WO2013180494A1 - Multichannel device for distributing fluid, apparatus for extracting nucleic acid comprising same, and method for extracting nucleic acid by using same - Google Patents

Multichannel device for distributing fluid, apparatus for extracting nucleic acid comprising same, and method for extracting nucleic acid by using same Download PDF

Info

Publication number
WO2013180494A1
WO2013180494A1 PCT/KR2013/004775 KR2013004775W WO2013180494A1 WO 2013180494 A1 WO2013180494 A1 WO 2013180494A1 KR 2013004775 W KR2013004775 W KR 2013004775W WO 2013180494 A1 WO2013180494 A1 WO 2013180494A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
channel
liquid
microfluidic chip
inlet
Prior art date
Application number
PCT/KR2013/004775
Other languages
French (fr)
Korean (ko)
Inventor
김성우
김덕중
김선진
이세현
류호선
Original Assignee
나노바이오시스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노바이오시스(주) filed Critical 나노바이오시스(주)
Publication of WO2013180494A1 publication Critical patent/WO2013180494A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting

Definitions

  • the present invention relates to a liquid dispensing device for dispensing a biological sample or a reagent and a liquid simultaneously and accurately to a thin microfluidic chip having a liquid inlet, a nucleic acid extracting device including the same, and a nucleic acid extracting method using the same.
  • nucleic acid amplification reaction technology a technique for extracting nucleic acids from biological samples such as cells, bacteria, or viruses to diagnose, treat, or prevent diseases at the genetic level.
  • nucleic acid amplification reaction technology there is a need for a technology for extracting nucleic acids from biological samples in various fields such as development of customized new drugs, forensic medicine, and detection of environmental hormones.
  • the conventional nucleic acid extraction technology there is a method of purifying nucleic acid by denatured protein with phenol after solubilizing a sample including cells by treatment with SDS or proteinase K.
  • the phenol extraction method is not only time-consuming because many processing steps have to be performed, but also has a problem in that the nucleic acid extraction efficiency is highly dependent on the researcher's experience and experience, and thus the reliability is greatly reduced.
  • kits using silica or glass fibers that specifically bind to nucleic acids have been used.
  • the silica or glass fiber has a low binding ratio with proteins and cellular metabolites, so that nucleic acids having a relatively high concentration can be obtained.
  • This method has the advantage of being simpler than the phenol method.
  • the use of chaotropic reagents or ethanol which strongly inhibit enzymatic reactions such as polymerase chain reaction (PCR), requires the complete removal of these substances.
  • a device for injecting a very small amount of liquid, such as a sample or a reagent, into the reaction vessel is essential when performing various biological reactions.
  • Conventional reaction vessels are mostly tube-shaped, and moreover, multi-tubes and the like, which are equipped with a plurality of tubes having a very small volume, are also used.
  • devices commonly used for injecting, mixing, or dispensing liquids, such as trace amounts of samples or reagents, into such reaction vessels are pipettes and tips.
  • the pipette and tip are unsatisfactory in controlling the amount of liquid injected into the reaction vessel by the user's hand operation, and are particularly useful when injecting liquid into one or more inlets of a small size of a thin microfluidic chip.
  • One embodiment of the present invention can quickly and accurately distribute a small amount of liquid, such as a biological sample or reagent, to one or more inlets of a thin-film microfluidic chip having one or more reaction channels, and improves user convenience.
  • a nucleic acid extraction apparatus comprising the same, and a nucleic acid extraction method using the same.
  • a first embodiment of the present invention is a thin film substrate; A single liquid inlet disposed in one end region of the substrate; And at least one even liquid outlet disposed in the other distal region of the substrate and in fluid communication with the single liquid inlet, the channel having one end connected to the single liquid inlet side.
  • the other end comprises at least one unit channel region having a channel pattern connected to the liquid outlet side, which is implemented to divide into two branches and distribute the flow rate in half. .
  • the liquid discharge port is implemented as 2 N , and the channel includes N unit channel regions formed from the single liquid inlet to the 2 N liquid outlet ports, and the N-th i-th unit channel region includes 2 i-1 openings.
  • channel 3100 and the 2 i-1 from the start of the channel is divided into two branches each comprising a flow rate of 2 i of branch channel (3200) for dispensing a half, the start of the first unit channel domain channel side
  • An end is connected to the single liquid inlet, and a branch channel end of the Nth unit channel region is connected to the 2 N liquid outlets, respectively, wherein N and i may be natural waters.
  • the at least one inlet in a microfluidic chip 1 having a thin film shape having at least one even number of reaction channels having inlets and outlets at both ends, the at least one inlet may be provided.
  • a multi-channel liquid dispensing device for injecting liquid downward into one or more reaction channels, the liquid outlet having a liquid outlet corresponding to the number of one or more inlets; And fluid delivery means for fluidly connecting the at least one inlet of the microfluidic chip and the at least one liquid outlet of the multi-channel liquid dispensing device.
  • a third embodiment of the present invention is for extracting a nucleic acid from a biological sample, comprising an inlet, a channel region connected to the inlet, and an outlet connected to the channel region, wherein the channel region is introduced through the inlet.
  • a microfluidic chip for extracting nucleic acids having a thin film shape having one or more reaction channels, including a heating unit configured to transfer heat obtained from the outside to the biological sample;
  • a multi-channel liquid dispensing apparatus according to a first embodiment of the present invention, having a liquid outlet corresponding to the number of said at least one inlet; And fluid delivery means for fluidly connecting the one or more inlets of the microfluidic chip and the one or more liquid outlets of the multi-channel liquid dispensing device.
  • a chip outlet region end mounting portion configured to be fixedly mounted to at least one outlet region end of the microfluidic chip, at least one upward liquid inlet corresponding to an upper end of at least one outlet portion of the microfluidic chip, and at least one It may further comprise a liquid storage container having at least one liquid storage chamber in fluid communication with the upward liquid inlet.
  • the microfluidic chip may include a first filter disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit and capable of passing a material having a size corresponding to a nucleic acid. Can be.
  • the microfluidic chip has a heating unit disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit, and having a first filter through which a material having a size corresponding to a nucleic acid can pass therethrough. And a nucleic acid separation unit disposed in a third channel region connected to the first filter and having a nucleic acid binding material capable of specifically binding to the nucleic acid.
  • the microfluidic chip has a heating unit disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit, and having a first filter through which a material having a size corresponding to a nucleic acid can pass therethrough. And a nucleic acid separation unit disposed in a third channel region connected to the first filter and having a nucleic acid binding material capable of specifically binding to the nucleic acid, and disposed in a fourth channel region connected to the nucleic acid separation unit. It may be provided with a second filter capable of passing a substance of a size corresponding to the nucleic acid.
  • the microfluidic chip may include a nucleic acid separation unit including a heating unit disposed in a channel region connected to the inlet unit and disposed in a channel region connected to the heating unit and provided with a nucleic acid binding material capable of specifically binding to the nucleic acid. Can be.
  • the microfluidic chip is provided with a nucleic acid separation unit which is disposed in the channel region connected to the inlet, the nucleic acid binding material is disposed in the channel region connected to the heating portion and is provided with a nucleic acid binding material that can specifically bind to the nucleic acid. And a second filter disposed in a channel region connected to the nucleic acid separation unit and capable of passing a material having a size corresponding to the nucleic acid.
  • a fourth embodiment of the present invention includes the steps of providing a nucleic acid extracting apparatus according to a third embodiment of the present invention; Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; And extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip.
  • a fifth embodiment of the present invention includes the steps of providing a nucleic acid extracting apparatus according to a third embodiment of the present invention; Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; Extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip; And storing the nucleic acid extraction product in a liquid storage chamber of the liquid storage container.
  • One embodiment of the present invention relates to a multi-channel liquid dispensing apparatus, a nucleic acid extracting apparatus comprising the same, and a nucleic acid extracting method using the same, and accordingly, in performing various biological reactions using a thin-film microfluidic chip,
  • the same amount of liquid can be rapidly dispensed and injected into one or more small inlets, and only one user can accurately distribute the amount of liquid to the one or more inlets, furthermore nucleic acid extraction reaction time It is expected to significantly shorten the speed of the subsequent various biological detection or analytical reactions.
  • FIG. 1 illustrates a multi-channel liquid dispensing apparatus according to one embodiment of the present invention.
  • FIG. 2 to 3 show unit channel regions of the channels of the multi-channel liquid dispensing apparatus according to FIG. 1.
  • FIG. 6 illustrates a multi-channel liquid dispensing injection device according to one embodiment of the present invention.
  • FIG. 7 to 10 illustrate in detail the microfluidic chip according to an embodiment of the present invention, and shows a nucleic acid extraction method using the same.
  • 11-13 illustrate a liquid storage container according to one embodiment of the present invention.
  • FIG. 14 illustrates a flow path of a liquid such as a biological sample or a reagent in a state in which a microfluidic chip and a liquid storage container are combined according to an embodiment of the present invention.
  • FIG. 15 illustrates a flow path of a liquid, such as a biological sample or reagent, in conjunction with a multi-channel liquid dispensing device, microfluidic chip, and liquid storage container in accordance with one embodiment of the present invention.
  • a liquid such as a biological sample or reagent
  • 16 to 17 show the results of nucleic acid extraction experiments using the nucleic acid extracting apparatus and the nucleic acid extracting apparatus according to an embodiment of the present invention, respectively.
  • FIG. 1 shows a multi-channel liquid dispensing apparatus 2 according to one embodiment of the invention.
  • the multi-channel liquid dispensing apparatus 2 includes a substrate 1000 having a thin film shape; A single liquid inlet 2000 disposed in one end region of the substrate; And at least one even liquid outlet 4000 disposed in the other distal region of the substrate and in fluid communication with the single liquid inlet via channel 3000. At least one unit channel region having one end connected to the single liquid inlet side and the other end divided into two branches and configured to distribute the flow rate at half, having a channel pattern connected to the liquid outlet side.
  • the substrate 1000 has a microcavity, that is, a channel, configured to receive a very small amount of liquid and to allow the contained liquid to move.
  • the substrate 1000 may be embodied in a thin film shape such as a thin plate to save an amount of a sample or a reagent in a biological or biochemical reaction requiring a very small amount of liquid, and to adjust a minute amount. Since the substrate 1000 serves as a base of the single liquid inlet 2000, the channel 3000, and the plurality of liquid outlets 4000 to be described later, the substrates 1000 support these modules 2000, 3000, and 4000.
  • the materials may be easily manufactured, for example, plastics, silicon, metals, ceramics, and the like, but are not limited thereto.
  • the multi-channel liquid dispensing device 2 is for simultaneously distributing the same amount of sample or reagent to a reaction vessel having one or more inlets in only one operation.
  • the multi-channel liquid dispensing device 2 may comprise one, ie a single liquid inlet 2000 and a plurality of, for example, one or more even liquid outlets 4000 in fluid communication therewith.
  • the single liquid inlet 2000 is disposed in one end region of the substrate 1000, and the one or more even liquid outlets 4000 are disposed in the other end region of the substrate, which are channels
  • the fluid is connected in fluid communication via a 3000 to implement a structure in which liquid can move from the single liquid inlet 2000 to the one or more even liquid outlets 4000.
  • the single liquid inlet 2000 and one or more even number of liquid outlets 4000 may be disposed upward from one surface of the thin film substrate 1000, or may be disposed on both surfaces of the thin film substrate 1000. It may be arranged upward and downward, respectively.
  • the bottom figure of FIG. 1 shows that a single liquid inlet 2000 and one or more even liquid outlets 4000 of the multi-channel liquid dispensing device 2 are both disposed on one surface of the thin film-shaped substrate 1000. It illustrates an upward arrangement.
  • FIG. 2 to 3 show the unit channel region 3500 of the channel 3000 of the multi-channel liquid dispensing apparatus 2 according to FIG. 1.
  • the channel 3000 of the multi-channel liquid dispensing device 2 has one end connected to the single liquid inlet 2000 side, and the other end is divided into two branches so that the flow rate is 1/2.
  • One or more unit channel regions 3500 which are implemented to dispense and have a channel pattern connected to the liquid outlets 4000a and 4000b, respectively.
  • the unit channel region 3500 may be an arbitrarily divided region of the channels 3000 that are continuously connected in fluid communication from the single liquid inlet 2000 to the one or more even liquid outlets 4000.
  • the unit channel region 3500 may be implemented in one or more in the multi-channel liquid distribution device 2 to form a continuous flow path between the single liquid inlet 2000 and the liquid outlet 4000. . 2 is assumed to be one unit channel region 3500.
  • One end of the one unit channel region 3500 is directly connected to the single liquid inlet 2000, and the other end is directly connected to the one or more even numbers, that is, two liquid outlets 4000a and 4000b.
  • the injected liquid moves along a channel connected to one end of the unit channel region 3500, and the other end of the liquid is injected (F).
  • the flow rate is divided by 1/2 along the bifurcated channel at 1 / 2F and moves to the two liquid outlets 4000a and 4000b.
  • the general electrical circuit formula can be used to dispense exactly 1/2 of the flow rate dispensed.
  • the cross-sectional area of the two divided channels is compared with the cross-sectional area of one channel before the split in consideration of the electric circuit formula and the resistance thereof. This can be achieved through
  • the multi-channel liquid dispensing apparatus 2 can easily determine the number of liquid dispensing if the number of the one or more even liquid outlets 4000 is determined in advance.
  • the liquid discharge port is embodied in 2 N
  • the channel comprises N unit channel region formed from the single liquid inlet to the 2 N liquid outlet, wherein the i-th unit channel region below N is 2 i- is divided into two streams respectively from one start channel and the 2 i-1 of the start channel, including, but 2 i of branch channel for distributing a flow rate of 1/2, the first start of the second unit of the channel region is the channel-side ends It is connected to a single liquid inlet, the branch channel end of the N-th unit channel region is each connected to the 2 N liquid outlet, wherein N and i can implement a multi-channel liquid distribution device is natural water.
  • the channel 3000 is divided into four liquid outlets 4000a, from the single liquid inlet 2000.
  • two unit channel regions 3500 and 3500 'up to 4000b, 4000c, and 4000d, and the first unit channel region 3500 of the unit channel region includes one start channel 3100 and the one start channel ( 2 branch channels 3200 and 1 / 2F, each divided into two branches from 3100, for dividing the flow rate in half, wherein the second unit channel region 3500 'of the unit channels includes two starting channels.
  • branch channels 3200 'and 1 / 4F each divided into two branches from 3100' and the two starting channels 3100 ', distributing the flow rate in half, in this case the first An end of the start channel 3100 side of the unit channel region 3500 is connected to the single liquid inlet 2000 and the second unit channel region 35 00 ') end of branch channel 3200' is connected to the four liquid outlets 4000a, 4000b, 4000c, 4000d.
  • the microfluidic chip 1 has one or more reaction channels 70 which are used for various reactions, for example biological or biochemical reactions, in which such reactions occur. 4 to 6, the microfluidic chip 1 is provided with eight reaction channels 70, but is not limited thereto.
  • the reaction channel 70 has an inlet 10 and an outlet 60 at both ends, and a liquid such as a biological sample or a reagent is introduced into the reaction channel 70 through the inlet 10. And liquid, such as the biological reaction product or waste, is discharged through the outlet 60.
  • the microfluidic chip 1 may be implemented in a thin film shape, such as a thin plate, and may include a space for accommodating a small amount of liquid.
  • the microfluidic chip 1 can be usefully used for biological reactions using very small amounts of liquids, for example biological samples, and reagents for extracting nucleic acids therefrom. The detailed structure and use of the microfluidic chip 1 will be described later.
  • FIG. 6 illustrates a multi-channel liquid dispensing injection device according to one embodiment of the present invention.
  • a multi-channel liquid dispensing injection device has a thin-film microfluidic chip having one or more even reaction channels having inlets and outlets at both ends thereof.
  • the microfluidic chip 1 may be used for nucleic acid extraction reaction, polymerase chain reaction (PCR), etc., and according to an embodiment of the present invention, the multi-channel liquid dispensing device 2 and the fluid delivery means 4
  • the liquid delivered to the microfluidic chip 1 through) may be a sample or a reagent necessary for each reaction.
  • the fluid delivery means 4 is related to the arrangement direction of at least one even number of liquid outlets 4000 of the multi-channel liquid dispensing device 2 according to an embodiment of the invention. According to FIG.
  • the liquid outlet 4000 of the multi-channel liquid dispensing device 2 is implemented downward, the bottom of the one or more even number of liquid outlet 4000 If there is a region in which the inlet region of the microfluidic chip 1 is mounted so that the downward liquid outlet 4000 and the inlet of the microfluidic chip 1 can be closely connected, the separate fluid transfer means as described above ( 4) Of course it may not be required.
  • FIG. 7 to 10 illustrate in detail the microfluidic chip according to an embodiment of the present invention, and shows a nucleic acid extraction method using the same.
  • the microfluidic chip according to an embodiment of the present invention can be used for nucleic acid extraction.
  • the microfluidic chip is referred to as "microfluidic chip for nucleic acid extraction”.
  • the microfluidic chip for nucleic acid extraction is a structure for extracting nucleic acid, that is, an inlet, an outlet, a channel connecting the inlet and the outlet, a first filter, and a first filter.
  • 2 refers to a microchip that has a standard such as a filter in millimeters or micrometers.
  • the nucleic acid extracting microfluidic chip has an inlet 10, a channel region 70 connected to the inlet 10, and an outflow connected to the channel region 70.
  • the channel region 70 includes a heating portion 20 implemented to transfer heat obtained from the outside to the biological sample introduced through the inlet portion 10, 7b to Various modules for efficiently extracting nucleic acids from biological samples, such as 7g, may be provided.
  • a heating unit 20 is disposed in a first channel region connected to the inlet unit 10, and connected to the heating unit 20.
  • the microfluidic chip for nucleic acid extraction according to an embodiment of the present invention shown in FIG. 7C includes a first filter 30 disposed in a second channel region and capable of passing a material having a size corresponding to nucleic acid.
  • the heating unit 20 is disposed in the first channel region connected to the inlet unit 10, and the first channel region is disposed in the second channel region connected to the heating unit 20 to pass a material having a size corresponding to the nucleic acid.
  • a nucleic acid separation unit 40 having a filter 30 and disposed in a third channel region connected to the first filter 30 and having a nucleic acid binding material 45 capable of specifically binding to the nucleic acid.
  • a heating unit 20 is disposed in a first channel region connected to the inlet 10, and is disposed in a second channel region connected to the heating unit 20, and passes through a material having a size corresponding to a nucleic acid.
  • a nucleic acid binding material 45 (bead) disposed in a third channel region connected to the first filter 10 and capable of specifically binding to the nucleic acid.
  • a second filter 50 disposed in a fourth channel region connected to the nucleic acid separator 40 to pass a material having a size corresponding to the nucleic acid.
  • the heating unit 20 is disposed in the first channel region connected to the inlet unit 10, the heating unit 20. Disposed in a second channel region associated with the nucleic acid and capable of passing a substance of a size corresponding to the nucleic acid.
  • a nucleic acid separation having a first filter 30 and a nucleic acid binding material 45 (membrane) disposed in a third channel region connected to the first filter 10 and capable of specifically binding to the nucleic acid.
  • a second filter 50 disposed in a fourth channel region connected to the nucleic acid separation unit 40 and capable of passing a material having a size corresponding to the nucleic acid.
  • a heating unit 20 is disposed in a channel region connected to the inlet unit 10, and a channel region connected to the heating unit 20 is provided.
  • Nucleic acid isolating portion 40 is disposed and is provided with a nucleic acid binding material 45, which can specifically bind to the nucleic acid (40, membrane), a nucleic acid according to an embodiment of the present invention shown in Figure 7g
  • Extraction microfluidic chip has a channel region connected to the inlet 10
  • the nucleic acid separation unit 40 is disposed in the heating unit 20, the nucleic acid separation unit 40 is disposed in the channel region connected to the heating unit 20, and provided with a nucleic acid binding material 45 that can specifically bind to the nucleic acid.
  • a second filter 50 disposed in a channel region connected to the nucleic acid separator 40 and capable of passing a material having a size corresponding to the nucleic acid.
  • the biological sample is a biological material including a nucleic acid such as DNA or RNA, and may be, for example, a liquid sample including animal cells, plant cells, pathogens, fungi, bacteria, viruses, and the like, but is not limited thereto.
  • the inlet 10 is a portion into which the biological sample or the solution for nucleic acid extraction is introduced into the microfluidic chip, and the outlet 60 is a nucleic acid obtained from the biological sample, a solution for nucleic acid extraction, Other waste (waste) and the like is discharged to the outside the microfluidic chip.
  • the inlet 10 and the outlet 60 may serve as outlets and inlets, respectively.
  • the solution for nucleic acid extraction includes all the solutions required for nucleic acid extraction, and may be, for example, distilled water, a nucleic acid binding buffer, an elution buffer, or the like.
  • the inlet 10 and the outlet 60 is connected in fluid communication via the channel 70, the heating unit 20, the first filter 30, the nucleic acid separation unit to be described in detail below Components 40, the second filter 50, and the like may be connected to the channel 70 to perform each function.
  • the channel 70 may be implemented in various standards, but the width and depth of the channel are preferably implemented in the range of 0.001 to 10 millimeters (mm), but are not limited thereto.
  • the first, second, third, and fourth channel regions which will be described below, refer to a sequential arrangement from the inlet portion 10 to the outlet portion 60, and to a specific position in the channel 70. It is not limited.
  • the heating part 20 is a part in which heat is applied from the outside to a solution (including a biological sample) introduced through the inlet part 10 and is disposed in a first channel region connected to the inlet part 10.
  • a solution including a biological sample
  • the heating unit 20 may be supplied with heat in a contact or non-contact manner from the heating module 600 of the nucleic acid extraction apparatus to be described below.
  • the first filter 30 serves to distinguish between passing materials and non-passing materials by sizes in the fluid flow direction, and may be, for example, a structure having pores of a predetermined size.
  • the first filter 30 is disposed in the second channel region connected to the heating unit 20, it is implemented to pass a material of a size corresponding to the nucleic acid.
  • the first filter 30 collects a material having a size larger than that of the nucleic acid in the dissolution product generated by the heating in the heating unit 20 in the heating unit 20, but the nucleic acid and the material having a corresponding size passes through It is moved to the nucleic acid separation unit 40 to be described below.
  • the first filter 30 may be implemented in various standards, but may include pores having a diameter in the range of 0.1 to 0.4 micrometers ( ⁇ m), and have a thickness in the range of 0.01 to 10 millimeters (mm). It is desirable to have. More preferably, the first filter 30 has a pore having a diameter of 0.2 micrometer ( ⁇ m), but preferably has a thickness of 0.01 to 0.5 millimeters (mm).
  • the nucleic acid separation unit 40 is for selectively separating the nucleic acid from a nucleic acid or a substance having a size corresponding thereto. According to FIG. 7, the nucleic acid separation unit 40 is a space between the first filter 30 and the second filter 50 to be described below, and the nucleic acid binding material 45 capable of specifically binding to the nucleic acid. ) Is provided.
  • the nucleic acid binding material 45 may be any material that can specifically bind to the nucleic acid.
  • the nucleic acid binding material 45 has a nucleic acid binding functional group attached thereto, and may be, for example, silica (SiO 2) beads, biotin, strptavidin attachment beads, or a membrane.
  • the bead or membrane to which the nucleic acid binding functional group is attached may be implemented in various standards, but preferably has a diameter within the range of 0.001 to 20 millimeters (mm).
  • the nucleic acid separation unit 40 may include a bead or membrane to which the nucleic acid binding functional group is attached in various contents and specifications, but preferably within a range of 1 microgram ( ⁇ g) to 200 mg (mg).
  • the second filter 50 serves to distinguish the passing material and the non-passing material by size through the pore in the fluid flow direction.
  • the second filter 50 may be a structure having a pore having a predetermined size. have.
  • the second filter 50 is disposed in the fourth channel region connected to the nucleic acid separation unit 40, it is implemented to pass a material of a size corresponding to the nucleic acid.
  • the second filter 50 collects the nucleic acid binding material 45 in the nucleic acid separation unit 40, but passes the nucleic acid separated from the nucleic acid binding material 45 to the outlet 60. Let's do it.
  • the second filter 50 may be implemented in various standards, but having a pore having a diameter in the range of 0.1 to 100 micrometers ( ⁇ m), but having a thickness in the range of 0.01 to 0.5 millimeters (mm). desirable. More preferably, the second filter 50 has a pore having a diameter of 0.2 micrometer ( ⁇ m), but preferably has a thickness of 0.3 millimeter (mm).
  • FIG. 8 is a cross-sectional view of the microfluidic chip for nucleic acid extraction according to an embodiment of the present invention.
  • Microfluidic chip for nucleic acid extraction according to an embodiment of the present invention is a silver first plate (100); A second plate (200) disposed on the first plate and having a channel (70) including the first to fourth channel regions; And a third plate 300 disposed on the second plate 200 and having the inlet 10 and the outlet 60 disposed thereon.
  • Nucleic acid extraction microfluidic chip according to an embodiment of the present invention may be implemented in a variety of materials, preferably may be implemented in a plastic material.
  • the first plate 100 and the third plate 300 may include polydimethylsiloxane (PDMS), cyclo olefin copolymer (COC), polymethyl methacrylate (PMMA), Material selected from the group consisting of polycarbonate (PC), polypropylene carbonate (PPC), polyether sulfone (PES), and polyethylene terephthalate (PET), and combinations thereof
  • the second plate 200 includes polymethylmethacrylate (PMMA), polycarbonate (PC), cycloolefin copolymer (COC), polyamide (PA), Polyethylene (PE), polypropylene (PP), polyphenylene ether (PPE), polystyrene (PS), polyoxymethylene (POM), polyether Polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), polyvinylch
  • the inlet portion of the third plate is implemented in the range of 0.1 to 5.0 millimeters (mm) in diameter
  • the outlet portion is implemented in the range of 0.1 to 5.0 millimeters (mm) in diameter
  • the thickness of the first plate and the third plate Is implemented within the range of 0.01 to 20 millimeters (mm)
  • the thickness of the second plate may be implemented within the range of 30 micrometers ( ⁇ m) to 10 millimeters (mm).
  • the microfluidic chip for nucleic acid extraction may be implemented as one or more inlets, outlets, and channels connecting them, if necessary, in this case from one or more biological samples on one chip Nucleic acid can be extracted, and nucleic acid can be extracted quickly and efficiently.
  • FIG. 9 is a schematic diagram of a nucleic acid extraction apparatus equipped with a microfluidic chip for nucleic acid extraction according to an embodiment of the present invention.
  • the nucleic acid extracting apparatus is a nucleic acid extracting microfluidic chip (1) already described; A chip mounting module 500 implemented to mount the microfluidic chip 1; A heating module 600 implemented to apply heat to the heating unit 20 of the microfluidic chip 1 mounted on the chip mounting module 500; And a solution for extracting nucleic acids into the microfluidic chip 1 by being connected to the inlet 10 and / or the outlet 60 of the microfluidic chip 1 mounted on the chip mounting module 500. It may include a fluid control module 700 implemented to introduce and / or to discharge the solution present in the microfluidic chip (1) to the outside.
  • the nucleic acid extraction apparatus is a device implemented to perform all the steps for nucleic acid extraction in the state in which the microfluidic chip 1 according to an embodiment of the present invention, the chip mounting module 500, In addition to the heating module 600 and the fluid control module 700, it may further include various modules required for extracting other nucleic acids.
  • the nucleic acid extracting apparatus according to an embodiment of the present invention can be implemented so that all steps can be implemented in an automated manner, the nucleic acid amplification reaction can proceed immediately after nucleic acid extraction in conjunction with the polymerase chain reaction (PCR) apparatus have.
  • PCR polymerase chain reaction
  • microfluidic chip 1 for nucleic acid extraction is as described above.
  • the chip mounting module 500 is a portion on which the microfluidic chip 1 is mounted.
  • the chip mounting module 500 may be implemented in various ways corresponding to the shape of the contact surface of the microfluidic chip 1.
  • the heating module 600 is a module for supplying heat to the heating unit 20 of the microfluidic chip 1 when the microfluidic chip 1 is mounted on the chip mounting module 500.
  • the heating module 600 may be implemented in various ways, but a contact heating block is preferable.
  • the fluid control module 700 is connected to the inlet part 10 and / or the outlet part 60 of the microfluidic chip 1 mounted on the chip mounting module 500 to be inside the microfluidic chip 1. It is a module implemented to introduce a solution for nucleic acid extraction and / or to discharge the solution existing in the microfluidic chip (1) to the outside.
  • the fluid control module 700 may include various components, for example, a microchannel that is a fluid movement passage, a pneumatic pump providing a driving force for fluid movement, a valve for controlling opening and closing of fluid movement, and a nucleic acid. It may further include a storage chamber containing a variety of solutions required for nucleic acid extraction, such as binding buffer, elution buffer, silica gel (silica gel), distilled water (DW).
  • the nucleic acid extracting apparatus is an electronic control module (not shown) for automatically controlling the microfluidic chip 1, the heating module 600, and the fluid control module 700. ) May be further included.
  • the electronic control module can precisely control the respective modules so that the quantitative nucleic acid can be extracted from the microfluidic chip 1 according to a pre-stored program.
  • the prestored program includes, for example, a program relating to a series of steps relating to a nucleic acid extraction method which will be described in detail below.
  • FIGS. 10A to 10D illustrate various nucleic acid extraction methods based on the microfluidic chip 1 for nucleic acid extraction according to an embodiment of the present invention.
  • a method for extracting a nucleic acid from a biological sample comprises the steps of providing a microfluidic chip for nucleic acid extraction according to Figure 7f (microfluidic chip providing step); Introducing a biological sample selected from the group consisting of cells, bacteria, and viruses through an inlet of the microfluidic chip (biological sample introduction step); Moving the introduced biological sample to a heating part of the microfluidic chip and then heating the heating part of the microfluidic chip to dissolve the biological sample (biological sample dissolution step); Separating the nucleic acid from the soluble material through a nucleic acid binding material (membrane) (nucleic acid separation step); As an optional step, the step of removing foreign matters generated in the nucleic acid separation process (foreign matter removing step); And extracting the nucleic acid through the outlet after moving the nucleic acid to the outlet (nucleic acid extraction step).
  • a method for extracting a nucleic acid from a biological sample comprises the steps of providing a microfluidic chip for nucleic acid extraction according to Figure 7b or 7c (microfluidic chip providing step); Introducing a biological sample selected from the group consisting of cells, bacteria, and viruses through an inlet of the microfluidic chip (biological sample introduction step); Moving the introduced biological sample to a heating part of the microfluidic chip and then heating the heating part of the microfluidic chip to dissolve the biological sample (biological sample dissolution step); The material obtained from the dissolution step is transferred to the first filter of the microfluidic chip and then passed through the first filter, and removing the material not passed through the first filter (filtration step through the first filter) ); Separating the nucleic acid from the material passing through the first filter (nucleic acid separation step); As an optional step, the step of removing foreign matters generated in the nucleic acid separation process (foreign matter removing step); And extracting the nucleic acid
  • a method for extracting a nucleic acid from a biological sample comprises the steps of providing a microfluidic chip for nucleic acid extraction according to Figure 7g (microfluidic chip providing step); Introducing a biological sample selected from the group consisting of cells, bacteria, and viruses through an inlet of the microfluidic chip (biological sample introduction step); Moving the introduced biological sample to a heating part of the microfluidic chip and then heating the heating part of the microfluidic chip to dissolve the biological sample (biological sample dissolution step); Separating the nucleic acid from the soluble material through a nucleic acid binding material (bead) (nucleic acid separation step); As an optional step, the step of removing foreign matters generated in the nucleic acid separation process (foreign matter removing step); Separating the nucleic acid from the nucleic acid binding material, passing the separated nucleic acid to the second filter and passing it through a second filter (filtration through a second filter); And extracting the steps of providing a microfluidic chip for nucle
  • a method for extracting a nucleic acid from a biological sample comprises the steps of providing a microfluidic chip for nucleic acid extraction according to Figure 7d or 7e (microfluidic chip providing step); Introducing a biological sample selected from the group consisting of cells, bacteria, and viruses through an inlet of the microfluidic chip (biological sample introduction step); Moving the introduced biological sample to a heating part of the microfluidic chip and then heating the heating part of the microfluidic chip to dissolve the biological sample (biological sample dissolution step); The material obtained from the dissolution step is transferred to the first filter of the microfluidic chip and then passed through the first filter, and removing the material not passed through the first filter (filtration step through the first filter) ); Separating the nucleic acid from the soluble material through a nucleic acid binding material (bead or membrane) (nucleic acid separation step); As an optional step, the step of removing foreign matters generated in the nucleic acid separation process (
  • 11-13 illustrate a liquid storage container according to one embodiment of the present invention.
  • the liquid storage container 5000 is for storing and storing a reaction product after the reaction by the microfluidic chip 1 is completed, and at least one outlet portion of the microfluidic chip 1 ( 60) a chip outlet region end mounting portion 5100 implemented such that the region end is fixedly mounted, and one or more upward liquid suction ports 5200 respectively corresponding to upper ends of the one or more outlet portions 60 of the microfluidic chip 1. And one or more liquid storage chambers 5300 in fluid communication with the one or more upward liquid inlets 5200. 12 to 13 illustrate a process in which the liquid discharged through one or more outlets 60 of the microfluidic chip 1 moves in the liquid storage container 5000.
  • the liquid storage container 5000 is fixedly mounted to the chip outlet region end mounting portion 5100, and contains a solution containing a desired nucleic acid (
  • E1, E2 is discharged through the one or more outlets 60
  • the nucleic acid-containing solution E1, E2 is introduced through one or more upward liquid inlet 5200 of the liquid storage container 5000
  • the liquid storage container 5000 moves through the channel (F1, F2) to reach the one or more liquid storage chambers 5300 (S1, S2).
  • FIG. 14 illustrates a flow path of a liquid such as a biological sample or a reagent in a state in which the microfluidic chip 1 and the liquid storage container 5000 are combined according to an embodiment of the present invention.
  • the driving force for the continuous movement of the liquid in the microfluidic chip 1 and the liquid storage container 5000 is connected to one or more inlets 10 of the microfluidic chip 1.
  • Multi-channel liquid dispensing device 2 according to one embodiment, or any pump or syringe or the like.
  • liquid storage container 5000 is a flow path of a liquid such as a biological sample or a reagent in a state in which the multi-channel liquid dispensing apparatus 2, the microfluidic chip 1, and the liquid storage container 5000 are combined according to an embodiment of the present invention. Shows.
  • the first nucleic acid extracting method may include providing the nucleic acid extracting apparatus described above; Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; And extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip, wherein the second nucleic acid extracting method comprises the steps of providing the nucleic acid extracting apparatus described above; Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; Extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip; And storing the nucleic acid extraction product in a liquid storage chamber of the liquid storage container.
  • DNA is extracted using a general tube included in a third-party product and a nucleic acid extracting microfluidic chip 1 according to an embodiment of the present invention, and then the yield and duration of the tuberculosis strain cells. Confirmed.
  • Nucleic acid extraction step using a third-party nucleic acid separation device is as follows. Tuberculosis strain cells were prepared, and the tuberculosis strain cells were mixed with 6% NaOH and 4% NaLC in a 1: 1: 1 ratio to prepare a sample solution. The sample solution was then centrifuged to remove supernatant (10 min, 7500 rpm, 4 ° C.). Thereafter, 20 ⁇ l Proteinase K was added to the sample solution, and the sample solution was left at 56 ° C. until it became clear. Then, 200 ⁇ l AL buffer was added to the sample solution, mixed for 15 seconds, and left at 56 ° C. for 10 minutes.
  • the sample solution was then transferred to a column and centrifuged for 1 minute (8000 rpm). Then, 500 ⁇ l AW 1 buffer was added and centrifuged for 1 minute (8000 rpm). Thereafter, 500 ⁇ l AW 2 buffer was added and centrifuged for 1 minute (14,000 rpm). Then centrifuged again for 1 minute (14,000 rpm). Thereafter, the column was placed in a new tube, and 200 ⁇ l of AE buffer was added, followed by standing for 3 minutes. Thereafter, DNA was eluted after centrifugation for 1 minute. As a result, about 100 ⁇ l of the final DNA product was obtained and it took about 30 minutes to obtain the final DNA product.
  • nucleic acid was extracted from the same tuberculosis strain cells using a multi-channel liquid dispensing apparatus 2, a fluid delivery means 4, and a nucleic acid extracting microfluidic chip 1 according to an embodiment of the present invention.
  • the detailed process is as follows.
  • Tuberculosis strain cells were prepared, and the tuberculosis strain cells were mixed with 6% NaOH and 4% NaLC in a 1: 1: 1 ratio to prepare a sample solution. Thereafter, the microfluidic chip for nucleic acid extraction (25 x 72 x 2 mm, silica beads (OPS Diagnostics, LLC), filter (Whatman)) according to Figure 7 was introduced into the inlet. After the introduction of 300 ⁇ l of silica gel and 1X DNA binding buffer at the inlet of the microfluidic chip according to the embodiment of the present invention, the heating portion of the microfluidic chip according to the embodiment of the present invention is 95 ° C. Heated rapidly.
  • waste in the sample solution was removed through the inlet of the microfluidic chip according to the embodiment of the present invention, and 100 ⁇ l of an elution buffer was introduced.
  • a reagent was introduced into the nucleic acid extraction microfluidic chip using the multi-channel liquid dispensing apparatus 2 and the fluid delivery means 4 according to one embodiment of the present invention.
  • the final product was obtained through the outlet of the microfluidic chip according to one embodiment of the present invention (using a liquid storage container according to one embodiment of the present invention), and as a result, about 100 ⁇ l of the final DNA product was obtained. It took about 5 minutes to get the final DNA product.
  • the multi-channel liquid distribution device 2 the fluid delivery means 4, and the nucleic acid extraction microfluidic chip 1 according to an embodiment of the present invention
  • the amount of the nucleic acid extraction product is maintained as it is.
  • the total time required can be significantly reduced.
  • PCR polymerase chain reaction
  • PCR samples and reagents for carrying out the polymerase chain reaction include 10 microliters ( ⁇ l) of real-time PCR mixed solution (TOYOBO SYBR qPCR mix), 2 microliters ( ⁇ l) forward primer, and reverse primer (Reverse).
  • a total of 20 microliters ( ⁇ l) were prepared, including 2 microliters ( ⁇ l) of Primer, 10 ⁇ M, 1 microliter ( ⁇ l) of template DNA (1 ng), 5 microliters ( ⁇ W) of distilled water (DW), and the like.
  • the pre-denaturation step was performed at 95 ° C. and 30 sec (1 cycle), followed by the denaturation step at 95 ° C. and 5 sec, and the anealing & extension step at 72-65 ° C. and 30 sec (40). cycle).
  • Table 1 shows real-time PCR results (Ct values) for nucleic acid extraction products
  • FIG. 16 is a graph measuring real-time PCR results for nucleic acid extraction products obtained using a nucleic acid extraction method by fluorescence for each PCR cycle. 17 is a photograph of gel electrophoresis of the final PCR product.
  • the graph curve of FIG. 16 is the PCR result curve (X-axis: period, Y-axis: fluorescence) of the DNA product by each nucleic acid extraction method.
  • (1) is a negative control and (2) is a positive control.
  • the nucleic acid extraction method using the nucleic acid extraction apparatus according to an embodiment of the present invention significantly reduces the time required for the reaction by significantly reducing the nucleic acid extraction step while maintaining or improving the result reliability of the nucleic acid extraction product. I could confirm that I could.

Abstract

One embodiment of the present invention relates to a multichannel device for distributing a fluid, an apparatus for extracting nucleic acid comprising same, and a method for extracting nucleic acid by using same. According to the present invention, a miniscule amount of the fluid can be rapidly distributed into equal amounts and injected into at least one very small inlet portion, the miniscule amount of the fluid can be accurately distributed into the at least one inlet portion by a single maneuver by a user, and nucleic acid extraction reaction time can be significantly reduced when carrying out a variety of biological reactions, which use a micromovement chip having the shape of a thin film, thereby rapidly progressing a series of various biological detection or analysis reactions.

Description

다-채널 액체 분배 장치, 이를 포함하는 핵산 추출 장치, 및 이를 이용한 핵산 추출 방법Multi-channel liquid dispensing apparatus, nucleic acid extracting apparatus comprising same, and nucleic acid extracting method using same
본 발명은 액체 유입부를 구비하는 박막 형상의 미세유동 칩에 생물학적 시료 또는 시약과 액체를 동시에 정확하게 분배하기 위한 액체 분배 장치, 이를 포함하는 핵산 추출 장치, 및 이를 이용한 핵산 추출 방법에 관한 것이다.The present invention relates to a liquid dispensing device for dispensing a biological sample or a reagent and a liquid simultaneously and accurately to a thin microfluidic chip having a liquid inlet, a nucleic acid extracting device including the same, and a nucleic acid extracting method using the same.
최근 유전자 수준에서 질병을 진단, 치료, 또는 예방하기 위하여 세포, 박테리아, 또는 바이러스와 같은 생물학적 시료로부터 핵산을 추출하는 기술이 핵산 증폭 반응 기술과 연계되어 널리 활용되고 있다. 또한, 질병의 진단, 치료, 또는 예방 이외에도 맞춤형 신약 개발, 법 의학, 환경 호르몬 검출 등 다양한 분야에서 생물학적 시료로부터 핵산을 추출하는 기술이 요구되고 있는 실정이다. 종래 핵산 추출 기술의 일 예로서는 세포를 포함하는 시료를 SDS나 프로테이나아제(proteinase) K로 처리하여 가용화한 후 페놀로 단백질을 변성 제거하여 핵산을 정제하는 방법이 있었다. 그러나, 페놀 추출법은 많은 처리 단계를 수행해야 하기 때문에 많은 시간이 소요될 뿐만 아니라 핵산 추출 효율이 연구자의 경험과 노련성에 의해 크게 좌우되어 신뢰성이 크게 떨어지는 문제점이 있었다. 최근에는 이러한 문제를 해소하기 위해 핵산과 특이적으로 결합하는 실리카나 유리섬유를 이용하는 키트가 사용되기도 한다. 상기 실리카나 유리섬유는 단백질, 세포 대사 물질들과 결합 비율이 낮으므로 상대적으로 높은 농도의 핵산을 얻을 수 있다. 이와 같은 방법은 페놀법과 비교했을 때 간편하다는 장점은 있지만, 중합효소 연쇄 반응(PCR) 등의 효소 반응을 강하게 저해시키는 카오트로픽 시약이나 에탄올을 이용하기 때문에 이들 물질을 완전히 제거해야 하며, 이를 이유로 조작이 매우 번거롭고 시간이 오래 걸리는 단점이 있다. 최근 필터를 사용하여 핵산을 직접 정제하는 방법이 국제 공개특허 제00/21973호에 개시되었는데, 이 방법은 시료를 필터에 통과시켜 세포를 필터에 흡착시킨 후 필터에 흡착된 세포를 용해시키고 필터로 여과시킨 후 필터에 흡착된 핵산을 세척 및 용출시키는 것이다. 그러나 세포를 필터에 흡착시킨 후 핵산을 용출시키기 위해서는 세포의 종류에 따라 필터를 선택해야만 한다는 문제가 있고, 사용 장치들이 대형이고 복잡하여 연구자가 용이하게 사용할 수 없는 단점이 있다.Recently, a technique for extracting nucleic acids from biological samples such as cells, bacteria, or viruses to diagnose, treat, or prevent diseases at the genetic level has been widely used in connection with nucleic acid amplification reaction technology. In addition to the diagnosis, treatment, or prevention of diseases, there is a need for a technology for extracting nucleic acids from biological samples in various fields such as development of customized new drugs, forensic medicine, and detection of environmental hormones. As an example of the conventional nucleic acid extraction technology, there is a method of purifying nucleic acid by denatured protein with phenol after solubilizing a sample including cells by treatment with SDS or proteinase K. However, the phenol extraction method is not only time-consuming because many processing steps have to be performed, but also has a problem in that the nucleic acid extraction efficiency is highly dependent on the researcher's experience and experience, and thus the reliability is greatly reduced. Recently, in order to solve this problem, kits using silica or glass fibers that specifically bind to nucleic acids have been used. The silica or glass fiber has a low binding ratio with proteins and cellular metabolites, so that nucleic acids having a relatively high concentration can be obtained. This method has the advantage of being simpler than the phenol method. However, the use of chaotropic reagents or ethanol, which strongly inhibit enzymatic reactions such as polymerase chain reaction (PCR), requires the complete removal of these substances. This is very cumbersome and time consuming. Recently, a method of directly purifying nucleic acid using a filter has been disclosed in International Patent Publication No. 00/21973, which passes a sample through a filter to adsorb the cells to the filter, and then dissolves the cells adsorbed on the filter. After filtration, the nucleic acid adsorbed on the filter is washed and eluted. However, in order to elute the nucleic acid after adsorbing the cell to the filter, there is a problem in that the filter must be selected according to the type of the cell, and the devices used are large and complex, so that the researcher cannot easily use it.
또한, 다양한 생물학적 반응 수행시 반응 용기에 극소량의 시료 또는 시약과 같은 액체를 주입하는 장치는 필수적이다. 종래 반응 용기는 대부분 튜브 형상을 띠고, 더 나아가 극소량의 부피를 갖는 튜브를 복수 개로 장착-나열한 멀티 튜브 등도 사용되고 있다. 따라서, 이러한 반응 용기에 극소량의 시료 또는 시약과 같은 액체를 주입, 혼합, 또는 배출하기 위해 일반적으로 사용되는 기기는 피펫(pipette) 및 팁(tip)이다. 그러나 상기 피펫 및 팁은 반응 용기에 주입하는 액체의 양을 사용자 손 조작으로 조절하여 그 정확도가 만족스럽지 않고, 특히 박막 형상의 미세유동 칩의 작은 크기의 1 이상의 유입부에 액체를 주입할 때에는 아주 미세한 배출구를 갖는 팁과 이에 맞춰 설계된 피펫이 요구되는 등 매우 번거롭다. 또한, 피펫은 다수의 반응 채널을 구비하는 박막 형상의 미세유동 칩을 이용하여 반응을 수행하는 경우 동일한 시료 또는 시약 등을 정확하고 신속하게 분배하지 못하여 매우 번거롭다. 따라서, 박막 형상의 미세유동 칩을 사용하는 생물학적 반응에서 작은 크기의 1 이상의 유입부에 신속하고 정확하게 극소량의 시료 또는 시약을 동시에 정확하게 분배할 수 있고, 사용자 편리성이 개선되어 신속하게 반응을 수행할 수 있는 액체 배분 장치가 요구되고 있는 실정이다.In addition, a device for injecting a very small amount of liquid, such as a sample or a reagent, into the reaction vessel is essential when performing various biological reactions. Conventional reaction vessels are mostly tube-shaped, and moreover, multi-tubes and the like, which are equipped with a plurality of tubes having a very small volume, are also used. Thus, devices commonly used for injecting, mixing, or dispensing liquids, such as trace amounts of samples or reagents, into such reaction vessels are pipettes and tips. However, the pipette and tip are unsatisfactory in controlling the amount of liquid injected into the reaction vessel by the user's hand operation, and are particularly useful when injecting liquid into one or more inlets of a small size of a thin microfluidic chip. It is very cumbersome, requiring a tip with a fine outlet and a pipette designed accordingly. In addition, the pipette is very troublesome because it does not accurately and quickly distribute the same sample or reagent when the reaction is performed using a thin microfluidic chip having a plurality of reaction channels. Therefore, in a biological reaction using a thin-film microfluidic chip, it is possible to accurately and accurately distribute a very small amount of samples or reagents at the same time to one or more small inlets at the same time, and the user convenience is improved to perform the reaction quickly. There is a need for a liquid dispensing device.
본 발명의 일 실시예는 1 이상의 반응 채널을 구비하는 박막 형상의 미세유동 칩의 1 이상의 유입구에 생물학적 시료 또는 시약과 같은 극소량의 액체를 신속하고 정확하게 분배할 수 있고, 사용자 조작 편리성이 개선된, 다-채널 액체 분배 장치, 이를 포함하는 핵산 추출 장치, 및 이를 이용한 핵산 추출 방법을 제공하고자 한다.One embodiment of the present invention can quickly and accurately distribute a small amount of liquid, such as a biological sample or reagent, to one or more inlets of a thin-film microfluidic chip having one or more reaction channels, and improves user convenience. To provide a multi-channel liquid distribution device, a nucleic acid extraction apparatus comprising the same, and a nucleic acid extraction method using the same.
본 발명의 제1 실시예는 박막 형상의 기판; 상기 기판의 일 말단 영역에 배치된 단일 액체 주입구; 및 상기 기판의 다른 일 말단 영역에 배치되되, 상기 단일 액체 주입구와 채널을 통해 유체 소통가능하게 연결된, 1 이상 짝수 개의 액체 배출구를 포함하는 것으로서, 상기 채널은 일 말단이 상기 단일 액체 주입구 측으로 연결되고 다른 말단은 두 갈래로 분할되어 유량을 1/2로 분배하도록 구현되어 상기 액체 배출구 측에 연결된 채널 패턴을 구비하는, 1 이상의 단위 채널 영역을 포함하는 것인, 다-채널 액체 분배 장치를 제공한다.A first embodiment of the present invention is a thin film substrate; A single liquid inlet disposed in one end region of the substrate; And at least one even liquid outlet disposed in the other distal region of the substrate and in fluid communication with the single liquid inlet, the channel having one end connected to the single liquid inlet side. The other end comprises at least one unit channel region having a channel pattern connected to the liquid outlet side, which is implemented to divide into two branches and distribute the flow rate in half. .
본 발명의 제1 실시예에 있어서, In the first embodiment of the present invention,
상기 액체 배출구는 2N 개로 구현되고, 상기 채널은 상기 단일 액체 주입구로부터 상기 2N 개의 액체 배출구까지 형성된 N개의 단위 채널 영역을 포함하고, 상기 N 이하 i번째 단위 채널 영역은 2i-1 개의 개시 채널(3100) 및 상기 2i-1 개의 개시 채널로부터 각각 두 갈래로 분할되어 유량을 1/2로 분배하는 2i 개의 분지 채널(3200)을 포함하되, 상기 1번째 단위 채널 영역 중 개시 채널 측 말단은 상기 단일 액체 주입구와 연결되고, 상기 N번째 단위 채널 영역 중 분지 채널 말단은 각각 상기 2N 개의 액체 배출구와 연결되는 것으로서, 상기 N 및 i는 자연수일 수 있다.The liquid discharge port is implemented as 2 N , and the channel includes N unit channel regions formed from the single liquid inlet to the 2 N liquid outlet ports, and the N-th i-th unit channel region includes 2 i-1 openings. channel 3100 and the 2 i-1 from the start of the channel is divided into two branches each comprising a flow rate of 2 i of branch channel (3200) for dispensing a half, the start of the first unit channel domain channel side An end is connected to the single liquid inlet, and a branch channel end of the Nth unit channel region is connected to the 2 N liquid outlets, respectively, wherein N and i may be natural waters.
본 발명의 제2 실시예는 양 말단에 유입부 및 유출부가 구현된 1 이상 짝수 개의 반응 채널을 구비하는 박막 형상의 미세유동 칩(microfluidic chip)(1)에 있어서, 상기 1 이상의 유입부를 통해 상기 1 이상의 반응 채널 내로 액체를 하향 주입하기 위한 것으로서, 상기 1 이상의 유입부 수와 일치하는 액체 배출구를 구비하는, 본 발명의 제1 실시예에 따른 다-채널 액체 분배 장치; 및 상기 미세유동 칩의 1 이상의 유입부와 상기 다-채널 액체 분배 장치의 1 이상의 액체 배출구를 유체 소통가능하게 연결하는 유체 전달 수단을 포함하는, 다-채널 액체 분배 주입 장치를 제공한다.According to a second embodiment of the present invention, in a microfluidic chip 1 having a thin film shape having at least one even number of reaction channels having inlets and outlets at both ends, the at least one inlet may be provided. A multi-channel liquid dispensing device according to a first embodiment of the present invention for injecting liquid downward into one or more reaction channels, the liquid outlet having a liquid outlet corresponding to the number of one or more inlets; And fluid delivery means for fluidly connecting the at least one inlet of the microfluidic chip and the at least one liquid outlet of the multi-channel liquid dispensing device.
본 발명의 제3 실시예는 생물학적 시료로부터 핵산을 추출하기 위한 것으로서, 유입부, 상기 유입부와 연결된 채널 영역, 및 상기 채널 영역과 연결된 유출부를 포함하는 것으로서, 상기 채널 영역은 상기 유입부를 통해 도입되는 생물학적 시료에 외부로부터 얻어진 열을 전달할 수 있도록 구현된 가열부를 포함하는 것인, 1 이상의 반응 채널을 구비하는 박막 형상의 핵산 추출용 미세유동 칩; 상기 1 이상의 유입부 수와 일치하는 액체 배출구를 구비하는, 본 발명의 제1 실시예에 따른 다-채널 액체 분배 장치; 및 상기 미세유동 칩의 1 이상의 유입부와 상기 다-채널 액체 분배 장치의 1 이상의 액체 배출구를 유체 소통가능하게 연결하는 유체 전달 수단을 포함하는, 핵산 추출 장치를 제공한다.A third embodiment of the present invention is for extracting a nucleic acid from a biological sample, comprising an inlet, a channel region connected to the inlet, and an outlet connected to the channel region, wherein the channel region is introduced through the inlet. A microfluidic chip for extracting nucleic acids having a thin film shape having one or more reaction channels, including a heating unit configured to transfer heat obtained from the outside to the biological sample; A multi-channel liquid dispensing apparatus according to a first embodiment of the present invention, having a liquid outlet corresponding to the number of said at least one inlet; And fluid delivery means for fluidly connecting the one or more inlets of the microfluidic chip and the one or more liquid outlets of the multi-channel liquid dispensing device.
본 발명의 제3 실시예에 있어서, In a third embodiment of the present invention,
상기 미세유동 칩의 1 이상의 유출부 영역 말단이 고정 장착될 수 있도록 구현된 칩 유출부 영역 말단 장착부, 상기 미세유동 칩의 1 이상의 유출부 상단에 각각 대응하는 1 이상의 상향 액체 흡입구, 및 상기 1 이상의 상향 액체 흡입구와 유체 소통 가능하게 연결된 1 이상의 액체 저장 챔버를 구비하는 액체 저장 용기를 더 포함할 수 있다.A chip outlet region end mounting portion configured to be fixedly mounted to at least one outlet region end of the microfluidic chip, at least one upward liquid inlet corresponding to an upper end of at least one outlet portion of the microfluidic chip, and at least one It may further comprise a liquid storage container having at least one liquid storage chamber in fluid communication with the upward liquid inlet.
상기 미세유동 칩은 상기 유입부와 연결된 제1 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터를 구비할 수 있다.The microfluidic chip may include a first filter disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit and capable of passing a material having a size corresponding to a nucleic acid. Can be.
상기 미세유동 칩은 상기 유입부와 연결된 제1 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터를 구비하고, 상기 제1 필터와 연결된 제3 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질이 구비되어 있는 핵산 분리부를 구비할 수 있다.The microfluidic chip has a heating unit disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit, and having a first filter through which a material having a size corresponding to a nucleic acid can pass therethrough. And a nucleic acid separation unit disposed in a third channel region connected to the first filter and having a nucleic acid binding material capable of specifically binding to the nucleic acid.
상기 미세유동 칩은 상기 유입부와 연결된 제1 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터를 구비하고, 상기 제1 필터와 연결된 제3 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질이 구비되어 있는 핵산 분리부를 구비하고, 상기 핵산 분리부와 연결된 제4 채널 영역에 배치되되 상기 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제2 필터를 구비할 수 있다.The microfluidic chip has a heating unit disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit, and having a first filter through which a material having a size corresponding to a nucleic acid can pass therethrough. And a nucleic acid separation unit disposed in a third channel region connected to the first filter and having a nucleic acid binding material capable of specifically binding to the nucleic acid, and disposed in a fourth channel region connected to the nucleic acid separation unit. It may be provided with a second filter capable of passing a substance of a size corresponding to the nucleic acid.
상기 미세유동 칩은 상기 유입부와 연결된 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질이 구비되어 있는 핵산 분리부를 구비할 수 있다.The microfluidic chip may include a nucleic acid separation unit including a heating unit disposed in a channel region connected to the inlet unit and disposed in a channel region connected to the heating unit and provided with a nucleic acid binding material capable of specifically binding to the nucleic acid. Can be.
상기 미세유동 칩은 상기 유입부와 연결된 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질이 구비되어 있는 핵산 분리부를 구비하고, 상기 핵산 분리부와 연결된 채널 영역에 배치되되 상기 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제2 필터를 구비할 수 있다.The microfluidic chip is provided with a nucleic acid separation unit which is disposed in the channel region connected to the inlet, the nucleic acid binding material is disposed in the channel region connected to the heating portion and is provided with a nucleic acid binding material that can specifically bind to the nucleic acid. And a second filter disposed in a channel region connected to the nucleic acid separation unit and capable of passing a material having a size corresponding to the nucleic acid.
본 발명의 제4 실시예는 본 발명의 제3 실시예에 따른 핵산 추출 장치를 제공하는 단계; 생물학적 시료 또는 시약을 상기 다-채널 액체 분배 장치 및 유체 전달 수단을 통해 상기 핵산 추출용 미세유동 칩에 주입하는 단계; 및 상기 핵산 추출용 미세유동 칩을 구동하여 상기 생물학적 시료로부터 핵산을 추출하는 단계를 포함하는, 핵산 추출 방법을 제공한다.A fourth embodiment of the present invention includes the steps of providing a nucleic acid extracting apparatus according to a third embodiment of the present invention; Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; And extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip.
본 발명의 제5 실시예는 본 발명의 제3 실시예에 따른 핵산 추출 장치를 제공하는 단계; 생물학적 시료 또는 시약을 상기 다-채널 액체 분배 장치 및 유체 전달 수단을 통해 상기 핵산 추출용 미세유동 칩에 주입하는 단계; 상기 핵산 추출용 미세유동 칩을 구동하여 상기 생물학적 시료로부터 핵산을 추출하는 단계; 및 상기 핵산 추출 산물을 상기 액체 저장 용기의 액체 저장 챔버에 저장하는 단계를 포함하는, 핵산 추출 방법을 제공한다.A fifth embodiment of the present invention includes the steps of providing a nucleic acid extracting apparatus according to a third embodiment of the present invention; Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; Extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip; And storing the nucleic acid extraction product in a liquid storage chamber of the liquid storage container.
본 발명의 일 실시예는 다-채널 액체 분배 장치, 이를 포함하는 핵산 추출 장치, 및 이를 이용한 핵산 추출 방법에 관한 것으로서, 이에 따르면 박막 형상의 미세유동 칩을 이용하는 다양한 생물학적 반응을 수행함에 있어서, 상당히 작은 1 이상의 유입부에 동일한 극소량의 액체를 신속하게 분배하여 주입할 수 있고, 단 1회의 사용자 조작으로 상기 1 이상의 유입부에 극소량의 액체의 양을 정확하게 분배할 수 있고, 더 나아가 핵산 추출 반응 시간을 상당히 단축시켜 연이은 다양한 생물학적 검출 또는 분석 반응을 신속하게 진행할 수 있을 것으로 기대된다.One embodiment of the present invention relates to a multi-channel liquid dispensing apparatus, a nucleic acid extracting apparatus comprising the same, and a nucleic acid extracting method using the same, and accordingly, in performing various biological reactions using a thin-film microfluidic chip, The same amount of liquid can be rapidly dispensed and injected into one or more small inlets, and only one user can accurately distribute the amount of liquid to the one or more inlets, furthermore nucleic acid extraction reaction time It is expected to significantly shorten the speed of the subsequent various biological detection or analytical reactions.
도 1은 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치를 도시한다.1 illustrates a multi-channel liquid dispensing apparatus according to one embodiment of the present invention.
도 2 내지 3은 도 1에 따른 다-채널 액체 분배 장치의 채널 중 단위 채널 영역을 도시한다.2 to 3 show unit channel regions of the channels of the multi-channel liquid dispensing apparatus according to FIG. 1.
도 4 내지 5는 본 발명의 일 실시예에 따른 미세유동 칩을 개략적으로 도시한다.4 to 5 schematically show a microfluidic chip according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 다-채널 액체 분배 주입 장치를 도시한다.6 illustrates a multi-channel liquid dispensing injection device according to one embodiment of the present invention.
도 7 내지 10은 본 발명의 일 실시예에 따른 미세유동 칩을 상세하게 설명하고, 이를 이용한 핵산 추출 방법을 도시한다.7 to 10 illustrate in detail the microfluidic chip according to an embodiment of the present invention, and shows a nucleic acid extraction method using the same.
도 11 내지 13은 본 발명의 일 실시예에 따른 액체 저장 용기를 도시한다.11-13 illustrate a liquid storage container according to one embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 미세유동 칩과 액체 저장 용기가 결합된 상태에서 생물학적 시료 또는 시약과 같은 액체의 이동 경로를 도시한다.FIG. 14 illustrates a flow path of a liquid such as a biological sample or a reagent in a state in which a microfluidic chip and a liquid storage container are combined according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치, 미세유동 칩, 및 액체 저장 용기가 결합된 상태에서 생물학적 시료 또는 시약과 같은 액체의 이동 경로를 도시한다.FIG. 15 illustrates a flow path of a liquid, such as a biological sample or reagent, in conjunction with a multi-channel liquid dispensing device, microfluidic chip, and liquid storage container in accordance with one embodiment of the present invention.
도 16 내지 17은 타사 핵산 추출 장치와 본 발명의 일 실시예에 따른 핵산 추출 장치를 각각 이용한 핵산 추출 실험의 결과를 도시한다.16 to 17 show the results of nucleic acid extraction experiments using the nucleic acid extracting apparatus and the nucleic acid extracting apparatus according to an embodiment of the present invention, respectively.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예를 상세하게 설명한다. 이하 기술된 설명은 본 발명의 일 실시예들을 쉽게 이해하기 위한 것일 뿐이며, 그러한 설명으로부터 본 발명의 보호범위를 제한하기 위한 것은 아니다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention. The description set forth below is only for easily understanding the embodiments of the present invention, and is not intended to limit the protection scope of the present invention from such description.
도 1은 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2)를 도시한다.1 shows a multi-channel liquid dispensing apparatus 2 according to one embodiment of the invention.
도 1에 따르면, 상기 다-채널 액체 분배 장치(2)는 박막 형상의 기판(1000); 상기 기판의 일 말단 영역에 배치된 단일 액체 주입구(2000); 및 상기 기판의 다른 일 말단 영역에 배치되되, 상기 단일 액체 주입구와 채널(3000)을 통해 유체 소통가능하게 연결된, 1 이상 짝수 개의 액체 배출구(4000)를 포함하는 것으로서, 상기 채널(3000)은 그 일 말단이 상기 단일 액체 주입구 측으로 연결되고 다른 말단은 두 갈래로 분할되어 유량을 1/2로 분배하도록 구현되어 상기 액체 배출구 측에 연결된 채널 패턴을 구비하는, 1 이상의 단위 채널 영역을 포함한다.According to FIG. 1, the multi-channel liquid dispensing apparatus 2 includes a substrate 1000 having a thin film shape; A single liquid inlet 2000 disposed in one end region of the substrate; And at least one even liquid outlet 4000 disposed in the other distal region of the substrate and in fluid communication with the single liquid inlet via channel 3000. At least one unit channel region having one end connected to the single liquid inlet side and the other end divided into two branches and configured to distribute the flow rate at half, having a channel pattern connected to the liquid outlet side.
상기 기판(1000)은 극소량의 액체를 수용하고 그 수용된 액체가 이동할 수 있도록 구현된 미세 공간, 즉 채널을 구비한다. 상기 기판(1000)은 얇은 판과 같은 박막(thin film) 형상으로 구현되어 극소량의 액체가 요구되는 생물학적 또는 생화학적 반응에서 시료 또는 시약의 양을 절약할 수 있고, 미세한 양까지 조절 가능하게 한다. 상기 기판(1000)은 후술할 단일 액체 주입구(2000), 채널(3000), 복수의 액체 배출구(4000)의 기저(base) 역할을 수행하기 때문에 이러한 모듈들(2000, 3000, 4000)을 지지하고 이들을 쉽게 제조할 수 있게 하는 재질, 예를 들어 플라스틱, 실리콘, 금속, 세라믹 등으로 구현될 수 있으나, 이에 제한되는 것은 아니다.The substrate 1000 has a microcavity, that is, a channel, configured to receive a very small amount of liquid and to allow the contained liquid to move. The substrate 1000 may be embodied in a thin film shape such as a thin plate to save an amount of a sample or a reagent in a biological or biochemical reaction requiring a very small amount of liquid, and to adjust a minute amount. Since the substrate 1000 serves as a base of the single liquid inlet 2000, the channel 3000, and the plurality of liquid outlets 4000 to be described later, the substrates 1000 support these modules 2000, 3000, and 4000. The materials may be easily manufactured, for example, plastics, silicon, metals, ceramics, and the like, but are not limited thereto.
상기 다-채널 액체 분배 장치(2)는 1 이상의 유입부를 구비하는 반응 용기에 단 1회의 조작으로 동일한 양의 시료 또는 시약을 동시에 배분하기 위한 것이다. 따라서, 상기 다-채널 액체 분배 장치(2)는 하나의, 즉 단일 액체 주입구(2000) 및 이와 유체 소통가능하게 연결된 복수의, 예를 들어 1 이상의 짝수 개의 액체 배출구(4000)를 구비할 수 있다. 더 상세하게는, 상기 단일 액체 주입구(2000)는 상기 기판(1000)의 일 말단 영역에 배치되고, 상기 1 이상의 짝수 개의 액체 배출구(4000)는 상기 기판의 다른 일 말단 영역에 배치되고, 이들은 채널(3000)을 통해 유체 소통가능하게 연결되어 상기 단일 액체 주입구(2000)로부터 상기 1 이상의 짝수 개의 액체 배출구(4000)로 액체가 이동할 수 있는 구조로 구현된다. 한편, 상기 단일 액체 주입구(2000)와 1 이상의 짝수 개의 액체 배출구(4000)는 박막 형상의 기판(1000)의 일 표면에서 상향으로 배치될 수도 있고, 상기 박막 형상의 기판(1000)의 양 표면에 각각 상향 및 하향으로 배치될 수도 있다. 참고로, 도 1의 하단 그림은 상기 다-채널 액체 분배 장치(2)의 단일 액체 주입구(2000) 및 1 이상의 짝수 개의 액체 배출구(4000)가 상기 박막 형상의 기판(1000)의 일 표면에 모두 상향으로 배치된 것을 예시하고 있다.The multi-channel liquid dispensing device 2 is for simultaneously distributing the same amount of sample or reagent to a reaction vessel having one or more inlets in only one operation. Thus, the multi-channel liquid dispensing device 2 may comprise one, ie a single liquid inlet 2000 and a plurality of, for example, one or more even liquid outlets 4000 in fluid communication therewith. . More specifically, the single liquid inlet 2000 is disposed in one end region of the substrate 1000, and the one or more even liquid outlets 4000 are disposed in the other end region of the substrate, which are channels The fluid is connected in fluid communication via a 3000 to implement a structure in which liquid can move from the single liquid inlet 2000 to the one or more even liquid outlets 4000. Meanwhile, the single liquid inlet 2000 and one or more even number of liquid outlets 4000 may be disposed upward from one surface of the thin film substrate 1000, or may be disposed on both surfaces of the thin film substrate 1000. It may be arranged upward and downward, respectively. For reference, the bottom figure of FIG. 1 shows that a single liquid inlet 2000 and one or more even liquid outlets 4000 of the multi-channel liquid dispensing device 2 are both disposed on one surface of the thin film-shaped substrate 1000. It illustrates an upward arrangement.
도 2 내지 3은 도 1에 따른 다-채널 액체 분배 장치(2)의 채널(3000) 중 단위 채널 영역(3500)을 도시한다.2 to 3 show the unit channel region 3500 of the channel 3000 of the multi-channel liquid dispensing apparatus 2 according to FIG. 1.
도 2에 따르면, 상기 다-채널 액체 분배 장치(2)의 채널(3000)은 그 일 말단이 상기 단일 액체 주입구(2000) 측으로 연결되고, 다른 말단은 두 갈래로 분할되어 유량을 1/2로 분배하도록 구현되어 상기 액체 배출구(4000a, 4000b) 측에 연결된 채널 패턴을 구비하는, 1 이상의 단위 채널 영역(3500)을 포함한다. 상기 단위 채널 영역(3500)은 상기 단일 액체 주입구(2000)로부터 상기 1 이상의 짝수 개의 액체 배출구(4000)로 유체 소통가능하게 연속적으로 구현된 채널(3000) 중 임의로 구획된 일 영역일 수 있다. 따라서, 상기 단위 채널 영역(3500)은 상기 다-채널 액체 분배 장치(2) 내에서 1 이상 구현되어 상기 단일 액체 주입구(2000)와 상기 액체 배출구(4000) 간의 연속적인 유로를 형성하게 할 수 있다. 도 2에 도시된 것은 1개의 단위 채널 영역(3500)임을 가정한다. 상기 1개의 단위 채널 영역(3500)의 일 말단은 상기 단일 액체 주입구(2000)와 직접 연결되고, 다른 말단은 상기 1 이상의 짝수 개, 즉 2개의 액체 배출구(4000a, 4000b)와 직접 연결된다. 이 경우 사용자가 상기 단일 액체 주입구(2000)에 일정한 양(F)의 액체를 주입하면, 상기 주입된 액체는 상기 단위 채널 영역(3500)의 일 말단과 연결된 채널을 따라 이동하다가(F) 다른 말단에서 두 갈래로 분할된 채널을 따라 유량이 1/2씩 분배되어(1/2F) 상기 2개의 액체 배출구(4000a, 4000b)로 이동한다. 이 경우 분배되는 유량을 정확하게 1/2씩 분배하기 위하여 일반적인 전기회로 공식을 사용할 수 있다. 즉, 단일 액체 주입구(2000)에 도입되는 액체는 동일한 물성을 갖기 때문에, 두 갈래로 분할된 2개의 채널의 단면적은 전기회로 공식 및 그에 따른 저항값을 고려하여 분할 전 1개의 채널의 단면적과 비교를 통해 구현할 수 있다.According to FIG. 2, the channel 3000 of the multi-channel liquid dispensing device 2 has one end connected to the single liquid inlet 2000 side, and the other end is divided into two branches so that the flow rate is 1/2. One or more unit channel regions 3500, which are implemented to dispense and have a channel pattern connected to the liquid outlets 4000a and 4000b, respectively. The unit channel region 3500 may be an arbitrarily divided region of the channels 3000 that are continuously connected in fluid communication from the single liquid inlet 2000 to the one or more even liquid outlets 4000. Thus, the unit channel region 3500 may be implemented in one or more in the multi-channel liquid distribution device 2 to form a continuous flow path between the single liquid inlet 2000 and the liquid outlet 4000. . 2 is assumed to be one unit channel region 3500. One end of the one unit channel region 3500 is directly connected to the single liquid inlet 2000, and the other end is directly connected to the one or more even numbers, that is, two liquid outlets 4000a and 4000b. In this case, when a user injects a predetermined amount F of liquid into the single liquid inlet 2000, the injected liquid moves along a channel connected to one end of the unit channel region 3500, and the other end of the liquid is injected (F). The flow rate is divided by 1/2 along the bifurcated channel at 1 / 2F and moves to the two liquid outlets 4000a and 4000b. In this case, the general electrical circuit formula can be used to dispense exactly 1/2 of the flow rate dispensed. That is, since the liquid introduced into the single liquid inlet 2000 has the same physical properties, the cross-sectional area of the two divided channels is compared with the cross-sectional area of one channel before the split in consideration of the electric circuit formula and the resistance thereof. This can be achieved through
더 나아가, 상기 다-채널 액체 분배 장치(2)는 상기 1 이상 짝수 개의 액체 배출구(4000)의 수를 미리 결정하면, 액체 분배 수를 쉽게 결정할 수 있다. 구체적으로, 상기 액체 배출구는 2N 개로 구현되고, 상기 채널은 상기 단일 액체 주입구로부터 상기 2N 개의 액체 배출구까지 형성된 N개의 단위 채널 영역을 포함하고, 상기 N 이하 i번째 단위 채널 영역은 2i-1 개의 개시 채널 및 상기 2i-1 개의 개시 채널로부터 각각 두 갈래로 분할되어 유량을 1/2로 분배하는 2i 개의 분지 채널을 포함하되, 상기 1번째 단위 채널 영역 중 개시 채널 측 말단은 상기 단일 액체 주입구와 연결되고, 상기 N번째 단위 채널 영역 중 분지 채널 말단은 각각 상기 2N 개의 액체 배출구와 연결되는 것으로서, 상기 N 및 i는 자연수인 다-채널 액체 분배 장치를 구현할 수 있다. 예를 들어, 도 3에 따르면, 액체 배출구(4000)를 4개로 결정하면(4000a, 4000b, 4000c, 4000d), 상기 채널(3000)은 상기 단일 액체 주입구(2000)로부터 4개의 액체 배출구(4000a, 4000b, 4000c, 4000d)까지 2개의 단위 채널 영역(3500, 3500')을 포함하고, 상기 단위 채널 영역 중 1번째 단위 채널 영역(3500)은 1개의 개시 채널(3100) 및 상기 1개의 개시 채널(3100)로부터 각각 두 갈래로 분할되어 유량을 1/2로 분배하는 2개의 분지 채널(3200, 1/2F)을 포함하고, 상기 단위 채널 중 2번째 단위 채널 영역(3500')은 2개의 개시 채널(3100') 및 상기 2개의 개시 채널(3100')로부터 각각 두 갈래로 분할되어 유량을 1/2로 분배하는 4개의 분지 채널(3200', 1/4F)을 포함하고, 이 경우 상기 1번째 단위 채널 영역(3500) 중 개시 채널(3100) 측 말단은 상기 단일 액체 주입구(2000)와 연결되고, 상기 2번째 단위 채널 영역(3500') 중 분지 채널(3200') 말단은 상기 4개의 액체 배출구(4000a, 4000b, 4000c, 4000d)와 연결된다.Furthermore, the multi-channel liquid dispensing apparatus 2 can easily determine the number of liquid dispensing if the number of the one or more even liquid outlets 4000 is determined in advance. Specifically, the liquid discharge port is embodied in 2 N , the channel comprises N unit channel region formed from the single liquid inlet to the 2 N liquid outlet, wherein the i-th unit channel region below N is 2 i- is divided into two streams respectively from one start channel and the 2 i-1 of the start channel, including, but 2 i of branch channel for distributing a flow rate of 1/2, the first start of the second unit of the channel region is the channel-side ends It is connected to a single liquid inlet, the branch channel end of the N-th unit channel region is each connected to the 2 N liquid outlet, wherein N and i can implement a multi-channel liquid distribution device is natural water. For example, according to FIG. 3, if four liquid outlets 4000 are determined (4000a, 4000b, 4000c, 4000d), the channel 3000 is divided into four liquid outlets 4000a, from the single liquid inlet 2000. And two unit channel regions 3500 and 3500 'up to 4000b, 4000c, and 4000d, and the first unit channel region 3500 of the unit channel region includes one start channel 3100 and the one start channel ( 2 branch channels 3200 and 1 / 2F, each divided into two branches from 3100, for dividing the flow rate in half, wherein the second unit channel region 3500 'of the unit channels includes two starting channels. 4 branch channels 3200 'and 1 / 4F, each divided into two branches from 3100' and the two starting channels 3100 ', distributing the flow rate in half, in this case the first An end of the start channel 3100 side of the unit channel region 3500 is connected to the single liquid inlet 2000 and the second unit channel region 35 00 ') end of branch channel 3200' is connected to the four liquid outlets 4000a, 4000b, 4000c, 4000d.
도 4 내지 5는 본 발명의 일 실시예에 따른 미세유동 칩(1)을 개략적으로 도시한다.4 to 5 schematically show a microfluidic chip 1 according to an embodiment of the invention.
상기 미세유동 칩(1)은 다양한 반응, 예를 들어 생물학적 또는 생화학적 반응을 위해 사용되는 것으로서 이러한 반응이 일어나는 1 이상의 반응 채널(70)을 구비한다. 도 4 내지 6에 따르면, 상기 미세유동 칩(1)은 8개의 반응 채널(70)을 구비하지만, 이에 제한되는 것은 아니다. 상기 반응 채널(70)은 양 말단에 유입부(10) 및 유출부(60)를 구비하고, 생물학적 시료 또는 시약과 같은 액체는 상기 유입부(10)를 통해 상기 반응 채널(70) 내부로 도입되고, 상기 생물학적 반응 산물 또는 폐기물과 같은 액체는 상기 유출부(60)를 통해 배출된다. 상기 미세유동 칩(1)은 얇은 판과 같은 박막(thin film) 형상으로 구현되고, 소량의 액체를 수용할 수 있는 공간을 포함할 수 있다. 상기 미세유동 칩(1)은 극소량의 액체, 예를 들어 생물학적 시료, 및 그로부터 핵산을 추출하기 위한 시약을 이용한 생물학적 반응에 유용하게 사용될 수 있다. 상기 미세유동 칩(1)의 상세 구조 및 용도에 관해서는 후술하도록 한다.The microfluidic chip 1 has one or more reaction channels 70 which are used for various reactions, for example biological or biochemical reactions, in which such reactions occur. 4 to 6, the microfluidic chip 1 is provided with eight reaction channels 70, but is not limited thereto. The reaction channel 70 has an inlet 10 and an outlet 60 at both ends, and a liquid such as a biological sample or a reagent is introduced into the reaction channel 70 through the inlet 10. And liquid, such as the biological reaction product or waste, is discharged through the outlet 60. The microfluidic chip 1 may be implemented in a thin film shape, such as a thin plate, and may include a space for accommodating a small amount of liquid. The microfluidic chip 1 can be usefully used for biological reactions using very small amounts of liquids, for example biological samples, and reagents for extracting nucleic acids therefrom. The detailed structure and use of the microfluidic chip 1 will be described later.
도 6은 본 발명의 일 실시예에 따른 다-채널 액체 분배 주입 장치를 도시한다.6 illustrates a multi-channel liquid dispensing injection device according to one embodiment of the present invention.
도 6에 따르면, 본 발명의 일 실시예에 따른 다-채널 액체 분배 주입 장치는 양 말단에 유입부 및 유출부가 구현된 1 이상 짝수 개의 반응 채널을 구비하는 박막 형상의 미세유동 칩(microfluidic chip)(1)에 있어서, 상기 1 이상의 유입부(10)를 통해 상기 1 이상의 반응 채널 내로 액체를 하향 주입하기 위한 것으로서, 상기 1 이상의 유입부 수(10, 8개)와 일치하는 액체 배출구(4000, 8개)를 구비하는, 상기 다-채널 액체 분배 장치(2); 및 상기 미세유동 칩(1)의 1 이상의 유입부(10)와 상기 다-채널 액체 분배 장치(2)의 1 이상의 액체 배출구(4000)를 유체 소통가능하게 연결하는 유체 전달 수단(4)을 포함한다. 이 경우 상기 미세유동 칩(1)은 핵산 추출 반응, 중합효소 연쇄반응(PCR) 등에 사용될 수 있고, 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2) 및 상기 유체 전달 수단(4)을 통해 상기 미세유동 칩(1)에 전달되는 액체는 각 반응에 필수적인 시료 또는 시약일 수 있다. 상기 유체 전달 수단(4)은 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2)의 1 이상 짝수 개의 액체 배출구(4000)의 배치 방향과 관련이 있다. 도 6에 따르면, 상기 액체 배출구(4000)의 액체 배출 방향은 상향으로 구현되어 있고, 상기 박막 형상의 미세유동 칩(1)의 유입부(10)도 상향으로 구현되어 있기 때문에, 상기 다-채널 액체 분배 장치(2)로부터 상기 미세유동 칩(1)으로 액체를 전달하기 위해서는 이들을 유체 소통가능하게 연결하는 별도 유체 전달 수단(4)이 필요한 경우가 있다. 그러나, 비록 도시되지는 않았지만, 만약 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2)의 액체 배출구(4000)가 하향으로 구현되어 있고, 상기 1 이상 짝수 개의 액체 배출구(4000) 하단에 상기 미세유동 칩(1)의 유입부 영역이 장착되는 영역이 존재하여 상기 하향 액체 배출구(4000)와 상기 미세유동 칩(1)의 유입부가 밀착 연결될 수 있다면, 위와 같은 별도의 유체 전달 수단(4)이 요구되지 않을 수 있음은 물론이다.According to FIG. 6, a multi-channel liquid dispensing injection device according to an embodiment of the present invention has a thin-film microfluidic chip having one or more even reaction channels having inlets and outlets at both ends thereof. The liquid outlet port (4000) according to (1), for injecting liquid downwardly through the one or more inlets 10 into the one or more reaction channels, which matches the number of one or more inlets (10, 8). Said multi-channel liquid dispensing device (2); And fluid delivery means 4 for fluidly connecting the one or more inlets 10 of the microfluidic chip 1 and the one or more liquid outlets 4000 of the multi-channel liquid dispensing device 2. do. In this case, the microfluidic chip 1 may be used for nucleic acid extraction reaction, polymerase chain reaction (PCR), etc., and according to an embodiment of the present invention, the multi-channel liquid dispensing device 2 and the fluid delivery means 4 The liquid delivered to the microfluidic chip 1 through) may be a sample or a reagent necessary for each reaction. The fluid delivery means 4 is related to the arrangement direction of at least one even number of liquid outlets 4000 of the multi-channel liquid dispensing device 2 according to an embodiment of the invention. According to FIG. 6, since the liquid discharge direction of the liquid discharge port 4000 is upward, and the inlet part 10 of the thin-film microfluidic chip 1 is also upward, the multi-channel In order to transfer the liquid from the liquid dispensing device 2 to the microfluidic chip 1, there is a case where a separate fluid delivery means 4 is required for fluidly connecting them. However, although not shown, if the liquid outlet 4000 of the multi-channel liquid dispensing device 2 according to an embodiment of the present invention is implemented downward, the bottom of the one or more even number of liquid outlet 4000 If there is a region in which the inlet region of the microfluidic chip 1 is mounted so that the downward liquid outlet 4000 and the inlet of the microfluidic chip 1 can be closely connected, the separate fluid transfer means as described above ( 4) Of course it may not be required.
도 7 내지 10은 본 발명의 일 실시예에 따른 미세유동 칩을 상세하게 설명하고, 이를 이용한 핵산 추출 방법을 도시한다. 도 7 내지 10에 따르면, 본 발명의 일 실시예에 따른 미세유동 칩은 핵산 추출 용도로 사용될 수 있다. 이하, 도 7 내지 10에 있어서, 상기 미세유동 칩은 "핵산 추출용 미세유동 칩"이라고 한다.7 to 10 illustrate in detail the microfluidic chip according to an embodiment of the present invention, and shows a nucleic acid extraction method using the same. 7 to 10, the microfluidic chip according to an embodiment of the present invention can be used for nucleic acid extraction. 7 to 10, the microfluidic chip is referred to as "microfluidic chip for nucleic acid extraction".
상기 핵산 추출용 미세유동 칩(microfluidic chip)이란 핵산 추출을 위한 구조물, 즉 유입부(inlet), 유출부(outlet), 상기 유입부 및 유출부를 연결하는 채널(channel), 제1 필터, 및 제2 필터 등의 규격이 밀리미터(mm) 또는 마이크로미터(㎛) 단위에서 구현되는 초소형 칩(chip)을 말한다.The microfluidic chip for nucleic acid extraction is a structure for extracting nucleic acid, that is, an inlet, an outlet, a channel connecting the inlet and the outlet, a first filter, and a first filter. 2 refers to a microchip that has a standard such as a filter in millimeters or micrometers.
도 7a에 따르면, 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 유입부(10), 상기 유입부(10)와 연결된 채널 영역(70), 및 상기 채널 영역(70)과 연결된 유출부(60)를 포함하고, 상기 채널 영역(70)은 상기 유입부(10)를 통해 도입되는 생물학적 시료에 외부로부터 얻어진 열을 전달할 수 있도록 구현된 가열부(20)를 포함하되, 도 7b 내지 7g와 같이 생물학적 시료로부터 핵산을 효율적으로 추출하기 위한 다양한 모듈을 구비할 수 있다.According to FIG. 7A, the nucleic acid extracting microfluidic chip according to an embodiment of the present invention has an inlet 10, a channel region 70 connected to the inlet 10, and an outflow connected to the channel region 70. Including a portion 60, the channel region 70 includes a heating portion 20 implemented to transfer heat obtained from the outside to the biological sample introduced through the inlet portion 10, 7b to Various modules for efficiently extracting nucleic acids from biological samples, such as 7g, may be provided.
도 7b에 도시된 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 상기 유입부(10)와 연결된 제1 채널 영역에 가열부(20)가 배치되되, 상기 가열부(20)와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터(30)를 구비하고, 도 7c에 도시된 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 상기 유입부(10)와 연결된 제1 채널 영역에 가열부(20)가 배치되되, 상기 가열부(20)와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터(30)를 구비하고, 상기 제1 필터(30)와 연결된 제3 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질(45)이 구비되어 있는 핵산 분리부(40)를 구비할 수 있으며, 도 7d에 도시된 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 상기 유입부(10)와 연결된 제1 채널 영역에 가열부(20)가 배치되되, 상기 가열부(20)와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터(30)를 구비하고, 상기 제1 필터(10)와 연결된 제3 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질(45, 비드)이 구비되어 있는 핵산 분리부(40)를 구비하고, 상기 핵산 분리부(40)와 연결된 제4 채널 영역에 배치되되 상기 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제2 필터(50)를 구비할 수 있고, 도 7e에 도시된 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 상기 유입부(10)와 연결된 제1 채널 영역에 가열부(20)가 배치되되, 상기 가열부(20)와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터(30)를 구비하고, 상기 제1 필터(10)와 연결된 제3 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질(45, 멤브레인)이 구비되어 있는 핵산 분리부(40)를 구비하고, 상기 핵산 분리부(40)와 연결된 제4 채널 영역에 배치되되 상기 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제2 필터(50)를 구비할 수 있으며, 도 7f에 도시된 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 상기 유입부(10)와 연결된 채널 영역에 가열부(20)가 배치되되, 상기 가열부(20)와 연결된 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질(45, 멤브레인)이 구비되어 있는 핵산 분리부(40)를 구비할 수 있고, 도 7g에 도시된 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 상기 유입부(10)와 연결된 채널 영역에 가열부(20)가 배치되되, 상기 가열부(20)와 연결된 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질(45)이 구비되어 있는 핵산 분리부(40)를 구비하고, 상기 핵산 분리부(40)와 연결된 채널 영역에 배치되되 상기 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제2 필터(50)를 구비할 수 있다.In the microfluidic chip for nucleic acid extraction according to an embodiment of the present invention shown in FIG. 7B, a heating unit 20 is disposed in a first channel region connected to the inlet unit 10, and connected to the heating unit 20. The microfluidic chip for nucleic acid extraction according to an embodiment of the present invention shown in FIG. 7C includes a first filter 30 disposed in a second channel region and capable of passing a material having a size corresponding to nucleic acid. The heating unit 20 is disposed in the first channel region connected to the inlet unit 10, and the first channel region is disposed in the second channel region connected to the heating unit 20 to pass a material having a size corresponding to the nucleic acid. A nucleic acid separation unit 40 having a filter 30 and disposed in a third channel region connected to the first filter 30 and having a nucleic acid binding material 45 capable of specifically binding to the nucleic acid. Can be provided, for nucleic acid extraction according to an embodiment of the present invention shown in Figure 7d In the microfluidic chip, a heating unit 20 is disposed in a first channel region connected to the inlet 10, and is disposed in a second channel region connected to the heating unit 20, and passes through a material having a size corresponding to a nucleic acid. And a nucleic acid binding material 45 (bead) disposed in a third channel region connected to the first filter 10 and capable of specifically binding to the nucleic acid. And a second filter 50 disposed in a fourth channel region connected to the nucleic acid separator 40 to pass a material having a size corresponding to the nucleic acid. In the microfluidic chip for nucleic acid extraction according to an embodiment of the present invention illustrated in FIG. 7E, the heating unit 20 is disposed in the first channel region connected to the inlet unit 10, the heating unit 20. Disposed in a second channel region associated with the nucleic acid and capable of passing a substance of a size corresponding to the nucleic acid. A nucleic acid separation having a first filter 30 and a nucleic acid binding material 45 (membrane) disposed in a third channel region connected to the first filter 10 and capable of specifically binding to the nucleic acid. And a second filter 50 disposed in a fourth channel region connected to the nucleic acid separation unit 40 and capable of passing a material having a size corresponding to the nucleic acid. In the microfluidic chip for nucleic acid extraction according to an embodiment of the present invention illustrated in FIG. 7f, a heating unit 20 is disposed in a channel region connected to the inlet unit 10, and a channel region connected to the heating unit 20 is provided. Nucleic acid isolating portion 40 is disposed and is provided with a nucleic acid binding material 45, which can specifically bind to the nucleic acid (40, membrane), a nucleic acid according to an embodiment of the present invention shown in Figure 7g Extraction microfluidic chip has a channel region connected to the inlet 10 The nucleic acid separation unit 40 is disposed in the heating unit 20, the nucleic acid separation unit 40 is disposed in the channel region connected to the heating unit 20, and provided with a nucleic acid binding material 45 that can specifically bind to the nucleic acid. And a second filter 50 disposed in a channel region connected to the nucleic acid separator 40 and capable of passing a material having a size corresponding to the nucleic acid.
상기 생물학적 시료는 DNA 또는 RNA 등과 같은 핵산을 포함하는 생물학적 물질로서, 예를 들어, 동물 세포, 식물 세포, 병원균, 곰팡이, 박테리아, 바이러스 등을 포함하는 액체 시료일 수 있지만, 이에 제한되는 것은 아니다.The biological sample is a biological material including a nucleic acid such as DNA or RNA, and may be, for example, a liquid sample including animal cells, plant cells, pathogens, fungi, bacteria, viruses, and the like, but is not limited thereto.
상기 유입부(10)는 상기 생물학적 시료 또는 핵산 추출을 위한 용액 등이 상기 미세유체 칩 내부로 도입되는 부분이고, 상기 유출부(60)는 상기 생물학적 시료로부터 획득된 핵산, 핵산 추출을 위한 용액, 기타 폐기물(waste) 등이 상기 미세유체 칩 외부로 배출되는 부분이다. 이 경우 필요에 따라 유입부(10)와 유출부(60)는 그 역할을 달리하여 각각 유출부 및 유입부 역할을 수행할 수도 있다. 상기 핵산 추출을 위한 용액은 핵산 추출 시 요구되는 모든 용액을 포함하고, 예를 들어 증류수, 핵산 결합 버퍼(binding buffer), 용출 버퍼(elution buffer) 등일 수 있다. 한편, 상기 유입부(10) 및 상기 유출부(60)는 채널(70)을 통해 유체 소통 가능하게 연결되고, 이하 상세하게 설명될 가열부(20), 제1 필터(30), 핵산 분리부(40), 제2 필터(50) 등의 구성요소는 상기 채널(70)에 연결 배치되어 각 기능을 수행할 수 있다. 상기 채널(70)은 다양한 규격으로 구현될 수 있지만, 상기 채널의 폭(width) 및 깊이(depth)는 각각 0.001 내지 10 밀리미터(mm) 범위 내에서 구현되는 것이 바람직하나, 이에 제한되는 것은 아니다. 한편, 이하 설명될 제1, 제2, 제3, 제4 채널 영역은 상기 유입부(10)로부터 상기 유출부(60)까지의 순차적 배치를 의미할 뿐, 상기 채널(70) 내의 특정 위치로 제한되는 것은 아니다.The inlet 10 is a portion into which the biological sample or the solution for nucleic acid extraction is introduced into the microfluidic chip, and the outlet 60 is a nucleic acid obtained from the biological sample, a solution for nucleic acid extraction, Other waste (waste) and the like is discharged to the outside the microfluidic chip. In this case, if necessary, the inlet 10 and the outlet 60 may serve as outlets and inlets, respectively. The solution for nucleic acid extraction includes all the solutions required for nucleic acid extraction, and may be, for example, distilled water, a nucleic acid binding buffer, an elution buffer, or the like. On the other hand, the inlet 10 and the outlet 60 is connected in fluid communication via the channel 70, the heating unit 20, the first filter 30, the nucleic acid separation unit to be described in detail below Components 40, the second filter 50, and the like may be connected to the channel 70 to perform each function. The channel 70 may be implemented in various standards, but the width and depth of the channel are preferably implemented in the range of 0.001 to 10 millimeters (mm), but are not limited thereto. Meanwhile, the first, second, third, and fourth channel regions, which will be described below, refer to a sequential arrangement from the inlet portion 10 to the outlet portion 60, and to a specific position in the channel 70. It is not limited.
상기 가열부(20)는 상기 유입부(10)를 통해 도입된 용액(생물학적 시료 포함)에 외부로부터 열이 가해지는 부분으로서, 상기 유입부(10)와 연결된 제1 채널 영역에 배치된다. 예를 들어, 상기 유입부(10)를 통해 세포, 박테리아, 또는 바이러스를 포함하는 시료가 도입되는 경우 상기 세포, 박테리아, 또는 바이러스가 상기 가열부(20)에 도달하면 순간적으로 약 80 내지 100도(℃)로 가열되어 상기 세포, 박테리아, 또는 바이러스의 외벽이 파괴되고 그 세포 내 물질이 외부로 방출되게 된다(cell lysis). 상기 가열부(20)는 이하 설명될 핵산 추출 장치의 가열 모듈(600)로부터 접촉식 또는 비-접촉식 방식으로 열을 공급받을 수 있다.The heating part 20 is a part in which heat is applied from the outside to a solution (including a biological sample) introduced through the inlet part 10 and is disposed in a first channel region connected to the inlet part 10. For example, when a sample containing cells, bacteria, or viruses is introduced through the inlet 10, when the cells, bacteria, or viruses reach the heating unit 20, about 80 to 100 degrees are instantaneously. Heated to (° C.) to destroy the outer wall of the cell, bacteria or virus and release the cell material to the outside (cell lysis). The heating unit 20 may be supplied with heat in a contact or non-contact manner from the heating module 600 of the nucleic acid extraction apparatus to be described below.
상기 제1 필터(30)는 유체 흐름 방향으로 크기별로 통과 물질과 비-통과 물질을 구별해 주는 역할을 수행하는 것으로서, 예를 들어 일정한 크기의 포어(pore)를 갖는 구조체일 수 있다. 본 발명의 일 실시예에 있어서, 상기 제1 필터(30)는 상기 가열부(20)와 연결된 제2 채널 영역에 배치되고, 핵산에 상응하는 크기의 물질을 통과시킬 수 있도록 구현된다. 상기 제1 필터(30)는 상기 가열부(20)에서 가열에 의해 생긴 용해 산물 중 핵산보다 큰 크기의 물질을 상기 가열부(20)에 포집하되, 핵산 및 그에 상응하는 크기를 갖는 물질은 통과시켜 이를 이하 설명될 핵산 분리부(40)로 이동시킨다. 상기 제1 필터(30)는 다양한 규격으로 구현될 수 있으나, 0.1 내지 0.4 마이크로미터(㎛) 범위의 직경을 갖는 포어(pore)를 구비할 수 있고, 0.01 내지 10 밀리미터(mm) 범위의 두께를 갖는 것이 바람직하다. 더 바람직하게는, 상기 제1 필터(30)는 0.2 마이크로미터(㎛)의 직경을 갖는 포어를 구비하되, 0.01 내지 0.5 밀리미터(mm)의 두께를 갖는 것이 바람직하다.The first filter 30 serves to distinguish between passing materials and non-passing materials by sizes in the fluid flow direction, and may be, for example, a structure having pores of a predetermined size. In one embodiment of the present invention, the first filter 30 is disposed in the second channel region connected to the heating unit 20, it is implemented to pass a material of a size corresponding to the nucleic acid. The first filter 30 collects a material having a size larger than that of the nucleic acid in the dissolution product generated by the heating in the heating unit 20 in the heating unit 20, but the nucleic acid and the material having a corresponding size passes through It is moved to the nucleic acid separation unit 40 to be described below. The first filter 30 may be implemented in various standards, but may include pores having a diameter in the range of 0.1 to 0.4 micrometers (μm), and have a thickness in the range of 0.01 to 10 millimeters (mm). It is desirable to have. More preferably, the first filter 30 has a pore having a diameter of 0.2 micrometer (μm), but preferably has a thickness of 0.01 to 0.5 millimeters (mm).
상기 핵산 분리부(40)는 핵산 또는 이에 상응하는 크기를 갖는 물질 중에서 상기 핵산을 선택적으로 분리하기 위한 것이다. 도 7에 따르면, 상기 핵산 분리부(40)는 상기 제1 필터(30)와 이하 설명될 제2 필터(50) 사이의 공간으로서, 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질(45)이 구비되어 있다. 상기 핵산 결합 물질(45)은 핵산과 특이적으로 결합할 수 있는 모든 물질일 수 있다. 상기 핵산 결합 물질(45)은 핵산 결합 작용기가 부착된 것으로서, 예를 들어, 실리카(SiO2) 비드, 바이오틴(biotin), 스트렙타비딘(strptavidin) 부착 비드, 또는 멤브레인(membrane)일 수 있다. 상기 핵산 결합 작용기가 부착된 비드 또는 멤브레인은 다양한 규격으로 구현될 수 있으나, 0.001 내지 20 밀리미터(mm) 범위 내의 직경을 갖는 것이 바람직하다. 또한, 상기 핵산 분리부(40)는 상기 핵산 결합 작용기가 부착된 비드 또는 멤브레인을 다양한 함량 및 규격으로 포함할 수 있으나, 1 마이크로그램(㎍) 내지 200 밀리그램(mg) 범위 이내가 바람직하다. 상기 핵산 결합 물질(45)에 핵산이 특이적으로 결합된 후 상기 핵산 분리부(40)의 내부를 세척하여 이물질을 제거하면 상기 핵산 결합부(40)에는 표적 핵산-핵산 결합 물질(45)의 복합체(complex)만 남아 있게 된다. 그 후 상기 핵산 분리부(40)에 용출 버퍼(elution buffer)가 제공되면 상기 표적 핵산이 상기 복합체로부터 분리될 수 있다.The nucleic acid separation unit 40 is for selectively separating the nucleic acid from a nucleic acid or a substance having a size corresponding thereto. According to FIG. 7, the nucleic acid separation unit 40 is a space between the first filter 30 and the second filter 50 to be described below, and the nucleic acid binding material 45 capable of specifically binding to the nucleic acid. ) Is provided. The nucleic acid binding material 45 may be any material that can specifically bind to the nucleic acid. The nucleic acid binding material 45 has a nucleic acid binding functional group attached thereto, and may be, for example, silica (SiO 2) beads, biotin, strptavidin attachment beads, or a membrane. The bead or membrane to which the nucleic acid binding functional group is attached may be implemented in various standards, but preferably has a diameter within the range of 0.001 to 20 millimeters (mm). In addition, the nucleic acid separation unit 40 may include a bead or membrane to which the nucleic acid binding functional group is attached in various contents and specifications, but preferably within a range of 1 microgram (μg) to 200 mg (mg). After the nucleic acid is specifically bound to the nucleic acid binding material 45, the foreign matter is removed by washing the inside of the nucleic acid separation part 40, and the nucleic acid binding part 40 of the target nucleic acid-nucleic acid binding material 45 is removed. Only the complex remains. Thereafter, when an elution buffer is provided to the nucleic acid separation unit 40, the target nucleic acid may be separated from the complex.
상기 제2 필터(50)는 유체 흐름 방향으로 상기 포어를 통해 크기별로 통과 물질과 비-통과 물질을 구별해 주는 역할을 수행하는 것으로서, 예를 들어 일정한 크기의 포어(pore)를 갖는 구조체일 수 있다. 본 발명의 일 실시예에 있어서, 상기 제2 필터(50)는 상기 핵산 분리부(40)와 연결된 제4 채널 영역에 배치되고, 핵산에 상응하는 크기의 물질을 통과시킬 수 있도록 구현된다. 상기 제2 필터(50)는 상기 핵산 분리부(40)에서 상기 핵산 결합 물질(45)을 포집하되, 상기 핵산 결합 물질(45)로부터 분리된 핵산은 통과시켜 이를 상기 유출부(60)로 이동시킨다. 상기 제2 필터(50)는 다양한 규격으로 구현될 수 있으나, 0.1 내지 100 마이크로미터(㎛) 범위의 직경을 갖는 포어(pore)를 구비하되, 0.01 내지 0.5 밀리미터(mm) 범위의 두께를 갖는 것이 바람직하다. 더 바람직하게는, 상기 제2 필터(50)는 0.2 마이크로미터(㎛)의 직경을 갖는 포어를 구비하되, 0.3 밀리미터(mm)의 두께를 갖는 것이 바람직하다.The second filter 50 serves to distinguish the passing material and the non-passing material by size through the pore in the fluid flow direction. For example, the second filter 50 may be a structure having a pore having a predetermined size. have. In one embodiment of the present invention, the second filter 50 is disposed in the fourth channel region connected to the nucleic acid separation unit 40, it is implemented to pass a material of a size corresponding to the nucleic acid. The second filter 50 collects the nucleic acid binding material 45 in the nucleic acid separation unit 40, but passes the nucleic acid separated from the nucleic acid binding material 45 to the outlet 60. Let's do it. The second filter 50 may be implemented in various standards, but having a pore having a diameter in the range of 0.1 to 100 micrometers (μm), but having a thickness in the range of 0.01 to 0.5 millimeters (mm). desirable. More preferably, the second filter 50 has a pore having a diameter of 0.2 micrometer (μm), but preferably has a thickness of 0.3 millimeter (mm).
도 8은 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩의 단면도이다.8 is a cross-sectional view of the microfluidic chip for nucleic acid extraction according to an embodiment of the present invention.
도 8에 따르면, 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩의 단면도를 확인할 수 있다. 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 은 제1 판(100); 상기 제1 판 상에 배치되되 상기 제1 채널 영역 내지 제4 채널 영역을 포함하는 채널(70)이 배치된 제2 판(200); 및 상기 제2 판(200) 상에 배치되되 상기 유입부(10) 및 상기 유출부(60)가 배치된 제3 판(300)을 포함할 수 있다. 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 다양한 재질로 구현될 수 있으나, 바람직하게는 플라스틱 재질로 구현될 수 있다. 이와 같이, 플라스틱 재질을 사용하는 경우 플라스틱 두께 조절만으로 열 전달 효율을 증대시킬 수 있고, 제작 공정이 단순하여 제조 비용을 크게 절감시킬 수 있다. 한편, 상기 제1 판(100) 및 제3 판(300)은 폴리디메틸실옥산(polydimethylsiloxane, PDMS), 사이클로올레핀코폴리머(cycle olefin copolymer, COC), 폴리메틸메타크릴레이트(polymethylmetharcylate, PMMA), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌카보네이트(polypropylene carbonate, PPC), 폴리에테르설폰(polyether sulfone, PES), 및 폴리에틸렌텔레프탈레이트(polyethylene terephthalate, PET), 및 그의 조합물로 구성된 군으로부터 선택되는 재질을 포함하고, 상기 제2 판(200)은 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC), 사이클로올레핀 코폴리머(cycloolefin copolymer, COC), 폴리아미드(polyamide, PA), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리페닐렌 에테르(polyphenylene ether, PPE), 폴리스티렌(polystyrene, PS), 폴리옥시메틸렌(polyoxymethylene, POM), 폴리에테르에테르케톤(polyetheretherketone, PEEK), 폴리테트라프로오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐클로라이드(polyvinylchloride, PVC), 폴리비닐리덴 플로라이드(polyvinylidene fluoride, PVDF), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate, PBT), 불소화에틸렌프로필렌(fluorinated ethylenepropylene, FEP), 퍼플로로알콕시알칸(perfluoralkoxyalkane, PFA), 및 그의 조합물로 구성된 군으로부터 선택되는 열 가소성 수지 또는 열 경화성 수지 재질을 포함할 수 있다. 또한, 상기 제3 판의 유입부는 직경 0.1 내지 5.0 밀리미터(mm) 범위 내에서 구현되고, 상기 유출부는 직경 0.1 내지 5.0 밀리미터(mm) 범위 내에서 구현되고, 상기 제1판 및 제3 판의 두께는 0.01 내지 20 밀리미터(mm) 범위 내에서 구현되며, 상기 제2 판의 두께는 30 마이크로미터(㎛) 내지 10 밀리미터(mm) 범위 내에서 구현될 수 있다. 또한, 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩은 필요에 따라 1 이상의 유입부, 유출부, 및 이를 연결하는 채널로 구현될 수 있고, 이 경우 하나의 칩 상에서 1 이상의 생물학적 시료로부터 핵산을 추출할 수 있어서 신속하고 효율적으로 핵산을 추출할 수 있다.According to Figure 8, it can be seen a cross-sectional view of the microfluidic chip for nucleic acid extraction according to an embodiment of the present invention. Microfluidic chip for nucleic acid extraction according to an embodiment of the present invention is a silver first plate (100); A second plate (200) disposed on the first plate and having a channel (70) including the first to fourth channel regions; And a third plate 300 disposed on the second plate 200 and having the inlet 10 and the outlet 60 disposed thereon. Nucleic acid extraction microfluidic chip according to an embodiment of the present invention may be implemented in a variety of materials, preferably may be implemented in a plastic material. As such, when the plastic material is used, the heat transfer efficiency may be increased only by adjusting the thickness of the plastic, and the manufacturing process may be simplified, thereby greatly reducing the manufacturing cost. Meanwhile, the first plate 100 and the third plate 300 may include polydimethylsiloxane (PDMS), cyclo olefin copolymer (COC), polymethyl methacrylate (PMMA), Material selected from the group consisting of polycarbonate (PC), polypropylene carbonate (PPC), polyether sulfone (PES), and polyethylene terephthalate (PET), and combinations thereof The second plate 200 includes polymethylmethacrylate (PMMA), polycarbonate (PC), cycloolefin copolymer (COC), polyamide (PA), Polyethylene (PE), polypropylene (PP), polyphenylene ether (PPE), polystyrene (PS), polyoxymethylene (POM), polyether Polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT) It may include a thermoplastic resin or a thermosetting resin material selected from the group consisting of, fluorinated ethylene propylene (FEP), perfluoroalkoxyalkane (PFA), and combinations thereof. In addition, the inlet portion of the third plate is implemented in the range of 0.1 to 5.0 millimeters (mm) in diameter, the outlet portion is implemented in the range of 0.1 to 5.0 millimeters (mm) in diameter, the thickness of the first plate and the third plate Is implemented within the range of 0.01 to 20 millimeters (mm), the thickness of the second plate may be implemented within the range of 30 micrometers (μm) to 10 millimeters (mm). In addition, the microfluidic chip for nucleic acid extraction according to an embodiment of the present invention may be implemented as one or more inlets, outlets, and channels connecting them, if necessary, in this case from one or more biological samples on one chip Nucleic acid can be extracted, and nucleic acid can be extracted quickly and efficiently.
도 9는 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩이 장착된 핵산 추출 장치의 개요도이다.9 is a schematic diagram of a nucleic acid extraction apparatus equipped with a microfluidic chip for nucleic acid extraction according to an embodiment of the present invention.
도 9에 따르면, 본 발명의 일 실시예에 따른 핵산 추출 장치는 이미 설명된 핵산 추출용 미세유동 칩(1); 상기 미세유동 칩(1)이 장착되도록 구현된 칩 장착 모듈(500); 상기 칩 장착 모듈(500)에 장착된 상기 미세유동 칩(1)의 가열부(20)에 열을 가할 수 있도록 구현된 가열 모듈(600); 및 상기 칩 장착 모듈(500)에 장착된 상기 미세유동 칩(1)의 유입부(10) 및/또는 유출부(60)와 연결되어 상기 미세유동 칩(1) 내부로 핵산 추출을 위한 용액을 도입하거나 및/또는 상기 미세유동 칩(1) 내부에 존재하는 용액을 외부로 배출할 수 있도록 구현된 유체 제어 모듈(700)을 포함할 수 있다.According to Figure 9, the nucleic acid extracting apparatus according to an embodiment of the present invention is a nucleic acid extracting microfluidic chip (1) already described; A chip mounting module 500 implemented to mount the microfluidic chip 1; A heating module 600 implemented to apply heat to the heating unit 20 of the microfluidic chip 1 mounted on the chip mounting module 500; And a solution for extracting nucleic acids into the microfluidic chip 1 by being connected to the inlet 10 and / or the outlet 60 of the microfluidic chip 1 mounted on the chip mounting module 500. It may include a fluid control module 700 implemented to introduce and / or to discharge the solution present in the microfluidic chip (1) to the outside.
상기 핵산 추출 장치는 본 발명의 일 실시예에 따른 미세유동 칩(1)이 장착된 상태에서 핵산 추출을 위한 모든 단계를 수행할 수 있도록 구현된 장치로서, 상기 언급된 칩 장착 모듈(500), 가열 모듈(600), 및 유체 제어 모듈(700) 이외에도 기타 핵산을 추출하기 위해 요구되는 다양한 모듈을 더 포함할 수 있다. 또한, 본 발명의 일 실시예에 따른 핵산 추출 장치는 모든 단계가 자동화 방식으로 구현될 수 있고, 중합효소 연쇄 반응(PCR) 장치와 연계되어 핵산 추출 이후 핵산 증폭 반응이 즉시 진행될 수 있도록 구현될 수 있다.The nucleic acid extraction apparatus is a device implemented to perform all the steps for nucleic acid extraction in the state in which the microfluidic chip 1 according to an embodiment of the present invention, the chip mounting module 500, In addition to the heating module 600 and the fluid control module 700, it may further include various modules required for extracting other nucleic acids. In addition, the nucleic acid extracting apparatus according to an embodiment of the present invention can be implemented so that all steps can be implemented in an automated manner, the nucleic acid amplification reaction can proceed immediately after nucleic acid extraction in conjunction with the polymerase chain reaction (PCR) apparatus have.
상기 핵산 추출용 미세유동 칩(1)은 이미 설명된 바와 같다.The microfluidic chip 1 for nucleic acid extraction is as described above.
상기 칩 장착 모듈(500)은 상기 미세유동 칩(1)이 장착되는 부분이다. 상기 칩 장착 모듈(500)은 상기 미세유동 칩(1)의 접촉 면의 형상에 대응하여 다양하게 구현될 수 있다.The chip mounting module 500 is a portion on which the microfluidic chip 1 is mounted. The chip mounting module 500 may be implemented in various ways corresponding to the shape of the contact surface of the microfluidic chip 1.
상기 가열 모듈(600)은 상기 미세유동 칩(1)이 상기 칩 장착 모듈(500)에 장착되었을 때 상기 미세유동 칩(1)의 가열부(20)에 열을 공급하는 모듈이다. 상기 가열 모듈(600)은 다양하게 구현될 수 있으나, 접촉식 열 블록(heating block)이 바람직하다.The heating module 600 is a module for supplying heat to the heating unit 20 of the microfluidic chip 1 when the microfluidic chip 1 is mounted on the chip mounting module 500. The heating module 600 may be implemented in various ways, but a contact heating block is preferable.
상기 유체 제어 모듈(700)은 상기 칩 장착 모듈(500)에 장착된 상기 미세유동 칩(1)의 유입부(10) 및/또는 유출부(60)와 연결되어 상기 미세유동 칩(1) 내부로 핵산 추출을 위한 용액을 도입하거나 및/또는 상기 미세유동 칩(1) 내부에 존재하는 용액을 외부로 배출할 수 있도록 구현된 모듈이다. 상기 유체 제어 모듈(700)은 다양한 구성요소를 포함할 수 있는데, 예를 들어 유체 이동 통로인 미세 채널, 유체 이동의 구동력을 제공하는 공압 펌프, 유체 이동의 개폐를 제어할 수 있는 밸브, 및 핵산 결합 버퍼, 용출 버퍼, 실리카 겔(silica gel), 증류수(DW) 등 핵산 추출을 위해 요구되는 다양한 용액을 포함하는 저장 챔버 등을 더 포함할 수 있다.The fluid control module 700 is connected to the inlet part 10 and / or the outlet part 60 of the microfluidic chip 1 mounted on the chip mounting module 500 to be inside the microfluidic chip 1. It is a module implemented to introduce a solution for nucleic acid extraction and / or to discharge the solution existing in the microfluidic chip (1) to the outside. The fluid control module 700 may include various components, for example, a microchannel that is a fluid movement passage, a pneumatic pump providing a driving force for fluid movement, a valve for controlling opening and closing of fluid movement, and a nucleic acid. It may further include a storage chamber containing a variety of solutions required for nucleic acid extraction, such as binding buffer, elution buffer, silica gel (silica gel), distilled water (DW).
한편, 본 발명의 일 실시예에 따른 핵산 추출 장치는 상기 미세유동 칩(1), 상기 가열 모듈(600), 및 상기 유체 제어 모듈(700)을 자동으로 제어하기 위한 전자 제어 모듈(도시되지 않음)을 더 포함할 수 있다. 상기 전자 제어 모듈은 미리 저장된 프로그램에 따라 상기 미세유동 칩(1) 내에서 정량의 핵산이 추출될 수 있도록 상기 각 모듈들을 정밀하게 제어할 수 있다. 상기 미리 저장된 프로그램이라 함은 예를 들어, 이하 상세하게 설명될 핵산 추출 방법에 관한 일련의 단계에 관한 프로그램을 포함한다.Meanwhile, the nucleic acid extracting apparatus according to an embodiment of the present invention is an electronic control module (not shown) for automatically controlling the microfluidic chip 1, the heating module 600, and the fluid control module 700. ) May be further included. The electronic control module can precisely control the respective modules so that the quantitative nucleic acid can be extracted from the microfluidic chip 1 according to a pre-stored program. The prestored program includes, for example, a program relating to a series of steps relating to a nucleic acid extraction method which will be described in detail below.
도 10은 본 발명의 일 실시예에 따른 핵산 추출 방법의 흐름도이다. 구체적으로, 도 10a 내지 10d는 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩(1)을 전제로 하는 다양한 핵산 추출 방법을 도시한다.10 is a flowchart of a nucleic acid extraction method according to an embodiment of the present invention. Specifically, FIGS. 10A to 10D illustrate various nucleic acid extraction methods based on the microfluidic chip 1 for nucleic acid extraction according to an embodiment of the present invention.
도 10a에 따르면, 본 발명의 일 실시예에 따른 생물학적 시료로부터 핵산을 추출하는 방법은 도 7f에 따른 핵산 추출용 미세유동 칩을 제공하는 단계(미세유동 칩 제공 단계); 상기 미세유동 칩의 유입부를 통해 세포, 박테리아, 및 바이러스로 구성된 군으로부터 선택된 생물학적 시료를 도입하는 단계(생물학적 시료 도입 단계); 상기 도입된 생물학적 시료를 상기 미세유동 칩의 가열부로 이동시킨 후 상기 미세유동 칩의 가열부에 열을 가하여 상기 생물학적 시료를 용해(lysis)시키는 단계(생물학적 시료 용해 단계); 상기 용해 물질로부터 핵산 결합 물질(멤브레인)을 통해 핵산을 분리하는 단계(핵산 분리 단계); 선택가능한 단계로서, 핵산 분리 과정에서 발생한 이물질을 제거하는 단계(이물질 제거 단계); 및 상기 핵산을 상기 유출부로 이동시킨 후 상기 유출부를 통해 상기 핵산을 추출하는 단계(핵산 추출 단계)를 포함할 수 있다.According to Figure 10a, a method for extracting a nucleic acid from a biological sample according to an embodiment of the present invention comprises the steps of providing a microfluidic chip for nucleic acid extraction according to Figure 7f (microfluidic chip providing step); Introducing a biological sample selected from the group consisting of cells, bacteria, and viruses through an inlet of the microfluidic chip (biological sample introduction step); Moving the introduced biological sample to a heating part of the microfluidic chip and then heating the heating part of the microfluidic chip to dissolve the biological sample (biological sample dissolution step); Separating the nucleic acid from the soluble material through a nucleic acid binding material (membrane) (nucleic acid separation step); As an optional step, the step of removing foreign matters generated in the nucleic acid separation process (foreign matter removing step); And extracting the nucleic acid through the outlet after moving the nucleic acid to the outlet (nucleic acid extraction step).
도 10b에 따르면, 본 발명의 일 실시예에 따른 생물학적 시료로부터 핵산을 추출하는 방법은 도 7b 또는 7c에 따른 핵산 추출용 미세유동 칩을 제공하는 단계(미세유동 칩 제공 단계); 상기 미세유동 칩의 유입부를 통해 세포, 박테리아, 및 바이러스로 구성된 군으로부터 선택된 생물학적 시료를 도입하는 단계(생물학적 시료 도입 단계); 상기 도입된 생물학적 시료를 상기 미세유동 칩의 가열부로 이동시킨 후 상기 미세유동 칩의 가열부에 열을 가하여 상기 생물학적 시료를 용해(lysis)시키는 단계(생물학적 시료 용해 단계); 상기 용해 단계로부터 획득된 물질을 상기 미세유동 칩의 제1 필터로 이동시킨 후 상기 제1 필터를 통해 통과시키고, 상기 제1 필터를 통과하지 아니한 물질을 제거하는 단계(제1 필터를 통한 여과 단계); 상기 제1 필터를 통과한 물질로부터 핵산을 분리하는 단계(핵산 분리 단계); 선택가능한 단계로서, 핵산 분리 과정에서 발생한 이물질을 제거하는 단계(이물질 제거 단계); 및 상기 핵산을 상기 유출부로 이동시킨 후 상기 유출부를 통해 상기 핵산을 추출하는 단계(핵산 추출 단계)를 포함할 수 있다.According to Figure 10b, a method for extracting a nucleic acid from a biological sample according to an embodiment of the present invention comprises the steps of providing a microfluidic chip for nucleic acid extraction according to Figure 7b or 7c (microfluidic chip providing step); Introducing a biological sample selected from the group consisting of cells, bacteria, and viruses through an inlet of the microfluidic chip (biological sample introduction step); Moving the introduced biological sample to a heating part of the microfluidic chip and then heating the heating part of the microfluidic chip to dissolve the biological sample (biological sample dissolution step); The material obtained from the dissolution step is transferred to the first filter of the microfluidic chip and then passed through the first filter, and removing the material not passed through the first filter (filtration step through the first filter) ); Separating the nucleic acid from the material passing through the first filter (nucleic acid separation step); As an optional step, the step of removing foreign matters generated in the nucleic acid separation process (foreign matter removing step); And extracting the nucleic acid through the outlet after moving the nucleic acid to the outlet (nucleic acid extraction step).
도 10c에 따르면, 본 발명의 일 실시예에 따른 생물학적 시료로부터 핵산을 추출하는 방법은 도 7g에 따른 핵산 추출용 미세유동 칩을 제공하는 단계(미세유동 칩 제공 단계); 상기 미세유동 칩의 유입부를 통해 세포, 박테리아, 및 바이러스로 구성된 군으로부터 선택된 생물학적 시료를 도입하는 단계(생물학적 시료 도입 단계); 상기 도입된 생물학적 시료를 상기 미세유동 칩의 가열부로 이동시킨 후 상기 미세유동 칩의 가열부에 열을 가하여 상기 생물학적 시료를 용해(lysis)시키는 단계(생물학적 시료 용해 단계); 상기 용해 물질로부터 핵산 결합 물질(비드)을 통해 핵산을 분리하는 단계(핵산 분리 단계); 선택가능한 단계로서, 핵산 분리 과정에서 발생한 이물질을 제거하는 단계(이물질 제거 단계); 상기 핵산 결합 물질로부터 상기 핵산을 분리시키고, 상기 분리된 핵산을 상기 제2 필터로 이동시킨 후 제2 필터를 통해 통과시키는 단계(제2 필터를 통한 여과 단계); 및 상기 핵산을 상기 유출부로 이동시킨 후 상기 유출부를 통해 상기 핵산을 추출하는 단계(핵산 추출 단계)를 포함할 수 있다.According to Figure 10c, a method for extracting a nucleic acid from a biological sample according to an embodiment of the present invention comprises the steps of providing a microfluidic chip for nucleic acid extraction according to Figure 7g (microfluidic chip providing step); Introducing a biological sample selected from the group consisting of cells, bacteria, and viruses through an inlet of the microfluidic chip (biological sample introduction step); Moving the introduced biological sample to a heating part of the microfluidic chip and then heating the heating part of the microfluidic chip to dissolve the biological sample (biological sample dissolution step); Separating the nucleic acid from the soluble material through a nucleic acid binding material (bead) (nucleic acid separation step); As an optional step, the step of removing foreign matters generated in the nucleic acid separation process (foreign matter removing step); Separating the nucleic acid from the nucleic acid binding material, passing the separated nucleic acid to the second filter and passing it through a second filter (filtration through a second filter); And extracting the nucleic acid through the outlet after moving the nucleic acid to the outlet (nucleic acid extraction step).
도 10d에 따르면, 본 발명의 일 실시예에 따른 생물학적 시료로부터 핵산을 추출하는 방법은 도 7d 또는 7e에 따른 핵산 추출용 미세유동 칩을 제공하는 단계(미세유동 칩 제공 단계); 상기 미세유동 칩의 유입부를 통해 세포, 박테리아, 및 바이러스로 구성된 군으로부터 선택된 생물학적 시료를 도입하는 단계(생물학적 시료 도입 단계); 상기 도입된 생물학적 시료를 상기 미세유동 칩의 가열부로 이동시킨 후 상기 미세유동 칩의 가열부에 열을 가하여 상기 생물학적 시료를 용해(lysis)시키는 단계(생물학적 시료 용해 단계); 상기 용해 단계로부터 획득된 물질을 상기 미세유동 칩의 제1 필터로 이동시킨 후 상기 제1 필터를 통해 통과시키고, 상기 제1 필터를 통과하지 아니한 물질을 제거하는 단계(제1 필터를 통한 여과 단계); 상기 용해 물질로부터 핵산 결합 물질(비드 또는 멤브레인)을 통해 핵산을 분리하는 단계(핵산 분리 단계); 선택가능한 단계로서, 핵산 분리 과정에서 발생한 이물질을 제거하는 단계(이물질 제거 단계); 상기 핵산 결합 물질로부터 상기 핵산을 분리시키고, 상기 분리된 핵산을 상기 제2 필터로 이동시킨 후 제2 필터를 통해 통과시키는 단계(제2 필터를 통한 여과 단계); 및 상기 핵산을 상기 유출부로 이동시킨 후 상기 유출부를 통해 상기 핵산을 추출하는 단계(핵산 추출 단계)를 포함할 수 있다.According to Figure 10d, a method for extracting a nucleic acid from a biological sample according to an embodiment of the present invention comprises the steps of providing a microfluidic chip for nucleic acid extraction according to Figure 7d or 7e (microfluidic chip providing step); Introducing a biological sample selected from the group consisting of cells, bacteria, and viruses through an inlet of the microfluidic chip (biological sample introduction step); Moving the introduced biological sample to a heating part of the microfluidic chip and then heating the heating part of the microfluidic chip to dissolve the biological sample (biological sample dissolution step); The material obtained from the dissolution step is transferred to the first filter of the microfluidic chip and then passed through the first filter, and removing the material not passed through the first filter (filtration step through the first filter) ); Separating the nucleic acid from the soluble material through a nucleic acid binding material (bead or membrane) (nucleic acid separation step); As an optional step, the step of removing foreign matters generated in the nucleic acid separation process (foreign matter removing step); Separating the nucleic acid from the nucleic acid binding material, passing the separated nucleic acid to the second filter and passing it through a second filter (filtration through a second filter); And extracting the nucleic acid through the outlet after moving the nucleic acid to the outlet (nucleic acid extraction step).
도 11 내지 13은 본 발명의 일 실시예에 따른 액체 저장 용기를 도시한다.11-13 illustrate a liquid storage container according to one embodiment of the present invention.
도 11에 따르면, 상기 액체 저장 용기(5000)는 상기 미세유동 칩(1)에 의한 반응이 종료된 후 반응 산물을 저장 및 보관하기 위한 것으로서, 상기 미세유동 칩(1)의 1 이상의 유출부(60) 영역 말단이 고정 장착될 수 있도록 구현된 칩 유출부 영역 말단 장착부(5100), 상기 미세유동 칩(1)의 1 이상의 유출부(60) 상단에 각각 대응하는 1 이상의 상향 액체 흡입구(5200), 및 상기 1 이상의 상향 액체 흡입구(5200)와 유체 소통 가능하게 연결된 1 이상의 액체 저장 챔버(5300)를 구비한다. 도 12 내지 13은 상기 미세유동 칩(1)의 1 이상의 유출부(60)를 통해 배출되는 액체가 상기 액체 저장 용기(5000) 내에서 이동하는 과정을 설명한다. 예를 들어, 상기 미세유동 칩(1) 내에서 핵산 추출 반응이 완료된 후, 상기 액체 저장 용기(5000)가 상기 칩 유출부 영역 말단 장착부(5100)에 고정 장착되고, 원하는 핵산을 포함하는 용액(E1, E2)이 상기 1 이상의 유출부(60)를 통해 배출되면, 상기 핵산 포함 용액(E1, E2)은 상기 액체 저장 용기(5000)의 1 이상의 상향 액체 흡입구(5200)를 통해 도입되고, 상기 액체 저장 용기(5000) 내 채널을 통해 이동하여(F1, F2) 상기 1 이상의 액체 저장 챔버(5300)에 도달하게 된다(S1, S2). 그 후, 상기 액체 저장 용기(5000)를 상기 미세유동 칩(1)으로부터 분리하여 별도로 핵산 포함 용액을 저장 및 보관할 수 있고, 연이은 핵산 검출 및 분석 과정에서 상기 핵산 포함 용액을 추가 활용할 수 있는 실익이 있게 된다. 도 14는 본 발명의 일 실시예에 따른 미세유동 칩(1)과 액체 저장 용기(5000)가 결합된 상태에서 생물학적 시료 또는 시약과 같은 액체의 이동 경로를 도시한다. 이 경우 상기 미세유동 칩(1)과 액체 저장 용기(5000) 내에서의 액체의 연속적인 이동을 가능하게 하는 구동력은 상기 미세유동 칩(1)의 1 이상의 유입부(10)과 연결된 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2), 또는 임의의 펌프 또는 실린지 등으로부터 제공받을 수 있다. 도 15는 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2), 미세유동 칩(1), 및 액체 저장 용기(5000)가 결합된 상태에서 생물학적 시료 또는 시약과 같은 액체의 이동 경로를 도시한다.According to FIG. 11, the liquid storage container 5000 is for storing and storing a reaction product after the reaction by the microfluidic chip 1 is completed, and at least one outlet portion of the microfluidic chip 1 ( 60) a chip outlet region end mounting portion 5100 implemented such that the region end is fixedly mounted, and one or more upward liquid suction ports 5200 respectively corresponding to upper ends of the one or more outlet portions 60 of the microfluidic chip 1. And one or more liquid storage chambers 5300 in fluid communication with the one or more upward liquid inlets 5200. 12 to 13 illustrate a process in which the liquid discharged through one or more outlets 60 of the microfluidic chip 1 moves in the liquid storage container 5000. For example, after the nucleic acid extraction reaction in the microfluidic chip 1 is completed, the liquid storage container 5000 is fixedly mounted to the chip outlet region end mounting portion 5100, and contains a solution containing a desired nucleic acid ( When E1, E2 is discharged through the one or more outlets 60, the nucleic acid-containing solution E1, E2 is introduced through one or more upward liquid inlet 5200 of the liquid storage container 5000, The liquid storage container 5000 moves through the channel (F1, F2) to reach the one or more liquid storage chambers 5300 (S1, S2). Thereafter, the liquid storage container 5000 may be separated from the microfluidic chip 1 to separately store and store the nucleic acid-containing solution, and may further utilize the nucleic acid-containing solution in subsequent nucleic acid detection and analysis. Will be. FIG. 14 illustrates a flow path of a liquid such as a biological sample or a reagent in a state in which the microfluidic chip 1 and the liquid storage container 5000 are combined according to an embodiment of the present invention. In this case, the driving force for the continuous movement of the liquid in the microfluidic chip 1 and the liquid storage container 5000 is connected to one or more inlets 10 of the microfluidic chip 1. Multi-channel liquid dispensing device 2 according to one embodiment, or any pump or syringe or the like. 15 is a flow path of a liquid such as a biological sample or a reagent in a state in which the multi-channel liquid dispensing apparatus 2, the microfluidic chip 1, and the liquid storage container 5000 are combined according to an embodiment of the present invention. Shows.
상술한 바와 같은 핵산 추출 장치를 전제로, 본 발명의 일 실시예는 편리하고, 신속하며 효율적인 초고속 핵산 추출 방법을 제공할 수 있다. 예를 들어, 제1 핵산 추출 방법은 상술한 핵산 추출 장치를 제공하는 단계; 생물학적 시료 또는 시약을 상기 다-채널 액체 분배 장치 및 유체 전달 수단을 통해 상기 핵산 추출용 미세유동 칩에 주입하는 단계; 및 상기 핵산 추출용 미세유동 칩을 구동하여 상기 생물학적 시료로부터 핵산을 추출하는 단계를 포함할 수 있고, 제2 핵산 추출 방법은 상술한 핵산 추출 장치를 제공하는 단계; 생물학적 시료 또는 시약을 상기 다-채널 액체 분배 장치 및 유체 전달 수단을 통해 상기 핵산 추출용 미세유동 칩에 주입하는 단계; 상기 핵산 추출용 미세유동 칩을 구동하여 상기 생물학적 시료로부터 핵산을 추출하는 단계; 및 상기 핵산 추출 산물을 상기 액체 저장 용기의 액체 저장 챔버에 저장하는 단계를 포함할 수 있다.Under the premise of the above-described nucleic acid extracting apparatus, an embodiment of the present invention can provide a convenient, fast and efficient ultra-fast nucleic acid extracting method. For example, the first nucleic acid extracting method may include providing the nucleic acid extracting apparatus described above; Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; And extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip, wherein the second nucleic acid extracting method comprises the steps of providing the nucleic acid extracting apparatus described above; Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; Extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip; And storing the nucleic acid extraction product in a liquid storage chamber of the liquid storage container.
이하, 실시예 1 내지 2에서는 타사 핵산 추출 장치(Qiagen 사)와 비교하여, 생물학적 시료로부터 핵산을 추출하면서 핵산 추출물의 산출량과 진행 시간을 파악하고, 더 나아가 중합효소 연쇄반응(PCR)을 통해 핵산 추출물의 결과 신뢰성을 재차 확인하였다.Hereinafter, in Examples 1 to 2, compared to other nucleic acid extracting apparatuses (Qiagen), while extracting the nucleic acid from the biological sample to determine the yield and the running time of the nucleic acid extract, and further through the polymerase chain reaction (PCR) The result reliability of the extract was again confirmed.
실시예 1. 핵산 추출의 산출량 및 진행시간 확인Example 1. Confirmation of yield and run time of nucleic acid extraction
먼저, 결핵균주 세포를 대상으로 타사 제품에 포함된 일반적인 튜브(tube) 및 본 발명의 일 실시예에 따른 핵산 추출용 미세유동 칩(1)을 각각 이용하여 DNA를 추출한 후 그 산출량 및 진행시간을 확인하였다.First, DNA is extracted using a general tube included in a third-party product and a nucleic acid extracting microfluidic chip 1 according to an embodiment of the present invention, and then the yield and duration of the tuberculosis strain cells. Confirmed.
타사 핵산 분리 장치를 이용한 핵산 추출 단계는 아래와 같다. 결핵균주 세포를 준비하고, 상기 결핵균주 세포를 6% NaOH 및 4% NaLC와 1:1:1 비율로 혼합하여 샘플 용액으로 제조하였다. 그 후, 상기 샘플 용액을 원심분리하여 상층액을 제거하였다(10분, 7500rpm, 4℃). 그 후, 상기 샘플 용액에 20㎕ Proteinase K를 첨가하고, 56℃에서 상기 샘플 용액이 투명해질 때까지 방치하였다. 그 후, 상기 샘플 용액에 200㎕ AL buffer를 첨가하고 15초 동안 혼합하고, 56℃에서 10분 동안 방치하였다. 그 후, 상기 샘플 용액을 컬럼에 옮긴 후 1분 동안 원심분리하였다(8000rpm). 그 후, 500㎕ AW 1 buffer를 첨가한 후 1분 동안 원심분리하였다(8000rpm). 그 후, 500㎕ AW 2 buffer를 첨가한 후 1분 동안 원심분리하였다(14,000rpm). 그 후 재차 1분 동안 원심분리하였다(14,000rpm). 그 후 새로운 튜브에 상기 컬럼을 두고 AE buffer 200㎕를 첨가한 후 3분 동안 방치하였다. 그 후, 1분 동안 원심분리 후 DNA를 용출하였다. 그 결과, 최종 DNA 산물은 약 100 ㎕가 획득되었고, 최종 DNA 산물을 획득하는데 약 30분 정도가 소요되었다. Nucleic acid extraction step using a third-party nucleic acid separation device is as follows. Tuberculosis strain cells were prepared, and the tuberculosis strain cells were mixed with 6% NaOH and 4% NaLC in a 1: 1: 1 ratio to prepare a sample solution. The sample solution was then centrifuged to remove supernatant (10 min, 7500 rpm, 4 ° C.). Thereafter, 20 μl Proteinase K was added to the sample solution, and the sample solution was left at 56 ° C. until it became clear. Then, 200 μl AL buffer was added to the sample solution, mixed for 15 seconds, and left at 56 ° C. for 10 minutes. The sample solution was then transferred to a column and centrifuged for 1 minute (8000 rpm). Then, 500 μl AW 1 buffer was added and centrifuged for 1 minute (8000 rpm). Thereafter, 500 µl AW 2 buffer was added and centrifuged for 1 minute (14,000 rpm). Then centrifuged again for 1 minute (14,000 rpm). Thereafter, the column was placed in a new tube, and 200 µl of AE buffer was added, followed by standing for 3 minutes. Thereafter, DNA was eluted after centrifugation for 1 minute. As a result, about 100 μl of the final DNA product was obtained and it took about 30 minutes to obtain the final DNA product.
뒤이어, 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2), 유체 전달 수단(4), 및 핵산 추출용 미세유동 칩(1)을 이용하여 동일한 결핵균주 세포로부터 핵산을 추출하였는데, 상세 과정은 아래와 같다.Subsequently, nucleic acid was extracted from the same tuberculosis strain cells using a multi-channel liquid dispensing apparatus 2, a fluid delivery means 4, and a nucleic acid extracting microfluidic chip 1 according to an embodiment of the present invention. The detailed process is as follows.
결핵균주 세포를 준비하고, 상기 결핵균주 세포를 6% NaOH 및 4% NaLC와 1:1:1 비율로 혼합하여 샘플 용액으로 제조하였다. 그 후, 도 7에 따른 핵산 추출용 미세유동 칩{25×72×2mm, 실리카 비드(OPS Diagnostics, LLC), 필터(Whatman)}의 1 이상의 유입부에 도입하였다. 본 발명의 일시예에 따른 미세유동 칩의 유입부에 실리카 겔(silica gel) 및 1X DNA 결합 버퍼(binding buffer) 300 ㎕을 도입한 후 본 발명의 일시예에 따른 미세유동 칩의 가열부를 95℃로 급속 가열하였다. 그 후, 본 발명의 일시예에 따른 미세유동 칩의 유입부를 통해 샘플 용액 중 폐기물을 제거하고 용출 버퍼(elution buffer) 100 ㎕를 도입하였다. 이 경우 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2) 및 유체 전달 수단(4)을 사용하여 시약을 상기 핵산 추출용 미세 유동 칩에 도입하였다. 그 후, 본 발명의 일시예에 따른 미세유동 칩의 유출부를 통해 최종 산물을 획득하고(본 발명의 일 실시예에 따른 액체 저장 용기 사용), 확인한 결과 최종 DNA 산물은 약 100 ㎕가 획득되었고, 최종 DNA 산물을 획득하는데 전체 5분 정도가 소요되었다.Tuberculosis strain cells were prepared, and the tuberculosis strain cells were mixed with 6% NaOH and 4% NaLC in a 1: 1: 1 ratio to prepare a sample solution. Thereafter, the microfluidic chip for nucleic acid extraction (25 x 72 x 2 mm, silica beads (OPS Diagnostics, LLC), filter (Whatman)) according to Figure 7 was introduced into the inlet. After the introduction of 300 μl of silica gel and 1X DNA binding buffer at the inlet of the microfluidic chip according to the embodiment of the present invention, the heating portion of the microfluidic chip according to the embodiment of the present invention is 95 ° C. Heated rapidly. Thereafter, waste in the sample solution was removed through the inlet of the microfluidic chip according to the embodiment of the present invention, and 100 µl of an elution buffer was introduced. In this case, a reagent was introduced into the nucleic acid extraction microfluidic chip using the multi-channel liquid dispensing apparatus 2 and the fluid delivery means 4 according to one embodiment of the present invention. Then, the final product was obtained through the outlet of the microfluidic chip according to one embodiment of the present invention (using a liquid storage container according to one embodiment of the present invention), and as a result, about 100 μl of the final DNA product was obtained. It took about 5 minutes to get the final DNA product.
상기 실험 결과, 본 발명의 일 실시예에 따른 다-채널 액체 분배 장치(2), 유체 전달 수단(4), 및 핵산 추출용 미세유동 칩(1)을 이용하면, 핵산 추출 산물의 양은 그대로 유지될 수 있는데 반해, 기존 핵산 추출 방법과는 달리 총 소요시간은 상당하게 단축할 수 있다는 점을 확인할 수 있다.As a result of the experiment, when the multi-channel liquid distribution device 2, the fluid delivery means 4, and the nucleic acid extraction microfluidic chip 1 according to an embodiment of the present invention, the amount of the nucleic acid extraction product is maintained as it is. On the other hand, unlike conventional nucleic acid extraction methods, the total time required can be significantly reduced.
실시예 2. 타사 제품 및 본 발명의 일 실시예에 따른 핵산 추출 방법에 의해 획득된 각각의 DNA 산물의 중합효소 연쇄반응(PCR) 결과Example 2 Polymerase Chain Reaction (PCR) Results of Each DNA Product Obtained by a Third Party Product and a Nucleic Acid Extraction Method According to an Example of the Present Invention
상기 실시예 1에서 획득된 DNA 산물의 신뢰성을 확보하기 위하여 상기 DNA 산물을 기초로 하여 중합효소 연쇄 반응(PCR)을 진행하였다. In order to secure the reliability of the DNA product obtained in Example 1, a polymerase chain reaction (PCR) was performed based on the DNA product.
상기 중합효소 연쇄 반응(PCR)은 타사 제품(Bio-Rad: CFX connect 장비)를 이용하였다. 중합효소 연쇄 반응(PCR)을 수행하기 위한 PCR 시료 및 시약은 실시간 PCR 혼합용액(TOYOBO SYBR qPCR mix) 10 마이크로리터(㎕), 정방향 프라이머(Forward Primer) 2 마이크로리터(㎕), 역방향 프라이머(Reverse Primer, 10μM) 2 마이크로리터(㎕), 주형 DNA(Template DNA, 1ng) 1 마이크로리터(㎕), 증류수(DW) 5 마이크로리터(㎕) 등을 포함하는 총 20 마이크로리터(㎕)를 준비하였다. 그 후, 95℃, 30 sec 조건으로 Pre-denaturation 단계를 수행하고(1 cycle), 95℃, 5 sec 조건으로 Denaturation 단계 및 72-65℃, 30 sec 조건으로 Anealing & Extension 단계를 수행하였다(40 cycle).The polymerase chain reaction (PCR) was used as a third-party product (Bio-Rad: CFX connect equipment). PCR samples and reagents for carrying out the polymerase chain reaction (PCR) include 10 microliters (μl) of real-time PCR mixed solution (TOYOBO SYBR qPCR mix), 2 microliters (μl) forward primer, and reverse primer (Reverse). A total of 20 microliters (μl) were prepared, including 2 microliters (μl) of Primer, 10 μM, 1 microliter (μl) of template DNA (1 ng), 5 microliters (μW) of distilled water (DW), and the like. . Then, the pre-denaturation step was performed at 95 ° C. and 30 sec (1 cycle), followed by the denaturation step at 95 ° C. and 5 sec, and the anealing & extension step at 72-65 ° C. and 30 sec (40). cycle).
하기 표 1은 핵산 추출 산물에 관한 실시간 PCR 결과(Ct value)를 보여주고, 도 16은 핵산 추출 방법을 이용하여 획득한 핵산 추출 산물에 관한 실시간 PCR 결과를 PCR 주기별 형광도로 측정한 그래프이며, 도 17은 최종 PCR 산물의 겔(gel) 전기영동의 사진이다. 도 16의 그래프 곡선은 각각의 핵산 추출 방법에 의한 DNA 산물의 PCR 결과 곡선(X축: 주기, Y축: 형광도)이다.Table 1 shows real-time PCR results (Ct values) for nucleic acid extraction products, and FIG. 16 is a graph measuring real-time PCR results for nucleic acid extraction products obtained using a nucleic acid extraction method by fluorescence for each PCR cycle. 17 is a photograph of gel electrophoresis of the final PCR product. The graph curve of FIG. 16 is the PCR result curve (X-axis: period, Y-axis: fluorescence) of the DNA product by each nucleic acid extraction method.
표 1
구분(gDNA copies / rxn) Ct value
Non template(1) -
Plasmid DNA(1×105 copies)(2) 18.32
1×106(3) 16.77
1×103(4) 26.00
Table 1
Classification (gDNA copies / rxn) Ct value
Non template (1) -
Plasmid DNA (1 × 10 5 copies) (2) 18.32
1 × 10 6 (3) 16.77
1 × 10 3 (4) 26.00
(1)은 음성 대조군이고, (2)는 양성 대조군이다.(1) is a negative control and (2) is a positive control.
상기 PCR 결과를 통해, 본 발명의 일 실시예에 따른 핵산 추출 장치를 이용한 핵산 추출 방법은 핵산 추출 산물의 결과 신뢰도를 유지 또는 개선함과 동시에 핵산 추출 단계를 상당하게 감소시켜 반응 소요 시간을 훨씬 단축할 수 있다는 것을 확인할 수 있었다.Through the PCR results, the nucleic acid extraction method using the nucleic acid extraction apparatus according to an embodiment of the present invention significantly reduces the time required for the reaction by significantly reducing the nucleic acid extraction step while maintaining or improving the result reliability of the nucleic acid extraction product. I could confirm that I could.

Claims (12)

  1. 박막 형상의 기판;A thin film substrate;
    상기 기판의 일 말단 영역에 배치된 단일 액체 주입구; 및A single liquid inlet disposed in one end region of the substrate; And
    상기 기판의 다른 일 말단 영역에 배치되되, 상기 단일 액체 주입구와 채널을 통해 유체 소통가능하게 연결된, 1 이상 짝수 개의 액체 배출구;At least one even liquid outlet disposed in the other distal region of the substrate and in fluid communication with the single liquid inlet;
    를 포함하는 것으로서,As containing,
    상기 채널은 일 말단이 상기 단일 액체 주입구 측으로 연결되고 다른 말단은 두 갈래로 분할되어 유량을 1/2로 분배하도록 구현되어 상기 액체 배출구 측에 연결된 채널 패턴을 구비하는, 1 이상의 단위 채널 영역을 포함하는 것인,The channel comprises one or more unit channel regions, one end of which is connected to the single liquid inlet side and the other end of which is divided into two and has a channel pattern connected to the liquid outlet side to implement a half flow rate. That is,
    다-채널 액체 분배 장치.Multi-channel liquid dispensing device.
  2. 제1항에 있어서,The method of claim 1,
    상기 액체 배출구는 2N 개로 구현되고, 상기 채널은 상기 단일 액체 주입구로부터 상기 2N 개의 액체 배출구까지 형성된 N개의 단위 채널 영역을 포함하고, 상기 N 이하 i번째 단위 채널 영역은 2i-1 개의 개시 채널 및 상기 2i-1 개의 개시 채널로부터 각각 두 갈래로 분할되어 유량을 1/2로 분배하는 2i 개의 분지 채널을 포함하되, 상기 1번째 단위 채널 영역 중 개시 채널 측 말단은 상기 단일 액체 주입구와 연결되고, 상기 N번째 단위 채널 영역 중 분지 채널 말단은 각각 상기 2N 개의 액체 배출구와 연결되는 것으로서, 상기 N 및 i는 자연수인 것인, 다-채널 액체 분배 장치.The liquid discharge port is implemented as 2 N , and the channel includes N unit channel regions formed from the single liquid inlet to the 2 N liquid outlet ports, and the N-th i-th unit channel region includes 2 i-1 openings. channel and the 2 i-1 from the start of the channel is divided into two branches each comprising a 2 i of branch channels for distributing the flow rate of 1/2, the first unit of the start of the channel section a channel-side terminal is the single liquid inlet And the branch channel ends of the Nth unit channel region are respectively connected to the 2 N liquid outlets, wherein N and i are natural water.
  3. 양 말단에 유입부 및 유출부가 구현된 1 이상 짝수 개의 반응 채널을 구비하는 박막 형상의 미세유동 칩(microfluidic chip)에 있어서, 상기 1 이상의 유입부를 통해 상기 1 이상의 반응 채널 내로 액체를 하향 주입하기 위한 것으로서,In the thin-film microfluidic chip having one or more even reaction channels having inlets and outlets at both ends, the liquid is injected downward into the one or more reaction channels through the one or more inlets. As,
    상기 1 이상의 유입부 수와 일치하는 액체 배출구를 구비하는, 제1항 또는 제2항에 따른 다-채널 액체 분배 장치; 및 A multi-channel liquid dispensing device according to claim 1 or 2, having a liquid outlet corresponding to the at least one inlet number; And
    상기 미세유동 칩의 1 이상의 유입부와 상기 다-채널 액체 분배 장치의 1 이상의 액체 배출구를 유체 소통가능하게 연결하는 유체 전달 수단;Fluid delivery means for fluidly connecting at least one inlet of the microfluidic chip and at least one liquid outlet of the multi-channel liquid dispensing device;
    을 포함하는, 다-채널 액체 분배 주입 장치.A multi-channel liquid dispensing injection device comprising a.
  4. 생물학적 시료로부터 핵산을 추출하기 위한 것으로서, 유입부, 상기 유입부와 연결된 채널 영역, 및 상기 채널 영역과 연결된 유출부를 포함하는 것으로서, 상기 채널 영역은 상기 유입부를 통해 도입되는 생물학적 시료에 외부로부터 얻어진 열을 전달할 수 있도록 구현된 가열부를 포함하는 것인, 1 이상의 반응 채널을 구비하는 박막 형상의 핵산 추출용 미세유동 칩;A nucleic acid for extracting a nucleic acid from a biological sample, comprising an inlet, a channel region connected to the inlet, and an outlet connected to the channel region, wherein the channel region is heat obtained from the outside of the biological sample introduced through the inlet. A microfluidic chip for extracting nucleic acids having a thin film-like shape having one or more reaction channels, including a heating unit implemented to deliver the;
    상기 1 이상의 유입부 수와 일치하는 액체 배출구를 구비하는, 제1항 또는 제2항에 따른 다-채널 액체 분배 장치; 및 A multi-channel liquid dispensing device according to claim 1 or 2, having a liquid outlet corresponding to said at least one inlet number; And
    상기 미세유동 칩의 1 이상의 유입부와 상기 다-채널 액체 분배 장치의 1 이상의 액체 배출구를 유체 소통가능하게 연결하는 유체 전달 수단;Fluid delivery means for fluidly connecting at least one inlet of the microfluidic chip and at least one liquid outlet of the multi-channel liquid dispensing device;
    을 포함하는, 핵산 추출 장치.A nucleic acid extraction apparatus comprising a.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 미세유동 칩의 1 이상의 유출부 영역 말단이 고정 장착될 수 있도록 구현된 칩 유출부 영역 말단 장착부, 상기 미세유동 칩의 1 이상의 유출부 상단에 각각 대응하는 1 이상의 상향 액체 흡입구, 및 상기 1 이상의 상향 액체 흡입구와 유체 소통 가능하게 연결된 1 이상의 액체 저장 챔버를 구비하는 액체 저장 용기를 더 포함하는 것을 특징으로 하는, 핵산 추출 장치.A chip outlet region end mounting portion configured to be fixedly mounted to at least one outlet region end of the microfluidic chip, at least one upward liquid inlet corresponding to an upper end of at least one outlet portion of the microfluidic chip, and at least one And a liquid storage container having at least one liquid storage chamber in fluid communication with an upward liquid inlet.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 미세유동 칩은 상기 유입부와 연결된 제1 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터를 구비하는 것을 특징으로 하는, 핵산 추출 장치.The microfluidic chip may include a heating unit disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit, and including a first filter configured to pass a material having a size corresponding to a nucleic acid. Characterized in that, the nucleic acid extracting device.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 미세유동 칩은 상기 유입부와 연결된 제1 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터를 구비하고, 상기 제1 필터와 연결된 제3 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질이 구비되어 있는 핵산 분리부를 구비하는 것을 특징으로 하는, 핵산 추출 장치.The microfluidic chip has a heating unit disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit, and having a first filter through which a material having a size corresponding to a nucleic acid can pass therethrough. And a nucleic acid separation unit disposed in a third channel region connected to the first filter and having a nucleic acid binding material capable of specifically binding to the nucleic acid.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 미세유동 칩은 상기 유입부와 연결된 제1 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 제2 채널 영역에 배치되되 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제1 필터를 구비하고, 상기 제1 필터와 연결된 제3 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질이 구비되어 있는 핵산 분리부를 구비하고, 상기 핵산 분리부와 연결된 제4 채널 영역에 배치되되 상기 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제2 필터를 구비하는 것을 특징으로 하는, 핵산 추출 장치.The microfluidic chip has a heating unit disposed in a first channel region connected to the inlet, and disposed in a second channel region connected to the heating unit, and having a first filter through which a material having a size corresponding to a nucleic acid can pass therethrough. And a nucleic acid separation unit disposed in a third channel region connected to the first filter and having a nucleic acid binding material capable of specifically binding to the nucleic acid, and disposed in a fourth channel region connected to the nucleic acid separation unit. And a second filter capable of passing a substance of a size corresponding to the nucleic acid.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 미세유동 칩은 상기 유입부와 연결된 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질이 구비되어 있는 핵산 분리부를 구비하는 것을 특징으로 하는, 핵산 추출 장치.The microfluidic chip has a heating unit disposed in a channel region connected to the inlet unit, and a nucleic acid separation unit including a nucleic acid binding material disposed in the channel region connected to the heating unit and specifically capable of specifically binding to the nucleic acid. Characterized in that, the nucleic acid extracting device.
  10. 제4항에 있어서,The method of claim 4, wherein
    상기 미세유동 칩은 상기 유입부와 연결된 채널 영역에 가열부가 배치되되, 상기 가열부와 연결된 채널 영역에 배치되되 상기 핵산과 특이적으로 결합할 수 있는 핵산 결합 물질이 구비되어 있는 핵산 분리부를 구비하고, 상기 핵산 분리부와 연결된 채널 영역에 배치되되 상기 핵산에 상응하는 크기의 물질을 통과시킬 수 있는 제2 필터를 구비하는 것을 특징으로 하는, 핵산 추출 장치.The microfluidic chip is provided with a nucleic acid separation unit which is disposed in the channel region connected to the inlet, the nucleic acid binding material is disposed in the channel region connected to the heating unit and is provided with a nucleic acid binding material capable of specifically binding to the nucleic acid. And a second filter disposed in a channel region connected to the nucleic acid separation unit and capable of passing a material having a size corresponding to the nucleic acid.
  11. 제4항에 따른 핵산 추출 장치를 제공하는 단계;Providing a nucleic acid extracting apparatus according to claim 4;
    생물학적 시료 또는 시약을 상기 다-채널 액체 분배 장치 및 유체 전달 수단을 통해 상기 핵산 추출용 미세유동 칩에 주입하는 단계; 및Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means; And
    상기 핵산 추출용 미세유동 칩을 구동하여 상기 생물학적 시료로부터 핵산을 추출하는 단계;Extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip;
    를 포함하는, 핵산 추출 방법.Including, nucleic acid extraction method.
  12. 제5항에 따른 핵산 추출 장치를 제공하는 단계;Providing a nucleic acid extracting apparatus according to claim 5;
    생물학적 시료 또는 시약을 상기 다-채널 액체 분배 장치 및 유체 전달 수단을 통해 상기 핵산 추출용 미세유동 칩에 주입하는 단계;Injecting a biological sample or reagent into said nucleic acid extraction microfluidic chip through said multi-channel liquid dispensing device and fluid delivery means;
    상기 핵산 추출용 미세유동 칩을 구동하여 상기 생물학적 시료로부터 핵산을 추출하는 단계; 및Extracting nucleic acids from the biological sample by driving the nucleic acid extracting microfluidic chip; And
    상기 핵산 추출 산물을 상기 액체 저장 용기의 액체 저장 챔버에 저장하는 단계;Storing the nucleic acid extract product in a liquid storage chamber of the liquid storage container;
    를 포함하는, 핵산 추출 방법.Including, nucleic acid extraction method.
PCT/KR2013/004775 2012-05-30 2013-05-30 Multichannel device for distributing fluid, apparatus for extracting nucleic acid comprising same, and method for extracting nucleic acid by using same WO2013180494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0057267 2012-05-30
KR20120057267 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013180494A1 true WO2013180494A1 (en) 2013-12-05

Family

ID=49673621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004775 WO2013180494A1 (en) 2012-05-30 2013-05-30 Multichannel device for distributing fluid, apparatus for extracting nucleic acid comprising same, and method for extracting nucleic acid by using same

Country Status (2)

Country Link
KR (1) KR20130135111A (en)
WO (1) WO2013180494A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108212230A (en) * 2017-12-22 2018-06-29 昆明理工大学 A kind of drop formation device and method based on micro-valve control
CN108265003A (en) * 2016-12-30 2018-07-10 广州康昕瑞基因健康科技有限公司 Multichannel gene sequencing reaction cell and multichannel gene sequencing reaction device
WO2023124437A1 (en) * 2021-12-27 2023-07-06 Tcl科技集团股份有限公司 Microfluidic chip, micro-reaction system, and quantum dot preparation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068663A1 (en) * 2014-10-30 2016-05-06 이화여자대학교 산학협력단 Microfluidic device for detecting target gene, method for manufacturing same, and method for detecting using same
KR101976117B1 (en) * 2016-01-29 2019-05-07 이화여자대학교 산학협력단 Microfluidic device for detection of a target gene mutation, and method to improve the efficacy of detection of a microfluidic device for detection of target gene
KR101690455B1 (en) 2016-03-16 2017-01-10 한국기계연구원 Filters for capturing target cells and collecting method of using the same
KR102193197B1 (en) * 2019-09-30 2020-12-18 아주대학교산학협력단 Automatic nucleic acid detection device using urine
KR102433694B1 (en) * 2020-07-24 2022-08-19 고려대학교 산학협력단 Micro-fluidic apparatus for detecting nucleic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890493B1 (en) * 1999-03-03 2005-05-10 Symyx Technologies, Inc. Methods and apparatus for fluid distribution in microfluidic systems
US20070280856A1 (en) * 2006-06-02 2007-12-06 Applera Corporation Devices and Methods for Controlling Bubble Formation in Microfluidic Devices
KR20090020086A (en) * 2007-08-22 2009-02-26 삼성전자주식회사 Centrifugal force-based disk type microfluidic device for blood chemistry analysis
US20100184928A1 (en) * 2007-06-05 2010-07-22 Eugenia Kumacheva Multiple continuous microfluidic reactors for the scaled up synthesis of gel or polymer particles
WO2010118637A1 (en) * 2009-04-14 2010-10-21 Huang Yanyi Microfluidic distribution device, production method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890493B1 (en) * 1999-03-03 2005-05-10 Symyx Technologies, Inc. Methods and apparatus for fluid distribution in microfluidic systems
US20070280856A1 (en) * 2006-06-02 2007-12-06 Applera Corporation Devices and Methods for Controlling Bubble Formation in Microfluidic Devices
US20100184928A1 (en) * 2007-06-05 2010-07-22 Eugenia Kumacheva Multiple continuous microfluidic reactors for the scaled up synthesis of gel or polymer particles
KR20090020086A (en) * 2007-08-22 2009-02-26 삼성전자주식회사 Centrifugal force-based disk type microfluidic device for blood chemistry analysis
WO2010118637A1 (en) * 2009-04-14 2010-10-21 Huang Yanyi Microfluidic distribution device, production method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108265003A (en) * 2016-12-30 2018-07-10 广州康昕瑞基因健康科技有限公司 Multichannel gene sequencing reaction cell and multichannel gene sequencing reaction device
CN108212230A (en) * 2017-12-22 2018-06-29 昆明理工大学 A kind of drop formation device and method based on micro-valve control
CN108212230B (en) * 2017-12-22 2020-11-17 昆明理工大学 Droplet generation device and method based on micro-valve control
WO2023124437A1 (en) * 2021-12-27 2023-07-06 Tcl科技集团股份有限公司 Microfluidic chip, micro-reaction system, and quantum dot preparation method

Also Published As

Publication number Publication date
KR20130135111A (en) 2013-12-10

Similar Documents

Publication Publication Date Title
WO2013180494A1 (en) Multichannel device for distributing fluid, apparatus for extracting nucleic acid comprising same, and method for extracting nucleic acid by using same
WO2013180495A1 (en) Multichannel device for downwardly injecting fluid, apparatus for extracting nucleic acid comprising same, and method for extracting nucleic acid by using same
WO2014112671A1 (en) Microfluidic chip for extracting nucleic acids, device for extracting nucleic acids comprising same, and method for extracting nucleic acids using same
JP6698770B2 (en) Single-Structure Biochip and Manufacturing Method Providing Process from Sample Introduction to Results Output
US8404440B2 (en) Device for carrying out cell lysis and nucleic acid extraction
US20140179909A1 (en) Microfluidic device for nucleic acid extraction and fractionation
KR20110030415A (en) Universal sample preparation system and use in an integrated analysis system
KR101406347B1 (en) Microfluidic chip for extracting nucleic acid, device comprising the same, and method for extracting nucleic acid using the same
WO2013118990A1 (en) Ultra-high-speed nucleic acid extracting apparatus and nucleic acid extracting method using same
US10590378B2 (en) Cell separation chip and method for separating cells using same
WO2017116037A1 (en) Chip structure for multiple molecular diagnoses
WO2014035164A1 (en) Pcr chip comprising thermal block in which heater units are repeatedly arranged for detecting electrochemical signals, pcr device comprising same, and real-time pcr method using pcr device
CN116355737A (en) Microfluidic chip and nucleic acid detector
US20220016629A1 (en) Systems and methods for on-chip analysis of nucleic acids and for multiplexed analysis of cells
WO2014017821A1 (en) Real-time pcr device for detecting electrochemical signals comprising heating block in which heater units are repeatedly disposed, and real-time pcr method using same
WO2023120807A1 (en) Nucleic acid extraction method using porous ion charge crystal
JP2024054416A (en) Isotachophoresis for purification of nucleic acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13798035

Country of ref document: EP

Kind code of ref document: A1