WO2013180162A1 - Thermoplastic resin foam and foam-based sealing material - Google Patents

Thermoplastic resin foam and foam-based sealing material Download PDF

Info

Publication number
WO2013180162A1
WO2013180162A1 PCT/JP2013/064872 JP2013064872W WO2013180162A1 WO 2013180162 A1 WO2013180162 A1 WO 2013180162A1 JP 2013064872 W JP2013064872 W JP 2013064872W WO 2013180162 A1 WO2013180162 A1 WO 2013180162A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin foam
foam
breaking strength
gas
Prior art date
Application number
PCT/JP2013/064872
Other languages
French (fr)
Japanese (ja)
Inventor
充宏 金田
齋藤 誠
逸大 畑中
和通 加藤
清明 児玉
廣諭 安田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201380028080.5A priority Critical patent/CN104364303A/en
Priority to KR1020147023642A priority patent/KR102174106B1/en
Publication of WO2013180162A1 publication Critical patent/WO2013180162A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/06Flexible foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes

Definitions

  • the present invention relates to a thermoplastic resin foam and a foam sealing material.
  • resin foam has been used as a gasket material for mobile phones and portable information terminals, or as a packing sheet or tape, a sealing tape, a protective sheet, or a tape.
  • the resin foam include a low-foam urethane resin foam of fine cells having an open-cell structure, a compression-molded high-foam urethane, and a polyethylene resin foam having closed cells and an expansion ratio of about 30 times, density A polyolefin-based resin foam (see Patent Documents 1 and 2) having a weight of 0.2 g / cm 3 or less has been proposed. And it is manufactured in the form of a sheet or tape by stretching or extruding a resin whose surface shape is controlled.
  • Such a resin foam is usually applied by being processed into a predetermined shape and fixed at a predetermined site.
  • the resin foam since the resin foam is flexible and easily broken, it can be used during processing or fixing. In some cases, breakage occurred unintentionally.
  • a large load is applied to the cutting or shearing in a predetermined direction, and at the time of the cutting or shearing, it extends in an unintended direction and the blade breaks, or it becomes difficult to form a trigger for the breakage due to the extension, and the hand cutting property is reduced. In some cases, it was not completely satisfactory with respect to the hand cutting property during processing.
  • the present invention includes the following inventions.
  • a resin foam containing a thermoplastic resin The foam has a maximum breaking strength Smax of 0.1 MPa to 3 MPa, and a ratio Smax / Smin between the maximum breaking strength Smax and a breaking strength Smin in a direction perpendicular to the direction showing the maximum breaking strength is 1.5 to 6
  • the resin foam characterized by being.
  • the elongation at break SSmax in the direction showing the maximum breaking strength is 200% or less
  • the resin foam according to (1), wherein a breaking elongation ratio SSmax / SSmin between a breaking elongation SSmax in the direction showing the maximum breaking strength and a breaking elongation SSmin in a direction perpendicular to the direction showing the maximum breaking strength is 1.5 to 6. body.
  • (3) The ratio Cmax / Cmin between the bubble size Cmax in the direction showing the maximum breaking strength and the bubble size Cmin in the direction orthogonal to the direction showing the maximum breaking strength is 1.2 to 5 (1) or (2 )
  • the resin foam according to any one of (1) to (3) which has an apparent density of 0.01 to 0.2 g / cm 3 .
  • the resin foam according to any one of (1) to (4) which is obtained by decompression treatment of a thermoplastic resin composition impregnated with a high-pressure gas.
  • the resin foam according to (5), wherein the gas is an inert gas.
  • the resin foam according to (6), wherein the inert gas is carbon dioxide or nitrogen.
  • the resin foam according to any one of (5) to (7), wherein the gas is a gas in a supercritical state.
  • a foamed sealing material comprising the resin foam according to any one of (1) to (8) above.
  • the foamed sealing material according to (9), comprising an adhesive layer disposed on one or both surfaces of the foam.
  • (11) The foamed sealing material according to (10), wherein the adhesive layer is disposed on the surface of the resin foam via a film layer.
  • the resin foam of the present invention is a foam containing a thermoplastic resin, and can be obtained by foaming or molding a thermoplastic resin composition.
  • the shape of the resin foam of this invention is not specifically limited, For example, any forms, such as a lump shape, a sheet form, and a film form, may be sufficient.
  • the resin foam of the present invention has a maximum breaking strength Smax of 0.1 MPa to 3 MPa, preferably 0.1 MPa to 2 MPa, more preferably 0.2 MPa to 2 MPa, and further preferably 0.3 MPa to 2 MPa.
  • the maximum breaking strength Smax means the largest breaking strength among the breaking strengths in various directions of the resin foam.
  • the breaking strength in an arbitrary direction (for example, direction A) of the resin foam is measured, and further, a center X is set on the axis in the direction A, and this center The shaft is rotated by 10 ° with respect to X, and the breaking strength in each direction indicated by the shaft is measured (18 directions in total).
  • the rupture strength in the direction with the largest rupture strength (hereinafter sometimes referred to as “maximum rupture strength direction”) is selected, and this is set as the maximum rupture strength Smax.
  • maximum rupture strength direction the rupture strength in the direction with the largest rupture strength
  • the direction showing the maximum breaking strength is usually the MD direction (flow direction).
  • the ratio Smax / Smin between the maximum breaking strength Smax described above and the breaking strength Smin in the direction perpendicular to the maximum breaking strength direction is 1.5 to 6, preferably 1.8. -6, more preferably 2-6, still more preferably 2-5.
  • the resin foam of the present invention can be used as an easy-open tape that requires anisotropy, a sheet excellent in on-site workability, and the like.
  • the resin foam of the present invention further has a breaking elongation SSmax in the maximum breaking strength direction of preferably 200% or less, more preferably 180% or less, and even more preferably 160% or less. Moreover, Preferably it is 100% or more, More preferably, it is 105% or more. By having such elongation at break, elongation at the time of processing or fixing can be prevented. In addition, it is possible to effectively prevent breakage due to elongation of the tape when used as a tape.
  • the elongation of the resin foam can be evaluated as extensibility, which is an elongation rate when a predetermined load is applied.
  • the extensibility at a load of 0.5 N is 5.0% or less, it is difficult to elongate and it can be determined that it is good. If the extensibility at a load of 1.0 N is 10.0% or less, it is difficult to elongate, and it can be judged as good.
  • the spreadability can be measured by the method described in Examples described later.
  • the resin foam of the present invention further has a breaking elongation ratio SSmax / SSmin between the breaking elongation SSmax in the maximum breaking strength direction and the breaking elongation SSmin in the direction perpendicular to the maximum breaking strength direction, preferably 1.5 to 6, More preferably, it is 2 to 6, and further preferably 2.5 to 6.
  • the resin foam of the present invention is, for example, a closed cell structure or a semi-continuous semi-closed cell structure (a cell structure in which a closed cell structure and a semi-continuous semi-closed cell structure are mixed, and the ratio is particularly (It is not limited).
  • a cell structure in which the closed cell ratio of the resin foam is 50% or less, preferably 40% or less, more preferably 35% or less can be mentioned. With this range, air can easily escape from the resin during compression deformation when an impact is applied, and sufficient shock absorption can be exhibited.
  • the closed cell ratio of the resin foam is 10% or more, preferably 15% or more, more preferably 20% or more. By this range, the passage of fine particles such as dust can be prevented, and the dustproofness can be improved.
  • the closed cell ratio can be measured, for example, by the method described in the examples.
  • the ratio Cmax / Cmin between the bubble size Cmax in the maximum breaking strength direction and the bubble size Cmin in the direction perpendicular to the maximum breaking strength direction is preferably 1.2 to 5, more preferably Is from 1.2 to 4, more preferably from 1.2 to 3.5, even more preferably from 1.3 to 3.5.
  • the bubble size is an average value of 10 bubble diameters measured by the following method. First, cut in the direction perpendicular to the main surface of the resin foam (thickness direction) with a cutter parallel to the direction of the maximum breaking strength of the resin foam and the direction orthogonal to this direction, creating a smooth cross section To do. Next, these cross sections are observed with a Keyence microscope (for example, trade name “VHX-600” manufactured by Keyence Corporation). Then, 10 points are extracted from those having a large bubble size within the measurement range of 3000 ⁇ m ⁇ 2500 ⁇ m, the area of the bubbles is converted into a diameter, and an average value thereof is obtained to obtain the bubble diameter.
  • a Keyence microscope for example, trade name “VHX-600” manufactured by Keyence Corporation
  • the cell diameter is preferably 50 to 300 ⁇ m, more preferably 70 to 300 ⁇ m, more preferably 70 ⁇ m, in a vertical direction (thickness direction) cut surface parallel to the maximum breaking strength direction. Is from 100 to 300 ⁇ m, more preferably from 100 to 250 ⁇ m. Further, the bubble diameter in the vertical (thickness direction) cut surface parallel to the direction perpendicular to the maximum breaking strength direction is preferably 10 to 200 ⁇ m, more preferably 30 to 200 ⁇ m, and further preferably 50 to 200 ⁇ m. More preferably 80 to 180 ⁇ m.
  • the cell diameter of the foam within this range, anisotropy in the intended direction can be further realized, and good workability and hand cutting properties are ensured.
  • the cut surface has less unevenness and can be made a sharp surface.
  • the resin foam of the present invention further has an apparent density of preferably 0.01 to 0.20 g / cm 3 , more preferably 0.01 to 0.15 g / cm 3 , and still more preferably 0.01 to 0.00. It is 10 g / cm 3 , more preferably 0.02 to 0.08 g / cm 3 .
  • apparent density is within this range, sufficient strength can be secured, good workability (particularly punching workability) can be obtained, and at the same time, flexibility can be secured.
  • the resin foam of the present invention has a tensile modulus of preferably 5.0 to 14.0 MPa, more preferably 5.5 to 13.5 MPa, and still more preferably 6.0 to 13.0 MPa. By setting it as such a range, when the resin foam is pulled, it is possible to effectively prevent the resin foam from extending and breaking in an unintended direction without causing plastic deformation. Thereby, the spreadability is low, and excellent workability can be exhibited.
  • a tensile elasticity modulus is calculated
  • the resin foam of the present invention is formed of a thermoplastic resin or a resin composition containing a thermoplastic resin.
  • the thermoplastic resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, a copolymer of ethylene and propylene, ethylene or propylene and another ⁇ -olefin (for example, butene -1, pentene-1, hexene-1, 4-methylpentene-1, etc.), ethylene and other ethylenically unsaturated monomers (for example, vinyl acetate, acrylic acid, acrylic ester, methacrylic) Polyolefin resins such as copolymers with acid, methacrylic acid ester, vinyl alcohol, etc.); styrene resins such as polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin); 6-nylon, 66-nylon, 12 -Polyamide
  • thermoplastic resin a polyolefin-based resin is preferable from the viewpoints of characteristics such as mechanical strength, heat resistance, and chemical resistance, and molding surfaces such as easy melt thermoforming.
  • Preferred examples of the polyolefin resin include a resin having a broad molecular weight distribution and having a shoulder on the high molecular weight side, a micro-crosslinking type resin (a slightly cross-linked type resin), a long-chain branched type resin, and the like.
  • the thermoplastic resin includes a rubber component and / or a thermoplastic elastomer component. Since the rubber component and the thermoplastic elastomer component have, for example, a glass transition temperature of room temperature or lower (for example, 20 ° C. or lower), flexibility and shape followability when a resin foam is obtained are extremely good.
  • the rubber component and the thermoplastic elastomer component are not particularly limited as long as they have rubber elasticity and can be foamed.
  • natural or natural rubber polyisobutylene, polyisoprene, chloroprene rubber, butyl rubber, nitrile butyl rubber, or the like Synthetic rubbers; Ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-vinyl acetate copolymers, polybutenes, olefinic elastomers such as chlorinated polyethylene; styrene-butadiene-styrene copolymers, styrene-isoprene -Styrene elastomers such as styrene copolymers and hydrogenated products thereof; polyester elastomers; polyamide elastomers; various thermoplastic elastomers such as polyurethane elastomers. You may use these individually or in combination
  • an olefin elastomer is preferable as the rubber component and / or the thermoplastic elastomer component.
  • the olefin elastomer has good compatibility with the polyolefin resin exemplified as the thermoplastic resin.
  • the olefin elastomer may be of a type having a structure in which the resin component A (olefin resin component A) and the rubber component B are microphase separated.
  • a type in which resin component A and rubber component B are physically dispersed a type in which resin component A and rubber component B are dynamically heat-treated in the presence of a crosslinking agent (dynamic crosslinkable thermoplastic elastomer, TPV).
  • TPV dynamic crosslinkable thermoplastic elastomer
  • a dynamically crosslinked thermoplastic olefin elastomer TPV
  • TPO non-crosslinked thermoplastic olefin elastomer
  • the dynamically crosslinked thermoplastic olefin elastomer is a mixture containing the resin component A (olefin resin component A) forming a matrix and the rubber component B forming a domain, in the presence of a crosslinking agent. It is a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in the resin component A, which is a matrix (sea phase), obtained by dynamic heat treatment.
  • thermoplastic olefin elastomer examples include, for example, JP 2000-007858 A, JP 2006-052277 A, JP 2012-072306 A, JP 2012-056768 A, JP-A-2010-241897, JP-A-2009-0697969, RE-list 03/002654, etc., “Zeotherm” (manufactured by Zeon Corporation), “Thermorun” (manufactured by Mitsubishi Chemical Corporation), “Surlink” 3245D "(manufactured by Toyobo Co., Ltd.) and the like.
  • the content is not particularly limited.
  • the ratio of the thermoplastic resin to the rubber component and / or the thermoplastic elastomer component in the resin constituting the resin foam of the present invention is preferably 70/30 to 30/70, more preferably on a weight basis. Is 60/40 to 30/70, even more preferably 50/50 to 30/70, even more preferably 60/40 to 10/90, 58/42 to 10/90, 55/45 to 10/90.
  • the ratio of the rubber component and / or the thermoplastic elastomer component is too small, the cushioning property of the resin foam tends to be lowered or the recoverability after compression may be lowered.
  • the rubber component and / or the thermoplastic elastomer component If the ratio is too large, outgassing tends to occur during foam formation, and it may be difficult to obtain a highly foamable foam.
  • the resin foam of the present invention in order to realize flexibility at high compression and shape recovery after compression, that is, to enable large deformation and prevent plastic deformation, so-called rubber elasticity is used. It is suitable that it is made of an excellent material. From that viewpoint, it is preferable that the resin foam of the present invention includes a rubber component and / or a thermoplastic elastomer component together with the above-described thermoplastic resin as a constituent resin.
  • the resin foam of the present invention preferably further contains a nucleating agent.
  • the nucleating agent is contained, the cell diameter can be easily adjusted, and a foam having an appropriate flexibility and excellent cutting processability can be obtained.
  • nucleating agent examples include oxides and composite oxides such as talc, silica, alumina, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, zinc oxide, titanium oxide, aluminum hydroxide, magnesium hydroxide, mica, and montmorillonite.
  • a nucleating agent is used individually or in combination of 2 or more types.
  • the average particle size of the nucleating agent is not particularly limited, but is preferably 0.3 to 1.5 ⁇ m, more preferably 0.4 to 1.2 ⁇ m. By setting it as such an average particle diameter, sufficient function as a nucleating agent can be exhibited. In addition, a high expansion ratio can be realized without the nucleating agent breaking through the cell walls.
  • This average particle diameter can be measured by a laser diffraction particle size distribution measuring method. For example, it can be measured (AUTO measurement) from a dispersion dilution of a sample by “MICROTRAC MT-3000” manufactured by LEEDS & NORTHRUP INSTRUMENTS.
  • the content when such a nucleating agent is included is not particularly limited, and is preferably 0.5 to 150 parts by weight, more preferably 100 parts by weight of the constituent resin. 2 to 140 parts by weight, still more preferably 3 to 130 parts by weight.
  • the resin foam of this invention is comprised with a thermoplastic resin and is easy to burn, it is preferable to contain a flame retardant.
  • a flame retardant a non-halogen-nonantimony inorganic flame retardant is preferable.
  • inorganic flame retardants include metal hydroxides and hydrates of metal compounds. More specifically, aluminum hydroxide; magnesium hydroxide; hydrates of magnesium oxide and nickel oxide; hydrates of magnesium oxide and zinc oxide, and the like. Among these, magnesium hydroxide is preferable.
  • the hydrated metal compound may be surface-treated.
  • a flame retardant is used individually or in combination of 2 or more types.
  • the content when a flame retardant is contained is preferably 5 to 70 parts by weight, more preferably 25 to 65 parts by weight, with respect to 100 parts by weight of the constituent resin.
  • the resin foam of the present invention further has a polar functional group, a melting point of 50 to 150 ° C., and contains at least one aliphatic compound selected from fatty acids, fatty acid amides, and fatty acid metal soaps. Also good. Of these, fatty acids and fatty acid amides are preferred.
  • Such an aliphatic compound When such an aliphatic compound is contained in the resin foam of the present invention, the cell structure is less likely to collapse during processing (particularly punching processing), shape recovery is improved, and workability (particularly, (Punching workability) is further improved.
  • Such an aliphatic compound has high crystallinity, and when added to the thermoplastic resin (especially polyolefin resin), a strong film is formed on the resin surface, and the wall surfaces of the bubbles forming the cell structure block each other. This is presumed to have a function to prevent the above.
  • Such aliphatic compounds particularly those containing a highly polar functional group, are difficult to be compatible with polyolefin resins, so that they easily precipitate on the surface of the resin foam and exhibit the above effects.
  • Cheap is difficult to be compatible with polyolefin resins, so that they easily precipitate on the surface of the resin foam and exhibit the above effects.
  • the melting point of the aliphatic compound is preferably 50 to 50 from the viewpoints of lowering the molding temperature when foam-molding the resin composition, suppressing deterioration of the resin (particularly polyolefin resin), imparting sublimation resistance, and the like. 150 ° C., more preferably 70 to 100 ° C.
  • the fatty acid preferably has about 18 to 38 carbon atoms, more preferably about 18 to 22 carbon atoms.
  • Specific examples include stearic acid, behenic acid, 12-hydroxystearic acid and the like. Of these, behenic acid is particularly preferable.
  • the fatty acid amide is preferably a fatty acid amide having about 18 to 38 carbon atoms in the fatty acid moiety, more preferably about 18 to 22 carbon atoms, and may be either monoamide or bisamide. Specific examples include stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, and ethylene bis stearic acid amide. Of these, erucic acid amide is particularly preferable.
  • fatty acid metal soap examples include aluminum, calcium, magnesium, lithium, barium, zinc and lead salts of the above fatty acids.
  • the content when such an aliphatic compound is contained is not particularly limited, and is preferably 1 to 5 parts by weight, more preferably 100 parts by weight of the constituent resin.
  • the amount is 1.5 to 3.5 parts by weight, more preferably 2 to 3 parts by weight.
  • the resin foam of the present invention may contain a lubricant. Thereby, while improving the fluidity
  • a lubricant is used individually or in combination of 2 or more types.
  • the lubricant is not particularly limited.
  • hydrocarbon lubricants such as liquid paraffin, paraffin wax, microwax and polyethylene wax; butyl stearate, monoglyceride stearate, pentaerythritol tetrastearate, hydrogenated castor oil, stearyl stearate And ester lubricants.
  • content of a lubricant can be suitably selected in the range which does not impair the effect of this invention.
  • the resin foam of the present invention may contain other additives as necessary.
  • additives include anti-shrinkage agents, anti-aging agents, heat stabilizers, light stabilizers such as HALS, weathering agents, metal deactivators, ultraviolet absorbers, light stabilizers, copper damage inhibitors, and the like.
  • Stabilizers antibacterial agents, fungicides, dispersants, tackifiers, colorants such as carbon black and organic pigments, fillers, and the like.
  • a composition containing an additive for example, a colorant such as carbon black, a softener, etc.
  • additives are used alone or in combination of two or more. The content of these additives can be appropriately selected within a range that does not impair the effects of the present invention.
  • the resin foam of the present invention is obtained by mixing or kneading a thermoplastic resin (including a rubber component and / or a thermoplastic elastomer component), and optionally an additive such as a nucleating agent, an aliphatic compound, or a lubricant.
  • a thermoplastic resin including a rubber component and / or a thermoplastic elastomer component
  • an additive such as a nucleating agent, an aliphatic compound, or a lubricant.
  • the obtained resin composition it can be produced by foaming or molding the resin composition.
  • the anisotropic structure of bubbles can be formed by stretching.
  • the foaming method used when foaming or molding the resin composition is not particularly limited, and examples thereof include commonly used methods such as a physical method and a chemical method.
  • a general physical method is a method of forming bubbles by dispersing a low boiling point liquid (foaming agent) such as chlorofluorocarbons or hydrocarbons in a resin, and then heating to volatilize the foaming agent.
  • a general chemical method is a method in which bubbles are formed by a gas generated by thermal decomposition of a compound (foaming agent) added to a resin.
  • a method using a high-pressure gas as a foaming agent is preferable because a foam having a small cell diameter and a high cell density can be easily obtained.
  • a method using a high-pressure inert gas as a foaming agent is preferable.
  • a method of using a high-pressure gas as a foaming agent a method in which a resin composition is impregnated with a high-pressure gas and then subjected to a pressure reducing step is preferable.
  • an unfoamed molded article made of a resin composition And a method of forming through a step of depressurizing after impregnating with a high-pressure gas, a method of forming a molten resin composition by impregnating the gas under a pressurized condition, and then subjecting it to molding with reduced pressure. It is done.
  • the inert gas is not particularly limited as long as it is inert and can be impregnated into the resin that is the material of the resin foam, and examples thereof include carbon dioxide, nitrogen, and air. These gases may be mixed and used. Of these, carbon dioxide or nitrogen is preferred because the amount of impregnation into the resin is large and the impregnation rate is high.
  • the high-pressure gas (particularly inert gas, and further carbon dioxide) is preferably a gas in a supercritical state.
  • the solubility of the gas in the resin is increased and high concentration can be mixed.
  • the generation of bubble nuclei increases, and the density of bubbles formed by the growth of the bubble nuclei has a porosity. Even if they are the same, they become larger, so that fine bubbles can be obtained.
  • carbon dioxide has a critical temperature of 31 ° C. and a critical pressure of 7.4 MPa.
  • an unfoamed resin molded body (unfoamed resin molded article) is obtained by molding a resin composition into an appropriate shape such as a sheet shape in advance. And a non-foamed resin molded article is impregnated with a high-pressure gas and foamed by releasing the pressure.
  • the continuous method which knead
  • the resin composition is an extruder such as a single screw extruder or a twin screw extruder. Molding method using a kneading machine equipped with blades such as rollers, cams, kneaders, Banbury molds, etc., and then kneading the resin composition to a predetermined thickness using a hot plate press or the like And a method of molding the resin composition using an injection molding machine.
  • the unfoamed resin molded body can be formed by other molding methods besides extrusion molding, press molding, and injection molding.
  • the shape of the unfoamed resin molded body is not particularly limited, and various shapes can be selected depending on the application, and examples thereof include a sheet shape, a roll shape, a plate shape, and a lump shape.
  • the resin composition can be molded by an appropriate method that can obtain an unfoamed resin molded body having a desired shape and thickness.
  • the obtained unfoamed resin molded product is placed in a pressure vessel (high pressure vessel) and injected with high pressure gas (especially inert gas or even carbon dioxide) ( Gas) impregnating a non-foamed resin molded body with a high-pressure gas, releasing the pressure when the sufficiently high-pressure gas is impregnated (usually up to atmospheric pressure), and creating bubble nuclei in the resin Bubbles are formed in the resin through a decompression step to be generated, and in some cases (if necessary), a heating step in which bubble nuclei are grown by heating. Bubble nuclei may be grown at room temperature without providing a heating step.
  • high pressure gas especially inert gas or even carbon dioxide
  • the resin composition is kneaded using an extruder such as a single screw extruder or a twin screw extruder while a high pressure gas (especially an inert gas, Is injected (introduced) carbon dioxide), and the pressure is released by extruding the resin composition through a kneading impregnation step for impregnating the resin composition with a sufficiently high pressure gas, a die provided at the tip of the extruder ( Usually, up to atmospheric pressure), foaming or molding may be performed by a molding decompression step in which molding and foaming are performed simultaneously.
  • an extruder such as a single screw extruder or a twin screw extruder while a high pressure gas (especially an inert gas, Is injected (introduced) carbon dioxide), and the pressure is released by extruding the resin composition through a kneading impregnation step for impregnating the resin composition with a sufficiently high pressure gas, a die provided at the tip of the ex
  • an injection molding machine or the like can be used in addition to the extruder.
  • a heating step for growing bubbles by heating may be provided as necessary.
  • the shape may be fixed rapidly by cooling with cold water or the like.
  • the introduction of high-pressure gas may be performed continuously or discontinuously.
  • known methods such as a water bath, an oil bath, a hot roll, a hot air oven, a far infrared ray, a near infrared ray, and a microwave can be employed.
  • the nip roll 12 is melted or semi-molten before the resin cools and solidifies.
  • FIG. 3B when the resin is extruded from the slit-shaped T die or the slit die 10 into a sheet shape, the resin sheet 11 is held on the roll 13 before the resin cools and solidifies.
  • 3C as shown in FIG. 3C, a method of holding the resin sheet 11 a plurality of times so that the resin sheet 11 does not slip; and as shown in FIG.
  • the molding speed the ratio of the resin extrusion speed and the molding speed is 1:
  • the ratio is preferably 1.2 to 1: 5.
  • the molding speed is not particularly limited, and is preferably in the range of 2 m / min to 100 m / min in consideration of the ability to stably mold the resin sheet and production efficiency.
  • the resin sheet is nipped by a roll or a belt, it is preferable to nip by applying pressure so that the formed foam is not crushed in the thickness direction.
  • the mixing amount of the gas at the time of foaming or molding the resin composition is not particularly limited. For example, it is preferably 2 to 10% by weight, more preferably 2.5 to 2.5%, based on the total amount of the resin components in the resin composition. 8% by weight, still more preferably 3-6% by weight. By setting it as this range, a foam with a high foaming rate can be obtained, without gas separating in a molding machine.
  • the pressure when impregnating the unfoamed resin molded product or resin composition with the gas impregnation step in the batch method or the kneading impregnation step in the continuous method when foaming or molding the resin composition depends on the type of gas and the operability.
  • an inert gas particularly carbon dioxide
  • it is preferably 6 MPa or more (for example, 6 to 100 MPa), more preferably 8 MPa or more (for example, 8 to 8). 100 MPa).
  • By setting such a pressure it is possible to moderately control the bubble growth during foaming, to reduce the cell diameter, and to provide a good dustproof effect. This is because the amount of gas impregnation becomes an appropriate amount, and the number of bubble nuclei formed can be adjusted to an appropriate number by controlling the bubble nucleus formation rate.
  • the cell diameter and the bubble density can be easily controlled.
  • the temperature when impregnating the non-foamed resin molded product or resin composition with the high-pressure gas is the gas or resin used. Depending on the type, etc., a wide range can be selected. Considering operability and the like, for example, the temperature is 10 to 350 ° C.
  • the impregnation temperature when impregnating a sheet-like unfoamed resin molded article with high-pressure gas is preferably 10 to 250 ° C, more preferably 40 to 240 ° C, and further preferably 60 to 230 ° C.
  • the temperature at which the high-pressure gas is injected into the resin composition and kneaded is preferably 60 to 350 ° C., more preferably 100 to 320 ° C., and still more preferably 150 to 300 ° C.
  • the temperature during impregnation is preferably 32 ° C. or higher (particularly 40 ° C. or higher) in order to maintain a supercritical state.
  • the pressure reduction rate in the pressure reduction step when foaming or molding the resin composition in a batch method or a continuous method is not particularly limited, and is preferably 5 to 300 MPa / second in order to obtain uniform fine bubbles.
  • the heating temperature in the heating step is, for example, 40 to 250 ° C. (preferably 60 to 250 ° C.).
  • a highly foamed resin foam can be produced, and a thick resin foam can be produced.
  • the gap of the die attached to the tip of the extruder is as narrow as possible (usually 0.1 to 1). About 0 mm). Therefore, in order to obtain a thick resin foam, the resin composition extruded through a narrow gap is foamed at a high magnification.
  • the thickness of the formed resin foam is limited to a thin one (for example, 0.5 to 2.0 mm).
  • a high-pressure gas it is possible to finally obtain a resin foam having a thickness of 0.50 to 5.00 mm continuously.
  • thermoplastic resin elastomer component
  • the characteristics such as apparent density, breaking strength, breaking elongation, bubble size, hand tearability, for example, gas impregnation step
  • operating conditions such as temperature, pressure, and time in the kneading impregnation process, pressure reducing speed in the pressure reducing process or blade forming pressure reducing process, operating conditions such as temperature and pressure, heating temperature in the heating process after pressure reduction or molding pressure reduction, etc. are appropriately selected. It can also be adjusted by setting.
  • the resin foam of the present invention is obtained by impregnating a resin composition containing at least a nucleating agent and an aliphatic compound with a high-pressure gas (particularly an inert gas) in addition to a thermoplastic resin, It is preferably formed through a step of decompressing the product.
  • a resin composition containing at least a nucleating agent and an aliphatic compound with a high-pressure gas (particularly an inert gas) in addition to a thermoplastic resin
  • a high-pressure gas particularly an inert gas
  • it has a cell structure with a small average cell diameter, a low closed cell structure ratio, a high expansion ratio, good flexibility, and the cell structure is difficult to deform or compress, and strain recovery when pressed
  • the resin foam having excellent properties and processability can be easily obtained.
  • the resin foam of the present invention is obtained by impregnating a supercritical inert gas with a resin composition containing at least a nucleating agent having a particularly small average particle diameter and an aliphatic compound in addition to a thermoplastic resin. It is more preferable that the resin composition is formed through a step of decompressing and stretching the obtained resin foam.
  • the average cell diameter is extremely small, the cell structure has a low closed cell structure ratio, high foaming ratio, good flexibility, the cell structure is difficult to deform or compress, and distortion when pressed It is excellent in recoverability, can further suppress the nucleating agent from breaking through the cell wall, and furthermore, since the anisotropy is extremely high, it is possible to easily obtain a resin foam having better processability.
  • the resin foam of the present invention is a mixture of a thermoplastic resin and a rubber component and / or a thermoplastic elastomer component, the ratio of which is 70/30 to 30/70 on a weight basis,
  • the foam sealing material of this invention is a member containing the said resin foam.
  • a foaming sealing material is not specifically limited, A sheet form (a film form is included) is preferable.
  • the foamed sealing material may be configured only by a resin foam, or may be configured such that an adhesive layer, a base material layer, and the like are laminated on the resin foam.
  • the foamed sealing material of the present invention preferably has an adhesive layer.
  • the foamed sealing material of the present invention when it is a sheet-like foamed sealing material, it may have an adhesive layer on one side or both sides.
  • a processing mount can be provided on the foamed sealing material via the adhesive layer, and further, it can be fixed or temporarily fixed to the adherend.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited.
  • acrylic pressure-sensitive adhesive rubber-based pressure-sensitive adhesive (natural rubber-based pressure-sensitive adhesive, synthetic rubber-based pressure-sensitive adhesive, etc.), silicone-based pressure-sensitive adhesive, and polyester-based pressure-sensitive adhesive.
  • known pressure-sensitive adhesives such as urethane pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, and fluorine-based pressure-sensitive adhesives can be appropriately selected and used.
  • An adhesive can be used individually or in combination of 2 or more types.
  • the pressure-sensitive adhesive may be any type of pressure-sensitive adhesive such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, a hot-melt pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, and a solid-type pressure-sensitive adhesive.
  • an acrylic pressure-sensitive adhesive is preferable from the viewpoint of preventing contamination of the adherend.
  • the thickness of the adhesive layer is preferably 2 to 100 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thinner the adhesive layer the higher the effect of preventing the adhesion of dust and dirt at the end, and thus the thinner the adhesive layer, the better.
  • the pressure-sensitive adhesive layer may have any form of a single layer or a laminate, and may be foamable or non-foamable. Of these, a non-foaming pressure-sensitive adhesive layer is preferable.
  • the pressure-sensitive adhesive layer may be provided via another layer (lower layer).
  • a lower layer include other pressure-sensitive adhesive layers, intermediate layers, undercoat layers, base material layers (particularly film layers, nonwoven fabric layers, etc.) and the like.
  • the lower layer may be a foamable layer or a porous layer, but is preferably a non-foamable layer, more preferably a resin layer.
  • the adhesive layer may be protected by a release film (separator, for example, release paper, release film, etc.).
  • the foamed sealing material of the present invention contains the resin foam of the present invention, it has good dust resistance, particularly good dynamic dust resistance, and has flexibility to follow a minute clearance.
  • the foamed sealing material of the present invention may be processed so as to have a desired shape and thickness.
  • various shapes may be processed according to the device, equipment, casing, member, and the like used.
  • the foamed sealing material of the present invention is suitably used as a member used when various members or parts are attached (attached) to a predetermined site.
  • the foamed sealing material of the present invention is suitable as a member used when attaching (attaching) a component constituting an electric or electronic device to a predetermined site in an electric or electronic device.
  • the various members or parts that can be attached or mounted using the foamed member are not particularly limited, and examples thereof include various members or parts in electrical or electronic devices.
  • Examples of such a member or component for electric or electronic equipment include an image display member (display unit) (particularly a small image display member) mounted on an image display device such as a liquid crystal display, an electroluminescence display, or a plasma display. ), Optical members or optical components such as cameras and lenses (particularly small cameras and lenses) mounted on mobile communication devices such as so-called “mobile phones” and “portable information terminals”.
  • the foamed sealing material of the present invention is preferably used around the display unit such as an LCD (liquid crystal display) and the display unit such as an LCD (liquid crystal display) and a housing for the purpose of dust prevention, light shielding, buffering, and the like. What is inserted and used between a body (window part) is mentioned.
  • the foamed sealing material of the present invention is attached to such a member or part, it is preferably attached so as to close the clearance.
  • the clearance is not particularly limited, and is, for example, 0.05 to 0.5 mm. Degree.
  • the thermoplastic resin foam and foamed sealing material of the present invention will be described based on examples.
  • Example 1 As a resin composition, 35 parts by weight of polypropylene, 60 parts by weight of a thermoplastic elastomer composition, 5 parts by weight of lubricant, Ten parts by weight of the nucleating agent and 2 parts by weight of erucic acid amide (melting point: 80 to 85 ° C.) were kneaded at a temperature of 200 ° C. with a twin-screw kneader.
  • polypropylene is a resin having a melt flow rate (MFR) of 0.35 g / 10 min
  • MFR melt flow rate
  • the thermoplastic elastomer composition contains 16.7% by weight of carbon black, and is a blend of polypropylene (PP) and ethylene / propylene / 5-ethylidene-2-norbornene terpolymer (EPT) (crosslinked olefin type).
  • Thermoplastic elastomer, TPV), polypropylene: ethylene / propylene / 5-ethylidene-2-norbornene terpolymer 10: 90 (weight basis),
  • the lubricant is a master batch in which 1 part by weight of stearic acid monoglyceride is blended with 10 parts by weight of polyethylene,
  • the nucleating agent is magnesium hydroxide having an average particle size of 0.8 ⁇ m.
  • the resin composition was extruded into strands, cooled with water, cut into pellets, and molded.
  • This pellet was put into a tandem type single screw extruder manufactured by Nippon Steel Works Co., Ltd., and 3.8% by weight of carbon dioxide gas was injected under an atmosphere of 220 ° C. under a pressure of 14 (18 after injection) MPa. Carbon dioxide gas was sufficiently saturated and cooled to a temperature suitable for foaming. After that, in order to extrude from the die and obtain an anisotropic structure, the ratio of the resin extrusion speed to the molding speed is adjusted to be within the range of 1: 1.2 to 1: 2, and the foam is slack in the line.
  • the sheet-shaped resin foam was obtained by adjusting the thickness to 1 mm. This resin foam had a semi-continuous semi-closed cell structure with a tensile modulus of 9.3 MPa and a closed cell rate of 32%.
  • Example 2 A sheet-like resin foam was produced in substantially the same manner as in Example 1 except that the thickness was adjusted to 0.5 mm. This resin foam had a semi-continuous semi-closed cell structure with a closed cell rate of 32%. The extensibility at 0.5N was 3.7%, and the extensibility at 1.0N was 7.2%.
  • the closed cell ratio of the resin foams obtained in Examples and Comparative Examples was measured according to the following method. From the obtained resin foam, a flat square test piece having a constant thickness and a side of 5 cm is cut out. Subsequently, the weight W1 (g) and thickness (cm) of the test piece are measured, and the apparent volume V1 (cm 3 ) of the test piece is calculated. Next, the obtained value is substituted into the formula (1), and the apparent volume V2 (cm 3 ) occupied by the bubbles is calculated. The density of the resin constituting the test piece is ⁇ g / cm 3 .
  • a resin foam was punched into dumbbell No. 1, a tensile test was performed at a distance between chucks of 50 mm and a pulling speed of 500 mm / min, the strength and elongation at the breaking point were measured, and an average value of five points was calculated. , The breaking strength and elongation at break, respectively.
  • FIG. 1 a sample 1 having a width of 40 mm and a length of 100 mm was produced, and a cut 1a was cut into the sample 1 up to 50 mm at a position of a width of 20 mm in parallel with the longitudinal direction.
  • FIG. 2 after fixing the sample 1 to the grip 2 of the tensile tester, the sample 1 was pulled in the Z direction at a tensile speed of 500 mm / min until the sample 1 was broken and separated. The sharpness was judged visually. When the position shift (Q in FIG. 1) from the cut position to the broken end was within 5 mm (20%), the hand cutting performance was evaluated as good.
  • the resin foams of Examples 1 and 2 have a large value of Smax / Smin and have significant anisotropy in shear fracture in a specific direction, and therefore, good workability can be realized. confirmed.
  • the present invention is useful as a heat insulating material, food packaging material, clothing material, building material, internal insulator such as electronic equipment, cushioning material, sound insulating material, dustproof material, shock absorbing material, light shielding material, etc., flexibility, cushioning property, etc.
  • a resin foam and a foam sealing material that have excellent workability and a high expansion ratio, and can be widely used for various members.

Abstract

One of the purposes of the present invention is to provide a resin foam having excellent processability by imparting remarkable shear fracture anisotropy in a specific direction with the flexibility kept. The other of the purposes thereof is to provide a foam-based sealing material. The present invention pertains to a resin foam which comprises a thermoplastic resin, said resin foam being characterized in that: the maximum breaking strength (Smax) of the foam is 0.1 to 3MPa; and the Smax/Smin ratio thereof is 1.5 to 6 [wherein Smin is the breaking strength of the foam in the direction perpendicular to the direction in which the maximum breaking strength is observed]. Further, it is preferable that the breaking elongation (SSmax) of the foam in the direction in which the maximum breaking strength is observed is 200% or less with the SSmax/SSmin ratio being 1.5 to 6 [wherein SSmin is the breaking elongation of the foam in the direction perpendicular to the direction in which the maximum breaking strength is observed].

Description

熱可塑性樹脂発泡体及び発泡シール材Thermoplastic resin foam and foam sealing material
 本発明は、熱可塑性樹脂発泡体及び発泡シール材に関する。 The present invention relates to a thermoplastic resin foam and a foam sealing material.
 従来から、携帯電話及び携帯型情報端末機等のガスケット材として、あるいは、梱包シート又はテープ、封止テープ、保護シート又はテープ等として、樹脂発泡体が用いられている。
 樹脂発泡体としては、例えば、低発泡で連続気泡構造を有する微細セルのウレタン樹脂発泡体、高発泡ウレタンを圧縮成形したもの、また独立気泡を有する発泡倍率30倍程度のポリエチレン樹脂発泡体、密度が0.2g/cm3以下のポリオレフィン系樹脂発泡体(特許文献1及び2参照)等が提案されている。そして、延伸又は表面形状を制御した樹脂の押出し等によりシート又はテープ状に製造されている。
Conventionally, resin foam has been used as a gasket material for mobile phones and portable information terminals, or as a packing sheet or tape, a sealing tape, a protective sheet, or a tape.
Examples of the resin foam include a low-foam urethane resin foam of fine cells having an open-cell structure, a compression-molded high-foam urethane, and a polyethylene resin foam having closed cells and an expansion ratio of about 30 times, density A polyolefin-based resin foam (see Patent Documents 1 and 2) having a weight of 0.2 g / cm 3 or less has been proposed. And it is manufactured in the form of a sheet or tape by stretching or extruding a resin whose surface shape is controlled.
 このような樹脂発泡体は、通常、所定の形状に加工され、所定の部位に固定されることにより適用されるが、樹脂発泡体は、柔軟で破断しやすいために、加工又は固定時等において、意図せず破断が生じることがあった。あるいは、所定方向においては切断又はせん断に大きな負荷がかかり、この切断又はせん断時に、意図しない方向に延び又刃破断が生じ、あるいは、延びにより破断のきっかけが形成しにくくなり、手切れ性が低下することがあるなど、加工時の手切れ性について十分満足のいくものではなかった。 Such a resin foam is usually applied by being processed into a predetermined shape and fixed at a predetermined site. However, since the resin foam is flexible and easily broken, it can be used during processing or fixing. In some cases, breakage occurred unintentionally. Alternatively, a large load is applied to the cutting or shearing in a predetermined direction, and at the time of the cutting or shearing, it extends in an unintended direction and the blade breaks, or it becomes difficult to form a trigger for the breakage due to the extension, and the hand cutting property is reduced. In some cases, it was not completely satisfactory with respect to the hand cutting property during processing.
特開2005-227392号公報JP 2005-227392 A 特開2007-291337号公報JP 2007-291337 A
 本発明は、柔軟性を保ちつつ、特定方向へのせん断破壊に著しい異方性を付与し、良好な加工性を実現することができる樹脂発泡体及び発泡シール材を提供することを目的とする。 It is an object of the present invention to provide a resin foam and a foam sealing material that can impart excellent anisotropy to shear fracture in a specific direction while maintaining flexibility, and can realize good processability. .
 本発明は、以下の発明を含む。
 (1)熱可塑性樹脂を含む樹脂発泡体であって、
 該発泡体の最大破断強度Smaxが0.1MPa~3MPaであり、かつ
 該最大破断強度Smaxと、最大破断強度を示す方向に対する直交方向における破断強度Sminとの比Smax/Sminが1.5~6であることを特徴とする樹脂発泡体。
 (2)前記最大破断強度を示す方向での破断伸びSSmaxが200%以下であり、
 前記最大破断強度を示す方向での破断伸びSSmaxと、最大破断強度を示す方向に対する直交方向における破断伸びSSminとの破断伸び比SSmax/SSminが1.5~6である(1)記載の樹脂発泡体。
 (3)前記最大破断強度を示す方向での気泡サイズCmaxと、最大破断強度を示す方向に対する直交方向における気泡サイズCminとの比Cmax/Cminが1.2~5である(1)又は(2)記載の樹脂発泡体。
 (4)見掛け密度が0.01~0.2g/cm3である(1)~(3)いずれか1つに記載の樹脂発泡体。
 (5)高圧ガスが含浸された熱可塑性樹脂組成物の減圧処理によって得られる(1)~(4)のいずれか1つに記載の樹脂発泡体。
 (6)前記ガスが、不活性ガスである(5)記載の樹脂発泡体。
 (7)前記不活性ガスが、二酸化炭素又は窒素である(6)記載の樹脂発泡体。
 (8)前記ガスが、超臨界状態のガスである(5)~(7)のいずれか1つに記載の樹脂発泡体。
 (9)上記(1)~(8)のいずれか1つに記載の樹脂発泡体を含むことを特徴とする発泡シール材。
 (10)発泡体の片面又は両面に配置された粘着層を備える(9)記載の発泡シール材。
 (11)粘着層が、フィルム層を介して樹脂発泡体表面に配置されている(10)記載の発泡シール材。
The present invention includes the following inventions.
(1) A resin foam containing a thermoplastic resin,
The foam has a maximum breaking strength Smax of 0.1 MPa to 3 MPa, and a ratio Smax / Smin between the maximum breaking strength Smax and a breaking strength Smin in a direction perpendicular to the direction showing the maximum breaking strength is 1.5 to 6 The resin foam characterized by being.
(2) The elongation at break SSmax in the direction showing the maximum breaking strength is 200% or less,
The resin foam according to (1), wherein a breaking elongation ratio SSmax / SSmin between a breaking elongation SSmax in the direction showing the maximum breaking strength and a breaking elongation SSmin in a direction perpendicular to the direction showing the maximum breaking strength is 1.5 to 6. body.
(3) The ratio Cmax / Cmin between the bubble size Cmax in the direction showing the maximum breaking strength and the bubble size Cmin in the direction orthogonal to the direction showing the maximum breaking strength is 1.2 to 5 (1) or (2 ) The resin foam described.
(4) The resin foam according to any one of (1) to (3), which has an apparent density of 0.01 to 0.2 g / cm 3 .
(5) The resin foam according to any one of (1) to (4), which is obtained by decompression treatment of a thermoplastic resin composition impregnated with a high-pressure gas.
(6) The resin foam according to (5), wherein the gas is an inert gas.
(7) The resin foam according to (6), wherein the inert gas is carbon dioxide or nitrogen.
(8) The resin foam according to any one of (5) to (7), wherein the gas is a gas in a supercritical state.
(9) A foamed sealing material comprising the resin foam according to any one of (1) to (8) above.
(10) The foamed sealing material according to (9), comprising an adhesive layer disposed on one or both surfaces of the foam.
(11) The foamed sealing material according to (10), wherein the adhesive layer is disposed on the surface of the resin foam via a film layer.
 本発明によれば、柔軟性を保ちつつ、特定方向へのせん断破壊に著しい異方性を付与することにより、良好な加工性を実現することができる樹脂発泡体及び発泡シール材を提供することができる。 According to the present invention, it is possible to provide a resin foam and a foam sealing material capable of realizing good processability by imparting significant anisotropy to shear fracture in a specific direction while maintaining flexibility. Can do.
本発明の樹脂発泡体の手切れ性の評価方法を実施するためのサンプルの平面図である。It is a top view of the sample for enforcing the evaluation method of the hand cutting property of the resin foam of this invention. 本発明の樹脂発泡体の手切れ性の評価方法におけるサンプルの評価態様を示す概略図である。It is the schematic which shows the evaluation aspect of the sample in the evaluation method of the hand cutting property of the resin foam of this invention. 本発明の樹脂発泡体の延伸方法を説明するための製造工程における要部の概略図である。It is the schematic of the principal part in the manufacturing process for demonstrating the extending | stretching method of the resin foam of this invention.
 本発明の樹脂発泡体は、熱可塑性樹脂を含む発泡体であり、熱可塑性樹脂組成物を、発泡又は成形することにより得られる。本発明の樹脂発泡体の形状は、特に限定されず、例えば、塊状、シート状、フィルム状等のいずれの形態であってもよい。 The resin foam of the present invention is a foam containing a thermoplastic resin, and can be obtained by foaming or molding a thermoplastic resin composition. The shape of the resin foam of this invention is not specifically limited, For example, any forms, such as a lump shape, a sheet form, and a film form, may be sufficient.
 〔樹脂発泡体の物性〕
 本発明の樹脂発泡体は、最大破断強度Smaxが0.1MPa~3MPaであり、好ましくは0.1MPa~2MPa、より好ましくは0.2MPa~2MPa、さらに好ましくは0.3MPa~2MPaである。
 ここで最大破断強度Smaxは、樹脂発泡体の種々の方向における破断強度のうちの最も大きな破断強度を意味する。
 このような破断強度を求めるためには、まず、樹脂発泡体の任意の方向(例えば、方向A)での破断強度を測定し、さらにその方向Aの軸上に中心Xを設定し、この中心Xに対して10°ずつ軸を回転させ、軸が示す各方向での破断強度を測定する(合計18方向)。その中から、最も破断強度の大きな方向(以下「最大破断強度方向」ということがある)における破断強度を選択して、これを最大破断強度Smaxとする。
 このような最大破断強度を有することにより、適当な強度を備えた樹脂発泡体とすることができる。
 本発明の樹脂発泡体では、通常、最大破断強度を示す方向は、MD方向(流れ方向)である。
[Physical properties of resin foam]
The resin foam of the present invention has a maximum breaking strength Smax of 0.1 MPa to 3 MPa, preferably 0.1 MPa to 2 MPa, more preferably 0.2 MPa to 2 MPa, and further preferably 0.3 MPa to 2 MPa.
Here, the maximum breaking strength Smax means the largest breaking strength among the breaking strengths in various directions of the resin foam.
In order to obtain such a breaking strength, first, the breaking strength in an arbitrary direction (for example, direction A) of the resin foam is measured, and further, a center X is set on the axis in the direction A, and this center The shaft is rotated by 10 ° with respect to X, and the breaking strength in each direction indicated by the shaft is measured (18 directions in total). Among them, the rupture strength in the direction with the largest rupture strength (hereinafter sometimes referred to as “maximum rupture strength direction”) is selected, and this is set as the maximum rupture strength Smax.
By having such a maximum breaking strength, a resin foam having an appropriate strength can be obtained.
In the resin foam of the present invention, the direction showing the maximum breaking strength is usually the MD direction (flow direction).
 本発明の樹脂発泡体は、さらに、上述した最大破断強度Smaxと、その最大破断強度方向に対する直交方向における破断強度Sminとの比Smax/Sminが1.5~6であり、好ましくは1.8~6、より好ましくは2~6、さらに好ましくは、2~5である。
 このような破断強度比を有することにより、特定方向へのせん断破壊において異方性を著しく向上させることができるために、良好な加工性、特に手切れ性を実現することができる。従って、本発明の樹脂発泡体を異方性が必要な易開封テープ、現場施工性に優れたシート等として使用することが可能となる。
In the resin foam of the present invention, the ratio Smax / Smin between the maximum breaking strength Smax described above and the breaking strength Smin in the direction perpendicular to the maximum breaking strength direction is 1.5 to 6, preferably 1.8. -6, more preferably 2-6, still more preferably 2-5.
By having such a breaking strength ratio, since the anisotropy can be remarkably improved in the shear fracture in a specific direction, it is possible to realize good workability, particularly hand cutting. Therefore, the resin foam of the present invention can be used as an easy-open tape that requires anisotropy, a sheet excellent in on-site workability, and the like.
 本発明の樹脂発泡体は、さらに、最大破断強度方向での破断伸びSSmaxが、好ましくは200%以下、より好ましくは180%以下、さらに好ましくは160%以下である。また、好ましくは100%以上であり、より好ましくは105%以上である。
 このような破断伸びを有することにより、加工又は固定時における伸びを防止することができる。また、テープとしての使用時における、テープの伸びなどに伴う破断を効果的に防止することができる。樹脂発泡体の伸びは、所定の荷重を加えた際の伸び率である延展性として評価することができる。例えば、荷重0.5Nにおける延展性は、5.0%以下であると伸びにくく、良好と判断できる。荷重1.0Nにおける延展性は、10.0%以下であると延びにくく、良好と判断できる。延展性は、後述する実施例において記載する方法によって測定することができる。
The resin foam of the present invention further has a breaking elongation SSmax in the maximum breaking strength direction of preferably 200% or less, more preferably 180% or less, and even more preferably 160% or less. Moreover, Preferably it is 100% or more, More preferably, it is 105% or more.
By having such elongation at break, elongation at the time of processing or fixing can be prevented. In addition, it is possible to effectively prevent breakage due to elongation of the tape when used as a tape. The elongation of the resin foam can be evaluated as extensibility, which is an elongation rate when a predetermined load is applied. For example, if the extensibility at a load of 0.5 N is 5.0% or less, it is difficult to elongate and it can be determined that it is good. If the extensibility at a load of 1.0 N is 10.0% or less, it is difficult to elongate, and it can be judged as good. The spreadability can be measured by the method described in Examples described later.
 本発明の樹脂発泡体は、さらに、最大破断強度方向での破断伸びSSmaxと、最大破断強度方向に対する直交方向における破断伸びSSminとの破断伸び比SSmax/SSminが、好ましくは1.5~6、より好ましくは2~6、さらに好ましくは2.5~6である。
 このような破断伸び比を有することにより、最大破断方向に対して直交方向での伸びが小さくなるために、特定方向での切断をより容易にすることができる。
The resin foam of the present invention further has a breaking elongation ratio SSmax / SSmin between the breaking elongation SSmax in the maximum breaking strength direction and the breaking elongation SSmin in the direction perpendicular to the maximum breaking strength direction, preferably 1.5 to 6, More preferably, it is 2 to 6, and further preferably 2.5 to 6.
By having such a breaking elongation ratio, the elongation in the direction orthogonal to the maximum breaking direction is reduced, so that cutting in a specific direction can be facilitated.
 本発明の樹脂発泡体は、例えば、気泡構造が、独立気泡構造又は半連続半独立気泡構造(独立気泡構造と半連続半独立気泡構造とが混在している気泡構造であり、その割合は特に限定されない)であることが好ましい。特に、樹脂発泡体の独立気泡率が50%以下、好ましくは40%以下、より好ましくは35%以下となっている気泡構造が挙げられる。この範囲により、衝撃が作用した際の圧縮変形時に、樹脂から空気が抜けやすく、十分な衝撃吸収性を発揮させることができる。また、樹脂発泡体の独立気泡率が10%以上、好ましくは15%以上、より好ましくは20%以上となっている気泡構造が挙げられる。この範囲により、塵等の微小な粒子の通過を阻止し、防塵性を向上させることができる。
 なお、独立気泡率は、例えば、実施例に記載の方法によって測定することができる。
The resin foam of the present invention is, for example, a closed cell structure or a semi-continuous semi-closed cell structure (a cell structure in which a closed cell structure and a semi-continuous semi-closed cell structure are mixed, and the ratio is particularly (It is not limited). In particular, a cell structure in which the closed cell ratio of the resin foam is 50% or less, preferably 40% or less, more preferably 35% or less can be mentioned. With this range, air can easily escape from the resin during compression deformation when an impact is applied, and sufficient shock absorption can be exhibited. Further, there is a cell structure in which the closed cell ratio of the resin foam is 10% or more, preferably 15% or more, more preferably 20% or more. By this range, the passage of fine particles such as dust can be prevented, and the dustproofness can be improved.
The closed cell ratio can be measured, for example, by the method described in the examples.
 本発明の樹脂発泡体は、さらに、最大破断強度方向での気泡サイズCmaxと、最大破断強度方向に対する直交方向における気泡サイズCminとの比Cmax/Cminが、好ましくは1.2~5、より好ましくは1.2~4、さらに好ましくは1.2~3.5、より一層好ましくは1.3~3.5である。 In the resin foam of the present invention, the ratio Cmax / Cmin between the bubble size Cmax in the maximum breaking strength direction and the bubble size Cmin in the direction perpendicular to the maximum breaking strength direction is preferably 1.2 to 5, more preferably Is from 1.2 to 4, more preferably from 1.2 to 3.5, even more preferably from 1.3 to 3.5.
 ここで、気泡サイズは、以下の方法で計測された気泡径10点の平均値とする。
 まず、樹脂発泡体の最大破断強度方向と、この方向に対する直交方向とに平行に、カッターにて樹脂発泡体の主面に対してそれぞれ垂直方向(厚み方向)に切断し、平滑な断面を作成する。次いで、これら断面をキーエンスマイクロスコープ(例えば、商品名「VHX-600」キーエンス株式会社製)で観察する。そして、3000μm×2500μmでの計測範囲内で気泡サイズが大きいものから10点を抽出し、それらの気泡の面積を直径に換算し、それらの平均値を求めて、気泡径とする。
Here, the bubble size is an average value of 10 bubble diameters measured by the following method.
First, cut in the direction perpendicular to the main surface of the resin foam (thickness direction) with a cutter parallel to the direction of the maximum breaking strength of the resin foam and the direction orthogonal to this direction, creating a smooth cross section To do. Next, these cross sections are observed with a Keyence microscope (for example, trade name “VHX-600” manufactured by Keyence Corporation). Then, 10 points are extracted from those having a large bubble size within the measurement range of 3000 μm × 2500 μm, the area of the bubbles is converted into a diameter, and an average value thereof is obtained to obtain the bubble diameter.
 本発明の樹脂発泡体は、さらに、気泡径が、最大破断強度方向に平行な垂直方向(厚み方向)切断面において、好ましくは50~300μmであり、より好ましくは70~300μmであり、さらに好ましくは100~300μmであり、より一層好ましくは100~250μmである。また、最大破断強度方向に直交する方向に平行な垂直方向(厚み方向)切断面における気泡径は、好ましくは10~200μmであり、より好ましくは30~200μmであり、さらに好ましくは50~200μmであり、より一層好ましくは80~180μmである。 In the resin foam of the present invention, the cell diameter is preferably 50 to 300 μm, more preferably 70 to 300 μm, more preferably 70 μm, in a vertical direction (thickness direction) cut surface parallel to the maximum breaking strength direction. Is from 100 to 300 μm, more preferably from 100 to 250 μm. Further, the bubble diameter in the vertical (thickness direction) cut surface parallel to the direction perpendicular to the maximum breaking strength direction is preferably 10 to 200 μm, more preferably 30 to 200 μm, and further preferably 50 to 200 μm. More preferably 80 to 180 μm.
 本願発明の樹脂発泡体において、発泡体の気泡径をこの範囲とすることにより、意図する方向への異方性をより一層実現することができ、良好な加工性及び手切れ性を確保することができるとともに、その切断面も凹凸が少なく、シャープな面とすることが可能となる。 In the resin foam of the present invention, by setting the cell diameter of the foam within this range, anisotropy in the intended direction can be further realized, and good workability and hand cutting properties are ensured. In addition, the cut surface has less unevenness and can be made a sharp surface.
 本発明の樹脂発泡体は、さらに、見掛け密度が、好ましくは0.01~0.20g/cm3、より好ましくは0.01~0.15g/cm3、さらに好ましくは0.01~0.10g/cm3、より一層好ましくは0.02~0.08g/cm3である。見掛け密度をこの範囲とする場合には、強度を十分に確保することができ、良好な加工性(特に打ち抜き加工性)を得ることができ、同時に、柔軟性をも確保することができる。 The resin foam of the present invention further has an apparent density of preferably 0.01 to 0.20 g / cm 3 , more preferably 0.01 to 0.15 g / cm 3 , and still more preferably 0.01 to 0.00. It is 10 g / cm 3 , more preferably 0.02 to 0.08 g / cm 3 . When the apparent density is within this range, sufficient strength can be secured, good workability (particularly punching workability) can be obtained, and at the same time, flexibility can be secured.
 本発明の樹脂発泡体は、引張弾性率が、好ましくは5.0~14.0MPa、より好ましくは5.5~13.5MPa、さらに好ましくは6.0~13.0MPaである。このような範囲とすることで、樹脂発泡体を引張った際に、塑性変形が生じることなく、意図しない方向に延び及び破断が生じることを効果的に防止することができる。これにより、延展性が低く、優れた加工性を発揮させることができる。
 引張弾性率は、JIS K 6767に準拠した引張試験によって求められる。
The resin foam of the present invention has a tensile modulus of preferably 5.0 to 14.0 MPa, more preferably 5.5 to 13.5 MPa, and still more preferably 6.0 to 13.0 MPa. By setting it as such a range, when the resin foam is pulled, it is possible to effectively prevent the resin foam from extending and breaking in an unintended direction without causing plastic deformation. Thereby, the spreadability is low, and excellent workability can be exhibited.
A tensile elasticity modulus is calculated | required by the tension test based on JISK6767.
 〔樹脂発泡体の材料〕
 本発明の樹脂発泡体は、熱可塑性樹脂又は熱可塑性樹脂を含有する樹脂組成物によって形成されている。熱可塑性樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレンとプロピレンとの共重合体、エチレン又はプロピレンと他のα-オレフィン(例えば、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1など)との共重合体、エチレンと他のエチレン性不飽和単量体(例えば、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコールなど)との共重合体などのポリオレフィン系樹脂;ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)などのスチレン系樹脂;6-ナイロン、66-ナイロン、12-ナイロンなどのポリアミド系樹脂;ポリアミドイミド;ポリウレタン;ポリイミド;ポリエーテルイミド;ポリメチルメタクリレートなどのアクリル系樹脂;ポリ塩化ビニル;ポリフッ化ビニル;アルケニル芳香族樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂;ビスフェノールA系ポリカーボネートなどのポリカーボネート;ポリアセタール;ポリフェニレンスルフィドなどが挙げられる。
 熱可塑性樹脂は、単独で又は2種以上を組み合わせて用いることができる。熱可塑性樹脂が共重合体である場合、ランダム共重合体、ブロック共重合体のいずれの形態の共重合体であってもよい。
[Material of resin foam]
The resin foam of the present invention is formed of a thermoplastic resin or a resin composition containing a thermoplastic resin. Examples of the thermoplastic resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, a copolymer of ethylene and propylene, ethylene or propylene and another α-olefin (for example, butene -1, pentene-1, hexene-1, 4-methylpentene-1, etc.), ethylene and other ethylenically unsaturated monomers (for example, vinyl acetate, acrylic acid, acrylic ester, methacrylic) Polyolefin resins such as copolymers with acid, methacrylic acid ester, vinyl alcohol, etc.); styrene resins such as polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin); 6-nylon, 66-nylon, 12 -Polyamide resins such as nylon; polyamideimide Polyurethane; Polyimide; Polyetherimide; Acrylic resin such as polymethyl methacrylate; Polyvinyl chloride; Polyvinyl fluoride; Alkenyl aromatic resin; Polyester resin such as polyethylene terephthalate and polybutylene terephthalate; Polycarbonate such as bisphenol A polycarbonate; Polyacetal; polyphenylene sulfide and the like.
A thermoplastic resin can be used individually or in combination of 2 or more types. When the thermoplastic resin is a copolymer, the copolymer may be a random copolymer or a block copolymer.
 熱可塑性樹脂としては、機械強度、耐熱性、耐薬品性等の特性面、溶融熱成形が容易等の成形面から、ポリオレフィン系樹脂が好適である。
 ポリオレフィン系樹脂としては、分子量分布が広くかつ高分子量側にショルダーをもつタイプの樹脂、微架橋タイプの樹脂(若干架橋されたタイプの樹脂)、長鎖分岐タイプの樹脂などが好適に挙げられる。
As the thermoplastic resin, a polyolefin-based resin is preferable from the viewpoints of characteristics such as mechanical strength, heat resistance, and chemical resistance, and molding surfaces such as easy melt thermoforming.
Preferred examples of the polyolefin resin include a resin having a broad molecular weight distribution and having a shoulder on the high molecular weight side, a micro-crosslinking type resin (a slightly cross-linked type resin), a long-chain branched type resin, and the like.
 熱可塑性樹脂には、ゴム成分及び/又は熱可塑性エラストマー成分が含まれる。
 ゴム成分及び熱可塑性エラストマー成分は、例えば、ガラス転移温度が室温以下(例えば20℃以下)であるため、樹脂発泡体としたときの柔軟性及び形状追随性が極めて良好となる。
The thermoplastic resin includes a rubber component and / or a thermoplastic elastomer component.
Since the rubber component and the thermoplastic elastomer component have, for example, a glass transition temperature of room temperature or lower (for example, 20 ° C. or lower), flexibility and shape followability when a resin foam is obtained are extremely good.
 ゴム成分及び熱可塑性エラストマー成分としては、ゴム弾性を有し、発泡可能なものであれば特に限定はなく、例えば、天然ゴム、ポリイソブチレン、ポリイソプレン、クロロプレンゴム、ブチルゴム、ニトリルブチルゴムなどの天然又は合成ゴム;エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-酢酸ビニル共重合体、ポリブテン、塩素化ポリエチレンなどのオレフィン系エラストマー;スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体及びそれらの水素添加物などのスチレン系エラストマー;ポリエステル系エラストマー;ポリアミド系エラストマー;ポリウレタン系エラストマーなどの各種熱可塑性エラストマーなどが挙げられる。
 これらは単独で又は2種以上を組み合わせて用いてもよい。
The rubber component and the thermoplastic elastomer component are not particularly limited as long as they have rubber elasticity and can be foamed. For example, natural or natural rubber, polyisobutylene, polyisoprene, chloroprene rubber, butyl rubber, nitrile butyl rubber, or the like Synthetic rubbers; Ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-vinyl acetate copolymers, polybutenes, olefinic elastomers such as chlorinated polyethylene; styrene-butadiene-styrene copolymers, styrene-isoprene -Styrene elastomers such as styrene copolymers and hydrogenated products thereof; polyester elastomers; polyamide elastomers; various thermoplastic elastomers such as polyurethane elastomers.
You may use these individually or in combination of 2 or more types.
 なかでも、ゴム成分及び/又は熱可塑性エラストマー成分としては、オレフィン系エラストマーが好ましい。オレフィン系エラストマーは、熱可塑性樹脂として例示されているポリオレフィン系樹脂との相溶性が良好である。 Among these, as the rubber component and / or the thermoplastic elastomer component, an olefin elastomer is preferable. The olefin elastomer has good compatibility with the polyolefin resin exemplified as the thermoplastic resin.
 オレフィン系エラストマーは、樹脂成分A(オレフィン系樹脂成分A)とゴム成分Bとがミクロ相分離した構造を有するタイプであってもよい。また、樹脂成分Aとゴム成分Bとを物理的に分散させたタイプ、樹脂成分Aとゴム成分Bとを、架橋剤の存在下、動的に熱処理したタイプ(動的架橋型熱可塑性エラストマー、TPV)であってもよい。 The olefin elastomer may be of a type having a structure in which the resin component A (olefin resin component A) and the rubber component B are microphase separated. In addition, a type in which resin component A and rubber component B are physically dispersed, a type in which resin component A and rubber component B are dynamically heat-treated in the presence of a crosslinking agent (dynamic crosslinkable thermoplastic elastomer, TPV).
 特に、オレフィン系エラストマーとしては、動的架橋型熱可塑性オレフィン系エラストマー(TPV)が好ましい。
 動的架橋型熱可塑性オレフィン系エラストマーはTPO(非架橋型の熱可塑性オレフィン系エラストマー)より、弾性率が高く、かつ圧縮永久歪みも小さい。これにより、回復性が良好であり、樹脂発泡体とした場合に優れた回復性を示す。
In particular, as the olefin elastomer, a dynamically crosslinked thermoplastic olefin elastomer (TPV) is preferable.
The dynamically crosslinked thermoplastic olefin elastomer has a higher elastic modulus and a smaller compression set than TPO (non-crosslinked thermoplastic olefin elastomer). Thereby, the recoverability is good, and when the resin foam is used, the excellent recoverability is exhibited.
 動的架橋型熱可塑性オレフィン系エラストマーとは、上述したように、マトリックスを形成する樹脂成分A(オレフィン系樹脂成分A)及びドメインを形成するゴム成分Bを含む混合物を、架橋剤の存在下、動的に熱処理することにより得られ、マトリックス(海相)である樹脂成分A中に、架橋ゴム粒子がドメイン(島相)として細かく分散した海島構造を有する多相系のポリマーである。 As described above, the dynamically crosslinked thermoplastic olefin elastomer is a mixture containing the resin component A (olefin resin component A) forming a matrix and the rubber component B forming a domain, in the presence of a crosslinking agent. It is a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in the resin component A, which is a matrix (sea phase), obtained by dynamic heat treatment.
 このような動的架橋型熱可塑性オレフィン系エラストマーとしては、例えば、特開2000-007858号公報、特開2006-052277号公報、特開2012-072306号公報、特開2012-057068号公報、特開2010-241897号公報、特開2009-067969号公報、再表03/002654号等に記載のもの、「ゼオサーム」(日本ゼオン社製)、「サーモラン」(三菱化学社製)、「サーリンク3245D」(東洋紡績株式会社製)等として市販されているもの等が挙げられる。 Examples of such a dynamically crosslinked thermoplastic olefin elastomer include, for example, JP 2000-007858 A, JP 2006-052277 A, JP 2012-072306 A, JP 2012-056768 A, JP-A-2010-241897, JP-A-2009-0697969, RE-list 03/002654, etc., “Zeotherm” (manufactured by Zeon Corporation), “Thermorun” (manufactured by Mitsubishi Chemical Corporation), “Surlink” 3245D "(manufactured by Toyobo Co., Ltd.) and the like.
 本発明の樹脂発泡体を構成する樹脂として、熱可塑性樹脂とともに、ゴム成分及び/又は熱可塑性エラストマー成分を含む場合、その含有率としては、特に限定されない。例えば、本発明の樹脂発泡体を構成する樹脂における、熱可塑性樹脂とゴム成分及び/又は熱可塑性エラストマー成分との割合は、重量基準で、好ましくは70/30~30/70が好ましく、より好ましくは60/40~30/70であり、さらにより好ましくは50/50~30/70であり、より一層好ましくは、60/40~10/90、58/42~10/90、55/45~10/90である。ゴム成分及び/又は熱可塑性エラストマー成分の割合が少なすぎると樹脂発泡体のクッション性が低下しやすくなり又は圧縮後の回復性が低下することがあり、一方、ゴム成分及び/又は熱可塑性エラストマー成分の割合が多すぎると発泡体形成時にガス抜けが生じやすくなり、高発泡性の発泡体を得ることが困難になることがある。 In the case where the resin constituting the resin foam of the present invention contains a rubber component and / or a thermoplastic elastomer component together with the thermoplastic resin, the content is not particularly limited. For example, the ratio of the thermoplastic resin to the rubber component and / or the thermoplastic elastomer component in the resin constituting the resin foam of the present invention is preferably 70/30 to 30/70, more preferably on a weight basis. Is 60/40 to 30/70, even more preferably 50/50 to 30/70, even more preferably 60/40 to 10/90, 58/42 to 10/90, 55/45 to 10/90. If the ratio of the rubber component and / or the thermoplastic elastomer component is too small, the cushioning property of the resin foam tends to be lowered or the recoverability after compression may be lowered. On the other hand, the rubber component and / or the thermoplastic elastomer component If the ratio is too large, outgassing tends to occur during foam formation, and it may be difficult to obtain a highly foamable foam.
 本発明の樹脂発泡体では、高圧縮時の柔軟性及び圧縮後の形状回復を実現するために、つまり、大変形を可能とし、塑性変形を起こさないようにするためには、いわゆるゴム弾性に優れた材料によって形成されていることが適している。その観点から、本発明の樹脂発泡体では、構成する樹脂として、上述した熱可塑性樹脂とともに、ゴム成分及び/又は熱可塑性エラストマー成分を含むことが好ましい。 In the resin foam of the present invention, in order to realize flexibility at high compression and shape recovery after compression, that is, to enable large deformation and prevent plastic deformation, so-called rubber elasticity is used. It is suitable that it is made of an excellent material. From that viewpoint, it is preferable that the resin foam of the present invention includes a rubber component and / or a thermoplastic elastomer component together with the above-described thermoplastic resin as a constituent resin.
 また、本発明の樹脂発泡体は、さらに、造核剤が含まれることが好ましい。造核剤が含まれていると、セル径を容易に調整することができ、適度な柔軟性を有するとともに、切断加工性に優れた発泡体を得ることができる。 Further, the resin foam of the present invention preferably further contains a nucleating agent. When the nucleating agent is contained, the cell diameter can be easily adjusted, and a foam having an appropriate flexibility and excellent cutting processability can be obtained.
 造核剤としては、例えば、タルク、シリカ、アルミナ、ゼオライト、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化亜鉛、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、マイカ、モンモリナイトなどの酸化物、複合酸化物、金属炭酸塩、金属硫酸塩、金属水酸化物;カーボン粒子、グラスファイバー、カーボンチューブなどが挙げられる。なお、造核剤は、単独で又は2種以上を組み合わせて用いられる。 Examples of the nucleating agent include oxides and composite oxides such as talc, silica, alumina, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, zinc oxide, titanium oxide, aluminum hydroxide, magnesium hydroxide, mica, and montmorillonite. Metal carbonates, metal sulfates, metal hydroxides; carbon particles, glass fibers, carbon tubes, and the like. In addition, a nucleating agent is used individually or in combination of 2 or more types.
 造核剤の平均粒子径は、特に限定されないが、好ましくは0.3~1.5μm、より好ましくは0.4~1.2μmである。このような平均粒子径とすることにより、造核剤としての十分な機能を発揮させることができる。また、造核剤がセルの壁を突き破ることなく、高発泡倍率を実現できる。
 この平均粒子径は、レーザー回折式の粒度分布測定法により測定することができる。例えば、LEEDS & NORTHRUP INSTRUMENTS 社製「MICROTRAC MT-3000」により、試料の分散希釈液から測定(AUTO測定)することができる。
The average particle size of the nucleating agent is not particularly limited, but is preferably 0.3 to 1.5 μm, more preferably 0.4 to 1.2 μm. By setting it as such an average particle diameter, sufficient function as a nucleating agent can be exhibited. In addition, a high expansion ratio can be realized without the nucleating agent breaking through the cell walls.
This average particle diameter can be measured by a laser diffraction particle size distribution measuring method. For example, it can be measured (AUTO measurement) from a dispersion dilution of a sample by “MICROTRAC MT-3000” manufactured by LEEDS & NORTHRUP INSTRUMENTS.
 本発明の樹脂発泡体において、このような造核剤を含む場合の含有量は、特に限定されず、構成する樹脂100重量部に対して、好ましくは0.5~150重量部、より好ましくは2~140重量部、さらにより好ましくは3~130重量部である。 In the resin foam of the present invention, the content when such a nucleating agent is included is not particularly limited, and is preferably 0.5 to 150 parts by weight, more preferably 100 parts by weight of the constituent resin. 2 to 140 parts by weight, still more preferably 3 to 130 parts by weight.
 本発明の樹脂発泡体は、熱可塑性樹脂により構成されているため燃えやすいことから、難燃剤を含有することが好ましい。
 難燃剤としては、ノンハロゲン-ノンアンチモン系である無機難燃剤が好ましい。
 このような無機難燃剤としては、例えば、金属水酸化物や金属化合物の水和物などが挙げられる。より具体的には、水酸化アルミニウム;水酸化マグネシウム;酸化マグネシウムや酸化ニッケルの水和物;酸化マグネシウムや酸化亜鉛の水和物などが挙げられる。中でも、水酸化マグネシウムが好適に挙げられる。上記水和金属化合物は表面処理されていてもよい。難燃剤は、単独で又は2種以上を組み合わせて用いられる。
Since the resin foam of this invention is comprised with a thermoplastic resin and is easy to burn, it is preferable to contain a flame retardant.
As the flame retardant, a non-halogen-nonantimony inorganic flame retardant is preferable.
Examples of such inorganic flame retardants include metal hydroxides and hydrates of metal compounds. More specifically, aluminum hydroxide; magnesium hydroxide; hydrates of magnesium oxide and nickel oxide; hydrates of magnesium oxide and zinc oxide, and the like. Among these, magnesium hydroxide is preferable. The hydrated metal compound may be surface-treated. A flame retardant is used individually or in combination of 2 or more types.
 本発明の樹脂発泡体において、難燃剤が含まれる場合の含有量は、構成する樹脂100重量部に対して、好ましくは5~70重量部、より好ましくは25~65重量部である。 In the resin foam of the present invention, the content when a flame retardant is contained is preferably 5 to 70 parts by weight, more preferably 25 to 65 parts by weight, with respect to 100 parts by weight of the constituent resin.
 本発明の樹脂発泡体は、さらに、極性官能基を有し、融点が50~150℃であり、脂肪酸、脂肪酸アミド、脂肪酸金属石鹸から選ばれた少なくとも一つの脂肪族系化合物を含有していてもよい。なかでも、脂肪酸、脂肪酸アミドが好ましい。 The resin foam of the present invention further has a polar functional group, a melting point of 50 to 150 ° C., and contains at least one aliphatic compound selected from fatty acids, fatty acid amides, and fatty acid metal soaps. Also good. Of these, fatty acids and fatty acid amides are preferred.
 本発明の樹脂発泡体において、このような脂肪族系化合物が含まれていると、加工(特に打ち抜き加工)の際に、気泡構造がつぶれにくくなり、形状回復性が向上し、加工性(特に打ち抜き加工性)がより向上する。このような脂肪族系化合物は結晶性が高く、上記熱可塑性樹脂(特にポリオレフィン系樹脂)に添加すると樹脂表面に強固な膜を形成し、気泡構造を形成する気泡の壁面同士が互いにブロッキングすることを防ぐ働きを有するためと推測される。 When such an aliphatic compound is contained in the resin foam of the present invention, the cell structure is less likely to collapse during processing (particularly punching processing), shape recovery is improved, and workability (particularly, (Punching workability) is further improved. Such an aliphatic compound has high crystallinity, and when added to the thermoplastic resin (especially polyolefin resin), a strong film is formed on the resin surface, and the wall surfaces of the bubbles forming the cell structure block each other. This is presumed to have a function to prevent the above.
 このような脂肪族系化合物は、特に、ポリオレフィン系樹脂に対しては、極性の高い官能基を含むものが、相溶しにくいため、樹脂発泡体表面に析出しやすく、上記の効果を発揮しやすい。 Such aliphatic compounds, particularly those containing a highly polar functional group, are difficult to be compatible with polyolefin resins, so that they easily precipitate on the surface of the resin foam and exhibit the above effects. Cheap.
 脂肪族系化合物の融点は、樹脂組成物を発泡成形する際の成形温度を下げ、樹脂(特にポリオレフィン系樹脂)の劣化を抑制する、耐昇華性を付与する等の観点から、好ましくは50~150℃であり、より好ましくは70~100℃である。 The melting point of the aliphatic compound is preferably 50 to 50 from the viewpoints of lowering the molding temperature when foam-molding the resin composition, suppressing deterioration of the resin (particularly polyolefin resin), imparting sublimation resistance, and the like. 150 ° C., more preferably 70 to 100 ° C.
 脂肪酸としては、好ましくは炭素数18~38程度、より好ましくは炭素数が18~22程度のものである。具体的には、ステアリン酸、ベヘニン酸、12-ヒドロキシステアリン酸などが挙げられる。なかでも、ベヘニン酸が特に好ましい。 The fatty acid preferably has about 18 to 38 carbon atoms, more preferably about 18 to 22 carbon atoms. Specific examples include stearic acid, behenic acid, 12-hydroxystearic acid and the like. Of these, behenic acid is particularly preferable.
 脂肪酸アミドとしては、好ましくは、脂肪酸部分の炭素数が18~38程度、より好ましくは、炭素数が18~22程度の脂肪酸アミドであり、モノアミド、ビスアミドの何れであってもよい。具体的には、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミドなどが挙げられる。なかでも、エルカ酸アミドが特に好ましい。 The fatty acid amide is preferably a fatty acid amide having about 18 to 38 carbon atoms in the fatty acid moiety, more preferably about 18 to 22 carbon atoms, and may be either monoamide or bisamide. Specific examples include stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, and ethylene bis stearic acid amide. Of these, erucic acid amide is particularly preferable.
 脂肪酸金属石鹸としては、上記脂肪酸のアルミニウム、カルシウム、マグネシウム、リチウム、バリウム、亜鉛、鉛の塩などが挙げられる。 Examples of the fatty acid metal soap include aluminum, calcium, magnesium, lithium, barium, zinc and lead salts of the above fatty acids.
 本発明の樹脂発泡体において、このような脂肪族系化合物が含まれる場合の含有量は、特に限定されず、構成する樹脂100重量部に対して、好ましくは1~5重量部、より好ましくは1.5~3.5重量部、さらにより好ましくは2~3重量部である。これにより、樹脂が発泡成形の際に十分な圧力を保つことができ、発泡剤(例えば、二酸化炭素などの不活性ガス)の含有量を確保して、高い発泡倍率を得ることができる。 In the resin foam of the present invention, the content when such an aliphatic compound is contained is not particularly limited, and is preferably 1 to 5 parts by weight, more preferably 100 parts by weight of the constituent resin. The amount is 1.5 to 3.5 parts by weight, more preferably 2 to 3 parts by weight. Thereby, sufficient pressure can be maintained when the resin is subjected to foam molding, the content of the foaming agent (for example, an inert gas such as carbon dioxide) can be secured, and a high foaming ratio can be obtained.
 本発明の樹脂発泡体は、滑剤が含有されていてもよい。これにより、樹脂組成物の流動性を向上させるとともに、樹脂の熱劣化を抑制することができる。滑剤は、単独で又は2種以上を組み合わせて用いられる。 The resin foam of the present invention may contain a lubricant. Thereby, while improving the fluidity | liquidity of a resin composition, the thermal deterioration of resin can be suppressed. A lubricant is used individually or in combination of 2 or more types.
 滑剤としては、特に限定されないが、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックスなどの炭化水素系滑剤;ステアリン酸ブチル、ステアリン酸モノグリセリド、ペンタエリスリトールテトラステアレート、硬化ヒマシ油、ステアリン酸ステアリルなどのエステル系滑剤などが挙げられる。また、滑剤の含有量は、本発明の効果を損なわない範囲で適宜選択することができる。 The lubricant is not particularly limited. For example, hydrocarbon lubricants such as liquid paraffin, paraffin wax, microwax and polyethylene wax; butyl stearate, monoglyceride stearate, pentaerythritol tetrastearate, hydrogenated castor oil, stearyl stearate And ester lubricants. Moreover, content of a lubricant can be suitably selected in the range which does not impair the effect of this invention.
 本発明の樹脂発泡体は、必要に応じて、その他の添加剤が含有されていてもよい。このような添加剤としては、例えば、収縮防止剤、老化防止剤、熱安定剤、HALS等の耐光剤、耐候剤、金属不活性剤、紫外線吸収剤、光安定剤、銅害防止剤等の安定剤、防菌剤、防かび剤、分散剤、粘着付与剤、カーボンブラックや有機顔料等の着色剤、充填剤などが挙げられる。特に、動的架橋型熱可塑性オレフィン系エラストマーを用いる場合、それを含有する組成物として添加剤(例えば、カーボンブラックなどの着色剤、軟化剤、等)を含有したものを用いてもよい。これらの添加剤は、単独で又は2種以上を組み合わせて用いられる。
 これらの添加剤の含有量は、本発明の効果を損なわない範囲で適宜選択することができる。
The resin foam of the present invention may contain other additives as necessary. Examples of such additives include anti-shrinkage agents, anti-aging agents, heat stabilizers, light stabilizers such as HALS, weathering agents, metal deactivators, ultraviolet absorbers, light stabilizers, copper damage inhibitors, and the like. Stabilizers, antibacterial agents, fungicides, dispersants, tackifiers, colorants such as carbon black and organic pigments, fillers, and the like. In particular, when a dynamically crosslinked thermoplastic olefin elastomer is used, a composition containing an additive (for example, a colorant such as carbon black, a softener, etc.) may be used. These additives are used alone or in combination of two or more.
The content of these additives can be appropriately selected within a range that does not impair the effects of the present invention.
 〔樹脂発泡体の製造方法〕
 本発明の樹脂発泡体は、熱可塑性樹脂(ゴム成分及び/又は熱可塑性エラストマー成分を含む)、任意に、造核剤、脂肪族系化合物、滑剤等の添加剤を混合又は混練するなどにより得られた樹脂組成物を用い、樹脂組成物を発泡又は成形することにより製造することができる。特に、気泡の異方構造は、延伸することにより形成することができる。
[Method for producing resin foam]
The resin foam of the present invention is obtained by mixing or kneading a thermoplastic resin (including a rubber component and / or a thermoplastic elastomer component), and optionally an additive such as a nucleating agent, an aliphatic compound, or a lubricant. Using the obtained resin composition, it can be produced by foaming or molding the resin composition. In particular, the anisotropic structure of bubbles can be formed by stretching.
 樹脂組成物を発泡又は成形する際に用いられる発泡方法としては、特に限定されず、例えば、物理的方法、化学的方法等の通常用いられる方法が挙げられる。一般的な物理的方法は、クロロフルオロカーボン類又は炭化水素類などの低沸点液体(発泡剤)を樹脂に分散させ、次に加熱し発泡剤を揮発することにより気泡を形成させる方法である。また、一般的な化学的方法は、樹脂に添加した化合物(発泡剤)の熱分解により生じたガスにより気泡を形成させる方法である。 The foaming method used when foaming or molding the resin composition is not particularly limited, and examples thereof include commonly used methods such as a physical method and a chemical method. A general physical method is a method of forming bubbles by dispersing a low boiling point liquid (foaming agent) such as chlorofluorocarbons or hydrocarbons in a resin, and then heating to volatilize the foaming agent. Moreover, a general chemical method is a method in which bubbles are formed by a gas generated by thermal decomposition of a compound (foaming agent) added to a resin.
 本発明では、発泡方法としては、セル径が小さくかつセル密度の高い発泡体を容易に得ることができる点から、発泡剤として高圧のガスを用いる方法が好ましい。特に発泡剤として高圧の不活性ガスを用いる方法が好ましい。
 発泡剤として高圧のガスを用いる方法としては、樹脂組成物に高圧のガスを含浸させた後、減圧する工程を経て形成する方法が好ましく、具体的には、樹脂組成物からなる未発泡成形物に高圧のガスを含浸させた後、減圧する工程を経て形成する方法、溶融した樹脂組成物にガスを加圧状態下で含浸させた後、減圧とともに成形に付して形成する方法などが挙げられる。
In the present invention, as a foaming method, a method using a high-pressure gas as a foaming agent is preferable because a foam having a small cell diameter and a high cell density can be easily obtained. In particular, a method using a high-pressure inert gas as a foaming agent is preferable.
As a method of using a high-pressure gas as a foaming agent, a method in which a resin composition is impregnated with a high-pressure gas and then subjected to a pressure reducing step is preferable. Specifically, an unfoamed molded article made of a resin composition And a method of forming through a step of depressurizing after impregnating with a high-pressure gas, a method of forming a molten resin composition by impregnating the gas under a pressurized condition, and then subjecting it to molding with reduced pressure. It is done.
 不活性ガスとしては、樹脂発泡体の素材である樹脂に対して不活性でかつ含浸可能なものであれば特に限定されず、例えば、二酸化炭素、窒素、空気などが挙げられる。これらのガスは混合して用いてもよい。これらのうち、樹脂への含浸量が多く、含浸速度の速い点から、二酸化炭素又は窒素が好ましい。 The inert gas is not particularly limited as long as it is inert and can be impregnated into the resin that is the material of the resin foam, and examples thereof include carbon dioxide, nitrogen, and air. These gases may be mixed and used. Of these, carbon dioxide or nitrogen is preferred because the amount of impregnation into the resin is large and the impregnation rate is high.
 さらに、樹脂組成物への含浸速度を速めるという観点から、上記高圧のガス(特に不活性ガス、さらには二酸化炭素)は、超臨界状態のガスであることが好ましい。超臨界状態では、樹脂へのガスの溶解度が増大し、高濃度の混入が可能である。また、含浸後の急激な圧力降下時には、上記のように高濃度で含浸することが可能であるため、気泡核の発生が多くなり、その気泡核が成長してできる気泡の密度は気孔率が同じであっても大きくなるため、微細な気泡を得ることができる。例えば、二酸化炭素の臨界温度は31℃、臨界圧力は7.4MPaである。 Furthermore, from the viewpoint of increasing the impregnation rate into the resin composition, the high-pressure gas (particularly inert gas, and further carbon dioxide) is preferably a gas in a supercritical state. In the supercritical state, the solubility of the gas in the resin is increased and high concentration can be mixed. In addition, when the pressure drops suddenly after impregnation, since it is possible to impregnate at a high concentration as described above, the generation of bubble nuclei increases, and the density of bubbles formed by the growth of the bubble nuclei has a porosity. Even if they are the same, they become larger, so that fine bubbles can be obtained. For example, carbon dioxide has a critical temperature of 31 ° C. and a critical pressure of 7.4 MPa.
 発泡剤として高圧のガスを用いる方法により樹脂組成物を発泡又は成形する方法としては、予め樹脂組成物を、シート状などの適宜な形状に成形して未発泡樹脂成形体(未発泡樹脂成形物)とした後、この未発泡樹脂成形体に、高圧のガスを含浸させ、圧力を解放することにより発泡させるバッチ方式が挙げられる。また、樹脂組成物を加圧下、高圧のガスと共に混練し、成形すると同時に圧力を解放し、成形と発泡を同時に行う連続方式が挙げられる。 As a method of foaming or molding a resin composition by a method using a high-pressure gas as a foaming agent, an unfoamed resin molded body (unfoamed resin molded article) is obtained by molding a resin composition into an appropriate shape such as a sheet shape in advance. And a non-foamed resin molded article is impregnated with a high-pressure gas and foamed by releasing the pressure. Moreover, the continuous method which knead | mixes a resin composition with a high pressure gas under pressure, shape | molds it simultaneously, releases pressure, and performs shaping | molding and foaming simultaneously is mentioned.
 バッチ方式で樹脂組成物を発泡又は成形する際に、発泡に供する未発泡樹脂成形体を形成する方法としては、例えば、樹脂組成物を、単軸押出機、二軸押出機等の押出機を用いて成形する方法;樹脂組成物を、ローラ、カム、ニーダ、バンバリ型等の羽根を設けた混練機を使用して均一に混練し、熱板のプレスなどを用いて所定の厚みにプレス成形する方法;樹脂組成物を、射出成形機を用いて成形する方法などが挙げられる。また、未発泡樹脂成形体は、押出成形、プレス成形、射出成形以外に、他の成形方法でも形成することもできる。さらに、未発泡樹脂成形体の形状は、特に限定されず、用途に応じて種々の形状を選択できるが、例えば、シート状、ロール状、板状、塊状等が挙げられる。
 このように、バッチ方式で樹脂組成物を発泡又は成形する際には、所望の形状や厚さの未発泡樹脂成形体が得られる適宜な方法により樹脂組成物を成形することができる。
As a method of forming an unfoamed resin molded body to be used for foaming when foaming or molding a resin composition by a batch method, for example, the resin composition is an extruder such as a single screw extruder or a twin screw extruder. Molding method using a kneading machine equipped with blades such as rollers, cams, kneaders, Banbury molds, etc., and then kneading the resin composition to a predetermined thickness using a hot plate press or the like And a method of molding the resin composition using an injection molding machine. In addition, the unfoamed resin molded body can be formed by other molding methods besides extrusion molding, press molding, and injection molding. Furthermore, the shape of the unfoamed resin molded body is not particularly limited, and various shapes can be selected depending on the application, and examples thereof include a sheet shape, a roll shape, a plate shape, and a lump shape.
Thus, when foaming or molding the resin composition in a batch mode, the resin composition can be molded by an appropriate method that can obtain an unfoamed resin molded body having a desired shape and thickness.
 バッチ方式で樹脂組成物を発泡又は成形する場合、得られた未発泡樹脂成形体を耐圧容器(高圧容器)中に入れて、高圧のガス(特に不活性ガス、さらには二酸化炭素)を注入(導入)し、未発泡樹脂成形体中に高圧のガスを含浸させるガス含浸工程、十分に高圧のガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、樹脂中に気泡核を発生させる減圧工程、場合によっては(必要に応じて)、加熱することによって気泡核を成長させる加熱工程を経て、樹脂中に気泡を形成させる。加熱工程を設けずに、室温で気泡核を成長させてもよい。 When foaming or molding a resin composition by a batch method, the obtained unfoamed resin molded product is placed in a pressure vessel (high pressure vessel) and injected with high pressure gas (especially inert gas or even carbon dioxide) ( Gas) impregnating a non-foamed resin molded body with a high-pressure gas, releasing the pressure when the sufficiently high-pressure gas is impregnated (usually up to atmospheric pressure), and creating bubble nuclei in the resin Bubbles are formed in the resin through a decompression step to be generated, and in some cases (if necessary), a heating step in which bubble nuclei are grown by heating. Bubble nuclei may be grown at room temperature without providing a heating step.
 連続方式での樹脂組成物の発泡又は成形としては、樹脂組成物を、単軸押出機、二軸押出機等の押出機を使用して混練しながら、高圧のガス(特に不活性ガス、さらには二酸化炭素)を注入(導入)し、十分に高圧のガスを樹脂組成物に含浸させる混練含浸工程、押出機の先端に設けられたダイスなどを通して樹脂組成物を押し出すことにより圧力を解放し(通常、大気圧まで)、成形と発泡を同時に行う成形減圧工程により発泡又は成形することが挙げられる。これら混練含浸工程及び成形減圧工程では、押出機のほか、射出成形機などを用いて行うこともできる。また、連続方式での樹脂組成物の発泡又は成形の際には、必要に応じて、加熱することによって気泡を成長させる加熱工程を設けてもよい。 As the foaming or molding of the resin composition in a continuous system, the resin composition is kneaded using an extruder such as a single screw extruder or a twin screw extruder while a high pressure gas (especially an inert gas, Is injected (introduced) carbon dioxide), and the pressure is released by extruding the resin composition through a kneading impregnation step for impregnating the resin composition with a sufficiently high pressure gas, a die provided at the tip of the extruder ( Usually, up to atmospheric pressure), foaming or molding may be performed by a molding decompression step in which molding and foaming are performed simultaneously. In the kneading impregnation step and the molding pressure reduction step, an injection molding machine or the like can be used in addition to the extruder. In addition, when foaming or molding the resin composition in a continuous manner, a heating step for growing bubbles by heating may be provided as necessary.
 バッチ方式又は連続方式のいずれにおいても、気泡を成長させた後、必要により冷水などにより急激に冷却し、形状を固定化してもよい。また、高圧のガスの導入は連続的に行ってもよく不連続的に行ってもよい。気泡核を成長させる際の加熱の方法としては、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの公知の方法を採用することができる。 In either the batch method or the continuous method, after the bubbles are grown, if necessary, the shape may be fixed rapidly by cooling with cold water or the like. The introduction of high-pressure gas may be performed continuously or discontinuously. As a heating method for growing bubble nuclei, known methods such as a water bath, an oil bath, a hot roll, a hot air oven, a far infrared ray, a near infrared ray, and a microwave can be employed.
 また、本発明の樹脂発泡体を製造する場合、バッチ方式又は連続方式のいずれにおいても、上述した工程を経た後又は上述した工程中に延伸することにより、樹脂発泡体に異方性を付与することが必要である。 Moreover, when manufacturing the resin foam of this invention, in either a batch system or a continuous system, after passing through the process mentioned above or extending | stretching in the process mentioned above, anisotropy is provided to a resin foam. It is necessary.
 具体的には、以下の方法で延伸することが好ましい。
 例えば、図3Aに示すように、スリット形状のTダイ又はスリットダイ10からシート状に樹脂を押し出した場合、樹脂が冷却して固化する前に、樹脂シート11を溶融又は半溶融状態でニップロール12に挟み込み、引き取る方法;図3Bに示すように、スリット形状のTダイ又はスリットダイ10からシート状に樹脂を押し出した場合、樹脂が冷却して固化する前に、樹脂シート11をロール13に抱かせて引き取る方法;図3Cに示すように、樹脂シート11が滑らないようにロール13に複数回抱かせて引き取る方法;図3Dに示すように、樹脂シート11が滑らないようにロール13間でニップして引き取る方法;図3Eに示すように、樹脂シート11を、エンドレスベルト14間に挟み込み、両面から接触させて、摩擦により滑らないようにして引き取る方法;図3Fに示すように、エンドレスベルト14上に接触させてベルトと樹脂シート11との摩擦により滑らないようにして引き取る方法などが挙げられる。また、図3Gに示すように、円筒状のダイ20からリング状に樹脂シート11を押し出し、リング状の一か所をカッターなどで切断してシート状に展開したものを、例えば、ニップロール12に挟み込み、引き取る方法などであってもよい。
Specifically, it is preferable to stretch by the following method.
For example, as shown in FIG. 3A, when the resin is extruded into a sheet form from a slit-shaped T die or slit die 10, the nip roll 12 is melted or semi-molten before the resin cools and solidifies. As shown in FIG. 3B, when the resin is extruded from the slit-shaped T die or the slit die 10 into a sheet shape, the resin sheet 11 is held on the roll 13 before the resin cools and solidifies. 3C, as shown in FIG. 3C, a method of holding the resin sheet 11 a plurality of times so that the resin sheet 11 does not slip; and as shown in FIG. 3D, between the rolls 13 so that the resin sheet 11 does not slip. Method of niping and pulling; as shown in FIG. 3E, the resin sheet 11 is sandwiched between the endless belts 14, brought into contact with both sides, and slid by friction. The method taken off manner not; as shown in FIG. 3F, a method of taking up to prevent slipping by friction between the belt and the resin sheet 11 in contact on the endless belt 14 and the like. Further, as shown in FIG. 3G, the resin sheet 11 is extruded from the cylindrical die 20 into a ring shape, and one portion of the ring shape is cut with a cutter or the like and developed into a sheet shape. It may be a method of sandwiching and taking out.
 上述した方法を実施する場合、ロール又はベルトによって樹脂シートが送られる速度を成形速度と定義すると、異方構造を形成するためには、樹脂の押し出し速度と、成形速度との比率を、1:1.2~1:5とすることが好ましい。この範囲とすることにより、樹脂シートが、厚み方向に押しつぶされることがなく、気泡形状を適度に細長い形状とすることが可能となり、空孔率、クッション性及び柔軟性を確保することができる。
 なお、成形速度は、特に限定されるものではなく、安定的に樹脂シートを成形することができること及び生産効率を考慮して、2m/min~100m/minの範囲とすることが好ましい。
When the above-described method is carried out, if the speed at which the resin sheet is fed by a roll or a belt is defined as the molding speed, the ratio of the resin extrusion speed and the molding speed is 1: The ratio is preferably 1.2 to 1: 5. By setting it as this range, the resin sheet is not crushed in the thickness direction, and the bubble shape can be appropriately elongated, and the porosity, cushioning properties and flexibility can be ensured.
The molding speed is not particularly limited, and is preferably in the range of 2 m / min to 100 m / min in consideration of the ability to stably mold the resin sheet and production efficiency.
 また、ロール又はベルトによって樹脂シートをニップする場合、形成した発泡体が厚み方向でつぶれない程度に圧をかけてニップすることが好ましい。 In addition, when the resin sheet is nipped by a roll or a belt, it is preferable to nip by applying pressure so that the formed foam is not crushed in the thickness direction.
 樹脂組成物の発泡又は成形する際のガスの混合量は、特に限定されないが、例えば、樹脂組成物中の樹脂成分全量に対して、好ましくは2~10重量%、より好ましくは2.5~8重量%、さらにより好ましくは3~6重量%である。この範囲とすることにより、成形機内でガスが分離することなく、発泡率の高い発泡体を得ることができる。 The mixing amount of the gas at the time of foaming or molding the resin composition is not particularly limited. For example, it is preferably 2 to 10% by weight, more preferably 2.5 to 2.5%, based on the total amount of the resin components in the resin composition. 8% by weight, still more preferably 3-6% by weight. By setting it as this range, a foam with a high foaming rate can be obtained, without gas separating in a molding machine.
 樹脂組成物の発泡又は成形する際のバッチ方式におけるガス含浸工程や連続方式における混練含浸工程で、ガスを未発泡樹脂成形体や樹脂組成物に含浸させるときの圧力は、ガスの種類や操作性等を考慮して適宜選択できるが、例えば、ガスとして不活性ガスを、特に二酸化炭素を用いる場合には、好ましくは6MPa以上(例えば、6~100MPa)、より好ましくは8MPa以上(例えば、8~100MPa)である。このような圧力に設定することにより、発泡時の気泡成長を適度に制御して、セル径を小さくすることができ、ひいては、良好な防塵効果を与えることができる。これは、ガスの含浸量が適当な量となり、気泡核形成速度を制御して、形成される気泡核数を適度な数に調整することができるためである。また、セル径及び気泡密度の制御が容易となる。 The pressure when impregnating the unfoamed resin molded product or resin composition with the gas impregnation step in the batch method or the kneading impregnation step in the continuous method when foaming or molding the resin composition depends on the type of gas and the operability. For example, when an inert gas, particularly carbon dioxide, is used as the gas, it is preferably 6 MPa or more (for example, 6 to 100 MPa), more preferably 8 MPa or more (for example, 8 to 8). 100 MPa). By setting such a pressure, it is possible to moderately control the bubble growth during foaming, to reduce the cell diameter, and to provide a good dustproof effect. This is because the amount of gas impregnation becomes an appropriate amount, and the number of bubble nuclei formed can be adjusted to an appropriate number by controlling the bubble nucleus formation rate. In addition, the cell diameter and the bubble density can be easily controlled.
 樹脂組成物の発泡又は成形する際のバッチ方式におけるガス含浸工程や連続方式における混練含浸工程で、高圧のガスを未発泡樹脂成形体又は樹脂組成物に含浸させるときの温度は、用いるガス又は樹脂の種類等によって異なり、広い範囲で選択できる。操作性等を考慮した場合、例えば、10~350℃である。バッチ方式において、シート状の未発泡樹脂成形体に高圧のガスを含浸させる場合の含浸温度は、好ましくは10~250℃、より好ましくは40~240℃、さらに好ましくは60~230℃である。また、連続方式において、樹脂組成物に高圧のガスを注入し混練する際の温度は、好ましくは60~350℃、より好ましくは100~320℃、さらに好ましくは150~300℃である。高圧のガスとして二酸化炭素を用いる場合には、超臨界状態を保持するため、含浸時の温度(含浸温度)は32℃以上(特に40℃以上)であることが好ましい。 In the gas impregnation step in the batch method or the kneading impregnation step in the continuous method when foaming or molding the resin composition, the temperature when impregnating the non-foamed resin molded product or resin composition with the high-pressure gas is the gas or resin used. Depending on the type, etc., a wide range can be selected. Considering operability and the like, for example, the temperature is 10 to 350 ° C. In the batch method, the impregnation temperature when impregnating a sheet-like unfoamed resin molded article with high-pressure gas is preferably 10 to 250 ° C, more preferably 40 to 240 ° C, and further preferably 60 to 230 ° C. In the continuous method, the temperature at which the high-pressure gas is injected into the resin composition and kneaded is preferably 60 to 350 ° C., more preferably 100 to 320 ° C., and still more preferably 150 to 300 ° C. When carbon dioxide is used as the high-pressure gas, the temperature during impregnation (impregnation temperature) is preferably 32 ° C. or higher (particularly 40 ° C. or higher) in order to maintain a supercritical state.
 バッチ方式又は連続方式で樹脂組成物を発泡又は成形する際の減圧工程での減圧速度は、特に限定されず、均一な微細気泡を得るため、好ましくは5~300MPa/秒である。加熱工程での加熱温度は、例えば、40~250℃(好ましくは60~250℃)である。 The pressure reduction rate in the pressure reduction step when foaming or molding the resin composition in a batch method or a continuous method is not particularly limited, and is preferably 5 to 300 MPa / second in order to obtain uniform fine bubbles. The heating temperature in the heating step is, for example, 40 to 250 ° C. (preferably 60 to 250 ° C.).
 樹脂組成物の発泡又は成形する際に上記の方法を用いると、高発泡の樹脂発泡体を製造することができ、厚い樹脂発泡体を製造することが可能となる。例えば、連続方式で樹脂組成物の発泡又は成形する場合、混練含浸工程において押出し機内部での圧力を保持するためには、押出し機先端に取り付けるダイスのギャップをできるだけ狭く(通常0.1~1.0mm程度)する。従って、厚い樹脂発泡体を得るためには、狭いギャップを通して押出された樹脂組成物を高い倍率で発泡させる。従来は、高い発泡倍率が得られないことから、形成される樹脂発泡体の厚みは薄いもの(例えば0.5~2.0mm)に限定されていた。これに対して、高圧のガスを用いて樹脂組成物を発泡又は成形することにより、最終的に0.50~5.00mmの厚みの樹脂発泡体を連続して得ることが可能である。 When the above method is used when foaming or molding the resin composition, a highly foamed resin foam can be produced, and a thick resin foam can be produced. For example, when the resin composition is foamed or molded in a continuous manner, in order to maintain the pressure inside the extruder in the kneading impregnation step, the gap of the die attached to the tip of the extruder is as narrow as possible (usually 0.1 to 1). About 0 mm). Therefore, in order to obtain a thick resin foam, the resin composition extruded through a narrow gap is foamed at a high magnification. Conventionally, since a high expansion ratio cannot be obtained, the thickness of the formed resin foam is limited to a thin one (for example, 0.5 to 2.0 mm). In contrast, by foaming or molding the resin composition using a high-pressure gas, it is possible to finally obtain a resin foam having a thickness of 0.50 to 5.00 mm continuously.
 その特性、例えば、見掛け密度、破断強度、破断伸び、気泡サイズ、手切れ性を、用いるガス、熱可塑性樹脂、ゴム成分及び/又は熱可塑性エラストマー成分などの種類に応じて、例えば、ガス含浸工程又は混練含浸工程における温度、圧力、時間などの操作条件、減圧工程又刃成形減圧工程における減圧速度、温度、圧力などの操作条件、減圧後又は成形減圧後の加熱工程における加熱温度などを適宜選択、設定することによっても、調整することができる。 Depending on the type of gas, thermoplastic resin, rubber component and / or thermoplastic elastomer component, the characteristics, such as apparent density, breaking strength, breaking elongation, bubble size, hand tearability, for example, gas impregnation step Alternatively, operating conditions such as temperature, pressure, and time in the kneading impregnation process, pressure reducing speed in the pressure reducing process or blade forming pressure reducing process, operating conditions such as temperature and pressure, heating temperature in the heating process after pressure reduction or molding pressure reduction, etc. are appropriately selected. It can also be adjusted by setting.
 特に、本発明の樹脂発泡体は、熱可塑性樹脂に加えて、造核剤、脂肪族系化合物を少なくとも含む樹脂組成物に、高圧のガス(特に不活性ガス)を含浸させた後、樹脂組成物を減圧する工程を経て形成されていることが好ましい。これにより、平均セル径が小さく、独立気泡構造率の低い気泡構造を有し、高発泡倍率であり、良好な柔軟性を有し、気泡構造が変形又は圧縮しにくく、押圧したときの歪回復性に優れ、加工性に優れる樹脂発泡体を容易に得ることができる。 In particular, the resin foam of the present invention is obtained by impregnating a resin composition containing at least a nucleating agent and an aliphatic compound with a high-pressure gas (particularly an inert gas) in addition to a thermoplastic resin, It is preferably formed through a step of decompressing the product. As a result, it has a cell structure with a small average cell diameter, a low closed cell structure ratio, a high expansion ratio, good flexibility, and the cell structure is difficult to deform or compress, and strain recovery when pressed The resin foam having excellent properties and processability can be easily obtained.
 本発明の樹脂発泡体は、熱可塑性樹脂に加えて、平均粒径が特に小さい造核剤、脂肪族系化合物を少なくとも含む樹脂組成物に、超臨界状態の不活性ガスを含浸させた後、樹脂組成物を減圧し、得られた樹脂発泡体を延伸する工程を経て形成されていることがより好ましい。これにより、平均セル径が極めて小さく、独立気泡構造率の低い気泡構造を有し、高発泡倍率であり、良好な柔軟性を有し、気泡構造が変形又は圧縮しにくく、押圧したときの歪回復性に優れ、造核剤が気泡壁を突き破ることをより抑制でき、さらに、異方性が極めて高いことから、より加工性に優れる樹脂発泡体を容易に得ることができる。 The resin foam of the present invention is obtained by impregnating a supercritical inert gas with a resin composition containing at least a nucleating agent having a particularly small average particle diameter and an aliphatic compound in addition to a thermoplastic resin. It is more preferable that the resin composition is formed through a step of decompressing and stretching the obtained resin foam. As a result, the average cell diameter is extremely small, the cell structure has a low closed cell structure ratio, high foaming ratio, good flexibility, the cell structure is difficult to deform or compress, and distortion when pressed It is excellent in recoverability, can further suppress the nucleating agent from breaking through the cell wall, and furthermore, since the anisotropy is extremely high, it is possible to easily obtain a resin foam having better processability.
 本発明の樹脂発泡体は、熱可塑性樹脂とゴム成分及び/又は熱可塑性エラストマー成分の混合物であり、その割合が、重量基準で、70/30~30/70である熱可塑性樹脂に加えて、該熱可塑性樹脂100重量部に対して0.5~150重量部の造核剤、該熱可塑性樹脂100重量部に対して1~5重量部の脂肪族系化合物を少なくとも含む樹脂組成物に、高圧のガス(特に不活性ガス)を含浸させた後、減圧する工程を経て形成されていることが好ましい。 The resin foam of the present invention is a mixture of a thermoplastic resin and a rubber component and / or a thermoplastic elastomer component, the ratio of which is 70/30 to 30/70 on a weight basis, A resin composition containing at least 0.5 to 150 parts by weight of a nucleating agent with respect to 100 parts by weight of the thermoplastic resin and 1 to 5 parts by weight of an aliphatic compound with respect to 100 parts by weight of the thermoplastic resin, It is preferably formed through a step of depressurizing after impregnating with a high-pressure gas (particularly an inert gas).
 〔発泡シール材〕
 本発明の発泡シール材は、上記樹脂発泡体を含む部材である。発泡シール材の形状は、特に限定されないが、シート状(フィルム状を含む)が好ましい。発泡シール材は、例えば、樹脂発泡体のみからなる構成であってもよいし、樹脂発泡体に、粘着剤層、基材層などが積層されている構成であってもよい。
[Foamed sealing material]
The foam sealing material of this invention is a member containing the said resin foam. Although the shape of a foaming sealing material is not specifically limited, A sheet form (a film form is included) is preferable. For example, the foamed sealing material may be configured only by a resin foam, or may be configured such that an adhesive layer, a base material layer, and the like are laminated on the resin foam.
 特に、本発明の発泡シール材は、粘着層を有することが好ましい。例えば、本発明の発泡シール材がシート状の発泡シール材である場合、その片面又は両面に粘着層を有していてもよい。発泡シール材が粘着層を有していると、例えば、発泡シール材上に粘着層を介して加工用台紙を設けることができ、さらに、被着体へ固定、仮止め等することができる。 In particular, the foamed sealing material of the present invention preferably has an adhesive layer. For example, when the foamed sealing material of the present invention is a sheet-like foamed sealing material, it may have an adhesive layer on one side or both sides. When the foamed sealing material has an adhesive layer, for example, a processing mount can be provided on the foamed sealing material via the adhesive layer, and further, it can be fixed or temporarily fixed to the adherend.
 粘着層を形成する粘着剤としては、特に限定されず、例えば、アクリル系粘着剤、ゴム系粘着剤(天然ゴム系粘着剤、合成ゴム系粘着剤など)、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、ポリアミド系粘着剤、エポキシ系粘着剤、ビニルアルキルエーテル系粘着剤、フッ素系粘着剤などの公知の粘着剤を適宜選択して用いることができる。粘着剤は、単独で又は2種以上組み合わせて使用することができる。なお、粘着剤は、エマルジョン系粘着剤、溶剤系粘着剤、ホットメルト型粘着剤、オリゴマー系粘着剤、固系粘着剤などのいずれの形態の粘着剤であってもよい。なかでも、粘着剤としては、被着体への汚染防止などの観点から、アクリル系粘着剤が好ましい。 The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited. For example, acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive (natural rubber-based pressure-sensitive adhesive, synthetic rubber-based pressure-sensitive adhesive, etc.), silicone-based pressure-sensitive adhesive, and polyester-based pressure-sensitive adhesive. In addition, known pressure-sensitive adhesives such as urethane pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, and fluorine-based pressure-sensitive adhesives can be appropriately selected and used. An adhesive can be used individually or in combination of 2 or more types. The pressure-sensitive adhesive may be any type of pressure-sensitive adhesive such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, a hot-melt pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, and a solid-type pressure-sensitive adhesive. Among these, as the pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of preventing contamination of the adherend.
 粘着層の厚みは、好ましくは2~100μm、より好ましくは10~100μmである。粘着層は、薄層であるほど、端部のゴミや埃の付着を防止する効果が高いため、厚みは薄い方が好ましい。
 粘着材層は、単層、積層体のいずれの形態を有していてもよいし、発泡性又は非発泡性のいずれであってもよい。なかでも、非発泡性の粘着材層が好ましい。
The thickness of the adhesive layer is preferably 2 to 100 μm, more preferably 10 to 100 μm. The thinner the adhesive layer, the higher the effect of preventing the adhesion of dust and dirt at the end, and thus the thinner the adhesive layer, the better.
The pressure-sensitive adhesive layer may have any form of a single layer or a laminate, and may be foamable or non-foamable. Of these, a non-foaming pressure-sensitive adhesive layer is preferable.
 本発明の発泡シール材において、粘着材層は、他の層(下層)を介して、設けられていてもよい。このような下層としては、例えば、他の粘着材層、中間層、下塗り層、基材層(特にフィルム層、不織布層など)などが挙げられる。下層は、発泡性の層であってもよいし、多孔質の層であってもよいが、非発泡性の層であることが好ましく、樹脂層であることがより好ましい。
 粘着材層は、剥離フィルム(セパレーター、例えば、剥離紙、剥離フィルムなど)により保護されていてもよい。
In the foamed sealing material of the present invention, the pressure-sensitive adhesive layer may be provided via another layer (lower layer). Examples of such a lower layer include other pressure-sensitive adhesive layers, intermediate layers, undercoat layers, base material layers (particularly film layers, nonwoven fabric layers, etc.) and the like. The lower layer may be a foamable layer or a porous layer, but is preferably a non-foamable layer, more preferably a resin layer.
The adhesive layer may be protected by a release film (separator, for example, release paper, release film, etc.).
 本発明の発泡シール材は、本発明の樹脂発泡体を含むため、良好な防塵性、特に良好な動的防塵性を有し、微小なクリアランスに対して追従可能な柔軟性を有する。 Since the foamed sealing material of the present invention contains the resin foam of the present invention, it has good dust resistance, particularly good dynamic dust resistance, and has flexibility to follow a minute clearance.
 本発明の発泡シール材は、所望の形状や厚みなどを有するように加工が施されていてもよい。例えば、用いられる装置や機器、筐体、部材等に合わせて種々の形状に加工が施されていてもよい。 The foamed sealing material of the present invention may be processed so as to have a desired shape and thickness. For example, various shapes may be processed according to the device, equipment, casing, member, and the like used.
 本発明の発泡シール材は、各種部材又は部品を、所定の部位に取り付ける(装着する)際に用いられる部材として好適に用いられる。特に、本発明の発泡シール材は、電気又は電子機器において、電気又は電子機器を構成する部品を所定の部位に取り付ける(装着する)際に用いられる部材として好適である。 The foamed sealing material of the present invention is suitably used as a member used when various members or parts are attached (attached) to a predetermined site. In particular, the foamed sealing material of the present invention is suitable as a member used when attaching (attaching) a component constituting an electric or electronic device to a predetermined site in an electric or electronic device.
 発泡部材を利用して取付又は装着可能な各種部材又は部品としては、特に限定されず、例えば、電気又は電子機器類における各種部材又は部品などが挙げられる。このような電気又は電子機器用の部材又は部品としては、例えば、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に装着される画像表示部材(表示部)(特に、小型の画像表示部材)、いわゆる「携帯電話」や「携帯情報端末」等の移動体通信の装置に装着されるカメラやレンズ(特に、小型のカメラやレンズ)等の光学部材又は光学部品などが挙げられる。 The various members or parts that can be attached or mounted using the foamed member are not particularly limited, and examples thereof include various members or parts in electrical or electronic devices. Examples of such a member or component for electric or electronic equipment include an image display member (display unit) (particularly a small image display member) mounted on an image display device such as a liquid crystal display, an electroluminescence display, or a plasma display. ), Optical members or optical components such as cameras and lenses (particularly small cameras and lenses) mounted on mobile communication devices such as so-called “mobile phones” and “portable information terminals”.
 本発明の発泡シール材の好適な具体的使用態様としては、例えば、防塵、遮光、緩衝等を目的として、LCD(液晶ディスプレイ)等の表示部周り、LCD(液晶ディスプレイ)等の表示部と筐体(窓部)との間に挟み込んで使用するものが挙げられる。
 本発明の発泡シール材を、このような部材又は部品に取り付ける場合には、そのクリアランスを塞ぐように取り付けることが好ましく、このクリアランスとしては、特に限定されず、例えば、0.05~0.5mm程度が挙げられる。
 以下、本発明の熱可塑性樹脂発泡体及び発泡シール材を、実施例に基づいて説明する。
For example, the foamed sealing material of the present invention is preferably used around the display unit such as an LCD (liquid crystal display) and the display unit such as an LCD (liquid crystal display) and a housing for the purpose of dust prevention, light shielding, buffering, and the like. What is inserted and used between a body (window part) is mentioned.
When the foamed sealing material of the present invention is attached to such a member or part, it is preferably attached so as to close the clearance. The clearance is not particularly limited, and is, for example, 0.05 to 0.5 mm. Degree.
Hereinafter, the thermoplastic resin foam and foamed sealing material of the present invention will be described based on examples.
 (実施例1)
 樹脂組成物として、
 ポリプロピレン   35重量部、
 熱可塑性エラストマー組成物   60重量部、
 滑剤   5重量部、
 造核剤   10重量部及び
 エルカ酸アミド(融点80~85℃)   2重量部を、二軸混練機にて200℃の温度で混練した。
Example 1
As a resin composition,
35 parts by weight of polypropylene,
60 parts by weight of a thermoplastic elastomer composition,
5 parts by weight of lubricant,
Ten parts by weight of the nucleating agent and 2 parts by weight of erucic acid amide (melting point: 80 to 85 ° C.) were kneaded at a temperature of 200 ° C. with a twin-screw kneader.
 ここで、ポリプロピレンは、メルトフローレート(MFR)が0.35g/10minの樹脂、
 熱可塑性エラストマー組成物は、カーボンブラックを16.7重量%含み、ポリプロピレン(PP)とエチレン/プロピレン/5-エチリデン-2-ノルボルネン三元共重合体(EPT)とのブレンド物(架橋型オレフィン系熱可塑性エラストマー、TPV)、ポリプロピレン:エチレン/プロピレン/5-エチリデン-2-ノルボルネン三元共重合体=10:90(重量基準)、
 滑剤は、ステアリン酸モノグリセリド1重量部にポリエチレン10重量部を配合したマスターバッチ、
 造核剤は、平均粒子径が0.8μmの水酸化マグネシウムである。
Here, polypropylene is a resin having a melt flow rate (MFR) of 0.35 g / 10 min,
The thermoplastic elastomer composition contains 16.7% by weight of carbon black, and is a blend of polypropylene (PP) and ethylene / propylene / 5-ethylidene-2-norbornene terpolymer (EPT) (crosslinked olefin type). Thermoplastic elastomer, TPV), polypropylene: ethylene / propylene / 5-ethylidene-2-norbornene terpolymer = 10: 90 (weight basis),
The lubricant is a master batch in which 1 part by weight of stearic acid monoglyceride is blended with 10 parts by weight of polyethylene,
The nucleating agent is magnesium hydroxide having an average particle size of 0.8 μm.
 その後、樹脂組成物をストランド状に押出し、水冷し、ペレット状に切断して成形した。
 このペレットを、日本製鋼所社製のタンデム型単軸押出機に投入し、220℃の雰囲気下、14(注入後18)MPaの圧力で、二酸化炭素ガスを3.8重量%注入した。二酸化炭素ガスを十分飽和させ、発泡に適した温度まで冷却した。その後、ダイから押出して、異方構造を得るために、樹脂の押し出し速度と成形速度の比率が1:1.2~1:2範囲内になるように調整し、発泡体がライン内でたるまないようにして、厚み1mmとなるように調整して、シート状の樹脂発泡体を得た。この樹脂発泡体は、引張弾性率が9.3MPaであり、独立気泡率が32%の半連続半独立気泡構造を有していた。
Thereafter, the resin composition was extruded into strands, cooled with water, cut into pellets, and molded.
This pellet was put into a tandem type single screw extruder manufactured by Nippon Steel Works Co., Ltd., and 3.8% by weight of carbon dioxide gas was injected under an atmosphere of 220 ° C. under a pressure of 14 (18 after injection) MPa. Carbon dioxide gas was sufficiently saturated and cooled to a temperature suitable for foaming. After that, in order to extrude from the die and obtain an anisotropic structure, the ratio of the resin extrusion speed to the molding speed is adjusted to be within the range of 1: 1.2 to 1: 2, and the foam is slack in the line. The sheet-shaped resin foam was obtained by adjusting the thickness to 1 mm. This resin foam had a semi-continuous semi-closed cell structure with a tensile modulus of 9.3 MPa and a closed cell rate of 32%.
 (実施例2)
 厚み0.5mmとなるように調整した以外、実質的に実施例1と同様にシート状の樹脂発泡体を製造した。この樹脂発泡体は、独立気泡率が32%の半連続半独立気泡構造を有していた。0.5Nにおける延展性は3.7%であり、1.0Nにおける延展性は7.2%であった。
(Example 2)
A sheet-like resin foam was produced in substantially the same manner as in Example 1 except that the thickness was adjusted to 0.5 mm. This resin foam had a semi-continuous semi-closed cell structure with a closed cell rate of 32%. The extensibility at 0.5N was 3.7%, and the extensibility at 1.0N was 7.2%.
 (比較例1)
 等方的なフォームとして、ウレタンフォーム(主成分:ポリウレタン、シート状、平均セル径:229μm、見掛け密度:0.24g/cm3)を準備した。
(Comparative Example 1)
Urethane foam (main component: polyurethane, sheet, average cell diameter: 229 μm, apparent density: 0.24 g / cm 3 ) was prepared as an isotropic foam.
 (独立気泡率の測定方法)
 実施例及び比較例で得られた樹脂発泡体の独立気泡率は、以下の方法に従って測定した。
 得られた樹脂発泡体から、一定厚みで、一辺5cmの平面正方形状の試験片を切り出す。続いて、この試験片の重量W1(g)及び厚み(cm)を測定して、試験片の見掛け体積V1(cm)を算出する。
 次に、得られた値を式(1)に代入し、気泡の占める見掛け体積V2(cm)を算出する。なお、試験片を構成する樹脂の密度をρg/cmとする。
 気泡の占める見掛け体積V2=V1-W1/ρ     (1)
 続いて、この試験片を23℃の蒸留水中に、試験片の上面から水面までの距離が40mmとなるように沈め、24時間放置する。その後、試験片を蒸留水中から取り出して、試験片の表面に付着した水分を除去する。得られた試験片の重量W2(g)を測定し、式(2)に基づいて、連続気泡率F1を算出する。この連続気泡率F1から独立気泡率F2を求める。
 連続気泡率F1=100×(W2-W1)/V2     (2)
 独立気泡率F2=100-F1            (3) 
(Measurement method of closed cell ratio)
The closed cell ratio of the resin foams obtained in Examples and Comparative Examples was measured according to the following method.
From the obtained resin foam, a flat square test piece having a constant thickness and a side of 5 cm is cut out. Subsequently, the weight W1 (g) and thickness (cm) of the test piece are measured, and the apparent volume V1 (cm 3 ) of the test piece is calculated.
Next, the obtained value is substituted into the formula (1), and the apparent volume V2 (cm 3 ) occupied by the bubbles is calculated. The density of the resin constituting the test piece is ρg / cm 3 .
Apparent volume occupied by bubbles V2 = V1−W1 / ρ (1)
Subsequently, the test piece is submerged in distilled water at 23 ° C. so that the distance from the upper surface of the test piece to the water surface is 40 mm and left for 24 hours. Then, a test piece is taken out from distilled water and the water | moisture content adhering to the surface of the test piece is removed. The weight W2 (g) of the obtained test piece is measured, and the open cell ratio F1 is calculated based on the formula (2). The closed cell rate F2 is obtained from the open cell rate F1.
Open cell ratio F1 = 100 × (W2−W1) / V2 (2)
Closed cell ratio F2 = 100−F1 (3)
 (引張弾性率)
 JIS K 6767に準拠した引張試験を実施し、得られた応力歪曲線における弾性領域下での傾きにより、下記式に基づいて算出した。つまり、応力歪曲線における弾性領域下、応力とこれに対応する歪との比により求めた。
 引張弾性率(MPa)=応力/歪
(Tensile modulus)
The tensile test based on JISK6767 was implemented, and it calculated based on the following formula by the inclination under the elastic region in the obtained stress strain curve. That is, it was obtained by the ratio of the stress and the corresponding strain under the elastic region in the stress strain curve.
Tensile modulus (MPa) = stress / strain
 (延展性)
 A.延展性(0.5N)
 樹脂発泡体をMD方向に切り出し、厚さ0.5mm、幅3mm、長さ30mmのシート状の試験片を作製した。試験片の長さ方向の一端を固定した状態で、0.5Nの荷重で試験片を、長さ方向に延伸し、延伸後の試験片の長さを測定した。以下の式に基づいて、延展性(%)を求めた。
 延展性(%)=100×[(延伸後の試験片の長さ)-(初期の試験片の長さ)]/(初期の試験片の長さ)
 延展性(0.5N)は、5.0%以下であると延びにくく、良好であると判断できる。
 B.延展性(1.0N)
 荷重を1.0Nとした以外は、延展性(0.5N)と同様に延展性(%)を求めた。
 延展性(1.0N)は、10.0%以下であると延びにくく、良好であると判断できる。
(Extensible)
A. Extensibility (0.5N)
The resin foam was cut out in the MD direction to prepare a sheet-like test piece having a thickness of 0.5 mm, a width of 3 mm, and a length of 30 mm. With one end in the length direction of the test piece fixed, the test piece was stretched in the length direction with a load of 0.5 N, and the length of the test piece after stretching was measured. Based on the following formula, spreadability (%) was determined.
Spreadability (%) = 100 × [(length of test piece after stretching) − (length of initial test piece)] / (length of initial test piece)
If the stretchability (0.5N) is 5.0% or less, it is difficult to extend, and it can be determined that it is good.
B. Extensibility (1.0N)
Except for the load being 1.0 N, extensibility (%) was determined in the same manner as extensibility (0.5 N).
If the stretchability (1.0 N) is 10.0% or less, it is difficult to extend, and it can be determined that it is good.
 (評価)
 実施例及び比較例の樹脂発泡体のシートについて、以下の評価を行った。その結果を表1に示す。
(Evaluation)
The following evaluation was performed about the sheet | seat of the resin foam of an Example and a comparative example. The results are shown in Table 1.
 (見掛け密度の測定方法)
 樹脂発泡体を、20mm×20mmに切り出したサンプルを用いて、密度計にてサンプルの重量と、浮力とから発泡体の見掛け密度(g/cm3)を算出した。
(Apparent density measurement method)
Using the sample obtained by cutting the resin foam into 20 mm × 20 mm, the apparent density (g / cm 3 ) of the foam was calculated from the weight of the sample and the buoyancy with a density meter.
 (最大破断強度Smax及び破断強度Smin/破断伸びSSmax及びSSminの測定方法)
 まず、樹脂発泡体の任意の方向(例えば、方向A)での破断強度を測定し、さらにその方向Aの軸上に中心Xを設定し、この中心Xに対してに10°ずつ軸を回転させ、各軸が示す各方向での破断強度を測定した(合計18方向)。その中から、最も破断強度の大きな方向における破断強度を選択して、これを最大破断強度Smaxとした。
 なお、実施例の樹脂発泡体では、最大破断強度Smaxを示す方向はMD方向と一致していた。従って、最大破断強度を示す方向に直交する方向はTD方向と一致する。
 破断強度は、樹脂発泡体をダンベル1号に打ち抜き、チャック間距離50mm、引っ張り速度500mm/minで引張試験を実施し、破断点での強度及び伸びを測定し、5点の平均値を算出し、それぞれ破断強度及び破断伸びとした。
(Maximum breaking strength Smax and breaking strength Smin / breaking elongation SSmax and SSmin measurement method)
First, the breaking strength in an arbitrary direction (for example, direction A) of the resin foam is measured, and a center X is set on the axis in the direction A, and the axis is rotated by 10 ° with respect to the center X. The breaking strength in each direction indicated by each axis was measured (18 directions in total). Among them, the breaking strength in the direction with the largest breaking strength was selected, and this was set as the maximum breaking strength Smax.
In the resin foam of the example, the direction showing the maximum breaking strength Smax coincided with the MD direction. Therefore, the direction orthogonal to the direction showing the maximum breaking strength coincides with the TD direction.
For the breaking strength, a resin foam was punched into dumbbell No. 1, a tensile test was performed at a distance between chucks of 50 mm and a pulling speed of 500 mm / min, the strength and elongation at the breaking point were measured, and an average value of five points was calculated. , The breaking strength and elongation at break, respectively.
 (気泡サイズの測定方法)
 樹脂発泡体の後述する最大破断強度方向と、この方向に対する直交方向とに平行に、カッターにて樹脂発泡体の主面に対してそれぞれ垂直方向(厚み方向)に切断し、平滑な断面を作成した。
 これら断面をキーエンスマイクロスコープ(例えば、商品名「VHX-600」キーエンス株式会社製)に取り込み、同計測器の解析ソフト(三谷商事(株)製:Win ROOF)を用いて、画像解析した。樹脂発泡体3000μm×2500μmでの計測範囲内で、画像の画素面積から直径換算して気泡径として計測し、それら気泡径が大きいものから10点を抽出し、その平均を求め、これを気泡サイズとした。
(Measurement method of bubble size)
Cut the resin foam in a direction perpendicular to the main surface of the resin foam (thickness direction) in parallel with the maximum breaking strength direction, which will be described later, and the direction perpendicular to this direction, and create a smooth cross section. did.
These cross sections were taken into a Keyence microscope (for example, trade name “VHX-600” manufactured by Keyence Corporation), and image analysis was performed using the analysis software (Mitani Corporation, Win ROOF) of the same instrument. Within the measurement range of resin foam 3000μm × 2500μm, measure the diameter from the pixel area of the image as the bubble diameter, extract 10 points from those with a large bubble diameter, find the average, and calculate the bubble size It was.
 (手切れ性)
 図1に示すように、幅40mm及び長さ100mmのサンプル1を作製し、このサンプル1に、長手方向と平行に幅20mmの位置で50mmまで切れ込み1aを入れた。このサンプル1を、図2に示したように、引張試験機の把持部2に固定した後、引張速度500mm/minで、サンプル1が破断して分離するまでZ方向に引張り、サンプル1の直線的な切れ性を、目視により判断した。切れ込み位置から破断した端部までの位置のずれ(図1中、Q)が5mm以内(20%)の場合に手切れ性が良と評価した。
Figure JPOXMLDOC01-appb-T000001
(Hand cutting)
As shown in FIG. 1, a sample 1 having a width of 40 mm and a length of 100 mm was produced, and a cut 1a was cut into the sample 1 up to 50 mm at a position of a width of 20 mm in parallel with the longitudinal direction. As shown in FIG. 2, after fixing the sample 1 to the grip 2 of the tensile tester, the sample 1 was pulled in the Z direction at a tensile speed of 500 mm / min until the sample 1 was broken and separated. The sharpness was judged visually. When the position shift (Q in FIG. 1) from the cut position to the broken end was within 5 mm (20%), the hand cutting performance was evaluated as good.
Figure JPOXMLDOC01-appb-T000001
 表1によれば、実施例1及び2の樹脂発泡体は、Smax/Sminの値が大きく、特定方向へのせん断破壊に著しい異方性を有し、よって、良好な加工性を実現できることが確認された。 According to Table 1, the resin foams of Examples 1 and 2 have a large value of Smax / Smin and have significant anisotropy in shear fracture in a specific direction, and therefore, good workability can be realized. confirmed.
 本発明は、断熱材、食品包装材、衣用材、建材、電子機器等の内部絶縁体、緩衝材、遮音材、防塵材、衝撃吸収材、遮光材、等として有用な、柔軟性、クッション性及び加工性に優れ、高発泡倍率を有する樹脂発泡体及び発泡シール材であり、種々の部材に広く利用することができる。 The present invention is useful as a heat insulating material, food packaging material, clothing material, building material, internal insulator such as electronic equipment, cushioning material, sound insulating material, dustproof material, shock absorbing material, light shielding material, etc., flexibility, cushioning property, etc. In addition, it is a resin foam and a foam sealing material that have excellent workability and a high expansion ratio, and can be widely used for various members.
 1 サンプル
 2 把持部
 10 Tダイ又はスリットダイ
 11 樹脂シート
 12 ニップロール
 20 樹脂発泡体
 21 ローラ
DESCRIPTION OF SYMBOLS 1 Sample 2 Gripping part 10 T die or slit die 11 Resin sheet 12 Nip roll 20 Resin foam 21 Roller

Claims (11)

  1.  熱可塑性樹脂を含む樹脂発泡体であって、
     該発泡体の最大破断強度Smaxが0.1MPa~3MPaであり、かつ
     該最大破断強度Smaxと、最大破断強度を示す方向に対する直交方向における破断強度Sminとの比Smax/Sminが1.5~6であることを特徴とする樹脂発泡体。
    A resin foam containing a thermoplastic resin,
    The foam has a maximum breaking strength Smax of 0.1 MPa to 3 MPa, and a ratio Smax / Smin between the maximum breaking strength Smax and a breaking strength Smin in a direction perpendicular to the direction showing the maximum breaking strength is 1.5 to 6 The resin foam characterized by being.
  2.  前記最大破断強度を示す方向での破断伸びSSmaxが200%以下であり、
     前記最大破断強度を示す方向での破断伸びSSmaxと、最大破断強度を示す方向に対する直交方向における破断伸びSSminとの破断伸び比SSmax/SSminが1.5~6である請求項1記載の樹脂発泡体。
    The elongation at break SSmax in the direction showing the maximum breaking strength is 200% or less,
    The resin foam according to claim 1, wherein a breaking elongation ratio SSmax / SSmin between a breaking elongation SSmax in the direction showing the maximum breaking strength and a breaking elongation SSmin in a direction perpendicular to the direction showing the maximum breaking strength is 1.5 to 6. body.
  3.  前記最大破断強度を示す方向での気泡サイズCmaxと、最大破断強度を示す方向に対する直交方向における気泡サイズCminとの比Cmax/Cminが1.2~5である請求項1又は2記載の樹脂発泡体。 The resin foam according to claim 1 or 2, wherein a ratio Cmax / Cmin between the bubble size Cmax in the direction showing the maximum breaking strength and the bubble size Cmin in the direction orthogonal to the direction showing the maximum breaking strength is 1.2 to 5. body.
  4.  見掛け密度が0.01~0.2g/cm3である請求項1~3いずれか1つに記載の樹脂発泡体。 The resin foam according to any one of claims 1 to 3, wherein an apparent density is 0.01 to 0.2 g / cm 3 .
  5.  高圧ガスが含浸された熱可塑性樹脂組成物の減圧処理によって得られる請求項1~4のいずれか1つに記載の熱可塑性樹脂発泡体。 The thermoplastic resin foam according to any one of claims 1 to 4, obtained by decompression treatment of a thermoplastic resin composition impregnated with a high-pressure gas.
  6.  前記ガスが、不活性ガスである請求項5記載の樹脂発泡体。 The resin foam according to claim 5, wherein the gas is an inert gas.
  7.  前記不活性ガスが、二酸化炭素又は窒素である請求項6記載の樹脂発泡体。 The resin foam according to claim 6, wherein the inert gas is carbon dioxide or nitrogen.
  8.  前記ガスが、超臨界状態のガスである請求項5~7のいずれか1つに記載の樹脂発泡体。 The resin foam according to any one of claims 5 to 7, wherein the gas is a gas in a supercritical state.
  9.  請求項1~8のいずれか1つに記載の樹脂発泡体を含むことを特徴とする発泡シール材。 A foamed sealing material comprising the resin foam according to any one of claims 1 to 8.
  10.  発泡体の片面又は両面に配置された粘着層を備える請求項9記載の発泡シール材。 The foaming sealing material of Claim 9 provided with the adhesion layer arrange | positioned at the single side | surface or both surfaces of a foam.
  11.  粘着層が、フィルム層を介して樹脂発泡体表面に配置されている請求項10記載の発泡シール材。 The foamed sealing material according to claim 10, wherein the adhesive layer is disposed on the surface of the resin foam via a film layer.
PCT/JP2013/064872 2012-05-31 2013-05-29 Thermoplastic resin foam and foam-based sealing material WO2013180162A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380028080.5A CN104364303A (en) 2012-05-31 2013-05-29 Thermoplastic resin foam and foam-based sealing material
KR1020147023642A KR102174106B1 (en) 2012-05-31 2013-05-29 Thermoplastic resin foam and foam-based sealing material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012123832 2012-05-31
JP2012-123832 2012-05-31
JP2013111650A JP6039505B2 (en) 2012-05-31 2013-05-28 Thermoplastic resin foam, method for producing the same, and foam sealing material
JP2013-111650 2013-05-28

Publications (1)

Publication Number Publication Date
WO2013180162A1 true WO2013180162A1 (en) 2013-12-05

Family

ID=49673350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064872 WO2013180162A1 (en) 2012-05-31 2013-05-29 Thermoplastic resin foam and foam-based sealing material

Country Status (4)

Country Link
JP (1) JP6039505B2 (en)
KR (1) KR102174106B1 (en)
CN (1) CN104364303A (en)
WO (1) WO2013180162A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6310608B1 (en) * 2017-06-30 2018-04-11 古河電気工業株式会社 Electrical wire exterior body and wire harness with exterior body
CN115304836B (en) * 2022-09-13 2023-07-25 普莱斯德集团股份有限公司 Low-sulfur rubber-plastic sponge product and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318049A (en) * 1988-06-16 1989-12-22 Toray Ind Inc Microporous polyolefin film
WO2005097468A1 (en) * 2004-04-09 2005-10-20 Mitsui Chemicals, Inc. Process for production of stretched films and stretched films produced by the process
JP2007100056A (en) * 2005-10-07 2007-04-19 Mitsui Chemicals Inc Method for producing porous film and porous film
JP2007161865A (en) * 2005-12-13 2007-06-28 Mitsubishi Plastics Ind Ltd Method for producing porous body and porous body
JP2013036026A (en) * 2011-07-14 2013-02-21 Nitto Denko Corp Resin foam and foam sealing material
WO2013054620A1 (en) * 2011-10-11 2013-04-18 日東電工株式会社 Resin foam sheet and resin foam composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378624B2 (en) 2004-02-10 2009-12-09 株式会社イノアックコーポレーション Manufacturing method of sealing member
WO2006090687A1 (en) * 2005-02-24 2006-08-31 The Yokohama Rubber Co., Ltd. Composition for foam and foam
JP5121243B2 (en) 2006-03-30 2013-01-16 Jsr株式会社 Polyolefin resin foam and production method thereof
CN104334620A (en) * 2012-05-28 2015-02-04 日东电工株式会社 Thermoplastic resin foam and foam sealant
JP6039501B2 (en) * 2012-05-28 2016-12-07 日東電工株式会社 Resin foam and foam member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318049A (en) * 1988-06-16 1989-12-22 Toray Ind Inc Microporous polyolefin film
WO2005097468A1 (en) * 2004-04-09 2005-10-20 Mitsui Chemicals, Inc. Process for production of stretched films and stretched films produced by the process
JP2007100056A (en) * 2005-10-07 2007-04-19 Mitsui Chemicals Inc Method for producing porous film and porous film
JP2007161865A (en) * 2005-12-13 2007-06-28 Mitsubishi Plastics Ind Ltd Method for producing porous body and porous body
JP2013036026A (en) * 2011-07-14 2013-02-21 Nitto Denko Corp Resin foam and foam sealing material
WO2013054620A1 (en) * 2011-10-11 2013-04-18 日東電工株式会社 Resin foam sheet and resin foam composite

Also Published As

Publication number Publication date
CN104364303A (en) 2015-02-18
KR20150027031A (en) 2015-03-11
KR102174106B1 (en) 2020-11-04
JP2014005452A (en) 2014-01-16
JP6039505B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
KR102121184B1 (en) Resin foam sheet and resin foam composite
KR101632878B1 (en) Expanded polyolefin resin sheet, method for producing same, and use of same
TWI598275B (en) Resin foam and foam sealing material
WO2013183662A1 (en) Resin foam and foaming material
KR102209173B1 (en) Resin foam and foam sealing material
KR102097950B1 (en) Resin foam sheet and resin foam member
WO2008041617A1 (en) Polyolefin resin foam and process for production thereof
US20130079430A1 (en) Resin composition for polyolefin resin foam, polyolefin resin foam and foamed sealing material
JP6110213B2 (en) Thermoplastic resin foam, foam sealing material, and method for producing thermoplastic resin foam
TWI520996B (en) Polyolefin series resin foam and polyolefin series resin foamed dust-proof material using same
WO2013187372A1 (en) Resin foam and foamed sealing material
JP6039505B2 (en) Thermoplastic resin foam, method for producing the same, and foam sealing material
WO2013168798A1 (en) Resin foam and foam sealing material
KR20120103576A (en) Low dielectric sheet for 2-d communication, production method therefor, and sheet structure for communication
JP6181248B2 (en) Resin foam, method for producing the same, and foam sealing material
JP6986121B2 (en) Winding body of resin foam sheet
JP6533608B2 (en) Resin foam composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023642

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797725

Country of ref document: EP

Kind code of ref document: A1