WO2013185498A1 - 无线局域网接入方法及设备 - Google Patents

无线局域网接入方法及设备 Download PDF

Info

Publication number
WO2013185498A1
WO2013185498A1 PCT/CN2013/072819 CN2013072819W WO2013185498A1 WO 2013185498 A1 WO2013185498 A1 WO 2013185498A1 CN 2013072819 W CN2013072819 W CN 2013072819W WO 2013185498 A1 WO2013185498 A1 WO 2013185498A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
sensor
time
periods
sites
Prior art date
Application number
PCT/CN2013/072819
Other languages
English (en)
French (fr)
Inventor
姜艳平
赵牧
甄斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013185498A1 publication Critical patent/WO2013185498A1/zh
Priority to US14/561,018 priority Critical patent/US9924444B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and, more particularly, to a wireless local area network access method and apparatus. Background technique
  • WLAN Wireless Local Area Networks
  • the WLAN provides wireless broadband data access services, for example, cellular network data service offloading, that is, when a user arrives at an area with WLAN coverage, the WLAN network can be selected for data services.
  • WLAN also offers sensor application services such as smart meter reading, medical, environmental monitoring, home automation and more.
  • Wireless broadband data access services have higher speeds and higher power consumption, while sensor application services have lower rates and low power consumption.
  • an AP Access Point
  • the STAs of the sensor application service are referred to as sensor sites, and the wireless broadband data is accessed.
  • the serviced STA is called a non-sensor site.
  • the sensor station has a low transmit power.
  • the sensor node is a hidden node.
  • Sending data causes the data packets at the sensor site to be collided and failed to be sent.
  • Packets at the sensor site are repeatedly retransmitted multiple times after collisions, increasing the power consumption of the sensor site.
  • the non-sensor site has a large amount of traffic and will occupy the channel for a long time. Therefore, during the period when the non-sensor site occupies the channel, the sensor station needs to repeatedly listen to the channel, or repeatedly sleep and wake up to listen to the channel, which also increases the power consumption of the sensor site. Summary of the invention
  • the embodiment of the invention provides a wireless local area network access method and device, which can effectively improve the access success rate of the sensor site.
  • a wireless local area network access method including: dividing a beacon Beacon interval into at least three time periods, wherein a first time period of the at least three time periods is used by a cached data at an access point AP
  • the station sends a power saving polling PS-Poll frame, and the second time of the at least three time periods
  • the segment is for competitive access by a sensor site
  • the third of the at least three time periods is for competitive access by a sensor site and a non-sensor site, the site consisting of a sensor site and a non-sensor site
  • Sending a Beacon frame the Beacon frame carrying information of the at least three time periods.
  • a WLAN access method including: receiving a Beacon frame sent by an access point AP, where the Beacon frame carries information of at least three time periods, and the first time period of the at least three time periods is used by Generating a polling PS-Poll frame by a station having buffered data at the access point AP, the second period of the at least three periods for competing access by the sensor station, the at least three periods The third of the time periods is for competitive access by sensor sites and non-sensor sites, the sites consisting of sensor sites and non-sensor sites.
  • an access point including: a processor, configured to divide a Beacon interval into at least three time periods, where a first time period of the at least three time periods is cached by data at an access point AP
  • the station sends a power saving polling PS-Poll frame, and the second time period of the at least three time periods is competitively accessed by the sensor station, and the third time period of the at least three time periods is performed by the sensor station and the non-sensor station
  • the station is composed of a sensor station and a non-sensor station.
  • the sending unit is configured to send a Beacon frame, where the Beacon frame carries information of the at least three time periods divided by the processor.
  • a station including: a receiving unit, configured to receive a Beacon frame sent by an access point AP, and a processor, configured to acquire at least three time slots carried in the Beacon frame received by the receiving unit
  • the first time period of the at least three time periods is for transmitting a power saving polling PS-Poll frame by a station having cached data at the access point AP, the second time period of the at least three time periods being used for The competitive access is performed by the sensor site, and the third of the at least three time periods is used for competitive access by the sensor site and the non-sensor site, the site consisting of a sensor site and a non-sensor site.
  • the embodiment of the present invention divides the beacon Beacon interval into at least three time periods by using an access point, where the first time period is used to send a PS-Poll frame by a station that has cached data at the access point AP, and the second time period is used for The sensor site performs competitive access, and the third time period is used for competitive access by the sensor site and the non-sensor site, thereby suppressing the increase of power consumption caused by the simultaneous competition of the sensor site and the non-sensor site, and effectively improving The access success rate of the sensor site.
  • FIG. 1 is a flow chart of a method for accessing a wireless local area network according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for accessing a wireless local area network according to another embodiment of the present invention.
  • 3 is a schematic diagram of the beacon interval divided into three periods according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a manner of determining a first time period of at least three time intervals of a beacon interval according to an embodiment of the present invention.
  • Figure 5 is a diagram showing the manner in which the second period of at least three periods of the beacon interval is determined by another embodiment of the present invention.
  • Figure 6 is a schematic illustration of the manner in which a beacon frame carries information for three periods of time in accordance with one embodiment of the present invention.
  • FIG. 7 is a schematic illustration of the manner in which a beacon frame carries information for three periods of time in accordance with another embodiment of the present invention.
  • FIG. 8 is a block diagram of an apparatus in accordance with one embodiment of the present invention.
  • FIG. 9 is a block diagram of an access point in accordance with one embodiment of the present invention.
  • FIG. 10 is a block diagram of a station in accordance with another embodiment of the present invention.
  • FIG. 11 is a flow chart of a wireless local area network access method according to still another embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for accessing a wireless local area network according to still another embodiment of the present invention.
  • Figure 13 is a diagram showing the beacon interval divided into two periods in one embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a method for determining a competition access period according to another embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a manner in which a frame carries information of two time periods according to an embodiment of the present invention. detailed description
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the WLAN network can be a WiFi network, or it can be a WiMAX (Worldwide Interoperability for Microwave Access) or a WAPI (WLAN Authentication and Privacy Infrastructure) network.
  • WiMAX Worldwide Interoperability for Microwave Access
  • WAPI WLAN Authentication and Privacy Infrastructure
  • the station (STA, station) consists of a sensor site and a non-sensor site.
  • the sensor site is a device with signal acquisition, data processing, wireless communication and other functions in the WLAN network sensor application service.
  • a non-sensor site is a device in a WLAN network that communicates with an access point in other application services other than the sensor application service.
  • the non-sensor site may be a fixed terminal or a mobile terminal such as a mobile phone (or "cellular" phone) and a computer having a mobile terminal.
  • FIG. 1 is a flow chart of a method for accessing a wireless local area network according to an embodiment of the present invention.
  • the method of Figure 1 is performed by an AP (Access Point).
  • AP Access Point
  • the beacon interval is divided into at least three time periods, and the first time period of at least three time periods is used to send a PS-Poll (Power Save Poll) by a station that has cached data at the access point AP.
  • PS-Poll Power Save Poll
  • the manner of determining each of the at least three time periods of the Beacon interval division is not limited, that is, each time period of at least three time periods of the Beacon interval division is determined to fall into the present manner.
  • each time period of at least three time periods of the Beacon interval division is determined to fall into the present manner.
  • the duration of the second time period in the at least three time intervals of the Beacon interval may be determined according to the number of sensor stations, the size of the uplink data of the sensor station, and the rate of data transmission.
  • the rate of data transmission may be the lowest rate of data transmission, or the average rate of data transmission. It should be understood that the present invention is not limited thereto.
  • the TIM (Traffic Indication Map) flag in the current Beacon frame determines that the number of sensor sites is ⁇ , and determines the size of the uplink data of the sensor station and the data transmission rate to determine that one sensor station sends uplink data to the ⁇ and receives the uplink data.
  • the sensor station is replied to the time t required to confirm the ACK process, and the number of sensor sites is N times the time t to obtain the duration D1 of the second period.
  • the current Beacon interval may be determined according to the periodicity of the uplink data of the sensor site.
  • the number M1 of awake sensor stations is multiplied by the number M1 of the sensor stations by the time t determined by the above method to obtain the duration D2 of the second period.
  • the TIM flag in the current Beacon frame determines N sensor sites, and then determines the number M2 of sensor stations awake in the current beacon interval according to the periodicity of the uplink data of the N sensor sites, and the sensor site The number M2 is multiplied by the time t determined by the above method to obtain the duration D3 of the second period.
  • the duration of the second of the at least three time periods does not exceed the duration of the Beacon interval minus the duration of the first of the at least three time periods.
  • a non-limiting embodiment of determining a second period of at least three periods of Beacon spacing will also be described in detail below in conjunction with the example of FIG.
  • the AP periodically sends a Beacon frame by broadcast.
  • the Beacon frame may carry a first time offset of the time point ending in the first time period of the at least three time periods with respect to the start time of the Beacon interval and a second time period of the at least three time periods.
  • the Beacon frame may carry a duration of a first period of at least three periods and a duration of a second period of at least three periods.
  • Embodiments in which the Beacon frame carries information for at least three time periods will also be described in more detail below in conjunction with the examples of Figures 6 and 7.
  • the embodiment of the present invention divides the beacon Beacon interval into at least three time periods by using an access point, where the first time period is used to send a PS-Poll frame by a station that has cached data in the AP, and the second time period is used by the sensor site.
  • the third period is used for competitive access by sensor sites and non-sensor sites, thereby suppressing the increase in power consumption caused by the simultaneous competition of sensor sites and non-sensor sites, and effectively improving the sensor site. Access success rate.
  • FIG. 2 is a flow chart of a wireless local area network access method according to another embodiment of the present invention.
  • the method of Fig. 2 is performed by the station and corresponds to the method of Fig. 1, and thus the description overlapping with the embodiment of Fig. 2 will be omitted as appropriate.
  • Receive a Beacon frame sent by an AP where the Beacon frame carries information of at least three time periods, and a first time period of at least three time periods is used to send a PS-Poll frame by a station that has data cached in the AP, in at least three time periods.
  • the second time period is for competitive access by the sensor site
  • the third time period of at least three time periods is used for competitive access by the sensor site and the non-sensor site
  • the sensor site consists of a non-sensor site.
  • the Beacon frame may carry a first time offset of the time point ending in the first time period of the at least three time periods with respect to the start time of the Beacon interval and a second time period of the at least three time periods.
  • the Beacon frame may carry a duration of the first time period of the at least three time periods and a duration of the second time period of the at least three time periods.
  • Embodiments in which the Beacon frame carries information for at least three time periods will also be described in more detail below in conjunction with the examples of Figures 6 and 7.
  • the non-sensor station may enter a sleep state in a second period of at least three periods according to information of at least three periods. In this way, energy consumption can be effectively saved.
  • the embodiment of the present invention receives the Beacon frame sent by the access point, and obtains the information that the Beacon frame carries at least three time periods, where the first time period is used to send the PS-Poll frame by the station that has the cached data in the AP, and the second time period. Used for competitive access by sensor sites, and for the third time period for competitive access by sensor sites and non-sensor sites, thereby suppressing power consumption increase due to simultaneous competition of sensor sites and non-sensor sites, and Effectively increase the access success rate of the sensor site.
  • FIG. 3 is a schematic diagram of the Beacon interval divided into three periods according to an embodiment of the present invention. It should be understood that in the embodiment of the present invention, although the number of periods in which Beacon interval division is described in FIG. 3 is three, it is merely for convenience of description. The number of the time slots of the beacon interval may be more than three, which is not limited by the embodiment of the present invention. In addition, the embodiment of the present invention does not limit the manner of determining each of the at least three periods of the Beacon interval division, that is, each of the at least three periods of determining the Beacon interval division falls into the present invention. Within the scope of the examples.
  • the STA in the first period of at least three periods of the Beacon interval, the STA is in a dormant state due to power saving, and the AP needs to buffer the data DATA1 sent to the STAs in the dormant state first, and the STA periodically Wake up to listen to Beacon frames.
  • the Beacon frame carries the TIM.
  • the TIM is used by the AP to indicate that the AP sends buffered downlink packets to the STAs in the current Beacon interval.
  • the STA hears the TIM frame and finds that the AP has a data packet to send to itself, it will send a PS-Poll to the AP to notify the AP that it is ready to receive the phase at the current Beacon interval.
  • the data packet should be.
  • the AP receives the PS-Poll, it returns an acknowledgement frame ACK to the STA, and sends the buffered data packet to the STA.
  • the STA receives the data packet and replies to the AP with an ACK.
  • the first period of the at least three time intervals of the Beacon interval is capable of completing a PS-Poll+ACK+DATA1+ACK communication process between the STA and the AP. Further, if the corresponding downlink buffer data in the AP is to be sent to the STA, the STA wakes up at the start time of the time slot belonging to the AP, and continues to sleep after completing the PS-Poll+ACK+DATA1+ACK communication process with the AP. In this way, the energy consumption of the STA can be saved.
  • the second time interval of the Beacon interval is at least three times for the sensor station to contend to access the channel to send uplink data to the AP. Therefore, the power consumption caused by the simultaneous competition of the sensor site and the non-sensor site is avoided, and the access success rate of the sensor site can be improved.
  • the Beacon interval is used for the third time period of at least three time periods for the sensor site and the non-sensor site to access the channel to send uplink data to the AP.
  • the channel may continue to be accessed in the third time period. This is consistent with the need for priority access to the sensor site.
  • the non-sensor site may enter a sleep state during the second time period, and wake up to the third time period to wake up to the channel to send the uplink data, thereby saving energy consumption of the non-sensor site.
  • the first time period of the Beacon interval is divided into N1 equal-length slots slotl, that is, the duration of the first period is N1*slot1.
  • N1 may be equal to the number of STAs with a TIM flag of 1 in the current Beacon frame.
  • FIG. 4 is a schematic diagram of a manner of determining a first time period of at least three time intervals of a Beacon interval according to an embodiment of the present invention.
  • SIFS short interframe space
  • the STA first sends a PS-Poll to the AP (the required time is recorded as 1402).
  • the AP replies to the STA with an ACK (required time is recorded as 1403), then the AP sends the buffered data DATA1 to the STA (required time is 1404), and the STA replies ACK (required time is recorded as 1405), then the Beacon is separated by at least three
  • the AP knows the packet length of the cache data DATA1, as an implementation, The time required for DATA1
  • the embodiment of the present invention divides the beacon Beacon interval into at least three time periods by using an access point, where the first time period is used to send a PS-Poll frame by a station that has cached data in the AP, and the second time period is used by the sensor site.
  • the third period is used for competitive access by sensor sites and non-sensor sites, thereby suppressing the increase in power consumption caused by the simultaneous competition of sensor sites and non-sensor sites, and effectively improving the sensor site. Access success rate.
  • the time t2 at which the sensor station completes the uplink data transmission is determined according to the size of the uplink data of the sensor station and the data transmission rate, and the number of the sensor stations is N2, and the Beacon is separated by at least three periods.
  • the duration of the second time period is N2*t2.
  • the value of N2 may be the number of all sensor stations in the TIM tag in the current Beacon frame; or, the value of N2 may be the number of sensor sites awake in the current Beacon interval according to the periodicity of the uplink data of the sensor site.
  • the TIM flag determines the N sensor stations in the current Beacon frame, and the value of N2 may also be the number of sensor sites awake in the current beacon interval according to the periodicity of the uplink data of the N sensor stations.
  • the STA may notify the AP of its service type in advance, and the periodicity of the uplink data may be determined by the service type of the WLAN network sensor application.
  • the AP determines the number of sensor sites waking up in the current Beacon interval by periodically reporting the periodicity of the meter data, health information, and environmental monitoring information.
  • FIG. 5 is a schematic diagram of a manner of determining a second period of at least three periods of a Beacon interval according to another embodiment of the present invention.
  • the backoff time of each sensor site when competing for access can be considered.
  • the AP collects statistics on the number of sensor sites in the current network, and obtains an empirical value of the average backoff time of each sensor site corresponding to the corresponding number of times when the corresponding number is t 503, and then the Beacon is separated by at least three of the three time periods.
  • the duration of the time period: D5 (t 501 + t 401 + t 502+ 1503) * N2 o where the uplink data DATA2 transmitted by the sensor station is relatively short and relatively fixed, for example, the uplink data DATA2 packet length is 256 byte. It should be understood that the value of the size of the uplink data is merely exemplary, and is not intended to limit the embodiments of the present invention.
  • the time required for the DATA2 transmission can be obtained according to the packet length of the DATA2 and the lowest rate of data transmission, and can also be based on the packet length of the DATA2.
  • the average rate of data transmission takes the time required for DATA2 transmission. It should be understood that the rate of the data transmission may be the lowest rate of the data transmission, or the average rate of the data transmission, etc., which is not limited by the present invention.
  • the duration of the second of the at least three time periods does not exceed the duration of the Beacon interval minus the duration of the first of the at least three time periods.
  • the Beacon is separated by at least three of the three time periods for the sensor station to compete for access to the channel to send uplink data to the AP. Therefore, the power consumption caused by the simultaneous competition of the sensor site and the non-sensor site is avoided, and the access success rate of the sensor site can be improved.
  • the non-sensor site may enter a sleep state during the second time period, and wake up to the third time period to wake up to send the uplink data, thereby saving energy consumption of the non-sensor site.
  • FIG. 6 is a schematic illustration of the manner in which a Beacon frame carries information for three periods of time in accordance with one embodiment of the present invention.
  • the Beacon frame can also carry the above information for more than three time periods, which is not limited by the embodiment of the present invention.
  • the embodiment of the present invention does not limit the manner in which each of the at least three time periods of the Beacon interval division is determined, that is, each of the at least three time periods in which the Beacon interval division is determined to fall into the present invention.
  • the manner in which the three periods are acquired is not limited in the embodiment of the present invention.
  • an IE Information Element
  • the Element ID field is used to indicate the type of the IE, and each element is assigned its unique Element ID by the standard definition.
  • the embodiment of the present invention may use the ID 222-255 Length field reserved in the standard to indicate the number of bytes occupied by the variable length information field.
  • the first time offset Timeoffsetl and the second of the three time periods may be indicated in the variable length Information field at a time point at which the first time period of the three time periods ends with respect to the Beacon interval start point (eg, marked as 0)
  • the access point sends a Beacon frame
  • the station receives the Beacon frame, and obtains the information that the Beacon frame carries Timeoffsetl and Timeoffset2.
  • the first time period is [0, Timeoffsetl] in the Beacon interval, and is used to send a power-saving polling PS-Poll frame by the station that has the cached data at the AP.
  • the second time period is [Timeoffsetl, Timeoffset2] in the Beacon interval for competitive access by the sensor site
  • the third time period is between the timeoffset2 and the end point of the Beacon interval. Used for competitive access by sensor sites and non-sensor sites. Therefore, the power consumption increase caused by the simultaneous competition of the sensor site and the non-sensor site can be effectively suppressed, and the access success rate of the sensor site can be effectively improved.
  • the non-sensor station may enter a sleep state in a second period of at least three periods according to information of at least three periods. In this way, the energy consumption of the non-sensor site can be effectively saved.
  • FIG. 7 is a schematic illustration of the manner in which a Beacon frame carries information for three periods of time in accordance with another embodiment of the present invention.
  • the Beacon frame can also carry the above information for more than three time periods, which is not limited by the embodiment of the present invention.
  • the embodiment of the present invention does not limit the manner in which each of the at least three time periods of the Beacon interval division is determined, that is, each of the at least three time periods in which the Beacon interval division is determined to fall into the present invention. Within the scope of the examples. It should also be understood that the manner in which the three periods are acquired is not limited in the embodiment of the present invention.
  • the Element ID field is used to indicate the type of the IE.
  • the embodiment of the present invention may use the ID 222-255 that has not been allocated in the standard.
  • the Length field is used to indicate the number of bytes occupied by the variable length Information field.
  • the duration Duration1 of the first time period and the duration of the second time period of the three time periods of the three time periods may be indicated in the variable length Information field.
  • three time periods may also be indicated in the variable length Information field.
  • the first time period is Beacon interval starting point to offset Beacon interval starting point is the length of Durationl, ie: [0, Durationl];
  • the second period is the end point of the first period to the offset Beacon interval starting point is Durationl plus Duration2 length
  • the time point ie: [Durationl, Durationl+ Duration2];
  • the third time period is between the end point of the second time period and the end point of the Beacon interval.
  • the first time The time period is the time from the start of the Beacon interval to the start of the offset Beacon interval, which is the length of Durationl, namely: [0, Du Rationl];
  • the second time period is the end point of the first time period to the time point when the offset Beacon interval start point is Durationl plus Duration2, namely: [Durationl, Durationl+ Duration2];
  • the third time period is the end point of the second time period to Offset Beacon interval start point is Durationl plus Duration2 plus Duration3 length, ie: [Duration 1+ Duration2, Duration 1 +Duration2+ Duration3].
  • the duration Duration1 of the first time period and the first time period identifier index1 of the at least three time periods may be indicated in the variable length Information field, and the third time period of the at least three time periods The duration Duration3 and the third time period identify index3.
  • the duration Duration2 and the second period identifier index2 of the second period of the at least three periods may be indicated in the variable length Information field, and the duration Duration3 and the third period of the third period of the at least three periods Identifies index3.
  • the AP can notify the STA of the duration of the Beacon interval, DurationO.
  • the changed Information field indicates Duration2 and index2, and Duration3 and index3.
  • the first time period is the end point of the first time period to the offset Beacon interval start point is the time point of DurationO minus Duration2 minus the length of Duration3, namely: [0, DurationO- Duration2- Duration3]
  • the second time period is The end point of a period to the offset Beacon interval starting point is the time point of DurationO minus the length of Duration3, namely: [DurationO- Duration3- Duration3, DurationO- Duration3]
  • the third period is the end point of the second period to the Beacon interval Between the end points.
  • the embodiment of the present invention divides the beacon Beacon interval into at least three time periods by using an access point, where the first time period is used to send a PS-Poll frame by a station that has cached data at the access point AP, and the second time period is used for The sensor site performs competitive access, and the third time period is used for competitive access by the sensor site and the non-sensor site, thereby suppressing the increase of power consumption caused by the simultaneous competition of the sensor site and the non-sensor site, and effectively improving The access success rate of the sensor site.
  • the non-sensor site may enter a sleep state in a second time period of at least three time periods according to information of at least three time periods. In this way, the energy consumption of the non-sensor site can be effectively saved.
  • Example. Embodiments of the present invention are applicable to access or terminals in various wireless local area WLAN systems.
  • the device 80 includes a transmit circuit 802, a receive circuit 803, a power controller 806, a decode processor 805, a processor 806, a memory 807, and an antenna 801.
  • Processor 806 controls the operation of device 80, which may also be referred to as a central processing unit CPU or processor.
  • Memory 807 can include read only memory and random access memory and provides instructions and data to processor 806.
  • a portion of the memory 807 may also include non-volatile line random access memory (NVRAM).
  • the device 80 may be embedded or may itself be a wireless communication device such as a mobile phone, and may also include The carrier of the transmitting circuit 802 and the receiving circuit 803 allows data transmission and reception between the device 80 and the remote location.
  • Transmitting circuit 802 and receiving circuit 803 can be coupled to antenna 801.
  • the various components of device 80 are coupled together by bus system 8100, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 8100 in the figure.
  • Device 80 may also include a processor 806 for processing signals, and further includes a power controller 804, a decoding processor 805.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the foregoing device 80, or mainly by the processor 806 and the transmitting circuit 802.
  • Processor 806 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 806 or an instruction in a form of software.
  • the foregoing decoding processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), or other programmable logic. Devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 807, and the decoding unit reads the information in the memory 807, and completes the steps of the above method in combination with the hardware thereof.
  • Figure 9 is a block diagram of an access point in accordance with one embodiment of the present invention.
  • the access point 90 of Figure 9 includes a processor 91 and a transmitting unit 92.
  • the processor 91 is configured to divide the beacon Beacon interval into at least three time periods, and the first time period of the at least three time periods is sent by the station having the cached data at the access point AP, where the PS-Poll frame is sent, and the first of the at least three time periods
  • the second time period is competitively accessed by the sensor site
  • the third time period of at least three time periods is competitively accessed by the sensor site and the non-sensor site, and the above site is composed of a sensor site and a non-sensor site.
  • the sending unit 92 is configured to send a Beacon frame, where the Beacon frame carries information of at least three periods divided by the processor 91, and the sending unit may be the foregoing transmitting circuit or a part thereof.
  • the embodiment of the present invention divides the beacon Beacon interval into at least three time periods by using an access point, where the first time period is used to send a PS-Poll frame by a station that has cached data in the AP, and the second time period is used.
  • the third period is used for the competitive access by the sensor site and the non-sensor site, thereby suppressing the power consumption increase caused by the simultaneous competition of the sensor site and the non-sensor site, and is effective Improve the access success rate of the sensor site.
  • the access point 90 can implement the operations involving access points in the embodiments of Figures 1 through 7, and therefore, in order to avoid repetition, it will not be described in detail.
  • the processor 91 is further configured to determine a duration of the second time period of the at least three time periods according to the number of sensor stations, the size of the uplink data of the sensor station, and the data transmission rate. Further, the processor 91 is specifically configured to determine the number N of sensor sites according to the identifier of the TIM in the current Beacon frame, and determine the time t for completing the uplink data transmission according to the size of the uplink data of the sensor site and the data transmission rate, and the number of the sensor sites.
  • N is multiplied by time t to obtain a duration D1 of the second period of at least three periods; or specifically for determining the number Ml of sensor stations waking up in the current Beacon interval according to the periodicity of the uplink data of the sensor station, and according to the sensor site
  • the size of the uplink data and the data transmission rate determine the time t at which the uplink data transmission is completed, and the number M1 of the sensor stations is multiplied by the time t to obtain the duration D2 of the second period of the at least three periods; or specifically for the current Beacon frame.
  • the tag of the middle TIM determines N sensor sites, and then determines the number M2 of sensor sites waking up in the current beacon interval according to the periodicity of the uplink data of the N sensor sites, and determines according to the size of the uplink data of the sensor site and the data transmission rate.
  • Time t for completing the uplink data transmission, M2 is multiplied by the number of sensor stations time t to obtain the time duration D3 of the second period of at least three periods.
  • FIG. 10 is a block diagram of a station in accordance with another embodiment of the present invention.
  • the station 100 of Fig. 10 includes a receiving unit 1001 and an obtaining unit 1002.
  • the receiving unit 1001 is configured to receive a Beacon frame sent by the access point AP, and the receiving unit may be part of the foregoing receiving circuit or receiving circuit in a specific product form.
  • the processor 1002 is configured to obtain information about at least three time periods carried in the Beacon frame received by the receiving unit 1001.
  • the first time period of at least three time periods is used for sending a PS-Poll frame by a station that has cached data at the access point AP, and the second time period of at least three time periods is used for contention access by the sensor site,
  • a third of the at least three time periods is used for competitive access by a sensor site and a non-sensor site, the site consisting of a sensor site and a non-sensor site.
  • the Beacon frame is sent by the access point, and the station receives the Beacon frame, and obtains the information that the Beacon frame carries at least three time periods, where the first time period is used to send the PS-Poll frame by the station that has the cached data in the AP, Two time periods for competitive access by sensor sites, third The time period is used for competitive access by the sensor site and the non-sensor site, thereby suppressing the increase in power consumption caused by the simultaneous competition of the sensor site and the non-sensor site, and effectively improving the access success rate of the sensor site.
  • the station 100 can implement the operations involving the stations in the embodiments of Figures 1 through 7, and therefore will not be described in detail to avoid redundancy.
  • the processor 1002 is specifically configured to acquire a first time offset of a time point at which the first time period of the at least three time periods carried in the Beacon frame received by the receiving unit 1001 ends with respect to the start point of the Beacon interval.
  • the processor 1002 is specifically configured to acquire a duration of a first time period of at least three time periods carried by the Beacon frame received by the receiving unit 1001 and a duration of the second time period of the at least three time periods.
  • the non-sensor station may enter a sleep state in a second period of at least three periods according to information of at least three periods. In this way, energy consumption can be effectively saved.
  • a communication system may include the above-described access point 90 or the above-described site 100.
  • FIG. 11 is a flowchart of a method for accessing a wireless local area network according to still another embodiment of the present invention. The method of Figure 11 is performed by an AP (Access Point).
  • AP Access Point
  • the AP divides an interval for sending a beacon Beacon frame into at least two time periods, including a first time period for a sensor station to perform competitive access, and a second time period for all The site conducts competitive access.
  • all sites are comprised of sensor sites and non-sensor sites. It should be noted that the embodiment of the present invention does not limit the manner in which each time slot of the Beacon interval is divided.
  • the duration of the competitive access period of the Beacon interval sensor station may be determined according to the number of sensor sites, the size of the uplink data of the sensor site, and the rate of data transmission.
  • the rate of data transmission may be the lowest rate of data transmission, or the average rate of data transmission. It should be understood that the present invention is not limited thereto.
  • the TIM (Traffic Indication Map) flag in the current Beacon frame determines that the number of sensor sites is ⁇ , and determines the size of the uplink data of the sensor station and the data transmission rate to determine that one sensor station sends uplink data to the ⁇ and receives the uplink data.
  • the sensor station is replied to the time t required for confirming the entire process of the ACK, and the number of sensor stations is N times the time t to obtain the duration D1 of the competitive access period of the sensor station.
  • the number of sensor stations waking up in the current Beacon interval may be determined according to the periodicity of the uplink data of the sensor station, and the number of the sensor stations M1 is multiplied by the time t determined by the above method to obtain the sensor station for the competition.
  • the duration of the entry period is D2.
  • the TIM flag in the current Beacon frame determines N sensor sites, and then determines the number M2 of sensor stations awake in the current beacon interval according to the periodicity of the uplink data of the N sensor sites, and the sensor site The number M2 is multiplied by the time t determined by the above method to obtain the duration D3 of the competitive access period of the sensor station.
  • the duration of the competition access period of the sensor site does not exceed the duration of the Beacon interval.
  • a non-limiting embodiment of determining a Beacon interval sensor site for a competitive access period will be described in greater detail below in conjunction with the example of FIG.
  • the AP sends a Beacon frame, where the Beacon frame carries the information of the first time period and the information of the second time period.
  • the AP periodically sends a Beacon frame by broadcast.
  • the Beacon frame can carry the time offset between the start time point of the competitive access period and the start time point of the beacon interval and the duration of the competitive access period of the sensor station; and the competitive access of all stations The time offset from the start time of the time slot relative to the start time point of the beacon interval and the duration of the competitive access time period for all stations.
  • the embodiment of the present invention divides the beacon Beacon interval into two time slots by using an access point, where the first time period is used for the sensor site for competitive access, and the second time period is used for all sites for competitive access, all
  • the site consists of sensor sites and non-sensor sites, which can reduce the power consumption caused by the simultaneous competition of sensor sites and non-sensor sites, and effectively improve the access success rate of sensor sites.
  • FIG. 12 is a flowchart of a method for accessing a wireless local area network according to another embodiment of the present invention.
  • the method of Fig. 12 is executed by the station and corresponds to the method of Fig. 11, and thus the description overlapping with the embodiment of Fig. 11 will be omitted as appropriate.
  • the station receives a Beacon frame sent by the AP, where the Beacon frame carries information of a first time period for the sensor station to perform the competitive access, and the second time period is used for all the sites. Conduct competitive access.
  • the station selects time according to its own site type to perform channel competition, and accesses the channel after successful competition.
  • the site consists of at least a sensor site and a non-sensor site.
  • the Beacon frame may carry the time offset between the start time point of the competitive access period and the start time point of the beacon interval, and the duration of the competitive access period of the sensor station. ; with
  • the non-sensor site can enter the sleep state at the sensor site during the competitive access period according to the information of the two time periods. In this way, energy consumption can be effectively saved.
  • the Beacon frame sent by the access point is received by the station, and the information of the Beacon frame carrying the two time periods is obtained, where one time period is used for the sensor station to perform the competitive access, and one time period is used for the competitive access of all the stations. Therefore, the site is composed of a sensor site and a non-sensor site, thereby suppressing the increase in power consumption caused by the simultaneous competition of the sensor site and the non-sensor site, and effectively improving the access success rate of the sensor site.
  • Figure 13 is a diagram showing the Beacon interval divided into two periods in one embodiment of the present invention. It should be understood that in the embodiment of the present invention, although the number of periods in which Beacon interval division is described in FIG. 3 is two, it is merely for convenience of description. The number of the time interval of the beacon interval may be greater than two, which is not limited by the embodiment of the present invention, or the partial time interval in the interval is divided into the first time period or the second time period, that is, the first time period and the second time period may be Not all of the Beacon interval.
  • the Beacon interval sensor station performs a contention access period for the sensor station to compete for access to the channel to send uplink data to the AP. Therefore, the increase in power consumption due to the simultaneous competition of the sensor site and the non-sensor site is avoided, and the access success rate of the sensor site can be improved.
  • the Beacon interval is used for all stations in the two periods to compete for the access period for the sensor site and the non-sensor site to access the channel to send uplink data to the AP.
  • the channel may be continuously accessed during the competitive access period of all stations. This is consistent with the need for priority access to the sensor site.
  • the non-sensor site can enter the dormant state during the competitive access period of the sensor site, and wake up to all the sites to compete for the access period to wake up to the channel to send uplink data, thereby saving energy consumption of the non-sensor site.
  • the beacon interval of the beacon is divided into two time periods by using an access point, where one time period is used for sensor sites to perform competitive access, and one time period is used for all sites to perform competitive connection.
  • all sites consist of sensor sites and non-sensor sites, which can reduce the power consumption caused by the simultaneous competition of sensor sites and non-sensor sites, and effectively improve the access success rate of sensor sites.
  • the time t2 at which the sensor station completes the uplink data transmission is determined according to the size of the uplink data of the sensor station and the data transmission rate, and the number of the sensor stations is N2, and the Beacon interval sensor station performs the competition.
  • the duration of the entry period is N2*t2.
  • the value of N2 may be the number of all sensor stations in the TIM tag in the current Beacon frame; or, the value of N2 may be the number of sensor sites awake in the current Beacon interval according to the periodicity of the uplink data of the sensor site.
  • the TIM flag determines the N sensor stations in the current Beacon frame, and the value of N2 may also be the number of sensor sites awake in the current beacon interval according to the periodicity of the uplink data of the N sensor stations.
  • the STA may notify the AP of its own service type in advance, and the periodicity of the uplink data may be determined according to the service type of the WLAN network sensor application.
  • the AP has periodic characteristics of the reporting time, such as meter data, health information, and environmental monitoring information, to determine the number of sensor stations waking up in the current Beacon interval.
  • FIG. 14 is a schematic diagram of a method for determining a competitive access period of a Beacon interval sensor station according to another embodiment of the present invention.
  • the STA sends the uplink data DATA2 to the AP (the required time is recorded as t 501), and the AP replies to the STA with an ACK (the required time is recorded as t 502 ), and the Beacon interval sensor
  • D5 (t 501+t 401+ t
  • the backoff time of each sensor site when competing for access can be considered.
  • the uplink data DATA2 packet length sent by the sensor station is relatively short and relatively fixed.
  • the uplink data DATA2 packet length is 256 bytes.
  • the value of the size of the uplink data is merely exemplary and not a limitation of the embodiments of the present invention.
  • the time required for DATA2 transmission can be obtained according to the packet length of DATA2 and the lowest rate of data transmission, and the time required for DATA2 transmission can be obtained according to the packet length of DATA2 and the average rate of data transmission. It should be understood that the rate of data transmission may adopt the lowest rate of data transmission, the average rate of data transmission, and the like. Further, the duration of the competitive access period of the sensor site does not exceed the duration of the Beacon interval.
  • the Beacon interval sensor station performs a contention access period for the sensor station to compete for access to the channel to send uplink data to the AP. Therefore, the increase in power consumption due to the simultaneous competition of the sensor site and the non-sensor site is avoided, and the access success rate of the sensor site can be improved.
  • the non-sensor site can enter the dormant state during the competitive access period of the sensor site, and wake up to all the sites to compete for the access period to wake up to the channel to send uplink data, thereby saving energy consumption of the non-sensor site. .
  • FIG. 15 is a schematic illustration of the manner in which a Beacon frame carries information for two periods of time in accordance with one embodiment of the present invention.
  • the manner in which the Beacon frame carries the information of the two time periods is described in FIG. 15, it is merely for convenience of description.
  • the Beacon frame can also carry the above information for more than two time periods.
  • the embodiment of the present invention does not limit the manner of determining each of the two periods of the Beacon interval division, that is, each of the two periods of the Beacon interval division is determined to fall into the embodiment of the present invention. In the range. It should also be understood that the manner in which the two periods are acquired is not limited in the embodiment of the present invention.
  • an IE Information Element
  • the Element ID field is used to indicate the type of the IE, and each element is assigned its unique Element ID by the standard definition.
  • the embodiment of the present invention may use the ID 222-255 Length field reserved in the standard to indicate the number of bytes occupied by the variable length information field.
  • the time offset of the sensor station in the variable length information field indicating the end of the competition access period in the variable length information field relative to the Beacon interval start point (for example, marked 0) Timeoffsetl and the sensor site may be performed.
  • the access point sends a Beacon frame
  • the station receives the Beacon frame, and obtains information that the Beacon frame carries Timeoffset1 and Duration1 and Timeoffset2 and Duration2.
  • the competitive access period of the sensor site is [Timeoffsetl, Timeoffsetl+ Durationl] in the Beacon interval
  • the competing access period of all stations is [Timeoffset2, Timeoffset2+ Duration2] in the Beacon interval. Therefore, it is possible to effectively suppress the sensor site and the non-sensor site. At the same time, the power consumption brought by the competition increases, and the access success rate of the sensor site is effectively improved.
  • the non-sensor site can enter the sleep state at the sensor site during the competitive access period according to the information of the two time periods. In this way, the energy consumption of the non-sensor site can be effectively saved.
  • the beacon interval of the beacon is divided into two time slots by using an access point, where one time period is used for the sensor site for competitive access, and one time period is used for all sites for competitive access, and all the sites are used by the sensor site. It is composed of non-sensor sites, which can suppress the increase of power consumption caused by the simultaneous competition of sensor sites and non-sensor sites, and effectively improve the access success rate of sensor sites.
  • the non-sensor site can enter the sleep state at the sensor site during the competitive access period according to the information of the two time periods. In this way, the energy consumption of the non-sensor site can be effectively saved.
  • the access point 90 can implement a scheme in which the beacon interval is divided into two periods, and the foregoing process is performed.
  • the processor 91 is configured to divide the interval for transmitting the beacon Beacon frame into at least two time periods, including a first time period and a second time period, where the first time period is used for competitive access by the sensor site.
  • the second time period is used for all sites to perform the contention access, the all the sites include the non-sensor site and the sensor site;
  • the sending unit 92 is configured to send the Beacon frame, where the Beacon frame carries the first time period Information and information of the second time period.
  • the processor 91 determines the first time period according to the number of the sensor stations, the size of the uplink data of the sensor station, and the data transmission rate, and the processor may further determine the sensor site according to the identifier of the transmission indication mapping TIM in the current Beacon frame. a number N, and determining, according to the size of the uplink data of the sensor station and the data transmission rate, a time t at which the uplink data transmission is completed, and multiplying the number N of the sensor stations by the time t to obtain the first time period; or
  • the N sensor stations are determined according to the TIM flag in the current Beacon frame, and the periodicity of the uplink data of the N sensor stations is determined to determine the sensor that wakes up within the current beacon interval.
  • the number of stations is M2
  • the time t for completing the uplink data transmission is determined according to the size of the uplink data of the sensor station and the data transmission rate, and the number of the sensor stations M2 is multiplied by the time t to obtain the first time period.
  • the information of the first time period in the embodiment includes: a time offset between the start time point of the competitive access period and the start time point of the beacon interval, and the sensor site is contending The duration of the entry period;
  • the information of the second period includes: a time offset of the start time point of the competition access period of the all stations relative to the start time point of the beacon interval, and the competition of all the stations The duration of the access period.
  • the station 100 may further include: a receiving unit 1001, configured to receive a beacon Beacon frame sent by the access point AP, where the Beacon frame carries information of the first time period. Information of a second time period, the first time period is used for competitive access by a sensor station, and the second time period is used for competitive access by all stations, where all stations include a non-sensor site and the sensor site.
  • the processor 1002 is configured to acquire the information of the first time period and the information of the second time period carried in the Beacon frame received by the receiving unit, select a time according to the type of the station, perform channel competition, and succeed in the competition. After access channel.
  • the processor 1002 can enable the site to enter a sleep state during the first time period according to the information of the first time period.
  • the sensor station performs a competition access period, a first time period, a time offset of the start time point relative to the beacon interval start time point, and a duration of the competitive access period of the sensor site.
  • the information of the second time period includes: a time offset of the start time point of the competition access period of the all stations with respect to the start time point of the beacon interval, and a contention access period of the all stations. duration.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place. Or it can be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种无线局域网接入方法及设备。该方法包括:将信标间隔划分为至少三个时段,所述至少三个时段中的第一时段用于由在接入点AP有緩存数据的站点发送省电轮询PS-Poll帧,所述至少三个时段中的第二时段用于由传感器站点进行竞争接入,所述至少三个时段中的第三时段用于由传感器站点和非传感器站点进行竞争接入,所述站点由传感器站点和非传感器站点组成;发送信标帧,所述信标帧携带所述至少三个时段的信息。这样,能够抑制因传感器站点和非传感器站点同时竞争带来的功耗增加,并有效地提高传感器站点的接入成功率。

Description

无线局域网接入方法及设备 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及无线局域网接入 方法及设备。 背景技术
随着网络技术的发展, WLAN ( Wireless Local Area Networks , 无线局域 网)技术已经广泛应用于个人、 家庭、 企业、 机场、 酒店、 娱乐和休闲公共 场所、 会议展厅等场合。 WLAN提供无线宽带数据接入服务, 例如, 蜂窝网 络数据业务分流, 即当用户到达有 WLAN覆盖的区域时, 可以选择 WLAN 网络进行数据业务。 WLAN还提供一些传感器应用服务, 例如, 智能抄表、 医疗、 环境监测、 家居自动化等。
无线宽带数据接入服务的速率较高, 功耗也相对较高, 而传感器应用服 务的速率较低, 同时具有低功耗的特点。 当 AP ( Access Point, 接入点) 同 时支持上述两种服务时, 即两种服务的 STA ( Station, 站点) 同时存在, 下 面将传感器应用服务的 STA称为传感器站点, 将无线宽带数据接入服务的 STA称为非传感器站点, 传感器站点发射功率较低, 许多情况下相对于非传 感器站点是隐藏节点, 传感器站点发送数据时, 非传感器站点因侦听不到会 误以为信道空闲而占用信道发送数据,导致传感器站点的数据包被碰撞而发 送失败。 传感器站点的数据包被碰撞后会反复重传多次, 从而增加了传感器 站点的功耗。 此外, 非传感器站点业务量比较大, 会长期占用信道。 因此, 在非传感器站点占用信道期间, 传感器站点需要反复侦听信道, 或者反复休 眠再醒来侦听信道, 同样也会增加传感器站点的功耗。 发明内容
本发明实施例提供一种无线局域网接入方法及设备, 能够有效地提高传 感器站点的接入成功率。
一方面, 提供了一种无线局域网接入方法, 包括: 将信标 Beacon间隔 划分为至少三个时段, 所述至少三个时段中的第一时段用于由在接入点 AP 有緩存数据的站点发送省电轮询 PS-Poll帧, 所述至少三个时段中的第二时 段用于由传感器站点进行竟争接入,所述至少三个时段中的第三时段用于由 传感器站点和非传感器站点进行竟争接入, 所述站点由传感器站点和非传感 器站点组成;发送 Beacon帧,所述 Beacon帧携带所述至少三个时段的信息。
另一方面, 提供了一种无线局域网接入方法, 包括: 接收接入点 AP发 送的 Beacon帧, 所述 Beacon帧携带至少三个时段的信息, 所述至少三个时 段中的第一时段用于由在接入点 AP有緩存数据的站点发送省电轮询 PS-Poll 帧, 所述至少三个时段中的第二时段用于由传感器站点进行竟争接入, 所述 至少三个时段中的第三时段用于由传感器站点和非传感器站点进行竟争接 入, 所述站点由传感器站点和非传感器站点组成。
另一方面, 提供了一种接入点, 包括: 处理器, 用于将 Beacon间隔划 分为至少三个时段, 所述至少三个时段中的第一时段由在接入点 AP有緩存 数据的站点发送省电轮询 PS-Poll帧, 所述至少三个时段中的第二时段由传 感器站点进行竟争接入, 所述至少三个时段中的第三时段由传感器站点和非 传感器站点进行竟争接入, 所述站点由传感器站点和非传感器站点组成; 发 送单元, 用于发送 Beacon帧, 所述 Beacon帧携带所述处理器划分的所述至 少三个时段的信息。
另一方面, 提供了一种站点, 包括: 接收单元, 用于接收接入点 AP发 送的 Beacon帧; 处理器, 用于获取所述接收单元接收的所述 Beacon帧中携 带的至少三个时段的信息; 所述至少三个时段中的第一时段用于由在接入点 AP有緩存数据的站点发送省电轮询 PS-Poll帧,所述至少三个时段中的第二 时段用于由传感器站点进行竟争接入, 所述至少三个时段中的第三时段用于 由传感器站点和非传感器站点进行竟争接入, 所述站点由传感器站点和非传 感器站点组成。
本发明实施例通过接入点将信标 Beacon间隔划分为至少三个时段, 其 中, 第一时段用于由在接入点 AP有緩存数据的站点发送 PS-Poll帧, 第二 时段用于由传感器站点进行竟争接入, 第三时段用于由传感器站点和非传感 器站点进行竟争接入,从而能够抑制因传感器站点和非传感器站点同时竟争 带来的功耗增加, 并有效地提高传感器站点的接入成功率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例的无线局域网接入方法的流程图。
图 2是本发明另一实施例的无线局域网接入方法的流程图。
图 3是本发明一个实施例的信标间隔划分为三个时段的示意图。
图 4是本发明一个实施例的信标间隔至少三个时段中的第一时段的确定 方式的示意图。
图 5是本发明另一实施例的信标间隔至少三个时段中的第二时段的确定 方式的示意图。
图 6 是本发明一个实施例的信标帧携带三个时段的信息的方式的示意 图。
图 7 是本发明另一实施例的信标帧携带三个时段的信息的方式的示意 图。
图 8是本发明一个实施例的设备的框图
图 9是本发明一个实施例的接入点的框图。
图 10是本发明另一实施例的站点的框图。
图 11是本发明又一个实施例的无线局域网接入方法的流程图。
图 12是本发明再一实施例的无线局域网接入方法的流程图。
图 13是本发明一个实施例的信标间隔划分为两个时段的示意图。
图 14是本发明另一实施例进行竟争接入时段的确定方式的示意图。 图 15是本发明一个实施例帧携带两个时段的信息的方式的示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通信系 统( GSM, Global System of Mobile communication ), 码分多址( CDMA, Code Division Multiple Access ) 系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ),通用分组无线业务 ( GPRS, General Packet Radio Service ), 长期演进 ( LTE, Long Term Evolution )等。
WLAN 网络可以是 WiFi 网络、 还可以是 WiMAX ( Worldwide Interoperability for Microwave Access, 全球微波互联接入 )或 WAPI ( WLAN Authentication and Privacy Infrastructure, 无线局域网认证与保密基础结构 ) 网络等。
站点 (STA, station ) 由传感器站点和非传感器站点组成, 传感器站点 是 WLAN 网络传感器应用服务中具有信号采集、 数据处理、 无线通信等功 能的设备。 非传感器站点是 WLAN网络除传感器应用服务外其它应用服务 中与接入点进行通信的设备。 例如, 非传感器站点可以是固定终端, 也可以 是移动终端,如移动电话(或称为 "蜂窝 "电话)和具有移动终端的计算机等。
图 1是本发明一个实施例的无线局域网接入方法的流程图。 图 1的方法 由 AP ( Access Point, 接入点)执行。
101 , 将信标 Beacon间隔划分为至少三个时段, 至少三个时段中的第一 时段用于由在接入点 AP有緩存数据的站点发送 PS-Poll ( Power Save Poll, 省电轮询)帧,至少三个时段中的第二时段用于由传感器站点进行竟争接入, 至少三个时段中的第三时段用于由传感器站点和非传感器站点进行竟争接 入, 站点由传感器站点和非传感器站点组成。
应注意, 本发明实施例对于 Beacon间隔划分的至少三个时段中每个时 段的确定方式不作限定, 即无论以何种方式确定 Beacon间隔划分的至少三 个时段中的每个时段均落入本发明实施例的范围内。
可选地, 作为一个实施例, 可根据传感器站点的数目, 传感器站点上行 数据的大小和数据传输的速率确定 Beacon间隔至少三个时段中的第二时段 的持续时间。 其中, 数据传输的速率可以采用数据传输的最低速率, 也可以 采用数据传输的平均速率等。 应理解, 本发明对此不作限定。
例如, 在当前 Beacon帧中的 TIM ( Traffic Indication Map , 传输指示映 射)标记确定传感器站点的数目为 Ν, 通过传感器站点上行数据的大小和数 据传输速率确定一个传感器站点向 ΑΡ发送上行数据以及 ΑΡ接收到上行数 据后向传感器站点回复确认 ACK整个过程所需要的时间 t,将传感器站点的 数目为 N乘以时间 t得到第二时段的持续时间 Dl。
又例如, 可 ^据传感器站点上行数据的周期性确定当前 Beacon间隔内 醒来的传感器站点的数目 Ml , 将该传感器站点的数目 Ml乘以通过上述方 法确定的时间 t得到第二时段的持续时间 D2。
再例如, 在当前 Beacon帧中的 TIM标记确定 N个传感器站点, 再才艮据 N个传感器站点上行数据的周期性确定当前信标 Beacon间隔内醒来的传感 器站点的数目 M2,将传感器站点的数目 M2乘以通过上述方法确定的时间 t 得到第二时段的持续时间 D3。
进一步地, 至少三个时段中的第二时段的持续时间不超过该 Beacon间 隔的持续时间减去至少三个时段中的第一时段的持续时间。
下面还将结合图 5的例子详细描述确定 Beacon间隔至少三个时段中的 第二时段的非限制性的实施方式。
102, 发送 Beacon帧, 该 Beacon帧携带上述至少三个时段的信息。
AP周期性通过广播的方式发送 Beacon帧。
可选地,作为一个实施例, Beacon帧可以携带至少三个时段中的第一时 段结束的时间点相对于 Beacon间隔起始点的第一时间偏移量和至少三个时 段中的第二时段结束的时间点相对于 Beacon间隔起始点的第二时间偏移量。
可选地,作为另一个实施例, Beacon帧可以携带至少三个时段中的第一 时段的持续时间和至少三个时段中的第二时段的持续时间。
下面还将结合图 6和图 7的例子更加详细地描述 Beacon帧携带至少三 个时段的信息的实施方式。
本发明实施例通过接入点将信标 Beacon间隔划分为至少三个时段, 其 中, 第一时段用于由在 AP有緩存数据的站点发送 PS-Poll帧, 第二时段用 于由传感器站点进行竟争接入, 第三时段用于由传感器站点和非传感器站点 进行竟争接入,从而能够抑制因传感器站点和非传感器站点同时竟争带来的 功耗增加, 并有效地提高传感器站点的接入成功率。
图 2是本发明另一个实施例的无线局域网接入方法的流程图。 图 2的方 法由站点执行, 并与图 1的方法相对应, 因此将适当省略与图 2的实施例重 复的描述。
201 ,接收 AP发送的 Beacon帧,该 Beacon帧携带至少三个时段的信息, 至少三个时段中的第一时段用于由在 AP有緩存数据的站点发送 PS-Poll帧, 至少三个时段中的第二时段用于由传感器站点进行竟争接入, 至少三个时段 中的第三时段用于由传感器站点和非传感器站点进行竟争接入,上述站点由 传感器站点和非传感器站点组成。
可选地,作为一个实施例, Beacon帧可以携带至少三个时段中的第一时 段结束的时间点相对于 Beacon间隔起始点的第一时间偏移量和至少三个时 段中的第二时段结束的时间点相对于 Beacon间隔起始点的第二时间偏移量。
可选地, 作为另一个实施例, 可选地, 作为另一个实施例, Beacon帧可 以携带至少三个时段中的第一时段的持续时间和至少三个时段中的第二时 段的持续时间。
下面还将结合图 6和图 7的例子更加详细地描述 Beacon帧携带至少三 个时段的信息的实施方式。
另外,对于非传感器站点可以根据至少三个时段的信息在至少三个时段 中的第二时段进入休眠状态。 这样, 能够有效地节省能耗。
本发明实施例通过站点接收接入点发送的 Beacon帧,获取 Beacon帧携 带至少三个时段的信息, 其中, 第一时段用于由在 AP有緩存数据的站点发 送 PS-Poll帧, 第二时段用于由传感器站点进行竟争接入, 第三时段用于由 传感器站点和非传感器站点进行竟争接入,从而能够抑制因传感器站点和非 传感器站点同时竟争带来的功耗增加, 并有效地提高传感器站点的接入成功 率。
下面结合具体的例子详细描述本发明实施例。
图 3是本发明一个实施例的 Beacon间隔划分为三个时段的示意图。 应 理解, 在本发明实施例中, 虽然图 3中描述了 Beacon间隔划分的时段的数 目为三个,但仅仅是为了描述方便。 Beacon间隔划分的时段的数目还可以大 于三个, 本发明实施例对此并不限定。 此外, 本发明实施例对于 Beacon间 隔划分的至少三个时段中每个时段的确定方式不作限定, 即无论以何种方式 确定 Beacon间隔划分的至少三个时段中的每个时段均落入本发明实施例的 范围内。
如图 3所示, 在 Beacon间隔至少三个时段中的第一时段中, STA由于 省电处于休眠状态, AP 需要把发送给这些处于休眠状态的 STA 的数据 DATA1先緩存下来, STA会周期性醒来听信标信息 Beacon帧。 其中 Beacon 帧携带 TIM, TIM由 AP用来指示当前的 Beacon间隔中 AP要给那些 STA 发送緩存的下行数据包。 STA通过听 TIM帧发现 AP有数据包要发送给自己 时, 会向 AP发送 PS-Poll, 以通知 AP准备好在当前 Beacon interval接收相 应的数据包。 当 AP接收到 PS-Poll, 向 STA回复确认帧 ACK, 并将緩存的 数据包发送给 STA。 STA接收到数据包并向 AP回复 ACK。
可选地, Beacon 间隔至少三个时段中的第一时段能够完成 STA与 AP 之间的 PS-Poll+ACK+DATAl+ACK通信过程。 进一步地, 如果 AP中有对 应的下行緩存数据要发送给 STA, STA在属于它的时隙开始时刻醒来, 完成 与 AP之间的 PS-Poll+ACK+DATAl+ACK通信过程之后继续休眠, 这样, 能够节省 STA的能耗。
下面还将结合图 4的例子详细描述确定 Beacon间隔至少三个时段中的 第一时段的方式。
图 3中, Beacon间隔至少三个时段中的第二时段用于传感器站点竟争接 入信道, 以发送上行数据给 AP。 因此, 避免了因传感器站点和非传感器站 点同时竟争带来的功耗增加, 并能够提高了传感器站点的接入成功率。 Beacon 间隔至少三个时段中的第三时段用于传感器站点和非传感器站点竟 争接入信道, 以发送上行数据给 AP。 可选地, 如果有的传感器站点在第二 时段内没有竟争到信道向 AP发送上行数据, 可以继续在第三时段内竟争接 入信道。 这样, 与传感器站点优先接入的需求相一致。 可选地, 非传感器站 点可以在第二时段进入休眠状态,休眠到第三时段开始时醒来竟争信道发上 行数据, 从而能够节省非传感器站点的能耗。
可选地,作为一个实施例, Beacon间隔至少三个时段中的第一时段被划 分成 N1个等长的时隙 slotl , 即第一时段的持续时间为 Nl*slotl。 其中, N1 可以等于当前 Beacon帧中 TIM标记为 1的 STA的数目。
图 4是本发明一个实施例的 Beacon间隔至少三个时段中的第一时段的 确定方式的示意图。
具体而言, :¾口图 4所示, SIFS ( short interframe space, 短帧间间隔)表 示帧间时长 t 401 , 在一个 slotl内 STA先给 AP发送 PS-Poll (所需时间记为 1402 ), AP向 STA回复 ACK (所需时间记为 1403 ), 然后 AP发送緩存数据 DATA1给 STA(所需时间记为 1404 ), STA回复 ACK(所需时间记为 1405 ), 则 Beacon间隔至少三个时段中的第一时段的持续时间 D4为: D4=(t 402+t 401+ 1403+ 1401+ 1404+ 1401+ 1405)*N10 其中, PS-Poll、 ACK包长比较固 定, 作为一种实现方式, 可以采用数据传输的最低速率获得 PS-Poll、 ACK 传输所需的时间。 AP已知緩存数据 DATA1的包长, 作为一种实现方式, 也 可以采用数据传输的最低速率获得 DATA1传输所需的时间。
本发明实施例通过接入点将信标 Beacon间隔划分为至少三个时段, 其 中, 第一时段用于由在 AP有緩存数据的站点发送 PS-Poll帧, 第二时段用 于由传感器站点进行竟争接入, 第三时段用于由传感器站点和非传感器站点 进行竟争接入,从而能够抑制因传感器站点和非传感器站点同时竟争带来的 功耗增加, 并有效地提高传感器站点的接入成功率。
可选地, 作为另一个实施例, 可以根据传感器站点上行数据的大小和数 据传输速率确定一个传感器站点完成上行数据传输的时间 t2,传感器站点的 数目为 N2,则 Beacon间隔至少三个时段中的第二时段的持续时间为 N2*t2。 例如, N2的取值可以是当前 Beacon帧中 TIM标记中所有传感器站点的数 目; 或者, N2 的取值可以是根据传感器站点上行数据的周期性确定的当前 Beacon间隔内醒来的传感器站点的数目; 或者, 先在当前 Beacon帧中 TIM 标记确定 N个传感器站点, N2的取值还可以是根据 N个传感器站点上行数 据的周期性确定的当前信标 Beacon间隔内醒来的传感器站点的数目。 可选 地, 在关联阶段, STA可以将自己的服务类型预先通知给 AP, 上行数据的 周期性可以 居 WLAN网络传感器应用的业务类型来确定。 例如, AP通过 电表数据, 健康信息, 环境监测信息等上报时间具有周期性特点来确定当前 Beacon间隔内醒来的传感器站点的数目。
图 5是本发明另一实施例的 Beacon间隔至少三个时段中的第二时段的 确定方式的示意图。
具体而言, 如图 5所示, 在一个 t2内 STA给 AP发送上行数据 DATA2 (所需时间记为 t 501 ), AP向 STA回复 ACK(所需时间记为 t 502 ),则 Beacon 间隔至少三个时段中的第二时段的持续时间: D5= (t 501+t 401+ t 502)*N2。 可选地, 可以考虑每个传感器站点在竟争接入时的退避时间。 例如, AP对 当前网络中传感器站点数目进行统计, 获取相应数目所对应每个传感器站点 在竟争接入时的平均退避时间的经验值为 t 503, 则 Beacon间隔至少三个时 段中的第二时段的持续时间: D5 = (t 501+t 401+ t 502+ 1503)*N2o 其中, 传 感器站点发送的上行数据 DATA2包长比较短且相对固定, 例如, 上行数据 DATA2 包长取为 256个字节。 应理解, 上行数据的大小的取值仅仅是示例 性的, 而非对本发明实施例的限制。 可选地, 可以根据 DATA2的包长和数 据传输的最低速率获得 DATA2传输所需的时间,还可以根据 DATA2的包长 和数据传输的平均速率获得 DATA2传输所需的时间。 应理解, 数据传输的 速率可以采用数据传输的最低速率, 也可以采用数据传输的平均速率等, 本 发明对此不作限定。
进一步地, 至少三个时段中的第二时段的持续时间不超过该 Beacon间 隔的持续时间减去至少三个时段中的第一时段的持续时间。
Beacon间隔至少三个时段中的第二时段用于传感器站点竟争接入信道, 以发送上行数据给 AP。 因此, 避免了因传感器站点和非传感器站点同时竟 争带来的功耗增加, 并能够提高了传感器站点的接入成功率。 可选地, 非传 感器站点可以在第二时段进入休眠状态,休眠到第三时段开始时醒来竟争信 道发上行数据, 从而能够节省非传感器站点的能耗。
图 6是本发明一个实施例的 Beacon帧携带三个时段的信息的方式的示 意图。 在本发明实施例中, 虽然图 6中描述了 Beacon帧携带该三个时段的 信息的方式,但仅仅是为了描述方便。 Beacon帧还可以携带上述大于三个时 段的信息, 本发明实施例对此并不限定。 此外, 本发明实施例对于 Beacon 间隔划分的至少三个时段中每个时段的确定方式不作限定, 即无论以何种方 式确定 Beacon间隔划分的至少三个时段中的每个时段均落入本发明实施例 的范围内。 还应理解, 本发明实施例对三个时段的获取方式不作限定。
如图 6所示, IE ( Information Element, 信息单元) 由三个部分组成, 单元标识 Element ID域, 长度 Length域和变长的信息 Information域。其中, Element ID域用来表示该 IE的类型, 由标准定义给每一类元素都分配其特 有的 Element ID。 可选地, 本发明实施例可使用标准中保留还未分配的 ID 222-255 Length域用来表示变长的 Information域所占的字节数。 可以在变 长的 Information 域中指示三个时段中的第一时段结束的时间点相对于 Beacon间隔起始点 (例如, 标记为 0 ) 的第一时间偏移量 Timeoffsetl和三 个时段中的第二时段结束的时间点相对于 Beacon间隔起始点的第二时间偏 移量 Timeoffset2„
本发明实施例接入点发送 Beacon帧,站点接收 Beacon帧,获取 Beacon 帧携带 Timeoffsetl 和 Timeoffset2的信息。 其中, 第一时段为 Beacon间隔 中的 [0, Timeoffsetl] , 用于由在 AP有緩存数据的站点发送省电轮询 PS-Poll 帧。 第二时段为 Beacon间隔中的 [Timeoffsetl , Timeoffset2] , 用于由传感器 站点进行竟争接入, 第三时段为 Timeoffset2至 Beacon间隔的结束点之间, 用于由传感器站点和非传感器站点进行竟争接入。 因此, 能够有效抑制因传 感器站点和非传感器站点同时竟争带来的功耗增加, 并有效地提高传感器站 点的接入成功率。
另外,对于非传感器站点可以根据至少三个时段的信息在至少三个时段 中的第二时段进入休眠状态。 这样, 能够有效地节省非传感器站点的能耗。
图 7是本发明另一实施例的 Beacon帧携带三个时段的信息的方式的示 意图。 在本发明实施例中, 虽然图 7中描述了 Beacon帧携带该三个时段的 信息的方式,但仅仅是为了描述方便。 Beacon帧还可以携带上述大于三个时 段的信息, 本发明实施例对此并不限定。 此外, 本发明实施例对于 Beacon 间隔划分的至少三个时段中每个时段的确定方式不作限定, 即无论以何种方 式确定 Beacon间隔划分的至少三个时段中的每个时段均落入本发明实施例 的范围内。 还应理解, 本发明实施例对三个时段的获取方式不作限定。
如图 7所示, Element ID域用来表示该 IE的类型。 可选地, 本发明实 施例可使用标准中保留还未分配的 ID 222-255。 Length域用来表示变长的 Information域所占的字节数。 可以在变长的 Information域中指示三个时段 中的第一时段的持续时间 Durationl 和三个时段中的第二时段的持续时间 Duration2„ 或者, 还可以在变长的 Information域中指示三个时段中的第一 时段的持续时间 Durationl和三个时段中的第二时段的持续时间 Duration2和 第三时段的持续时间 Duration3。 例如, 如果变长的 Information域中指示 Durationl和 Duration2, 则第一时段为 Beacon间隔起始点至偏移 Beacon间 隔起始点为 Durationl长度的时间点, 即: [0, Durationl]; 第二时段为第一时 段的结束点至偏移 Beacon间隔起始点为 Durationl加上 Duration2长度的时 间点, 即: [Durationl, Durationl+ Duration2]; 第三时段为第二时段的结束点 至 Beacon 间隔的结束点之间。 或者, 如果变长的 Information 域中指示 Durationl , Duration2和 Duration3 , 则第一时段为 Beacon间隔起始点至偏移 Beacon间隔起始点为 Durationl长度的时间点, 即: [0, Durationl]; 第二时 段为第一时段的结束点至偏移 Beacon间隔起始点为 Durationl加上 Duration2 长度的时间点, 即: [Durationl, Durationl+ Duration2]; 第三时段为第二时段 的结束点至偏移 Beacon 间隔起始点为 Durationl 加上 Duration2 再加上 Duration3长度的时间点, 即: [Duration 1+ Duration2, Duration 1 +Duration2+ Duration3]。 可选地,作为另一种实现方式,可以在变长的 Information域中指示至少 三个时段中的第一时段的持续时间 Durationl和第一时段标识 indexl , 以及 至少三个时段中的第三时段的持续时间 Duration3和第三时段标识 index3。 或者,还可以在变长的 Information域中指示至少三个时段中的第二时段的持 续时间 Duration2和第二时段标识 index2 , 以及至少三个时段中的第三时段 的持续时间 Duration3和第三时段标识 index3。在关联阶段, AP可以将 Beacon 间隔的持续时间 DurationO预先通知给 STA。 例如, 变成的 Information域中 指示 Duration2和 index2 , 以及 Duration3和 index3。 则第一时段为为第一时 段的结束点至偏移 Beacon 间隔起始点为 DurationO减去 Duration2再减去 Duration3长度的时间点, 即: [0, DurationO- Duration2- Duration3] , 第二时段 为第一时段的结束点至偏移 Beacon间隔起始点为 DurationO减去 Duration3 长度的时间点, 即: [DurationO- Duration2- Duration3, DurationO- Duration3] , 第三时段为第二时段的结束点至 Beacon间隔的结束点之间。 对于当变长的 Information域中指示 Duration2和 index2 , 以及 Duration3和 index3时三个 时段的获取可以参照上述方式, 因此不再赘述。
本发明实施例通过接入点将信标 Beacon间隔划分为至少三个时段, 其 中, 第一时段用于由在接入点 AP有緩存数据的站点发送 PS-Poll帧, 第二 时段用于由传感器站点进行竟争接入, 第三时段用于由传感器站点和非传感 器站点进行竟争接入,从而能够抑制因传感器站点和非传感器站点同时竟争 带来的功耗增加, 并有效地提高传感器站点的接入成功率。
另外,对于非传感器站点可以根据至少三个时段的信息在至少三个时段 中的第二时段进入休眠状态。 这样, 能够有效地节省非传感器站点的能耗。 实施例。 本发明实施例可应用于各种无线局域 WLAN系统中的接入或者终 端。 图 8示出了一种用户设备的实施例,在该实施例中,设备 80包括发射电 路 802、 接收电路 803、 功率控制器 806、 解码处理器 805、 处理器 806, 存 储器 807及天线 801。 处理器 806控制设备 80的操作, 处理器 806还可以 称为中央处理器 CPU或者处理器。 存储器 807可以包括只读存储器和随机 存取存储器, 并向处理器 806提供指令和数据。 存储器 807的一部分还可 以包括非易失行随机存取存储器(NVRAM )。 具体的应用中, 设备 80可以 嵌入或者本身可以就是例如移动电话之类的无线通信设备,还可以包括容纳 发射电路 802和接收电路 803的载体, 以允许设备 80和远程位置之间进行 数据发射和接收 。发射电路 802和接收电路 803可以耦合到天线 801.设备 80的各个组件通过总线系统 8100耦合在一起, 其中 总线系统 8100除 包 括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为了清 楚说明起见, 在图中将各种总线都标为总线系统 8100。 设备 80还可以包括 用于处理信号的处理器 806、此外还包括功率控制器 804、解码处理器 805。 . 上述本发明实施例揭示的方法可以应用上述的设备 80,或者说主要由其 中的处理器 806与发射电路 802以实现。处理器 806可能是一种集成电路芯 片, 具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处理 器 806中的硬件的集成逻辑电路或者软件形式的指令完成。用于执行本发明 实施例揭示的方法, 上述的解码处理器可以是通用处理器、 数字信号处理器 ( DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA )或者其他可 编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可以实现或者 执行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处理器可以是 微处理器或者该处理器也可以是任何常规的处理器, 解码器等。 结合本发明 实施例所公开的方法的步骤可以直接体现为硬件解码处理器执行完成, 或 者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机 存储器, 闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 807, 解码单元 读取存储器 807中的信息, 结合其硬件完成上述方法的步骤。
进一步, 图 9是本发明一个实施例的接入点的框图。 图 9的接入点 90 包括处理器 91和发送单元 92。
处理器 91用于将信标 Beacon间隔划分为至少三个时段,至少三个时段 中的第一时段由在接入点 AP有緩存数据的站点发送 PS-Poll帧, 至少三个 时段中的第二时段由传感器站点进行竟争接入, 至少三个时段中的第三时段 由传感器站点和非传感器站点进行竟争接入, 上述站点由传感器站点和非传 感器站点组成。
发送单元 92用于发送 Beacon帧,该 Beacon帧携带处理器 91划分的至 少三个时段的信息, 该发送单元可以是上述的发射电路或者其中的一部分。
本发明实施例通过接入点将信标 Beacon间隔划分为至少三个时段, 其 中, 第一时段用于由在 AP有緩存数据的站点发送 PS-Poll帧, 第二时段用 于由传感器站点进行竟争接入, 第三时段用于由传感器站点和非传感器站点 进行竟争接入,从而能够抑制因传感器站点和非传感器站点同时竟争带来的 功耗增加, 并有效地提高传感器站点的接入成功率。
接入点 90可实现图 1至图 7的实施例中涉及接入点的操作, 因此为避 免重复, 不再详细描述。
可选地, 作为一个实施例, 处理器 91还用于根据传感器站点的数目, 传感器站点上行数据的大小和数据传输速率确定至少三个时段中的第二时 段的持续时间。进一步地,处理器 91具体用于根据当前 Beacon帧中 TIM的 标记确定传感器站点的数目 N, 并根据传感器站点上行数据的大小和数据传 输速率确定完成上行数据传输的时间 t, 将传感器站点的数目 N乘以时间 t 得到至少三个时段中的第二时段的持续时间 D1 ; 或者具体用于根据传感器 站点上行数据的周期性确定当前 Beacon 间隔内醒来的传感器站点的数目 Ml , 并根据传感器站点上行数据的大小和数据传输速率确定完成上行数据 传输的时间 t,将传感器站点的数目 Ml乘以时间 t得到至少三个时段中的第 二时段的持续时间 D2; 或者具体用于根据当前 Beacon帧中 TIM的标记确 定 N个传感器站点, 再根据 N个传感器站点上行数据的周期性确定当前信 标 Beacon间隔内醒来的传感器站点的数目 M2,并根据传感器站点上行数据 的大小和数据传输速率确定完成上行数据传输的时间 t, 将传感器站点的数 目 M2乘以所述时间 t得到至少三个时段中的第二时段的持续时间 D3。
图 10是本发明另一实施例的站点的框图。 图 10的站点 100包括接收单 元 1001和获取单元 1002。
接收单元 1001用于接收接入点 AP发送的 Beacon帧, 该接收单元在具 体的产品形态中可以是上述的接收电路或者接收电路的一部分。
处理器 1002用于获取接收单元 1001接收的 Beacon帧中携带的至少三 个时段的信息。 其中, 至少三个时段中的第一时段用于由在接入点 AP有緩 存数据的站点发送 PS-Poll帧, 至少三个时段中的第二时段用于由传感器站 点进行竟争接入, 至少三个时段中的第三时段用于由传感器站点和非传感器 站点进行竟争接入, 该站点由传感器站点和非传感器站点组成。
本发明实施例通过接入点发送 Beacon帧, 站点接收 Beacon帧, 获取 Beacon帧携带至少三个时段的信息, 其中, 第一时段用于由在 AP有緩存数 据的站点发送 PS-Poll帧, 第二时段用于由传感器站点进行竟争接入, 第三 时段用于由传感器站点和非传感器站点进行竟争接入,从而能够抑制因传感 器站点和非传感器站点同时竟争带来的功耗增加, 并有效地提高传感器站点 的接入成功率。
站点 100可实现图 1至图 7的实施例中涉及站点的操作, 因此为避免重 复, 不再详细描述。
可选地, 作为一个实施例, 处理器 1002具体用于获取接收单元 1001接 收的 Beacon 帧中携带的至少三个时段中的第一时段结束的时间点相对于 Beacon 间隔起始点的第一时间偏移量和至少三个时段中的第二时段结束的 时间点相对于 Beacon间隔起始点的第二时间偏移量。或者处理器 1002具体 用于获取接收单元 1001接收的 Beacon帧携带的至少三个时段中的第一时段 的持续时间和至少三个时段中的第二时段的持续时间。
另外,对于非传感器站点可以根据至少三个时段的信息在至少三个时段 中的第二时段进入休眠状态。 这样, 能够有效地节省能耗。
根据本发明实施例的通信系统可包括上述接入点 90或上述站点 100。 进一步,图 11是本发明又一个实施例的无线局域网接入方法的流程图。 图 11的方法由 AP ( Access Point, 接入点 )执行。
1101 , AP将发送信标 Beacon帧的间隔划分为至少两个时段, 包括第一 时段和第二时段,所述第一时段用于传感器站点进行竟争接入,所述第二时段 用于所有站点进行竟争接入。
在本实施例中, 所有站点由传感器站点和非传感器站点组成。 应注意, 本发明实施例对于 Beacon间隔划分的两个时段中每个时段的确定方式不作 限定。
可选地, 作为一个实施例, 可根据传感器站点的数目, 传感器站点上 行数据的大小和数据传输的速率确定 Beacon间隔传感器站点进行竟争接入 时段的持续时间。 其中, 数据传输的速率可以采用数据传输的最低速率, 也 可以采用数据传输的平均速率等。 应理解, 本发明对此不作限定。
例如, 在当前 Beacon帧中的 TIM ( Traffic Indication Map , 传输指示映 射)标记确定传感器站点的数目为 Ν, 通过传感器站点上行数据的大小和数 据传输速率确定一个传感器站点向 ΑΡ发送上行数据以及 ΑΡ接收到上行数 据后向传感器站点回复确认 ACK整个过程所需要的时间 t,将传感器站点的 数目为 N乘以时间 t得到传感器站点进行竟争接入时段的持续时间 Dl。 又例如, 可 ^据传感器站点上行数据的周期性确定当前 Beacon间隔内 醒来的传感器站点的数目 Ml , 将该传感器站点的数目 Ml乘以通过上述方 法确定的时间 t得到传感器站点进行竟争接入时段的持续时间 D2。
再例如, 在当前 Beacon帧中的 TIM标记确定 N个传感器站点, 再才艮据 N个传感器站点上行数据的周期性确定当前信标 Beacon间隔内醒来的传感 器站点的数目 M2,将传感器站点的数目 M2乘以通过上述方法确定的时间 t 得到传感器站点进行竟争接入时段的持续时间 D3。
进一步地, 传感器站点进行竟争接入时段的持续时间不超过该 Beacon 间隔的持续时间。
下面还将结合图 5的例子详细描述确定 Beacon间隔传感器站点进行竟 争接入时段的非限制性的实施方式。
1102, AP发送 Beacon帧, 该 Beacon帧携带所述第一时段的信息和第 二时段的信息。
AP周期性通过广播的方式发送 Beacon帧。
Beacon 帧可以携带传感器站点进行竟争接入时段起始时间点相对于 beacon 间隔起始时间点的时间偏移量和传感器站点进行竟争接入时段的持 续时间; 和所有站点进行竟争接入时段起始时间点相对于 beacon 间隔起始 时间点的时间偏移量和所有站点进行竟争接入时段的持续时间。
本发明实施例通过接入点将信标 Beacon间隔划分为两个时段, 其中, 第一个时段用于传感器站点进行竟争接入, 第二个时段用于所有站点进行竟 争接入, 所有站点由传感器站点和非传感器站点组成, 从而能够抑制因传感 器站点和非传感器站点同时竟争带来的功耗增加, 并有效地提高传感器站点 的接入成功率。
图 12是本发明另一个实施例的无线局域网接入方法的流程图。 图 12的 方法由站点执行, 并与图 11的方法相对应, 因此将适当省略与图 11的实施 例重复的描述。
1201 , 站点接收 AP发送的 Beacon帧, 该 Beacon帧携带第一时段的信 息和第二时段的信息, 所述第一时段用于传感器站点进行竟争接入, 所述第 二时段用于所有站点进行竟争接入。
1202, 站点根据自身的站点类型选择时间进行信道竟争, 并在竟争成功 后接入信道。 在本实施例中,站点至少由传感器站点和非传感器站点组成。 可选地,作为一个实施例, Beacon帧可以携带传感器站点进行竟争接入 时段起始时间点相对于 beacon 间隔起始时间点的时间偏移量和传感器站点 进行竟争接入时段的持续时间; 和
所有站点进行竟争接入时段起始时间点相对于 beacon 间隔起始时间点 的时间偏移量和所有站点进行竟争接入时段的持续时间。
另外,对于非传感器站点可以根据两个时段的信息在传感器站点进行竟 争接入时段进入休眠状态。 这样, 能够有效地节省能耗。
本发明实施例通过站点接收接入点发送的 Beacon帧,获取 Beacon帧携 带两个时段的信息, 其中, 一个时段用于传感器站点进行竟争接入, 一个时 段用于所有站点进行竟争接入, 所以站点由传感器站点和非传感器站点组 成, 从而能够抑制因传感器站点和非传感器站点同时竟争带来的功耗增加, 并有效地提高传感器站点的接入成功率。
下面结合具体的例子详细描述本发明实施例。
图 13是本发明一个实施例的 Beacon间隔划分为两个时段的示意图。应 理解, 在本发明实施例中, 虽然图 3中描述了 Beacon间隔划分的时段的数 目为两个,但仅仅是为了描述方便。 Beacon间隔划分的时段的数目还可以大 于两个,本发明实施例对此并不限定,或者说将间隔中的部分时段分为第一时 段或第二时段,即第一时段和第二时段可以不是 Beacon间隔的全部。
Beacon 间隔传感器站点进行竟争接入时段用于传感器站点竟争接入信 道, 以发送上行数据给 AP。 因此, 避免了因传感器站点和非传感器站点同 时竟争带来的功耗增加, 并能够提高了传感器站点的接入成功率。 Beacon 间隔两个时段中的所有站点竟争接入时段用于传感器站点和非传感器站点 竟争接入信道, 以发送上行数据给 AP。 可选地, 如果有的传感器站点在传 感器站点进行竟争接入时段内没有竟争到信道向 AP发送上行数据, 可以继 续在所有站点竟争接入时段内竟争接入信道。 这样, 与传感器站点优先接入 的需求相一致。 可选地, 非传感器站点可以在传感器站点进行竟争接入时段 进入休眠状态,休眠到所有站点竟争接入时段开始时醒来竟争信道发上行数 据, 从而能够节省非传感器站点的能耗。
本发明实施例通过接入点将信标 Beacon间隔划分为两个时段, 其中, 一个时段用于传感器站点进行竟争接入, 一个时段用于所有站点进行竟争接 入, 所有站点由传感器站点和非传感器站点组成, 从而能够抑制因传感器站 点和非传感器站点同时竟争带来的功耗增加, 并有效地提高传感器站点的接 入成功率。
可选地, 作为另一个实施例, 可以根据传感器站点上行数据的大小和数 据传输速率确定一个传感器站点完成上行数据传输的时间 t2,传感器站点的 数目为 N2 , 则 Beacon 间隔传感器站点进行竟争接入时段的持续时间为 N2*t2。 例如, N2的取值可以是当前 Beacon帧中 TIM标记中所有传感器站 点的数目; 或者, N2 的取值可以是根据传感器站点上行数据的周期性确定 的当前 Beacon间隔内醒来的传感器站点的数目; 或者, 先在当前 Beacon帧 中 TIM标记确定 N个传感器站点, N2的取值还可以是根据 N个传感器站点 上行数据的周期性确定的当前信标 Beacon间隔内醒来的传感器站点的数目。 可选地, 在关联阶段, STA可以将自己的服务类型预先通知给 AP, 上行数 据的周期性可以根据 WLAN网络传感器应用的业务类型来确定。 例如, AP 通过电表数据, 健康信息, 环境监测信息等上报时间具有周期性特点来确定 当前 Beacon间隔内醒来的传感器站点的数目。
图 14是本发明另一实施例的 Beacon间隔传感器站点进行竟争接入时段 的确定方式的示意图。
具体而言,如图 14所示,在一个 t2内 STA给 AP发送上行数据 DATA2 (所需时间记为 t 501 ), AP向 STA回复 ACK(所需时间记为 t 502 ),则 Beacon 间隔传感器站点进行竟争接入时段的持续时间: D5= (t 501+t 401+ t
502) *N2。 可选地, 可以考虑每个传感器站点在竟争接入时的退避时间。 例 如, AP对当前网络中传感器站点数目进行统计, 获取相应数目所对应每个 传感器站点在竟争接入时的平均退避时间的经验值为 t503 , 则 Beacon间隔 传感器站点进行竟争接入时段的持续时间: D5 = (t 501+t 401+ t 502+ t
503) *N2。其中,传感器站点发送的上行数据 DATA2包长比较短且相对固定, 例如, 上行数据 DATA2包长取为 256个字节。 应理解, 上行数据的大小的 取值仅仅是示例性的,而非对本发明实施例的限制。可选地,可以根据 DATA2 的包长和数据传输的最低速率获得 DATA2 传输所需的时间, 还可以根据 DATA2的包长和数据传输的平均速率获得 DATA2传输所需的时间。应理解, 数据传输的速率可以采用数据传输的最低速率,也可以采用数据传输的平均 速率等。 进一步地, 传感器站点进行竟争接入时段的持续时间不超过该 Beacon 间隔的持续时间。
Beacon 间隔传感器站点进行竟争接入时段用于传感器站点竟争接入信 道, 以发送上行数据给 AP。 因此, 避免了因传感器站点和非传感器站点同 时竟争带来的功耗增加, 并能够提高了传感器站点的接入成功率。 可选地, 非传感器站点可以在传感器站点进行竟争接入时段进入休眠状态,休眠到所 有站点竟争接入时段开始时醒来竟争信道发上行数据,从而能够节省非传感 器站点的能耗。
图 15是本发明一个实施例的 Beacon帧携带两个时段的信息的方式的示 意图。 在本发明实施例中, 虽然图 15中描述了 Beacon帧携带该两个时段的 信息的方式,但仅仅是为了描述方便。 Beacon帧还可以携带上述大于两个时 段的信息。 此外, 本发明实施例对于 Beacon间隔划分的两个时段中每个时 段的确定方式不作限定, 即无论以何种方式确定 Beacon间隔划分的两个时 段中的每个时段均落入本发明实施例的范围内。 还应理解, 本发明实施例对 两个时段的获取方式不作限定。
如图 15所示, IE ( Information Element, 信息单元) 由三个部分组成, 单元标识 Element ID域, 长度 Length域和变长的信息 Information域。其中, Element ID域用来表示该 IE的类型, 由标准定义给每一类元素都分配其特 有的 Element ID。 可选地, 本发明实施例可使用标准中保留还未分配的 ID 222-255 Length域用来表示变长的 Information域所占的字节数。 可以在变 长的 Information域中指示两个时段中的传感器站点进行竟争接入时段结束 的时间点相对于 Beacon 间隔起始点 (例如, 标记为 0 ) 的时间偏移量 Timeoffsetl 和传感器站点进行竟争接入时段的持续时间 Durationl , 和两个 时段中的所有站点进行竟争接入时段结束的时间点相对于 Beacon间隔起始 点的时间偏移量 Timeoffset2 和所有站点进行竟争接入时段的持续时间 Duration2。
本发明实施例接入点发送 Beacon帧,站点接收 Beacon帧,获取 Beacon 帧携带 Timeoffsetl 和 Durationl和 Timeoffset2和 Duration2的信息。传感器 站点进行竟争接入时段为 Beacon 间隔中的 [Timeoffsetl, Timeoffsetl+ Durationl] , 所有站点进行竟争接入时段为 Beacon 间隔中的 [Timeoffset2, Timeoffset2+ Duration2]。 因此, 能够有效抑制因传感器站点和非传感器站点 同时竟争带来的功耗增加, 并有效地提高传感器站点的接入成功率。
另外,对于非传感器站点可以根据两个时段的信息在传感器站点进行竟 争接入时段进入休眠状态。 这样, 能够有效地节省非传感器站点的能耗。
本发明实施例通过接入点将信标 Beacon间隔划分为两个时段, 其中, 一个时段用于传感器站点进行竟争接入, 一个时段用于所有站点进行竟争接 入, 所有站点由传感器站点和非传感器站点组成, 从而能够抑制因传感器站 点和非传感器站点同时竟争带来的功耗增加, 并有效地提高传感器站点的接 入成功率。
另外,对于非传感器站点可以根据两个时段的信息在传感器站点进行竟 争接入时段进入休眠状态。 这样, 能够有效地节省非传感器站点的能耗。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程。
进一步,作为新的一个实施例,接入点 90可以实现信标 Beacon间隔划分 为两个时段的方案,执行上述的流程。 在这个实施例中处理器 91用于将发送 信标 Beacon帧的间隔划分为至少两个时段, 包括第一时段和第二时段,所述 第一时段用于传感器站点进行竟争接入, 所述第二时段用于所有站点进行竟 争接入,所述所有站点包括非传感器站点和所述传感器站点; 发送单元 92用 于发送所述 Beacon帧, 所述 Beacon帧携带所述第一时段的信息和所述第二 时段的信息。
其中处理器 91根据所述传感器站点的数目, 传感器站点上行数据的大 小和数据传输速率确定所述第一时段,处理器还可以根据当前 Beacon帧中传 输指示映射 TIM的标记确定所述传感器站点的数目 N, 并根据所述传感器 站点上行数据的大小和数据传输速率确定完成上行数据传输的时间 t, 将所 述传感器站点的数目 N乘以所述时间 t得到所述第一时段; 或者
根据传感器站点上行数据的周期性确定当前 Beacon间隔内醒来的传感 器站点的数目 Ml , 并根据传感器站点上行数据的大小和数据传输速率确定 完成上行数据传输的时间 t, 将所述传感器站点的数目 Ml 乘以所述时间 t 得到所述第一时段; 或者
才艮据当前 Beacon帧中 TIM的标记确定 N个传感器站点,再 居所述 N 个传感器站点上行数据的周期性确定当前信标 Beacon间隔内醒来的传感器 站点的数目 M2, 并根据传感器站点上行数据的大小和数据传输速率确定完 成上行数据传输的时间 t,将所述传感器站点的数目 M2乘以所述时间 t得到 所述第一时段。
在本实施例中所述第一时段的信息包括: 所述传感器站点进行竟争接入 时段起始时间点相对于 beacon 间隔起始时间点的时间偏移量和所述传感器 站点进行竟争接入时段的持续时间;所述第二时段的信息包括:所述所有站点 进行竟争接入时段起始时间点相对于 beacon 间隔起始时间点的时间偏移量 和所述所有站点进行竟争接入时段的持续时间。
进一步,本发明还给出站点的另一个实施例,站点 100还可以包括:接收单 元 1001 , 用于接收接收接入点 AP发送的信标 Beacon帧, 所述 Beacon帧携 带第一时段的信息和第二时段的信息, 所述第一时段用于传感器站点进行竟 争接入, 所述第二时段用于所有站点进行竟争接入, 所述所有站点包括非传 感器站点和所述由传感器站点; 处理器 1002,用于获取所述接收单元接收的 所述 Beacon 帧中携带的第一时段的信息和第二时段的信息, 根据自身的站 点类型选择时间进行信道竟争, 并在竟争成功后接入信道。
作为一种实现方式,如果所述站点为非传感器站点,则所述处理器 1002能 根据所述第一时段的信息够使得所述站点在所述第一时段进入休眠状态。在 该实施例中所述传感器站点进行竟争接入时段,第一时段,起始时间点相对于 beacon 间隔起始时间点的时间偏移量和所述传感器站点进行竟争接入时段 的持续时间;所述第二时段的信息包括:所述所有站点进行竟争接入时段起始 时间点相对于 beacon 间隔起始时间点的时间偏移量和所述所有站点进行竟 争接入时段的持续时间。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。

Claims

权利要求
1、 一种无线局域网接入方法, 其特征在于, 包括:
将信标 Beacon间隔划分为至少三个时段, 所述至少三个时段中的第一 时段用于由在接入点 AP有緩存数据的站点发送省电轮询 PS-Poll帧, 所述 至少三个时段中的第二时段用于由传感器站点进行竟争接入, 所述至少三个 时段中的第三时段用于由传感器站点和非传感器站点进行竟争接入, 所述站 点由传感器站点和非传感器站点组成;
发送所述 Beacon帧, 所述 Beacon帧携带所述至少三个时段的信息。
2、 如权利要求 1所述的方法, 其特征在于, 所述将 Beacon间隔划分为 至少三个时段, 包括:
根据所述传感器站点的数目,传感器站点上行数据的大小和数据传输速 率确定所述至少三个时段中的第二时段的持续时间。
3、 如权利要求 2所述的方法, 其特征在于, 所述根据所述传感器站点 的数目,传感器站点上行数据的大小和数据传输速率确定所述至少三个时段 中的第二时段的持续时间, 包括:
根据当前 Beacon帧中传输指示映射 TIM的标记确定传感器站点的数目 N , 并根据传感器站点上行数据的大小和数据传输速率确定完成上行数据传 输的时间 t, 将所述传感器站点的数目 N乘以所述时间 t得到所述至少三个 时段中的第二时段的持续时间 D1 ; 或者
根据传感器站点上行数据的周期性确定当前 Beacon间隔内醒来的传感 器站点的数目 Ml , 并根据传感器站点上行数据的大小和数据传输速率确定 完成上行数据传输的时间 t, 将所述传感器站点的数目 Ml 乘以所述时间 t 得到所述至少三个时段中的第二时段的持续时间 D2; 或者
才艮据当前 Beacon帧中 TIM的标记确定 N个传感器站点,再 居所述 N 个传感器站点上行数据的周期性确定当前信标 Beacon间隔内醒来的传感器 站点的数目 M2, 并根据传感器站点上行数据的大小和数据传输速率确定完 成上行数据传输的时间 t,将所述传感器站点的数目 M2乘以所述时间 t得到 所述至少三个时段中的第二时段的持续时间 D3。
4、 如权利要求 3所述的方法, 其特征在于, 所述至少三个时段中的第 二时段的持续时间不超过所述 Beacon间隔的持续时间减去所述至少三个时 段中的第一时段的持续时间。
5、 如权利要求 1-4任一项所述的方法, 其特征在于, 所述 Beacon帧携 带所述至少三个时段的信息, 包括:
所述 Beacon帧携带所述至少三个时段中的第一时段结束的时间点相对 于 Beacon间隔起始点的第一时间偏移量和所述至少三个时段中的第二时段 结束的时间点相对于 Beacon间隔起始点的第二时间偏移量; 或者
所述 Beacon帧携带所述至少三个时段中的第一时段的持续时间和所述 至少三个时段中的第二时段的持续时间。
6、 一种无线局域网接入方法, 其特征在于, 包括:
接收接入点 AP发送的信标 Beacon帧, 所述 Beacon帧携带至少三个时 段的信息, 所述至少三个时段中的第一时段用于由在接入点 AP有緩存数据 的站点发送省电轮询 PS-Poll帧, 所述至少三个时段中的第二时段用于由传 感器站点进行竟争接入, 所述至少三个时段中的第三时段用于由传感器站点 和非传感器站点进行竟争接入, 所述站点由传感器站点和非传感器站点组 成。
7、 如权利要求 6所述的方法, 其特征在于, 所述 Beacon帧携带至少三 个时段的信息, 包括:
所述 Beacon帧携带所述至少三个时段中的第一时段结束的时间点相对 于 Beacon间隔起始点的第一时间偏移量和所述至少三个时段中的第二时段 结束的时间点相对于 Beacon间隔起始点的第二时间偏移量; 或者
所述 Beacon帧携带所述至少三个时段中的第一时段的持续时间和所述 至少三个时段中的第二时段的持续时间。
8、 如权利要求 6或 7所述的方法, 其特征在于, 所述方法还包括: 所述非传感器站点根据所述至少三个时段的信息在所述至少三个时段 中的第二时段进入休眠状态。
9、 一种接入点, 其特征在于, 包括:
处理器, 用于将信标 Beacon间隔划分为至少三个时段, 所述至少三个 时段中的第一时段由在接入点 AP有緩存数据的站点发送省电轮询 PS-Poll 帧, 所述至少三个时段中的第二时段由传感器站点进行竟争接入, 所述至少 三个时段中的第三时段由传感器站点和非传感器站点进行竟争接入, 所述站 点由传感器站点和非传感器站点组成; 发送单元, 用于发送所述 Beacon帧, 所述 Beacon帧携带所述处理器划 分的所述至少三个时段的信息。
10、 如权利要求 9 所述的接入点, 其特征在于, 所述处理器用于在将 Beacon间隔划分为至少三个时段的过程中根据所述传感器站点的数目,传感 器站点上行数据的大小和数据传输速率确定所述至少三个时段中的第二时 段的持续时间。
11、 如权利要求 10所述的接入点, 其特征在于, 所述处理器用于: 根据当前 Beacon帧中传输指示映射 TIM的标记确定传感器站点的数目
N , 并根据传感器站点上行数据的大小和数据传输速率确定完成上行数据传 输的时间 t, 将所述传感器站点的数目 N乘以所述时间 t得到所述至少三个 时段中的第二时段的持续时间 D1 ; 或者
用于: 根据传感器站点上行数据的周期性确定当前 Beacon间隔内醒来 的传感器站点的数目 Ml , 并根据传感器站点上行数据的大小和数据传输速 率确定完成上行数据传输的时间 t, 将所述传感器站点的数目 Ml乘以所述 时间 t得到所述至少三个时段中的第二时段的持续时间 D2; 或者
用于: ^据当前 Beacon帧中 TIM的标记确定 N个传感器站点, 再才艮据 所述 N个传感器站点上行数据的周期性确定当前信标 Beacon间隔内醒来的 传感器站点的数目 M2, 并根据传感器站点上行数据的大小和数据传输速率 确定完成上行数据传输的时间 t, 将所述传感器站点的数目 M2乘以所述时 间 t得到所述至少三个时段中的第二时段的持续时间 D3。
12、 如权利要求 11所述的接入点, 其特征在于, 所述至少三个时段中 的第二时段的持续时间不超过所述 Beacon间隔的持续时间减去所述至少三 个时段中的第一时段的持续时间。
13、 如权利要求 9-12任一项所述的接入点, 其特征在于, 所述 Beacon 帧携带所述至少三个时段的信息, 包括:
所述 Beacon帧携带所述至少三个时段中的第一时段结束的时间点相对 于 Beacon间隔起始点的第一时间偏移量和所述至少三个时段中的第二时段 结束的时间点相对于 Beacon间隔起始点的第二时间偏移量; 或者
所述 Beacon帧携带所述至少三个时段中的第一时段的持续时间和所述 至少三个时段中的第二时段的持续时间。
14、 一种站点, 其特征在于, 包括: 接收单元, 用于接收接入点 AP发送的 Beacon帧;
处理器, 用于获取所述接收单元接收的所述 Beacon帧中携带的至少三 个时段的信息; 所述至少三个时段中的第一时段用于由在接入点 AP有緩存 数据的站点发送省电轮询 PS-Poll帧, 所述至少三个时段中的第二时段用于 由传感器站点进行竟争接入, 所述至少三个时段中的第三时段用于由传感器 站点和非传感器站点进行竟争接入,所述站点由传感器站点和非传感器站点 组成。
15、 如权利要求 14所述的站点, 其特征在于, 所述处理器
获取所述接收单元接收的所述 Beacon帧中携带的所述至少三个时段中 的第一时段结束的时间点相对于 Beacon间隔起始点的第一时间偏移量和所 述至少三个时段中的第二时段结束的时间点相对于 Beacon间隔起始点的第 二时间偏移量; 或者
所述处理器获取所述接收单元接收的所述 Beacon帧携带所述至少三个 时段中的第一时段的持续时间和所述至少三个时段中的第二时段的持续时 间。
16、 如权利要求 14或 15所述的站点, 当所述站点为非传感器站点时, 其特征在于, 所述站点在所述至少三个时段中的第二时段进入休眠状态。
17、 一种无线局域网接入方法, 其特征在于, 包括:
将发送信标 Beacon 帧的间隔划分为至少两个时段, 包括第一时段和第 二时段,所述第一时段用于传感器站点进行竟争接入,所述第二时段用于所有 站点进行竟争接入,所述所有站点包括非传感器站点和所述传感器站点; 发送所述 Beacon帧,所述 Beacon帧携带所述第一时段的信息和所述第 二时段的信息。
18、 如权利要求 17所述的方法, 其特征在于, 将发送信标 Beacon帧的 间隔划分为至少两个时段包括:
根据所述传感器站点的数目,传感器站点上行数据的大小和数据传输速 率确定所述第一时段。
19、 如权利要求 18所述的方法, 其特征在于, 所述根据所述传感器站 点的数目, 传感器站点上行数据的大小和数据传输速率确定所述第一时段, 包括:
根据当前 Beacon帧中传输指示映射 TIM的标记确定所述传感器站点的 数目 N, 并根据所述传感器站点上行数据的大小和数据传输速率确定完成上 行数据传输的时间 t, 将所述传感器站点的数目 N乘以所述时间 t得到所述 第一时段; 或者
根据传感器站点上行数据的周期性确定当前 Beacon间隔内醒来的传感 器站点的数目 Ml , 并根据传感器站点上行数据的大小和数据传输速率确定 完成上行数据传输的时间 t, 将所述传感器站点的数目 Ml 乘以所述时间 t 得到所述第一时段; 或者
才艮据当前 Beacon帧中 TIM的标记确定 N个传感器站点,再 居所述 N 个传感器站点上行数据的周期性确定当前信标 Beacon间隔内醒来的传感器 站点的数目 M2, 并根据传感器站点上行数据的大小和数据传输速率确定完 成上行数据传输的时间 t,将所述传感器站点的数目 M2乘以所述时间 t得到 所述第一时段。
20、 如权利要求 17-19任一项所述的方法, 其特征在于, 所述第一时段 的信息包括:
所述传感器站点进行竟争接入时段起始时间点相对于 beacon 间隔起始 时间点的时间偏移量和所述传感器站点进行竟争接入时段的持续时间;
所述第二时段的信息包括:
所述所有站点进行竟争接入时段起始时间点相对于 beacon 间隔起始时 间点的时间偏移量和所述所有站点进行竟争接入时段的持续时间。
21、 一种无线局域网接入方法, 其特征在于, 包括:
站点接收接入点 AP发送的信标 Beacon帧, 所述 Beacon帧携带第一时 段的信息和第二时段的信息, 所述第一时段用于传感器站点进行竟争接入, 所述第二时段用于所有站点进行竟争接入, 所述所有站点包括非传感器站点 和所述由传感器站点,
所述站点根据自身的站点类型选择时间进行信道竟争, 并在竟争成功后 接入信道。
22、 如权利要求 21所述的方法, 其特征在于, 所述第一时段的信息包 括:
所述传感器站点进行竟争接入时段起始时间点相对于 beacon 间隔起始 时间点的时间偏移量和所述传感器站点进行竟争接入时段的持续时间;
所述第二时段的信息包括: 所述所有站点进行竟争接入时段起始时间点相对于 beacon 间隔起始时 间点的时间偏移量和所述所有站点进行竟争接入时段的持续时间。
23、 如权利要求 21所述的方法, 其特征在于, 所述方法还包括: 如果所述站点为非传感器站点,则所述站点根据所述第一时段的信息在 所述第一时段进入休眠状态。
24、 一种接入点, 其特征在于, 包括:
处理器,用于将发送信标 Beacon帧的间隔划分为至少两个时段, 包括第 一时段和第二时段,所述第一时段用于传感器站点进行竟争接入,所述第二时 段用于所有站点进行竟争接入,所述所有站点包括非传感器站点和所述传感 器站点;
发送单元, 用于发送所述 Beacon帧, 所述 Beacon帧携带所述第一时段 的信息和所述第二时段的信息。
25、 根据权利要求 24所述的接入点, 其特征在于,
所述处理器具体用于用于将发送信标 Beacon帧的间隔划分为第一时段 和第二时段,其中根据所述传感器站点的数目,传感器站点上行数据的大小和 数据传输速率确定所述第一时段。
26、 根据权利要求 24所述的接入点, 其特征在于,
所述处理器具体用于用于将发送信标 Beacon帧的间隔划分为第一时段 和第二时段,其中
所述处理器根据传输指示映射 TIM 的标记确定所述传感器站点的数目 N , 并根据所述传感器站点上行数据的大小和数据传输速率确定完成上行数 据传输的时间 t, 将所述传感器站点的数目 N乘以所述时间 t得到所述第一 时段; 或者
所述处理器 ^据传感器站点上行数据的周期性确定当前 Beacon间隔内 醒来的传感器站点的数目 Ml , 并根据传感器站点上行数据的大小和数据传 输速率确定完成上行数据传输的时间 t, 将所述传感器站点的数目 Ml乘以 所述时间 t得到所述第一时段; 或者
所述处理器 ^据当前 Beacon帧中 TIM的标记确定 N个传感器站点,再 才艮据所述 N个传感器站点上行数据的周期性确定当前信标 Beacon间隔内醒 来的传感器站点的数目 M2, 并根据传感器站点上行数据的大小和数据传输 速率确定完成上行数据传输的时间 t, 将所述传感器站点的数目 M2乘以所 述时间 t得到所述第一时段。
27、 一种站点, 其特征在于, 包括:
接收单元,用于接收接收接入点 AP发送的信标 Beacon帧,所述 Beacon 帧携带第一时段的信息和第二时段的信息, 所述第一时段用于传感器站点进 行竟争接入, 所述第二时段用于所有站点进行竟争接入, 所述所有站点包括 非传感器站点和所述由传感器站点;
处理器, 用于获取所述接收单元接收的所述 Beacon帧中携带的第一时 段的信息和第二时段的信息, 根据自身的站点类型选择时间进行信道竟争, 并在竟争成功后接入信道。
PCT/CN2013/072819 2012-06-12 2013-03-18 无线局域网接入方法及设备 WO2013185498A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/561,018 US9924444B2 (en) 2012-06-12 2014-12-04 Method for accessing wireless local area network, and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210192727.5 2012-06-12
CN201210192727 2012-06-12
CN201310005165.3 2013-01-07
CN201310005165.3A CN103517381B (zh) 2012-06-12 2013-01-07 无线局域网接入方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/561,018 Continuation US9924444B2 (en) 2012-06-12 2014-12-04 Method for accessing wireless local area network, and device

Publications (1)

Publication Number Publication Date
WO2013185498A1 true WO2013185498A1 (zh) 2013-12-19

Family

ID=49757486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072819 WO2013185498A1 (zh) 2012-06-12 2013-03-18 无线局域网接入方法及设备

Country Status (3)

Country Link
US (1) US9924444B2 (zh)
CN (1) CN103517381B (zh)
WO (1) WO2013185498A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357714A (zh) * 2015-09-24 2016-02-24 广东瑞德智能科技股份有限公司 一种无线家电网络及其数据通信方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102012249B1 (ko) * 2013-03-28 2019-08-21 한국전자통신연구원 동적 자원 할당 방법 및 장치
CN105828451B (zh) * 2015-01-07 2019-06-14 工业和信息化部电信研究院 一种无线局域网分组接入方法和装置
US9874928B2 (en) * 2015-06-22 2018-01-23 Honeywell International Inc. DNP3 based Ethernet port power saving for solar power energized RTU system
KR101988861B1 (ko) * 2016-03-02 2019-06-13 한국전자통신연구원 네트워크 접속 방법 및 네트워크 장치
US10659505B2 (en) * 2016-07-09 2020-05-19 N. Dilip Venkatraman Method and system for navigation between segments of real time, adaptive and non-sequentially assembled video

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101366247A (zh) * 2006-01-10 2009-02-11 高通股份有限公司 用于在无线通信网络中调度的方法和设备
CN101932054A (zh) * 2010-08-06 2010-12-29 北京交通大学 一种无线局域网的切换方法
CN102196432A (zh) * 2011-06-10 2011-09-21 西安电子科技大学 基于二次同余方程的抵抗无线网络拒绝服务攻击的方法
WO2012043943A1 (en) * 2010-09-27 2012-04-05 Lg Electronics Inc. Method and apparatus of transmitting a white space map information in a wireless local area network system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047346A1 (en) * 2002-11-19 2004-06-03 Bae Systems Information And Electronic Systems Integration Inc Bandwidth efficient wirless network modem
CN100438471C (zh) 2005-12-08 2008-11-26 华为技术有限公司 一种无线局域网的业务接入方法及无线局域网系统
US7738480B2 (en) * 2006-03-31 2010-06-15 Sony Corporation Hybrid access to a contention-free period channel
KR100791300B1 (ko) 2006-04-21 2008-01-04 삼성전자주식회사 무선 네트워크 시스템 및 상기 무선 네트워크상에서데이터를 송수신하는 방법
KR100917888B1 (ko) 2007-02-09 2009-09-16 삼성전자주식회사 무선 네트워크 시스템 및 상기 무선 네트워크상에서데이터를 송수신하는 방법
CN101119253A (zh) 2007-06-12 2008-02-06 西安西电捷通无线网络通信有限公司 一种利用用户分级控制用户接入wlan的方法及其系统
US8917675B2 (en) * 2007-08-20 2014-12-23 Samsung Electronics Co., Ltd. System and method for multiple contention access periods
US7936709B2 (en) * 2008-03-18 2011-05-03 Mitsubishi Electric Research Laboratories, Inc. Distributed beacon enabled wireless networks
KR100988145B1 (ko) * 2008-10-23 2010-10-18 주식회사 팬택 다중 사용자 다중 입출력 기반의 무선랜 시스템에서 경쟁 시간 구간의 최소값을 결정하는 장치 및 방법
US8125969B2 (en) 2008-12-16 2012-02-28 At&T Intellectual Property I, L.P. Method and apparatus for adjusting EDCA channel access parameters
CN101932055B (zh) * 2010-08-26 2012-07-11 北京交大资产经营有限公司 移动终端在接入点之间的快速切换方法
KR101255100B1 (ko) * 2011-06-20 2013-04-18 네스트필드(주) 무선 네트워크에서 경합 없이 시간 슬롯을 노드들에 할당하는 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101366247A (zh) * 2006-01-10 2009-02-11 高通股份有限公司 用于在无线通信网络中调度的方法和设备
CN101932054A (zh) * 2010-08-06 2010-12-29 北京交通大学 一种无线局域网的切换方法
WO2012043943A1 (en) * 2010-09-27 2012-04-05 Lg Electronics Inc. Method and apparatus of transmitting a white space map information in a wireless local area network system
CN102196432A (zh) * 2011-06-10 2011-09-21 西安电子科技大学 基于二次同余方程的抵抗无线网络拒绝服务攻击的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357714A (zh) * 2015-09-24 2016-02-24 广东瑞德智能科技股份有限公司 一种无线家电网络及其数据通信方法

Also Published As

Publication number Publication date
US20150085731A1 (en) 2015-03-26
US9924444B2 (en) 2018-03-20
CN103517381A (zh) 2014-01-15
CN103517381B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
KR101621180B1 (ko) 페이징 프레임 및 웨이크업 프레임 전송 방법 및 장치
JP6648295B2 (ja) 未ライセンススペクトルにおけるページング
US8902803B2 (en) Systems and methods for reducing collisions after traffic indication map paging
KR101619987B1 (ko) 데이터 페치 시간, 데이터 끝 표시, 및 더 많은 데이터 확인 응답을 이용한 전력 절감
US9560630B2 (en) Devices for reduced overhead paging
US9210720B2 (en) Systems and methods for access point triggered transmissions after traffic indication map paging
US7689164B2 (en) Relay apparatus, communication terminal, communication system, and semiconductor integrated circuit
US8995406B2 (en) Systems and methods for reducing collisions after traffic indication map paging
US9100177B2 (en) Systems and methods for acknowledging communications from a plurality of devices
WO2013185498A1 (zh) 无线局域网接入方法及设备
US20150036575A1 (en) Sleeping method and device
KR20140108271A (ko) 발견 및 페이징 메시지들을 전송 및 수신하기 위한 시스템들 및 방법들
WO2013169876A1 (en) Systems and methods for paging message enhancement
WO2013189210A1 (zh) 无线局域网中sta获取及发送数据的方法、装置
US9357489B2 (en) Method for power save mode operation in wireless local area network and apparatus for the same
CN111107617A (zh) 自组网中的数据发送及接收方法、装置、终端、存储介质
CN107635269B (zh) 调度方法、接入点和站点
WO2022028267A1 (zh) 一种指示数据传输的方法、装置
WO2015089770A1 (zh) Wlan系统中sta状态转移的方法和设备
WO2018177266A1 (zh) 数据传输的方法和装置
TWI831568B (zh) 用於群播廣播服務的不連續接收的方法及其裝置
WO2023197292A1 (zh) 无线通信的方法及装置
US20240214992A1 (en) Communication method and communication device
CN104079375A (zh) 无线局域网中sta获取及发送数据的方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803450

Country of ref document: EP

Kind code of ref document: A1