WO2013185586A1 - 一种电吸附系统、电吸附模块改性系统及相应的方法 - Google Patents

一种电吸附系统、电吸附模块改性系统及相应的方法 Download PDF

Info

Publication number
WO2013185586A1
WO2013185586A1 PCT/CN2013/077040 CN2013077040W WO2013185586A1 WO 2013185586 A1 WO2013185586 A1 WO 2013185586A1 CN 2013077040 W CN2013077040 W CN 2013077040W WO 2013185586 A1 WO2013185586 A1 WO 2013185586A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrosorption
module
amine
electric adsorption
modification
Prior art date
Application number
PCT/CN2013/077040
Other languages
English (en)
French (fr)
Inventor
杨春
朱广东
赵娜
黄健阳
孙晓慰
Original Assignee
爱思特水务科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱思特水务科技有限公司 filed Critical 爱思特水务科技有限公司
Publication of WO2013185586A1 publication Critical patent/WO2013185586A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Definitions

  • the invention relates to the field of sewage treatment, in particular to an electrosorption system, an electrosorption module modification system and a corresponding method. Background technique
  • electrosorption demineralization technology is the core equipment of electrosorption module.
  • the total process flow is divided into two parts, workflow and regeneration process.
  • the workflow is to make the opposite electrode sheets in the electrosorption module positive and negative, and use the potential difference between the electrode sheets to adsorb the anions and cations in the raw water to achieve the process of purifying the raw water.
  • capacitive adsorption is the desalting process of positive and negative ions in the surface of the electrode, while the surface side reaction is a slow redox reaction of the electrode itself, in which the oxidation reaction As the main trend.
  • the positive and negative electrodes of the electrode are short-circuited, and the anion and cation are desorbed into the channel of the electrosorption module, and the water is flushed out of the electrosorption module to regenerate the module.
  • the regeneration process is the reverse process of the capacitance adsorption effect during the working process.
  • the invention provides an electrosorption system, an electrosorption module modification system and corresponding parties
  • the method is used to solve the problem of the desorption efficiency of the electrosorption module due to the accumulation of surface side reaction effects during the long-term operation of the existing electrosorption system.
  • An electrosorption module modification system of the present invention comprises: an amine-type container connected to a closed loop, a pump and an electrosorption module; an amine container containing an amine-containing amine substance solution; an electrosorption module, the electricity
  • the adsorption module is an electrosorption module to be modified; and a pump for injecting the amine substance solution in the amine container into the electrosorption module to change the surface property of the electrosorption module.
  • the method further includes: a recycling container for recovering the amine substance solution residing in the electrosorption module after changing the properties of the surface of the electrosorption module.
  • the method for modifying an electrosorption module of the present invention comprises the following steps: si, draining water inside the electrosorption module to be modified; S2, injecting an amine substance solution into the electrosorption module to make an amine The material solution is continuously contacted with the internal electrode of the electrosorption module to reach a first predetermined duration; S3, draining the amine material solution inside the modified electrosorption module.
  • the step S2 specifically includes: cyclically operating the following two modes until the cumulative duration is equal to the first predetermined duration; Method 1: After injecting the amine solution into the electrosorption module, the solution is allowed to stand. The second preset duration; the second method, circulating the flowing amine material solution in the electrosorption module to reach a third preset duration.
  • the step S2 specifically includes: after injecting the amine substance solution into the electrosorption module, circulating the flowing amine substance solution in the electrosorption module to reach a first preset duration.
  • the method further comprises: S4, drying the electrosorption module of the solution of the dried amine substance to a fourth preset duration.
  • An electrosorption system of the present invention comprises: an electrosorption working subsystem for purifying raw water and a regenerative electrosorption module, and further comprising: an electrosorption module modification subsystem for injecting an amine substance solution into the electrosorption module, Changing the property of the surface of the electrosorption module; switching device for switching the system to the electrosorption module when modifying the electrosorption module The operating mode of the modified subsystem; and after the modification of the electrosorption module is completed, the system is switched to the operating mode of the electro-adsorption working subsystem; the modified subsystem of the electro-adsorption module is the electro-adsorption module modification system.
  • the switching device comprises: a first group of valves for controlling an electrosorption module modifying subsystem to inject an amine substance solution into the electrosorption module; and a second group of valves for controlling the electrosorption working subsystem to inject the raw water into the electricity The adsorption module; the third group of valves for draining the liquid in the electrosorption module.
  • a control device connected to the measuring device and the switching device, for determining that the electrosorption module needs to be modified when the difference between the initial conductivity removal rate of the system and the current conductance removal rate measured by the measuring device is greater than or equal to a threshold value; And controlling the switching device to complete the corresponding switching, and after completing the modification of the electric adsorption module, the control switching device completes the corresponding switching.
  • An electrosorption method of the present invention comprises the following steps: purifying raw water and regenerating an electrosorption module in an operation mode; changing a property of a surface of the electrosorption module in a modification mode; switching step: in a power-on When the adsorption module is modified, it is switched to the modification mode; and after the modification of the electrosorption module is completed, it is switched to the working mode; the specific step in the modification mode is realized by the above-mentioned electrosorption module modification method.
  • the technical proposal of using the amine substance solution to periodically soak and flush the electrosorption module proposed by the invention can ensure the long-term stable continuous and efficient operation of the electrosorption demineralization system. Compared to the past In the operation mode, the present invention can restore the efficiency of the electrosorption module to the initial removal efficiency after every degree of decline. The actual measurement can extend the service life of the electrosorption module by about 1 time.
  • FIG. 1 is a schematic structural diagram of a system according to Embodiment 1 of the present invention.
  • Figure 3 is a system frame diagram of the third embodiment
  • FIG. 4 is a schematic diagram of a specific implementation of the third embodiment. detailed description
  • the inventors After long-term practice and many experiments, the inventors have verified that the electrode surface is oxidized to produce various groups during long-term operation. This group will eventually affect the desalination efficiency of the electrode.
  • the effect of the group on the electrosorption efficiency is mainly reflected in the following two aspects. First, a large amount of negatively charged groups are generated on the surface of the electrode during long-term surface oxidation, resulting in a large number of positive ions on the electrode sheet after the end of the regeneration process. During the working process, the surface of the negative electrode has been enriched with a large amount of positive ions, so the ability to adsorb positive ions is greatly reduced.
  • the positive electrode itself has a large amount of positive ions, it needs to consume a part of energy (potential) to drive off the positive ions on the surface. Then, the negative ions can be adsorbed, and the ability of the positive electrode to adsorb negative ions is also reduced. This shows a macroscopic decline in module adsorption efficiency.
  • the negatively charged groups generated on the surface of the electrode after long-term surface oxidation have the function of cationic ion exchange, that is, the cations carried by the negatively charged group are unstable and replaceable.
  • the electrode piece is placed in a solution having a lower pH value, and the hydrogen ion in the solution can be exchanged with the cation adsorbed by the surface group of the electrode, the hydrogen ion is adsorbed by the electrode piece, and the cation concentration of the bulk solution is increased;
  • the neutral salt solution the hydrogen ions adsorbed on the surface of the electrode exchange reaction with the cation in the solution, and the cation is adsorbed by the electrode group, and the pH of the solution is lowered.
  • the PH value is low, and the cation adsorbed on the electrode group is exchanged with the hydrogen ion to the original solution, so that the cation concentration of the original solution is increased, and the effluent ion concentration is increased, which affects the removal rate.
  • the solution near the electrode sheet is neutral, and the cations in the solution are exchanged by the hydrogen ions on the electrode sheet group, so that the cations are returned to the electrode sheet, which affects the regeneration effect.
  • the process of adsorption-desorption-adsorption-reversal of the electrosorption module is formed. This leads to a decrease in the adsorption efficiency of the electrosorption module.
  • the present invention provides an electrosorption module modification system and method. And an electrosorption system and method, which are further described below by way of several embodiments.
  • Embodiment 1 provides an electrosorption module modification system.
  • the electrosorption system When the electrosorption system is operated for a period of time and the adsorption efficiency of the electrosorption module 11 is decreased, the electrosorption module 11 to be modified can be removed from the electrosorption system.
  • the inner water is drained and air-dried for 24 hours, and then connected to the amine container 12 and the pump 13 to form a closed loop circulation system.
  • the further electric adsorption module 11 is also connected to the recovery container 14, as shown in FIG. .
  • the amine container 12 contains a solution of an amine group-containing amine substance, and specifically, a solution of a primary or secondary amine substance, for example, an ethylenediamine solution.
  • Electrosorption module 11 the electrosorption module is an electrosorption module to be modified.
  • the pump 13 is for injecting the amine substance solution in the amine container 12 into the electrosorption module 11 to change the properties of the surface of the electrosorption module.
  • the recovery container 14 is for recovering the amine-based substance solution residing in the electrosorption module 11 after changing the properties of the surface of the electrosorption module 11.
  • Embodiment 2 This embodiment provides a method for modifying an electrosorption module, which can be implemented by using the electrosorption module modification system described in Embodiment 1, as shown in FIG. 2, and includes the following defects. Step:
  • the electrosorption module to be modified can be extracted from the electrosorption system, and the internal water is drained and air-controlled for 24 hours. Dilute the amine solution on the electrode.
  • the amine solution mainly refers to a solution of primary and secondary amines.
  • the amine group contained in the primary and secondary amines may be reacted with an oxidizing group formed on the electrode to cover or reduce it.
  • an ethylenediamine solution can be used.
  • the first preset duration is set to 24 hours in this step, so that the amine material solution is continuously in contact with the internal electrode of the electrosorption module to reach the first preset duration, and two implementation manners are specifically adopted:
  • Implementation method 1 Slowly inject the ethylenediamine solution into the electrosorption module until the electrosorption module is full, and then let it stand for 1 hour; then open the pump to circulate the ethylenediamine solution in the electrosorption module for 1 hour; then let stand for 1 hour. This is repeated until 24 hours.
  • the electrosorption module that drains the amine solution is air-controlled to a fourth preset duration.
  • the fourth preset duration in this step is 24 hours. After the electrosorption module is air-controlled for at least 24 hours, the groups on the electrode of the ethylenediamine solution and the electrosorption module will continue to react, and the electrosorption module will be used. Rinse well and reconnect to the electrosorption system for reuse.
  • Embodiment 3 provides an electrosorption system, as shown in FIG. 3, comprising: an electrosorption module modification subsystem 31, that is, an electrosorption module modification system of Embodiment 1; The method further includes: an electrosorption working subsystem 32, a switching device 33; and further comprising: a measuring device 34 and a control device 35.
  • the electrosorption module modification subsystem 31 is configured to inject an amine substance solution into the electrosorption module to change the properties of the surface of the electrosorption module. Further, as shown in Fig. 4, an electrosorption module 311, an amine container 312, and a pump 313 are included.
  • the electrosorption working subsystem 32 is used for purifying raw water and regenerative electrosorption modules. It is possible to use an existing electrosorption system.
  • the switching device 33 is configured to switch the system to the operating mode of the electro-adsorption module modification subsystem when modifying the electro-adsorption module; and switch the system to the electro-adsorption working subsystem operation mode after completing the modification of the electro-adsorption module. Further, as shown in FIG. 4, three sets of valves may be used in the specific implementation.
  • the first set of valves includes a power valve 331 and a power valve 333 for controlling the electrosorption module modification subsystem 31 to inject an amine solution into the electricity.
  • the second group of valves includes a power valve 332 and a power valve 334 for controlling the electrosorption working subsystem 32 to inject raw water into the electrosorption module;
  • the third group of valves includes a screwing valve 335 and a screwing valve 336 for arranging The liquid in the dry electricity adsorption module.
  • the measuring device 34 is configured to measure the operating conductance removal rate of the electrosorption module.
  • the conductivity of the raw water and the average conductivity of the effluent can be measured by a conductivity meter to calculate the conductivity removal rate.
  • the control device 35 is connected to the measuring device 34 and the switching device 33.
  • a threshold for example, the system initial conductance removal rate is 90%.
  • the current conductance removal rate is 78%, and the threshold value is 10%, then it is determined that the electrosorption module needs to be modified, and the switching device 33 is controlled to switch the system to the operating mode of the electrosorption module modification subsystem; Thereafter, control switching device 33 switches the system to the electroadhesive working subsystem operating mode.
  • Embodiment 4 provides an electrosorption method including the following steps: purifying raw water and regenerating an electrosorption module in an operation mode; changing a surface of the electrosorption module in a modification mode; When modifying the electrosorption module, switch to the modification mode; and after completing the modification of the electrosorption module, switch to the working mode.
  • the system is implemented as follows.
  • the specific implementation process is as follows: During normal use of the electrosorption module, the power valve 332 and the power valve 334 are opened.
  • Power valve 332 and power valve 334 can be closed, and open screw valve 335 and screw valve 336 can be drained.
  • the screw valve 335 and the screw valve 336 can be closed, and the power valve 331 and the power valve 333 are opened, and the electrosorption module will automatically switch to the modified mode.
  • the modification is completed, the ethylenediamine solution in the electrosorption module is discharged and recovered by the screwing valve 335 and the screwing valve 336.
  • the electrosorption module is reconnected back to the electrosorption working system to continue purifying the raw water.
  • the switches of the aforementioned valves are controlled by the control unit 35.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种电吸附系统、电吸附模块改性系统及相应的方法,涉及污水处理领域,用以解决现有电吸附系统长期运行过程中由于表面副反应效应的累积,影响电吸附模块除盐效率的问题。改性系统包括:成闭环连接的胺类容器、泵和电吸附模块;胺类容器中装有含胺基的胺类物质溶液;电吸附模块为待改性的电吸附模块;泵用于将胺类容器中的胺类物质溶液注入电吸附模块,以改变该电吸附模块表面的性质。电吸附系统包括:电吸附工作子系统;电吸附模块改性子系统;切换装置,用于在对电吸附模块改性时,将所述系统切换至电吸附模块改性子系统运行模式;以及在完成电吸附模块改性后,将所述系统切换至电吸附工作子系统运行模式。

Description

一种电吸附系统、 电吸附模块改性系统及相应的方法 技术领域
本发明涉及污水处理领域, 特别是涉及一种电吸附系统、 电吸附 模块改性系统及相应的方法。 背景技术
随着经济和社会的发展,一方面人类对水的需求量和品质的要求 越来越高, 另一方面, 水污染的范围和程度也越来越大。
电吸附除盐技术作为一种水处理技术, 其核心设备是电吸附模 块, 其总的工艺流程分为 2个部分, 工作流程、 再生流程。 工作流程 是使电吸附模块内相对的电极片通正负电,利用电极片之间的电势差 吸附原水内的阴阳离子, 达到净化原水的过程。在工作过程中有两种 效应, 电容吸附和表面副反应, 电容吸附是水中正负离子富集在电极 表面的除盐过程,而表面副反应是电极本身发生的缓慢的氧化还原反 应, 其中氧化反应为主要趋势。 在再生过程中将电极片正负极短接, 此时阴阳离子会脱附到电吸附模块通道内, 并被水冲出电吸附模块, 使模块得到再生。 再生过程为工作过程中电容吸附效应的逆过程。
经发明人研究发现, 工作流程中的两种效应, 即电容吸附和表面 副反应, 前者是可逆过程, 后者是不可逆过程, 虽然表面副反应是少 量的、缓慢的,但是在电吸附系统长期运行过程中该效应会累积下来, 使电吸附模块的电极缓慢变性, 最终影响到电吸附模块的除盐效率。 发明内容
本发明提供一种电吸附系统、 电吸附模块改性系统及相应的方 法,用以解决现有电吸附系统长期运行过程中由于表面副反应效应的 累积, 影响电吸附模块除盐效率的问题。
本发明的一种电吸附模块改性系统, 包括: 成闭环连接的胺类容 器、 泵和电吸附模块; 胺类容器, 其中装有含胺基的胺类物质溶液; 电吸附模块, 该电吸附模块为待改性的电吸附模块; 泵, 用于将胺类 容器中的所述胺类物质溶液注入电吸附模块,以改变该电吸附模块表 面的性质。
进一歩, 还包括: 回收容器, 用于在改变所述电吸附模块表面的 性质后, 回收所述电吸附模块中驻留的胺类物质溶液。
本发明的一种电吸附模块改性方法, 包括下列歩骤: si、将待改 性的电吸附模块内部的水排干; S2、将胺类物质溶液注入所述电吸附 模块, 使胺类物质溶液与电吸附模块内部电极持续接触, 达到第一预 设时长; S3、 将经改性后的电吸附模块内部的胺类物质溶液排干。
进一歩, 所述歩骤 S2中具体包括: 循环操作下述两种方式, 直 至累计时长等于第一预设时长; 方式一、将胺类物质溶液注入所述电 吸附模块后, 静置达到第二预设时长; 方式二、在所述电吸附模块中 循环流动胺类物质溶液, 达到第三预设时长。 或者, 所述歩骤 S2中 具体包括: 将胺类物质溶液注入所述电吸附模块后, 在该电吸附模块 中循环流动胺类物质溶液, 达到第一预设时长。
进一歩, 所述歩骤 S3之后还包括: S4、 将排干胺类物质溶液的 电吸附模块晾控达到第四预设时长。
本发明的一种电吸附系统, 包括: 用于净化原水以及再生电吸附 模块的电吸附工作子系统, 还包括: 电吸附模块改性子系统, 用于将 胺类物质溶液注入电吸附模块, 以改变该电吸附模块表面的性质; 切 换装置, 用于在对电吸附模块改性时, 将所述系统切换至电吸附模块 改性子系统运行模式; 以及在完成电吸附模块改性后, 将所述系统切 换至电吸附工作子系统运行模式;电吸附模块改性子系统为上述电吸 附模块改性系统。
进一歩, 所述切换装置包括: 第一组阀门, 用于控制电吸附模块 改性子系统将胺类物质溶液注入电吸附模块; 第二组阀门, 用于控制 电吸附工作子系统将原水注入电吸附模块; 第三组阀门, 用于排干电 吸附模块中的液体。
进一歩, 还包括: 测量装置, 用于测量所述电吸附模块的运行电 导去除率, 具体通过下述公式得出: 运行电导去除率= (原水电导率- 出水平均电导率) /原水电导率; 控制装置, 与所述测量装置和切换 装置连接,用于在测量装置测得的所述系统初始电导去除率与当前电 导去除率之差大于等于阈值时, 判定需对电吸附模块进行改性, 并控 制切换装置完成相应切换, 以及在完成电吸附模块改性后, 控制切换 装置完成相应切换。
本发明的一种电吸附方法, 包括下列歩骤: 在工作模式下, 净化 原水以及再生电吸附模块; 在改性模式下, 改变所述电吸附模块表面 的性质; 切换歩骤: 在对电吸附模块改性时, 切换到改性模式; 以及 在完成电吸附模块改性后, 切换到工作模式; 在改性模式下的具体歩 骤, 通过上述的电吸附模块改性方法实现。
进一歩, 所述切换歩骤中还包括: 测量所述电吸附模块的运行电 导去除率, 具体通过下述公式得出: 运行电导去除率= (原水电导率- 出水平均电导率) /原水电导率; 在测得的初始电导去除率与当前电 导去除率之差大于等于阈值时, 判定需对电吸附模块进行改性。
本发明提出的采用胺类物质溶液定期浸泡、冲洗电吸附模块的技 术方案, 可保证电吸附除盐系统长期稳定连续高效运行。相比以往的 运行方式,本发明可使电吸附模块效率在每下降一定程度后即恢复到 最初的去除效率。 实测可延长电吸附模块的使用寿命 1倍左右。 附图说明
图 1为本发明实施例一的系统结构示意图;
图 2为本发明实施例二的歩骤流程图;
图 3为实施例三的系统框架图;
图 4为实施例三的具体实现示意图。 具体实施方式
发明人经过长期的实践和多次实验验证,电吸附模块在长期运行 过程中, 电极表面发生氧化产生各种基团, 这种基团最终会影响到电 极的除盐效率。 基团对电吸附效率的影响主要表现在以下两个方面。 一是长期表面氧化时电极表面产生大量的带负电基团,导致再生过程 结束后电极片上仍有大量的正电离子。在工作过程中, 负极表面已经 富集大量的正电离子, 因而吸附正电离子的能力大大降低, 正极由于 本身带有大量的正离子, 需先消耗一部分能量(电位)来驱赶表面的 正离子, 而后才能吸附负离子, 也降低了正极吸附负离子的能力。 这 样从宏观上就表现出模块吸附效率的下降。二是长期表面氧化后电极 表面产生的负电基团具有阳离子离子交换的功能,即负电基团所带的 阳离子为不稳定的、 可置换的。 将电极片置于 PH值较低的溶液中, 溶液中氢离子能和电极表面基团吸附的阳离子发生交换反应,氢离子 被电极片吸附, 本体溶液的阳离子浓度升高; 再将电极片置入 PH值 为中性的盐溶液中,电极表面基团吸附的氢离子又会和溶液中的阳离 子发生交换反应, 阳离子被电极片基团吸附, 溶液的 PH值降低。 这 种行为表现在模块工作过程中, gp :工作时, 由于电极片正极显酸性,
PH值较低, 电极片基团上吸附的阳离子会被氢离子交换到原溶液中, 使原溶液的阳离子浓度升高, 出水离子浓度升高, 影响去除率。而在 再生过程中, 电极片附近溶液为中性, 溶液中的阳离子会被电极片基 团上的氢离子交换, 使阳离子重新回到电极片上, 影响再生效果。形 成了和电吸附模块吸附——脱附——吸附相逆的过程。导致电吸附模 块吸附效率下降。
为了还原电吸附模块被氧化的电极片,从而使效率已下降的电吸 附模块恢复初始的盐性能, 进而延长电吸附模块的使用寿命, 本发明 提供了一种电吸附模块改性系统及方法, 以及一种电吸附系统及方 法, 以下通过若干实施例进一歩说明。
实施例一、本实施例提供了一种电吸附模块改性系统, 在电吸附 系统工作一段时间, 发现电吸附模块 11吸附效率下降时, 可将待改 性的电吸附模块 11从电吸附系统中摘出,将内部水排干并晾控 24小 时后, 与胺类容器 12和泵 13连接, 形成闭环的循环系统, 进一歩电 吸附模块 11还与回收容器 14相连, 具体参见图 1所示。
胺类容器 12, 其中装有含胺基的胺类物质溶液, 具体可以采用 伯胺类或仲胺类物质的溶液, 例如: 乙二胺溶液。
电吸附模块 11, 该电吸附模块为待改性的电吸附模块。
泵 13, 用于将胺类容器 12中的所述胺类物质溶液注入电吸附模 块 11, 以改变该电吸附模块表面的性质。
回收容器 14, 用于在改变电吸附模块 11表面的性质后, 回收电 吸附模块 11中驻留的胺类物质溶液。
实施例二、本实施例提供了一种电吸附模块改性方法, 可采用实 施例一所述的电吸附模块改性系统实施, 参见图 2所示, 包括下列歩 骤:
521、 将待改性的电吸附模块内部的水排干。
本歩骤中, 在电吸附系统工作一段时间, 发现电吸附模块吸附效 率下降时, 可将待改性的电吸附模块从电吸附系统中摘出, 将内部水 排干并晾控 24小时, 以免电极上所存水分稀释胺类物质溶液。
522、 将胺类物质溶液注入电吸附模块, 使胺类物质溶液与电吸 附模块内部电极持续接触, 达到第一预设时长。
本歩骤中, 胺类物质溶液主要是指伯胺类和仲胺类物质的溶液。 其中伯胺和仲胺中所含胺基可以与电极上形成的氧化基团发生反应, 将之覆盖或还原。 具体可以采用乙二胺溶液。
本歩骤中设第一预设时长为 24小时, 使胺类物质溶液与电吸附 模块内部电极持续接触, 达到第一预设时长, 具体可采用两种实现方 式:
实现方式一、 将乙二胺溶液缓缓注入电吸附模块至电吸附模块 满, 之后静置 1小时; 再开泵使乙二胺溶液在电吸附模块内循环 1小 时; 再静置 1小时。 如此反复进行, 直至达到 24小时。
实现方式二、 将乙二胺溶液缓缓注入电吸附模块, 并不断循环 24小时。
523、 将经改性后的电吸附模块内部的胺类物质溶液排干。
524、将排干胺类物质溶液的电吸附模块晾控达到第四预设时长。 本歩骤中设第四预设时长为 24小时, 待电吸附模块晾控至少 24 小时后,期间乙二胺溶液和电吸附模块的电极上的基团会继续发生反 应,将电吸附模块用水冲洗干净,再重新接至电吸附系统中重复使用。
实施例三、 本实施例提供了一种电吸附系统, 参见图 3所示, 包 括: 电吸附模块改性子系统 31, 即实施例一的电吸附模块改性系统; 还包括: 电吸附工作子系统 32、 切换装置 33 ; 进一歩还可以包括: 测量装置 34和控制装置 35。
电吸附模块改性子系统 31, 用于将胺类物质溶液注入电吸附模 块, 以改变该电吸附模块表面的性质。 进一歩, 参见图 4中所示, 包 括电吸附模块 311、 胺类容器 312和泵 313。
电吸附工作子系统 32, 用于净化原水以及再生电吸附模块。 具 体可以采用现有的电吸附系统。
切换装置 33, 用于在对电吸附模块改性时, 将系统切换至电吸 附模块改性子系统运行模式; 以及在完成电吸附模块改性后, 将系统 切换至电吸附工作子系统运行模式。进一歩, 参见图 4中所示, 在具 体实现中可以采用三组阀门, 第一组阀门包括动力阀 331 和动力阀 333,用于控制电吸附模块改性子系统 31将胺类物质溶液注入电吸附 模块; 第二组阀门包括动力阀 332和动力阀 334, 用于控制电吸附工 作子系统 32将原水注入电吸附模块; 第三组阀门包括旋拧阀 335和 旋拧阀 336, 用于排干电吸附模块中的液体。
测量装置 34, 用于测量电吸附模块的运行电导去除率, 可以采 用电导率仪测出原水电导率和出水平均电导率来计算电导去除率,具 体公式如下: 运行电导去除率= (原水电导率 -出水平均电导率) /原 水电导率。
控制装置 35, 与测量装置 34和切换装置 33连接, 用于在测量 装置 34测得的系统初始电导去除率与当前电导去除率之差大于等于 阈值时, 例如: 系统初始电导去除率为 90%, 当前电导去除率为 78%, 阈值为 10%, 则判定需对电吸附模块进行改性, 并控制切换装置 33 将系统切换至电吸附模块改性子系统运行模式;在完成电吸附模块改 性后, 控制切换装置 33将系统切换至电吸附工作子系统运行模式。 实施例四、 本实施例提供了一种电吸附方法, 包括下列歩骤: 在 工作模式下, 净化原水以及再生电吸附模块; 在改性模式下, 改变所 述电吸附模块表面的性质;在对电吸附模块改性时,切换到改性模式; 以及在完成电吸附模块改性后, 切换到工作模式。
如采用上述实施例三所述的系统实施, 则具体实施流程如下: 在电吸附模块正常使用过程中, 开启动力阀 332和动力阀 334。 测量装置 34持续测量电吸附模块的运行电导去除率, 具体通过下述 公式得出: 运行电导去除率= (原水电导率 -出水平均电导率) /原水 电导率, 在测得的初始电导去除率与当前电导去除率之差大于等于 10%时,判定需对电吸附模块进行改性。可将动力阀 332和动力阀 334 关闭, 开启旋拧阀 335和旋拧阀 336放水。待将电吸附模块内的水基 本控干后, 可将旋拧阀 335和旋拧阀 336关闭, 开启动力阀 331和动 力阀 333,此时电吸附模块将自动切换到改性模式下。当改性完成后, 通过旋拧阀 335和旋拧阀 336将电吸附模块内的乙二胺溶液排出并回 收。将电吸附模块重新接回电吸附工作系统中, 继续净化原水。前述 各阀门的开关由控制装置 35控制。 显然,本领域的技术人员可以对本发明进行各种改动和变型而不 脱离本发明的精神和范围。这样, 倘若本发明的这些修改和变型属于 本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些 改动和变型在内。

Claims

权利要求
1、 一种电吸附模块改性系统, 其特征在于, 包括: 成闭环连接 的胺类容器、 泵和电吸附模块;
胺类容器, 其中装有含胺基的胺类物质溶液;
电吸附模块, 该电吸附模块为待改性的电吸附模块;
泵, 用于将胺类容器中的所述胺类物质溶液注入电吸附模块, 以 改变该电吸附模块表面的性质。
2、 如权利要求 1所述的系统, 其特征在于, 还包括:
回收容器, 用于在改变所述电吸附模块表面的性质后, 回收所述 电吸附模块中驻留的胺类物质溶液。
3、 一种电吸附模块改性方法, 其特征在于, 包括下列歩骤:
51、 将待改性的电吸附模块内部的水排干;
52、将胺类物质溶液注入所述电吸附模块, 使胺类物质溶液与电 吸附模块内部电极持续接触, 达到第一预设时长;
53、 将经改性后的电吸附模块内部的胺类物质溶液排干。
4、 如权利要求 3所述的方法, 其特征在于, 所述歩骤 S2中具体 包括:
循环操作下述两种方式, 直至累计时长等于第一预设时长; 方式一、将胺类物质溶液注入所述电吸附模块后, 静置达到第二 预设时长;
方式二、在所述电吸附模块中循环流动胺类物质溶液, 达到第三 预设时长。
5、 如权利要求 3所述的方法, 其特征在于, 所述歩骤 S2中具体 包括: 将胺类物质溶液注入所述电吸附模块后,在该电吸附模块中循环 流动胺类物质溶液, 达到第一预设时长。
6、 如权利要求 3至 5任一项所述的方法, 其特征在于, 所述歩 骤 S3之后还包括:
S4、 将排干胺类物质溶液的电吸附模块晾控达到第四预设时长。
7、 一种电吸附系统, 包括: 用于净化原水以及再生电吸附模块 的电吸附工作子系统, 其特征在于, 还包括:
电吸附模块改性子系统, 用于将胺类物质溶液注入电吸附模块, 以改变该电吸附模块表面的性质;
切换装置, 用于在对电吸附模块改性时, 将所述系统切换至电吸 附模块改性子系统运行模式; 以及在完成电吸附模块改性后, 将所述 系统切换至电吸附工作子系统运行模式;
上述电吸附模块改性子系统为权利要求 1或 2所述的电吸附模块 改性系统。
8、 如权利要求 7所述的系统, 其特征在于, 所述切换装置包括: 第一组阀门,用于控制电吸附模块改性子系统将胺类物质溶液注 入电吸附模块;
第二组阀门, 用于控制电吸附工作子系统将原水注入电吸附模 块;
第三组阀门, 用于排干电吸附模块中的液体。
9、 如权利要求 7或 8所述的系统, 其特征在于, 还包括: 测量装置, 用于测量所述电吸附模块的运行电导去除率, 具体通 过下述公式得出: 运行电导去除率= (原水电导率 -出水平均电导率) /原水电导率;
控制装置, 与所述测量装置和切换装置连接, 用于在测量装置测 得的所述系统初始电导去除率与当前电导去除率之差大于等于阈值 时, 判定需对电吸附模块进行改性, 并控制切换装置完成相应切换, 以及在完成电吸附模块改性后, 控制切换装置完成相应切换。
10、 一种电吸附方法, 其特征在于, 包括下列歩骤:
在工作模式下, 净化原水以及再生电吸附模块;
在改性模式下, 改变所述电吸附模块表面的性质;
切换歩骤: 在对电吸附模块改性时, 切换到改性模式; 以及在完 成电吸附模块改性后, 切换到工作模式;
上述在改性模式下的具体歩骤,通过权利要求 3至 5任一项所述 的电吸附模块改性方法实现。
11、 如权利要求 10所述的方法, 其特征在于, 所述切换歩骤中 还包括:
测量所述电吸附模块的运行电导去除率, 具体通过下述公式得 出: 运行电导去除率= (原水电导率 -出水平均电导率) /原水电导率; 在测得的初始电导去除率与当前电导去除率之差大于等于阈值时,判 定需对电吸附模块进行改性。
PCT/CN2013/077040 2012-06-12 2013-06-09 一种电吸附系统、电吸附模块改性系统及相应的方法 WO2013185586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210191994.0 2012-06-12
CN201210191994.0A CN102689951B (zh) 2012-06-12 2012-06-12 一种电吸附系统、电吸附模块改性系统及相应的方法

Publications (1)

Publication Number Publication Date
WO2013185586A1 true WO2013185586A1 (zh) 2013-12-19

Family

ID=46855710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077040 WO2013185586A1 (zh) 2012-06-12 2013-06-09 一种电吸附系统、电吸附模块改性系统及相应的方法

Country Status (2)

Country Link
CN (1) CN102689951B (zh)
WO (1) WO2013185586A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689951B (zh) * 2012-06-12 2015-08-05 爱思特水务科技有限公司 一种电吸附系统、电吸附模块改性系统及相应的方法
CN110240231B (zh) * 2019-06-28 2021-09-28 马鞍山市新桥工业设计有限公司 一种流体净化系统及净化方法
CN110143649B (zh) * 2019-06-28 2021-09-07 马鞍山市新桥工业设计有限公司 一种双路流体净化系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135707A (ja) * 2010-12-24 2012-07-19 Kurita Water Ind Ltd アミン液の再生方法および装置
CN102689951A (zh) * 2012-06-12 2012-09-26 爱思特水务科技有限公司 一种电吸附系统、电吸附模块改性系统及相应的方法
CN102701341A (zh) * 2012-06-12 2012-10-03 爱思特水务科技有限公司 一种电吸附模块改性系统及方法
CN202808447U (zh) * 2012-06-14 2013-03-20 爱思特水务科技有限公司 一种电吸附模块改性系统
CN202808448U (zh) * 2012-06-14 2013-03-20 爱思特水务科技有限公司 一种电吸附系统和电吸附模块改性系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767062B2 (en) * 2006-06-12 2010-08-03 Korea Electric Power Corporation Submerged-type electrosorption-based water purification apparatus and method thereof
CN201581010U (zh) * 2009-05-06 2010-09-15 中山大学 一种卡槽式活性炭纤维电极电容吸附去离子装置
CN102010039B (zh) * 2010-10-21 2012-05-02 常州爱思特净化设备有限公司 一种电吸附除盐反洗的方法及系统
CN202152294U (zh) * 2011-07-01 2012-02-29 北京中恒意美环境工程技术有限公司 高盐度废水电吸附脱盐装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135707A (ja) * 2010-12-24 2012-07-19 Kurita Water Ind Ltd アミン液の再生方法および装置
CN102689951A (zh) * 2012-06-12 2012-09-26 爱思特水务科技有限公司 一种电吸附系统、电吸附模块改性系统及相应的方法
CN102701341A (zh) * 2012-06-12 2012-10-03 爱思特水务科技有限公司 一种电吸附模块改性系统及方法
CN202808447U (zh) * 2012-06-14 2013-03-20 爱思特水务科技有限公司 一种电吸附模块改性系统
CN202808448U (zh) * 2012-06-14 2013-03-20 爱思特水务科技有限公司 一种电吸附系统和电吸附模块改性系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, ZHI ET AL.: "Study on nitrate removal improvement of electrosorption desalination by its following process: water electrolysis catalytic reduction", WATER & WASTEWATER ENGINEERING, vol. 35, no. ISSUE, May 2009 (2009-05-01), pages 146 - 150 *

Also Published As

Publication number Publication date
CN102689951B (zh) 2015-08-05
CN102689951A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
US7767062B2 (en) Submerged-type electrosorption-based water purification apparatus and method thereof
CN102648574B (zh) 用于去除离子的装置及其操作方法、电源转换器
Andres et al. A capacitive deionization system with high energy recovery and effective re-use
KR101083244B1 (ko) 축전식 탈염 장치의 제어 방법
WO2013185586A1 (zh) 一种电吸附系统、电吸附模块改性系统及相应的方法
KR20110050994A (ko) 전기흡착방식의 연수장치 및 상기 연수장치의 구동 방법
JP2011078936A (ja) 水処理装置および給湯機
KR100501417B1 (ko) 역삼투막법/전극법을 이용한 폐수 탈염장치
KR20100012064A (ko) 이온흡착매트를 이용한 전기동력학적 고효율 토양오염 복원시스템
JP5251831B2 (ja) 給湯機
CN102267745B (zh) 一种采用聚苯胺电极去除水中氟离子的电化学水处理方法
CN101891331A (zh) 活性炭吸附与电化学再生一体化处理装置及其使用方法
CN202011768U (zh) 一种电吸附除盐再生系统
JP6570692B1 (ja) 電気二重層を用いた排水処理方法および排水処理システム
WO2016016313A1 (en) Operating an apparatus for removal of ions with warm and cold water
CN202808447U (zh) 一种电吸附模块改性系统
CN102126772A (zh) 一种电吸附除盐再生系统及再生方法
KR102007878B1 (ko) 자체 전원 생성부를 구비한 탈이온화 방식을 이용한 연속 정수 처리 시스템
CN102701341B (zh) 一种电吸附模块改性系统及方法
CN202808448U (zh) 一种电吸附系统和电吸附模块改性系统
CN206858235U (zh) 一种开放式电容去离子脱盐装置
KR20120132324A (ko) 탈 이온 모듈의 능동적 재생 방법 및 이를 이용한 수처리 장치
TWI728773B (zh) 高效能的電容脫鹽裝置之控制方法及其系統
KR102275921B1 (ko) 축전식 탈이온 수처리 장치 및 그 제어 방법
CN103991925B (zh) 一种全过程自动控制的电解锰废水离子交换处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804585

Country of ref document: EP

Kind code of ref document: A1