WO2013182167A1 - 一种球形译码检测方法及装置 - Google Patents

一种球形译码检测方法及装置 Download PDF

Info

Publication number
WO2013182167A1
WO2013182167A1 PCT/CN2013/079929 CN2013079929W WO2013182167A1 WO 2013182167 A1 WO2013182167 A1 WO 2013182167A1 CN 2013079929 W CN2013079929 W CN 2013079929W WO 2013182167 A1 WO2013182167 A1 WO 2013182167A1
Authority
WO
WIPO (PCT)
Prior art keywords
radius
received signal
signal
search path
node
Prior art date
Application number
PCT/CN2013/079929
Other languages
English (en)
French (fr)
Inventor
乔鹏鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2015548151A priority Critical patent/JP5934846B2/ja
Priority to EP13801064.0A priority patent/EP2924903B1/en
Priority to US14/654,601 priority patent/US20150349923A1/en
Publication of WO2013182167A1 publication Critical patent/WO2013182167A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0246Channel estimation channel estimation algorithms using matrix methods with factorisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03203Trellis search techniques
    • H04L25/03242Methods involving sphere decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a ball decoding detection method and apparatus.
  • MLD has the best performance, but the complexity is exponential and it is almost impossible to implement in hardware. While ZF and MMSE detection, although the calculation is simple, the bit error performance is rather poor, and the semi-determined slack detection has a lot of loss due to the conditional relaxation treatment on the basis of MLD.
  • the SD detection has the error performance close to MLD and the complexity is moderate. It is an ideal signal detection method.
  • Chinese Patent Application Publication No. CN200910084580.6 discloses a sphere decoding detection method based on depth-first search. Although the complexity of the algorithm has a good control, the maximum number of nodes that limit the tree search is M, resulting in a signal. There is a certain loss in performance.
  • a depth-priority SD detection algorithm based on QR preprocessing is disclosed in the Chinese Patent Application Publication No. CN201010515931.7, which is only suitable for high SNR regions and low-order tuners. Signal detection for MIMO is not applicable for signal detection in low SNR regions. Summary of the invention
  • Embodiments of the present invention provide a method and device for detecting a sphere decoding, which can reduce computational complexity without reducing bit error performance.
  • one embodiment of the sphere decoding method for detecting the present embodiment of the invention comprising: pre-processing the received signal to obtain an approximate estimate of the signal of the received signal; ⁇ re, according to the; ⁇ re deriving spherical Decoding the initial square radius of detection/) 2 , determining the size of the constellation space according to the current signal to noise ratio of the received signal/;
  • the search path After finding a search path, and finding the local Euclidean distance of the search path and less than the current square radius, updating the square radius, and using the received signal as the center of the sphere, the updated radius of the radius is a radius Within the multi-dimensional sphere, the search path is re-find until the search path is not found, and the candidate signal points corresponding to the newly saved search path are determined to be the optimal signal estimation points.
  • the step of pre-processing the received signal to obtain an approximate estimated value 6 of the received signal includes:
  • the received signal is processed by a semi-determined slack detector to obtain an approximate estimated value of the received signal; ⁇ re .
  • the step of deriving the initial square radius / 2 of the sphere decoding detection according to the method includes:
  • the step of determining the size of the constellation space according to the current signal to noise ratio of the received signal comprises:
  • the step of searching for the search path according to the size of the constellation space and the initial square radius D 2 according to the depth-first and spherical constraint rules includes:
  • Generating a child node of the current node, and calculating a node list, calculating a local Euclidean distance of the node of the A layer and a 3 ⁇ 4 ⁇ according to the priority order of the nodes in the node list; determining whether the local Euclidean distance of the node is greater than 4 2 , if the node's ⁇ ( ) ) is greater than 4 2 , then the node is cut, the ⁇ 1 layer is returned, and the searched child node is re-expanded; if the node's 3 ⁇ 4 ⁇ ) is not greater than 4 2 , At 1 o'clock, enter ⁇ 1 search, and when ⁇ ⁇ , find a search path, where 4 2 is a component of the vector.
  • calculating a list of nodes including:
  • the constellation nodes in the multi-dimensional sphere which are squared by the received signal are searched, and the constellation nodes in the multi-dimensional sphere are sorted according to the local Euclidean distance from small to large, and the node list corresponding to the constellation nodes in the multi-dimensional sphere is obtained.
  • a ball decoding detecting device includes: a preprocessing unit, a square radius calculating unit, a constellation space size determining unit, and a path searching unit, where:
  • the preprocessing unit to preprocess the received signal, to obtain an approximate estimate of the signal of the received signal; ⁇ re;
  • the square radius calculation unit is configured to derive an initial square radius of the spherical decoding detection according to the x pre /) 2 ;
  • the constellation space size determining unit is configured to determine a size of the constellation space according to a current signal to noise ratio of the received signal/;
  • the path searching unit is configured to search for a search path according to a size of the constellation space/and an initial square radius/) 2 according to a depth-first and a spherical constraint rule, and the nodes through which the search path passes are all at an initial square radius In the sphere of the radius, after finding a search path, and finding the local Euclidean distance of the search path and less than the current square radius, updating the square radius, and updating the center of the received signal After the hypersphere has a radius radius of a multi-dimensional sphere, the search path is searched again until the search path is not found, and the candidate signal point corresponding to the newly saved search path is determined to be the optimal signal estimation point.
  • the preprocessing unit performs preprocessing on the received signal to obtain the received signal.
  • the signal approximation estimate x pre refers to processing the received signal through a semi-determined slack detector to obtain an approximate estimate of the received signal; ⁇ re .
  • the constellation space size determining unit determines a size/finger of the constellation space according to a current signal to noise ratio of the received signal, and determines a size/value of the constellation space according to a current signal to noise ratio of the received signal. Big and powerful.
  • the embodiments of the present invention have the following beneficial effects:
  • the embodiment of the invention is a signal-to-noise ratio adaptive chirp signal detection method based on spherical decoding detection, which is preprocessed by a semi-deterministic relaxation detector to derive a tight initial square radius and a traversal order of the tree search.
  • the smaller initial square radius can reduce the number of nodes accessed by the tree search, and start searching with the constellation grid point closest to the pre-detection signal, thereby accelerating the time for finding the optimal signal grid point in the tree search;
  • the embodiments of the present invention have the characteristics of reducing system operation time, improving real-time processing capability of the system, reducing power consumption of the terminal device, and extending the standby time of the terminal.
  • 1 is a system model of an embodiment of the present invention
  • 2 is a flowchart of a method for detecting a sphere decoding according to an embodiment of the present invention
  • FIG. 3 is a flowchart of searching for a search path in an implementation of an embodiment of the present invention.
  • FIG. 4 is a diagram of a method for selecting a constellation space size under different signal to noise ratios in an implementation method of the present application
  • FIG. 5 is a diagram showing error bit performance analysis of an implementation method according to an embodiment of the present invention
  • FIG. 7 is a structural diagram of a sphere decoding detecting apparatus according to an embodiment of the present invention.
  • the MIMO wireless communication system with 4 transmissions and 4 receptions is taken as an example to illustrate the principle of the method.
  • the signal complex vector is a 4x1 transmit signal complex vector
  • H is a 4x4 independent and identically distributed Rayleigh fading channel transfer matrix
  • CN(0,1) is a complex Gaussian distribution with a mean of 0 variance
  • the essence of SD detection is a tree-searching process, that is, performing constellation grid search in a tree, finding a shortest search path, and the vector corresponding to the value is the signal to be found. estimated value.
  • the complexity of the existing detection methods is high, especially in the low SNR area, the complexity of the SD detection algorithm is quite large, and the hardware design is difficult to implement; or even if it can be designed on the hardware, the cost is large, and the real-time performance is better. Poor or power consumption is far away from a wide range of commercial applications.
  • the method for detecting a sphere decoding in this embodiment includes:
  • Step 201 The terminal device preprocesses the received signal Y by a suboptimal semi-deterministic slack detector to obtain a signal approximate estimated value X pre ;
  • the implementation of the semi-determined relaxation detector is as follows:
  • the detection of semi-determined relaxation is essentially the relaxation of the constraints on the basis of MLD, which is transformed into a semi-definite programming problem that can be solved in polynomial time, which is essentially a convex optimization problem.
  • MLD is finally transformed into a convex optimization problem by semi-determined relaxation, it can be solved by the interior point method and has the complexity of polynomial.
  • Pre-detection ensures that the search for the best signal point within the multi-dimensional sphere of the initial square radius that is set later will not fail.
  • the semi-determined relaxation pre-detection has better bit error performance than the ZF and MMSE pre-detection, which can lead to a smaller radius, so that the unwanted signal points can be eliminated early. Find the best signal point you are looking for faster.
  • the computational complexity of the semi-determined slack detection is constant, whether at low signal-to-noise ratio or high signal-to-noise ratio, whether low-order modulation or high-order modulation.
  • ZF and MMSE have lower complexity in low-order modulation and high signal-to-noise ratio. If high-order modulation or low SNR is encountered, the complexity will increase rapidly.
  • Step 203 The terminal device determines a finite constellation space size according to the current signal to noise ratio of the received signal Y.
  • the distribution of the constellation grid points is as shown in FIG. Possible values for / are 9, 13, 21, 37, 55, 64.
  • the values of I at different signal-to-noise ratios are corresponding according to the following table: SNR(dB) : 0 5 10 15 20 25 30
  • the advantage of limiting the size of the search constellation is:
  • the bit error performance and other sub-optimal detections are slightly different in low SNR.
  • there are few really useful signal points then you can consider limiting the size of the constellation space, according to the signal-to-noise ratio.
  • Differently adjust (reduce) the size of the constellation space which can greatly reduce the algorithm complexity of the corresponding signal to noise ratio range while maintaining the error performance.
  • Depth-first means that in the process of performing a tree search, after finding a node that satisfies the condition at each level of the tree, it goes to the next layer to search, instead of continuing to find all the nodes that satisfy the condition in this layer.
  • a spherical constraint is a node that cuts a tree that falls outside the sphere.
  • the search path that satisfies the condition refers to the search path from the root node of the tree to the leaf node of the tree, and all the nodes that have passed must fall within the ball.
  • the search order of the nodes on each layer of the tree is: Search in the order of the list of nodes.
  • the calculation method of the node list Firstly, the constellation nodes falling in the multi-dimensional sphere with the received signal as the center and D 2 as the square radius are searched, and then the local Euclidean distances are sorted in ascending order, so that the constellation nodes of the preferential search can be obtained. List of nodes.
  • a method for determining an optimal path according to a node list includes:
  • Step 301 The terminal device generates a child node of the current node, and calculates a node list corresponding to the child nodes.
  • Step 302 The terminal device calculates a local Euclidean distance and x ( ) of the node of the first layer (taken from the node list, starting from the priority level);
  • Step 303 The terminal device determines whether ⁇ ,))> ⁇ 2 , if 3 ⁇ 4 ⁇ ))>4 2 , step 304 is performed; if 3 ⁇ 4 ⁇ )) is not greater than 4 2 , step 305 is performed;
  • 4 2 is a component of the vector.
  • Step 304 The terminal device cuts the node, returns to the previous layer, and re-extends the child node of the current node search, and performs step 301;
  • Step 306 Go to the next level (-1) search
  • Step 205 If the terminal device finds a complete search path, determines whether the local Euclidean distance is smaller than the current square radius, and if the local Euclidean distance is less than the current square radius, step 206 is performed; if the local Euclidean distance is not less than the current square radius, Go to step 207;
  • Step 206 The terminal device updates the square radius, and the local Euclidean distance of the search path is used as the updated square radius.
  • the optimal tree search path cannot find a complete search path after the last update radius, that is, the leaf node of the tree is not found, and step 207 is performed;
  • Step 207 The terminal device selects the candidate corresponding to the newly saved search path. The signal point is used as the optimal signal estimation point, and the search is completed.
  • Simulation environment Single-user, 4-to-four-receive MIMO communication system, channel estimation is ideal channel estimation, and channel state information is known at the receiving end, and the transmitter does not perform channel coding on the signal.
  • the channel is a non-correlated flat Rayleigh fading channel.
  • the SD-PRO signal detection method of the present embodiment performs bit error performance analysis and average complexity analysis with the existing SD detection and the conventional detection.
  • the present embodiment substantially maintains the mismatch characteristic characteristic of the existing SD detection, that is, the performance loss is negligibly negligible.
  • the SD detection method of the present embodiment has a smaller computational complexity, especially in the low SNR region, where the computational complexity is reduced.
  • the embodiment further provides a sphere decoding detection apparatus, including: a preprocessing unit, a square radius calculation unit, a constellation space size determining unit, and a path searching unit, where: the preprocessing unit is set to be Receiving a signal for preprocessing, and obtaining an approximate estimated value re of the signal of the received signal;
  • the square radius calculation unit is set to derive the initial square radius of the sphere decoding detection according to x pre
  • a constellation space size determining unit configured to determine a size of the constellation space according to a current signal to noise ratio of the received signal /;
  • a route search unit and is set to the depth-first sphere constraint rules, depending on the size / radius and the initial square space in the constellation /) 2 to find the search path, the search path through which the nodes are initially falls to the square of the radius of the sphere radius, After finding a search path, and finding the local Euclidean distance of the search path and less than the current square radius, updating the square radius, and in the multi-dimensional radius of the radius of the updated hypersphere In the ball, the search path is searched again until the search path is not found, and the candidate signal point corresponding to the newly saved search path is determined as the optimal signal estimation point.
  • the pre-processing unit pre-processes the received signal to obtain an approximate estimated value X pre of the received signal, and processes the received signal through a semi-determined slack detector to obtain an approximate estimated value re of the received signal.
  • the constellation space size determining unit determines the size of the constellation space according to the current signal-to-noise ratio of the received signal/Yes, and determines that the size/value of the constellation space increases as the current signal-to-noise ratio of the received signal becomes larger.
  • the embodiment of the present invention is a signal-to-noise ratio adaptive chirp signal detection method based on spherical decoding detection, which is preprocessed by a semi-deterministic relaxation detector to derive a tight initial square radius and a tree search.
  • the traversal order, the smaller initial square radius can reduce the number of nodes accessed by the tree search, and start the search with the constellation grid closest to the pre-detection signal, thus speeding up the time of finding the optimal signal grid in the tree search.
  • adjust the search based on the difference in signal-to-noise ratio
  • the number of constellation grid points effectively reduces the number of nodes accessed in the tree search while maintaining the signal quality (bit error performance) unchanged. Therefore, the embodiment of the present invention has the system operation time reduced and the system is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Error Detection And Correction (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种球形译码检测方法及装置,包括:对接收信号进行预处理,得到所述接收信号的信号近似估计值Xpre,根据所述Xpre,导出球形译码检测的初始平方半径D2,根据所述接收信号的当前信噪比确定星座空间的大小l;按照深度优先和球形约束法则,根据所述星座空间的大小l和初始平方半径D2查找搜索路径,所述搜索路径所经过的节点均落在以初始平方半径为半径的球内;在查找到一条搜索路径后,并且查找到的搜索路径的局部欧式距离和小于当前的平方半径时,更新所述平方半径,并在以所述接收信号为球心,更新后的平方半径为半径的多维球内,重新查找搜索路径,直到查找不到搜索路径,确定最新保存的搜索路径所对应的候选信号点为最优的信号估计点。

Description

一种球形译码检测方法及装置
技术领域
本发明涉及移动通信领域, 尤其涉及一种球形译码检测方法及装置。
背景技术
近年来, 已经有大量的研究人员对无线 MIMO通信系统中信号检测方法 进行了广泛而深入的研究。这些信号检测方法包括:最大似然检测(Maximum Likelyhood Detection, MLD ) 、 迫零检测 ( Zero Forcing, ZF ) 、 最小均方误 差( Minimum Mean Square Error, MMSE )检测、半定松弛检测 ( Semi-Definite Relaxation, SDR )和球形译码 ( Sphere Decoding, SD )检测等。
MLD具有最优的性能, 但是复杂度达到指数级别, 几乎不可能在硬件中 实现。 而 ZF和 MMSE检测, 尽管计算简单, 但是误比特性能相当差, 而半 定松弛检测,由于是在 MLD的基础上给以条件放松处理,这样性能有不少的 损失。 而 SD检测具有逼近于 MLD的误码性能并且复杂度适中, 是一种比较 理想的信号检测方法。
标准的球形译码检测方法, 其复杂度仍然较高, 硬件设计实现起来比较 困难; 为了使得 SD检测能够在硬件中得以较好的实现, 一些改进版本的 SD 检测被提出。 Fincke-Pohst SD ( FP-SD )是一种有效的策略, 该算法通过在一 个给定初始半径的超球内枚举所有的星座格点来搜索最优信号点。 由于该算 法只进行一次缩小搜索空间, 因此其初始半径 D的选择比较敏感。 针对这一 缺陷, 另外有人将 Schnorr-Euchner算法应用于 SD称为 SE-SD, 并且釆用深 度优先的顺序搜索, 在降低复杂度方面取得了不错的效果。
中国专利申请公开说明书 CN200910084580.6公开了一种基于深度优先 搜索的球形译码检测方法, 虽然算法的复杂度有了不错的控制, 但是由于限 制树形搜索的节点数最大为 M, 导致信号的性能有一定的损失。
中国专利申请公开说明书 CN201010515931.7中公开了一种基于 QR预处 理的深度优先的 SD检测算法, 该方法仅仅适合高信噪比区域和釆用低阶调 制的 MIMO的信号检测, 对于低信噪比区域的信号检测不适用。 发明内容
本发明实施例提供一种球形译码检测方法及装置, 能够在不降低误比特 性能的基础上, 降低计算的复杂度。
为解决上述技术问题, 本发明实施例的一种球形译码检测方法, 包括: 对接收信号进行预处理, 得到所述接收信号的信号近似估计值;^ re , 根 据所述;^ re导出球形译码检测的初始平方半径/) 2 , 根据所述接收信号的当前 信噪比确定星座空间的大小 /;
按照深度优先和球形约束法则, 根据所述星座空间的大小 /和初始平方 半径/ )2查找搜索路径, 所述搜索路径所经过的节点均落在以初始平方半径为 半径的球内;
在查找到一条搜索路径后, 并且查找到的搜索路径的局部欧式距离和小 于当前的平方半径时, 更新所述平方半径, 并在以所述接收信号为球心, 更 新后的平方半径为半径的多维球内, 重新查找搜索路径, 直到查找不到搜索 路径, 确定最新保存的搜索路径所对应的候选信号点为最优的信号估计点。
可选地, 对接收信号进行预处理, 得到所述接收信号的信号近似估计值 6的步骤, 包括:
将所述接收信号经过半定松弛的检测器进行处理, 得到所述接收信号的 近似估计值;^ re
可选地, 根据所述;^ ^导出球形译码检测的初始平方半径/ )2的步骤, 包 括:
所述 β2 =ΙΙ Γ' - 11 ,其中,; Τ =ρ , f = Rxpre ,; 为所述接收信号, U xpre 的硬判决, ρ为酉矩阵, R为上三角矩阵。
可选地, 才艮据所述接收信号的当前信噪比确定星座空间的大小 /的步骤, 包括:
确定星座空间的大小 /的值随所述接收信号的当前信噪比的变大而增加。 可选地, 按照深度优先和球形约束法则, 根据所述星座空间的大小 /和 初始平方半径 D2查找搜索路径的步骤, 包括:
生成当前节点的 /个子节点, 并计算节点列表, 按照所述节点列表中节 点的优先级高低顺序, 计算第 A层的节点的局部欧式距离和 ¾ί)) ; 判断节点的局部欧式距离和 是否大于 42 , 如果所述节点的 χ( )) 大于 42 , 则裁掉该节点, 返回^ 1层, 重新扩展搜索的子节点; 如果所述节 点的 ¾ί))不大于 42 , 在 不等于 1时, 进入^ 1层搜索, 在 Α=ι时, 查找 到一条搜索路径, 其中, 42是矢量的一个分量。
可选地, 计算节点列表, 包括:
查找落在以接收信号为圓心, 为平方半径的多维球内的星座节点, 按 照局部欧式距离从小到大的顺序排序多维球内的星座节点, 得到多维球内的 星座节点对应的节点列表。
可选地, 一种球形译码检测装置, 包括: 预处理单元、 平方半径计算单 元、 星座空间大小确定单元和路径搜索单元, 其中:
所述预处理单元, 设置为对接收信号进行预处理, 得到所述接收信号的 信号近似估计值;^ re ;
所述平方半径计算单元, 设置为根据所述 xpre导出球形译码检测的初始 平方半径/) 2
所述星座空间大小确定单元, 设置为根据所述接收信号的当前信噪比确 定星座空间的大小 /;
所述路径搜索单元, 设置为按照深度优先和球形约束法则, 根据所述星 座空间的大小 /和初始平方半径/) 2查找搜索路径, 所述搜索路径所经过的节 点均落在以初始平方半径为半径的球内, 在查找到一条搜索路径后, 并且查 找到的搜索路径的局部欧式距离和小于当前的平方半径时, 更新所述平方半 径, 并在以所述接收信号为球心, 更新后的超球平方半径为半径的多维球内, 重新查找搜索路径, 直到查找不到搜索路径, 确定最新保存的搜索路径所对 应的候选信号点为最优的信号估计点。
可选地, 所述预处理单元, 对接收信号进行预处理, 得到所述接收信号 的信号近似估计值 xpre指, 将所述接收信号经过半定松弛的检测器进行处理, 得到所述接收信号的近似估计值;^ re
可选地, 所述星座空间大小确定单元, 根据所述接收信号的当前信噪比 确定星座空间的大小 /指,确定星座空间的大小 /的值随所述接收信号的当前 信噪比的变大而增力口。
可选地, 所述平方半径计算单元, 根据所述;^ ^导出球形译码检测的初 始平方半径/ )2指, 计算所述 β2 =ιι ;τ— 其中, ;Τ =ρΓ;τ , f = Rxpre , : 为所述 接收信号, re是;^ re的硬判决, ρ为酉矩阵, R为上三角矩阵;
所述路径搜索单元, 按照深度优先和球形约束法则, 根据所述星座空间 的大小 /和初始平方半径/) 2查找搜索路径指, 生成当前节点的 /个子节点, 并计算节点列表, 按照所述节点列表中节点的优先级高低顺序, 计算第 层 的节点的局部欧式距离和 ) , 判断节点的局部欧式距离和 ¾ί) )是否大 于 42 , 如果所述节点的 ¾ί))大于 42 , 则裁掉该节点, 返回^ 1层, 重新扩 展搜索的子节点; 如果所述节点的 ¾ί))不大于 42 , 在 不等于 1时, 进入 层搜索, 在^ 1时, 查找到一条搜索路径, 其中, 42是矢量的一个分量。 综上所述, 本发明实施例具有如下有益效果:
本发明实施例是一种基于球形译码检测的信噪比自适应的 ΜΙΜΟ信号检 测方法, 通过半定松弛的检测器进行预处理, 导出一个较紧的初始平方半径 以及树形搜索的遍历顺序, 较小的初始平方半径可以减少树形搜索所访问的 节点个数, 釆用离预检测信号最近的星座格点开始搜索从而加快了树形搜索 中找到最优信号格点的时间;
更重要的一点, 根据信噪比的不同来调整搜索星座格点的个数, 在保持 信号质量(误比特性能) 不变的情况下, 有效地减少了树形搜索中所访问的 节点个数, 因此本发明实施例具有减少系统运算时间, 提高系统实时处理能 力的特征, 同时降低终端设备功耗, 延长终端待机时间的优点。
附图概述
图 1为本发明实施例的系统模型; 图 2为本发明实施例的球形译码检测方法的流程图;
图 3为本发明实施例的实现中查找搜索路径的流程图;
图 4为本申请在实现方法中不同信噪比下星座空间大小的选取方法图; 图 5 为本发明实施例的实现方法的误比特性能分析图;
图 6为本发明实施例的实现方法复杂度仿真分析图;
图 7为本发明实施例的球形译码检测装置的架构图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
如图 1所示, 下面以 4发 4收的 MIMO无线通信系统为例, 说明本文方 法的原理, 4发 4收的 MIMO无线通信系统的信道模型为: ?= + ,其中, 为 4x1的接收信号复列向量, 为 4x1的发送信号复列向量, H为 4x4的独 立同分布的瑞利衰落信道传输矩阵, H的元素 〜 CN(0,1) ( z=0,l,2,3,4;=1,2,3,4) , CN(0,1)是代表均值为 0方差为 1的复高斯分布, ^为 4xl理想加 性复高斯白噪声列向 w,〜。Ν(0,σ2)(,=1,2,3,4)。
为了便于数值计算, 将上述复数信道模型转化为实数信道模型:
Figure imgf000007_0002
= HX + W 球形译码检测的树形搜索过程, 模型可用下式表示: ≥iiy- ^ΠΙ2; 为了便于计算,将信道矩阵 Η进行 QR分解,即 H = R,其中 ρ为酉矩阵, 为上三角矩阵, 则上式等价于:
D'2 >||7-RX||2, 其中
Figure imgf000007_0001
||·||2表示矩阵的范数, 将/) '2≥|| - RX||2表示 为矩阵的形式为:
Figure imgf000008_0001
从上述模型可以看出 SD检测的本质就是一个树形搜索的过程, 即在一 棵树中执行星座格点搜索, 找到一条最短的搜索路径, 其对应的值组成的向 量即为所要找的信号估计值。
下面将结合附图对本发明实施例进行详细的阐述。
已有的检测方法的复杂度较高, 尤其在低信噪比区域 SD检测算法的复 杂度相当大,硬件设计实现起来比较困难; 或者即使能够在硬件上设计出来, 成本很大, 实时性较差或者功耗很大, 距离大范围的商用还较远。
如图 2所示, 本实施方式的球形译码检测方法, 包括:
步骤 201: 终端设备将接收信号 Y经过一个次优的半定松弛的检测器进 行预处理, 得到一个信号近似估计值 Xpre
半定松弛的检测器的实现方法如下:
半定松弛的检测实质是在 MLD 的基础上对约束条件进行相应的放松, 将其转化为可以在多项式时间内解决半正定规划问题, 其本质上是一个凸优 化问题。
MLD可描述为: =& 1^ | - H ||2;
XeZ
由 2范数的定义, \\Y-HX\\2=(Y-HX)T(Y-HX) =Trace(QwwT)
HTH -HTY
其中, Q = 7α« ·)代表矩阵的迹。 那么 MLD
—YTH YTY
Figure imgf000008_0002
可化为:
min Trace (QW)
diag(W) = E, ······ (a)
s.t.
W = wwT, (b)
XXT X
其中, W = wwT = , E表示全为 1的列向量。 将上式中的 (b)式进
XT 1 行放松处理, 从而 MLD检测问题可以转化为凸优化问题, 即:
min Trace QW)
Figure imgf000009_0001
其中, = 0表示是一个对称并正定的矩阵。
由于 MLD通过半定松弛最终化为凸优化问题, 因此可以釆用内点法来 求解, 并且具有多项式的复杂度。
选择半定松弛检测器进行预检测的优势在于:
进行预检测, 能够确保在之后所设置的初始平方半径的多维球内搜索最 优信号点不会失败。 能, 尤其在低信噪比区域, 半定松弛预检测比 ZF、 MMSE预检测具有更优的 误比特性能, 这样可以导出更加小的半径, 从而较早地将不需要的信号点提 前淘汰出局, 较快的找到所要找的最优信号点。
半定松弛检测的计算复杂度是恒定的, 不论在低信噪比还是高信噪比, 不论是釆用低阶调制还是釆用高阶调制。 而 ZF、 MMSE在低阶调制和高信噪 比下复杂度较低, 若遇到高阶调制或者低信噪比的环境, 复杂度会迅速提高。
步骤 202: 终端设备将信道矩阵 H进行 QR分解 (为了方便计算), 根据步 骤 201中的信号近似估计值;^ re导出 SD检测的初始平方半径 D2 ; D2的求解方法为: β2 =|| Γ - f ||
其中, Γ' =ρ , f = Rxpre , ^是 ^的硬判决。
步骤 203: 终端设备根据接收信号 Y当前的信噪比的大小确定有限星座 空间大小 /;
/个星座格点的分布如附图 4所示。 /的可能的取值为: 9,13,21,37,55,64。 本实施方式中在不同信噪比下 I的取值是按照下表来对应的: SNR(dB) : 0 5 10 15 20 25 30
有限星座个数 /: ~~ 9 13 ~~ 21 ~~ 37 ~~ 55 ~~ 64 ~~ 64 在不同信噪比下, 限制搜索星座格点的大小的优势在于: 已有的球形检 测方法的误比特性能和其他次优检测在低信噪比相差微小, 换句话说, 就是 在低信噪比区域, 真正有用的信号点很少, 那么可以考虑限制星座空间的大 小,根据信噪比的不同来调整 (减少)星座空间的大小,这样能够在保持误码性 能的条件下较大地降低对应信噪比范围的算法复杂度。
步骤 204: 终端设备从树的根节点 (k=8)到叶子节点 (k=l)按照深度优先的 顺序和球形约束法则, 在大小为 /星座空间中依次查找的满足条件的搜索路 径;
深度优先是指, 在执行树形搜索过程中, 在树的每一层找到一个满足条 件的节点后, 就进入下一层进行搜索, 而不是在本层继续找到所有满足条件 的节点。
球形约束是指, 裁掉落在球外的树的节点。
满足条件的搜索路径是指从树的根节点出发直到树的叶子节点, 所经过 的所有的节点必须落在球内的搜索路径。
在树的每一层上的节点的搜索顺序为: 按照节点列表的顺序来搜索。 节点列表的计算方法: 首先查找落在以接收信号为圓心, D2为平方半径 的多维球内的星座节点, 接着按照局部欧式距离从小到大的顺序排序, 即可 得到优先搜索的星座节点的节点列表。
第 层第 ί个节点的欧式距离 (xw)以及局部欧式距离和的计算方法:
Λ -Σ ) '其中, ¾) yk— Σ Λ 。 如图 3所示, 按照节点列表确定最优路径的方法, 包括:
步骤 301 : 终端设备生成当前节点的 /个子节点, 并计算 /个子节点对应 的节点列表; 步骤 302: 终端设备计算第 层的节点(取自节点列表, 从优先级别高的 开始) 的局部欧式距离和 x( )) ;
步骤 303: 终端设备判断是否 ^^,))〉^2 , 如果 ¾ί))>42 , 则执行步骤 304; 如果 ¾ί))不大于 42 , 执行步骤 305;
42是矢量的一个分量。
步骤 304: 终端设备将该节点裁掉, 返回上一层 , 重新扩展当前 节点搜索的子节点, 执行步骤 301 ;
步骤 305:终端设备判断 是否等于 1 ,如果 k不等于 1 ,则执行步骤 306; 如果 =1 , 执行步骤 307;
步骤 306: 进入下一层 ( -1)搜索;
步骤 307:终端设备按照上述步骤,直到 =1 ,即树形搜索抵达叶子节点, 此时, 就找到一个完整的搜索路径, 该路径对应的值即为一个候选信号点
步骤 205: 终端设备若找到一个完整的搜索路径, 判断局部欧式距离和 是否小于当前平方半径, 如果局部欧式距离和小于当前平方半径, 则执行步 骤 206; 如果局部欧式距离和不小于当前平方半径, 执行步骤 207;
步骤 206: 终端设备更新平方半径, 将搜索路径的局部欧式距离和作为 更新后的平方半径, 在以接收信号为球心, 更新后的平方半径的多维球内, 按照步骤 204的方法, 继续搜索最优的树形搜索路径直到最近一次更新半径 后找不到一个完整的搜索路径, 即找不到树的叶子节点, 执行步骤 207; 步骤 207: 终端设备将最新保存的搜索路径所对应的候选信号点作为最 优的信号估计点, 到此搜索完毕。
下面通过仿真验证本实施方式的 SD检测的效果。
仿真环境: 单用户, 4发 4收的 MIMO通信系统, 信道估计为理想信道 估计, 并且在接收端信道状态信息是已知的, 发射端对信号未进行信道编码, 釆用 64QAM调制, 信道为非相关平坦 Rayleigh衰落信道。
仿真内容和仿真结果: 本实施方式 SD-PRO信号检测方法与已有的 SD检测以及传统的检测进 行误比特性能分析以及平均复杂度分析。
从图 5可以看出, 本实施方式基本上保持了已有的 SD检测的误比特性 能, 即性能损失艮小几乎可忽略不计。
从附图 6可以看出, 本实施方式的 SD检测方法具有更小的计算复杂度, 尤其在低信噪比区域, 计算复杂度降低的幅度较大。
如图 7所示, 本实施方式还提供了一种球形译码检测装置, 包括: 预处 理单元、 平方半径计算单元、 星座空间大小确定单元和路径搜索单元, 其中: 预处理单元, 设置为对接收信号进行预处理, 得到接收信号的信号近似 估计值 re ;
平方半径计算单元, 设置为根据 xpre导出球形译码检测的初始平方半径
星座空间大小确定单元, 设置为根据接收信号的当前信噪比确定星座空 间的大小 /;
路径搜索单元, 设置为按照深度优先和球形约束法则, 根据星座空间的 大小 /和初始平方半径/) 2查找搜索路径, 搜索路径所经过的节点均落在以初 始平方半径为半径的球内, 在查找到一条搜索路径后, 并且查找到的搜索路 径的局部欧式距离和小于当前的平方半径时, 更新平方半径, 并在以接收信 号为球心, 更新后的超球平方半径为半径的多维球内, 重新查找搜索路径, 直到查找不到搜索路径, 确定最新保存的搜索路径所对应的候选信号点为最 优的信号估计点。
预处理单元, 对接收信号进行预处理, 得到接收信号的信号近似估计值 Xpre , 将接收信号经过半定松弛的检测器进行处理, 得到接收信号的近似 估计值 re
星座空间大小确定单元, 根据接收信号的当前信噪比确定星座空间的大 小 /是, 确定星座空间的大小 /的值随接收信号的当前信噪比的变大而增加。 平方半径计算单元, 根据 Xpre导出球形译码检测的初始平方半径 D2是, 计算/)2 =11 - 11 , 其中, ; Τ =ρτ;τ , f = Rxpre , ; 为接收信号, ^是 ^的硬判 决, ρ为酉矩阵, R为上三角矩阵;
路径搜索单元, 按照深度优先和球形约束法则, 根据星座空间的大小 / 和初始平方半径/) 2查找搜索路径是, 生成当前节点的 /个子节点, 并计算节 点列表, 按照节点列表中节点的优先级高低顺序, 计算第 层的节点的局部 欧式距离和 χ( )) , 判断节点的局部欧式距离和 χ( ))是否大于 42 , 如果节 点的 ¾ί))大于 42 , 则裁掉该节点, 返回^ 1层, 重新扩展搜索的子节点; 如果节点的 ¾ ί))不大于 42 , 在 不等于 1时, 进入^ 1层搜索, 在 Α=ι时, 查找到一条搜索路径, 其中, 42是矢量的一个分量。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明实施例不限 制于任何特定形式的硬件和软件的结合。
以上实施例仅用以说明本申请的技术方案而非限制, 仅仅参照较佳实施 例对本申请进行了详细说明。 本领域的普通技术人员应当理解, 可以对本申 请的技术方案进行修改或者等同替换, 而不脱离本申请技术方案的精神和范 围, 均应涵盖在本申请的权利要求范围当中。
工业实用性 本发明实施例是一种基于球形译码检测的信噪比自适应的 ΜΙΜΟ信号检 测方法, 通过半定松弛的检测器进行预处理, 导出一个较紧的初始平方半径 以及树形搜索的遍历顺序, 较小的初始平方半径可以减少树形搜索所访问的 节点个数, 釆用离预检测信号最近的星座格点开始搜索从而加快了树形搜索 中找到最优信号格点的时间; 更重要的一点, 根据信噪比的不同来调整搜索 星座格点的个数, 在保持信号质量(误比特性能) 不变的情况下, 有效地减 少了树形搜索中所访问的节点个数, 因此本发明实施例具有减少系统运算时 间, 提高系统实时处理能力的特征, 同时降低终端设备功耗, 延长终端待机 时间的优点。

Claims

权 利 要 求 书
1、 一种球形译码检测方法, 包括:
对接收信号进行预处理, 得到所述接收信号的信号近似估计值;^ re , 根 据所述;^ re导出球形译码检测的初始平方半径/) 2 , 根据所述接收信号的当前 信噪比确定星座空间的大小 /;
按照深度优先和球形约束法则, 根据所述星座空间的大小 /和初始平方 半径/ )2查找搜索路径, 所述搜索路径所经过的节点均落在以初始平方半径为 半径的球内;
在查找到一条搜索路径后, 并且查找到的搜索路径的局部欧式距离和小 于当前的平方半径时, 更新所述平方半径, 并在以所述接收信号为球心, 更 新后的平方半径为半径的多维球内, 重新查找搜索路径, 直到查找不到搜索 路径, 确定最新保存的搜索路径所对应的候选信号点为最优的信号估计点。
2、 如权利要求 1所述的方法, 其中, 对接收信号进行预处理, 得到所述 接收信号的信号近似估计值 Xpre的步骤, 包括: 将所述接收信号经过半定松弛的检测器进行处理, 得到所述接收信号的 近似估计值;^ re
3、 如权利要求 1所述的方法, 其中, 根据所述;^ re导出球形译码检测的 初始平方半径 D2的步骤, 包括:
所述 ο2 =ΙΙ Γ' - 11 ,其中,; Τ =ρ , f = Rxpre ,; 为所述接收信号, U xpre 的硬判决, ρ为酉矩阵, R为上三角矩阵。
4、 如权利要求 1所述的方法, 其中, 根据所述接收信号的当前信噪比确 定星座空间的大小 /的步骤, 包括:
确定星座空间的大小 /的值随所述接收信号的当前信噪比的变大而增加。
5、 如权利要求 1所述的方法, 其中, 按照深度优先和球形约束法则, 根 据所述星座空间的大小 /和初始平方半径/) 2查找搜索路径的步骤, 包括: 生成当前节点的 /个子节点, 并计算节点列表, 按照所述节点列表中节 点的优先级高低顺序, 计算第 Α层的节点的局部欧式距离和 判断节点的局部欧式距离和 ¾ί))是否大于 42 , 如果所述节点的 χ( )) 大于 42 , 则裁掉该节点, 返回^ 1层, 重新扩展搜索的子节点; 如果所述节 点的 ¾ί))不大于 42 , 在 不等于 1时, 进入^ 1层搜索, 在 Α=ι时, 查找 到一条搜索路径, 其中, 42是矢量的一个分量。
6、 如权利要求 5所述的方法, 其中, 计算节点列表, 包括:
查找落在以接收信号为圓心, D2为平方半径的多维球内的星座节点, 按 照局部欧式距离从小到大的顺序排序多维球内的星座节点, 得到多维球内的 星座节点对应的节点列表。
7、 一种球形译码检测装置, 包括: 预处理单元、 平方半径计算单元、 星 座空间大小确定单元和路径搜索单元, 其中:
所述预处理单元, 设置为对接收信号进行预处理, 得到所述接收信号的 信号近似估计值;^ re ;
所述平方半径计算单元, 设置为根据所述 xpre导出球形译码检测的初始 平方半径/) 2
所述星座空间大小确定单元, 设置为根据所述接收信号的当前信噪比确 定星座空间的大小 /;
所述路径搜索单元, 设置为按照深度优先和球形约束法则, 根据所述星 座空间的大小 /和初始平方半径/) 2查找搜索路径, 所述搜索路径所经过的节 点均落在以初始平方半径为半径的球内, 在查找到一条搜索路径后, 并且查 找到的搜索路径的局部欧式距离和小于当前的平方半径时, 更新所述平方半 径, 并在以所述接收信号为球心, 更新后的超球平方半径为半径的多维球内, 重新查找搜索路径, 直到查找不到搜索路径, 确定最新保存的搜索路径所对 应的候选信号点为最优的信号估计点。
8、 如权利要求 7所述的装置, 其中:
所述预处理单元, 对接收信号进行预处理, 得到所述接收信号的信号近 似估计值;^ re指, 将所述接收信号经过半定松弛的检测器进行处理, 得到所 述接收信号的近似估计值;^ re
9、 如权利要求 7所述的装置, 其中: 所述星座空间大小确定单元, 根据所述接收信号的当前信噪比确定星座 空间的大小 /指,确定星座空间的大小 /的值随所述接收信号的当前信噪比的 变大而增力口。
10、 如权利要求 7所述的装置, 其中:
所述平方半径计算单元, 根据所述;^ re导出球形译码检测的初始平方半 径/) 2指, 计算所述02= '- ||, 其中, ;Τ=ρτ;τ, f = Rxpre, : 为所述接收信号, re是;^^的硬判决, ρ为酉矩阵, R为上三角矩阵;
所述路径搜索单元, 按照深度优先和球形约束法则, 根据所述星座空间 的大小 /和初始平方半径/) 2查找搜索路径指, 生成当前节点的 /个子节点, 并计算节点列表, 按照所述节点列表中节点的优先级高低顺序, 计算第 层 的节点的局部欧式距离和 ) , 判断节点的局部欧式距离和 ¾ί) )是否大 于 42,如果所述节点的 ¾ί))大于 42,则裁掉该节点, 返回^ 1层, 重新扩 展搜索的子节点; 如果所述节点的 ¾ί))不大于 42,在 不等于 1时, 进入 层搜索, 在^ 1时, 查找到一条搜索路径, 其中, 42是矢量的一个分量。
PCT/CN2013/079929 2012-12-24 2013-07-23 一种球形译码检测方法及装置 WO2013182167A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015548151A JP5934846B2 (ja) 2012-12-24 2013-07-23 球面復号化検出方法及び装置
EP13801064.0A EP2924903B1 (en) 2012-12-24 2013-07-23 Sphere decoding detection method and device
US14/654,601 US20150349923A1 (en) 2012-12-24 2013-07-23 Sphere Decoding Detection Method And Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210566917.9 2012-12-24
CN201210566917.9A CN103888217B (zh) 2012-12-24 2012-12-24 一种球形译码检测方法及装置

Publications (1)

Publication Number Publication Date
WO2013182167A1 true WO2013182167A1 (zh) 2013-12-12

Family

ID=49711421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079929 WO2013182167A1 (zh) 2012-12-24 2013-07-23 一种球形译码检测方法及装置

Country Status (5)

Country Link
US (1) US20150349923A1 (zh)
EP (1) EP2924903B1 (zh)
JP (1) JP5934846B2 (zh)
CN (1) CN103888217B (zh)
WO (1) WO2013182167A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202127B (zh) * 2014-09-25 2017-08-08 北京邮电大学 基于路径度量值的低复杂度mimo系统球译码信号检测方法
CN104734811B (zh) * 2015-03-12 2018-02-06 苏州威发半导体有限公司 用于信号检测的软判决球形译码算法
CN106452686A (zh) * 2016-08-24 2017-02-22 重庆大学 一种基于球形译码算法的半径更新方法和装置
WO2018078465A1 (en) 2016-10-25 2018-05-03 King Abdullah University Of Science And Technology Efficient sphere detector algorithm for large antenna communication systems using graphic processor unit (gpu) hardware accelerators
EP3614588B1 (en) * 2017-05-02 2022-11-30 LG Electronics Inc. Method for performing mm-based noma communication and device therefor
CN109039539B (zh) * 2018-08-02 2021-08-24 深圳全志在线有限公司 候选星座点集合生成方法及mimo空间复用检测方法
CN109547077B (zh) * 2019-01-22 2020-10-13 重庆京东方智慧电子系统有限公司 信号发送方法、信号接收方法、通信设备及存储介质
CN112260727B (zh) * 2020-10-10 2022-06-24 上海擎昆信息科技有限公司 一种信号检测方法及装置、电子设备、可读存储介质
CN114389757A (zh) * 2020-10-16 2022-04-22 南京中兴新软件有限责任公司 球形译码检测方法和装置、电子设备、存储介质
CN113114423B (zh) * 2021-04-13 2022-06-24 东南大学 一种自适应球形译码检测方法
CN113438191B (zh) * 2021-06-23 2023-06-30 安徽师范大学 一种sm-scma系统上行链路的零码字辅助球形译码方法、系统
CN115333583B (zh) * 2022-08-10 2024-02-06 比科奇微电子(杭州)有限公司 多发多收通信系统的信号检测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064579A (zh) * 2006-04-25 2007-10-31 上海无线通信研究中心 一种低复杂度的球形译码检测方法
CN101594202A (zh) * 2009-06-22 2009-12-02 北京天碁科技有限公司 一种球形译码检测方法及装置
CN102281089A (zh) * 2010-06-10 2011-12-14 中兴通讯股份有限公司 一种多输入多输出系统的信号检测方法和装置
CN102833045A (zh) * 2012-09-07 2012-12-19 天津理工大学 一种用于mimo通讯系统的改进的球形译码检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798735B1 (en) * 1996-06-12 2004-09-28 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
WO2005081411A1 (ja) * 2004-02-25 2005-09-01 Mitsubishi Denki Kabushiki Kaisha 受信装置
US8042031B2 (en) * 2006-12-21 2011-10-18 Industrial Technology Research Institute Maximum likelihood detection method and system
US8040981B2 (en) * 2008-07-10 2011-10-18 Xilinx, Inc. Symbol detection in a MIMO communication system
US8311161B2 (en) * 2009-06-19 2012-11-13 Xilinx, Inc. Sphere detector performing depth-first search until terminated
EP2458747A1 (en) * 2010-11-30 2012-05-30 ST-Ericsson SA Detection process for a receiver of a wireless MIMO communication system
US9374166B2 (en) * 2012-02-13 2016-06-21 Ciena Corporation High speed optical communication systems and methods with flexible bandwidth adaptation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064579A (zh) * 2006-04-25 2007-10-31 上海无线通信研究中心 一种低复杂度的球形译码检测方法
CN101594202A (zh) * 2009-06-22 2009-12-02 北京天碁科技有限公司 一种球形译码检测方法及装置
CN102281089A (zh) * 2010-06-10 2011-12-14 中兴通讯股份有限公司 一种多输入多输出系统的信号检测方法和装置
CN102833045A (zh) * 2012-09-07 2012-12-19 天津理工大学 一种用于mimo通讯系统的改进的球形译码检测方法

Also Published As

Publication number Publication date
EP2924903A4 (en) 2015-11-11
CN103888217B (zh) 2017-11-14
JP2016503986A (ja) 2016-02-08
JP5934846B2 (ja) 2016-06-15
EP2924903A1 (en) 2015-09-30
US20150349923A1 (en) 2015-12-03
EP2924903B1 (en) 2018-11-28
CN103888217A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2013182167A1 (zh) 一种球形译码检测方法及装置
CN109995449B (zh) 一种基于深度学习的毫米波信号检测方法
CN109031196A (zh) 基于运动观测站对多信号源的最大似然直接定位方法
CN104580039A (zh) 格基规约算法辅助的无线mimo系统的接收机检测方法
WO2015131840A1 (zh) 一种mimo系统的检测方法及装置
Weon et al. Learning-aided deep path prediction for sphere decoding in large MIMO systems
WO2015117479A1 (zh) 一种路径检测的方法和装置、球形译码检测的装置
CN102487309A (zh) 一种mimo系统下的信号检测方法和装置
CN114142905A (zh) 时变信道下基于牛顿迭代法的mimo检测算法的改进方法
WO2024036933A1 (zh) 检测译码方法、装置、计算机设备及可读存储介质
US10778477B2 (en) Efficient sphere detector algorithm for large antenna communication systems using graphic processor unit (GPU) hardware accelerators
US10686631B2 (en) Receiver and receiving method using quadrature spatial modulation technology, and relevant wireless communication system
CN103326813B (zh) 单树搜索软球形译码方法及装置
US10419084B2 (en) Wireless communication device and wireless communication method
Chang et al. Complexity‐reduced maximum‐likelihood hybrid detection for MIMO systems
Liu et al. Constant Wideband Compressive Spectrum Sensing with Cascade Forward-Backward Propagating and Prior Knowledge Refining
CN104168073A (zh) 一种信号检测方法及装置
TW201505380A (zh) 由基於球狀解碼器之渦輪等化器執行之方法與渦輪等化器
Wang et al. An improved filtering algorithm for indoor localization based on DE-PSO-BPNN
WO2023024535A1 (zh) 信号检测方法和装置、电子设备、计算机可读存储介质
CN114760132B (zh) 信号发送方身份认证方法、装置、存储介质及电子设备
Roger et al. MIMO channel matrix condition number estimation and threshold selection for combined K-best sphere decoders
CN114553273B (zh) 一种面向大规模mimo最优信号检测的有效搜索方法
WO2024012164A1 (zh) 信号处理方法、电子设备及存储介质
He et al. A Novel Approach Based on Generative Adversarial Network for Signal Enhancement in Wireless Communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14654601

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015548151

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013801064

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE