WO2013185488A1 - 基站机柜空调器、运行控制方法及控制器 - Google Patents

基站机柜空调器、运行控制方法及控制器 Download PDF

Info

Publication number
WO2013185488A1
WO2013185488A1 PCT/CN2013/071023 CN2013071023W WO2013185488A1 WO 2013185488 A1 WO2013185488 A1 WO 2013185488A1 CN 2013071023 W CN2013071023 W CN 2013071023W WO 2013185488 A1 WO2013185488 A1 WO 2013185488A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
fan
control signal
controller
air conditioner
Prior art date
Application number
PCT/CN2013/071023
Other languages
English (en)
French (fr)
Inventor
赵晓东
唐战利
高继生
方雯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013185488A1 publication Critical patent/WO2013185488A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a base station cabinet air conditioner, an operation control method, and a controller. Background technique
  • the cabinet air conditioners are installed in the indoor cabinets, outdoor cabinets and battery cabinets used by the base station, so that the heat in the cabinets can be transferred to the outside of the cabinets in a sealed state to isolate the internal and external environment, and to prevent dust and corrosive gases from entering the cabinet;
  • the cabinet air conditioner can also control the temperature and humidity inside the cabinet to ensure that the equipment in the cabinet can work normally.
  • the cabinet air conditioner is mainly composed of a compressor, a condenser, a thermostat, a capillary tube, an evaporator, a fan, and a controller that controls the operation of the above components. Among them, the cabinet air conditioner compresses the refrigerant through the compressor, and the compressed refrigerant condenses and releases heat, and then evaporates the heat to reduce the temperature inside the cabinet.
  • the cabinet air conditioner usually adopts an AC power input, and the AC voltage is commonly used 220V or 110V, and the corresponding compressor and fan are both AC compressor and AC fan, and the controller is an AC input, and the controller passes The AC/DC conversion converts the AC high voltage into a DC low voltage.
  • the power supply of the fan and the compressor is controlled by the relay according to a preset algorithm to realize the operation control of these components to ensure the inside of the cabinet. Temperature and humidity are stable within a certain range.
  • a base station cabinet air conditioner In the embodiment of the present invention, a base station cabinet air conditioner, an operation control method, and a controller are provided to solve the problem that the base station cabinet air conditioner adopts an AC power input in the prior art, resulting in large power consumption and low reliability.
  • a base station cabinet air conditioner comprising: a controller, a compressor and a DC fan; the controller adopts a DC power input, and the controller controls the compressor to work by outputting a first DC control signal, and passes The outputting the second DC control signal controls the DC fan to operate at different speeds.
  • An operation control method for a base station cabinet air conditioner is applied to a base station cabinet air conditioner including a controller, a compressor, and a DC fan, and the method includes:
  • the controller acquires a DC power input; controls the compressor to operate by outputting a first DC control signal, and controls the DC fan to operate at a different speed by outputting a second DC control signal.
  • a controller the controller is applied to a base station cabinet air conditioner including a compressor and a DC fan, the controller includes: an input unit, configured to acquire a DC power input; and a first control unit, configured to output the first The DC control signal controls the compressor to operate; the second control unit is configured to control the DC fan to operate at different rotational speeds by outputting a second DC control signal.
  • the base station cabinet air conditioner in the embodiment of the invention comprises a controller, a compressor and a DC fan input by using a DC power source, and the controller controls the compressor to work by outputting the first DC control signal, and outputs the second DC control through the output.
  • the signal control DC fan operates at different speeds. Since the controller of the embodiment of the invention uses the DC power input, the DC control signal can be output, so the components such as the compressor and the fan in the cabinet can adopt the DC component.
  • the compressor is the DC compressor, the compressor can be controlled by the DC control signal.
  • the fan can be controlled at different speeds by DC control signals.
  • the embodiment of the present invention controls the DC components in the cabinet through DC signals, so that the DC components can work in multiple modes, for example, supporting compressor frequency modulation. And fan speed control, which can reduce the power consumption of the base station cabinet air conditioner.
  • FIG. 1 is a schematic view of a first embodiment of a base station cabinet air conditioner according to the present invention
  • FIG. 2A is a schematic view showing a second embodiment of a base station cabinet air conditioner according to the present invention.
  • FIG. 2B is a schematic diagram of the control of the controller in the air conditioner of the base station cabinet when the AC compressor is used in FIG. 2A;
  • FIG. 3A is a schematic diagram of the third embodiment of the air conditioner of the base station cabinet according to the present invention.
  • FIG. 3B is a schematic diagram of the control of the controller in the air conditioner of the base station cabinet when the AC compressor is used in FIG. 3A:
  • FIG. 4A is a schematic diagram of a fourth embodiment of the air conditioner of the base station cabinet according to the present invention; 4B is a schematic diagram of control of a controller in an air conditioner of a base station cabinet when a DC compressor is used in FIG. 4A;
  • FIG. 5 is a flowchart of an embodiment of an operation control method for an air conditioner of a base station cabinet according to the present invention;
  • 6A is a block diagram of an embodiment of a controller of the present invention.
  • Figure 6B is a block diagram of an embodiment of the second control unit of Figure 6A. detailed description
  • the following embodiments of the present invention provide a base station cabinet air conditioner, an operation control method, and a controller.
  • the cabinet air conditioner is a device that can adjust the temperature, relative humidity, and flow speed of the air in the electric control cabinet.
  • the difference between the cabinet air conditioner and the ordinary air conditioner is the structure, the object to be served, and the use environment.
  • Cabinets Air conditioners are specifically designed for applications in the communications field, such as solving outdoor cooling cabinets, wireless outdoor cabinet base stations, and battery cabinets.
  • the cabinet air conditioner can take away the heat generated by the electrical components to provide the ideal temperature and humidity environment for all kinds of cabinets, and isolate the dust and corrosive gases in the external environment, prolong the service life of the electrical components, and improve the reliable operation of the machine system. Sex.
  • the cabinet air conditioner according to the embodiment of the present invention mainly refers to a base station cabinet air conditioner, and the base station cabinet air conditioner is usually composed of a compressor, a condenser, a thermostat, a capillary, an evaporator, a fan, and the like.
  • the compressor sucks the gaseous refrigerant from the evaporator and compresses it into a high temperature and high pressure state, and then discharges it into the condenser, and the refrigerant is cooled in the condenser to be cooled to a liquid state, and then formed into a low temperature after capillary throttling.
  • the refrigerant in a low pressure state enters the evaporator, and the refrigerant absorbs heat in the evaporator and is converted into a gaseous state, and the gaseous refrigerant is sucked by the compressor, and thus repeated to form a refrigeration cycle.
  • the speed of the AC air conditioner compressor cannot be changed, but the temperature of the room is adjusted by frequently turning off the compressor.
  • FIG. 1 is a schematic diagram of a first embodiment of a base station cabinet air conditioner according to the present invention:
  • the base station cabinet air conditioner includes: a controller 110 that inputs DC power, a compressor 120, and a DC fan 130.
  • the controller 110 controls the on/off of the compressor 120 by outputting a first DC control signal, and controls the DC fan 130 to operate at different rotational speeds by outputting a second DC control signal.
  • the compressor 120 can be an AC compressor that uses an AC power input, and a relay can be further disposed between the AC compressor and the AC power input, and the controller no inputs a first DC control signal to the relay.
  • the AC power supply of the AC compressor is turned on and off so that the AC compressor operates in the startup state when the power is turned on, or operates in the stopped state when the power is turned off.
  • the compressor 120 may also be a DC compressor that uses the same DC power input as the input controller 110.
  • the controller 110 controls the DC compressor to operate at different frequencies by inputting a first DC control signal to the DC compressor.
  • the compressor may also be an AC compressor that uses the same DC power input as the input controller 110, and further sets an inverter and a relay between the AC compressor and the DC power input, and the DC power input converts the DC power through the inverter.
  • the controller 110 controls the AC power input to the AC compressor by inputting a first DC control signal to the relay, so that the AC compressor is connected to the power supply.
  • the working condition is in the startup state, or it is in the stop state when the power is off.
  • the DC fan 130 may include a DC external fan and a DC internal fan.
  • the controller 130 detects the temperature in the cabinet air conditioner. When the detected temperature exceeds the preset temperature, the controller generates a different duty ratio according to the detected different temperatures.
  • the two DC control signals control at least one of the DC external fan and the DC internal fan to operate at different speeds through the second DC control signal.
  • the controller in the air conditioner of the base station cabinet adopts a DC power input, and can output a DC control signal. Therefore, the components such as the compressor and the fan in the cabinet can adopt a DC component, and when the compressor is a DC compressor, the DC is passed.
  • the control signal can control the compressor to work at different frequencies.
  • the fan is a DC fan, the fan can be controlled to operate at different speeds through the DC control signal. Therefore, compared with the existing dual-operation AC power input, the embodiment of the present invention controls the DC components in the cabinet through DC signals, so that the DC components can work in multiple modes, for example, supporting compressor frequency modulation. And fan speed control, which can reduce the power consumption of the base station cabinet air conditioner.
  • the base station cabinet air conditioner of the present invention will be described in detail below in combination with the internal structure of the base station cabinet air conditioner. In addition to the components of the compressor, the DC fan and the controller involved in the embodiment of the base station cabinet air conditioner of the present invention, these structures are also shown. Some other components, such as condensers, evaporators, thermometers, etc., are not described in detail since they do not relate to improvements in the embodiments of the present invention.
  • FIG. 2A it is a schematic diagram of a second embodiment of a base station cabinet air conditioner according to the present invention.
  • the air conditioner shown in this embodiment includes an AC compressor with an AC power input, and a DC external fan and a DC internal fan:
  • the power input includes one DC power input and one AC power input, wherein the AC power input is input to the AC compressor through the relay, and the AC power source can be 220V AC power, or 110V AC power: DC power input access controller, It is used to supply power to the controller.
  • the DC power supply is usually the 48V DC power supply commonly used by the base station. After receiving the DC power input, the controller controls the operation of the DC fan and the AC compressor by outputting two DC control signals.
  • the controller detects the coil temperature, the condenser temperature and the evaporator temperature of the air conditioner inside the base station cabinet through the temperature device, and obtains the detected temperature value, and initially can control the DC inner fan to operate according to the set speed, when the temperature value exceeds
  • the DC external fan and the AC compressor are started, and the DC external fan is controlled to operate at different speeds.
  • the AC power supply of the AC compressor is controlled by inputting a control signal to the relay to make the AC compressor.
  • the power When the power is turned on, it works in the startup state, or when the power is off, it works in the stop state; when the temperature is lower than the preset temperature value, the DC external fan and the AC compressor can be turned off, and only the DC internal fan is controlled according to the setting. The speed can be worked.
  • the controller can still control the DC fan to operate at different speeds by generating a DC control signal, so as to air conditioner the base station cabinet.
  • the temperature inside the unit is controlled within a preset temperature range.
  • FIG. 2B it is a control schematic of the controller in the air conditioner of the base station cabinet when the AC compressor is used in the above FIG. 2A:
  • the 48V voltage is filtered by the slow start and EMI (Electron-Magnetic Interference) circuit, and is transformed into two working voltages, one of which has a 48V DC voltage through the DC/DC circuit. Converted to 5V DC voltage, input to MCU (Micro Control Unit), and another 48V DC voltage input to DC fan.
  • the AC 220/110V voltage is input to the AC compressor through the relay after being slowly filtered and filtered by the EMI circuit.
  • the function of the relay is equivalent to a switch for controlling the on and off of the AC voltage input to the AC compressor.
  • the MCU After receiving the temperature detection value, the MCU generates two DC control signals, wherein one DC control signal controls the on and off of the relay.
  • one DC control signal controls the on and off of the relay.
  • the control relay turns on the AC power input, when the air conditioner When the temperature of the device drops below the preset temperature, the control relay disconnects the AC power input.
  • Another DC control signal is input to the DC fan to control the DC fan to operate at different speeds.
  • the DC control signal can be specifically PWM (Pulse Width Modulation) signals with different duty cycles, each duty ratio
  • PWM Pulse Width Modulation
  • the PWM signal corresponds to controlling the DC fan to operate at a certain speed; further, the MCU can also collect the feedback signal of the current speed of the DC fan by measuring the signal on the pin of the DC fan, thereby monitoring the running state of the DC fan.
  • the controller in the air conditioner of the base station cabinet adopts a DC power input, and can output a DC control signal. Therefore, a DC fan can be used in the cabinet, and the DC control signal is used to control the fan to work at different speeds and communicate with existing ones.
  • the power input only supports two working modes, and the embodiment of the present invention passes the direct current signal.
  • the DC grading in the control cabinet can work at different speeds, which can reduce the power consumption of the base station cabinet air conditioner.
  • the controller's power input uses DC power input, the controller still The DC fan can be controlled to generate different speeds by generating DC control signals to ensure the normal operation of the base station cabinet air conditioner.
  • FIG. 3A it is a schematic diagram of a third embodiment of a base station cabinet air conditioner according to the present invention.
  • the air conditioner shown in this embodiment includes an AC compressor with a DC power input, and a DC external fan and a DC internal fan:
  • the power input only includes one DC power input, which is input to the AC compressor through a relay and DC/AC (DC to AC), where DC/AC can convert the DC power input to an AC compressor.
  • the required AC power input, the AC power supply can be a 220V AC power supply, or a liov AC power supply; the DC power input is simultaneously connected to the controller for powering the controller, and the DC power supply is usually a 48V DC power supply commonly used by the base station.
  • the controller controls the operation of the DC fan and the AC compressor by outputting two DC control signals.
  • the controller detects the coil temperature, the condenser temperature and the evaporator temperature of the air conditioner inside the base station cabinet through the temperature device, and obtains the detected temperature value, and initially can control the DC inner fan to operate according to the set speed, when the temperature value exceeds
  • the DC external fan and the AC compressor are started, the DC external fan is controlled to operate at different speeds, and the DC power supply to be input to the DC/AC is controlled to be turned on and off by inputting a control signal to the relay, so that
  • the DC/AC converts the DC power to AC power when the power is turned on, for the AC compressor to operate in the startup state, or to operate the AC compressor in the stop state when the power is off; when the temperature is lower than the preset temperature value
  • the DC external fan and the AC compressor can be turned off, and only the DC internal fan can be operated according to the set speed.
  • FIG. 3B it is a control schematic of the controller in the air conditioner of the base station cabinet when the AC compressor is used in the above FIG. 3A:
  • the controller After receiving the DC 48V power input, the controller converts the voltage to three operating voltages after the slow start and EMI circuit filtering.
  • the first 48V DC voltage is converted to 5V DC voltage through the DC/DC circuit.
  • the second 48V DC voltage is input to the DC fan;
  • the third 48V power is input to the inverter through the relay, and the inverter can convert the DC 48V voltage into AC 220/110V voltage, and then input into the AC compressor.
  • the function of the relay is equivalent to a switch for controlling the on/off of the DC 48V input to the inverter.
  • the MCU After receiving the temperature detection value, the MCU generates two DC control signals, wherein one DC control signal controls the on/off of the relay.
  • one DC control signal controls the on/off of the relay.
  • the control relay turns on the DC power input, when the air conditioner When the temperature of the device drops below the preset temperature, the control relay disconnects the DC power input.
  • Another A DC control signal is input to the DC fan to control the DC fan to operate at different speeds.
  • the DC control signal can be specifically a PWM signal with different duty cycles. Each PWM signal of the duty cycle corresponds to controlling the DC fan to work in a certain At one speed; further, the MCU can also monitor the current state of the DC fan by measuring the signal on the DC fan pin to monitor the operating state of the DC fan.
  • the controller in the air conditioner of the base station cabinet adopts a DC power input, and can output a DC control signal. Therefore, a DC fan is used in the cabinet, and the DC control signal can be used to control the fan to operate at different speeds.
  • the embodiment of the present invention controls the DC fan in the cabinet by using a DC signal, so that the DC fan can work at different speeds, thereby reducing the air conditioning of the base station cabinet. Power consumption;
  • the AC compressor uses DC power input through the inverter, it does not need to provide AC power input, so it is convenient to maintain and control the base station cabinet air conditioner.
  • FIG. 4A is a schematic diagram of a third embodiment of a base station cabinet air conditioner according to the present invention.
  • the air conditioner shown in this embodiment includes a DC compressor that uses a DC power input, and the DC fan includes a DC external fan and a DC internal fan:
  • the power input only includes one DC power input.
  • the DC power input is directly input to the DC compressor, and the DC power input is connected to the controller for supplying power to the controller.
  • the DC power supply is usually a 48V DC power supply commonly used by the base station.
  • the controller controls the operation of the DC fan and the DC compressor by outputting two DC control signals.
  • the controller detects the coil temperature, the condenser temperature and the evaporator temperature of the air conditioner inside the base station cabinet through the temperature device, and obtains the detected temperature value, and initially can control the DC inner fan to operate according to the set speed, when the temperature value exceeds
  • the DC external fan and the DC compressor are activated, and the DC external fan is controlled to operate at different speeds, and the DC compressor is controlled to operate at different frequencies; when the temperature is lower than the preset temperature value, Turn off the DC external fan and DC compressor, and only control the DC internal fan to work according to the set speed.
  • FIG. 4B it is a control schematic of the controller in the air conditioner of the base station cabinet when the DC compressor is used in the above FIG. 4A:
  • the controller After receiving the DC 48V power input, the controller converts the voltage to three operating voltages after the slow start and EMI circuit filtering.
  • the first 48V DC voltage is converted to 5V DC voltage through the DC/DC circuit.
  • the second 48V DC voltage is input to the DC fan, and the third 48V DC voltage is input to the DC compressor.
  • the MCU After receiving the temperature detection value, the MCU generates two DC control signals, wherein one DC control signal controls the DC compressor to operate at different frequencies.
  • one DC control signal controls the DC compressor to operate at different frequencies.
  • different temperature values correspond to compression. Different frequencies of machine operation.
  • Another DC control signal is input to the DC fan to control the DC The fan works at different speeds.
  • the DC control signal can be specifically a PWM signal with different duty cycles. Each duty cycle PWM signal corresponds to controlling the DC fan to work at a certain speed; further, the MCU can also pass the measurement.
  • the signal on the pin of the DC fan collects the feedback signal of the current speed of the DC fan, thereby monitoring the running state of the DC fan.
  • the controller in the air conditioner of the base station cabinet adopts a DC power input, and can output a DC control signal. Therefore, a DC compressor and a DC fan can be used in the cabinet.
  • DC compressor DC compression can be controlled by a DC control signal.
  • the machine works at different frequencies.
  • DC fans the fans can be controlled at different speeds by DC control signals. Therefore, compared with the existing two modes of operation in which the AC power input is only supported, the embodiment of the present invention controls the DC compressor and the DC fan in the cabinet by using a DC signal to operate in multiple modes, thereby reducing the base station.
  • the power consumption of the cabinet air conditioner is not limited to, a DC signal.
  • the present invention also provides an embodiment of the operation control method and controller of the base station cabinet air conditioner.
  • FIG. 5 it is a flowchart of an embodiment of an operation control method for a base station cabinet air conditioner according to the present invention.
  • the method embodiment is used to control the operation of the base station cabinet air conditioner described in the foregoing embodiment:
  • Step 501 The controller acquires a DC power input.
  • Step 502 Control the compressor to operate by outputting a first DC control signal, and control the DC fan to operate at different speeds by outputting a second DC control signal.
  • controlling the compressor to operate by outputting the first DC control signal may include the following manners: when the compressor is an AC compressor input with an AC power source, and the AC compressor and the AC power input When a relay is disposed between, the controller controls the on and off of the alternating current power source by inputting a first direct current control signal to the relay to operate the alternating current compressor in an activated state or a stopped state.
  • the controller controls the DC compressor to operate at a different frequency by inputting a first DC control signal to the DC compressor.
  • the controller inputs by inputting to the relay
  • the first DC control signal controls the on/off of the AC power source to operate the AC compressor in an activated state or a stopped state, wherein the AC power source is converted into the inverter after the DC power source is input and input to the The AC power supply of the AC compressor.
  • the DC fan may include a DC external fan and a DC internal fan, and the controller detects a temperature in the cabinet air conditioner: when detecting that the temperature exceeds a preset temperature, generating different occupation according to the detected different temperature a second DC control signal of an air ratio; controlling the DC external fan by the second DC control signal At least one of the DC blowers operates at different speeds.
  • the controller adopts a DC power input and outputs a DC control signal. Therefore, components such as a compressor and a fan in the cabinet can adopt a DC component.
  • the compressor is a DC compressor
  • the compressor can be controlled by a DC control signal.
  • the fan can be controlled at different speeds by DC control signals. Therefore, compared with the prior art that the AC power input only supports two working modes, the embodiment of the present invention controls the DC components in the cabinet through DC signals, so that the DC components can work in multiple modes, such as supporting compressor frequency modulation and Fan speed control, which can reduce the power consumption of the base station cabinet air conditioner.
  • FIG. 6A it is a block diagram of an embodiment of a controller according to the present invention.
  • the controller in the embodiment of the present invention is applied to a base station cabinet air conditioner including a compressor and a DC fan, and is used for controlling the operation process of the air conditioner of the base station cabinet:
  • the controller includes: an input unit 610, a first control unit 620, and a second control unit 630.
  • the input unit 610 is configured to obtain a DC power input
  • the first control unit 620 is configured to control the compressor to operate by outputting a first DC control signal
  • the second control unit 630 is configured to control the DC fan to operate at different rotational speeds by outputting a second DC control signal.
  • the first control unit 620 can be configured to: when the compressor is an AC compressor that uses an AC power input, and a relay is set between the AC compressor and the AC power input, The relay inputs a first DC control signal to control the on and off of the AC power source to operate the AC compressor in an activated state or a stopped state.
  • the first control unit 620 may be configured to control the DC by inputting a first DC control signal to the DC compressor when the compressor is a DC compressor input by using the DC power source.
  • the compressor operates at different frequencies.
  • the first control unit 620 may be configured to: when the compressor is an AC compressor input with the DC power source, and an inverter is disposed between the AC compressor and the DC power input In the relay, the AC power is controlled to be turned on or off by inputting a first DC control signal to the relay to operate the AC compressor in an activated state or a stopped state, wherein the AC power source inputs the DC power source The inverter is then converted and input to the AC power source of the AC compressor.
  • FIG. 6B a block diagram of an embodiment of the second control unit of Figure 6A:
  • the second control unit 630 includes:
  • a temperature detecting subunit 631 configured to detect a temperature in the cabinet air conditioner
  • a signal generating sub-unit 632 configured to generate, when the temperature detecting sub-unit 631 detects that the temperature exceeds a preset temperature, generate a second DC control signal having a different duty ratio according to the detected different temperature
  • the speed control subunit 533 is configured to control, by the second DC control signal, at least one of the DC external fan and the DC internal fan to operate at different speeds.
  • the base station cabinet air conditioner in the embodiment of the present invention includes a controller, a compressor, and a DC fan that adopt a DC power input, and the controller controls the compressor to work by outputting the first DC control signal, and passes the The output of the second DC control signal controls the DC fan to operate at different speeds.
  • the controller of the embodiment of the invention uses the DC power input, the DC control signal can be output, so the components such as the compressor and the fan in the cabinet can adopt the DC component.
  • the compressor is the DC compressor
  • the compressor can be controlled by the DC control signal.
  • the fan can be controlled to operate at different speeds by DC control signals.
  • the embodiment of the present invention controls the DC components in the cabinet through DC signals, so that the DC components can work in multiple modes, such as supporting compressor frequency modulation and Fan speed control, which can reduce the power consumption of the base station cabinet air conditioner.
  • the techniques in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a ROM/RAM. , a disk, an optical disk, etc., including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种基站机柜空调器、运行控制方法及控制器,空调器包括控制器(110)、压缩机(120)和直流风机(130)。控制器(110)采用直流电源输入,且控制器(110)通过输出第一直流控制信号控制压缩机(120)工作,以及通过输出第二直流控制信号控制直流风机(130)工作在不同的转速。

Description

基站机柜空调器、 运行控制方法及控制器 本申请要求于 2012年 06月 14日提交中国专利局、 申请号为 201210195905.X、 发明名称为 "基站机柜空调器、 运行控制方法及控制器" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及电子技术领域,特别是涉及基站机柜空调器、运行控制方法及控制器。 背景技术
基站使用的室内柜、室外柜和电池柜内需要安装机柜空调器,以便在密闭情况下, 将柜内热量转移到柜外, 实现内外环境的隔离, 避免粉尘、腐蚀气体等进入柜内; 同 时机柜空调器还可以控制柜内的温度和湿度, 以保证柜内设备都能够正常工作。机柜 空调器主要由压缩机、 冷凝器、 温控器、 毛细管、 蒸发器、 风机及控制上述部件运作 的控制器等组成。 其中, 机柜空调器通过压缩机压缩冷媒, 压缩后的冷媒冷凝放热, 然后再蒸发吸热来降低柜内温度。
现有技术中, 机柜空调器通常采用交流电源输入, 交流电压采用常用的 220V或 110V, 相应的压缩机和风机均釆用交流压缩机和交流风机, 同时控制器为交流输入, 该控制器通过 AC/DC转换将交流高电压变换为直流低电压, 检测机柜空调的系统温 度后, 按照预设算法通过继电器控制风机和压缩机的电源通断, 实现对这些部件的运 行控制, 以保证机柜内温度和湿度稳定在一定范围内。
发明人在对现有技术的研究过程中发现, 由于采用交流电源输入, 因此机柜内的 控制器、风机等各个部件均需采用支持交流输入的部件, 对于交流风机的控制, 由于 交流输入通过继电器只能支持高速和停转两种模式,难以支持风机调速, 因此导致交 流风机功耗较大。 发明内容
本发明实施例中提供了基站机柜空调器、运行控制方法及控制器, 以解决现有技 术中基站机柜空调采用交流电源输入, 导致功耗较大, 可靠性不高的问题。
为了解决上述技术问题, 本发明实施例公开了如下技术方案: 一种基站机柜空调器, 包括: 控制器、 压缩机和直流风机; 所述控制器采用直流 电源输入, 且所述控制器通过输出第一直流控制信号控制所述压缩机进行工作, 以及 通过输出第二直流控制信号控制所述直流风机工作在不同的转速。
一种基站机柜空调器的运行控制方法, 应用于包括控制器、压缩机和直流风机的 基站机柜空调器, 所述方法包括:
所述控制器获取直流电源输入;通过输出第一直流控制信号控制所述压缩机进行 工作, 以及通过输出第二直流控制信号控制所述直流风机工作在不同的转速。
一种控制器, 所述控制器应用于包括压缩机和直流风机的基站机柜空调器,所述 控制器包括: 输入单元, 用于获取直流电源输入; 第一控制单元, 用于通过输出第一 直流控制信号控制所述压缩机进行工作;第二控制单元,用于通过输出第二直流控制 信号控制所述直流风机工作在不同的转速。
本发明实施例中的基站机柜空调器包括釆用直流电源输入的控制器、压缩机、直 流风机,该控制器通过输出第一直流控制信号控制压缩机进行工作, 以及通过输出第 二直流控制信号控制直流风机工作在不同的转速。由于本发明实施例的控制器采用直 流电源输入,可以输出直流控制信号, 因此机柜内压缩机和风机等部件可以采用直流 部件, 当压缩机为直流压缩机时,通过直流控制信号可以控制压缩机工作在不同的频 率,当风机为直流风机时,可以通过直流控制信号控制风机工作在不同的转速。因此, 与现有釆用交流电源输入仅支持两种工作模式相比,本发明实施例通过直流信号控制 机柜内的直流部件, 使得这些直流部件可以工作在多种模式下, 例如支持压缩机调频 和风机调速, 由此可以降低基站机柜空调的功耗。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地,对于本领域普通技术人 员而言, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明基站机柜空调器的第一实施例示意图;
图 2A为本发明基站机柜空调器的第二实施例示意图;
图 2B为图 2A中采用交流压缩机时基站机柜空调器内控制器的控制示意图; 图 3A为本发明基站机柜空调器的第三实施例示意图;
图 3B为图 3A中釆用交流压缩机时基站机柜空调器内控制器的控制示意图: 图 4A为本发明基站机柜空调器的第四实施例示意图; 图 4B为图 4A中采用直流压缩机时基站机柜空调器内控制器的控制示意图; 图 5为本发明基站机柜空调的运行控制方法的实施例流程图;
图 6A为本发明控制器的实施例框图;
图 6B为图 6A中第二控制单元的实施例框图。 具体实施方式
本发明如下实施例提供了基站机柜空调器、 运行控制方法及控制器。
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实 施例的上述目的、特征和优点能够更加明显易懂, 下面结合附图对本发明实施例中技 术方案作进一步详细的说明。
机柜空调器是能够对电气控制柜内空气的温度、相对湿度、流动速度进行调节的 装置, 机柜空调和普通空调的区别在于结构、所服务的对象和使用环境的不同。机柜 空调器专门针对通讯领域的应用而设计, 如解决户外通信机柜、无线户外柜基站、 蓄 电池机柜等散热问题。机柜空调可以带走电气元件消耗电能发出的热量, 为各类机柜 内部提供理想的温湿度环境, 同时隔离了外界环境中的灰尘、 腐蚀性气体, 延长电气 元件的使用寿命, 提高机器系统运行可靠性。
本发明实施例涉及的机柜空调器主要指基站机柜空调器,该基站机柜空调器通常 由压缩机、 冷凝器、 温控器、 毛细管、 蒸发器、 风机等部件组成。 其中, 压缩机从蒸 发器吸入气态制冷剂并将其压缩成高温高压状态后排入冷凝器内,制冷剂在冷凝器内 放出热量后被冷却成髙压液态,然后经过毛细管节流后形成低温低压状态的制冷剂并 进入蒸发器, 制冷剂在蒸发器中吸收热量后转化为气态, 气态制冷剂被压缩机吸入, 如此反复, 形成制冷循环。
交流空调压缩机转速不能改变,而是通过频繁幵启关闭压缩机的方式来调节房间 温度高低
参见图 1, 为本发明基站机柜空调器的第一实施例示意图:
该基站机柜空调器包括: 采用直流电源输入的控制器 110、 压缩机 120和直流风 机 130。
其中,所述控制器 110通过输出第一直流控制信号对所述压缩机 120的通断进行 控制, 以及通过输出第二直流控制信号控制所述直流风机 130工作在不同的转速。
其中, 压缩机 120可以为采用交流电源输入的交流压缩机, 交流压缩机与交流电 源输入之间可以进一步设置继电器,控制器 no向继电器输入第一直流控制信号控制 输入交流压缩机的交流电源的通断, 以使交流压缩机在电源接通时工作在启动状态, 或在电源断开时工作在停止状态。
其中,压缩机 120也可以为与输入控制器 110采用同一直流电源输入的直流压缩 机,控制器 110通过向直流压缩机输入第一直流控制信号控制直流压缩机工作在不同 的频率。
其中, 压缩机也可以为与输入控制器 110采用同一直流电源输入的交流压缩机, 交流压缩机与直流电源输入之间进一步设置逆变器和继电器,直流电源输入通过逆变 器将直流电源转换为交流电源, 并将交流电源输入到交流压缩机, 同时控制器 110通 过向继电器输入第一直流控制信号,控制输入到交流压缩机的交流电源的通断, 以使 交流压缩机在电源接通时工作在启动状态, 或在电源断开时工作在停止状态。
其中, 直流风机 130可以包括直流外风机和直流内风机,控制器 130检测机柜空 调器内的温度, 当检测到温度超过预设温度时,根据检测到的不同温度产生具有不同 占空比的第二直流控制信号,通过第二直流控制信号控制直流外风机和直流内风机中 的至少一个直流风机工作在不同的转速。
由上述实施例可见, 基站机柜空调器内的控制器采用直流电源输入, 可以输出直 流控制信号, 因此机柜内压缩机和风机等部件可以采用直流部件, 当压缩机为直流压 缩机时,通过直流控制信号可以控制压缩机工作在不同的频率,当风机为直流风机时, 可以通过直流控制信号控制风机工作在不同的转速。因此, 与现有釆用交流电源输入 仅支持两种工作模式相比,本发明实施例通过直流信号控制机柜内的直流部件,使得 这些直流部件可以工作在多种模式下, 例如支持压缩机调频和风机调速, 由此可以降 低基站机柜空调的功耗。
下面结合基站机柜空调器内部的结构对本发明基站机柜空调器进行详细描述,这 些结构中除了包括了本发明基站机柜空调器实施例涉及的压缩机、直流风机和控制器 等部件外, 还示出了一些其它部件, 例如冷凝器、 蒸发器、 温度计等, 但由于这些部 件不涉及本发明实施例的改进, 因此不对其进行过多赘述。
参见图 2A, 为本发明基站机柜空调器的第二实施例示意图, 该实施例示出的空 调器包括采用交流电源输入的交流压缩机, 以及直流外风机和直流内风机:
图 2A中, 电源输入包括一路直流电源输入和一路交流电源输入, 其中交流电源 输入通过继电器输入到交流压缩机, 交流电源可以为 220V交流电源, 或者 110V交 流电源: 直流电源输入接入控制器, 用于给该控制器进行供电, 直流电源通常为基站 常用的 48V直流电源。 控制器接收到直流电源输入后, 通过输出两路直流控制信号, 分别对直流风机和 交流压缩机的工作进行控制。其中,控制器通过温度器检测基站机柜空调内部的盘管 温度、冷凝器温度和蒸发器温度, 获得检测到的温度值, 初始可以控制直流内风机按 照设定的转速工作, 当该温度值超过预设的温度值时, 则启动直流外风机和交流压缩 机,控制直流外风机工作在不同的转速, 同时通过向继电器输入控制信号控制交流压 缩机的交流电源的通断, 以使交流压缩机在电源接通时工作在启动状态, 或在电源断 开时工作在停止状态; 当温度低于预设的温度值时,可以关闭直流外风机和交流压缩 机, 仅控制直流内风机按照设定的转速进行工作即可。
另外, 本实施例中, 当交流电源输入掉电后, 由于控制器的电源输入采用直流电 源输入, 因此控制器仍然可以通过产生直流控制信号控制直流风机工作在不同的转 速, 以便将基站机柜空调器内的温度控制在预设的温度范围内。
参见图 2B,为上述图 2A中采用交流压缩机时基站机柜空调器内控制器的控制示 意图:
该控制器接收到直流 48V 电源输入后, 该 48V 电压经过缓启动和 EMI (Electron-Magnetic Interference, 电磁干扰) 电路滤波后, 变压为两路工作电压, 其 中一路 48V直流电压通过直流 /直流电路转换为 5V直流电压, 输入到 MCU (Micro Control Unit, 微控制单元), 另一路 48V 直流电压输入到直流风机。 另外, 交流 220/110V电压经过缓启动和 EMI电路滤波后, 通过继电器输入到交流压缩机。 由图 2B可知, 继电器的功能相当于一个开关, 用于控制输入到交流压缩机的交流电压的 通断。
MCU接收到温度检测值后, 产生两路直流控制信号, 其中一路直流控制信号控 制继电器的通断, 当空调器温度持续升高超过预设温度时, 则控制继电器接通交流电 源输入, 当空调器温度降低到预设温度以下时, 则控制继电器断开交流电源输入。 另 一路直流控制信号输入直流风机, 以控制直流风机工作在不同的转速, 该直流控制信 号可以具体为具有不同占空比的 PWM (Pulse Width Modulation, 脉宽调制) 信号, 每一种占空比的 PWM信号对应控制直流风机工作在某一个转速下; 进一步, MCU 也可以通过测量直流风机引脚上的信号采集该直流风机当前转速的反馈信号,从而对 直流风机的运行状态进行监控。
由上述实施例可见, 基站机柜空调器内的控制器采用直流电源输入, 可以输出直 流控制信号, 因此机柜内可以釆用直流风机, 通过直流控制信号控制风机工作在不同 的转速与现有采用交流电源输入仅支持两种工作模式相比,本发明实施例通过直流信 号控制机柜内的直流分级可以工作在不同转速下, 由此可以降低基站机柜空调的功 耗; 另外, 当交流电源输入掉电后, 由于控制器的电源输入采用直流电源输入, 因此 控制器仍然可以通过产生直流控制信号控制直流风机工作在不同的转速,保证基站机 柜空调器的正常运行。
参见图 3A, 为本发明基站机柜空调器的第三实施例示意图, 该实施例示出的空 调器包括采用直流电源输入的交流压缩机, 以及直流外风机和直流内风机:
图 3A 中, 电源输入仅包括一路直流电源输入, 该直流电源输入通过继电器和 DC/AC (直流转交流) 输入到交流压缩机, 其中 DC/AC可以将直流电源输入转换为 交流压缩机工作所需要的交流电源输入, 该交流电源可以为 220V 交流电源, 或者 liov交流电源; 该直流电源输入同时接入控制器, 用于给该控制器进行供电, 直流 电源通常为基站常用的 48V直流电源。
控制器接收到直流电源输入后, 通过输出两路直流控制信号, 分别对直流风机和 交流压缩机的工作进行控制。其中,控制器通过温度器检测基站机柜空调内部的盘管 温度、冷凝器温度和蒸发器温度, 获得检测到的温度值, 初始可以控制直流内风机按 照设定的转速工作, 当该温度值超过预设的温度值时, 则启动直流外风机和交流压缩 机,控制直流外风机工作在不同的转速, 同时通过向继电器输入控制信号控制待输入 到 DC/AC的直流电源的通断,以使 DC/AC在电源接通时将直流电源转换为交流电源, 供交流压缩机工作在启动状态, 或在电源断开时使交流压缩机工作在停止状态; 当温 度低于预设的温度值时, 可以关闭直流外风机和交流压缩机,仅控制直流内风机按照 设定的转速进行工作即可。
参见图 3B,为上述图 3A中采用交流压缩机时基站机柜空调器内控制器的控制示 意图:
该控制器接收到直流 48V电源输入后, 该 48V电压经过缓启动和 EMI电路滤波 后, 变压为三路工作电压, 其中第一路 48V直流电压通过直流 /直流电路转换为 5V 直流电压, 输入到 MCU, 第二路 48V直流电压输入到直流风机; 第三路 48V电源通 过继电器输入到逆变器, 逆变器可以将直流 48V电压转换为交流 220/110V电压, 然 后输入到交流压缩机内。 由图 3B可知, 继电器的功能相当于一个开关, 用于控制输 入到逆变器的直流 48V电压的通断。
MCU接收到温度检测值后, 产生两路直流控制信号, 其中一路直流控制信号控 制继电器的通断, 当空调器温度持续升高超过预设温度时, 则控制继电器接通直流电 源输入, 当空调器温度降低到预设温度以下时, 则控制继电器断开直流电源输入。 另 一路直流控制信号输入直流风机, 以控制直流风机工作在不同的转速, 该直流控制信 号可以具体为具有不同占空比的 PWM信号, 每一种占空比的 PWM信号对应控制直 流风机工作在某一个转速下; 进一步, MCU也可以通过测量直流风机引脚上的信号 采集该直流风机当前转速的反馈信号, 从而对直流风机的运行状态进行监控。
由上述实施例可见, 基站机柜空调器内的控制器采用直流电源输入, 可以输出直 流控制信号, 因此机柜内采用直流风机, 可以通过直流控制信号控制风机工作在不同 的转速。与现有釆用交流电源输入仅支持两种工作模式相比,本发明实施例通过直流 信号控制机柜内的直流风机, 使得直流风机可以工作在不同的转速下, 由此可以降低 基站机柜空调的功耗; 另外, 由于交流压缩机通过逆变器使用直流电源输入, 而无需 提供交流电源输入, 因此便于基站机柜空调器的维护和控制。
参见图 4A, 为本发明基站机柜空调器的第三实施例示意图, 该实施例示出的空 调器包括采用直流电源输入的直流压缩机, 直流风机包括直流外风机和直流内风机: 图 4A中, 电源输入仅包括一路直流电源输入, 该直流电源输入直接输入到直流 压缩机, 同时该直流电源输入接入控制器, 用于给该控制器进行供电, 直流电源通常 为基站常用的 48V直流电源。
控制器接收到直流电源输入后, 通过输出两路直流控制信号, 分别对直流风机和 直流压缩机的工作进行控制。其中,控制器通过温度器检测基站机柜空调内部的盘管 温度、冷凝器温度和蒸发器温度, 获得检测到的温度值, 初始可以控制直流内风机按 照设定的转速工作, 当该温度值超过预设的温度值时, 则启动直流外风机和直流压缩 机, 控制直流外风机工作在不同的转速, 同时控制直流压缩机工作在不同的频率; 当 温度低于预设的温度值时,可以关闭直流外风机和直流压缩机, 仅控制直流内风机按 照设定的转速进行工作即可。
参见图 4B,为上述图 4A中采用直流压缩机时基站机柜空调器内控制器的控制示 意图:
该控制器接收到直流 48V电源输入后, 该 48V电压经过缓启动和 EMI电路滤波 后, 变压为三路工作电压, 其中第一路 48V直流电压通过直流 /直流电路转换为 5V 直流电压, 输入到 MCU, 第二路 48V直流电压输入到直流风机, 第三路 48V直流电 压输入到直流压缩机。
MCU接收到温度检测值后, 产生两路直流控制信号, 其中一路直流控制信号控 制直流压缩机工作在不同的频率, 当空调器温度持续升高超过预设温度时, 则不同的 温度值对应压缩机工作的不同频率。另一路直流控制信号输入直流风机, 以控制直流 风机工作在不同的转速, 该直流控制信号可以具体为具有不同占空比的 PWM信号, 每一种占空比的 PWM信号对应控制直流风机工作在某一个转速下; 进一步, MCU 也可以通过测量直流风机引脚上的信号采集该直流风机当前转速的反馈信号,从而对 直流风机的运行状态进行监控。
由上述实施例可见, 基站机柜空调器内的控制器采用直流电源输入, 可以输出直 流控制信号, 因此机柜内可以采用直流压缩机和直流风机, 对于直流压缩机, 通过直 流控制信号可以控制直流压缩机工作在不同的频率,对于直流风机, 可以通过直流控 制信号控制风机工作在不同的转速。 因此, 与现有采用交流电源输入仅支持两种工作 模式相比, 本发明实施例通过直流信号控制机柜内的直流压缩机和直流风机, 使其工 作在多种模式下, 由此可以降低基站机柜空调的功耗。
与本发明基站机柜空调器的实施例相对应,本发明还提供了基站机柜空调器的运 行控制方法及控制器的实施例。
参见图 5, 为本发明基站机柜空调器的运行控制方法的实施例流程图, 该方法实 施例用于对前述实施例中描述的基站机柜空调器的运行进行控制:
步骤 501 : 控制器获取直流电源输入。
歩骤 502: 通过输出第一直流控制信号控制压缩机进行工作, 以及通过输出第二 直流控制信号控制直流风机工作在不同的转速。
其中, 通过输出第一直流控制信号控制压缩机进行工作可以包括如下几种方式: 当所述压缩机为釆用交流电源输入的交流压缩机,且所述交流压缩机与所述交流 电源输入之间设置继电器时,所述控制器通过向所述继电器输入第一直流控制信号控 制交流电源的通断, 以使所述交流压缩机工作在启动状态或停止状态。
当所述压缩机为采用所述直流电源输入的直流压缩机时,所述控制器通过向所述 直流压缩机输入第一直流控制信号, 控制所述直流压缩机工作在不同的频率。
当所述压缩机为釆用所述直流电源输入的交流压缩机,且所述交流压缩机与所述 直流电源输入之间设置逆变器和继电器时,所述控制器通过向所述继电器输入第一直 流控制信号控制交流电源的通断, 以使所述交流压缩机工作在启动状态或停止状态, 其中所述交流电源为所述直流电源输入所述逆变器后转换并输入到所述交流压缩机 的交流电源。
其中, 直流风机可以包括直流外风机和直流内风机, 所述控制器检测所述机柜空 调器内的温度: 当检测到所述温度超过预设温度时,根据检测到的不同温度产生具有 不同占空比的第二直流控制信号;通过所述第二直流控制信号控制所述直流外风机和 直流内风机中的至少一个直流风机工作在不同的转速。
由上述实施例可见, 控制器采用直流电源输入, 并输出直流控制信号, 因此机柜 内压缩机和风机等部件可以采用直流部件, 当压缩机为直流压缩机时,通过直流控制 信号可以控制压缩机工作在不同的频率, 当风机为直流风机时, 可以通过直流控制信 号控制风机工作在不同的转速。 因此, 与现有采用交流电源输入仅支持两种工作模式 相比, 本发明实施例通过直流信号控制机柜内的直流部件, 使得这些直流部件可以工 作在多种模式下,例如支持压缩机调频和风机调速, 由此可以降低基站机柜空调的功 耗。
参见图 6A, 为本发明控制器的实施例框图, 本发明实施例中的控制器应用于包 括压缩机和直流风机的基站机柜空调器内,用于对基站机柜空调器的运行过程进行控 制:
该控制器包括: 输入单元 610、 第一控制单元 620和第二控制单元 630。
其中, 输入单元 610, 用于获取直流电源输入;
第一控制单元 620, 用于通过输出第一直流控制信号控制所述压缩机进行工作; 第二控制单元 630, 用于通过输出第二直流控制信号控制所述直流风机工作在不 同的转速。
具体的, 所述第一控制单元 620, 可以用于当所述压缩机为采用交流电源输入的 交流压缩机, 且所述交流压缩机与所述交流电源输入之间设置继电器时,通过向所述 继电器输入第一直流控制信号控制交流电源的通断,以使所述交流压缩机工作在启动 状态或停止状态。
或者, 所述第一控制单元 620, 可以用于当所述压缩机为采用所述直流电源输入 的直流压缩机时,通过向所述直流压缩机输入第一直流控制信号,控制所述直流压缩 机工作在不同的频率。
或者, 所述第一控制单元 620, 可以用于当所述压缩机为釆用所述直流电源输入 的交流压缩机, 且所述交流压缩机与所述直流电源输入之间设置逆变器和继电器时, 通过向所述继电器输入第一直流控制信号控制交流电源的通断,以使所述交流压缩机 工作在启动状态或停止状态,其中所述交流电源为所述直流电源输入所述逆变器后转 换并输入到所述交流压缩机的交流电源。
参见图 6B, 为图 6A中第二控制单元的实施例框图:
该第二控制单元 630包括:
温度检测子单元 631, 用于检测所述机柜空调器内的温度; 信号产生子单元 632, 用于当所述温度检测子单元 631检测到所述温度超过预设 温度时, 根据检测到的不同温度产生具有不同占空比的第二直流控制信号;
转速控制子单元 533, 用于通过所述第二直流控制信号控制所述直流外风机和直 流内风机中的至少一个直流风机工作在不同的转速。
由上述实施例可见,本发明实施例中的基站机柜空调器包括采用直流电源输入的 控制器、压缩机、直流风机, 该控制器通过输出第一直流控制信号控制压缩机进行工 作, 以及通过输出第二直流控制信号控制直流风机工作在不同的转速。 由于本发明实 施例的控制器采用直流电源输入,可以输出直流控制信号, 因此机柜内压缩机和风机 等部件可以采用直流部件, 当压缩机为直流压缩机时,通过直流控制信号可以控制压 缩机工作在不同的频率, 当风机为直流风机时,可以通过直流控制信号控制风机工作 在不同的转速。 因此, 与现有采用交流电源输入仅支持两种工作模式相比, 本发明实 施例通过直流信号控制机柜内的直流部件, 使得这些直流部件可以工作在多种模式 下, 例如支持压缩机调频和风机调速, 由此可以降低基站机柜空调的功耗。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需 的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上 或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产 品可以存储在存储介质中, 如 ROM/RAM、 磁碟、光盘等, 包括若干指令用以使得一 台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施 例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部 分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之处。尤其, 对于 系统实施例而言, 由于其基本相似于方法实施例, 所以描述的比较简单, 相关之处参 见方法实施例的部分说明即可。
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。任何在本发明 的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的保护范围之 内。

Claims

权 利 要 求
κ 一种基站机柜空调器, 其特征在于, 所述空调器包括: 控制器、 压缩机 和直流风机;
所述控制器采用直流电源输入,且所述控制器通过输出第一直流控制信号控 制所述压缩机进行工作,以及通过输出第二直流控制信号控制所述直流风机工作 在不同的转速。
2、 根据权利要求 1所述的空调器, 其特征在于, 所述压缩机为釆用交流电 源输入的交流压缩机,
所述交流压缩机与所述交流电源输入之间设置有继电器,所述控制器通过向 所述继电器输入第一直流控制信号控制交流电源的通断,以使所述交流压缩机处 于启动状态或停止状态。
3、 根据权利要求 1所述的空调器, 其特征在于, 所述压缩机为采用所述直 流电源输入的直流压缩机,
所述控制器通过向所述直流压縮机输入第一直流控制信号,控制所述直流压 缩机工作在不同的频率。
4、 根据权利要求 1所述的空调器, 其特征在于, 所述压缩机为采用所述直 流电源输入的交流压缩机,
所述交流压缩机与所述直流电源输入之间设置逆变器和继电器,所述直流电 源输入通过所述逆变器将直流电源转换为交流电源后, 输入到所述交流压缩机, 所述控制器通过向所述继电器输入第一直流控制信号控制所述交流电源的通断, 以使所述交流压缩机处于启动状态或停止状态。
5、 根据权利要求 1至 4任意一项所述的空调器, 其特征在于, 所述直流风 机包括直流外风机和直流内风机,
所述控制器检测所述机柜空调器内的温度,当检测到所述温度超过预设温度 时,根据检测到的不同温度产生具有不同占空比的第二直流控制信号, 通过所述 第二直流控制信号控制所述直流外风机和直流内风机中的至少一个直流风机工 作在不同的转速。
6、 一种基站机柜空调器的运行控制方法, 其特征在于, 应用于包括控制器、 压缩机和直流风机的基站机柜空调器, 所述方法包括:
所述控制器获取直流电源输入;
通过输出第一直流控制信号控制所述压缩机进行工作,以及通过输出第二直 流控制信号控制所述直流风机工作在不同的转速。
7、 根据权利要求 6所述的方法, 其特征在于, 所述通过输出第一直流控制 信号控制所述压缩机进行工作包括:
当所述压缩机为采用交流电源输入的交流压缩机时,在所述交流压缩机与所 述交流电源输入之间设置继电器,所述控制器通过向所述继电器输入第一直流控 制信号控制交流电源的通断, 以使所述交流压缩机处于启动状态或停止状态。
8、 根据权利要求 6所述的方法, 其特征在于, 所述通过输出第一直流控制 信号控制所述压缩机进行工作包括:
当所述压缩机为采用所述直流电源输入的直流压缩机时,所述控制器通过向 所述直流压缩机输入第一直流控制信号, 控制所述直流压缩机工作在不同的频 率。
9、 根据权利要求 6所述的方法, 其特征在于, 所述通过输出第一直流控制 信号控制所述压缩机进行工作包括:
当所述压缩机为釆用所述直流电源输入的交流压缩机时,在所述交流压缩机 与所述直流电源输入之间设置逆变器和继电器,所述控制器通过向所述继电器输 入第一直流控制信号控制交流电源的通断,以使所述交流压缩机处于启动状态或 停止状态,其中所述交流电源为所述直流电源输入所述逆变器后转换并输入到所 述交流压缩机的交流电源。
10、 根据权利要求 6所述的方法, 其特征在于, 所述直流风机包括直流外风 机和直流内风机,所述通过输出第二直流控制信号控制所述直流风机工作在不同 的转速包括:
所述控制器检测所述机柜空调器内的温度:
当检测到所述温度超过预设温度时,根据检测到的不同温度产生具有不同占 空比的第二直流控制信号; 通过所述第二直流控制信号控制所述直流外风机和直流内风机中的至少一 个直流风机工作在不同的转速。
11、 一种控制器, 其特征在于, 所述控制器应用于包括压缩机和直流风机的 基站机柜空调器, 所述控制器包括:
输入单元, 用于获取直流电源输入;
第一控制单元, 用于通过输出第一直流控制信号控制所述压缩机进行工作; 第二控制单元,用于通过输出第二直流控制信号控制所述直流风机工作在不 同的转速。
12、 根据权利要求 11所述的控制器, 其特征在于,
所述第一控制单元,具体用于当所述压缩机为釆用交流电源输入的交流压缩 机, 且所述交流压缩机与所述交流电源输入之间设置继电器时, 通过向所述继电 器输入第一直流控制信号控制交流电源的通断,以使所述交流压缩机处于启动状 态或停止状态。
13、 根据权利要求 11所述的控制器, 其特征在于,
所述第一控制单元,具体用于当所述压缩机为釆用所述直流电源输入的直流 压缩机时, 通过向所述直流压缩机输入第一直流控制信号, 控制所述直流压缩机 工作在不同的频率。
14、 根据权利要求 11所述的控制器, 其特征在于,
所述第一控制单元,具体用于当所述压缩机为采用所述直流电源输入的交流 压缩机, 且所述交流压缩机与所述直流电源输入之间设置逆变器和继电器时, 通 过向所述继电器输入第一直流控制信号控制交流电源的通断,以使所述交流压缩 机处于启动状态或停止状态,其中所述交流电源为所述直流电源输入所述逆变器 后转换并输入到所述交流压缩机的交流电源。
15、 根据权利要求 11所述的控制器, 其特征在于, 所述直流风机包括直流 外风机和直流内风机, 所述第二控制单元包括:
温度检测子单元, 用于检测所述机柜空调器内的温度;
信号产生子单元,用于当所述温度检测子单元检测到所述温度超过预设温度 时, 根据检测到的不同温度产生具有不同占空比的第二直流控制信号; 转速控制子单元,用于通过所述第二直流控制信号控制所述直流外风机和直 流内风机中的至少一个直流风机工作在不同的转速。
PCT/CN2013/071023 2012-06-14 2013-01-28 基站机柜空调器、运行控制方法及控制器 WO2013185488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210195905XA CN102721114A (zh) 2012-06-14 2012-06-14 基站机柜空调器、运行控制方法及控制器
CN201210195905.X 2012-06-14

Publications (1)

Publication Number Publication Date
WO2013185488A1 true WO2013185488A1 (zh) 2013-12-19

Family

ID=46946944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071023 WO2013185488A1 (zh) 2012-06-14 2013-01-28 基站机柜空调器、运行控制方法及控制器

Country Status (2)

Country Link
CN (1) CN102721114A (zh)
WO (1) WO2013185488A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721114A (zh) * 2012-06-14 2012-10-10 华为技术有限公司 基站机柜空调器、运行控制方法及控制器
CN102980274B (zh) * 2012-12-18 2015-06-17 华为技术有限公司 精密空调系统风机控制方法、装置及精密空调系统
CN104684361B (zh) * 2015-02-13 2017-03-29 深圳日海通讯技术股份有限公司 一种采用空调组合系统的机柜及其群控方法
CN107143964B (zh) * 2016-03-01 2021-01-12 珠海格力电器股份有限公司 用于启动空调的启动电路和空调器
CN108916098A (zh) * 2018-07-03 2018-11-30 长虹美菱股份有限公司 一种冷凝风机的转速控制系统及其控制方法
CN113581233B (zh) * 2021-07-23 2022-06-17 石家庄国祥运输设备有限公司 一种轨道车辆空调通风机的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168248A (ja) * 1991-12-19 1993-07-02 Fujitsu General Ltd 空気調和機
CN1367349A (zh) * 2001-01-25 2002-09-04 三菱电机株式会社 除湿机
CN201106901Y (zh) * 2007-09-20 2008-08-27 丹腾空气系统(苏州)有限公司 通信机柜用直流空调
CN101509694A (zh) * 2009-03-16 2009-08-19 宁波德斯科电子科技有限公司 一种直流变频空调压缩机智能控制器及其控制方法
CN201884258U (zh) * 2010-10-11 2011-06-29 盐城师范学院 空气压缩机自动控制电子开关
JP2012083063A (ja) * 2010-10-14 2012-04-26 Panasonic Corp 直流駆動エアコン
CN102721114A (zh) * 2012-06-14 2012-10-10 华为技术有限公司 基站机柜空调器、运行控制方法及控制器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168248B2 (ja) * 2009-07-31 2013-03-21 株式会社島津製作所 マルチディメンジョナルガスクロマトグラフ装置用制御システム及び該システムを用いたマルチディメンジョナルガスクロマトグラフ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168248A (ja) * 1991-12-19 1993-07-02 Fujitsu General Ltd 空気調和機
CN1367349A (zh) * 2001-01-25 2002-09-04 三菱电机株式会社 除湿机
CN201106901Y (zh) * 2007-09-20 2008-08-27 丹腾空气系统(苏州)有限公司 通信机柜用直流空调
CN101509694A (zh) * 2009-03-16 2009-08-19 宁波德斯科电子科技有限公司 一种直流变频空调压缩机智能控制器及其控制方法
CN201884258U (zh) * 2010-10-11 2011-06-29 盐城师范学院 空气压缩机自动控制电子开关
JP2012083063A (ja) * 2010-10-14 2012-04-26 Panasonic Corp 直流駆動エアコン
CN102721114A (zh) * 2012-06-14 2012-10-10 华为技术有限公司 基站机柜空调器、运行控制方法及控制器

Also Published As

Publication number Publication date
CN102721114A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2013185488A1 (zh) 基站机柜空调器、运行控制方法及控制器
JP4757680B2 (ja) 空気調和装置
CN109945395B (zh) 检测方法、空调系统及介质
CN104101044A (zh) 一种变频空调器的运行控制方法及装置
JP2012070531A (ja) インバータ装置
US11391486B2 (en) Control unit for multiple variable frequency drives
JP6599805B2 (ja) 空調制御システム
US11175059B2 (en) Air conditioning system and method of operating the same
KR100502304B1 (ko) 인버터압축기를 갖는 공기조화기 및 그 제어방법
KR20110004685A (ko) 공기조화기
WO2015058538A1 (zh) 电源电路和空调机组
KR101591884B1 (ko) 전동기 제어 장치, 방법 및 이를 포함하는 공기 조화기
US10784798B2 (en) Power converting apparatus and home appliance including the same
US10658944B2 (en) AC/DC combined power converting apparatus and home appliance including the same
JPS6277539A (ja) インバ−タエアコン
JP6939094B2 (ja) 電力変換装置の制御装置および冷凍装置
KR101957968B1 (ko) 전력 변환 장치
CN111082468A (zh) 用电设备备用电源模式的功率控制方法及用电设备
JP4882358B2 (ja) インバータ制御装置
JP2006223014A (ja) モータ駆動装置
US11588427B2 (en) Motor drive device and air conditioner
CN214757516U (zh) 一种具有保护装置的plc变频器
KR101591327B1 (ko) 공기 조화기 및 동작 방법
JP2014103703A (ja) モータ制御装置
KR101990143B1 (ko) 압축기 제어 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803452

Country of ref document: EP

Kind code of ref document: A1