 in the working flow chart shown in FIG. 8, and details are not described herein again. .
  • step S'12 the identification module 16' identifies the time point at which the basic signal appears in the environmental signal, and the specific identification method and implementation circuit refer to the description of the identification module 16'.
  • step S'14 the determining module 20' determines whether the basic signal appears again at the preset time interval. When the determination result is yes, the process proceeds to step S'20. If the result of the determination is no, the process proceeds to step S'22.
  • step S'20 the recording unit 12' records the preset frequency included in the environmental signal.
  • step S'22 the autonomous walking device 2 walks along the boundary line 3 under the guidance of the boundary signal, the boundary signal having a test frequency different from the preset frequency stored by the automatic working system. It has the same beneficial effect as the test code is different from the preset code.
  • step S'22 the process proceeds to step S'24, and it is judged whether the automatic walking device 2 walks around the boundary line 3 lines. When the result of the determination is no, the process returns to step S'10 to continue detecting the environmental signal; otherwise, when the result of the determination is YES, the process proceeds to step S'26.
  • step S'26 the control unit 14' compares the recorded preset frequency with the stored preset frequency. Proceeding to step S'28, the control unit 14' selects a preset frequency from the preset frequencies stored by the automatic working system, the preset frequency being different from the recorded preset frequency.
  • step S'32 the selected preset frequency is sent to the signal generating device 6.
  • the specific sending method and implementation circuit refer to the description of the preset mode for the preset encoding.
  • the signal generating means 6 generates a corresponding boundary signal based on the received preset frequency.
  • the automatic traveling apparatus 2 may be in various forms such as a lawn mower, a vacuum cleaner, an industrial robot, and the like.
  • the automatic walking device 2 is a lawn mower, it further includes a cutting mechanism including a cutting motor and a cutting blade.
  • the cutting motor drives the cutting blade to rotate, cutting the lawn .

Abstract

一种自动工作系统及其控制方法,自动工作系统包括边界线(3),信号发生装置(6),以及自动行走设备(2),自动工作系统存储有至少两个预设参数,预设参数设定边界信号的形式,自动工作系统包括设定模式,设定模式下自动工作系统执行:a)接收周围环境存在的环境信号;b)判断环境信号中是否包含与预设参数相对应的信号;c)当步骤b)为是,记录预设参数;d)选择一个预设参数,选择的预设参数不同于记录的预设参数,信号发生装置(6)根据选择的预设参数生成边界信号。自动工作系统和控制方法可以生成不同于环境信号的边界信号,从而可以有效避免周围环境中的信号的干扰,提高自动工作系统的抗干扰能力。

Description

自动工作系统及其控制方法 技术领域
本发明涉及一种自动工作系统。
本发明还涉及一种自动工作系统的控制方法。
背景技术
随着科学技术的发展, 智能的 自动行走设备为人们所熟知, 由于自动行 走设备可以 自动预先设置的程序执行预先设置的相关任务, 无须人为的操作 与干预, 因此在工业应用及家居产品上的应用非常广泛。 工业上的应用如执 行各种功能的机器人, 家居产品上的应用如割草机、 吸尘器等, 这些智能的 自动行走设备极大地节省了人们的时间, 给工业生产及家居生活都带来了极 大的便利。
为保证上述自动行走设备在预设的工作范围内工作, 通常釆用 自动工作 系统对自动行走设备的行走路径进行控制。 所述自动工作系统包括: 信号发 生装置, 产生预设的边界信号; 边界线, 与信号发生装置电性连接, 预设的 边界信号沿边界线传导, 并生成预设的磁场信号; 信号检测单元, 设置在所 述自动行走设备内, 用于检测环境中的磁场信号, 并生成检测信号; 信号处 理单元, 与信号检测单元电性连接, 接收所述检测信号, 对所述检测信号进 行处理, 生成处理信号;
控制单元接收所述处理信号, 并根据所述处理信号代表的信息, 确认自 动行走设备相对边界线的位置, 控制 自动行走设备的在跨越边界线时及时转 换自动行走设备行走方向, 防止自动行走设备行走至边界线外, 从而使自动 行走设备始终在边界线内工作。 早期的自动工作系统发送的预设的边界信号 为脉冲信号, 此种边界信号的优势在于识别容易, 但存在的问题是自动工作 系统无法区分来自边界信号的脉冲信号与干扰的脉冲信号, 使得自动工作系 统在接收到干扰的脉冲信号时, 误以为是边界信号而根据其携带的信息对自 动行走设备的行走路径进行控制, 使得自动工作系统很容易受到干扰, 而做 出错误判断, 降低了 自动工作系统的抗干扰能力。 2001 年 10 月 9 日公告的美国专利 US 6300737B1 揭示的自动工作系统解 决了上述抗干扰能力弱的技术问题。 其解决问题的方式在于提供了一种包括 至少两个正弦波信号的边界信号,两个正弦波信号分别是频率为 8K的正弦波 信号 14和频率为 16K 的正弦波信号 15, 为保证两个信号稳定的相对关系, 自起始点处对两个信号进行同步, 起始点处两个信号的相位相差 90度。 信号 检测单元相应地检测到信号 14'和 15', 由于信号 14和 15在信号 14 过零点 时具有固定的对应关系, 因此信号 14 '与 15 '也具有相应的对应关系, 控制单 元根据信号 14'过零点时信号 15'为正或者负来判断自动行走设备处于边界线 内还是边界线外, 从而有效地控制 自动行走设备的行走路径, 使其始终保持 在边界线内工作。由于正弦波信号相较于脉冲信号具有抗干扰能力强的优点, 使得该自动工作系统能有效克服外界信号的干扰, 但在实际使用过程中, 依 然存在干扰问题。 因为在实际使用过程中, 在相邻的两个区域上, 存在同时 使用该自动工作系统的可能性, 即在相邻的两个区域上分别存在第一自动工 作系统和第二自动工作系统, 两个自动工作系统的构成均为上述以正弦波作 为边界信号的自动工作系统。 此情况下当第一自动工作系统的自动行走设备 行走至第一边界线与第二边界线靠近的位置时, 第一自动工作系统的自动行 走设备既可以检测到第一边界线的信号, 又可以检测到第二边界线的信号。 若此时第一自动工作系统的自动行走设备处于第一边界线内时, 其相对第二 边界线则处于第二边界线的外侧。 此时, 自动行走设备既检测到来自第一边 界线的信号 14'与 15', 且在 14'过零点时信号 15'为正; 同时又检测到来自第 二边界线的信号 14'与 15', 且在 14'过零点时信号 15'为负。 由于第一自动工 作系统与第二自动工作系统的构成相同, 因此控制单元检测信号 14'和 15' 时无法区分 14'和 15'来自第一边界线还是第二边界线,控制单元根据信号 14' 过零点时信号 15'为正或者负来判断自动行走设备处于边界线内还是外时, 判断结果为 自动行走设备既处于边界线外又处于边界线内, 造成自动行走设 备出现混乱, 甚至停止工作。 此外, 当环境中存在一个频率为 16K的正弦波 信号 A和一个频率为 32K 的正弦波信号 B, 且自起始点处对两个信号进行同 步, 起始点处两个信号的相位相差 90 度时, 信号检测单元相应地检测到 A' 和 Β ' , 且在信号 A '过零点时, 信号 B '为正或负。 控制单元根据信号 A '与 B ' 的对应关系判断自动行走设备处于边界线内还是边界线外。 控制单元不会根 据其接收到的信号 A '与 B '来区分信号 A与 B是否为边界信号, 导致即使信号 A 与 B 不是边界信号, 控制单元仍会根据其携带的信息控制 自动行走设备的 行走路径, 从而导致出现错误判断。
基于上述分析可知, U S 6 30 07 37 B 1 公告专利虽然从信号形式上可以排除 部分外界干扰, 但无法彻底解决外界环境中的信号对自动工作系统的干扰。 发明内容
本发明解决的技术问题为: 提供一种自动工作系统的控制方法, 该方法 可以根据环境中存在的信号, 生成不同于环境中的信号的边界信号。
为解决上述技术问题, 本发明的技术方案是: 一种自动工作系统的控制 方法, 所述自动工作系统包括为 自动工作系统划定工作区域的边界线, 向边 界线发送边界信号的信号发生装置, 以及在边界信号的引导下工作的自动行 走设备, 所述自动工作系统存储有至少两个预设参数, 所述预设参数设定边 界信号的形式, 所述自动工作系统具有设定模式, 所述设定模式下自动工作 系统执行如下步骤: a) 接收周围环境存在的环境信号; b) 判断环境信号中 是否包含与预设参数相对应的信号; c) 当步骤 b)为是, 记录所述预设参数; d) 选择一个预设参数, 所述选择的预设参数不同于记录的预设参数, 信号发 生装置根据选择的预设参数生成边界信号。
优选的, 所述预设参数为预设编码, 不同的预设编码对应不同的编码规 则。
优选的, 信号发生装置根据不同的预设编码生成的边界信号具有不同的 频率。
优选的, 所述预设参数为预设频率。
优选的, 步骤 a)包括以下步骤, al ) 自动行走设备沿边界线行走一圏, a2) 自动行走设备在沿边界线行走的过程中接收环境信号。
优选的, 所述自动工作系统还存储至少一个测试参数, 所述测试参数不 同于预设参数, 所述步骤 a l )中, 自动行走设备在根据测试参数生成的边界 信号的引导下, 沿边界线行走。
优选的, 所述自动工作系统还具有工作模式, 工作模式下, 信号发生装 置根据设定模式下选择的预设参数生成边界信号发送给边界线, 自动行走设 备根据所述边界信号判断相对工作区域的位置, 在所述工作区域内行走, 执 行预设工作, 自动工作系统可以在工作模式和设定模式之间进行切换。
优选的, 工作模式下, 当 自动行走设备在工作区域内的第一位置上判断 其处于工作区域内,并在工作区域内的第二位置上判断其处于工作区域外时, 自动工作系统切换至设定模式。
优选的, 自动工作系统在首次启动时, 进入设定模式。
优选的, 自动工作系统还包括重置装置, 当重置装置被触发时, 自动工 作系统进入设定模式。
本发明还解决的技术问题为: 提供一种自动工作系统, 该系统可以根据 环境中存在的环境信号, 生成不同于环境信号的边界信号。
为解决上述技术问题, 本发明的技术方案是: 一种自动工作系统, 包括, 边界线, 划定自动工作系统的工作区域; 信号发生装置, 与边界线电性连接, 并向其发送边界信号; 自动行走设备, 在边界信号的引导下工作; 信号检测 单元, 设置于自动行走设备上; 信号处理单元, 与信号检测单元电性连接; 记录单元, 与信号处理单元电性连接; 控制单元, 与记录单元电性连接; 所 述自动工作系统存储有至少两个预设参数, 所述预设参数设定边界信号的形 式, 所述自动工作系统具有设定模式, 所述设定模式下, 信号检测单元接收 周围环境存在的环境信号; 信号处理单元根据信号检测单元传递的信号判断 环境信号中是否包含与预设参数相对应的信号; 当信号处理单元判断环境信 号中包含与预设参数相对应的信号时, 记录单元记录所述预设参数; 控制单 元选择一个预设参数, 并将选择的预设参数发送给信号发生装置, 所述选择 的预设参数不同于记录的预设参数; 信号发生装置根据选择的预设参数生成 边界信号。
优选的, 所述预设参数为预设编码, 不同的预设编码对应不同的编码规 则。 优选的, 信号发生装置根据不同的预设编码生成的边界信号具有不同的 频率。
优选的, 所述预设参数为预设频率。
优选的, 自动行走设备在边界信号的引导下沿边界线行走一圏, 在自动 行走设备沿边界线行走的过程中,信号检测单元接收周围环境中的环境信号。
优选的, 所述自动工作系统还存储至少一个测试参数, 所述测试参数不 同于预设参数, 自动行走设备在根据测试参数生成的边界信号的引导下, 沿 边界线行走。
优选的, 所述自动工作系统还具有工作模式, 工作模式下, 信号发生装 置根据设定模式下选择的预设参数生成边界信号发送给边界线, 自动行走设 备根据所述边界信号判断相对工作区域的位置, 在所述工作区域内行走, 执 行预设工作, 自动工作系统可以在工作模式和设定模式之间进行切换。
优选的, 工作模式下, 当 自动行走设备在工作区域内的第一位置上判断 其处于工作区域内,并在工作区域内的第二位置上判断其处于工作区域外时, 自动工作系统切换至设定模式。
优选的, 自动工作系统在首次启动时, 进入设定模式。
优选的, 自动工作系统还包括重置装置, 当重置装置被触发时, 自动工 作系统进入设定模式。
本发明的有益效果为: 本发明提供的自动工作系统及其控制方法, 通过 识别环境中存在的环境信号, 生成不同于环境信号的边界信号, 从而避免环 境信号对自动工作系统的干扰, 提高系统的抗干扰能力。
附图说明
以上所述的本发明解决的技术问题、 技术方案以及有益效果可以通过下 面的能够实现本发明的较佳的具体实施例的详细描述, 同时结合附图描述而 清楚地获得。
附图以及说明书中的相同的标号和符号用于代表相同的或者等同的元 件。
图 1是本发明较佳实施方式的自动工作系统的示意图; 图 2是图 1 所示自动工作系统周围存在的环境信号;
图 3是图 1 所示自动行走设备第一较佳实施方式的电路框图;
图 4是图 3所示的判断模块的电路框图;
图 5是图 1 所示自动工作系统第一较佳实施方式的环境信号在流经图 3 所示电路框图的信号变换过程;
图 6是图 5所示的特征信号分组后获得的信号组;
图 7是图 1所示自动行走设备与信号发生装置之间的信号传递电路框图; 图 8是图 1 所示自动工作系统第一较佳实施方式的工作流程图; 图 9是图 1 所示自动行走设备第二较佳实施方式的电路框图;
图 10是图 1所示自动工作系统第二较佳实施方式的工作流程图。
2 自动行走设备 160 放大器
3 边界线 162 第一比较器
4 工作区域 164 第二比较器
5 非工作区域 18 分组模块
6 信号发生装置 20, 20' 判断模块
7 磁场 202 个数判断电路
8, 8' 信号检测单元 204 时间判断电路
10, 10' 信号处理单元 22 第一信号转换单元
12, 12' 记录单元 24 第二信号转换单元
14, 14' 控制单元 26 对接端子组
16, 16' 识别模块 28 导电端子组
具体实施方式
有关本发明的详细说明和技术内容, 配合附图说明如下, 然而所附附图 仅提供参考与说明, 并非用来对本发明加以限制。
图 1所示的自动工作系统包括信号发生装置 6、 自动行走设备 2、 边界线 3。边界线 3用于将特定区域划分为位于边界线 3 内的工作区域 4和位于边界 线 3外的非工作区域 5。 信号发生装置 6与边界线 3 电性连接, 信号发生装 置 6产生预设的边界信号发送给边界线 3, 边界信号流经边界线 3 时生成预 设的磁场 7。 自动工作系统存储有至少两个预设参数, 预设参数用于设定边 界信号的形式, 该至少两个预设参数可以存储在信号发生装置 6 中, 也可以 存储在自动行走设备 2中。 自动工作系统具有设定模式和工作模式, 设定模 式下, 自动工作系统可以根据周围环境中存在的环境信号, 识别环境信号所 具有的预设参数, 并选择与环境信号不同的预设参数, 最终根据选择的预设 参数生成边界信号, 使得生成的边界信号不同于环境信号; 在工作模式下, 信号发生装置 6根据设定模式下选择的预设参数生成的边界信号, 自动行走 设备 2在该边界信号的引导下在工作区域 4 内执行预设工作, 从而避免工作 模式下环境信号对自动工作系统的干扰。 以下重点介绍自动工作系统设定模 式下的电路结构及工作情况。
自动行走设备 2 包括信号检测单元 8、 信号处理单元 10、 记录单元 12、 以及控制单元 14。 信号检测单元 8用于检测周围环境中的环境信号, 并将检 测到的环境信号传递给与其电性连接的信号处理单元 10。 信号处理单元 10 与信号检测单元 8 电性连接, 接收到所述信号检测单元 8传递的信号后, 判 断环境信号中是否包含与预设参数相对应的信号。 记录单元 12 , 与信号处理 单元 10 电性连接, 当信号处理单元 10判断环境信号中包含与预设参数相对 应的信号时, 记录所述预设参数。 在此需要说明的是, 环境信号中包含的与 预设参数相对应的信号, 可以是具有预设参数的信号, 也可以是与预设参数 具有对应关系的信号, 该对应关系可以通过特定的函数关系确定。 控制单元 14 与记录单元 12 电性连接, 选择一个预设参数, 并将选择的预设参数发送 给信号发生装置 6 , 所述选择的预设参数不同于记录的预设参数。 信号发生 装置 6根据选择的预设参数生成边界信号。 本领域技术人员可以理解的是, 控制单元 14将选择的预设参数发送给信号发生装置 6的方式可以是有线的方 式, 也可以是无线的方式; 信号处理单元 10、 记录单元 12、 以及控制单元 14之一或全部可以位于自动行走设备 2 内, 或信号发生装置 6上, 或任意其 他位置上。
如图 2所示, 在自动工作系统实际工作的环境中, 不仅存在来自信号发 生装置 6发送的边界信号, 也有来自相邻的自动工作系统的边界信号, 还有 来自周围环境的干扰信号。 信号检测单元 8检测信号时, 检测周围环境中存 在的所有信号, 并将所有检测到的环境信号传递给信号处理单元 10 , 经信号 处理单元 10处理后进一步传递给记录单元 12和控制单元 14 , 使得控制单元 14选择的预设参数与环境信号具有的预设参数不同, 信号发生装置 6根据该 选择的预设参数生成的边界信号也就不同于环境中已经存在的信号, 从而避 免在工作模式下, 环境信号对自动工作系统的干扰。
在此需要说明的是信号检测单元 8仅能检测到其周围存在的环境信号, 即当 自动行走设备 2处于工作区域 4中的特定位置时, 其仅能检测到该特定 位置周围的环境信号, 无法检测到边界线 3—圏范围内的环境信号。 为了使 控制单元 14选择的预设参数能与边界线 3—圏范围内所有的环境信号均不相 同, 使得自动行走设备 2在整个工作区域 4 内均不会有与边界信号相同的边 界信号对其工作进行干扰, 优选地, 自动行走设备 2在信号发生装置 6发送 的边界信号的引导下, 沿边界线 3行走一圏, 在行走的过程中持续检测环境 信号, 使得信号检测单元 8可以检测到边界线 3—圏范围内所有存在的环境 信号,控制单元 14根据边界线 3—圏范围内所有存在的环境信号选择预设参 数, 使得选择的预设参数不同于边界线 3—圏范围内所有存在的环境信号具 有的预设参数。 控制单元 14将选择结果发送给信号发生装置 6 , 信号发生装 置 6基于控制单元 14的选择的预设参数生成对应的边界信号,从而使得生成 的边界信号不同于边界线 3—圏范围内所有存在的环境信号, 避免工作模式 下环境信号对自动工作系统的干扰。
设定模式下, 引导自动行走设备 2沿边界线 3行走一圏的边界信号可以 有两种选择, 第一种选择为该边界信号具有与存储的预设参数相同的参数, 第二种选择为该边界信号具有与存储的预设参数不同的参数。 当为第二种选 择时, 优选的, 自动工作系统存储有至少一个测试参数, 该测试参数不同于 存储的预设参数,自动行走设备 2在根据测试参数生成的边界信号的引导下, 沿边界线 3行走一圏。 在第一种选择的情况下, 当邻近的自动工作系统是与 本发明相同的工作系统, 且该相邻的 自动工作系统处于工作模式, 而本自动 工作系统处于设定模式时, 存在本自动工作系统的边界信号与相邻自动工作 系统的边界信号相同的可能, 由此可能导致本自动工作系统无法正常完成沿 边界线 3行走一圏的工作。 而在第二种选择下, 当邻近的自动工作系统是与 本发明相同的工作系统, 且该相邻的 自动工作系统处于工作模式, 而本自动 工作系统处于设定模式时, 由于本自动工作系统的边界信号具有的测试参数 不同于相邻的自动工作系统的边界信号具有的预设参数, 使得其可以避免相 邻的自动工作系统对其的干扰, 顺利完成沿边界行走一圏的工作。
预设参数设定边界信号的形式, 包括边界信号的频率、 边界信号包含的 基本信号的种类、 个数、 相邻的基本信号之间的时间间隔等相关参数。 基于 不同的预设参数设定不同形式的边界信号, 因此自动工作系统存储的不同的 预设参数可以分别对边界信号的频率、 边界信号包含的基本信号的种类、 个 数、 相邻的基本信号之间的时间间隔等参数进行不同的设定, 以使得与不同 的预设参数对应的边界信号的形式不同。 本领域技术人员可以理解的是, 对 应不同的预设参数,信号处理单元 10识别环境信号中是否包含与预设参数相 对应的信号的方式是不同的, 为简化信号处理单元 10的结构, 不同的预设参 数仅对边界信号的特定的参数进行不同的设定。 本发明中仅以预设参数为预 设编码和预设频率为例进行说明。
在第一较佳实施方式中, 预设参数为预设编码。 不同的预设编码对应不 同的编码规则。 根据不同的编码规则设定的边界信号具有不同的码元组合形 式, 如边界信号包含不同的码元种类、 码元个数、 码元之间排列的时序、 以 及某种特定码元具有不同的信号形式等。 以下以预设编码为 "1001" 为例说 明上述码元的各信息代表的含义。 预设编码 "1001" 中包含了两种码元, 分 别为 "0" 和 "1", 包含的码元个数为 4, 分别为 "1"、 "0"、 "0"、 "1", 设 定的码元之间排列的时序为先出现码元 "1", 再出现两个相邻的码元 "0", 最后又出现一个码元 "1"。 此外, 该预设编码还隐含设定了某种特定码元具 有的信号形式,亦即用具有什么形式的基本信号代表分别码元" 0 "和码元 " 1"。 设定码元具有的信号形式具有任意性, 可以根据发明人的喜好及电路的复杂 情况任意设定。 例如, 可以用具有频率 f0的正弦波信号代表码元 "0", 具有 频率 fl 的正弦波信号代表码元 "1"; 或者用具有斜率为 K0的锯齿波信号代 表码元 "0", 具有斜率为 K1 的锯齿波信号代表码元 "1"; 或者由 T1 时间宽 度的低电平、 T1 时间宽度的高电平、 以及 T1 时间宽度的低电平组成的方波 信号代表码元 " 0" , 由 T1 时间宽度的高电平以及 2*T1 时间宽度的低电平组 成的方波信号代表码元 "1" 等。
预设编码不同, 可以指预设编码包含的码元个数不同, 如预设编码 "1" 和预设编码 "Π" 分别代表不同的预设编码; 也可以指预设编码包含的码元 种类不同, 如预设编码 "10" 和预设编码 "11" 分别代表不同的预设编码; 还可以指码元的排列时序不同, 如预设编码 "1001" 和预设编码 "1100" 分 别代表不同的预设编码; 还可以指针对同一种码元, 其信号形式不同, 如用 具有频率 f0 的正弦波信号代表码元 "0", 具有频率 fl 的正弦波信号代表码 元 "1"的预设编码 "10"相对于用具有斜率为 Κ0的锯齿波信号代表码元 "0", 具有斜率为 K1 的锯齿波信号代表码元 "1" 的预设编码 "10" 也是不同的。 本领域技术人员可以理解的是, 不同的预设编码也可以由上述各种不同进行 组合来表达。 本领域技术人员可以理解的是, 预设编码的上述信息中, 不同 的种类越多, 则意味着信号处理单元 10的结构越复杂, 为简化信号处理单元 10的结构, 不同的预设编码仅对码元的排列时序 (在特定时间点上出现的码 元的种类) 进行不同的设定, 而对码元种类、 个数、 码元的信号形式釆取相 同的设定。 考虑到在实际工作环境下, 相邻边界系统的个数最大为 8个, 统 一设定不同的预设编码均包含 4个码元, 至多 2种码元, 其中第一种码元为 "0" , 第二种码元为 "1", 由此即可得到首码元相同的 8种不同的预设编码 " 1000 " , " 1001"、 " 1010" , " 1011" , " 1100" , " 1101" , " 1110" , " 1111", 使相邻的自动工作系统均具有不同的边界信号, 其中每种码元均 釆用相同的信号形式来设定码元" 0"与基本信号之间的对应关系以及码元" 1" 与基本信号之间的对应关系。 在本说明书中, 仅以编码规则为由 T1 时间宽 度的低电平、 T1 时间宽度的高电平、 以及 T1 时间宽度的低电平组成的方波 信号代表码元 " 0" , 由 T1 时间宽度的高电平以及 2*Τ1 时间宽度的低电平组 成的方波信号代表码元 "1" 为例进行说明。
以下结合图 3 至图 8, 以预设参数为预设编码, 不同的预设编码设定的 边界信号的码元排列时序( 即在特定的时间点上出现不同种类的码元), 前述 的具有不同时序的方波信号表达不同的码元为例对本发明进行说明。
如图 3所示, 所述信号处理单元 10 包括识别模块 16、 分组模块 18、 以 及判断模块 20, 识别模块 16与信号检测单元 8 电性连接, 识别环境信号中 基本信号出现的时间点。 分组模块 18与识别模块 16电性连接, 根据基本信 号之间的时间间隔对基本信号进行分组生成若干信号组。判断模块 20与分组 模块 18 电性连接, 判断信号组是否具有预设编码。 当信号处理单元 10判断 环境信号中包含与预设编码相对应的信号时, 记录单元 12 记录所述预设编 码。 如前所述, 环境信号中包含的与预设编码相对应的信号, 可以是具有预 设编码的信号, 也可以是与预设编码具有对应关系的信号, 该对应关系可以 通过特定的函数关系确定。 以下以环境信号中包含的与预设编码相对应的信 号为具有预设编码的信号为例进行说明。
识别模块 16识别环境信号中基本信号出现的时间点的功能,可以通过识 别环境信号中一个完整的基本信号出现的时间点来实现, 也可以通过识别基 本信号的特征部分出现的时间点来实现。 本实施方式中, 仅以识别模块 16 根据环境信号中基本信号的特征部分出现的时间点来识别基本信号出现的时 间点为例, 介绍信号识别模块 16 的电路组成形式。 如图 3 所示, 识别模块 16 包括放大器 160、 第一比较器 162、 第二比较器 164。 放大器 160与信号检 测单元 8 电性连接, 对信号检测单元 8传递的环境信号进行放大, 便于后续 电路的处理,此时的信号仍属于模拟信号。第一比较器 162和第二比较器 164 与放大器 160电性连接, 通过第一比较器 162和第二比较器 164生成代表基 本信号出现的次数及出现的时间点的信号。 具体的, 第一比较器 162设置为 高电平比较器, 第二比较器 164设置为低电平比较器, 第一比较器 162具有 第一基准电压 RH , 第二比较器 164具有第二基准电压 RL , 第一基准电压 RH 高于第二基准电压 RL。 对第一比较器 162而言, 当输入信号的幅值高于第一 基准电压 RH时, 第一比较器 162输出高电平信号, 反之, 当输入信号的幅 值低于第一基准电压 RH时, 第一比较器 162输出低电平信号。 对第二比较 器 164 而言, 当输入信号的幅值高于第二基准电压 RL 时, 第二比较器 164 输出高电平信号, 反之, 当输入信号的幅值低于第二基准电压 RL 时, 第二 比较器 164输出低电平信号。 其中, 高电平信号及低电平信号分别代表基本 信号中幅值为 RH 和幅值为 RL 的部分出现的次数及出现的时间点, 后续电 路可据此知道基本信号出现的次数及出现的时间点。
如前所述, 环境信号包括来自 自动工作系统自身的边界信号在流经边界 线 3时产生的磁场 7信号, 以及周围存在的自动工作系统的边界信号在流经 边界线 3时产生的磁场 7信号, 因此环境信号的主要形式为正弦波形式。 如 图 5所示, 展示了环境信号为正弦波其经放大器 160放大, 第一比较器 162 和第二比较器 164生成代表基本信号出现的次数及出现的时间点的信号的过 程, 其中环境信号为信号 SC , 经放大器 160放大的信号为信号 SA , 第一比 较器 162的输出信号为信号 SH , 第二比较器 164的输出信号为信号 SL。
分组模块 18与第一比较器 162、 第二比较器 164电性连接, 对第一比较 器 162和第二比较器 164输出的信号, 即代表基本信号出现的次数及出现的 时间点的信号进行分组。由于分组模块 18既接收第一比较器 162的输出信号, 也接收第二比较器 164的输出信号,因此分组模块 18首先需要选择以哪一个 比较器的输出信号作为待分组信号, 再确定对待分组信号如何进行分组。 根 据本实施方式中的电路特性,分组模块 18根据接收到的第一比较器 162和第 二比较器 164的信号出现高电平的先后顺序, 选择对来自第一比较器 162或 第二比较器 164的信号作为待分组信号。 具体地, 当第一比较器 162输出的 信号比第二比较器 164输出的信号先出现高电平时,分组模块 18选择第二比 较器 164的输出信号作为待分组信号。 反之, 当第二比较器 164输出的信号 比第一比较器 162输出的信号先出现高电平时,分组模块 18选择第一比较器 162的输出信号作为待分组信号。 待分组信号确定后, 分组模块 18根据自动 工作系统中存储的预设编码确定的基本信号之间的时间间隔对待分组信号进 行分组生成若干信号组。 具体为, 当待分组信号中, 前一信号与后一信号的 时间间隔大于特定时间间隔时,分组模块 18将前一信号与后一信号划分在不 同的信号组。 当前一信号与后一信号的时间间隔小于特定时间间隔时, 分组 模块 18将前一信号与后一信号划分为同一个信号组。 分组模块 18基于上述 规则对接收到的信号进行分组得到若干信号组。 图 6示例性地表述了 当预设 编码表达的基本信号之间的时间间隔为 l OOus时,分组模块 18将待分组信号 分组得到信号组的过程。 其中, 待分组信号为信号 SH , 得到的信号组为信号 SZ1和信号 SZ2。 分组模块 18可以为模拟电路、 数字电路、 或者实现分组功 能的软件模块, 对分组模块 18的具体电路不作赘述。
判断模块 20与分组模块 18 电性连接, 接收分组模块 18传递的信号组, 判断信号组是否具有预设编码。 由于预设编码设定了码元的个数、 种类、 信 号形式及特定时间点上出现的码元的种类, 基于此, 预设编码设定了边界信 号包含的基本信号的个数及相邻的基本信号之间的时间间隔。 因此, 判断信 号组是否具有预设编码可以通过判断信号组中包含的信号的个数以及相邻的 信号之间的时间间隔判断其是否具有预设编码。 如图 4 所示, 判断模块 20 包括个数判断电路 202和时间判断电路 204 , 所述个数判断电路 202与识别 模块 16 电性连接,个数判断电路 202判断信号组包含的基本信号的个数与预 设编码确定的基本信号个数是否相同, 所述时间判断电路 204与识别模块 16 电性连接, 判断信号组包含的基本信号之间的时间间隔与预设编码确定的基 本信号之间的时间间隔是否相同。分组模块 18传递的信号组可以同时传递给 个数判断电路 202和时间判断电路 204 , 由两者分别对信号组包含的基本信 号的个数和相邻的基本信号之间的时间间隔进行判断, 也可以将信号组先传 递给个数判断电路 202进行个数判断, 当判断结果为是时, 进一步传递给时 间判断电路 204进行时间间隔的判断, 反之, 先将信号组传递给时间判断电 路 204 , 当判断结果为是时, 再传递给个数判断电路 202 同样可以实现判断 信号组是否具有预设编码的功能。 由于个数判断将时间间隔判断更为容易, 因此, 将信号组先传递给个数判断电路 202进行个数判断, 当判断结果为是 时, 进一步传递给时间判断电路 204进行时间间隔的判断的方案较为优选。
当个数判断电路 202和时间判断电路 204的判断结果均为是时, 判断模 块 20输出判断结果为是的信号给记录模块,记录模块记录信号组包含的预设 编码, 并将记录的预设编码传递给与其电性连接的控制单元 14。 控制单元 14 将记录的预设编码逐个与 自动工作系统存储的预设编码进行比较, 从而挑选 出与记录的预设编码不同的预设编码, 并将挑选出的预设编码发送给信号发 生装置 6。
信号发生装置 6根据控制单元 14发送的预设编码生成边界信号,由此使 得其生成的边界信号不同于周围环境中的环境信号, 进而避免在自动工作系 统在工作模式下受到环境信号的干扰。
信号发生装置 6根据不同的预设编码生成的边界信号可以具有相同的频 率, 也可以具有不同的频率。 相对于不同的预设编码生成的边界信号具有相 同频率的方案, 具有不同频率的方案可以更进一步避免自动工作系统在工作 过程中与环境信号的重叠, 起到更好的抗干扰的作用。
如前所述, 控制单元 14需将选择的预设编码传递给信号发生装置 6 , 该 两者之间的信号传递方式有多种, 可以通过接触的方式实现信号的传递, 如 分别在自动行走设备 2及信号发生装置 6之间设置端子, 通过端子与端子的 电性连接实现信号的传递。 也可以通过非接触的方式实现信号的传递, 如在 自动行走设备 2和信号发生装置 6上分别同时设置信号发送器和信号接收器。 自动行走设备 2上的信号发送器用于向信号发生装置 6发送信号, 自动行走 设备 2上的信号接收器用于接收信号发生装置 6发送的信号, 信号发生装置 6上的信号发送器用于向 自动行走设备 2发送信号, 信号发生装置 6上的信 号接收器用于接收自动行走设备 2发送的信号。 本实施方式中, 优选为通过 端子与端子的电性连接实现信号的传递。 具体为, 在自动行走设备 2上设置 对接端子组 26 , 在信号发生装置 6 上设置导电端子组 28 , 通过对接端子组 26与导电端子组 28 电性连接实现信号的传递。
如图 7所示, 自动行走设备 2进一步包括设置在控制单元 14与对接端子 组 26之间的第一信号转换单元 22。 第一信号转换单元 22用于接收来自控制 单元 14的信号, 对流经的信号进行放大, 并将放大的信号进一步传递给对接 端子组 26。 第一信号转换单元 22具有信号放大的功能, 使得可以有效防止 信号在后续的传递过程中由于衰减而导致的变形。 当然, 在控制单元 14发送 的信号足够强, 或者后续传递对信号的衰减很小的情况下, 也可以不设置第 一信号转换单元 22。 信号发生装置 6进一步包括与导电端子组 28 电性连接 的第二信号转换单元 24。 第二信号转换单元 24用于接收来自导电端子组 28 的信号, 并对流经的信号进行缩小, 将缩小后的信号进一步传递给信号发生 装置 6。 第二信号转换单元 24具有对信号进行缩小的功能, 使得其可以将来 自导电端子组 28的信号进行调整,从而转换成适合信号发生装置 6接收的信 号, 避免对信号发生装置 6的损坏。 当然, 在导电端子组 28传递的信号即是 信号发生装置 6适合接收的信号时,导电端子组 28与信号发生装置 6之间无 需设置具有信号缩小功能的第二信号转换单元 24。 此外, 为防止从导电端子 组 28传递的静电信号等对电子器件具有损害危险的信号时,第二信号转换单 元 24 还可以设置为具有信号隔离功能, 隔离信号发生装置 6 与导电端子组 28之间传递的信号。 上述第一信号转换单元 22和第二信号转换单元 24可以 为模拟电路, 也可以为数字电路, 具体电路形式, 在此不作详述。
前述内容描述了 自动工作系统的设定模式, 在设定模式下, 自动工作系 统可以根据环境中存在的信号, 自动地设定不同于环境信号的边界信号, 使 得经过设定模式后得到的边界信号能与周围环境存在的所有信号区分开, 降 低了环境信号对自动工作系统干扰的可能性。 环境信号对自动工作系统的干 扰主要体现在工作模式下, 工作模式下, 自动行走设备 2在根据设定模式选 择的预设参数生成的边界信号的引导下, 在工作区域 4 内行走, 执行预设工 作。 由于设定模式下选择的预设参数不同于环境信号具有的预设参数, 因此 根据该选择的预设参数生成的边界信号也不同于周围环境的环境信号, 因此 自动行走设备 2的工作不会受到环境信号的干扰。
自动工作系统具有工作模式和设定模式, 两种模式之间可以相互切换。 工作模式与设定模式的切换方式有多种。 第一种, 在自动工作系统上设置重 置装置, 当重置装置被触发时, 自动工作系统进入设定模式, 重置装置被触 发可以是因为检测到操作者通过接触方式进行的手动触发, 也可以是因为接 收到操作者通过非接触方式发送的重置指令。 第二种, 如本领域技术人员所 知, 工作模式下, 自动行走设备 2在工作区域 4 内行走时, 接收到的边界信 号具有第一方向, 其判断自动行走设备 2位于工作区域 4 内, 而在工作区域 4外的非工作区域 5 内行走时, 接收到的边界信号具有第二方向, 通常情况 下第一方向与第二方向相反, 其判断自动行走设备 2位于工作区域 4外。 自 动行走设备 2在工作区域 4 内行走时, 经过两个相邻的第一位置和第二位置 时, 若在第一位置上检测到边界信号具有第一方向, 判断其处于工作区域 4 内, 而在第二位置上检测到的边界信号具有第二方向, 并判断其处于工作区 域 4外时, 自动工作系统自动进入设定模式, 以便于设定与相邻自动工作系 统不同的边界信号。 因为通常情况下, 自动行走设备 2的相邻的两个位置, 均处于同一种区域, 要么为工作区域 4 , 要么为非工作区域 5 , 其检测到的边 界信号应该具有相同的方向, 即在相邻的两个时刻上, 判断其相对工作区域 4 的位置是一致的。 但实际情况是, 其检测到的边界信号具有相反的方向, 判断结果为 自动行走设备 2在上一时刻处于工作区域 4 内, 而在相邻的下一 时刻又处于工作区域 4外, 则表明本自动工作系统的边界信号与相邻自动工 作系统的边界信号存在相同的可能, 因为当 自动行走设备 2处于本自动工作 系统的工作区域 4 内时, 其相对相邻的自动工作系统则处于非工作区域内, 由此导致自动行走设备在两个相邻的位置上检测到具有相反方向的边界信 号, 判断其相对工作区域的位置出现了相反的结果。 第三种为, 当 自动工作 系统为首次启动时, 为保证其工作模式下的边界信号与周围环境的环境信号 不同, 即没有相邻的自动工作系统的边界信号与其相同, 则首先进入设定模 式, 待选择好与环境信号不同的预设参数后, 进入工作模式。 其他的切换方 式如通过预先设定工作模式与设定模式的启动顺序实现模式切换等, 不再一 一赘述。
以下结合图 8详细介绍预设参数为预设编码时, 自动工作系统的工作过 程。
步骤 S O所示, 自动工作系统初始化。
进入步骤 S2 , 检测自动工作系统的当前状态, 从而为判断是否进入设定 模式提供依据。 当前状态可以是工作模式下, 自动行走设备 2是否在相邻的 两个位置上分别检测到方向相反的所述边界信号; 自动工作系统是否属于首 次启动; 自动工作系统的重置装置是否被触发等。
进入步骤 S4 , 根据前述对自动工作系统进入何种模式的条件, 判断是否 进入设定模式。 判断结果为否, 进入步骤 S6 , 进入工作模式; 反之判断结果 为是时, 进入步骤 S 8。
步骤 S 8 中, 信号发生装置 6 发送边界信号, 边界信号具有测试编码, 该测试编码不同于控制单元 14中存储的预设编码。
步骤 S 8之后, 转入步骤 S 10 , 信号检测单元 8检测环境信号, 并将检测 的环境信号传递给识别模块 16。
随后进入步骤 S 12 ,识别模块 16识别环境信号中基本信号出现的时间点, 具体识别方法及实现电路参见对识别模块 16的说明。
进入步骤 S 14 , 分组模块 18根据基本信号之间的时间间隔对基本信号进 行分组生成若干信号组。 当两个相邻的基本信号之间的时间间隔小于或等于 预设时间间隔时, 将所述两个相邻的基本信号划分为同一信号组, 所述预设 时间间隔根据预设编码确定的相邻的基本信号之间的最大时间间隔设定, 具 体分组方法及实现电路参见对分组模块 18的说明。
进入步骤 S 16 , 个数判断电路 202判断信号组包含的基本信号的个数与 预设编码确定的基本信号个数是否相同。 当判断结果为是时, 进入步骤 S 18 , 当判断结果为否时, 进入步骤 S22。
步骤 S 18 中, 时间判断电路 204判断信号组包含的基本信号之间的时间 间隔与预设编码确定的基本信号之间的时间间隔是否相同。当判断结果为是, 进入步骤 S20。 当步骤 S 18 中的判断结果为否时, 进入步骤 S22。 步骤 S 16 和步骤 S 18的具体判断方法及实现电路参见对判断模块 20的说明。
步骤 S20 中, 记录模块记录信号组包含的预设编码。
步骤 S22中, 自动行走设备 2在边界信号的引导下沿边界线 3行走, 该 边界信号具有测试编码, 该测试编码不同于自动工作系统存储的预设编码。
步骤 S22后, 进入步骤 S24 , 判断自动行走设备 2是否绕边界线 3行走 一圏。 当判断结果为否时, 返回步骤 S 10 , 继续检测环境信号; 反之, 当判 断结果为是时, 进入步骤 S26。
步骤 S26 中, 控制单元 14比较记录的预设编码与存储的预设编码。 进入步骤 S28 , 控制单元 14从自动工作系统存储的预设编码中选择一个 预设编码, 该预设编码不同于记录的预设编码。
进入步骤 S32 , 将选择的预设编码发送给信号发生装置 6。 具体发送方 法及实现电路参见对控制单元 14与信号发生装置 6之间的信号传递的说明。 进入步骤 S34 , 信号发生装置 6根据接收到的预设编码生成对应的边界 信号。
前述对预设参数为预设编码的第一较佳实施方式的 自动工作系统的实现 电路及工作过程进行了说明, 以下对预设参数为预设频率的第二较佳实施方 式的自动工作系统的电路及工作过程进行说明。
第二较佳实施方式中, 由于预设参数为预设频率, 信号发生装置 6生成 的边界信号为由基本信号组成的具有预设频率的信号, 所述基本信号为方波 信号、 正弦波信号、 三角波信号或锯齿波信号中的一种。 因此, 为避免环境 信号对自动工作系统工作模式的干扰, 自动工作系统需要识别环境信号具有 的预设频率, 并生成与环境信号不同的预设频率的边界信号。
由于预设频率表达的是信号所具有的频率值, 如 10HZ、 30HZ、 70HZ、 1 KHZ 等多种, 因此特定的预设频率确定了同一信号再次出现的特定时间间 隔。 因此信号处理单元 10仅需要识别基本信号出现的时间点, 以及判断在预 设时间间隔上是否再次出现基本信号, 即可识别环境信号具有的预设频率。 基于此, 本实施方式中, 信号处理单元 10具有的电路结构不同于第一较佳实 施方式中的电路结构, 但信号检测单元 8 '、 记录单元 12'、 以及控制单元 14' 的电路结构及功能均与预设参数为预设编码的实施方式相同。 同时, 本实施 方式下的自动工作系统的工作流程图, 除与信号处理单元 10 '相关的部分不 同外, 其他各部分的工作流程图也均与第一较佳实施方式相同。 以下仅针对 信号处理单元 10 '的具体结构及相应的流程进行详细说明, 其他部分可以参 见第一较佳实施方式, 在此不再赘述。
本实施方式中, 信号处理单元 10 '的具体结构如图 9 所示。 信号处理单 元 10 '包括识别模块 16 '和判断模块 20 ' , 所述识别模块 16 '识别环境信号中, 基本信号出现的时间点, 所述判断模块 20 '判断在预设时间间隔上是否再次 出现基本信号, 所述预设时间间隔根据预设频率设定。 识别模块 16 '的识别 方法及实现电路可以参见预设参数为预设编码的实施方式中的识别模块 16 ' , 在此不再赘述。 判断模块 20 '在第一次收到基本信号后, 在特定时间间隔点 上, 再次检测是否有该基本信号的出现。 当该基本信号在特定时间间隔点上 再次出现时, 判断环境信号中包含具有预设频率的信号。 当该基本信号在特 定时间间隔点上没有再次出现时, 判断环境信号中不包含具有预设频率的信 号。 本实施方式的工作流程图如图 10 所示, 本工作流程图步骤 s'o 值步骤 S'10与如图 8所示的工作流程图中的步骤 SO至步骤 S10相同, 在此不再赘 述。
步骤 S'10之后, 进入步骤 S'12, 步骤 S'12 中, 识别模块 16'识别环境 信号中, 基本信号出现的时间点, 具体识别方法及实现电路参见对识别模块 16'的说明。
在步骤 S'12之后, 进入步骤 S'14, 步骤 S'14 中, 判断模块 20'判断在 预设时间间隔上是否再次出现基本信号, 当判断结果为是时,进入步骤 S'20, 当判断结果为否时, 进入步骤 S'22。
步骤 S'20 中, 记录单元 12'记录环境信号包含的预设频率。
步骤 S'22中, 自动行走设备 2在边界信号的引导下沿边界线 3行走, 该 边界信号具有测试频率, 该测试频率不同于自动工作系统存储的预设频率。 其具有的有益效果与测试编码不同于预设编码的效果相同。
步骤 S'22后, 进入步骤 S'24, 判断自动行走设备 2是否绕边界线 3行 走一圏。 当判断结果为否时, 返回步骤 S'10, 继续检测环境信号; 反之, 当 判断结果为是时, 进入步骤 S'26。
步骤 S'26 中, 控制单元 14'比较记录的预设频率与存储的预设频率。 进入步骤 S'28, 控制单元 14'从自动工作系统存储的预设频率中选择一 个预设频率, 该预设频率不同于记录的预设频率。
进入步骤 S'32, 将选择的预设频率发送给信号发生装置 6。 具体发送方 法及实现电路参见预设参数为预设编码的实施方式的说明。
进入步骤 S'34, 信号发生装置 6根据接收到的预设频率生成对应的边界 信号。
在本发明中, 自动行走设备 2的可以为割草机、 吸尘器、 工业机器人等 多种形式。 自动行走设备 2为割草机时, 还进一步包括切割机构, 切割机构 包括切割电机和切割刀片, 割草机在边界线 3规划的工作区域 4 内工作时, 切割电机驱动切割刀片旋转, 切割草坪。

Claims

权 利 要 求 书
1、 一种自动工作系统的控制方法, 所述自动工作系统包括为 自动工作系统划 定工作区域的边界线, 向边界线发送边界信号的信号发生装置, 以及在边界 信号的引导下工作的自动行走设备, 其特征在于, 所述自动工作系统存储有 至少两个预设参数, 所述预设参数设定边界信号的形式, 所述自动工作系统 具有设定模式, 所述设定模式下自动工作系统执行如下步骤:
a) 接收周围环境存在的环境信号;
b) 判断环境信号中是否包含与预设参数相对应的信号;
c) 当步骤 b)为是, 记录所述预设参数;
d) 选择一个预设参数, 所述选择的预设参数不同于记录的预设参数, 信 号发生装置根据选择的预设参数生成边界信号。
2、根据权利要求 1所述的控制方法, 其特征在于,所述预设参数为预设编码, 不同的预设编码对应不同的编码规则。
3、 根据权利要求 2所述的控制方法, 其特征在于, 信号发生装置根据不同的 预设编码生成的边界信号具有不同的频率。
4、根据权利要求 1所述的控制方法, 其特征在于, 所述预设参数为预设频率。
5、 根据权利要求 1 所述的控制方法, 其特征在于, 步骤 a)包括以下步骤, al ) 自动行走设备沿边界线行走一圏, a2) 自动行走设备在沿边界线行走的 过程中接收环境信号。
6、 根据权利要求 5所述的控制方法, 其特征在于, 所述自动工作系统还存储 至少一个测试参数, 所述测试参数不同于预设参数, 所述步骤 a l )中, 自动 行走设备在根据测试参数生成的边界信号的引导下, 沿边界线行走。
7、 根据权利要求 1所述的控制方法, 其特征在于, 所述自动工作系统还具有 工作模式, 工作模式下, 信号发生装置根据设定模式下选择的预设参数生成 边界信号发送给边界线, 自动行走设备根据所述边界信号判断相对工作区域 的位置, 在所述工作区域内行走, 执行预设工作, 自动工作系统可以在工作 模式和设定模式之间进行切换。
8、 根据权利要求 7所述的控制方法, 其特征在于, 工作模式下, 当 自动行走 设备在工作区域内的第一位置上判断其处于工作区域内, 并在工作区域内的 第二位置上判断其处于工作区域外时, 自动工作系统切换至设定模式。
9、 根据权利要求 7所述的控制方法, 其特征在于, 自动工作系统在首次启动 时, 进入设定模式。
10、 根据权利要求 7所述的控制方法, 其特征在于, 自动工作系统还包括重 置装置, 当重置装置被触发时, 自动工作系统进入设定模式。
11、 一种自动工作系统, 包括, 边界线, 划定自动工作系统的工作区域; 信 号发生装置, 与边界线电性连接, 并向其发送边界信号; 自动行走设备, 在 边界信号的引导下工作; 信号检测单元, 设置于自动行走设备上; 信号处理 单元, 与信号检测单元电性连接; 记录单元, 与信号处理单元电性连接; 控 制单元, 与记录单元电性连接; 其特征在于, 所述自动工作系统存储有至少 两个预设参数, 所述预设参数设定边界信号的形式, 所述自动工作系统具有 设定模式, 所述设定模式下,
信号检测单元接收周围环境存在的环境信号;
信号处理单元根据信号检测单元传递的信号判断环境信号中是否包含与 预设参数相对应的信号;
当信号处理单元判断环境信号中包含与预设参数相对应的信号时, 记录 单元记录所述预设参数;
控制单元选择一个预设参数,并将选择的预设参数发送给信号发生装置, 所述选择的预设参数不同于记录的预设参数;
信号发生装置根据选择的预设参数生成边界信号。
12、 根据权利要求 11所述的自动工作系统, 其特征在于, 所述预设参数为预 设编码, 不同的预设编码对应不同的编码规则。
13、 根据权利要求 12所述的自动工作系统, 其特征在于, 信号发生装置根据 不同的预设编码生成的边界信号具有不同的频率。
14、 根据权利要求 11所述的自动工作系统, 其特征在于, 所述预设参数为预 设频率。
15、 根据权利要求 11所述的自动工作系统, 其特征在于, 自动行走设备在边 界信号的引导下沿边界线行走一圏,在自动行走设备沿边界线行走的过程中, 信号检测单元接收周围环境中的环境信号。
16、 根据权利要求 15所述的自动工作系统, 其特征在于, 所述自动工作系统 还存储至少一个测试参数, 所述测试参数不同于预设参数, 自动行走设备在 根据测试参数生成的边界信号的引导下, 沿边界线行走。
17、 根据权利要求 11所述的自动工作系统, 其特征在于, 所述自动工作系统 还具有工作模式, 工作模式下, 信号发生装置根据设定模式下选择的预设参 数生成边界信号发送给边界线, 自动行走设备根据所述边界信号判断相对工 作区域的位置, 在所述工作区域内行走, 执行预设工作, 自动工作系统可以 在工作模式和设定模式之间进行切换。
18、 根据权利要求 17所述的自动工作系统, 其特征在于, 工作模式下, 当 自 动行走设备在工作区域内的第一位置上判断其处于工作区域内, 并在工作区 域内的第二位置上判断其处于工作区域外时,自动工作系统切换至设定模式。
19、 根据权利要求 17所述的自动工作系统, 其特征在于, 自动工作系统在首 次启动时, 进入设定模式。
20、 根据权利要求 17所述的自动工作系统, 其特征在于, 自动工作系统还包 括重置装置, 当重置装置被触发时, 自动工作系统进入设定模式。
PCT/CN2013/077198 2012-06-13 2013-06-13 自动工作系统及其控制方法 WO2013185622A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210194935 2012-06-13
CN201210194935.9 2012-06-13
CN201310231075.6 2013-06-09
CN201310231075.6A CN103488172B (zh) 2012-06-13 2013-06-09 自动工作系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2013185622A1 true WO2013185622A1 (zh) 2013-12-19

Family

ID=49757543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077198 WO2013185622A1 (zh) 2012-06-13 2013-06-13 自动工作系统及其控制方法

Country Status (2)

Country Link
CN (1) CN103488172B (zh)
WO (1) WO2013185622A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106515688A (zh) * 2015-09-11 2017-03-22 苏州宝时得电动工具有限公司 智能设备的智能避障系统及方法
GB2542674A (en) * 2015-08-10 2017-03-29 Deere & Co Boundary signal detection
US10029368B2 (en) 2014-11-07 2018-07-24 F Robotics Acquisitions Ltd. Domestic robotic system and method
US11003192B2 (en) 2015-11-10 2021-05-11 Positec Power Tools (Suzhou) Co., Ltd. Automatic working system and control method thereof and automatic moving device
CN112824993A (zh) * 2019-11-15 2021-05-21 南京德朔实业有限公司 智能割草系统
US11172609B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808656A (zh) * 2014-01-24 2015-07-29 苏州宝时得电动工具有限公司 基于定位系统的回归引导方法及其系统
CN105988415B (zh) * 2015-02-13 2019-09-20 苏州宝时得电动工具有限公司 多区域切割控制系统及其控制方法
CN108142069B (zh) * 2016-12-02 2020-12-11 苏州宝时得电动工具有限公司 路径移动系统
CN109270936A (zh) * 2016-04-15 2019-01-25 苏州宝时得电动工具有限公司 自动工作系统及其控制方法
CN107589739A (zh) * 2016-07-07 2018-01-16 苏州宝时得电动工具有限公司 一种自行走装置的控制系统、自行走装置系统及制造方法
CN110234219A (zh) * 2017-04-28 2019-09-13 深圳市元征科技股份有限公司 割草方法以及割草机
DE212018000352U1 (de) * 2017-11-16 2020-08-20 Positec Power Tools (Suzhou) Co., Ltd Sich autonom bewegendes Gerätearbeitssystem
EP3595428B1 (en) * 2017-12-30 2021-10-20 Globe (Jiangsu) Co., Ltd. System and method for controlling a self-propelling lawnmower
CN111324111B (zh) * 2018-12-13 2022-11-01 苏州科瓴精密机械科技有限公司 识别边界信号的方法及机器人系统
CN112558597B (zh) * 2019-09-10 2023-01-24 宝时得科技(中国)有限公司 自移动设备
CN113552873B (zh) * 2020-04-03 2024-03-26 南京泉峰科技有限公司 智能割草系统
CN111600632B (zh) * 2020-04-09 2022-04-12 中电海康集团有限公司 一种割草机器人边界同频电磁信号的抗干扰方法
CN114679949B (zh) * 2020-12-30 2024-03-15 南京泉峰科技有限公司 一种自驱动设备系统和充电站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300737B1 (en) * 1997-09-19 2001-10-09 Aktiebolaget Electrolux Electronic bordering system
US6465982B1 (en) * 1998-01-08 2002-10-15 Aktiebolaget Electrolux Electronic search system
EP1906205A1 (en) * 2006-09-29 2008-04-02 F. Robotics Acquisitions Ltd. System and method for determining the location of a machine
CN102092048A (zh) * 2009-12-09 2011-06-15 恩斯迈电子(深圳)有限公司 控制方法及清扫机器人装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316966A (ja) * 2006-05-26 2007-12-06 Fujitsu Ltd 移動ロボット、その制御方法及びプログラム
CN100419609C (zh) * 2007-03-23 2008-09-17 北京大学 一种基于流场的智能机器人避障方法
CN101619984B (zh) * 2009-07-28 2013-02-20 重庆邮电大学 一种基于颜色路标的移动机器人视觉导航方法
CN102441875A (zh) * 2010-10-01 2012-05-09 苏州宝时得电动工具有限公司 动力工具及其稳速控制系统
CN102487210B (zh) * 2010-12-03 2013-11-27 苏州宝时得电动工具有限公司 电动工具及其控制方法
CN103197672A (zh) * 2012-01-05 2013-07-10 苏州宝时得电动工具有限公司 边界信号识别方法及其边界系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300737B1 (en) * 1997-09-19 2001-10-09 Aktiebolaget Electrolux Electronic bordering system
US6465982B1 (en) * 1998-01-08 2002-10-15 Aktiebolaget Electrolux Electronic search system
EP1906205A1 (en) * 2006-09-29 2008-04-02 F. Robotics Acquisitions Ltd. System and method for determining the location of a machine
CN102092048A (zh) * 2009-12-09 2011-06-15 恩斯迈电子(深圳)有限公司 控制方法及清扫机器人装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029368B2 (en) 2014-11-07 2018-07-24 F Robotics Acquisitions Ltd. Domestic robotic system and method
US11351670B2 (en) 2014-11-07 2022-06-07 Mtd Products Inc Domestic robotic system and method
US11845189B2 (en) 2014-11-07 2023-12-19 Mtd Products Inc Domestic robotic system and method
GB2542674A (en) * 2015-08-10 2017-03-29 Deere & Co Boundary signal detection
US9903947B2 (en) 2015-08-10 2018-02-27 Deere & Company Boundary signal detection
GB2542674B (en) * 2015-08-10 2021-11-10 Deere & Co Boundary signal detection
CN106515688A (zh) * 2015-09-11 2017-03-22 苏州宝时得电动工具有限公司 智能设备的智能避障系统及方法
US11003192B2 (en) 2015-11-10 2021-05-11 Positec Power Tools (Suzhou) Co., Ltd. Automatic working system and control method thereof and automatic moving device
US11172609B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
CN112824993A (zh) * 2019-11-15 2021-05-21 南京德朔实业有限公司 智能割草系统
CN112824993B (zh) * 2019-11-15 2024-04-30 南京泉峰科技有限公司 智能割草系统

Also Published As

Publication number Publication date
CN103488172A (zh) 2014-01-01
CN103488172B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2013185622A1 (zh) 自动工作系统及其控制方法
WO2013102417A1 (zh) 边界信号识别方法及其边界系统
US10459452B2 (en) Method for detecting a working area of an autonomous working device, and a working device
CN111352428B (zh) 自动工作系统及其控制方法
CN102890505B (zh) 边界系统
WO2014079363A1 (zh) 自动工作系统
WO2020199592A1 (zh) 一种机器人回座的控制方法
CN105467983A (zh) 自动行走设备导引系统和方法
WO2014012473A1 (zh) 导引系统及其控制方法
CN110979594B (zh) 一种基于自主驾驶船舶的船岸协同避碰测试系统
CN108270286B (zh) 低压配电系统及控制方法
CN111179568B (zh) 一种基于边界电磁信号的割草机器人通讯方法和系统
CN103869813A (zh) 自动工作系统
CN105467982A (zh) 使自动行走设备在限定区域工作的系统和方法
WO2019218438A1 (zh) 监控扫地机异常状态的方法和装置
WO2017147755A1 (zh) 油门控制信号处理方法、电子调速器、控制器及移动平台
CN104682394A (zh) 一种基于自适应的双向无隙换流的防晃电装置及方法
CN110392870A (zh) 自移动设备及其工作系统、识别方法、工作方法
CN109541719B (zh) 避障信号探测装置及其工作方法
CN111324111B (zh) 识别边界信号的方法及机器人系统
CN110949446B (zh) 电子道岔的控制电路及方法
CN110927430A (zh) 电动汽车直流充电枪导引电压检测系统及方法
CN209641061U (zh) 一种无人机控制系统
CN106787653A (zh) 一种驱动控制方法及电源电路
CN110355760B (zh) 特种机器人自主返航控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803976

Country of ref document: EP

Kind code of ref document: A1