WO2013183499A1 - Layout structure for electronic-control-system elements for electric vehicle - Google Patents

Layout structure for electronic-control-system elements for electric vehicle Download PDF

Info

Publication number
WO2013183499A1
WO2013183499A1 PCT/JP2013/064798 JP2013064798W WO2013183499A1 WO 2013183499 A1 WO2013183499 A1 WO 2013183499A1 JP 2013064798 W JP2013064798 W JP 2013064798W WO 2013183499 A1 WO2013183499 A1 WO 2013183499A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
vehicle
fan
cooling
battery
Prior art date
Application number
PCT/JP2013/064798
Other languages
French (fr)
Japanese (ja)
Inventor
竜介 辛島
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013183499A1 publication Critical patent/WO2013183499A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an arrangement structure of electronic control system elements of an electric vehicle including a converter, a junction box, and a harness that electrically connects them.
  • this DC / DC converter and the ECU which is the control unit
  • they are laid out independently from each other so that harnesses that electrically connect the two do not interfere with each other.
  • the harness that electrically connects the DC / DC converter and the ECU is arranged so as to avoid interference with the cooling air duct from the cooling fan for the DC / DC converter, this harness becomes a DC / DC converter, etc. May be exposed to the surface of the in-vehicle unit. For this reason, during work around the converter, such as harness routing work or DC / DC converter maintenance work, there is an increase in the chance that the operator will come into contact with the harness, which is undesirable in terms of harness protection.
  • the present invention has been made paying attention to the above problems, and is an arrangement structure of electronic control system elements of an electric vehicle that can improve the protection performance of a harness that is electrically connected to a converter and a junction box mounted on the vehicle.
  • the purpose is to provide.
  • an electronic control system element arrangement structure for an electric vehicle includes a converter, a junction box, a converter cooling fan, a fan duct, and a harness.
  • the converter converts a voltage of electric power input to an electric device mounted on the vehicle.
  • the junction box supplies / cuts / distributes current by a relay circuit.
  • the converter cooling fan is disposed at a side position of the converter and blows cooling air to the converter.
  • the fan duct has one end connected to the discharge port of the converter cooling fan and the other end connected to the cooling air introduction port of the converter, and has a bent portion bent toward the upper side of the vehicle at an intermediate portion.
  • the harness is arranged so as to electrically connect the converter and the junction box and to pass under the bent portion of the fan duct.
  • the fan in which the harness for electrically connecting the converter and the junction box is connected to the discharge port of the converter cooling fan and the cooling air introduction port of the converter. It passes under the bent part formed in the middle part of the duct. That is, a fan duct is disposed above the harness. Thereby, the upper part of a harness is covered with a fan duct, and it can prevent that a harness is exposed to the vehicle-mounted unit surface. That is, it is possible to prevent the worker from coming into contact with the harness by the fan duct when working around the converter. As a result, it is possible to improve the protection performance of the harness that is electrically connected to the converter and the junction box mounted on the vehicle.
  • FIG. 1 is an overall system diagram illustrating an FF plug-in hybrid vehicle to which an arrangement structure of electronic control system elements according to a first embodiment is applied.
  • 1 is a perspective view showing an arrangement structure of battery system elements in a rear room in an FF plug-in hybrid vehicle of Example 1.
  • FIG. It is a rear view which shows the arrangement structure of the battery system element in a rear room in FF plug-in hybrid vehicle of Example 1.
  • FIG. 3 is a plan view showing an arrangement structure of battery system elements in a rear room in the FF plug-in hybrid vehicle of the first embodiment.
  • 1 is a side view showing an arrangement structure of battery system elements in a rear room in an FF plug-in hybrid vehicle of Example 1.
  • FIG. FIG. 6 is a cross-sectional view taken along the line AA in FIG.
  • FIG. It is a perspective view which shows the harness arrangement
  • FIG. It is a top view which shows the harness arrangement
  • FIG. It is explanatory drawing which shows typically the flow of the converter cooling air of Example 1.
  • FIG. It is explanatory drawing which shows typically a fan duct when the discharge port of a cooling fan and the cooling air introduction port of the 1st DC / DC converter are made to oppose.
  • Example 1 First, the configuration will be described.
  • the arrangement structure of the electronic control system elements of the FF plug-in hybrid vehicle (an example of an electric vehicle) according to the first embodiment is defined as “overall system configuration”, “battery system element layout configuration”, “battery system element cooling configuration”. , “Battery element harness arrangement configuration” will be described separately.
  • FIG. 1 is an overall system diagram showing an FF plug-in hybrid vehicle to which the arrangement structure of electronic control system elements according to the first embodiment is applied.
  • the overall system configuration of the plug-in hybrid vehicle will be described below with reference to FIG.
  • the FF plug-in hybrid vehicle includes a front room 1 on the front side of the vehicle on which the power train system elements are mounted, a center room 2 on which a driver and an occupant are seated, and a vehicle rear side on which the battery system elements are mounted.
  • the rear room 3 is divided into three spaces.
  • the “power train system element” refers to each component element that includes the electronic control system and constitutes the power train system.
  • the “battery system element” refers to each component element that includes the electronic control system and constitutes the battery system.
  • the rear room 3 may be a luggage room that can accommodate luggage.
  • the front room 1 includes a horizontal engine 4, a first clutch 5, a motor / generator 6, a second clutch 7, and a belt type continuously variable transmission 8. It is arranged as a system element.
  • the horizontal engine 4 includes an air cleaner 9 and a starter motor 10.
  • the output shaft of the belt type continuously variable transmission 8 is drivingly connected to the left and right front wheels via a final reduction gear, a differential gear, and left and right drive shafts (not shown).
  • the horizontal engine 4 is an engine disposed in the front room 1 with the crankshaft direction as the vehicle width direction.
  • an engine controller 11 that performs various controls related to the horizontal engine 4 is arranged as a component of the engine control system.
  • the first clutch 5 is a hydraulic single-plate friction clutch or a multi-plate friction clutch interposed between the horizontal engine 4 and the motor / generator 6, and is engaged / slip-engaged / released by the first clutch oil pressure. Is controlled.
  • the motor / generator 6 is a three-phase AC permanent magnet type synchronous motor connected to the transverse engine 4 through the first clutch 5.
  • the motor / generator 6 is connected to an inverter 12 through a three-phase AC harness 26 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration.
  • a motor controller 13 that outputs a control command to the inverter 12 is disposed as a component of the motor control system.
  • the second clutch 7 is a hydraulic single-plate friction clutch or a multi-plate friction clutch interposed between the motor / generator 6 and the left and right front wheels as drive wheels.
  • the second clutch 7 is engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled.
  • the belt type continuously variable transmission 8 is speed-controlled to a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber.
  • the belt-type continuously variable transmission 8 has a control valve unit that regulates the line pressure from the pump discharge pressure and generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure using the line pressure as an original pressure.
  • a transmission controller 14 that outputs a hydraulic control command to each hydraulic actuator of the control valve unit includes a hydraulic pressure It is arranged as a component of the control system.
  • EV mode As typical driving modes with different driving modes by the power train system, there are “EV mode”, “HEV mode” and “WSC mode”.
  • the “EV mode” is a mode in which the first clutch 5 is disengaged and the second clutch 7 is engaged to drive the motor.
  • the “HEV mode” is a mode in which both the clutches 5 and 7 are engaged to travel.
  • the “WSC mode” is a mode in which the first clutch 5 is engaged or released and the second clutch 7 is slip-engaged to travel.
  • a brake controller 21 that performs cooperative control of the regenerative braking force and the hydraulic braking force is disposed on the front side of the vehicle and at a position where the brake hydraulic pressure actuator is provided.
  • a fuel tank 22 that stores fuel for the horizontally mounted engine 4 is disposed at a position on the rear side of the vehicle and below the floor panel that defines the center room 2. Are connected by a fuel pipe 23.
  • the rear room 3 includes a traveling battery 31, a first auxiliary battery 32, a second auxiliary battery 33, a junction box 34, and a first DC / DC converter (converter). 35 and a second DC / DC converter (converter) 36 are arranged as battery system elements.
  • a charger 37 and a charging port 38 are additionally arranged as battery system elements in the rear room 3 due to being a plug-in hybrid vehicle.
  • the traveling battery 31 is a secondary battery as a traveling power source, and for example, a laminate type lithium ion battery is used.
  • the traveling battery 31 has a structure in which a large number of cells connected to each other are stacked to form a battery module, and a plurality of battery modules are arranged in the pack case via gap passages.
  • the traveling battery 31 is electrically connected to the junction box 34 via the power line harness X. Therefore, when the motor / generator 6 performs power running control, the traveling battery 31 is discharged via the power line harness X ⁇ the junction box 34 ⁇ the power line harness 39 ⁇ the inverter 12. On the other hand, when the motor / generator 6 performs regenerative control, charging is performed via the inverter 12 ⁇ the power line harness 39 ⁇ the junction box 34 ⁇ the power line harness X.
  • the first auxiliary battery 32 is a low-voltage battery mounted as a dedicated power source for the starter motor 10 among in-vehicle auxiliary machines.
  • the second auxiliary battery 33 is a low voltage battery mounted as a power source for other auxiliary machines 40 excluding the starter motor 10.
  • the reason why the two auxiliary batteries 32 and 33 are installed is to ensure engine start when the starter motor 10 requests engine start. For example, when only one auxiliary battery is mounted, a voltage drop may occur due to simultaneous use of the starter motor 10 and other auxiliary machines 40.
  • the junction box 34 is a distribution board in which relay circuits that perform supply / cut-off / distribution of strong power to the traveling battery 31 are integrated.
  • the first DC / DC converter 35 converts the voltage of the electric power input to the first auxiliary battery 32 that is an electric device.
  • the second DC / DC converter 36 converts the voltage of electric power input to the second auxiliary battery 33, which is an electric device.
  • the charger 37 controls the charging of the traveling battery 31.
  • the first DC / DC converter 35 is electrically connected to the junction box 34 via the power line harness Y and is also electrically connected to the first auxiliary battery 32 via the power line harness Y ′. Yes.
  • the second DC / DC converter 36 is electrically connected to the junction box 34 via the power line harness Z and is also electrically connected to the second auxiliary battery 33 via the power line harness Z ′.
  • the charger 37 is electrically connected to the junction box 34 via the power line harness A, and is also electrically connected to the charging port 38 via the power line harness B.
  • the charging port 38 ⁇ the power line harness B ⁇ the charger 37 ⁇ the power line harness A ⁇ the junction box 34 ⁇ the power line harness X
  • the travel battery 31 is externally charged via the route.
  • the traveling battery 31 ⁇ the power line harness X ⁇ the junction box 34 ⁇ the power line harness Y ⁇ the first DC / DC converter 35 ⁇ the power line harness Y ′ is used for traveling.
  • the charge amount of the first auxiliary battery 32 is secured by a part of the charge amount of the battery 31.
  • the vehicle travels via the traveling battery 31 ⁇ the power line harness X ⁇ the junction box 34 ⁇ the power line harness Z ⁇ the second DC / DC converter 36 ⁇ the power line harness Z ′.
  • the charge amount of the second auxiliary battery 33 is ensured by a part of the charge amount of the battery 31 for use.
  • the traveling battery 31, the first DC / DC converter 35, the second DC / DC converter 36, and the charger 37 are all in a pack structure that is housed in a housing case that covers the whole, and the air cooling fan units 51, 55 , 56, 57 are provided in the vicinity of each.
  • the air cooling fan units 51, 55 , 56, 57 are provided in the vicinity of each.
  • capacity management and temperature management of the traveling battery 31 are performed and operation control of the air cooling fan units 51, 55, 56, 57 is performed.
  • a battery controller 42 for performing the above is disposed as a component of the battery control system.
  • an integrated controller 43 that manages the energy consumption of the entire vehicle and has the function of running the vehicle with the highest efficiency is disposed as a component of the integrated control system. Information is exchanged between the integrated controller 43 and the controllers 11, 13, 14, 21, 42 via the CAN communication line 44.
  • [Battery element layout] 2 to 5 are a perspective view, a rear view, a plan view, and a side view showing an arrangement structure of battery system elements in the rear room.
  • the arrangement of the battery system elements will be described with reference to FIGS.
  • the rear room 3 (battery room) includes a traveling battery 31, a first auxiliary battery 32, a second auxiliary battery 33, a junction box 34, a first DC / DC converter 35, and a second DC / DC.
  • a DC converter 36, a charger 37, a battery controller 42, and an integrated controller 43 are arranged.
  • the traveling battery 31 is disposed in the vehicle front side space of the rear room 3 so as to extend from one end to the other end in the vehicle width direction.
  • This traveling battery 31 includes a lower battery 31a, a middle battery 31b stacked in the same shape as the lower battery 31a, and an upper battery 31c stacked in a position closer to the left side in a smaller shape than the middle battery 31b. It has a three-layer structure. This is a battery of an FF plug-in hybrid vehicle, and a high battery capacity is required in order to ensure a sufficient traveling distance in the electric vehicle mode and meet fuel efficiency requirements.
  • the first auxiliary battery 32 and the second auxiliary battery 33 are located on the vehicle rear side with respect to the traveling battery 31 in the rear room 3, and the traveling battery 31 Is arranged at a position overlapping in the longitudinal direction of the vehicle.
  • a room floor surface 30 which is a floor surface of the rear room 3 is set through a first floor surface 30a on the vehicle front side and a step wall surface 30b from the first floor surface 30a.
  • a second floor surface 30c having a ground clearance lower than that of the surface 30a.
  • working is mounted in the 1st floor surface 30a, and the batteries 32 and 33 for both auxiliary machines are mounted in the 2nd floor surface 30c.
  • the two auxiliary battery batteries 32 and 33 are arranged side by side in the vehicle width direction at the same vehicle longitudinal direction position.
  • the room floor surface 30 has a third floor surface 30e having a ground clearance higher than the first floor surface 30a via a stepped wall surface 30d on the vehicle front side from the first floor surface 30a.
  • the step wall surface 30d and the third floor surface 30e are for securing an installation space for the fuel tank 22.
  • the junction box 34 has a lateral position (side position) of the upper battery 31c that is smaller in the vehicle width direction and the front-rear direction than the lower battery 31a and the middle battery 31b.
  • the battery is disposed at the upper surface position of the middle battery 31b.
  • the first DC / DC converter 35, the second DC / DC converter 36, and the charger 37 are disposed in a stacked state in a vehicle upper space of the upper battery 31c.
  • the charger 37 is disposed on the upper surface 45a of the first frame 45 disposed so as to surround the traveling battery 31 including the upper battery 31c.
  • the junction box 34 is disposed at a position below the vehicle relative to the charger 37.
  • both sides of the charger 37 in the vehicle width direction are supported by a pair of support legs 45 b and 45 b that stand on the upper surface 45 a of the first frame 45. For this reason, a gap is provided between the bottom surface of the charger 37 and the upper surface 45 a of the first frame 45.
  • the DC / DC converters 35 and 36 are fixed to the first frame 45 and arranged side by side in the vehicle front-rear direction on an upper surface 46 a of a second frame 46 that is disposed around the charger 37. As a result, the charger 37 is disposed at a position below the vehicle relative to both the DC / DC converters 35 and 36.
  • the first frame 45 is provided on a base frame 47 assembled in a square shape. And the vehicle width direction frame part 47a of the vehicle rear position of the base frame 47 is arrange
  • a charging port 38 is fixed to a part of the vertical frame portions 45c of the plurality of vehicle rear positions of the first frame 45 provided upright on the base frame 47 (see FIG. 3).
  • the battery controller 42 and the integrated controller 43 include a vehicle vertical frame portion 45 d at a plurality of vehicle front positions in a first frame 45 disposed so as to surround the traveling battery 31. It is housed and arranged in two controller boxes fixed to a part of the box.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG.
  • the rear room 3 (battery room) has a battery air cooling fan unit 51, a first converter air cooling fan unit 55, and a second converter cooling structure as shown in FIGS.
  • An air cooling fan unit 56, a charger air cooling fan unit 57, a battery exhaust duct 58, a first converter exhaust duct 59, a second converter exhaust duct 60, and a charger exhaust duct 61 are provided.
  • the battery air-cooling fan unit 51 is a unit that cools the running battery 31 disposed in the rear room 3 with cooling air, and includes a cooling fan 52, a suction duct 53, and a fan duct 54.
  • the cooling fan 52 is an upper end space on one end that is closer to one side in the vehicle width direction of the upper surface space of the traveling battery 31, and is positioned above the junction box 34 in the vehicle. Be placed.
  • the cooling fan 52 has a centrifugal fan structure, and includes a scroll casing 52c, a rotary blade 52d disposed in the scroll casing 52c with the vehicle vertical direction as a rotation axis direction, and a motor 52e that rotationally drives the rotary blade 52d.
  • the scroll casing 52c opens the suction port 52a toward the upper side of the vehicle, and opens the discharge port 52b toward the right side in the vehicle width direction.
  • One end of the suction duct 53 is connected to the suction port 52a of the scroll casing 52c, and a duct open end 53a provided at the other end opens toward the vehicle lower side (see FIG. 3).
  • the cooling fan 52 sucks air from the duct opening end 53a through the suction duct 53 and into the scroll casing 52c through the suction port 52a.
  • one end of the fan duct 54 is connected to the discharge port 52b of the scroll casing 52c, and the other end is connected to the cooling air introduction port 31d of the battery 31 for traveling.
  • the cooling air inlet 31 d is set on the upper surface of one end (right end) in the vehicle width direction of the traveling battery 31 and on the front side of the vehicle.
  • the first converter air cooling fan unit 55 is a unit that air-cools the first DC / DC converter 35 disposed in the rear room 3 with cooling air, and includes a cooling fan (converter cooling fan) 71 and a fan duct. 73.
  • the cooling fan 71 is disposed at a lateral position (lateral position) of the first DC / DC converter 35 and at one end (right end) in the vehicle width direction of the upper surface 46 a of the second frame 46. Is done.
  • the cooling fan 71 has an axial fan structure, and has a casing 71c whose both ends are open, a rotor blade (not shown) disposed in the casing 71c with the vehicle width direction as a rotation axis direction, and the rotor blade is driven to rotate.
  • a motor (not shown).
  • the amount of heat generated by the first DC / DC converter 35 is much smaller than that of the traveling battery 31.
  • the air blowing capacity (air flow rate) of the cooling fan 71 is set sufficiently lower than the air blowing capacity (air flow rate) of the cooling fan 52.
  • the casing 71 c has the suction port 71 a facing the right side in the vehicle width direction facing the space above the junction box 34, and the discharge port 71 b facing the left side in the vehicle width direction facing the first DC / DC converter 35. During operation, the cooling fan 71 sucks air directly from the suction port 71a into the casing 71c.
  • the fan duct 73 has one end connected to the discharge port 71 b of the casing 71 c and the other end connected to the cooling air introduction port 35 a of the first DC / DC converter 35.
  • the cooling air introduction port 35a is an upper surface 35b of the first DC / DC converter 35 facing the upper side of the vehicle, and is set at one end (right end) in the vehicle width direction.
  • the fan duct 73 is provided with a bent portion 73a that is smoothly bent (curved) toward the upper side of the vehicle at an intermediate portion (see FIGS. 2 and 3).
  • one end of the fan duct 73 on the discharge port 71b side is directed to the right side in the vehicle width direction, and the other end of the fan duct 73 on the cooling air introduction port 35a side is directed downward of the vehicle.
  • a gap S is set between the bent portion 73 a of the fan duct 73 and the upper surface 46 a of the second frame 46.
  • the second converter air-cooling fan unit 56 is a unit that air-cools the second DC / DC converter 36 disposed in the rear room 3 with cooling air, as shown in FIG. 2, and includes a cooling fan (converter cooling fan) 72 and a fan duct. 74.
  • the cooling fan 72 is disposed at a lateral position (side position) of the second DC / DC converter 36 and at one end (right end) in the vehicle width direction of the upper surface 46 a of the second frame 46. Is done.
  • the cooling fan 72 has an axial fan structure, and has a casing 72c whose both ends are open, a rotary blade (not shown) disposed in the casing 72c with the vehicle width direction as the rotational axis direction, and the rotary blade is driven to rotate.
  • a motor (not shown).
  • the amount of heat generated by the second DC / DC converter 36 is approximately the same as that of the first DC / DC converter 35 and is much smaller than that of the traveling battery 31.
  • the air blowing capacity (air flow rate) of the cooling fan 72 is approximately the same as the air blowing capacity (air flow rate) of the cooling fan 71 and is set sufficiently lower than the air blowing capacity (air flow rate) of the cooling fan 52.
  • the casing 72 c has the suction port 72 a facing the right side in the vehicle width direction facing the space above the junction box 34, and the discharge port 72 b facing the left side in the vehicle width direction facing the second DC / DC converter 36. The cooling fan 72 sucks air directly from the suction port 72a into the casing 72c during operation.
  • the fan duct 74 has one end connected to the discharge port 72 b of the casing 72 c and the other end connected to the cooling air introduction port 36 a of the second DC / DC converter 36.
  • the cooling air introduction port 36a is an upper surface 36b of the second DC / DC converter 36 that faces the upper side of the vehicle, and is set at one end (right end) in the vehicle width direction.
  • the fan duct 74 is provided with a bent portion 74a that is smoothly bent (curved) toward the upper side of the vehicle at the intermediate portion (see FIG. 2).
  • one end of the fan duct 74 on the discharge port 72b side is directed to the right side in the vehicle width direction, and the other end of the fan duct 74 on the cooling air introduction port 36a side is directed downward of the vehicle.
  • a gap S is set between the bent portion 774 a of the fan duct 74 and the upper surface 46 a of the second frame 46.
  • the charger air cooling fan unit 57 is a unit that cools the charger 37 disposed in the rear room 3 with cooling air, and includes a cooling fan 75 and a fan duct 76. Composed.
  • the cooling fan 75 is disposed at one end (right end) in the vehicle width direction of the upper surface 45 a of the first frame 45 and at a lateral position of the charger 37.
  • the cooling fan 75 has a centrifugal fan structure, and includes a scroll casing 75c, rotating blades (not shown) disposed in the scroll casing 75c with the vehicle vertical direction as the rotation axis direction, and a motor (see FIG. (Not shown).
  • the calorific value of the charger 37 is larger than the calorific values of the DC / DC converters 35 and 36, but is smaller than that of the traveling battery 31.
  • the air blowing capacity (air flow rate) of the cooling fan 75 is set higher than the air blowing capacity (air flow rate) of the cooling fans 71 and 72 and lower than the air blowing capacity (air flow rate) of the cooling fan 52.
  • the scroll casing 75c opens the suction port 75a toward the vehicle upper side and opens the discharge port 75b toward the vehicle front side. During operation, the cooling fan 75 directly sucks air from the suction port 75a into the scroll casing 75c.
  • the fan duct 76 has one end connected to the discharge port 75b of the scroll casing 75c and the other end connected to the cooling air introduction port 37a of the charger 37.
  • the cooling air introduction port 37 a is set on the side surface (right end surface) of the charger 37 in the vehicle width direction.
  • the fan duct 76 has a middle portion bent toward the left side of the vehicle.
  • the battery exhaust duct 58 has one end connected to the cooling air discharge port 31e of the traveling battery 31 and the other end formed on a vehicle body panel (not shown) on the side of the vehicle. It is connected to the opening 3a (see FIG. 4).
  • the battery exhaust duct 58 has a vertically long channel cross-sectional area extending in the vehicle vertical direction (see FIG. 6), an exhaust part 58a extending rearward from the cooling air discharge port 31e, and an exhaust part 58a. And a final exhaust part 58b extending from the rear end toward the left side of the vehicle.
  • the exhaust portion 58a is formed with a connection opening 58d connected to the charger exhaust duct 61 at a portion facing the final exhaust portion 58b at the upper position on the right side surface 58c in the vehicle width direction (see FIGS. 3 and 5). ).
  • the flow passage cross-sectional area of the exhaust part 58a is set to be approximately the same as the opening area of the cooling air discharge port 31e set in accordance with the blowing capacity (blowing amount) of the cooling fan 52.
  • the channel cross-sectional area of the final exhaust part 58b is set larger than the sum of the channel cross-sectional area of the exhaust part 58a and the opening area of the connection opening 58d.
  • the opening area of the drafter opening 3a is set to be approximately the same as the flow path cross-sectional area of the final exhaust part 58b. That is, the opening area of the drafter opening 3a is set larger than the opening area of the cooling air discharge port 31e and the opening area of the connection opening 58d. Further, as shown in FIGS. 2 and 3, the cooling air discharge port 31e is set at a position on the vehicle rear side, which is the other end portion (left end portion) in the vehicle width direction of the traveling battery 31. During the operation of the cooling fan 52, the cooling air heated via the internal passage of the traveling battery 31 is discharged from the cooling air discharge port 31e that opens toward the rear of the vehicle, and the draft opening is opened via the battery exhaust duct 58. It is discharged to 3a.
  • the first converter exhaust duct 59 has one end connected to the cooling air discharge port 35c of the first DC / DC converter 35 and the other end formed in the middle position of the charger exhaust duct 61, which will be described later. Connected to The first converter exhaust duct 59 extends from the cooling air discharge port 35c toward the left side of the vehicle and is then bent downward.
  • the cross-sectional area of the flow path of the first converter exhaust duct 59 is set to be approximately the same as the opening area of the cooling air discharge port 35c set according to the air blowing capacity (air flow rate) of the cooling fan 71, and is substantially constant over the entire length. is there.
  • the opening area of the first connection opening 61e is set to a size according to the blowing capacity (the blowing volume) of the cooling fan 71.
  • the cooling air discharge port 35c is a rear side surface 35d of the first DC / DC converter 35 that faces the rear of the vehicle, and is set at the other end (left end) position in the vehicle width direction. Is done.
  • the cooling air warmed through the inside of the first DC / DC converter 35 is discharged from the cooling air discharge port 35c that opens toward the rear of the vehicle, and passes through the first converter exhaust duct 59. Then, the vehicle is guided downward and discharged to the charger exhaust duct 61.
  • the second converter exhaust duct 60 has one end connected to the cooling air discharge port 36c of the second DC / DC converter 36 and the other end formed in the middle position of the charger exhaust duct 61. Connected to The second converter exhaust duct 60 extends from the cooling air discharge port 36c toward the left side of the vehicle and is then bent downward.
  • the cross-sectional area of the flow path of the second converter exhaust duct 60 is set to be approximately the same as the opening area of the cooling air discharge port 36c set according to the air blowing capacity (air flow rate) of the cooling fan 72, and is substantially constant over the entire length. is there.
  • the opening area of the second connection opening 61f is set to a size according to the blowing capacity (the blowing volume) of the cooling fan 72.
  • the cooling air discharge port 36 c is a rear side surface 36 d of the second DC / DC converter 36 that faces the rear of the vehicle, and is set at the other end (left end) position in the vehicle width direction.
  • the cooling air warmed through the inside of the second DC / DC converter 36 is discharged from the cooling air discharge port 36c that opens toward the rear of the vehicle, and passes through the second converter exhaust duct 60. Then, the vehicle is led downward and discharged to the charger exhaust duct 61.
  • the charger exhaust duct 61 includes an exhaust part 61a extending from the cooling air outlet 37b toward the left side of the vehicle, a collecting part 61b extending from the rear end of the exhaust part 61a toward the rear of the vehicle, And an extended portion 61c extending from the portion 61b toward the vehicle lower side.
  • a first connection opening 61e connected to the first converter exhaust duct 59 and a second connection opening 61f connected to the second converter exhaust duct 60 are formed on an upper surface 61d facing the vehicle upper side.
  • the first and second connection openings 61e and 61f are arranged side by side in the extending direction of the collective portion 61b.
  • the cross-sectional area of the flow path of the exhaust part 61a is set to be approximately the same as the opening area of the cooling air discharge port 37b set according to the air blowing capacity (air flow rate) of the cooling fan 75.
  • the flow passage cross-sectional area of the collecting portion 61b and the extension portion 61c is set larger than the sum of the flow passage cross-sectional area of the exhaust portion 61a and the opening areas of the first and second connection openings 61e and 61f.
  • the opening area of the connection opening 58d formed in the battery exhaust duct 58 is set larger than the sum of the flow path cross-sectional area of the exhaust part 61a and the opening areas of the first and second connection openings 61e and 61f.
  • the opening area of the connection opening 58d is set larger than either the opening area of the first connection opening 61e or the opening area of the second connection opening 61f.
  • the cooling air discharge port 37 b is set at the other end portion (left end portion) of the charger 37 in the vehicle width direction.
  • the cooling air warmed through the inside of the charger 37 is discharged from the cooling air discharge port 37b that opens toward the left side of the vehicle and travels backward through the charger exhaust duct 61. It is guided and discharged to the battery exhaust duct 58 together with the cooling air from the converter exhaust ducts 59 and 60.
  • the four exhaust ducts 58, 59, 60, 61 have a structure sharing a discharge path, all the final discharge ports are drafter openings 3a, and are cooled through a gap space between the inner panel and the outer panel constituting the vehicle body. The later warm air is discharged to the outside air.
  • the cooling fan 52, 71, 72, 75 has the highest blowing capacity (air flow rate) for the cooling fan 52 for cooling the battery 31 for traveling, and then the cooling fan 75 for cooling the charger 37. high.
  • the lowest blowing capacity is the cooling fan 71 for cooling the first DC / DC converter 35 and the cooling fan 72 for cooling the second DC / DC converter 36.
  • the opening area of each cooling air discharge port 31e, 35c, 36c, 37b is set according to the ventilation capacity of each cooling fan 52, 71, 72, 75.
  • the opening area of the cooling air discharge port 31e through which the cooling air that has cooled the traveling battery 31 is discharged is set to be the largest, and the charger 37 is cooled.
  • the opening area of the cooling air outlet 75 through which the cooled air is discharged is set to the next largest.
  • the opening area of the cooling air discharge port 35c from which the cooling air which cooled the 1st DC / DC converter 35 is discharged, and the cooling air discharge port 36c from which the cooling air which cooled the 2nd DC / DC converter 36 is discharged is the smallest. Is set.
  • FIG. 7 is a perspective view illustrating a harness arrangement state in the battery system element arrangement structure according to the first embodiment.
  • FIG. 8 is a plan view illustrating a harness arrangement state in the battery system element arrangement structure according to the first embodiment.
  • the power line harness X is arranged between the vehicle width direction left side surface 31d of the upper battery 31c of the traveling battery 31 and the vehicle width direction right side surface 34a of the junction box 34.
  • the left side surface 31d in the vehicle width direction of the upper battery 31c and the right side surface 34a in the vehicle width direction of the junction box 34 face each other in a close proximity, and the burner X arranged between them is hardly exposed. .
  • the power line harness Y is arranged between a rear side surface 34 b facing the vehicle rear side of the junction box 34 and a front side surface 35 e facing the vehicle front side of the first DC / DC converter 35.
  • the power line harness Y is routed toward the left side of the vehicle after one end is connected to the rear side surface 34b of the junction box 34, and then along one of the vertical frame portions 45c of the first frame 45. Arranged toward the top of the vehicle. Further, after being routed toward the left side of the vehicle along the upper surface 46a of the second frame 46 installed on the first frame 45, it is directed forward of the vehicle and passes below the bent portion 73a of the fan duct 73.
  • N ⁇ b> 1 is a connector provided in the middle of the power line harness Y, and is fixed to the upper surface 46 a of the second frame 46.
  • the connector N1 is arranged so that at least a part thereof overlaps with the fan duct 73 in the vehicle vertical direction.
  • the power line harness Z is arranged between a rear side surface 34 b facing the vehicle rear side of the junction box 34 and a front side surface 36 e facing the vehicle front side of the second DC / DC converter 36.
  • the power line harness Z is routed toward the left side of the vehicle after one end is connected to the rear side surface 34b of the junction box 34, and then along one of the vertical frame portions 45c of the first frame 45. Arranged toward the top of the vehicle. Further, after being routed toward the left side of the vehicle along the upper surface 46a of the second frame 46 installed on the first frame 45, it is directed forward of the vehicle and passes below the bent portion 73a of the fan duct 73.
  • the other end of the second DC / DC converter 36 is connected to the front side surface 36e of the second DC / DC converter 36. That is, the intermediate position of the power line harness Z is the gap S between the upper surface 46a of the second frame 46 and the bent portion 73a of the fan duct 73 and the gap S between the bent portion 74a of the fan duct 74 (see FIG. 2). Is arranged to penetrate each.
  • N ⁇ b> 2 is a connector provided in the middle of the power line harness Z, and is fixed to the upper surface 46 a of the second frame 46.
  • the connector N2 is arranged so that at least a part thereof overlaps with the fan duct 74 in the vehicle vertical direction.
  • the power line harness A is arranged between a rear side surface 34b facing the vehicle rear side of the junction box 34 and a rear side surface 37d facing the vehicle rear side of the charger 37.
  • the power line harness A is routed toward the left side of the vehicle after one end is connected to the rear side surface 34b of the junction box 34, and then along one of the vertical frame portions 45c of the first frame 45.
  • the first frame 45 is routed along the upper surface 45a toward the left side of the vehicle, and directed to the front of the vehicle, with the other end connected to the rear side surface 37d of the charger 37.
  • the power line harness B is arranged between the front side (not shown) of the charging port 38 facing the front of the vehicle and the rear side 37d of the charger 37 facing the rear of the vehicle.
  • the power line harness B moves toward the left side of the vehicle along the connecting frame portion 45 e that connects the plurality of vertical frame portions 45 c of the first frame 45.
  • the vehicle is directed toward the upper side of the vehicle and routed toward the upper side of the vehicle along one of the vertical frame portions 45c of the first frame 45.
  • the first frame 45 is routed along the upper surface 45a toward the left side of the vehicle, and directed to the front of the vehicle, with the other end connected to the rear side surface 37d of the charger 37.
  • the power line harnesses Y, Z, and A are pulled out from the junction box 34 and then collectively covered with one insulating cover. Then, the power line harness A branches on the upper surface 45a of the first frame 45. In addition, the power line harness Y and the power line harness Z are collectively covered with one insulating cover even after the power line harness A is branched, on the upper surface 46a of the second frame 46, below the bent portion 73a of the fan duct 73. In FIG.
  • the second frame 46 is disposed in a stacked state in the vehicle upper space of the traveling battery 31, and the first DC / DC converter 35 and the second DC / DC disposed in the uppermost position among the battery system elements.
  • the converter 36 is supported. That is, the upper surface 46a of the second frame 46 is a surface on which the DC / DC converters 35 and 36 are disposed, and the space above the vehicle on the upper surface 46a of the second frame 46 is open.
  • the power line harness Y that electrically connects the junction box 34 and the first DC / DC converter 35 is below the bent portion 73 a of the fan duct 73 on the upper surface 46 a of the second frame 46. After passing through, it is connected to the front side surface 35e of the first DC / DC converter 35. That is, the middle position of the power line harness Y passes through the gap S between the upper surface 46 a of the second frame 46 and the bent portion 73 a of the fan duct 73.
  • the fan duct 73 is disposed above the power line harness Y.
  • the fan duct 73 covers the top of the power line harness Y, and the power line harness Y is exposed to the vehicle upper space of the second frame 46. Is prevented.
  • the manageability (routing performance) of the power line harness Y can also be improved.
  • the connector N1 provided in the middle position of the power line harness Y and fixed to the upper surface 46a of the second frame 46 is at a position at least partially overlapping with the fan duct 73 in the vehicle vertical direction. Has been placed. Therefore, this connector N1 is also prevented from being exposed to the vehicle upper space of the second frame 46 by the fan duct 73. This eliminates the need for a connector cover or the like, and can provide effects such as a reduction in the number of parts, a reduction in the connector cover installation process, and a reduction in the height dimension of the battery element.
  • the power line harness Z that electrically connects the junction box 34 and the second DC / DC converter 36 passes below the bent portion 73a of the fan duct 73 on the upper surface 46a of the second frame 46, and It passes below the bent portion 74 a and is connected to the front side surface 36 e of the second DC / DC converter 36. That is, the intermediate position of the power line harness Z is the gap S between the upper surface 46 a of the second frame 46 and the bent portion 73 a of the fan duct 73 and the gap S between the upper surface 46 a and the bent portion 74 a of the fan duct 74. (See FIG. 2).
  • the fan duct 73 and the fan duct 74 are disposed above the power line harness Z, and the fan ducts 73 and 74 cover the upper side of the power line harness Z. For this reason, it is prevented that the power line harness Z is exposed to the vehicle upper space of the second frame 46. As a result, the operator can prevent the fan ducts 73 and 74 from contacting the power line harness Z when working around the converter, and the protection performance of the power line harness Z can be improved.
  • the power line harness Z does not need to be disposed so as to go around the set position of the fan duct 74, the manageability (routing performance) of the power line harness Z can be improved.
  • the connector N2 that is provided in the middle of the power line harness Z and is fixed to the upper surface 46a of the second frame 46 is at a position at least partially overlapping with the fan duct 74 in the vehicle vertical direction. Has been placed. Therefore, the connector N2 is also prevented from being exposed to the space above the vehicle in the second frame 46 by the fan duct 74. This eliminates the need for a connector cover or the like, and can provide effects such as a reduction in the number of parts, a reduction in the connector cover installation process, and a reduction in the height dimension of the battery element.
  • the first DC / DC converter 35 is cooled by cooling air from the first converter air-cooling fan unit 55.
  • the fan duct 73 of the first converter air-cooling fan unit 55 has one end directed to the right in the vehicle width direction, the other end directed downward in the vehicle, and a bent portion 73a bent upward in the vehicle at an intermediate portion. Yes.
  • the cooling fan 71 When the cooling fan 71 is operated, the cooling fan 71 sucks air from the suction port 71a facing the right side in the vehicle width direction and discharges air as cooling air from the discharge port 71b toward the left side in the vehicle width direction.
  • the cooling air discharged from the discharge port 71b of the cooling fan 71 is once guided upward by the fan duct 73 (arrow ⁇ ). Thereafter, the flow direction of the cooling air is smoothly changed toward the vehicle lower side along the bent portion 73a (arrow ⁇ ). Finally, it is introduced into the first DC / DC converter 35 from the cooling air introduction port 35a toward the vehicle downward direction (arrow ⁇ ).
  • the cooling air from the cooling fan 71 flows smoothly in the fan duct 73, and smooth cooling air can be guided. As a result, the load of the cooling fan 71 can be suppressed and the cooling efficiency can be improved.
  • the cooling fan 71 is disposed in the lateral position (side) of the first DC / DC converter 35, and the first DC / DC converter 35 and the cooling fan 71 overlap in the vehicle vertical direction. There is no. For this reason, the weight which acts on the 2nd flame
  • the cooling air inlet 35a of the first DC / DC converter 35 is formed on the upper surface 35b of the first DC / DC converter 35 facing the vehicle upper side. Therefore, the opening area of the cooling air inlet 35a can be sufficiently secured while suppressing an increase in the vehicle vertical dimension H of the first DC / DC converter 35. That is, as schematically shown in FIG. 10A, when the cooling air inlet 35a is provided on the right side surface of the first DC / DC converter 35 (the surface facing the cooling fan 71 disposed in the lateral position (side)). Then, it is necessary to increase the vehicle vertical dimension H of the first DC / DC converter 35 in order to sufficiently secure the opening area of the cooling air inlet 35a.
  • the opening area of the cooling air inlet 35a can be increased without increasing the vehicle vertical dimension H of the first DC / DC converter 35. It can be secured sufficiently. As a result, it is possible to secure a large flow rate of the cooling air from the cooling fan 71 and improve the cooling performance of the first DC / DC converter 35.
  • the discharge port 71 b of the cooling fan 71 is formed at a position facing the first DC / DC converter 35. That is, the discharge port 71b is set on the left side surface in the vehicle width direction of the casing 71a facing the right side surface in the vehicle width direction of the first DC / DC converter 35. Therefore, for example, as schematically shown in FIG. 10B, an increase in the protruding dimension of the fan duct 73 upward can be suppressed as compared with the case where the discharge port 71b of the cooling fan 71 is set upward of the vehicle.
  • a charger 37 that controls the charging of the traveling battery 31 is disposed below the first DC / DC converter 35 and the cooling fan 71, and a junction box is provided. 34 is arranged at a lower position of the vehicle than the charger 37. That is, with this configuration, the junction box 34 is disposed below the cooling fan 71 and the air suction space, which is the space around the suction port 71 a of the cooling fan 71, can be ensured. For this reason, air can be taken into the cooling fan 71 smoothly.
  • the second DC / DC converter 36 is cooled by the cooling air from the second converter air-cooling fan unit 56.
  • the fan duct 74 of the second converter air-cooling fan unit 56 has one end directed to the right in the vehicle width direction, the other end directed downward in the vehicle, and a bent portion 74a bent upward in the vehicle at an intermediate portion. Yes.
  • the cooling fan 72 When the cooling fan 72 is activated, the cooling fan 72 sucks air from the suction port 72a facing the right side in the vehicle width direction and discharges air as cooling air from the discharge port 72b toward the left side in the vehicle width direction.
  • the cooling air discharged from the discharge port 72 b of the cooling fan 72 is once guided upward of the vehicle by the fan duct 74, as with the fan duct 73. Thereafter, the flow direction of the cooling air is smoothly changed toward the vehicle lower side along the bent portion 74a. Finally, the air is introduced into the second DC / DC converter 36 from the cooling air introduction port 36a in the downward direction of the vehicle.
  • the cooling air from the cooling fan 72 flows smoothly in the fan duct 74 and can guide the cooling air smoothly.
  • the load of the cooling fan 72 can be suppressed and the cooling efficiency can be improved.
  • the cooling fan 72 is arranged at the lateral position (side) of the second DC / DC converter 36, and the second DC / DC converter 36 and the cooling fan 72 overlap in the vehicle vertical direction. There is no. For this reason, the weight which acts on the 2nd flame
  • the cooling air inlet 36a of the second DC / DC converter 36 is formed on the upper surface 36b of the second DC / DC converter 36 facing the upper side of the vehicle. Therefore, similarly to the first DC / DC converter 35, the opening area of the cooling air inlet 36a can be sufficiently secured while suppressing an increase in the vehicle vertical dimension of the second DC / DC converter 36. As a result, a large flow rate of the cooling air from the cooling fan 72 can be secured, and the cooling performance of the second DC / DC converter 36 can be improved.
  • the discharge port 72 b of the cooling fan 72 is formed at a position facing the second DC / DC converter 36. That is, the discharge port 72b is set on the left side surface in the vehicle width direction of the casing 72a facing the right side surface in the vehicle width direction of the second DC / DC converter 36. Therefore, for example, as compared with the case where the discharge port of the cooling fan is set toward the upper side of the vehicle, an increase in the protruding dimension of the fan duct 74 upward can be suppressed.
  • a charger 37 that controls the charging of the traveling battery 31 is disposed at a position below the second DC / DC converter 36 and the cooling fan 72, and a junction box is provided. 34 is arranged at a lower position of the vehicle than the charger 37. That is, with this configuration, the junction box 34 is arranged below the cooling fan 72 in the vehicle, and a large air suction space that is a space around the suction port 72a of the cooling fan 72 can be secured. For this reason, air can be taken into the cooling fan 72 smoothly.
  • a converter (first DC / DC converter) 35 that converts the voltage of electric power input to an electric device (first auxiliary battery) 32 mounted on the vehicle;
  • a junction box 34 for supplying / cutting / distributing current by a relay circuit;
  • a converter cooling fan (cooling fan) 71 which is disposed at a side position of the converter 35 and blows cooling air to the converter 35; One end is connected to the discharge port 71b of the converter cooling fan 71, the other end is connected to the cooling air introduction port 35a of the converter 35, and a fan duct having a bent portion 73a bent toward the upper side of the vehicle at an intermediate portion.
  • a power line harness Y arranged so as to pass below the bent portion 73a of the fan duct 73; It was set as the structure provided with. Thereby, the protection performance of the power line harness Y which electrically connects the first DC / DC converter 35 and the junction box 34 mounted on the vehicle can be improved.
  • the cooling air introduction port 35a of the converter (first DC / DC converter) 35 is formed on the upper surface 35b of the converter 35 facing the upper side of the vehicle.
  • the discharge port 71b of the converter cooling fan (cooling fan) 71 is formed at a position facing the converter (first DC / DC converter) 35. Thereby, increase of the protrusion dimension to the vehicle upper direction of the fan duct 73 can be suppressed.
  • a charger 37 for controlling the charging of the battery 31 for traveling is disposed below the converter (first DC / DC converter) 35 and the converter cooling fan (cooling fan) 71 at a position below the vehicle.
  • the junction box 34 is arranged at a position below the vehicle with respect to the charger 37. Thereby, a large air suction space around the suction port 71a of the cooling fan 71 can be secured, and air can be taken into the cooling fan 71 smoothly.
  • junction box 34 is arranged at a position below the vehicle from the charger 37 .
  • the present invention is not limited to this, and the junction box 34 only needs to be in the lower position of the vehicle than the converter and the converter cooling fan disposed in the upper position of the charger 37. (Position).
  • the traveling battery 31 an example of a battery having a three-layer stacked structure including a lower stage, a middle stage, and an upper stage is shown as the traveling battery 31.
  • the battery for traveling may be an example of a battery having a one-stage structure, an example of a battery having a two-stage stacked structure, or the like.
  • Example 1 the example of the centrifugal fan which has the scroll casings 52c and 75c which opened the inlet ports 52a and 75a toward the vehicle upper side as the cooling fan 52 and the cooling fan 75 was shown.
  • a cooling fan it is good also as an example of the centrifugal fan which has a scroll casing which opened the suction inlet toward the vehicle side.
  • the axial flow fan which has a casing which opened the suction inlet toward the vehicle upper direction.
  • the example of the axial fan which has casings 71c and 72c which opened the suction inlets 71a and 72a toward the vehicle side as the cooling fans 71 and 72 was shown.
  • a centrifugal fan may be applied as the cooling fans 71 and 72.
  • Example 1 shows an example in which the electronic control system element arrangement structure of the present invention is applied to an FF plug-in hybrid vehicle.
  • the arrangement structure of the electronic control system elements of the electric vehicle according to the present invention can be applied to a hybrid vehicle having no plug-in structure, and further to an electric vehicle using only a motor as a drive source.
  • the present invention can be applied to an electric vehicle including a converter, a junction box, and a harness that electrically connects them.

Abstract

Provided is a layout structure for electronic-control-system elements for an electric vehicle, said layout structure making it possible to improve the protection performance of a harness that electrically connects a converter and junction box in a vehicle to each other. Said layout structure is provided with the following: a first DC-to-DC converter (35) that converts the voltage of power inputted to a first accessory battery (32) in the vehicle; a junction box (34) that uses a relay circuit to supply/interrupt/distribute current; a converter-cooling fan (71) that blows cooling air at the first DC-to-DC converter (35); a fan duct (73) that has a curved section (73a) in the middle thereof that is curved towards the top of the vehicle, one end of said fan duct (73) being connected to a discharge port (71b) for the converter-cooling fan (71) and the other end of the fan duct (73) being connected to a cooling-air inlet (35a) for the first DC-to-DC converter (35); and a power-line harness (Y) that electrically connects the first DC-to-DC converter (35) and the junction box (34) to each other and is routed so as to pass under the curved section (73a) of the fan duct (73).

Description

電動車両の電子制御系要素の配置構造Arrangement structure of electronic control system element of electric vehicle
 本発明は、コンバータと、ジャンクションボックスと、これらを電気的に接続するハーネスとを備える電動車両の電子制御系要素の配置構造に関する発明である。 The present invention relates to an arrangement structure of electronic control system elements of an electric vehicle including a converter, a junction box, and a harness that electrically connects them.
 従来、走行用バッテリを冷却した冷却風をDC/DCコンバータ用の冷却ファンへと送り、DC/DCコンバータを冷却してからDC/DCコンバータ用の排気ダクトを通じて排気する電動車両の冷却システムが知られている(例えば、特許文献1参照)。 Conventionally, there is a known cooling system for an electric vehicle that sends cooling air that cools a battery for driving to a cooling fan for a DC / DC converter, cools the DC / DC converter, and then exhausts it through an exhaust duct for the DC / DC converter. (For example, refer to Patent Document 1).
特開2011-93427号公報JP 2011-93427 A
 ところで、従来の電動車両の冷却システムでは、DC/DCコンバータ用の冷却ファンからDC/DCコンバータへと送風される冷却風が流れる冷却風ダクトに対し、このDC/DCコンバータと制御ユニットであるECUとを電気的に接続するハーネスが干渉しないように、互いに独立してレイアウトすることが一般的である。
 しかしながら、DC/DCコンバータとECUとを電気的に接続するハーネスを、DC/DCコンバータ用の冷却ファンからの冷却風ダクトとの干渉を避けるように配策すると、このハーネスがDC/DCコンバータ等の車載ユニットの表面に対して多く露出してしまうことがある。そのため、ハーネス配策作業やDC/DCコンバータのメンテナンス作業等のコンバータ周りでの作業時に、作業者がハーネスに接触する機会が増大してしまい、ハーネス保護上好ましくないという問題があった。
By the way, in the cooling system of the conventional electric vehicle, with respect to the cooling air duct through which the cooling air sent from the cooling fan for the DC / DC converter to the DC / DC converter flows, this DC / DC converter and the ECU which is the control unit In general, they are laid out independently from each other so that harnesses that electrically connect the two do not interfere with each other.
However, if the harness that electrically connects the DC / DC converter and the ECU is arranged so as to avoid interference with the cooling air duct from the cooling fan for the DC / DC converter, this harness becomes a DC / DC converter, etc. May be exposed to the surface of the in-vehicle unit. For this reason, during work around the converter, such as harness routing work or DC / DC converter maintenance work, there is an increase in the chance that the operator will come into contact with the harness, which is undesirable in terms of harness protection.
 本発明は、上記問題に着目してなされたもので、車両に搭載されるコンバータとジャンクションボックスと電気的に接続するハーネスの保護性能を向上することができる電動車両の電子制御系要素の配置構造を提供することを目的とする。 The present invention has been made paying attention to the above problems, and is an arrangement structure of electronic control system elements of an electric vehicle that can improve the protection performance of a harness that is electrically connected to a converter and a junction box mounted on the vehicle. The purpose is to provide.
 上記目的を達成するため、本発明の電動車両の電子制御系要素の配置構造は、コンバータと、ジャンクションボックスと、コンバータ冷却ファンと、ファンダクトと、ハーネスと、を備える。
 前記コンバータは、車両に搭載された電気機器に入力される電力の電圧を変換する。
 前記ジャンクションボックスは、リレー回路により電流の供給/遮断/分配を行なう。
 前記コンバータ冷却ファンは、前記コンバータの側方位置に配置され、前記コンバータに冷却風を送風する。
 前記ファンダクトは、一端が前記コンバータ冷却ファンの吐出口に連結され、他端が前記コンバータの冷却風導入口に連結されると共に、中間部に車両上方に向かって屈曲した屈曲部を有する。
 前記ハーネスは、前記コンバータと前記ジャンクションボックスとを電気的に接続すると共に、前記ファンダクトの屈曲部の下側を通るように配策される。
In order to achieve the above object, an electronic control system element arrangement structure for an electric vehicle according to the present invention includes a converter, a junction box, a converter cooling fan, a fan duct, and a harness.
The converter converts a voltage of electric power input to an electric device mounted on the vehicle.
The junction box supplies / cuts / distributes current by a relay circuit.
The converter cooling fan is disposed at a side position of the converter and blows cooling air to the converter.
The fan duct has one end connected to the discharge port of the converter cooling fan and the other end connected to the cooling air introduction port of the converter, and has a bent portion bent toward the upper side of the vehicle at an intermediate portion.
The harness is arranged so as to electrically connect the converter and the junction box and to pass under the bent portion of the fan duct.
 よって、本発明の電動車両の電子制御系要素の配置構造では、コンバータとジャンクションボックスとを電気的に接続するハーネスが、コンバータ冷却ファンの吐出口とコンバータの冷却風導入口とに連結されたファンダクトの中間部に形成された屈曲部の下側を通る。すなわち、ハーネスの上方位置にはファンダクトが配置される。
 これにより、ハーネスの上方がファンダクトによって覆われ、ハーネスが車載ユニット表面に露出することを防止できる。つまり、コンバータ周りでの作業時等に、作業者がハーネスに接触することをファンダクトによって防止することができる。この結果、車両に搭載されるコンバータとジャンクションボックスと電気的に接続するハーネスの保護性能を向上することができる。
Therefore, in the arrangement structure of the electronic control system element of the electric vehicle according to the present invention, the fan in which the harness for electrically connecting the converter and the junction box is connected to the discharge port of the converter cooling fan and the cooling air introduction port of the converter. It passes under the bent part formed in the middle part of the duct. That is, a fan duct is disposed above the harness.
Thereby, the upper part of a harness is covered with a fan duct, and it can prevent that a harness is exposed to the vehicle-mounted unit surface. That is, it is possible to prevent the worker from coming into contact with the harness by the fan duct when working around the converter. As a result, it is possible to improve the protection performance of the harness that is electrically connected to the converter and the junction box mounted on the vehicle.
実施例1の電子制御系要素の配置構造が適用されたFFプラグインハイブリッド車両を示す全体システム図である。1 is an overall system diagram illustrating an FF plug-in hybrid vehicle to which an arrangement structure of electronic control system elements according to a first embodiment is applied. 実施例1のFFプラグインハイブリッド車両においてリアルーム内でのバッテリ系要素の配置構造を示す斜視図である。1 is a perspective view showing an arrangement structure of battery system elements in a rear room in an FF plug-in hybrid vehicle of Example 1. FIG. 実施例1のFFプラグインハイブリッド車両においてリアルーム内でのバッテリ系要素の配置構造を示す背面図である。It is a rear view which shows the arrangement structure of the battery system element in a rear room in FF plug-in hybrid vehicle of Example 1. FIG. 実施例1のFFプラグインハイブリッド車両においてリアルーム内でのバッテリ系要素の配置構造を示す平面図である。FIG. 3 is a plan view showing an arrangement structure of battery system elements in a rear room in the FF plug-in hybrid vehicle of the first embodiment. 実施例1のFFプラグインハイブリッド車両においてリアルーム内でのバッテリ系要素の配置構造を示す側面図である。1 is a side view showing an arrangement structure of battery system elements in a rear room in an FF plug-in hybrid vehicle of Example 1. FIG. 図5におけるA-A断面図である。FIG. 6 is a cross-sectional view taken along the line AA in FIG. 実施例1のバッテリ系要素の配置構造におけるハーネス配策状態を示す斜視図である。It is a perspective view which shows the harness arrangement | positioning state in the arrangement structure of the battery system element of Example 1. FIG. 実施例1のバッテリ系要素の配置構造におけるハーネス配策状態を示す平面図である。It is a top view which shows the harness arrangement | positioning state in the arrangement structure of the battery type | system | group element of Example 1. FIG. 実施例1のコンバータ冷却風の流れを模式的に示す説明図である。It is explanatory drawing which shows typically the flow of the converter cooling air of Example 1. FIG. 冷却ファンの吐出口と第1DC/DCコンバータの冷却風導入口を対向させたときのファンダクトを模式的に示す説明図である。It is explanatory drawing which shows typically a fan duct when the discharge port of a cooling fan and the cooling air introduction port of the 1st DC / DC converter are made to oppose. 冷却ファンの吐出口と第1DC/DCコンバータの冷却風導入口をともに車両上方に向けたときのファンダクトを模式的に示す説明図である。It is explanatory drawing which shows typically a fan duct when both the discharge port of a cooling fan and the cooling air introduction port of a 1st DC / DC converter face the vehicle upper direction.
 以下、本発明の電動車両の電子制御系要素の配置構造を実施するための形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, a mode for carrying out an arrangement structure of electronic control system elements of an electric vehicle according to the present invention will be described based on Example 1 shown in the drawings.
 (実施例1)
 まず、構成を説明する。
 実施例1のFFプラグインハイブリッド車両(電動車両の一例)の電子制御系要素の配置構造の構成を、「全体システム構成」、「バッテリ系要素の配置構成」、「バッテリ系要素の冷却構成」、「バッテリ系要素のハーネス配策構成」に分けて説明する。
Example 1
First, the configuration will be described.
The arrangement structure of the electronic control system elements of the FF plug-in hybrid vehicle (an example of an electric vehicle) according to the first embodiment is defined as “overall system configuration”, “battery system element layout configuration”, “battery system element cooling configuration”. , “Battery element harness arrangement configuration” will be described separately.
 [全体システム構成]
 図1は、実施例1の電子制御系要素の配置構造が適用されたFFプラグインハイブリッド車両を示す全体システム図である。以下、図1に基づいて、プラグインハイブリッド車両の全体システム構成を説明する。
[Overall system configuration]
FIG. 1 is an overall system diagram showing an FF plug-in hybrid vehicle to which the arrangement structure of electronic control system elements according to the first embodiment is applied. The overall system configuration of the plug-in hybrid vehicle will be described below with reference to FIG.
 FFプラグインハイブリッド車両は、図1に示すように、パワートレーン系要素を搭載する車両前方側のフロントルーム1と、ドライバや乗員が着座するセンタールーム2と、バッテリ系要素を搭載する車両後方側のリアルーム3と、の3つにスペース区分される。
ここで、「パワートレーン系要素」とは、電子制御系を含みパワートレーン系を構成する各構成要素のことをいう。「バッテリ系要素」とは、電子制御系を含みバッテリ系を構成する各構成要素のことをいう。
なお、リアルーム3は、荷物を収容可能なラッゲージルームであっても良い。
As shown in FIG. 1, the FF plug-in hybrid vehicle includes a front room 1 on the front side of the vehicle on which the power train system elements are mounted, a center room 2 on which a driver and an occupant are seated, and a vehicle rear side on which the battery system elements are mounted. The rear room 3 is divided into three spaces.
Here, the “power train system element” refers to each component element that includes the electronic control system and constitutes the power train system. The “battery system element” refers to each component element that includes the electronic control system and constitutes the battery system.
The rear room 3 may be a luggage room that can accommodate luggage.
 前記フロントルーム1には、図1に示すように、横置きエンジン4と、第1クラッチ5と、モータ/ジェネレータ6と、第2クラッチ7と、ベルト式無段変速機8と、がパワートレーン系要素として配置される。なお、横置きエンジン4は、エアクリーナ9とスターターモータ10を有する。また、ベルト式無段変速機8の出力軸は、図外の終減速機と差動ギヤと左右のドライブシャフトを介し、左右の前輪に駆動連結される。 As shown in FIG. 1, the front room 1 includes a horizontal engine 4, a first clutch 5, a motor / generator 6, a second clutch 7, and a belt type continuously variable transmission 8. It is arranged as a system element. The horizontal engine 4 includes an air cleaner 9 and a starter motor 10. The output shaft of the belt type continuously variable transmission 8 is drivingly connected to the left and right front wheels via a final reduction gear, a differential gear, and left and right drive shafts (not shown).
 前記横置きエンジン4は、クランク軸方向を車幅方向としてフロントルーム1に配置したエンジンである。横置きエンジン4を配置したフロントルーム1には、横置きエンジン4に関連する様々な制御を行うエンジンコントローラ11が、エンジン制御系の構成要素として配置される。 The horizontal engine 4 is an engine disposed in the front room 1 with the crankshaft direction as the vehicle width direction. In the front room 1 in which the horizontal engine 4 is arranged, an engine controller 11 that performs various controls related to the horizontal engine 4 is arranged as a component of the engine control system.
 前記第1クラッチ5は、横置きエンジン4とモータ/ジェネレータ6との間に介装された油圧式の単板摩擦クラッチあるいは多板摩擦クラッチであり、第1クラッチ油圧により締結/スリップ締結/開放が制御される。 The first clutch 5 is a hydraulic single-plate friction clutch or a multi-plate friction clutch interposed between the horizontal engine 4 and the motor / generator 6, and is engaged / slip-engaged / released by the first clutch oil pressure. Is controlled.
 前記モータ/ジェネレータ6は、第1クラッチ5を介して横置きエンジン4に連結された三相交流の永久磁石型同期モータである。このモータ/ジェネレータ6には、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ12が、三相交流ハーネス26を介して接続される。モータ/ジェネレータ6を配置したフロントルーム1には、インバータ12に対して制御指令を出力するモータコントローラ13が、モータ制御系の構成要素として配置される。 The motor / generator 6 is a three-phase AC permanent magnet type synchronous motor connected to the transverse engine 4 through the first clutch 5. The motor / generator 6 is connected to an inverter 12 through a three-phase AC harness 26 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration. In the front room 1 in which the motor / generator 6 is disposed, a motor controller 13 that outputs a control command to the inverter 12 is disposed as a component of the motor control system.
 前記第2クラッチ7は、モータ/ジェネレータ6と駆動輪である左右の前輪との間に介装された油圧式の単板摩擦クラッチあるいは多板摩擦クラッチであり、第2クラッチ油圧により締結/スリップ締結/開放が制御される。 The second clutch 7 is a hydraulic single-plate friction clutch or a multi-plate friction clutch interposed between the motor / generator 6 and the left and right front wheels as drive wheels. The second clutch 7 is engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled.
 前記ベルト式無段変速機8は、プライマリ油室とセカンダリ油室への変速油圧によりベルトの巻き付き径を変えることで無段階の変速比に変速制御される。ベルト式無段変速機8は、ポンプ吐出圧からライン圧を調圧し、ライン圧を元圧として第1,第2クラッチ油圧及び変速油圧を作り出すコントロールバルブユニットを有する。前記第1,第2クラッチ5,7及びベルト式無段変速機8を配置したフロントルーム1には、コントロールバルブユニットの各油圧アクチュエータに対して油圧制御指令を出力する変速機コントローラ14が、油圧制御系の構成要素として配置される。 The belt type continuously variable transmission 8 is speed-controlled to a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber. The belt-type continuously variable transmission 8 has a control valve unit that regulates the line pressure from the pump discharge pressure and generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure using the line pressure as an original pressure. In the front room 1 in which the first and second clutches 5 and 7 and the belt type continuously variable transmission 8 are arranged, a transmission controller 14 that outputs a hydraulic control command to each hydraulic actuator of the control valve unit includes a hydraulic pressure It is arranged as a component of the control system.
 前記パワートレーン系による駆動形態が異なる代表的な走行モードとしては、「EVモード」と「HEVモード」と「WSCモード」を有する。「EVモード」は、第1クラッチ5を開放し、第2クラッチ7を締結してモータ走行するモードである。「HEVモード」は、両クラッチ5,7を締結して走行するモードである。「WSCモード」は、第1クラッチ5を締結又は開放し、第2クラッチ7をスリップ締結して走行するモードである。 As typical driving modes with different driving modes by the power train system, there are “EV mode”, “HEV mode” and “WSC mode”. The “EV mode” is a mode in which the first clutch 5 is disengaged and the second clutch 7 is engaged to drive the motor. The “HEV mode” is a mode in which both the clutches 5 and 7 are engaged to travel. The “WSC mode” is a mode in which the first clutch 5 is engaged or released and the second clutch 7 is slip-engaged to travel.
 前記センタールーム2には、図1に示すように、車両前方側であってブレーキ液圧アクチュエータが設けられた位置に、回生制動力と液圧制動力の協調制御を行うブレーキコントローラ21が配置される。また、車両後方側の位置であって、センタールーム2を画成するフロアパネルの下側位置に、横置きエンジン4への燃料を蓄える燃料タンク22が配置され、横置きエンジン4と燃料タンク22は、燃料パイプ23にて接続される。 In the center room 2, as shown in FIG. 1, a brake controller 21 that performs cooperative control of the regenerative braking force and the hydraulic braking force is disposed on the front side of the vehicle and at a position where the brake hydraulic pressure actuator is provided. . A fuel tank 22 that stores fuel for the horizontally mounted engine 4 is disposed at a position on the rear side of the vehicle and below the floor panel that defines the center room 2. Are connected by a fuel pipe 23.
 前記リアルーム3には、図1に示すように、走行用バッテリ31と、第1補機用バッテリ32と、第2補機用バッテリ33と、ジャンクションボックス34と、第1DC/DCコンバータ(コンバータ)35と、第2DC/DCコンバータ(コンバータ)36と、がバッテリ系要素として配置される。さらに、リアルーム3には、プラグインハイブリッド車両であることに伴い、充電器37と充電ポート38がバッテリ系要素として追加配置される。 As shown in FIG. 1, the rear room 3 includes a traveling battery 31, a first auxiliary battery 32, a second auxiliary battery 33, a junction box 34, and a first DC / DC converter (converter). 35 and a second DC / DC converter (converter) 36 are arranged as battery system elements. In addition, a charger 37 and a charging port 38 are additionally arranged as battery system elements in the rear room 3 due to being a plug-in hybrid vehicle.
 前記走行用バッテリ31は、走行用電源としての二次電池であり、例えば、ラミネート型リチウムイオンバッテリが用いられる。この走行用バッテリ31は、互いに接続した多数のセルを積層してバッテリモジュールとし、複数のバッテリモジュールをパックケース内に隙間通路を介して配置した構造としている。走行用バッテリ31は、ジャンクションボックス34に電力線ハーネスXを介して電気的に接続されている。
そのため、この走行用バッテリ31は、モータ/ジェネレータ6が力行制御を行うときには、電力線ハーネスX→ジャンクションボックス34→電力線ハーネス39→インバータ12を経由して放電する。一方、モータ/ジェネレータ6が回生制御を行うときには、インバータ12→電力線ハーネス39→ジャンクションボックス34→電力線ハーネスXを経由して充電する。
The traveling battery 31 is a secondary battery as a traveling power source, and for example, a laminate type lithium ion battery is used. The traveling battery 31 has a structure in which a large number of cells connected to each other are stacked to form a battery module, and a plurality of battery modules are arranged in the pack case via gap passages. The traveling battery 31 is electrically connected to the junction box 34 via the power line harness X.
Therefore, when the motor / generator 6 performs power running control, the traveling battery 31 is discharged via the power line harness X → the junction box 34 → the power line harness 39 → the inverter 12. On the other hand, when the motor / generator 6 performs regenerative control, charging is performed via the inverter 12 → the power line harness 39 → the junction box 34 → the power line harness X.
 前記第1補機用バッテリ32は、車載の補機類のうちスターターモータ10の専用電源として搭載した低電圧バッテリである。前記第2補機用バッテリ33は、スターターモータ10を除く他の補機類40の電源として搭載した低電圧バッテリである。ここで、2つの補機用バッテリ32,33を搭載している理由は、スターターモータ10によるエンジン始動要求時にエンジン始動を確保するためである。例えば、1つの補機用バッテリのみを搭載した場合には、スターターモータ10と他の補機類40との同時使用等を原因として電圧降下が発生することがあることによる。 The first auxiliary battery 32 is a low-voltage battery mounted as a dedicated power source for the starter motor 10 among in-vehicle auxiliary machines. The second auxiliary battery 33 is a low voltage battery mounted as a power source for other auxiliary machines 40 excluding the starter motor 10. Here, the reason why the two auxiliary batteries 32 and 33 are installed is to ensure engine start when the starter motor 10 requests engine start. For example, when only one auxiliary battery is mounted, a voltage drop may occur due to simultaneous use of the starter motor 10 and other auxiliary machines 40.
 前記ジャンクションボックス34は、走行用バッテリ31に対する強電の供給/遮断/分配等を行うリレー回路を集約させた分電盤である。また、前記第1DC/DCコンバータ35は、電気機器である第1補機用バッテリ32に入力される電力の電圧を変換する。前記第2DC/DCコンバータ36は、電気機器である第2補機用バッテリ33に入力される電力の電圧を変換する。また、前記充電器37は、走行用バッテリ31の充電を制御する。
ここで、第1DC/DCコンバータ35は、電力線ハーネスYを介してジャンクションボックス34に電気的に接続されると共に、電力線ハーネスY´を介して第1補機用バッテリ32に電気的に接続されている。また、第2DC/DCコンバータ36は、電力線ハーネスZを介してジャンクションボックス34に電気的に接続されると共に、電力線ハーネスZ´を介して第2補機用バッテリ33に電気的に接続されている。また、充電器37は、電力線ハーネスAを介してジャンクションボックス34に電気的に接続されると共に、電力線ハーネスBを介して充電ポート38に電気的に接続されている。
The junction box 34 is a distribution board in which relay circuits that perform supply / cut-off / distribution of strong power to the traveling battery 31 are integrated. The first DC / DC converter 35 converts the voltage of the electric power input to the first auxiliary battery 32 that is an electric device. The second DC / DC converter 36 converts the voltage of electric power input to the second auxiliary battery 33, which is an electric device. The charger 37 controls the charging of the traveling battery 31.
Here, the first DC / DC converter 35 is electrically connected to the junction box 34 via the power line harness Y and is also electrically connected to the first auxiliary battery 32 via the power line harness Y ′. Yes. The second DC / DC converter 36 is electrically connected to the junction box 34 via the power line harness Z and is also electrically connected to the second auxiliary battery 33 via the power line harness Z ′. . Further, the charger 37 is electrically connected to the junction box 34 via the power line harness A, and is also electrically connected to the charging port 38 via the power line harness B.
 そのため、例えば、充電スタンド等での停車時にコネクタプラグ41を充電ポート38に接続すると(プラグイン)、充電ポート38→電力線ハーネスB→充電器37→電力線ハーネスA→ジャンクションボックス34→電力線ハーネスXを経由し、走行用バッテリ31が外部充電される。
また、第1補機用バッテリ32の充電量が不足すると、走行用バッテリ31→電力線ハーネスX→ジャンクションボックス34→電力線ハーネスY→第1DC/DCコンバータ35→電力線ハーネスY´を経由し、走行用バッテリ31の充電量の一部で第1補機用バッテリ32の充電量が確保される。
同様に、第2補機用バッテリ33の充電量が不足すると、走行用バッテリ31→電力線ハーネスX→ジャンクションボックス34→電力線ハーネスZ→第2DC/DCコンバータ36→電力線ハーネスZ´を経由し、走行用バッテリ31の充電量の一部で第2補機用バッテリ33の充電量が確保される。
Therefore, for example, when the connector plug 41 is connected to the charging port 38 when the vehicle is stopped at a charging stand or the like (plug-in), the charging port 38 → the power line harness B → the charger 37 → the power line harness A → the junction box 34 → the power line harness X The travel battery 31 is externally charged via the route.
Further, when the charge amount of the first auxiliary battery 32 is insufficient, the traveling battery 31 → the power line harness X → the junction box 34 → the power line harness Y → the first DC / DC converter 35 → the power line harness Y ′ is used for traveling. The charge amount of the first auxiliary battery 32 is secured by a part of the charge amount of the battery 31.
Similarly, if the charging amount of the second auxiliary battery 33 is insufficient, the vehicle travels via the traveling battery 31 → the power line harness X → the junction box 34 → the power line harness Z → the second DC / DC converter 36 → the power line harness Z ′. The charge amount of the second auxiliary battery 33 is ensured by a part of the charge amount of the battery 31 for use.
 前記走行用バッテリ31と前記第1DC/DCコンバータ35と前記第2DC/DCコンバータ36と前記充電器37は、何れも全体を覆う収納ケースに収納されたパック構造であり、空冷ファンユニット51,55,56,57がそれぞれの近傍位置に設けられている。前記ジャンクションボックス34及び空冷ファンユニット51,55,56,57を配置したリアルーム3には、走行用バッテリ31の容量管理や温度管理等を行うと共に空冷ファンユニット51,55,56,57の動作制御を行うバッテリコントローラ42が、バッテリ制御系の構成要素として配置される。 The traveling battery 31, the first DC / DC converter 35, the second DC / DC converter 36, and the charger 37 are all in a pack structure that is housed in a housing case that covers the whole, and the air cooling fan units 51, 55 , 56, 57 are provided in the vicinity of each. In the rear room 3 in which the junction box 34 and the air cooling fan units 51, 55, 56, 57 are arranged, capacity management and temperature management of the traveling battery 31 are performed and operation control of the air cooling fan units 51, 55, 56, 57 is performed. A battery controller 42 for performing the above is disposed as a component of the battery control system.
 前記リアルーム3には、車両全体の消費エネルギーを管理し、最高効率で車両を走らせるための機能を担う統合コントローラ43が、統合制御系の構成要素として配置される。
なお、統合コントローラ43と、各コントローラ11,13,14,21,42は、CAN通信線44を介して情報交換される。
In the rear room 3, an integrated controller 43 that manages the energy consumption of the entire vehicle and has the function of running the vehicle with the highest efficiency is disposed as a component of the integrated control system.
Information is exchanged between the integrated controller 43 and the controllers 11, 13, 14, 21, 42 via the CAN communication line 44.
 [バッテリ系要素の配置構成]
 図2~図5は、リアルーム内でのバッテリ系要素の配置構造を示す斜視図、背面図、平面図、側面図である。以下、図2~図5に基づき、バッテリ系要素の配置構成を説明する。
[Battery element layout]
2 to 5 are a perspective view, a rear view, a plan view, and a side view showing an arrangement structure of battery system elements in the rear room. Hereinafter, the arrangement of the battery system elements will be described with reference to FIGS.
 前記リアルーム3(バッテリルーム)には、走行用バッテリ31と、第1補機用バッテリ32と、第2補機用バッテリ33と、ジャンクションボックス34と、第1DC/DCコンバータ35と、第2DC/DCコンバータ36と、充電器37と、バッテリコントローラ42と、統合コントローラ43と、が配置されている。 The rear room 3 (battery room) includes a traveling battery 31, a first auxiliary battery 32, a second auxiliary battery 33, a junction box 34, a first DC / DC converter 35, and a second DC / DC. A DC converter 36, a charger 37, a battery controller 42, and an integrated controller 43 are arranged.
 前記走行用バッテリ31は、図2~図5に示すように、リアルーム3の車両前方側スペースに、車幅方向の一端部から他端部まで延設して配置されている。この走行用バッテリ31は、下段バッテリ31aと、該下段バッテリ31aと同形状で積み重ねた中段バッテリ31bと、該中段バッテリ31bよりも小さい形状で左側に寄せた位置に積み重ねた上段バッテリ31cと、の3層構造により構成されている。これは、FFプラグインハイブリッド車のバッテリであり、電気自動車モードでの走行距離を十分に確保し、燃費性能要求に応えるため、高いバッテリ容量が要求されることによる。 As shown in FIGS. 2 to 5, the traveling battery 31 is disposed in the vehicle front side space of the rear room 3 so as to extend from one end to the other end in the vehicle width direction. This traveling battery 31 includes a lower battery 31a, a middle battery 31b stacked in the same shape as the lower battery 31a, and an upper battery 31c stacked in a position closer to the left side in a smaller shape than the middle battery 31b. It has a three-layer structure. This is a battery of an FF plug-in hybrid vehicle, and a high battery capacity is required in order to ensure a sufficient traveling distance in the electric vehicle mode and meet fuel efficiency requirements.
 前記第1補機用バッテリ32と前記第2補機用バッテリ33は、図2~図5に示すように、リアルーム3の走行用バッテリ31よりも車両後方側スペースであって、走行用バッテリ31とは車両前後方向で重なる位置に配置される。リアルーム3の床面であるルームフロア面30は、図5に示すように、車両前方側の第1フロア面30aと、該第1フロア面30aから段差壁面30bを介して設定され、第1フロア面30aより地上高を低くした第2フロア面30cと、を有する。そして、走行用バッテリ31を第1フロア面30aに搭載し、両補機用バッテリ32,33を第2フロア面30cに搭載している。両補機用バッテリ32,33は、図4に示すように、同じ車両前後方向位置に、車幅方向に2つを並べて配置されている。なお、ルームフロア面30は、図5に示すように、第1フロア面30aより車両前方側に段差壁面30dを介し、第1フロア面30aより地上高を高くした第3フロア面30eを有する。この段差壁面30dと第3フロア面30eは、燃料タンク22の設置スペースを確保するためである。 As shown in FIGS. 2 to 5, the first auxiliary battery 32 and the second auxiliary battery 33 are located on the vehicle rear side with respect to the traveling battery 31 in the rear room 3, and the traveling battery 31 Is arranged at a position overlapping in the longitudinal direction of the vehicle. As shown in FIG. 5, a room floor surface 30 which is a floor surface of the rear room 3 is set through a first floor surface 30a on the vehicle front side and a step wall surface 30b from the first floor surface 30a. And a second floor surface 30c having a ground clearance lower than that of the surface 30a. And the battery 31 for driving | running | working is mounted in the 1st floor surface 30a, and the batteries 32 and 33 for both auxiliary machines are mounted in the 2nd floor surface 30c. As shown in FIG. 4, the two auxiliary battery batteries 32 and 33 are arranged side by side in the vehicle width direction at the same vehicle longitudinal direction position. As shown in FIG. 5, the room floor surface 30 has a third floor surface 30e having a ground clearance higher than the first floor surface 30a via a stepped wall surface 30d on the vehicle front side from the first floor surface 30a. The step wall surface 30d and the third floor surface 30e are for securing an installation space for the fuel tank 22.
 前記ジャンクションボックス34は、図2~図4に示すように、下段バッテリ31aと中段バッテリ31bに比べて車幅方向と前後方向に小さい形状の上段バッテリ31cの横位置(側方位置)であって、中段バッテリ31bの上面位置に配置される。 As shown in FIGS. 2 to 4, the junction box 34 has a lateral position (side position) of the upper battery 31c that is smaller in the vehicle width direction and the front-rear direction than the lower battery 31a and the middle battery 31b. The battery is disposed at the upper surface position of the middle battery 31b.
 前記第1DC/DCコンバータ35と前記第2DC/DCコンバータ36と前記充電器37は、上段バッテリ31cの車両上方スペースに積層状態で配置される。
前記充電器37は、上段バッテリ31cを含む走行用バッテリ31を囲って配置される第1フレーム45の上面45a上に配置される。これにより、ジャンクションボックス34は、充電器37よりも車両下方位置に配置されることとなる。さらにここでは、充電器37の車幅方向両側が、第1フレーム45の上面45aに起立する一対の支持脚45b,45bによってぶら下げ支持されている。このため、充電器37の底面と第1フレーム45の上面45aとの間には間隙が設けられる。
前記両DC/DCコンバータ35,36は、第1フレーム45に固定され、充電器37を囲って配置される第2フレーム46の上面46a上に、車両前後方向に並べて配置される。これにより、充電器37は、両DC/DCコンバータ35,36よりも車両下方位置に配置されることとなる。
The first DC / DC converter 35, the second DC / DC converter 36, and the charger 37 are disposed in a stacked state in a vehicle upper space of the upper battery 31c.
The charger 37 is disposed on the upper surface 45a of the first frame 45 disposed so as to surround the traveling battery 31 including the upper battery 31c. As a result, the junction box 34 is disposed at a position below the vehicle relative to the charger 37. Further, here, both sides of the charger 37 in the vehicle width direction are supported by a pair of support legs 45 b and 45 b that stand on the upper surface 45 a of the first frame 45. For this reason, a gap is provided between the bottom surface of the charger 37 and the upper surface 45 a of the first frame 45.
The DC / DC converters 35 and 36 are fixed to the first frame 45 and arranged side by side in the vehicle front-rear direction on an upper surface 46 a of a second frame 46 that is disposed around the charger 37. As a result, the charger 37 is disposed at a position below the vehicle relative to both the DC / DC converters 35 and 36.
 前記第1フレーム45は、方形状に組んだベースフレーム47に設けられる。そして、ベースフレーム47の車両後方位置の車幅方向フレーム部47aは、段差壁面30bの上面に沿って走行用バッテリ31と両補機用バッテリ32,33の車両前後方向の中間位置に配置される(図4,図5参照)。また、ベースフレーム47に立設される第1フレーム45の複数の車両後方位置の上下方向フレーム部45cの一部には、充電ポート38が固定される(図3参照)。 The first frame 45 is provided on a base frame 47 assembled in a square shape. And the vehicle width direction frame part 47a of the vehicle rear position of the base frame 47 is arrange | positioned along the upper surface of the level | step difference wall surface 30b in the intermediate position of the battery 31 for driving | running | working and the batteries 32 and 33 for both auxiliary machines in the vehicle front-back direction. (See FIGS. 4 and 5). In addition, a charging port 38 is fixed to a part of the vertical frame portions 45c of the plurality of vehicle rear positions of the first frame 45 provided upright on the base frame 47 (see FIG. 3).
 前記バッテリコントローラ42と前記統合コントローラ43は、図4及び図5に示すように、走行用バッテリ31を囲って配置される第1フレーム45のうち、複数の車両前方位置の車両上下方向フレーム部45dの一部に固定した2つのコントローラボックスに収納配置される。 As shown in FIGS. 4 and 5, the battery controller 42 and the integrated controller 43 include a vehicle vertical frame portion 45 d at a plurality of vehicle front positions in a first frame 45 disposed so as to surround the traveling battery 31. It is housed and arranged in two controller boxes fixed to a part of the box.
 [バッテリ系要素の冷却構成]
 図6は、図5におけるA-A断面図である。
[Battery system cooling configuration]
6 is a cross-sectional view taken along line AA in FIG.
 前記リアルーム3(バッテリルーム)には、バッテリ系要素の冷却構成として、図2及び図3に示すように、バッテリ用空冷ファンユニット51と、第1コンバータ用空冷ファンユニット55と、第2コンバータ用空冷ファンユニット56と、充電器用空冷ファンユニット57と、バッテリ用排気ダクト58と、第1コンバータ用排気ダクト59と、第2コンバータ用排気ダクト60と、充電器用排気ダクト61と、が設けられる。 As shown in FIGS. 2 and 3, the rear room 3 (battery room) has a battery air cooling fan unit 51, a first converter air cooling fan unit 55, and a second converter cooling structure as shown in FIGS. An air cooling fan unit 56, a charger air cooling fan unit 57, a battery exhaust duct 58, a first converter exhaust duct 59, a second converter exhaust duct 60, and a charger exhaust duct 61 are provided.
 前記バッテリ用空冷ファンユニット51は、リアルーム3に配置した走行用バッテリ31を冷却風により空冷するユニットで、冷却ファン52と、吸込みダクト53と、ファンダクト54と、を有して構成される。 The battery air-cooling fan unit 51 is a unit that cools the running battery 31 disposed in the rear room 3 with cooling air, and includes a cooling fan 52, a suction duct 53, and a fan duct 54.
 前記冷却ファン52は、図3及び図4に示すように、走行用バッテリ31の上面スペースのうち、車幅方向の片側に寄った一端側上面スペースであって、ジャンクションボックス34の車両上方位置に配置される。この冷却ファン52は、遠心ファン構造であり、スクロールケーシング52cと、車両上下方向を回転軸方向としてスクロールケーシング52c内に配置した回転翼52dと、該回転翼52dを回転駆動させるモータ52eと、を有する。スクロールケーシング52cは、吸込み口52aを車両上方に向けて開口し、吐出口52bを車幅方向右側に向けて開口している。
前記吸込みダクト53は、一端がスクロールケーシング52cの吸込み口52aに連結され、他端に設けたダクト開放端53aが車両下方に向けて開口している(図3参照)。冷却ファン52は、作動時、ダクト開口端53aから吸込みダクト53を経由し、吸込み口52aからスクロールケーシング52c内に空気を吸い込む。
As shown in FIGS. 3 and 4, the cooling fan 52 is an upper end space on one end that is closer to one side in the vehicle width direction of the upper surface space of the traveling battery 31, and is positioned above the junction box 34 in the vehicle. Be placed. The cooling fan 52 has a centrifugal fan structure, and includes a scroll casing 52c, a rotary blade 52d disposed in the scroll casing 52c with the vehicle vertical direction as a rotation axis direction, and a motor 52e that rotationally drives the rotary blade 52d. Have. The scroll casing 52c opens the suction port 52a toward the upper side of the vehicle, and opens the discharge port 52b toward the right side in the vehicle width direction.
One end of the suction duct 53 is connected to the suction port 52a of the scroll casing 52c, and a duct open end 53a provided at the other end opens toward the vehicle lower side (see FIG. 3). During operation, the cooling fan 52 sucks air from the duct opening end 53a through the suction duct 53 and into the scroll casing 52c through the suction port 52a.
 前記ファンダクト54は、図4に示すように、一端がスクロールケーシング52cの吐出口52bに連結され、他端が走行用バッテリ31の冷却風導入口31dに連結される。冷却風導入口31dは、図4に示すように、走行用バッテリ31の車幅方向一端部(右端部)上面であって車両前方側の位置に設定される。このファンダクト54は、冷却ファン52の作動時には、吐出口52bからの冷却風を、冷却風導入口31dから車両下方向に向かって走行用バッテリ31の内部通路に導入する。 As shown in FIG. 4, one end of the fan duct 54 is connected to the discharge port 52b of the scroll casing 52c, and the other end is connected to the cooling air introduction port 31d of the battery 31 for traveling. As shown in FIG. 4, the cooling air inlet 31 d is set on the upper surface of one end (right end) in the vehicle width direction of the traveling battery 31 and on the front side of the vehicle. When the cooling fan 52 is operated, the fan duct 54 introduces cooling air from the discharge port 52b into the internal passage of the traveling battery 31 from the cooling air introduction port 31d toward the vehicle downward direction.
 前記第1コンバータ用空冷ファンユニット55は、図2に示すように、リアルーム3に配置した第1DC/DCコンバータ35を冷却風により空冷するユニットで、冷却ファン(コンバータ冷却ファン)71と、ファンダクト73と、を有して構成される。 As shown in FIG. 2, the first converter air cooling fan unit 55 is a unit that air-cools the first DC / DC converter 35 disposed in the rear room 3 with cooling air, and includes a cooling fan (converter cooling fan) 71 and a fan duct. 73.
 前記冷却ファン71は、図4に示すように、第1DC/DCコンバータ35の横位置(側方位置)であって、第2フレーム46の上面46aの車幅方向一端部(右端部)に配置される。冷却ファン71は、軸流ファン構造であり、両端が開放したケーシング71cと、車幅方向を回転軸方向としてケーシング71c内に配置した回転翼(図示せず)と、該回転翼を回転駆動させるモータ(図示せず)と、を有する。ここで、第1DC/DCコンバータ35の発熱量は、走行用バッテリ31と比べて非常に少ない。このため、冷却ファン71の送風能力(送風量)は、冷却ファン52の送風能力(送風量)よりも十分に低く設定される。
ケーシング71cは、吸込み口71aをジャンクションボックス34の上方スペースに臨む車幅方向右側に向け、吐出口71bを第1DC/DCコンバータ35に臨む車幅方向左側に向けている。冷却ファン71は、作動時、吸込み口71aからケーシング71c内へ直接空気を吸い込む。
As shown in FIG. 4, the cooling fan 71 is disposed at a lateral position (lateral position) of the first DC / DC converter 35 and at one end (right end) in the vehicle width direction of the upper surface 46 a of the second frame 46. Is done. The cooling fan 71 has an axial fan structure, and has a casing 71c whose both ends are open, a rotor blade (not shown) disposed in the casing 71c with the vehicle width direction as a rotation axis direction, and the rotor blade is driven to rotate. A motor (not shown). Here, the amount of heat generated by the first DC / DC converter 35 is much smaller than that of the traveling battery 31. For this reason, the air blowing capacity (air flow rate) of the cooling fan 71 is set sufficiently lower than the air blowing capacity (air flow rate) of the cooling fan 52.
The casing 71 c has the suction port 71 a facing the right side in the vehicle width direction facing the space above the junction box 34, and the discharge port 71 b facing the left side in the vehicle width direction facing the first DC / DC converter 35. During operation, the cooling fan 71 sucks air directly from the suction port 71a into the casing 71c.
 前記ファンダクト73は、図4に示すように、一端がケーシング71cの吐出口71bに連結され、他端が第1DC/DCコンバータ35の冷却風導入口35aに連結される。ここで、冷却風導入口35aは、第1DC/DCコンバータ35の車両上方に臨む上面35bであって、車幅方向一端部(右端部)に設定される。これにより、ファンダクト73は、中間部に車両上方に向かって滑らかに屈曲(湾曲)した屈曲部73aが設けられる(図2,図3参照)。すなわち、ファンダクト73の吐出口71b側の一端は車幅方向右側に向けられ、ファンダクト73の冷却風導入口35a側の他端は車両下方に向けられる。そして、ファンダクト73の屈曲部73aと第2フレーム46の上面46aとの間には、隙間Sが設定される。
このファンダクト73は、冷却ファン71の作動時には、吐出口71bから車幅方向左側に向かって吐出された冷却風を、一旦車両上方に案内した後、冷却風導入口35aから車両下方向に向かって第1DC/DCコンバータ35の内部に導入する。
As shown in FIG. 4, the fan duct 73 has one end connected to the discharge port 71 b of the casing 71 c and the other end connected to the cooling air introduction port 35 a of the first DC / DC converter 35. Here, the cooling air introduction port 35a is an upper surface 35b of the first DC / DC converter 35 facing the upper side of the vehicle, and is set at one end (right end) in the vehicle width direction. Thereby, the fan duct 73 is provided with a bent portion 73a that is smoothly bent (curved) toward the upper side of the vehicle at an intermediate portion (see FIGS. 2 and 3). That is, one end of the fan duct 73 on the discharge port 71b side is directed to the right side in the vehicle width direction, and the other end of the fan duct 73 on the cooling air introduction port 35a side is directed downward of the vehicle. A gap S is set between the bent portion 73 a of the fan duct 73 and the upper surface 46 a of the second frame 46.
When the cooling fan 71 is operated, the fan duct 73 guides the cooling air discharged toward the left side in the vehicle width direction from the discharge port 71b to the upper side of the vehicle and then moves downward from the cooling air introduction port 35a. Are introduced into the first DC / DC converter 35.
 前記第2コンバータ用空冷ファンユニット56は、図2に示すように、リアルーム3に配置した第2DC/DCコンバータ36を冷却風により空冷するユニットで、冷却ファン(コンバータ冷却ファン)72と、ファンダクト74と、を有して構成される。 The second converter air-cooling fan unit 56 is a unit that air-cools the second DC / DC converter 36 disposed in the rear room 3 with cooling air, as shown in FIG. 2, and includes a cooling fan (converter cooling fan) 72 and a fan duct. 74.
 前記冷却ファン72は、図4に示すように、第2DC/DCコンバータ36の横位置(側方位置)であって、第2フレーム46の上面46aの車幅方向一端部(右端部)に配置される。冷却ファン72は、軸流ファン構造であり、両端が開放したケーシング72cと、車幅方向を回転軸方向としてケーシング72c内に配置した回転翼(図示せず)と、該回転翼を回転駆動させるモータ(図示せず)と、を有する。ここで、第2DC/DCコンバータ36の発熱量は、第1DC/DCコンバータ35と同程度であり、走行用バッテリ31に比べて非常に少ない。このため、冷却ファン72の送風能力(送風量)は、冷却ファン71の送風能力(送風量)と同程度であって、冷却ファン52の送風能力(送風量)よりも十分に低く設定される。
ケーシング72cは、吸込み口72aをジャンクションボックス34の上方スペースに臨む車幅方向右側に向け、吐出口72bを第2DC/DCコンバータ36に臨む車幅方向左側に向けている。冷却ファン72は、作動時、吸込み口72aからケーシング72c内へ直接空気を吸い込む。
As shown in FIG. 4, the cooling fan 72 is disposed at a lateral position (side position) of the second DC / DC converter 36 and at one end (right end) in the vehicle width direction of the upper surface 46 a of the second frame 46. Is done. The cooling fan 72 has an axial fan structure, and has a casing 72c whose both ends are open, a rotary blade (not shown) disposed in the casing 72c with the vehicle width direction as the rotational axis direction, and the rotary blade is driven to rotate. A motor (not shown). Here, the amount of heat generated by the second DC / DC converter 36 is approximately the same as that of the first DC / DC converter 35 and is much smaller than that of the traveling battery 31. For this reason, the air blowing capacity (air flow rate) of the cooling fan 72 is approximately the same as the air blowing capacity (air flow rate) of the cooling fan 71 and is set sufficiently lower than the air blowing capacity (air flow rate) of the cooling fan 52. .
The casing 72 c has the suction port 72 a facing the right side in the vehicle width direction facing the space above the junction box 34, and the discharge port 72 b facing the left side in the vehicle width direction facing the second DC / DC converter 36. The cooling fan 72 sucks air directly from the suction port 72a into the casing 72c during operation.
 前記ファンダクト74は、図4に示すように、一端がケーシング72cの吐出口72bに連結され、他端が第2DC/DCコンバータ36の冷却風導入口36aに連結される。ここで、冷却風導入口36aは、第2DC/DCコンバータ36の車両上方に臨む上面36bであって、車幅方向一端部(右端部)に設定される。これにより、ファンダクト74は、中間部に車両上方に向かって滑らかに屈曲(湾曲)した屈曲部74aが設けられる(図2参照)。すなわち、ファンダクト74の吐出口72b側の一端は車幅方向右側に向けられ、ファンダクト74の冷却風導入口36a側の他端は車両下方に向けられる。そして、ファンダクト74の屈曲部774aと第2フレーム46の上面46aとの間には、隙間Sが設定される。
このファンダクト74は、冷却ファン72の作動時には、吐出口72bから車幅方向左側に向かって吐出された冷却風を、一旦車両上方に案内した後、冷却風導入口36aから車両下方向に向かって第2DC/DCコンバータ36の内部に導入する。
As shown in FIG. 4, the fan duct 74 has one end connected to the discharge port 72 b of the casing 72 c and the other end connected to the cooling air introduction port 36 a of the second DC / DC converter 36. Here, the cooling air introduction port 36a is an upper surface 36b of the second DC / DC converter 36 that faces the upper side of the vehicle, and is set at one end (right end) in the vehicle width direction. Thereby, the fan duct 74 is provided with a bent portion 74a that is smoothly bent (curved) toward the upper side of the vehicle at the intermediate portion (see FIG. 2). That is, one end of the fan duct 74 on the discharge port 72b side is directed to the right side in the vehicle width direction, and the other end of the fan duct 74 on the cooling air introduction port 36a side is directed downward of the vehicle. A gap S is set between the bent portion 774 a of the fan duct 74 and the upper surface 46 a of the second frame 46.
When the cooling fan 72 is operated, the fan duct 74 guides the cooling air discharged toward the left side in the vehicle width direction from the discharge port 72b to the upper side of the vehicle and then moves downward from the cooling air introduction port 36a. Are introduced into the second DC / DC converter 36.
 前記充電器用空冷ファンユニット57は、図3,図4に示すように、リアルーム3に配置した充電器37を冷却風により空冷するユニットで、冷却ファン75と、ファンダクト76と、を有して構成される。 As shown in FIGS. 3 and 4, the charger air cooling fan unit 57 is a unit that cools the charger 37 disposed in the rear room 3 with cooling air, and includes a cooling fan 75 and a fan duct 76. Composed.
 前記冷却ファン75は、図3に示すように、第1フレーム45の上面45aの車幅方向一端部(右端部)であって、充電器37の横位置に配置される。冷却ファン75は、遠心ファン構造であり、スクロールケーシング75cと、車両上下方向を回転軸方向としてスクロールケーシング75c内に配置した回転翼(図示せず)と、該回転翼を回転駆動させるモータ(図示せず)と、を有する。ここで、充電器37の発熱量は、両DC/DCコンバータ35,36の発熱量よりも多いが、走行用バッテリ31と比べて少ない。このため、冷却ファン75の送風能力(送風量)は、冷却ファン71,72の送風能力(送風量)よりも高く、冷却ファン52の送風能力(送風量)よりも低く設定される。
スクロールケーシング75cは、吸込み口75aを車両上方に向けて開口し、吐出口75bを車両前方に向けて開口している。
冷却ファン75は、作動時、吸込み口75aからスクロールケーシング75c内へ直接空気を吸い込む。
As shown in FIG. 3, the cooling fan 75 is disposed at one end (right end) in the vehicle width direction of the upper surface 45 a of the first frame 45 and at a lateral position of the charger 37. The cooling fan 75 has a centrifugal fan structure, and includes a scroll casing 75c, rotating blades (not shown) disposed in the scroll casing 75c with the vehicle vertical direction as the rotation axis direction, and a motor (see FIG. (Not shown). Here, the calorific value of the charger 37 is larger than the calorific values of the DC / DC converters 35 and 36, but is smaller than that of the traveling battery 31. For this reason, the air blowing capacity (air flow rate) of the cooling fan 75 is set higher than the air blowing capacity (air flow rate) of the cooling fans 71 and 72 and lower than the air blowing capacity (air flow rate) of the cooling fan 52.
The scroll casing 75c opens the suction port 75a toward the vehicle upper side and opens the discharge port 75b toward the vehicle front side.
During operation, the cooling fan 75 directly sucks air from the suction port 75a into the scroll casing 75c.
 前記ファンダクト76は、図4に示すように、一端がスクロールケーシング75cの吐出口75bに連結され、他端が充電器37の冷却風導入口37aに連結される。ここで、冷却風導入口37aは、充電器37の車幅方向側面(右端面)に設定される。これにより、ファンダクト76は、中間部が車両左側に向かって屈曲している。このファンダクト76は、冷却ファン75の作動時には、吐出口75bからの冷却風を、冷却風導入口37aから充電器37の内部に導入する。 As shown in FIG. 4, the fan duct 76 has one end connected to the discharge port 75b of the scroll casing 75c and the other end connected to the cooling air introduction port 37a of the charger 37. Here, the cooling air introduction port 37 a is set on the side surface (right end surface) of the charger 37 in the vehicle width direction. As a result, the fan duct 76 has a middle portion bent toward the left side of the vehicle. When the cooling fan 75 is operated, the fan duct 76 introduces cooling air from the discharge port 75b into the charger 37 from the cooling air introduction port 37a.
 前記バッテリ用排気ダクト58は、図2~図5に示すように一端が走行用バッテリ31の冷却風排出口31eに連結され、他端が車両側面の車体パネル(図示せず)に形成したドラフター開口3a(図4参照)に連結される。このバッテリ用排気ダクト58は、車両上下方向に延びる縦長の流路断面積を有し(図6参照)、冷却風排出口31eから車両後方に延在された排気部58aと、排気部58aの後端から車両左側に向かって延在された最終排気部58bと、を有する。前記排気部58aは、車幅方向右側面58cの上部位置であって最終排気部58bに対向する部分に、充電器用排気ダクト61が連結する接続開口58dが形成されている(図3,5参照)。
この排気部58aの流路断面積は、冷却ファン52の送風能力(送風量)に応じて設定される冷却風排出口31eの開口面積と同程度に設定される。最終排気部58bの流路断面積は、排気部58aの流路断面積と接続開口58dの開口面積の合計よりも大きく設定される。ドラフター開口3aの開口面積は、最終排気部58bの流路断面積と同程度に設定される。すなわち、ドラフター開口3aの開口面積は、冷却風排出口31eの開口面積や、接続開口58dの開口面積よりも大きく設定されることとなる。
また、冷却風排出口31eは、図2,図3に示すように、走行用バッテリ31の車幅方向他端部(左端部)であって車両後方側の位置に設定される。冷却ファン52の作動時には、走行用バッテリ31の内部通路を経由して温まった冷却風は、車両後方に向かって開口する冷却風排出口31eから排出され、バッテリ用排気ダクト58を介してドラフター開口3aへと排出される。
As shown in FIGS. 2 to 5, the battery exhaust duct 58 has one end connected to the cooling air discharge port 31e of the traveling battery 31 and the other end formed on a vehicle body panel (not shown) on the side of the vehicle. It is connected to the opening 3a (see FIG. 4). The battery exhaust duct 58 has a vertically long channel cross-sectional area extending in the vehicle vertical direction (see FIG. 6), an exhaust part 58a extending rearward from the cooling air discharge port 31e, and an exhaust part 58a. And a final exhaust part 58b extending from the rear end toward the left side of the vehicle. The exhaust portion 58a is formed with a connection opening 58d connected to the charger exhaust duct 61 at a portion facing the final exhaust portion 58b at the upper position on the right side surface 58c in the vehicle width direction (see FIGS. 3 and 5). ).
The flow passage cross-sectional area of the exhaust part 58a is set to be approximately the same as the opening area of the cooling air discharge port 31e set in accordance with the blowing capacity (blowing amount) of the cooling fan 52. The channel cross-sectional area of the final exhaust part 58b is set larger than the sum of the channel cross-sectional area of the exhaust part 58a and the opening area of the connection opening 58d. The opening area of the drafter opening 3a is set to be approximately the same as the flow path cross-sectional area of the final exhaust part 58b. That is, the opening area of the drafter opening 3a is set larger than the opening area of the cooling air discharge port 31e and the opening area of the connection opening 58d.
Further, as shown in FIGS. 2 and 3, the cooling air discharge port 31e is set at a position on the vehicle rear side, which is the other end portion (left end portion) in the vehicle width direction of the traveling battery 31. During the operation of the cooling fan 52, the cooling air heated via the internal passage of the traveling battery 31 is discharged from the cooling air discharge port 31e that opens toward the rear of the vehicle, and the draft opening is opened via the battery exhaust duct 58. It is discharged to 3a.
 前記第1コンバータ用排気ダクト59は、一端が第1DC/DCコンバータ35の冷却風排出口35cに連結され、他端が充電器用排気ダクト61の途中位置に形成された後述する第1接続開口61eに連結される。第1コンバータ用排気ダクト59は、冷却風排出口35cから車両左側に向かって延在されたのち、車両下方に向かって屈曲されている。
第1コンバータ用排気ダクト59の流路断面積は、冷却ファン71の送風能力(送風量)に応じて設定された冷却風排出口35cの開口面積と同程度に設定され、全長にわたってほぼ一定である。すなわち、第1接続開口61eの開口面積は、冷却ファン71の送風能力(送風量)に応じた大きさに設定される。
また、冷却風排出口35cは、図3,図4に示すように、第1DC/DCコンバータ35の車両後方に臨む後側面35dであって、車幅方向他端部(左端部)位置に設定される。冷却ファン71の作動時には、第1DC/DCコンバータ35の内部を経由して温まった冷却風は、車両後方に向かって開口する冷却風排出口35cから排出され、第1コンバータ用排気ダクト59を介して車両下方へ導かれて、充電器用排気ダクト61へと排出される。
The first converter exhaust duct 59 has one end connected to the cooling air discharge port 35c of the first DC / DC converter 35 and the other end formed in the middle position of the charger exhaust duct 61, which will be described later. Connected to The first converter exhaust duct 59 extends from the cooling air discharge port 35c toward the left side of the vehicle and is then bent downward.
The cross-sectional area of the flow path of the first converter exhaust duct 59 is set to be approximately the same as the opening area of the cooling air discharge port 35c set according to the air blowing capacity (air flow rate) of the cooling fan 71, and is substantially constant over the entire length. is there. In other words, the opening area of the first connection opening 61e is set to a size according to the blowing capacity (the blowing volume) of the cooling fan 71.
Further, as shown in FIGS. 3 and 4, the cooling air discharge port 35c is a rear side surface 35d of the first DC / DC converter 35 that faces the rear of the vehicle, and is set at the other end (left end) position in the vehicle width direction. Is done. During the operation of the cooling fan 71, the cooling air warmed through the inside of the first DC / DC converter 35 is discharged from the cooling air discharge port 35c that opens toward the rear of the vehicle, and passes through the first converter exhaust duct 59. Then, the vehicle is guided downward and discharged to the charger exhaust duct 61.
 前記第2コンバータ用排気ダクト60は、一端が第2DC/DCコンバータ36の冷却風排出口36cに連結され、他端が充電器用排気ダクト61の途中位置に形成された後述する第2接続開口61fに連結される。第2コンバータ用排気ダクト60は、冷却風排出口36cから車両左側に向かって延在されたのち、車両下方に向かって屈曲されている。
第2コンバータ用排気ダクト60の流路断面積は、冷却ファン72の送風能力(送風量)に応じて設定された冷却風排出口36cの開口面積と同程度に設定され、全長にわたってほぼ一定である。すなわち、第2接続開口61fの開口面積は、冷却ファン72の送風能力(送風量)に応じた大きさに設定される。
また、冷却風排出口36cは、図4に示すように、第2DC/DCコンバータ36の車両後方に臨む後側面36dであって、車幅方向他端部(左端部)位置に設定される。冷却ファン72の作動時には、第2DC/DCコンバータ36の内部を経由して温まった冷却風は、車両後方に向かって開口する冷却風排出口36cから排出され、第2コンバータ用排気ダクト60を介して車両下方へ導かれて、充電器用排気ダクト61へと排出される。
The second converter exhaust duct 60 has one end connected to the cooling air discharge port 36c of the second DC / DC converter 36 and the other end formed in the middle position of the charger exhaust duct 61. Connected to The second converter exhaust duct 60 extends from the cooling air discharge port 36c toward the left side of the vehicle and is then bent downward.
The cross-sectional area of the flow path of the second converter exhaust duct 60 is set to be approximately the same as the opening area of the cooling air discharge port 36c set according to the air blowing capacity (air flow rate) of the cooling fan 72, and is substantially constant over the entire length. is there. In other words, the opening area of the second connection opening 61f is set to a size according to the blowing capacity (the blowing volume) of the cooling fan 72.
Further, as shown in FIG. 4, the cooling air discharge port 36 c is a rear side surface 36 d of the second DC / DC converter 36 that faces the rear of the vehicle, and is set at the other end (left end) position in the vehicle width direction. During the operation of the cooling fan 72, the cooling air warmed through the inside of the second DC / DC converter 36 is discharged from the cooling air discharge port 36c that opens toward the rear of the vehicle, and passes through the second converter exhaust duct 60. Then, the vehicle is led downward and discharged to the charger exhaust duct 61.
 前記充電器用排気ダクト61は、一端が充電器37の冷却風排出口37bに連結され、他端がバッテリ用排気ダクト58の途中位置に形成された接続開口58dに連結される。
この充電器用排気ダクト61は、冷却風排出口37bから車両左側に向かって延在された排気部61aと、排気部61aの後端から車両後方に向かって延在された集合部61bと、集合部61bから車両下方に向かって延在された延長部61cと、を有する。前記集合部61bは、車両上方に面した上面61dに、第1コンバータ用排気ダクト59が連結する第1接続開口61eと、第2コンバータ用排気ダクト60が連結する第2接続開口61fが形成されている(図5参照)。なお、第1,第2接続開口61e,61fは、集合部61bの延在方向に並んで配置される。
排気部61aの流路断面積は、冷却ファン75の送風能力(送風量)に応じて設定された冷却風排出口37bの開口面積と同程度に設定される。集合部61b及び延長部61cの流路断面積は、排気部61aの流路断面積と第1,第2接続開口61e,61fの開口面積の合計よりも大きく設定される。すなわち、バッテリ用排気ダクト58に形成された接続開口58dの開口面積は、排気部61aの流路断面積と第1,第2接続開口61e,61fの開口面積の合計よりも大きく設定される。これにより、接続開口58dの開口面積は、第1接続開口61eの開口面積、又は第2接続開口61fの開口面積のいずれよりも大きく設定されることとなる。
また、冷却風排出口37bは、図4に示すように、充電器37の車幅方向他端部(左端部)に設定される。冷却ファン75の作動時には、充電器37の内部を経由して温まった冷却風は、車両左側方に向かって開口する冷却風排出口37bから排出され、充電器用排気ダクト61を介して車両後方へ導かれて、両コンバータ用排気ダクト59,60からの冷却風と合わせてバッテリ用排気ダクト58へと排出される。
One end of the charger exhaust duct 61 is connected to the cooling air discharge port 37 b of the charger 37, and the other end is connected to a connection opening 58 d formed in the middle of the battery exhaust duct 58.
The charger exhaust duct 61 includes an exhaust part 61a extending from the cooling air outlet 37b toward the left side of the vehicle, a collecting part 61b extending from the rear end of the exhaust part 61a toward the rear of the vehicle, And an extended portion 61c extending from the portion 61b toward the vehicle lower side. In the collecting portion 61b, a first connection opening 61e connected to the first converter exhaust duct 59 and a second connection opening 61f connected to the second converter exhaust duct 60 are formed on an upper surface 61d facing the vehicle upper side. (See FIG. 5). The first and second connection openings 61e and 61f are arranged side by side in the extending direction of the collective portion 61b.
The cross-sectional area of the flow path of the exhaust part 61a is set to be approximately the same as the opening area of the cooling air discharge port 37b set according to the air blowing capacity (air flow rate) of the cooling fan 75. The flow passage cross-sectional area of the collecting portion 61b and the extension portion 61c is set larger than the sum of the flow passage cross-sectional area of the exhaust portion 61a and the opening areas of the first and second connection openings 61e and 61f. That is, the opening area of the connection opening 58d formed in the battery exhaust duct 58 is set larger than the sum of the flow path cross-sectional area of the exhaust part 61a and the opening areas of the first and second connection openings 61e and 61f. Thereby, the opening area of the connection opening 58d is set larger than either the opening area of the first connection opening 61e or the opening area of the second connection opening 61f.
Further, as shown in FIG. 4, the cooling air discharge port 37 b is set at the other end portion (left end portion) of the charger 37 in the vehicle width direction. When the cooling fan 75 is activated, the cooling air warmed through the inside of the charger 37 is discharged from the cooling air discharge port 37b that opens toward the left side of the vehicle and travels backward through the charger exhaust duct 61. It is guided and discharged to the battery exhaust duct 58 together with the cooling air from the converter exhaust ducts 59 and 60.
 すなわち、4つの排気ダクト58,59,60,61は、排出経路を共用する構造とし、全ての最終排出口をドラフター開口3aとし、車体を構成するインナーパネルとアウターパネルの隙間空間を介して冷却後の暖まった空気を外気へ排出するようにしている。 That is, the four exhaust ducts 58, 59, 60, 61 have a structure sharing a discharge path, all the final discharge ports are drafter openings 3a, and are cooled through a gap space between the inner panel and the outer panel constituting the vehicle body. The later warm air is discharged to the outside air.
 一方、各冷却ファン52,71,72,75における送風能力(送風量)は、走行用バッテリ31を冷却するための冷却ファン52が最も高く、次いで充電器37を冷却するための冷却ファン75が高い。そして、最も送風能力が低いのは、第1DC/DCコンバータ35を冷却するための冷却ファン71と第2DC/DCコンバータ36を冷却するための冷却ファン72となっている。これに対し、各冷却風排出口31e,35c,36c,37bの開口面積は、各冷却ファン52,71,72,75の送風能力に応じて設定される。
このため、各冷却風排出口31e,35c,36c,37bのうち、走行用バッテリ31を冷却した冷却風が排出される冷却風排出口31eの開口面積が最も大きく設定され、充電器37を冷却した冷却風が排出される冷却風排出口75の開口面積が次に大きく設定される。そして、第1DC/DCコンバータ35を冷却した冷却風が排出される冷却風排出口35cと、第2DC/DCコンバータ36を冷却した冷却風が排出される冷却風排出口36cの開口面積が最も小さく設定される。
On the other hand, the cooling fan 52, 71, 72, 75 has the highest blowing capacity (air flow rate) for the cooling fan 52 for cooling the battery 31 for traveling, and then the cooling fan 75 for cooling the charger 37. high. The lowest blowing capacity is the cooling fan 71 for cooling the first DC / DC converter 35 and the cooling fan 72 for cooling the second DC / DC converter 36. On the other hand, the opening area of each cooling air discharge port 31e, 35c, 36c, 37b is set according to the ventilation capacity of each cooling fan 52, 71, 72, 75.
Therefore, among the cooling air discharge ports 31e, 35c, 36c, and 37b, the opening area of the cooling air discharge port 31e through which the cooling air that has cooled the traveling battery 31 is discharged is set to be the largest, and the charger 37 is cooled. The opening area of the cooling air outlet 75 through which the cooled air is discharged is set to the next largest. And the opening area of the cooling air discharge port 35c from which the cooling air which cooled the 1st DC / DC converter 35 is discharged, and the cooling air discharge port 36c from which the cooling air which cooled the 2nd DC / DC converter 36 is discharged is the smallest. Is set.
 [バッテリ系要素のハーネス配策構成]
 図7は、実施例1のバッテリ系要素の配置構造におけるハーネス配策状態を示す斜視図である。図8は、実施例1のバッテリ系要素の配置構造におけるハーネス配策状態を示す平面図である。
[Battery element harness configuration]
FIG. 7 is a perspective view illustrating a harness arrangement state in the battery system element arrangement structure according to the first embodiment. FIG. 8 is a plan view illustrating a harness arrangement state in the battery system element arrangement structure according to the first embodiment.
 前記電力線ハーネスXは、走行用バッテリ31の上段バッテリ31cの車幅方向左側面31dと、ジャンクションボックス34の車幅方向右側面34aとの間に配策されている。ここで、上段バッテリ31cの車幅方向左側面31dとジャンクションボックス34の車幅方向右側面34aは、近接した状態で対向しており、この間に配策されるバーネスXはほとんど露出することはない。 The power line harness X is arranged between the vehicle width direction left side surface 31d of the upper battery 31c of the traveling battery 31 and the vehicle width direction right side surface 34a of the junction box 34. Here, the left side surface 31d in the vehicle width direction of the upper battery 31c and the right side surface 34a in the vehicle width direction of the junction box 34 face each other in a close proximity, and the burner X arranged between them is hardly exposed. .
 前記電力線ハーネスYは、図8に示すように、ジャンクションボックス34の車両後方に臨む後側面34bと、第1DC/DCコンバータ35の車両前方に臨む前側面35eとの間に配策されている。ここで、この電力線ハーネスYは、一端がジャンクションボックス34の後側面34bに接続されてから車両左側に向かって配策された後、第1フレーム45の上下方向フレーム部45cの一つに沿いながら車両上方に向かって配策される。さらに、第1フレーム45上に設置された第2フレーム46の上面46aに沿って車両左側に向かって配策された後、車両前方に向けられてファンダクト73の屈曲部73aの下方を通ってから、車両左側に向けられて第1DC/DCコンバータ35の前側面35eに他端が接続されている。
つまり、電力線ハーネスYの途中位置は、第2フレーム46の上面46aとファンダクト73の屈曲部73aとの間の隙間Sを貫通するように配策される。
なお、図8中、N1は電力線ハーネスYの途中位置に設けられたコネクタであり、第2フレーム46の上面46aに固定されている。このコネクタN1は、ファンダクト73に対し、車両上下方向で、少なくとも一部が重複するように配置される。
As shown in FIG. 8, the power line harness Y is arranged between a rear side surface 34 b facing the vehicle rear side of the junction box 34 and a front side surface 35 e facing the vehicle front side of the first DC / DC converter 35. Here, the power line harness Y is routed toward the left side of the vehicle after one end is connected to the rear side surface 34b of the junction box 34, and then along one of the vertical frame portions 45c of the first frame 45. Arranged toward the top of the vehicle. Further, after being routed toward the left side of the vehicle along the upper surface 46a of the second frame 46 installed on the first frame 45, it is directed forward of the vehicle and passes below the bent portion 73a of the fan duct 73. The other end is connected to the front side surface 35e of the first DC / DC converter 35 toward the left side of the vehicle.
That is, the middle position of the power line harness Y is arranged so as to penetrate the gap S between the upper surface 46 a of the second frame 46 and the bent portion 73 a of the fan duct 73.
In FIG. 8, N <b> 1 is a connector provided in the middle of the power line harness Y, and is fixed to the upper surface 46 a of the second frame 46. The connector N1 is arranged so that at least a part thereof overlaps with the fan duct 73 in the vehicle vertical direction.
 前記電力線ハーネスZは、図8に示すように、ジャンクションボックス34の車両後方に臨む後側面34bと、第2DC/DCコンバータ36の車両前方に臨む前側面36eとの間に配策されている。ここで、この電力線ハーネスZは、一端がジャンクションボックス34の後側面34bに接続されてから車両左側に向かって配策された後、第1フレーム45の上下方向フレーム部45cの一つに沿いながら車両上方に向かって配策される。さらに、第1フレーム45上に設置された第2フレーム46の上面46aに沿って車両左側に向かって配策された後、車両前方に向けられてファンダクト73の屈曲部73aの下方を通ってから、ファンダクト74の屈曲部74aの下方を通り、その後、車両左側に向けられて第2DC/DCコンバータ36の前側面36eに他端が接続されている。
つまり、電力線ハーネスZの途中位置は、第2フレーム46の上面46aとファンダクト73の屈曲部73aとの間の隙間S及びファンダクト74の屈曲部74aとの間の隙間S(図2参照)をそれぞれ貫通するように配策される。
なお、図8中、N2は電力線ハーネスZの途中位置に設けられたコネクタであり、第2フレーム46の上面46aに固定されている。このコネクタN2は、ファンダクト74に対し、車両上下方向で、少なくとも一部が重複するように配置される。
As shown in FIG. 8, the power line harness Z is arranged between a rear side surface 34 b facing the vehicle rear side of the junction box 34 and a front side surface 36 e facing the vehicle front side of the second DC / DC converter 36. Here, the power line harness Z is routed toward the left side of the vehicle after one end is connected to the rear side surface 34b of the junction box 34, and then along one of the vertical frame portions 45c of the first frame 45. Arranged toward the top of the vehicle. Further, after being routed toward the left side of the vehicle along the upper surface 46a of the second frame 46 installed on the first frame 45, it is directed forward of the vehicle and passes below the bent portion 73a of the fan duct 73. The other end of the second DC / DC converter 36 is connected to the front side surface 36e of the second DC / DC converter 36.
That is, the intermediate position of the power line harness Z is the gap S between the upper surface 46a of the second frame 46 and the bent portion 73a of the fan duct 73 and the gap S between the bent portion 74a of the fan duct 74 (see FIG. 2). Is arranged to penetrate each.
In FIG. 8, N <b> 2 is a connector provided in the middle of the power line harness Z, and is fixed to the upper surface 46 a of the second frame 46. The connector N2 is arranged so that at least a part thereof overlaps with the fan duct 74 in the vehicle vertical direction.
 前記電力線ハーネスAは、ジャンクションボックス34の車両後方に臨む後側面34bと、充電器37の車両後方に臨む後側面37dとの間に配策されている。ここで、この電力線ハーネスAは、一端がジャンクションボックス34の後側面34bに接続されてから車両左側に向かって配策された後、第1フレーム45の上下方向フレーム部45cの一つに沿いながら車両上方に向かって配策される。そして、第1フレーム45の上面45aに沿って車両左側に向かって配策され、車両前方に向けられて充電器37の後側面37dに他端が接続されている。 The power line harness A is arranged between a rear side surface 34b facing the vehicle rear side of the junction box 34 and a rear side surface 37d facing the vehicle rear side of the charger 37. Here, the power line harness A is routed toward the left side of the vehicle after one end is connected to the rear side surface 34b of the junction box 34, and then along one of the vertical frame portions 45c of the first frame 45. Arranged toward the top of the vehicle. The first frame 45 is routed along the upper surface 45a toward the left side of the vehicle, and directed to the front of the vehicle, with the other end connected to the rear side surface 37d of the charger 37.
 前記電力線ハーネスBは、充電ポート38の車両前方に臨む前側面(図示せず)と、充電器37の車両後方に臨む後側面37dとの間に配策されている。ここで、この電力線ハーネスBは、一端が充電ポート38の前側面に接続されてから、第1フレーム45の複数の上下方向フレーム部45cを連結する連結フレーム部45eに沿って車両左側に向かって配策された後、車両上方に向けられて、第1フレーム45の上下方向フレーム部45cの一つに沿って車両上方に向かって配策される。そして、第1フレーム45の上面45aに沿って車両左側に向かって配策され、車両前方に向けられて充電器37の後側面37dに他端が接続されている。 The power line harness B is arranged between the front side (not shown) of the charging port 38 facing the front of the vehicle and the rear side 37d of the charger 37 facing the rear of the vehicle. Here, after one end of the power line harness B is connected to the front side surface of the charging port 38, the power line harness B moves toward the left side of the vehicle along the connecting frame portion 45 e that connects the plurality of vertical frame portions 45 c of the first frame 45. After being routed, the vehicle is directed toward the upper side of the vehicle and routed toward the upper side of the vehicle along one of the vertical frame portions 45c of the first frame 45. The first frame 45 is routed along the upper surface 45a toward the left side of the vehicle, and directed to the front of the vehicle, with the other end connected to the rear side surface 37d of the charger 37.
 なお、この実施例1では、電力線ハーネスY,Z,Aは、ジャンクションボックス34から引き出された後、一つの絶縁カバーによってまとめて被覆される。そして、第1フレーム45の上面45a上において、電力線ハーネスAが分岐する。また、電力線ハーネスY及び電力線ハーネスZは、電力線ハーネスAが分岐した後も一つの絶縁カバーによってまとめて被覆され、第2フレーム46の上面46a上であって、ファンダクト73の屈曲部73aの下方において、互いに分岐する。 In the first embodiment, the power line harnesses Y, Z, and A are pulled out from the junction box 34 and then collectively covered with one insulating cover. Then, the power line harness A branches on the upper surface 45a of the first frame 45. In addition, the power line harness Y and the power line harness Z are collectively covered with one insulating cover even after the power line harness A is branched, on the upper surface 46a of the second frame 46, below the bent portion 73a of the fan duct 73. In FIG.
 次に、作用を説明する。
実施例1のFFプラグインハイブリッド車両の電子制御系要素の配置構造における作用を、「ジャンクションボックスとコンバータ間のハーネス配策作用」、「コンバータの冷却作用」に分けて説明する。
Next, the operation will be described.
The operation of the electronic control system element arrangement structure of the FF plug-in hybrid vehicle according to the first embodiment will be described separately for “harness arrangement operation between the junction box and the converter” and “cooling operation of the converter”.
 [ジャンクションボックスとコンバータ間のハーネス配策作用]
 ジャンクションボックス34と両DC/DCコンバータ35,36をそれぞれ電気的に接続する電力線ハーネスY,Zが、バッテリ系要素の表面に配策される場合、コンバータ周りの作業に対するハーネス保護対策が必要である。以下、これを反映するジャンクションボックスとコンバータ間のハーネス配策作用を説明する。
[Harness routing action between junction box and converter]
When the power line harnesses Y and Z that electrically connect the junction box 34 and both DC / DC converters 35 and 36 are arranged on the surface of the battery system element, it is necessary to take a harness protection measure for the work around the converter. . Hereinafter, the harness routing action between the junction box and the converter reflecting this will be described.
 実施例1において、第2フレーム46は、走行用バッテリ31の車両上方スペースに積層状態で配置され、バッテリ系要素の中で最も上方位置に配置される第1DC/DCコンバータ35及び第2DC/DCコンバータ36を支持している。つまり、この第2フレーム46の上面46aは、両DC/DCコンバータ35,36が配置される面であり、第2フレーム46の上面46aの車両上方スペースはあいている。 In the first embodiment, the second frame 46 is disposed in a stacked state in the vehicle upper space of the traveling battery 31, and the first DC / DC converter 35 and the second DC / DC disposed in the uppermost position among the battery system elements. The converter 36 is supported. That is, the upper surface 46a of the second frame 46 is a surface on which the DC / DC converters 35 and 36 are disposed, and the space above the vehicle on the upper surface 46a of the second frame 46 is open.
 実施例1のハーネス配策構成では、ジャンクションボックス34と第1DC/DCコンバータ35を電気的に接続する電力線ハーネスYは、第2フレーム46の上面46a上において、ファンダクト73の屈曲部73aの下方を通ってから、第1DC/DCコンバータ35の前側面35eに接続されている。すなわち、電力線ハーネスYの途中位置は、第2フレーム46の上面46aとファンダクト73の屈曲部73aとの間の隙間Sを貫通している。 In the harness arrangement configuration of the first embodiment, the power line harness Y that electrically connects the junction box 34 and the first DC / DC converter 35 is below the bent portion 73 a of the fan duct 73 on the upper surface 46 a of the second frame 46. After passing through, it is connected to the front side surface 35e of the first DC / DC converter 35. That is, the middle position of the power line harness Y passes through the gap S between the upper surface 46 a of the second frame 46 and the bent portion 73 a of the fan duct 73.
 これにより、電力線ハーネスYの上方位置にファンダクト73が配置されることになり、ファンダクト73によって電力線ハーネスYの上方が覆われ、電力線ハーネスYが第2フレーム46の車両上方スペースに対して露出することが防止される。この結果、コンバータ周りでの作業時等に、作業者が電力線ハーネスYに接触することをファンダクト73によって防止することができ、この電力線ハーネスYの保護性能を向上することができる。 As a result, the fan duct 73 is disposed above the power line harness Y. The fan duct 73 covers the top of the power line harness Y, and the power line harness Y is exposed to the vehicle upper space of the second frame 46. Is prevented. As a result, it is possible to prevent the operator from coming into contact with the power line harness Y during the work around the converter by the fan duct 73, and the protection performance of the power line harness Y can be improved.
 また、電力線ハーネスYは、ファンダクト73の設定位置を回りこむように配置する必要がないため、電力線ハーネスYの取り回し性(配策性能)を向上することもできる。 In addition, since the power line harness Y does not need to be disposed so as to go around the set position of the fan duct 73, the manageability (routing performance) of the power line harness Y can also be improved.
 さらに、実施例1では、電力線ハーネスYの途中位置に設けられ、第2フレーム46の上面46aに固定されたコネクタN1が、ファンダクト73に対して車両上下方向で少なくとも一部が重複した位置に配置されている。
そのため、このコネクタN1も、ファンダクト73によって、第2フレーム46の車両上方スペースに対して露出することが防止される。そのため、コネクタカバー等が不要となり、部品数の削減・コネクタカバー設置工程の削減・バッテリ系要素の高さ方向寸法の縮小といった効果を奏することができる。
Further, in the first embodiment, the connector N1 provided in the middle position of the power line harness Y and fixed to the upper surface 46a of the second frame 46 is at a position at least partially overlapping with the fan duct 73 in the vehicle vertical direction. Has been placed.
Therefore, this connector N1 is also prevented from being exposed to the vehicle upper space of the second frame 46 by the fan duct 73. This eliminates the need for a connector cover or the like, and can provide effects such as a reduction in the number of parts, a reduction in the connector cover installation process, and a reduction in the height dimension of the battery element.
 そして、ジャンクションボックス34と第2DC/DCコンバータ36を電気的に接続する電力線ハーネスZは、第2フレーム46の上面46a上において、ファンダクト73の屈曲部73aの下方を通ると共に、ファンダクト74の屈曲部74aの下方を通り、第2DC/DCコンバータ36の前側面36eに接続されている。すなわち、電力線ハーネスZの途中位置は、第2フレーム46の上面46aとファンダクト73の屈曲部73aとの間の隙間S、及び、上面46aとファンダクト74の屈曲部74aとの間の隙間S(図2参照)、を順に貫通している。 The power line harness Z that electrically connects the junction box 34 and the second DC / DC converter 36 passes below the bent portion 73a of the fan duct 73 on the upper surface 46a of the second frame 46, and It passes below the bent portion 74 a and is connected to the front side surface 36 e of the second DC / DC converter 36. That is, the intermediate position of the power line harness Z is the gap S between the upper surface 46 a of the second frame 46 and the bent portion 73 a of the fan duct 73 and the gap S between the upper surface 46 a and the bent portion 74 a of the fan duct 74. (See FIG. 2).
 これにより、電力線ハーネスZの上方位置にファンダクト73及びファンダクト74が配置されることになり、ファンダクト73,74によって電力線ハーネスZの上方が覆われる。このため、電力線ハーネスZが第2フレーム46の車両上方スペースに対して露出することが防止される。この結果、コンバータ周りでの作業時等に、作業者が電力線ハーネスZに接触することをファンダクト73,74によって防止することができ、この電力線ハーネスZの保護性能を向上することができる。 Thus, the fan duct 73 and the fan duct 74 are disposed above the power line harness Z, and the fan ducts 73 and 74 cover the upper side of the power line harness Z. For this reason, it is prevented that the power line harness Z is exposed to the vehicle upper space of the second frame 46. As a result, the operator can prevent the fan ducts 73 and 74 from contacting the power line harness Z when working around the converter, and the protection performance of the power line harness Z can be improved.
 また、電力線ハーネスZは、ファンダクト74の設定位置を回りこむように配置する必要がないため、電力線ハーネスZの取り回し性(配策性能)を向上することもできる。 In addition, since the power line harness Z does not need to be disposed so as to go around the set position of the fan duct 74, the manageability (routing performance) of the power line harness Z can be improved.
 さらに、実施例1では、電力線ハーネスZの途中位置に設けられ、第2フレーム46の上面46aに固定されたコネクタN2が、ファンダクト74に対して車両上下方向で少なくとも一部が重複した位置に配置されている。
そのため、このコネクタN2も、ファンダクト74によって、第2フレーム46の車両上方スペースに対して露出することが防止される。そのため、コネクタカバー等が不要となり、部品数の削減・コネクタカバー設置工程の削減・バッテリ系要素の高さ方向寸法の縮小といった効果を奏することができる。
Furthermore, in the first embodiment, the connector N2 that is provided in the middle of the power line harness Z and is fixed to the upper surface 46a of the second frame 46 is at a position at least partially overlapping with the fan duct 74 in the vehicle vertical direction. Has been placed.
Therefore, the connector N2 is also prevented from being exposed to the space above the vehicle in the second frame 46 by the fan duct 74. This eliminates the need for a connector cover or the like, and can provide effects such as a reduction in the number of parts, a reduction in the connector cover installation process, and a reduction in the height dimension of the battery element.
 [コンバータの冷却作用]
 コンバータへの冷却風が流れるファンダクトは、冷却風をスムーズに流すことで冷却ファンの負荷を抑制し、冷却効率を向上することができる。そのため、ファンダクト内では、できるだけ多くの冷却風をスムーズに流す必要がある。以下、これを反映するコンバータの冷却作用を、図9の実施例1のコンバータ冷却風の流れを模式的に示す図に基づいて説明する。
[Converter cooling]
The fan duct through which the cooling air to the converter flows allows the cooling air to flow smoothly, thereby suppressing the load of the cooling fan and improving the cooling efficiency. Therefore, it is necessary to smoothly flow as much cooling air as possible in the fan duct. Hereinafter, the cooling action of the converter reflecting this will be described based on a diagram schematically showing the flow of the converter cooling air of the first embodiment of FIG.
 実施例1において、第1DC/DCコンバータ35は、第1コンバータ用空冷ファンユニット55からの冷却風によって冷却される。ここで、第1コンバータ用空冷ファンユニット55のファンダクト73は、一端を車幅方向右側に向け、他端を車両下方に向けると共に、中間部に車両上方に屈曲した屈曲部73aを有している。 In the first embodiment, the first DC / DC converter 35 is cooled by cooling air from the first converter air-cooling fan unit 55. Here, the fan duct 73 of the first converter air-cooling fan unit 55 has one end directed to the right in the vehicle width direction, the other end directed downward in the vehicle, and a bent portion 73a bent upward in the vehicle at an intermediate portion. Yes.
 冷却ファン71が作動すると、この冷却ファン71は、車幅方向右側に臨む吸込み口71aから空気を吸い込み、車幅方向左側に向かって吐出口71bから冷却風として空気を吐出する。
そして、この冷却ファン71の吐出口71bから吐出された冷却風は、ファンダクト73によって一旦車両上方に案内される(矢印α)。その後、この冷却風は、屈曲部73aに沿いながら車両下方に向かって流れ方向が円滑に変更される(矢印β)。最終的に、第1DC/DCコンバータ35の内部に対しては、冷却風導入口35aから車両下方向に向かって導入される(矢印γ)。
When the cooling fan 71 is operated, the cooling fan 71 sucks air from the suction port 71a facing the right side in the vehicle width direction and discharges air as cooling air from the discharge port 71b toward the left side in the vehicle width direction.
The cooling air discharged from the discharge port 71b of the cooling fan 71 is once guided upward by the fan duct 73 (arrow α). Thereafter, the flow direction of the cooling air is smoothly changed toward the vehicle lower side along the bent portion 73a (arrow β). Finally, it is introduced into the first DC / DC converter 35 from the cooling air introduction port 35a toward the vehicle downward direction (arrow γ).
 このため、冷却ファン71からの冷却風は、ファンダクト73内を円滑に流れ、スムーズな冷却風の案内を行なうことができる。この結果、冷却ファン71の負荷を抑制し、冷却効率を向上することができる。 For this reason, the cooling air from the cooling fan 71 flows smoothly in the fan duct 73, and smooth cooling air can be guided. As a result, the load of the cooling fan 71 can be suppressed and the cooling efficiency can be improved.
 また、この実施例1では、第1DC/DCコンバータ35の横位置(側方)に冷却ファン71を配置しており、第1DC/DCコンバータ35と冷却ファン71とが車両上下方向に重複することはない。このため、第2フレーム46に作用する重量が分散し、走行用バッテリ31の車両上方スペースに、バランスよくバッテリ系要素の配置を行なうことができる。 Further, in the first embodiment, the cooling fan 71 is disposed in the lateral position (side) of the first DC / DC converter 35, and the first DC / DC converter 35 and the cooling fan 71 overlap in the vehicle vertical direction. There is no. For this reason, the weight which acts on the 2nd flame | frame 46 disperses | distributes, and can arrange | position a battery type element in the vehicle upper space of the battery 31 for driving | running | working with sufficient balance.
 さらに、実施例1では、第1DC/DCコンバータ35の冷却風導入口35aは、第1DC/DCコンバータ35の車両上方に面した上面35bに形成されている。そのため、第1DC/DCコンバータ35の車両上下寸法Hの増大を抑えつつ、冷却風導入口35aの開口面積を十分に確保することができる。
つまり、図10Aに模式的に示すように、第1DC/DCコンバータ35の右側面(横位置(側方)に配置された冷却ファン71に対向する面)に冷却風導入口35aを設けた場合では、冷却風導入口35aの開口面積を十分に確保するため、第1DC/DCコンバータ35の車両上下寸法Hを大きくする必要が生じてしまう。
しかしながら、冷却風導入口35aを第1DC/DCコンバータ35の上面35bに形成することで、第1DC/DCコンバータ35の車両上下寸法Hを大きくしなくても、冷却風導入口35aの開口面積を十分に確保することができる。この結果、冷却ファン71からの冷却風の流量を大きく確保して、第1DC/DCコンバータ35の冷却性能の向上を図ることができる。
Further, in the first embodiment, the cooling air inlet 35a of the first DC / DC converter 35 is formed on the upper surface 35b of the first DC / DC converter 35 facing the vehicle upper side. Therefore, the opening area of the cooling air inlet 35a can be sufficiently secured while suppressing an increase in the vehicle vertical dimension H of the first DC / DC converter 35.
That is, as schematically shown in FIG. 10A, when the cooling air inlet 35a is provided on the right side surface of the first DC / DC converter 35 (the surface facing the cooling fan 71 disposed in the lateral position (side)). Then, it is necessary to increase the vehicle vertical dimension H of the first DC / DC converter 35 in order to sufficiently secure the opening area of the cooling air inlet 35a.
However, by forming the cooling air inlet 35a on the upper surface 35b of the first DC / DC converter 35, the opening area of the cooling air inlet 35a can be increased without increasing the vehicle vertical dimension H of the first DC / DC converter 35. It can be secured sufficiently. As a result, it is possible to secure a large flow rate of the cooling air from the cooling fan 71 and improve the cooling performance of the first DC / DC converter 35.
 一方、冷却ファン71の吐出口71bは、第1DC/DCコンバータ35に臨む位置に形成されている。つまり、吐出口71bは、第1DC/DCコンバータ35の車幅方向右側面に対向するケーシング71aの車幅方向左側面に設定されている。
そのため、例えば図10Bに模式的に示すように、冷却ファン71の吐出口71bを車両上方に向けて設定した場合と比較すると、ファンダクト73の上方への突出寸法の増大を抑えることができる。
On the other hand, the discharge port 71 b of the cooling fan 71 is formed at a position facing the first DC / DC converter 35. That is, the discharge port 71b is set on the left side surface in the vehicle width direction of the casing 71a facing the right side surface in the vehicle width direction of the first DC / DC converter 35.
Therefore, for example, as schematically shown in FIG. 10B, an increase in the protruding dimension of the fan duct 73 upward can be suppressed as compared with the case where the discharge port 71b of the cooling fan 71 is set upward of the vehicle.
 そして、この実施例1では、図7に示すように、第1DC/DCコンバータ35及び冷却ファン71よりも車両下方位置に、走行用バッテリ31の充電を制御する充電器37が配置され、ジャンクションボックス34は、この充電器37よりも車両下方位置に配置されている。
つまり、この構成によって、ジャンクションボックス34が冷却ファン71よりも車両下方に配置されることになり、冷却ファン71の吸込み口71aの周囲の空間である、空気吸込み空間を大きく確保することができる。このため、冷却ファン71への空気の取り込みをスムーズに行なうことができる。
In the first embodiment, as shown in FIG. 7, a charger 37 that controls the charging of the traveling battery 31 is disposed below the first DC / DC converter 35 and the cooling fan 71, and a junction box is provided. 34 is arranged at a lower position of the vehicle than the charger 37.
That is, with this configuration, the junction box 34 is disposed below the cooling fan 71 and the air suction space, which is the space around the suction port 71 a of the cooling fan 71, can be ensured. For this reason, air can be taken into the cooling fan 71 smoothly.
 そして、実施例1において、第2DC/DCコンバータ36は、第2コンバータ用空冷ファンユニット56からの冷却風によって冷却される。ここで、第2コンバータ用空冷ファンユニット56のファンダクト74は、一端を車幅方向右側に向け、他端を車両下方に向けると共に、中間部に車両上方に屈曲した屈曲部74aを有している。 In the first embodiment, the second DC / DC converter 36 is cooled by the cooling air from the second converter air-cooling fan unit 56. Here, the fan duct 74 of the second converter air-cooling fan unit 56 has one end directed to the right in the vehicle width direction, the other end directed downward in the vehicle, and a bent portion 74a bent upward in the vehicle at an intermediate portion. Yes.
 冷却ファン72が作動すると、この冷却ファン72は、車幅方向右側に臨む吸込み口72aから空気を吸い込み、車幅方向左側に向かって吐出口72bから冷却風として空気を吐出する。
そして、この冷却ファン72の吐出口72bから吐出された冷却風は、ファンダクト73と同様に、ファンダクト74によって一旦車両上方に案内される。その後、この冷却風は、屈曲部74aに沿いながら車両下方に向かって流れ方向が円滑に変更される。最終的に、第2DC/DCコンバータ36の内部に対しては、冷却風導入口36aから車両下方向に向かって導入される。
When the cooling fan 72 is activated, the cooling fan 72 sucks air from the suction port 72a facing the right side in the vehicle width direction and discharges air as cooling air from the discharge port 72b toward the left side in the vehicle width direction.
The cooling air discharged from the discharge port 72 b of the cooling fan 72 is once guided upward of the vehicle by the fan duct 74, as with the fan duct 73. Thereafter, the flow direction of the cooling air is smoothly changed toward the vehicle lower side along the bent portion 74a. Finally, the air is introduced into the second DC / DC converter 36 from the cooling air introduction port 36a in the downward direction of the vehicle.
 このため、冷却ファン72からの冷却風は、ファンダクト74内を円滑に流れ、スムーズな冷却風の案内を行なうことができる。この結果、冷却ファン72の負荷を抑制し、冷却効率を向上することができる。 For this reason, the cooling air from the cooling fan 72 flows smoothly in the fan duct 74 and can guide the cooling air smoothly. As a result, the load of the cooling fan 72 can be suppressed and the cooling efficiency can be improved.
 また、この実施例1では、第2DC/DCコンバータ36の横位置(側方)に冷却ファン72を配置しており、第2DC/DCコンバータ36と冷却ファン72とが車両上下方向に重複することはない。このため、第2フレーム46に作用する重量が分散し、走行用バッテリ31の車両上方スペースに、バランスよくバッテリ系要素の配置を行なうことができる。 Further, in the first embodiment, the cooling fan 72 is arranged at the lateral position (side) of the second DC / DC converter 36, and the second DC / DC converter 36 and the cooling fan 72 overlap in the vehicle vertical direction. There is no. For this reason, the weight which acts on the 2nd flame | frame 46 disperses | distributes, and can arrange | position a battery type element in the vehicle upper space of the battery 31 for driving | running | working with sufficient balance.
 さらに、実施例1では、第2DC/DCコンバータ36の冷却風導入口36aは、第2DC/DCコンバータ36の車両上方に面した上面36bに形成されている。そのため、第1DC/DCコンバータ35と同様に、第2DC/DCコンバータ36の車両上下寸法の増大を抑えつつ、冷却風導入口36aの開口面積を十分に確保することができる。この結果、冷却ファン72からの冷却風の流量を大きく確保して、第2DC/DCコンバータ36の冷却性能の向上を図ることができる。 Furthermore, in the first embodiment, the cooling air inlet 36a of the second DC / DC converter 36 is formed on the upper surface 36b of the second DC / DC converter 36 facing the upper side of the vehicle. Therefore, similarly to the first DC / DC converter 35, the opening area of the cooling air inlet 36a can be sufficiently secured while suppressing an increase in the vehicle vertical dimension of the second DC / DC converter 36. As a result, a large flow rate of the cooling air from the cooling fan 72 can be secured, and the cooling performance of the second DC / DC converter 36 can be improved.
 一方、冷却ファン72の吐出口72bは、第2DC/DCコンバータ36に臨む位置に形成されている。つまり、吐出口72bは、第2DC/DCコンバータ36の車幅方向右側面に対向するケーシング72aの車幅方向左側面に設定されている。
そのため、例えば冷却ファンの吐出口を車両上方に向けて設定した場合と比較すると、ファンダクト74の上方への突出寸法の増大を抑えることができる。
On the other hand, the discharge port 72 b of the cooling fan 72 is formed at a position facing the second DC / DC converter 36. That is, the discharge port 72b is set on the left side surface in the vehicle width direction of the casing 72a facing the right side surface in the vehicle width direction of the second DC / DC converter 36.
Therefore, for example, as compared with the case where the discharge port of the cooling fan is set toward the upper side of the vehicle, an increase in the protruding dimension of the fan duct 74 upward can be suppressed.
 そして、この実施例1では、図7に示すように、第2DC/DCコンバータ36及び冷却ファン72よりも車両下方位置に、走行用バッテリ31の充電を制御する充電器37が配置され、ジャンクションボックス34は、この充電器37よりも車両下方位置に配置されている。
つまり、この構成によって、ジャンクションボックス34が冷却ファン72よりも車両下方に配置されることになり、冷却ファン72の吸込み口72aの周囲の空間である、空気吸込み空間を大きく確保することができる。このため、冷却ファン72への空気の取り込みをスムーズに行なうことができる。
In the first embodiment, as shown in FIG. 7, a charger 37 that controls the charging of the traveling battery 31 is disposed at a position below the second DC / DC converter 36 and the cooling fan 72, and a junction box is provided. 34 is arranged at a lower position of the vehicle than the charger 37.
That is, with this configuration, the junction box 34 is arranged below the cooling fan 72 in the vehicle, and a large air suction space that is a space around the suction port 72a of the cooling fan 72 can be secured. For this reason, air can be taken into the cooling fan 72 smoothly.
 次に、効果を説明する。
実施例1のFFプラグインハイブリッド車両の電子制御系要素の配置構造にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the arrangement structure of the electronic control system elements of the FF plug-in hybrid vehicle of the first embodiment, the effects listed below can be obtained.
 (1) 車両に搭載された電気機器(第1補機用バッテリ)32に入力される電力の電圧を変換するコンバータ(第1DC/DCコンバータ)35と、
 リレー回路により電流の供給/遮断/分配を行なうジャンクションボックス34と、
 前記コンバータ35の側方位置に配置され、前記コンバータ35に冷却風を送風するコンバータ冷却ファン(冷却ファン)71と、
 一端が前記コンバータ冷却ファン71の吐出口71bに連結され、他端が前記コンバータ35の冷却風導入口35aに連結されると共に、中間部に車両上方に向かって屈曲した屈曲部73aを有するファンダクト73と、
 前記コンバータ35と前記ジャンクションボックス34とを電気的に接続すると共に、
前記ファンダクト73の屈曲部73aの下側を通るように配策される電力線ハーネスYと、
 を備える構成とした。
 これにより、車両に搭載される第1DC/DCコンバータ35とジャンクションボックス34とを電気的に接続する電力線ハーネスYの保護性能を向上することができる。
(1) a converter (first DC / DC converter) 35 that converts the voltage of electric power input to an electric device (first auxiliary battery) 32 mounted on the vehicle;
A junction box 34 for supplying / cutting / distributing current by a relay circuit;
A converter cooling fan (cooling fan) 71 which is disposed at a side position of the converter 35 and blows cooling air to the converter 35;
One end is connected to the discharge port 71b of the converter cooling fan 71, the other end is connected to the cooling air introduction port 35a of the converter 35, and a fan duct having a bent portion 73a bent toward the upper side of the vehicle at an intermediate portion. 73,
While electrically connecting the converter 35 and the junction box 34,
A power line harness Y arranged so as to pass below the bent portion 73a of the fan duct 73;
It was set as the structure provided with.
Thereby, the protection performance of the power line harness Y which electrically connects the first DC / DC converter 35 and the junction box 34 mounted on the vehicle can be improved.
 (2) 前記コンバータ(第1DC/DCコンバータ)35の冷却風導入口35aは、前記コンバータ35の車両上方に面した上面35bに形成される構成とした。
 これにより、第1DC/DCコンバータ35の車両上下寸法Hの増大を抑えつつ、冷却風導入口35aの開口面積を十分に確保し、冷却ファン71からの冷却風の流量を大きく確保でき、第1DC/DCコンバータ35の冷却性能の向上を図ることができる。
(2) The cooling air introduction port 35a of the converter (first DC / DC converter) 35 is formed on the upper surface 35b of the converter 35 facing the upper side of the vehicle.
Thereby, while suppressing the increase in the vehicle vertical dimension H of the first DC / DC converter 35, the opening area of the cooling air inlet 35a can be sufficiently secured, and the flow rate of the cooling air from the cooling fan 71 can be ensured to be large. The cooling performance of the DC converter 35 can be improved.
 (3) 前記コンバータ冷却ファン(冷却ファン)71の吐出口71bは、前記コンバータ(第1DC/DCコンバータ)35に臨む位置に形成される構成とした。
 これにより、ファンダクト73の車両上方への突出寸法の増大を抑制することができる。
(3) The discharge port 71b of the converter cooling fan (cooling fan) 71 is formed at a position facing the converter (first DC / DC converter) 35.
Thereby, increase of the protrusion dimension to the vehicle upper direction of the fan duct 73 can be suppressed.
 (4) 前記コンバータ(第1DC/DCコンバータ)35及び前記コンバータ冷却ファン(冷却ファン)71よりも車両下方位置に、走行用バッテリ31の充電を制御する充電器37が配置され、
 前記ジャンクションボックス34は、前記充電器37よりも車両下方位置に配置される構成とした。
 これにより、冷却ファン71の吸込み口71aの周囲の空気吸込み空間を大きく確保することができ、冷却ファン71への空気の取り込みをスムーズに行なうことができる。
(4) A charger 37 for controlling the charging of the battery 31 for traveling is disposed below the converter (first DC / DC converter) 35 and the converter cooling fan (cooling fan) 71 at a position below the vehicle.
The junction box 34 is arranged at a position below the vehicle with respect to the charger 37.
Thereby, a large air suction space around the suction port 71a of the cooling fan 71 can be secured, and air can be taken into the cooling fan 71 smoothly.
 以上、本発明の電動車両の電子制御系要素の配置構造を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As mentioned above, although the arrangement structure of the electronic control system element of the electric vehicle according to the present invention has been described based on the first embodiment, the specific configuration is not limited to the first embodiment, and each claim of the claims Design changes and additions are permitted without departing from the spirit of the invention according to the paragraph.
 実施例1では、ジャンクションボックス34が充電器37よりも車両下方位置に配置されている例を示した。しかしこれに限らず、充電器37の車両上方位置に配置されたコンバータ及びコンバータ冷却ファンよりもジャンクションボックス34が車両下方位置にあればよいので、ジャンクションボックス34が充電器37の側方位置(横位置)に配置されていてもよい。 In the first embodiment, an example in which the junction box 34 is arranged at a position below the vehicle from the charger 37 is shown. However, the present invention is not limited to this, and the junction box 34 only needs to be in the lower position of the vehicle than the converter and the converter cooling fan disposed in the upper position of the charger 37. (Position).
 また、実施例1では、走行用バッテリ31として、下段・中段・上段の3段積層構造によるバッテリの例を示した。しかし、走行用バッテリとしては、1段構造によるバッテリの例でも良いし、2段積層構造によるバッテリの例、等であっても良い。 Further, in the first embodiment, an example of a battery having a three-layer stacked structure including a lower stage, a middle stage, and an upper stage is shown as the traveling battery 31. However, the battery for traveling may be an example of a battery having a one-stage structure, an example of a battery having a two-stage stacked structure, or the like.
 実施例1では、冷却ファン52及び冷却ファン75として、吸込み口52a,75aを車両上方に向けて開口したスクロールケーシング52c,75cを有する遠心ファンの例を示した。しかし、冷却ファンとしては、吸込み口を車両横に向けて開口したスクロールケーシングを有する遠心ファンの例としても良い。さらに、吸込み口を車両上方に向けて開口したケーシングを有する軸流ファンの例としても良い。
一方、冷却ファン71,72として、吸込み口71a,72aを車両横に向けて開口したケーシング71c,72cを有する軸流ファンの例を示した。しかし、これらの冷却ファン71,72として遠心ファンを適用しても良い。
In Example 1, the example of the centrifugal fan which has the scroll casings 52c and 75c which opened the inlet ports 52a and 75a toward the vehicle upper side as the cooling fan 52 and the cooling fan 75 was shown. However, as a cooling fan, it is good also as an example of the centrifugal fan which has a scroll casing which opened the suction inlet toward the vehicle side. Furthermore, it is good also as an example of the axial flow fan which has a casing which opened the suction inlet toward the vehicle upper direction.
On the other hand, the example of the axial fan which has casings 71c and 72c which opened the suction inlets 71a and 72a toward the vehicle side as the cooling fans 71 and 72 was shown. However, a centrifugal fan may be applied as the cooling fans 71 and 72.
 実施例1では、本発明の電子制御系要素の配置構造をFFプラグインハイブリッド車両に適用する例を示した。しかし、本発明の電動車両の電子制御系要素の配置構造は、プラグイン構造を持たないハイブリッド車両、さらに、モータのみを駆動源とする電気自動車に対しても適用することができる。要するに、コンバータとジャンクションボックスとこれらを電気的に接続するハーネスを備えた電動車両に適用できる。 Example 1 shows an example in which the electronic control system element arrangement structure of the present invention is applied to an FF plug-in hybrid vehicle. However, the arrangement structure of the electronic control system elements of the electric vehicle according to the present invention can be applied to a hybrid vehicle having no plug-in structure, and further to an electric vehicle using only a motor as a drive source. In short, the present invention can be applied to an electric vehicle including a converter, a junction box, and a harness that electrically connects them.
関連出願の相互参照Cross-reference of related applications
 本出願は、2012年6月5日に日本国特許庁に出願された特願2012-127960に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-127960 filed with the Japan Patent Office on June 5, 2012, the entire disclosure of which is fully incorporated herein by reference.

Claims (4)

  1.  車両に搭載された電気機器に入力される電力の電圧を変換するコンバータと、
     リレー回路により電流の供給/遮断/分配を行なうジャンクションボックスと、
     前記コンバータの側方位置に配置され、前記コンバータに冷却風を送風するコンバータ冷却ファンと、
     一端が前記コンバータ冷却ファンの吐出口に連結され、他端が前記コンバータの冷却風導入口に連結されると共に、中間部に車両上方に向かって屈曲した屈曲部を有するファンダクトと、
     前記コンバータと前記ジャンクションボックスとを電気的に接続すると共に、前記ファンダクトの屈曲部の下側を通るように配策されるハーネスと、
     を備えることを特徴とする電動車両の電子制御系要素の配置構造。
    A converter that converts a voltage of electric power input to an electric device mounted on the vehicle;
    A junction box that supplies / cuts off / distributes current through a relay circuit;
    A converter cooling fan that is disposed at a side position of the converter and blows cooling air to the converter;
    One end is connected to the discharge port of the converter cooling fan, the other end is connected to the cooling air introduction port of the converter, and a fan duct having a bent portion bent toward the upper side of the vehicle at an intermediate portion;
    A harness arranged to electrically connect the converter and the junction box and to pass under the bent portion of the fan duct;
    An arrangement structure of an electronic control system element of an electric vehicle characterized by comprising:
  2.  請求項1に記載された電動車両の電子制御系要素の配置構造において、
     前記コンバータの冷却風導入口は、前記コンバータの車両上方に面した上面に形成される
     ことを特徴とする電動車両の電子制御系要素の配置構造。
    In the arrangement structure of the electronic control system element of the electric vehicle according to claim 1,
    The cooling air introduction port of the converter is formed on an upper surface of the converter facing the upper side of the vehicle.
  3.  請求項2に記載された電動車両の電子制御系要素の配置構造において、
     前記コンバータ冷却ファンの吐出口は、前記コンバータに臨む位置に形成される
     ことを特徴とする電動車両の電子制御系要素の配置構造。
    In the arrangement structure of the electronic control system element of the electric vehicle according to claim 2,
    The discharge port of the converter cooling fan is formed at a position facing the converter. Arrangement structure of electronic control system elements of an electric vehicle,
  4.  請求項1から請求項3のいずれか一項に記載された電動車両の電子制御系要素の配置構造において、
     前記コンバータ及び前記コンバータ冷却ファンよりも車両下方位置に、走行用バッテリの充電を制御する充電器が配置され、
     前記ジャンクションボックスは、前記充電器の側方位置又は前記充電器よりも車両下方位置に配置される
     ことを特徴とする電動車両の電子制御系要素の配置構造。
    In the arrangement structure of the electronic control system element of the electric vehicle according to any one of claims 1 to 3,
    A charger for controlling the charging of the battery for traveling is disposed below the converter and the converter cooling fan in the vehicle,
    The junction box is arranged at a side position of the charger or at a position below the vehicle with respect to the charger. An arrangement structure of electronic control system elements for an electric vehicle.
PCT/JP2013/064798 2012-06-05 2013-05-28 Layout structure for electronic-control-system elements for electric vehicle WO2013183499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-127960 2012-06-05
JP2012127960 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013183499A1 true WO2013183499A1 (en) 2013-12-12

Family

ID=49711892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064798 WO2013183499A1 (en) 2012-06-05 2013-05-28 Layout structure for electronic-control-system elements for electric vehicle

Country Status (1)

Country Link
WO (1) WO2013183499A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455093A (en) * 2018-11-05 2019-03-12 浙江宏舟新能源科技有限公司 A kind of high voltage control box for electric vehicle
CN110154718A (en) * 2018-02-13 2019-08-23 丰田自动车株式会社 Pipeline tapping cage structure
CN110893753A (en) * 2018-09-12 2020-03-20 本田技研工业株式会社 Vehicle with a steering wheel
WO2022129538A1 (en) * 2020-12-18 2022-06-23 Eaton Intelligent Power Limited System and method of a mobile electrical system
US11766933B2 (en) 2017-11-07 2023-09-26 Eaton Intelligent Power Limited Transmission mounted electrical charging system with improved battery assembly
US11863008B2 (en) 2017-11-07 2024-01-02 Eaton Intelligent Power Limited Transmission mounted electrical charging system with dual mode load and engine off motive load power
US11938789B2 (en) 2016-11-01 2024-03-26 Eaton Intelligent Power Limited Transmission mounted electrical charging system with engine off coasting and dual mode HVAC
US11938825B2 (en) 2017-11-07 2024-03-26 Eaton Intelligent Power Limited System and method of a mobile electrical system
US11945312B2 (en) 2019-03-18 2024-04-02 Eaton Intelligent Powewr Limited Transmission mounted electrical charging system PTO gear arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282129A (en) * 2005-04-05 2006-10-19 Sumitomo Electric Ind Ltd Cooling device
WO2006109391A1 (en) * 2005-03-30 2006-10-19 Toyota Jidosha Kabushiki Kaisha Cooling structure of secondary battery
JP2011068187A (en) * 2009-09-24 2011-04-07 Suzuki Motor Corp High-voltage cable layout structure of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109391A1 (en) * 2005-03-30 2006-10-19 Toyota Jidosha Kabushiki Kaisha Cooling structure of secondary battery
JP2006282129A (en) * 2005-04-05 2006-10-19 Sumitomo Electric Ind Ltd Cooling device
JP2011068187A (en) * 2009-09-24 2011-04-07 Suzuki Motor Corp High-voltage cable layout structure of vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11938789B2 (en) 2016-11-01 2024-03-26 Eaton Intelligent Power Limited Transmission mounted electrical charging system with engine off coasting and dual mode HVAC
US11766933B2 (en) 2017-11-07 2023-09-26 Eaton Intelligent Power Limited Transmission mounted electrical charging system with improved battery assembly
US11863008B2 (en) 2017-11-07 2024-01-02 Eaton Intelligent Power Limited Transmission mounted electrical charging system with dual mode load and engine off motive load power
US11938825B2 (en) 2017-11-07 2024-03-26 Eaton Intelligent Power Limited System and method of a mobile electrical system
CN110154718A (en) * 2018-02-13 2019-08-23 丰田自动车株式会社 Pipeline tapping cage structure
CN110154718B (en) * 2018-02-13 2022-07-01 丰田自动车株式会社 Structure of opening part of pipeline
CN110893753A (en) * 2018-09-12 2020-03-20 本田技研工业株式会社 Vehicle with a steering wheel
CN110893753B (en) * 2018-09-12 2023-02-21 本田技研工业株式会社 Vehicle with a steering wheel
CN109455093A (en) * 2018-11-05 2019-03-12 浙江宏舟新能源科技有限公司 A kind of high voltage control box for electric vehicle
CN109455093B (en) * 2018-11-05 2024-04-19 浙江宏舟新能源科技有限公司 High-voltage control box for electric automobile
US11945312B2 (en) 2019-03-18 2024-04-02 Eaton Intelligent Powewr Limited Transmission mounted electrical charging system PTO gear arrangement
WO2022129538A1 (en) * 2020-12-18 2022-06-23 Eaton Intelligent Power Limited System and method of a mobile electrical system

Similar Documents

Publication Publication Date Title
WO2013183499A1 (en) Layout structure for electronic-control-system elements for electric vehicle
JP6089403B2 (en) Battery system element arrangement structure of electric vehicle
JP5483293B2 (en) Hybrid vehicle body structure
JP5483756B2 (en) Automobile
KR101397216B1 (en) Work vehicle
JP5015649B2 (en) Battery and electrical equipment cooling structure
WO2013108763A1 (en) Powertrain system element arrangement structure for hybrid vehicle
CN101291007B (en) Cooling device for electric apparatus mounted on vehicle
JP6245789B2 (en) Electric vehicle battery pack temperature control structure
EP3230103B1 (en) Cooling structure for battery pack
JP5924025B2 (en) Electric vehicle battery pack temperature control structure
WO2019230286A1 (en) Electrically driven vehicle
KR20120136923A (en) Cooling structure for electric vehicle
WO2012101795A1 (en) Cooling apparatus
US10583714B2 (en) Vehicle
WO2013183501A1 (en) Cooling-air exhaust-duct structure for electric vehicle
JP5576328B2 (en) Work vehicle
WO2013108766A1 (en) Battery cooling structure for electric vehicle
WO2013183500A1 (en) High-voltage-harness connection structure for electric vehicle
JP5947073B2 (en) Automobile
WO2013183498A1 (en) Cooling-air exhaust-duct structure for electric vehicle
WO2013108765A1 (en) Powertrain system element arrangement structure for hybrid vehicle
JP2012210840A (en) Working vehicle
JP2012210842A (en) Working vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP