WO2013168798A1 - Resin foam and foam sealing material - Google Patents

Resin foam and foam sealing material Download PDF

Info

Publication number
WO2013168798A1
WO2013168798A1 PCT/JP2013/063164 JP2013063164W WO2013168798A1 WO 2013168798 A1 WO2013168798 A1 WO 2013168798A1 JP 2013063164 W JP2013063164 W JP 2013063164W WO 2013168798 A1 WO2013168798 A1 WO 2013168798A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin foam
resin
thickness
foam
compression
Prior art date
Application number
PCT/JP2013/063164
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 誠
逸大 畑中
和通 加藤
清明 児玉
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201380024698.4A priority Critical patent/CN104284927A/en
Publication of WO2013168798A1 publication Critical patent/WO2013168798A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/06Flexible foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers

Definitions

  • the present invention relates to a resin foam and a foam sealing material.
  • resin foam has been used as a gasket material for mobile phones and portable information terminals.
  • the resin foam include a low-foam urethane resin foam of fine cells having an open-cell structure, a compression-molded high-foam urethane, and a polyethylene resin foam having closed cells and an expansion ratio of about 30 times, density A polyolefin-based resin foam (see Patent Documents 1 and 2) having a weight of 0.2 g / cm 3 or less has been proposed.
  • Such a resin foam is usually applied as a gasket material for mobile phones and portable information terminals by being processed into a predetermined shape and fixed to a predetermined part of these devices.
  • a dent may be caused by colliding with a corner of a desk, a roll core or the like, or by gripping with a fingertip, a nail, tweezers or the like.
  • Such dents in the resin foam generally recover over time, but on the other hand, if it takes a long time to recover the dent, or if the dent recovery itself is insufficient, a gasket material is used. Cannot fully fulfill its original function.
  • the present inventors have made the resin foam a thickness recovery rate of a predetermined value or more and further reduce the repulsive stress during compression in a low temperature environment.
  • both instantaneous recovery and shock absorption can be achieved, and both of them can be improved, and the present invention has been completed.
  • the recovery speed after compression is high, it will be easy to follow the deformation
  • it is a flexible property even in a low temperature environment, it exhibits a flexible property and exhibits a high impact absorbing performance against high-speed deformation in which the molecular motion of the resin material is restricted.
  • the present invention includes the following inventions.
  • Resin foam having a thickness recovery rate at 23 ° C. defined below of 50% or more and a rebound stress at 50% compression of ⁇ 10 ° C. defined below of less than 10.0 N / cm 2 body.
  • Thickness recovery rate The ratio of the thickness of the resin foam to the initial thickness after releasing the compressed state after compressing the resin foam in the thickness direction for 1 minute at a thickness of 20% with respect to the initial thickness.
  • Repulsive stress at 50% compression Repulsive load when the resin foam is compressed in the thickness direction to a thickness of 50% with respect to the initial thickness.
  • the resin foam according to (1) having an average cell diameter of 10 to 200 ⁇ m and an apparent density of 0.01 to 0.20 g / cm 3 .
  • the resin foam according to any one of (1) to (3) which is obtained by decompression treatment of a resin composition impregnated with a high-pressure gas.
  • the resin foam according to (4), wherein the gas is an inert gas.
  • the resin foam according to (5), wherein the inert gas is carbon dioxide.
  • the resin foam according to any one of (4) to (6), wherein the gas is a gas in a supercritical state.
  • a foamed sealing material comprising the resin foam according to any one of (1) to (7) above.
  • the foamed sealing material according to (8) comprising a pressure-sensitive adhesive layer disposed on one side or both sides of the resin foam.
  • a resin foam and a foam sealing material that are excellent in thickness recovery performance (speed) after compression deformation, are flexible even in a low temperature environment, and have both instantaneous recovery and shock absorption. it can.
  • FIG. 4 is a top view of an evaluation container for dynamic dustproof evaluation assembled with an evaluation sample, and a schematic cross-sectional view taken along line A-A ′. It is the schematic which shows the tumbler which set
  • the resin foam of the present invention is a foam containing a resin, and is obtained by foaming and molding a resin composition.
  • the shape of the resin foam of this invention is not specifically limited, For example, any forms, such as a lump shape, a sheet form, and a film form, may be sufficient.
  • the resin foam of the present invention has a thickness recovery rate at 23 ° C. defined below of 50% or more (eg, 50 to 100%), preferably 65% or more (eg, 65 to 100%), More preferably, it is 70% or more (for example, 70 to 100%), and further preferably 75% or more (for example, 75 to 100%).
  • the thickness recovery rate is defined as the ratio of the thickness of the resin foam to the initial thickness after releasing the compressed state after compressing the resin foam in the thickness direction for 1 minute at a thickness of 20% with respect to the initial thickness. Defined.
  • the resin foam of the present invention Since the resin foam of the present invention has a thickness recovery rate of 50% or more (preferably 65% or more), it is excellent in strain recovery. For this reason, the resin foam exhibits good dust resistance, particularly good dynamic dust resistance (dustproof performance in a dynamic environment).
  • the foamed sealing material comprising the resin foam of the present invention is assembled to the clearance, when the foamed sealing material is deformed by vibration and impact at the time of dropping, that is, the foamed sealing material is compressed and assembled. Even in a state where the thickness is equal to or less than the clearance, the thickness is recovered quickly and sufficiently. As a result, the clearance can be filled, and entry of foreign matters such as dust can be effectively prevented.
  • Resin foam of the present invention further, repulsion stress at 50% compression at -10 ° C. is preferably less than 10.0 N / cm 2, more preferably, 9N / cm 2 or less, 8N / cm 2 or less, More preferably, it is 7 N / cm 2 or less, 5 N / cm 2 or less (usually 0.1 N / cm 2 or more).
  • the repulsive stress at the time of 50% compression at ⁇ 10 ° C. means the repulsive load (repulsive stress or the rebound stress when the resin foam is compressed in the thickness direction at a thickness of 50% with respect to the initial thickness at ⁇ 10 ° C. Defined as compression load).
  • the resin foam of the present invention has a specific thickness recovery rate and has a repulsive stress at the time of 50% compression under a specific low-temperature environment, so that it can follow a minute clearance. It can be improved further. Due to such further dustproofness and flexibility, the dynamic dustproofness can be further improved.
  • the resin foam of the present invention further has a repulsive stress at 80% compression at 23 ° C. of preferably 1.0 to 9.0 N / cm 2 , more preferably 1.0 to 8 N / cm 2 , and still more preferably. Is 1.0 to 7.5 N / cm 2 .
  • the repulsive stress at the time of 80% compression is defined as a repulsive load when the resin foam is compressed in the thickness direction at a thickness of 80% with respect to the initial thickness in an atmosphere of 23 ° C.
  • the resin foam of the present invention when used as a foam sealing material and assembled into a clearance, even if the clearance is narrow, a problem due to the repulsion of the foam sealing material (for example, deformation of a member or casing around the foam sealing material) Occurrence of color unevenness in the image display unit, etc.) can be prevented.
  • the cell structure is a closed cell structure or a semi-continuous semi-closed cell structure (a cell structure in which a closed cell structure and an open cell structure are mixed, and the ratio is not particularly limited). It is preferable that In particular, a cell structure in which the closed cell ratio of the resin foam is 50% or less, preferably 40% or less, more preferably 35% or less can be mentioned. By this range, at the time of compressive deformation when an impact is applied, air can easily escape from the resin, and sufficient shock absorption can be exhibited. Further, there is a cell structure in which the closed cell ratio of the resin foam is 10% or more, preferably 15% or more, more preferably 20% or more. With this range, the ratio of open cells can be adjusted to prevent the passage of fine particles such as dust, thereby improving the dust resistance.
  • the closed cell ratio can be measured, for example, by the method described in the examples.
  • the resin foam of the present invention further has an average cell diameter in the cell structure of preferably 10 to 200 ⁇ m or 10 to 180 ⁇ m, more preferably 10 to 150 ⁇ m, still more preferably 10 to 90 ⁇ m, and particularly preferably 20 to 80 ⁇ m. is there.
  • This average cell diameter is obtained by, for example, capturing an enlarged image of the bubble portion with a digital microscope (trade name “VH-8000”, manufactured by Keyence Corporation), and image analysis software (trade name “Win ROOF”, manufactured by Mitani Corporation). It can obtain
  • the upper limit of the average cell diameter of the foam is 200 ⁇ m or less, preferably 180 ⁇ m or less, 150 ⁇ m or less, more preferably 90 ⁇ m or less, and particularly preferably 80 ⁇ m or less. Accordingly, it is possible to improve the dustproof property and improve the light shielding property.
  • the lower limit of the average cell diameter of the foam is 10 ⁇ m or more, preferably 20 ⁇ m or more. Thereby, the cushioning property (impact absorbability) can be improved.
  • the resin foam of the present invention further has an apparent density of preferably 0.01 to 0.20 g / cm 3 , more preferably 0.01 to 0.15 g / cm 3 , and 0.01 to 0.10 g / cm 3 . 3 , more preferably 0.02 to 0.08 g / cm 3 .
  • apparent density preferably 0.01 to 0.20 g / cm 3 , more preferably 0.01 to 0.15 g / cm 3 , and 0.01 to 0.10 g / cm 3 . 3 , more preferably 0.02 to 0.08 g / cm 3 .
  • the resin foam of the present invention has a thickness recovery rate at 23 ° C., a repulsive stress at 50% compression at ⁇ 10 ° C., and a repulsive stress at 80% compression at 23 ° C. of 2 or more, preferably
  • the shape can be recovered sufficiently and quickly in any temperature range with respect to the deformation of the resin foam that is normally considered.
  • it since it exhibits good shock absorption, it is possible to maximize the dustproof performance particularly in the dynamic environment intended by the present invention.
  • an image display unit such as a mobile phone, sufficient light shielding properties or light leakage can be prevented.
  • the resin foam of the present invention is formed of a resin.
  • a thermoplastic resin is preferable.
  • the thermoplastic resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, a copolymer of ethylene and propylene, ethylene or propylene and another ⁇ -olefin (for example, butene -1, pentene-1, hexene-1, 4-methylpentene-1, etc.), ethylene and other ethylenically unsaturated monomers (for example, vinyl acetate, acrylic acid, acrylic ester, methacrylic) Polyolefin resins such as copolymers with acid, methacrylic acid ester, vinyl alcohol, etc.); styrene resins such as polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin); 6-nylon, 66-nylon, 12 -Polyamide resin
  • thermoplastic resin a polyolefin-based resin is preferable from the viewpoints of characteristics such as mechanical strength, heat resistance, and chemical resistance, and molding surfaces such as easy melt thermoforming.
  • Preferred examples of the polyolefin resin include a resin having a broad molecular weight distribution and having a shoulder on the high molecular weight side, a micro-crosslinking type resin (a slightly cross-linked type resin), a long-chain branched type resin, and the like.
  • melt tension (temperature: 210 ° C., tensile speed: 2.0 m / min, capillary: ⁇ 1 mm ⁇ from the viewpoint of obtaining a resin foam having a high expansion ratio and a uniform cell structure.
  • the resin foam of the present invention contains a rubber component and / or a thermoplastic elastomer component. Since the rubber component and the thermoplastic elastomer component have, for example, a glass transition temperature of room temperature or lower (for example, 20 ° C. or lower), flexibility and shape followability when a resin foam is obtained are extremely good.
  • the rubber component and the thermoplastic elastomer component are not particularly limited as long as they have rubber elasticity and can be foamed.
  • natural or natural rubber polyisobutylene, polyisoprene, chloroprene rubber, butyl rubber, nitrile butyl rubber, or the like Synthetic rubbers; Ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-vinyl acetate copolymers, polybutenes, olefinic elastomers such as chlorinated polyethylene; styrene-butadiene-styrene copolymers, styrene-isoprene -Styrene elastomers such as styrene copolymers and hydrogenated products thereof; polyester elastomers; polyamide elastomers; various thermoplastic elastomers such as polyurethane elastomers. You may use these individually or in combination
  • an olefin elastomer is preferable as the rubber component and / or the thermoplastic elastomer component.
  • the olefin elastomer has good compatibility with the polyolefin resin exemplified as the thermoplastic resin.
  • the olefin elastomer may be of a type having a structure in which the resin component A (olefin resin component A) and the rubber component B are microphase separated.
  • the resin component A and the rubber component B are physically dispersed, and the resin component A and the rubber component B are dynamically heat treated in the presence of a crosslinking agent (dynamic crosslinking thermoplastic elastomer, TPV).
  • a crosslinking agent dynamic crosslinking thermoplastic elastomer, TPV
  • a dynamically crosslinked thermoplastic olefin elastomer TPV
  • TPO non-crosslinked thermoplastic olefin elastomer
  • the dynamically crosslinked thermoplastic olefin elastomer is a mixture containing the resin component A (olefin resin component A) forming a matrix and the rubber component B forming a domain, in the presence of a crosslinking agent. It is a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in the resin component A, which is a matrix (sea phase), obtained by dynamic heat treatment.
  • thermoplastic olefin elastomer examples include, for example, JP 2000-007858 A, JP 2006-052277 A, JP 2012-072306 A, JP 2012-056768 A, JP-A-2010-241897, JP-A-2009-0697969, RE-list 03/002654, etc., “Zeotherm” (manufactured by Zeon Corporation), “Thermorun” (manufactured by Mitsubishi Chemical Corporation), “Surlink” 3245D "(manufactured by Toyobo Co., Ltd.) and the like.
  • the ratio is not particularly limited, but the ratio of the rubber component and / or the thermoplastic elastomer component is too small. And the cushioning property of the resin foam tends to be lowered, or the recoverability after compression may be lowered. On the other hand, if the ratio of the rubber component and / or the thermoplastic elastomer component is too large, outgassing is likely to occur during foam formation, and it may be difficult to obtain a highly foamable foam.
  • the ratio of the resin to the rubber component and / or the thermoplastic elastomer component is preferably 70/30 to 30/70, more preferably 60/30 on a weight basis. 40 to 30/70, more preferably 50/50 to 30/70, and particularly preferably 60/40 to 10/90, 58/42 to 10/90, and 55/45 to 10/90. .
  • the resin foam of the present invention in order to realize flexibility at high compression and shape recovery after compression, that is, to enable large deformation and prevent plastic deformation, so-called rubber elasticity is used. Good material is suitable. From that viewpoint, it is preferable that the resin foam of the present invention includes a rubber component and / or a thermoplastic elastomer component together with the above-described resin as the constituent resin.
  • the resin foam of the present invention preferably further contains a nucleating agent.
  • the nucleating agent is contained, the cell diameter can be easily adjusted, and a foam having an appropriate flexibility and excellent cutting processability can be obtained.
  • nucleating agent examples include oxides and composite oxides such as talc, silica, alumina, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, zinc oxide, titanium oxide, aluminum hydroxide, magnesium hydroxide, mica, and montmorillonite.
  • a nucleating agent is used individually or in combination of 2 or more types.
  • the average particle size of the nucleating agent is not particularly limited, but is preferably 0.3 to 1.5 ⁇ m, more preferably 0.4 to 1.2 ⁇ m. By setting it as such an average particle diameter, sufficient function as a nucleating agent can be exhibited. In addition, a high expansion ratio can be realized without the nucleating agent breaking through the cell walls.
  • This average particle diameter can be measured by a laser diffraction particle size distribution measuring method. For example, the measurement can be performed from the sample dispersion dilution (AUTO measurement mode) using “MICROTRAC MT-3000” manufactured by LEEDS & NORTHRUP INSTRUMENTS.
  • the content when such a nucleating agent is included is not particularly limited, but is preferably 0.5 to 150 parts by weight, more preferably 100 parts by weight of the constituent resin. 2 to 140 parts by weight, still more preferably 3 to 130 parts by weight.
  • the resin foam of this invention is comprised with resin and is easy to burn, it is preferable to contain a flame retardant.
  • a flame retardant a non-halogen-nonantimony inorganic flame retardant is preferable.
  • inorganic flame retardants include metal hydroxides and hydrates of metal compounds. More specifically, aluminum hydroxide; magnesium hydroxide; hydrates of magnesium oxide and nickel oxide; hydrates of magnesium oxide and zinc oxide, and the like. Among these, magnesium hydroxide is preferable.
  • the hydrated metal compound may be surface-treated.
  • a flame retardant is used individually or in combination of 2 or more types.
  • the content when a flame retardant is contained is preferably 5 to 70 parts by weight, more preferably 25 to 65 parts by weight, with respect to 100 parts by weight of the constituent resin.
  • the resin foam of the present invention further has a polar functional group, a melting point of 50 to 150 ° C., and contains at least one aliphatic compound selected from fatty acids, fatty acid amides and fatty acid metal soaps. Also good. Of these, fatty acids and / or fatty acid amides are preferred.
  • Such an aliphatic compound When such an aliphatic compound is contained in the resin foam of the present invention, the cell structure is less likely to collapse during processing (particularly punching processing), shape recovery is improved, and workability is further improved. improves.
  • Such an aliphatic compound has high crystallinity, and when added to the resin (especially polyolefin resin), it forms a strong film on the resin surface and prevents the wall surfaces of the bubbles forming the cell structure from blocking each other. It is presumed to have a function.
  • Such aliphatic compounds particularly those containing a highly polar functional group, are difficult to be compatible with polyolefin resins, so that they easily precipitate on the surface of the resin foam and exhibit the above effects.
  • Cheap is difficult to be compatible with polyolefin resins, so that they easily precipitate on the surface of the resin foam and exhibit the above effects.
  • the melting point of the aliphatic compound is preferably 50 to 50 from the viewpoints of lowering the molding temperature when foam-molding the resin composition, suppressing deterioration of the resin (particularly polyolefin resin), imparting sublimation resistance, and the like. 150 ° C., more preferably 70 to 100 ° C.
  • the fatty acid preferably has about 18 to 38 carbon atoms (more preferably 18 to 22), and specific examples thereof include stearic acid, behenic acid, 12-hydroxystearic acid and the like. Of these, behenic acid is preferable.
  • the fatty acid amide is preferably a fatty acid amide having a fatty acid moiety having about 18 to 38 carbon atoms (more preferably about 18 to 22), and may be either monoamide or bisamide. Specific examples include stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, and ethylene bis stearic acid amide. Of these, erucic acid amide is preferred.
  • fatty acid metal soap examples include aluminum, calcium, magnesium, lithium, barium, zinc and lead salts of the above fatty acids.
  • the content when such an aliphatic compound is included is not particularly limited, but is preferably 1 to 5 parts by weight, more preferably 100 parts by weight of the resin constituting the resin foam.
  • the amount is 1.5 to 3.5 parts by weight, more preferably 2 to 3 parts by weight.
  • the resin foam of the present invention may contain a lubricant. Thereby, while improving the fluidity
  • a lubricant is used individually or in combination of 2 or more types.
  • the lubricant is not particularly limited.
  • hydrocarbon lubricants such as liquid paraffin, paraffin wax, microwax and polyethylene wax; butyl stearate, monoglyceride stearate, pentaerythritol tetrastearate, hydrogenated castor oil, stearyl stearate And ester lubricants.
  • content of a lubricant can be suitably selected in the range which does not impair the effect of this invention.
  • the resin foam of the present invention may contain other additives as necessary.
  • additives include anti-shrinkage agents, anti-aging agents, heat stabilizers, light stabilizers such as HALS, weathering agents, metal deactivators, ultraviolet absorbers, light stabilizers, copper damage inhibitors, and the like.
  • Stabilizers antibacterial agents, fungicides, dispersants, tackifiers, colorants such as carbon black and organic pigments, fillers, and the like.
  • a composition containing an additive for example, a colorant such as carbon black, a softening agent, etc.
  • additives are used alone or in combination of two or more. The content of these additives can be appropriately selected within a range that does not impair the effects of the present invention.
  • the resin composition forming the resin foam of the present invention is obtained by mixing and kneading an additive such as a resin, a rubber component and / or a thermoplastic elastomer component, and optionally, a nucleating agent, an aliphatic compound, a lubricant and the like. Can be manufactured.
  • the foaming method used when foaming and molding the resin composition is not particularly limited, and examples thereof include usually used methods such as a physical method and a chemical method.
  • a general physical method is a method of forming bubbles by dispersing a low boiling point liquid (foaming agent) such as chlorofluorocarbons or hydrocarbons in a resin, and then heating to volatilize the foaming agent.
  • a general chemical method is a method in which bubbles are formed by a gas generated by thermal decomposition of a compound (foaming agent) added to a resin.
  • general physical methods are concerned about environmental impacts such as flammability, toxicity, and ozone depletion of substances used as blowing agents.
  • a method using a high-pressure gas as the foaming agent is preferable because a foam having a small cell diameter and a high cell density can be easily obtained.
  • a method using a high-pressure inert gas as a foaming agent is preferable.
  • a method of using a high-pressure gas as a foaming agent a method in which a resin composition is impregnated with a high-pressure gas and then subjected to a pressure reducing step is preferable. The method of passing through the process of depressurizing after impregnating this gas, the method of impregnating the molten resin composition with the gas under a pressurized state, and then subjecting it to molding with reduced pressure, and the like.
  • the inert gas is not particularly limited as long as it is inert with respect to the resin constituting the resin foam and can be impregnated, and examples thereof include carbon dioxide, nitrogen, and air. These gases may be mixed and used. Of these, carbon dioxide or nitrogen is preferred and carbon dioxide is more preferred from the viewpoint that the amount of impregnation into the resin is large and the impregnation rate is fast.
  • the high-pressure gas (particularly inert gas, and further carbon dioxide) is preferably a gas in a supercritical state.
  • the solubility of the gas in the resin is increased and high concentration can be mixed.
  • the generation of bubble nuclei increases, and the density of bubbles formed by the growth of the bubble nuclei has a porosity. Even if they are the same, they become larger, so that fine bubbles can be obtained.
  • carbon dioxide has a critical temperature of 31 ° C. and a critical pressure of 7.4 MPa.
  • the resin foam of the present invention as a method of foaming and molding the resin composition by a method using a high-pressure gas as a foaming agent, the resin composition is previously molded into an appropriate shape such as a sheet shape, and an unfoamed resin After forming a molded body (unfoamed resin molded product), this unfoamed resin molded body may be impregnated with a high-pressure gas and foamed by releasing the pressure. Alternatively, it may be kneaded with a high-pressure gas, molded and simultaneously released, and the pressure may be released to perform molding and foaming simultaneously.
  • the resin foam of the present invention when the resin composition is foamed and molded in a batch system, as a method of forming an unfoamed resin molded body to be used for foaming, for example, the resin composition is made of a single screw extruder, two A method of molding using an extruder such as a shaft extruder; the resin composition is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, a Banbury mold, etc. And a method of press molding to a predetermined thickness using the resin composition; a method of molding the resin composition using an injection molding machine, and the like.
  • the unfoamed resin molded body can be formed by other molding methods besides extrusion molding, press molding, and injection molding.
  • the shape of the unfoamed resin molded body is not particularly limited, and various shapes can be selected depending on the application. For example, a sheet shape, a roll shape, a plate shape, a lump shape, etc. are mentioned.
  • the resin foam of the present invention when the resin composition is foamed and molded in a batch system, the resin composition is obtained by an appropriate method that can obtain an unfoamed resin molded body having a desired shape and thickness. Can be molded.
  • the obtained unfoamed resin molded body is put in a pressure vessel (high pressure vessel) and a high pressure gas (especially an inert gas, Furthermore, carbon dioxide) is injected (introduced), and a gas impregnation step in which high-pressure gas is impregnated into the unfoamed resin molded body, and when the sufficiently high-pressure gas is impregnated, the pressure is released (usually up to atmospheric pressure). ), A pressure reducing step for generating bubble nuclei in the resin, and in some cases (if necessary), a bubble is formed in the resin through a heating step for growing the bubble nuclei by heating. Bubble nuclei may be grown at room temperature without providing a heating step.
  • the resin foam of the present invention as the foaming and molding of the resin composition in a continuous mode, the resin composition is mixed with a high pressure while kneading using an extruder such as a single screw extruder or a twin screw extruder. Injecting (introducing) gas (especially inert gas or carbon dioxide) and impregnating the resin composition with a sufficiently high pressure gas, the resin composition is passed through a die provided at the tip of the extruder. The pressure is released by extrusion (usually up to atmospheric pressure), and foaming and molding can be performed by a molding decompression process in which molding and foaming are performed simultaneously.
  • an extruder such as a single screw extruder or a twin screw extruder.
  • injecting (introducing) gas especially inert gas or carbon dioxide) and impregnating the resin composition with a sufficiently high pressure gas
  • the resin composition is passed through a die provided at the tip of the extruder.
  • the pressure is released by extrusion (usually up to atmospheric pressure), and foaming
  • an injection molding machine or the like can be used in addition to the extruder.
  • foaming and shaping molding of the resin composition by a continuous system, you may provide the heating process which grows a bubble by heating as needed.
  • the shape may be fixed rapidly by cooling with cold water or the like.
  • the introduction of high-pressure gas may be performed continuously or discontinuously.
  • known methods such as a water bath, an oil bath, a hot roll, a hot air oven, a far infrared ray, a near infrared ray, and a microwave can be employed.
  • the mixing amount of the gas during foaming and molding of the resin composition is not particularly limited.
  • it is preferably 2 to 10% by weight with respect to the total amount of resin components in the resin composition. More preferably, it is 2.5 to 8% by weight, and still more preferably 3 to 6% by weight. By setting it as this range, a foam with a high foaming rate can be obtained, without gas separating in a molding machine.
  • the pressure when impregnating the unfoamed resin molded product or resin composition with gas in the gas impregnation step in a batch method or the kneading impregnation step in a continuous method when foaming and molding the resin composition can be appropriately selected in consideration of the type of gas and operability.
  • the pressure is 6 MPa or more (for example, 6 to 100 MPa), preferably 8 MPa or more (for example, 8 to 100 MPa).
  • the resin foam of the present invention when an unfoamed resin molded article or resin composition is impregnated with a high-pressure gas in a gas impregnation process in a batch system or a kneading impregnation process in a continuous system when foaming and molding a resin composition
  • the temperature varies depending on the type of gas and resin used, and can be selected within a wide range. However, considering operability and the like, about 10 to 350 ° C. is suitable.
  • the impregnation temperature when impregnating a sheet-like unfoamed resin molded body with a high-pressure gas is preferably 10 to 250 ° C., more preferably 40 to 240 ° C., and even more preferably 60 to 230 ° C. It is.
  • the temperature at which high-pressure gas is injected into the resin composition and kneaded is preferably 60 to 350 ° C., more preferably 100 to 320 ° C., and even more preferably 150 to 300 ° C.
  • the temperature during impregnation is preferably 32 ° C. or higher (particularly 40 ° C. or higher) in order to maintain a supercritical state.
  • the pressure reduction rate in the pressure reduction step when foaming and molding the resin composition in a batch method or a continuous method is not particularly limited, but preferably 5 to 300 MPa in order to obtain uniform fine bubbles. / Sec.
  • the heating temperature in the heating step is, for example, 40 to 250 ° C., preferably 60 to 250 ° C.
  • the resin foam of the present invention when the above method is used when foaming and molding the resin composition, a highly foamed resin foam can be produced, and a thick resin foam can be produced.
  • the gap of the die attached to the tip of the extruder is as narrow as possible (usually 0.1 to 1). (About 0.0 mm) is effective. Therefore, in order to obtain a thick resin foam, it is preferable to foam the resin composition extruded through a narrow gap at a high magnification.
  • the thickness of the formed resin foam is limited to a thin one (for example, 0.5 to 2.0 mm).
  • a high-pressure gas by foaming and molding the resin composition using a high-pressure gas, it is possible to finally obtain a resin foam having a thickness of 0.50 to 5.00 mm continuously.
  • the resin foam of the present invention has a thickness recovery rate, an average cell diameter, a repulsion stress at 50% compression, an apparent density, a relative density, etc., in the type of gas, resin, rubber component and / or thermoplastic elastomer component used. Accordingly, for example, operating conditions such as temperature, pressure and time in the gas impregnation process and kneading impregnation process, operating conditions such as pressure reduction speed, temperature and pressure in the decompression process and molding decompression process, heating process after decompression or after molding decompression The heating temperature can be adjusted by appropriately selecting and setting the heating temperature.
  • the resin foam of the present invention comprises a step of reducing the pressure after impregnating a resin composition containing at least a nucleating agent and an aliphatic compound with a high-pressure gas (particularly an inert gas) in addition to the resin. It is preferable that it is formed through. Small cell size, low cell structure ratio, high foaming ratio, good flexibility, bubble structure is difficult to deform or compress, and excellent strain recovery when pressed This is because a resin foam having excellent processability can be easily obtained.
  • the resin foam of the present invention is obtained by impregnating a resin composition containing at least a nucleating agent having a particularly small average particle diameter and an aliphatic compound with a supercritical inert gas in addition to the resin. More preferably, the resin composition is formed through a step of decompressing the composition, that is, the resin composition is subjected to a decompression treatment.
  • the average cell diameter is extremely small, the cell structure has a low closed cell structure ratio, high expansion ratio, good flexibility, the cell structure is difficult to deform or compress, and the strain recoverability when pressed This is because it is possible to more easily suppress the nucleating agent from breaking through the cell wall, and to easily obtain a resin foam excellent in workability.
  • the resin foam of the present invention is a mixture of a resin and a rubber component and / or a thermoplastic elastomer component, and in addition to a resin whose ratio is 70/30 to 40/60 on a weight basis,
  • a resin composition containing at least 0.5 to 150 parts by weight of a nucleating agent and 1 to 5 parts by weight of an aliphatic compound based on 100 parts by weight of the resin a high pressure gas (particularly an inert gas) ) Is impregnated, and is preferably formed through a step of reducing pressure.
  • the foam sealing material of this invention is a member containing the said resin foam.
  • a foaming sealing material is not specifically limited, A sheet form (a film form is included) is preferable.
  • the foamed sealing material may be configured only by a resin foam, or may be configured such that an adhesive layer, a base material layer, and the like are laminated on the resin foam.
  • the foamed sealing material of the present invention preferably has an adhesive layer.
  • the foaming sealing material of this invention is a sheet-like foaming sealing material, you may have an adhesive layer on the single side
  • a processing mount can be provided on the foamed sealing material via the adhesive layer, and further, fixing to the adherend, temporary fixing, etc. it can.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited.
  • acrylic pressure-sensitive adhesive rubber-based pressure-sensitive adhesive (natural rubber-based pressure-sensitive adhesive, synthetic rubber-based pressure-sensitive adhesive, etc.), silicone-based pressure-sensitive adhesive, and polyester-based pressure-sensitive adhesive.
  • Known pressure-sensitive adhesives such as adhesives, urethane-based pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, and fluorine-based pressure-sensitive adhesives can be appropriately selected and used.
  • An adhesive can be used individually or in combination of 2 or more types.
  • the pressure-sensitive adhesive may be any type of pressure-sensitive adhesive such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, a hot-melt pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, and a solid-type pressure-sensitive adhesive.
  • an acrylic pressure-sensitive adhesive is preferable from the viewpoint of preventing contamination of the adherend.
  • the thickness of the pressure-sensitive adhesive layer is preferably 2 to 100 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thinner the pressure-sensitive adhesive layer the higher the effect of preventing the adhesion of dust and dirt at the end, so the thinner the adhesive layer is preferable.
  • the pressure-sensitive adhesive layer may have any form of a single layer or a laminate, and may be foamable or non-foamable. Especially, a non-foaming adhesive layer is preferable.
  • the pressure-sensitive adhesive layer may be provided via another layer (lower layer).
  • a lower layer include other pressure-sensitive adhesive layers, intermediate layers, undercoat layers, base material layers (particularly film layers, nonwoven fabric layers, etc.) and the like.
  • the lower layer may be a foamable layer or a porous layer, but is preferably a non-foamable layer, more preferably a resin layer.
  • the pressure-sensitive adhesive layer may be protected by a release film (separator) (for example, release paper, release film, etc.).
  • the foamed sealing material of the present invention contains the resin foam of the present invention, it has good dust resistance, particularly good dynamic dust resistance, and has flexibility to follow a minute clearance.
  • the foamed sealing material of the present invention may be processed so as to have a desired shape and thickness.
  • various shapes may be processed according to the device, equipment, casing, member, and the like used.
  • the foamed sealing material of the present invention is suitably used as a member used when various members or parts are attached (attached) to a predetermined site.
  • the foamed sealing material of the present invention is suitable as a member used when attaching (attaching) a component constituting an electric or electronic device to a predetermined site in an electric or electronic device.
  • the various members or parts that can be attached (mounted) using the foamed member are not particularly limited, and examples thereof include various members or parts in electrical or electronic devices.
  • Examples of such a member or component for electric or electronic equipment include an image display member (display unit) (particularly a small image display member) mounted on an image display device such as a liquid crystal display, an electroluminescence display, or a plasma display. ), Optical members or optical components such as cameras and lenses (particularly small cameras and lenses) mounted on mobile communication devices such as so-called “mobile phones” and “portable information terminals”.
  • the foamed sealing material of the present invention for example, around a display unit such as an LCD (liquid crystal display) and a display unit such as an LCD (liquid crystal display)
  • a display unit such as an LCD (liquid crystal display)
  • casings is mentioned.
  • the foamed sealing material of the present invention is attached to such a member or part, it is preferably attached so as to close the clearance.
  • the clearance is not particularly limited, but may be about 0.05 to 0.5 mm, for example.
  • the resin foam and foamed sealing material of this invention are demonstrated based on an Example.
  • Example 1 As a resin composition, 35 parts by weight of polypropylene, 60 parts by weight of a thermoplastic elastomer composition, 5 parts by weight of lubricant, Ten parts by weight of the nucleating agent and 2 parts by weight of erucic acid amide (melting point: 80 to 85 ° C.) were kneaded at a temperature of 200 ° C. with a twin-screw kneader.
  • Polypropylene is a resin having a melt flow rate (MFR) of 0.35 g / 10 min
  • MFR melt flow rate
  • the thermoplastic elastomer composition contains 15.0% by weight of carbon black and is a blend of polypropylene (PP) and ethylene / propylene / 5-ethylidene-2-norbornene terpolymer (EPT) (crosslinked olefin type).
  • Thermoplastic elastomer, TPV), polypropylene: ethylene / propylene / 5-ethylidene-2-norbornene terpolymer 25: 75 (weight basis),
  • the lubricant is a master batch in which 1 part by weight of stearic acid monoglyceride is blended with 10 parts by weight of polyethylene,
  • the nucleating agent is magnesium hydroxide having an average particle size of 0.8 ⁇ m.
  • the resin composition was extruded into strands, cooled with water, cut into pellets, and molded.
  • This pellet was put into a tandem type single screw extruder manufactured by Nippon Steel Works Co., Ltd., and 3.8% by weight of carbon dioxide gas was injected under an atmosphere of 220 ° C. under a pressure of 14 (18 after injection) MPa. Carbon dioxide gas was sufficiently saturated and cooled to a temperature suitable for foaming. Then, it extruded from the die
  • This resin foam had a semi-continuous semi-closed cell structure with a closed cell rate of 32%.
  • Example 2 A resin foam (sheet-like) was obtained in the same manner as in Example 1 except that 4.0% by weight of carbon dioxide gas was injected into a tandem single screw extruder manufactured by Nippon Steel Works.
  • Example 3 As a resin composition, 50 parts by weight of polypropylene, 40 parts by weight of a thermoplastic elastomer composition, 5 parts by weight of lubricant, Ten parts by weight of the nucleating agent and 2 parts by weight of erucic acid amide (melting point: 80 to 85 ° C.) were kneaded at a temperature of 200 ° C. with a twin-screw kneader. Each component used here is the same as in Example 1.
  • the resin composition was extruded into strands, cooled with water, cut into pellets, and molded.
  • the pellets were put into a tandem single screw extruder manufactured by Nippon Steel Works, and 3.5% by weight of carbon dioxide gas was injected under a pressure of 14 (18 after injection) MPa in an atmosphere of 220 ° C. Carbon dioxide gas was sufficiently saturated and cooled to a temperature suitable for foaming. Then, it extruded from the die
  • TPO polypropylene
  • EPT ethylene / propylene / 5-ethylidene-2-norbornene terpolymer
  • the resin composition was extruded into a strand shape, cooled with water, cut into a pellet shape, and molded.
  • This pellet was put into a tandem type single screw extruder manufactured by Nippon Steel Works Co., Ltd., and 3.8% by weight of carbon dioxide gas was injected under an atmosphere of 220 ° C. under a pressure of 14 (18 after injection) MPa. Carbon dioxide gas was sufficiently saturated and cooled to a temperature suitable for foaming. Then, it extruded from the die
  • This resin foam had a semi-continuous semi-closed cell structure with a closed cell ratio of 46%.
  • the closed cell ratio of the resin foams obtained in Examples and Comparative Examples was measured according to the following method. From the obtained resin foam, a flat square test piece having a constant thickness and a side of 5 cm is cut out. Subsequently, the weight W 1 (g) and thickness (cm) of the test piece are measured, and the apparent volume V 1 (cm 3 ) of the test piece is calculated. Next, the obtained value is substituted into the equation (1), and the apparent volume V 2 (cm 3 ) occupied by the bubbles is calculated. The density of the resin constituting the test piece is ⁇ g / cm 3 .
  • the density (apparent density) of the foam was calculated as follows.
  • the foams of each Example and Comparative Example were punched into a size of 40 mm ⁇ 40 mm to form test pieces, and the thickness of the test pieces was measured with a caliper and a 1/100 dial gauge having a measurement terminal ⁇ 20 mm.
  • the weight of the test piece was measured with an electronic balance having a minimum scale of 0.01 g.
  • Apparent density (g / cm 3 ) mass of test piece / volume of test piece
  • the resin foam 1 is measured at 23 ° C. in the thickness direction with respect to the initial thickness (X, 1 mm). And compressed to a thickness of 20% for 1 minute (M in FIG. 1). Thereafter, the compression was released, and the thickness recovery behavior (Q) one second after the release was photographed using a high-speed camera.
  • the thickness recovery rate (%) was expressed as a ratio (Y / X) of the thickness of the resin foam 1 when recovered to the initial thickness.
  • the dynamic dustproof evaluation method will be described with reference to FIGS.
  • the resin foam was punched into a frame shape (window frame shape) (40 mm ⁇ 56 mm, width: 2 mm) shown in FIG.
  • This evaluation sample 22 was attached to the dynamic dustproof evaluation container 2 shown in FIG.
  • the compression rate of the evaluation sample 22 at the time of mounting was 50% in the thickness direction with respect to the initial thickness.
  • the evaluation sample 22 is fixed to the base plate 24 with a black acrylic plate 211 attached to the base plate 24 via a foam compression plate 27 by screws 26, and fixed on the aluminum spacer 23. It is provided between the black acrylic board 212 arrange
  • the evaluation container 2 to which the evaluation sample 22 is attached has a system in which a certain internal space 29 is closed by the evaluation sample 22. Further, the evaluation container 2 is configured as a powder supply unit that is positioned adjacent to the outside of the evaluation sample 22 and in which a constant external space 25 is closed between the evaluation sample 22 and the foam compression plate 27. Has been.
  • the external space 25 is filled with 0.1 g of powder (for example, silica having a particle diameter of 17 ⁇ m) that has been dusted.
  • Such an evaluation container 2 was rotated at a speed of 1 rpm by placing the evaluation container shown in FIG. 4 in a dumbler 1 (rotary tank, drum type drop tester).
  • the evaluation container 2 was rotated a predetermined number of times so that 100 collisions (repetitive impact) were obtained. Thereafter, the package was disassembled. Then, particles attached to the black acrylic plate 211 and the black acrylic plate 212 that have passed through the evaluation sample 22 and functioned as the upper and lower walls of the internal space from the external space 25 that is a powder supply unit are converted into a digital microscope (apparatus Name “VH-8000” (manufactured by Keyence Corporation). Still images are created for the black acrylic plate 211 and the black acrylic plate 212, binarized using image analysis software (software name “Win ROOF”, manufactured by Mitani Corporation), and the number of silica particles is determined. The total area was measured. The observation was performed in a clean bench to reduce the influence of airborne dust.
  • the total particle area of the particles adhering to the black acrylic plate 211 and the particles adhering to the black acrylic plate 212 is Less than 100 mm 2 good 100 mm 2 or more 200 mm 2 or less was judged slightly defective exceeding defect 200 mm 2.
  • the total area of the particle observation surface was 1872 mm 2 . It should be noted that there is no problem in practical characteristics even if the resin foam is evaluated to be slightly defective.
  • the total particle area of the particles adhering to the black acrylic plate 211 and the particles adhering to the black acrylic plate 212 is: Less than 1500 [Pixel ⁇ Pixel] Good 1500 to 2000 [Pixel ⁇ Pixel] Slightly poor More than 2000 [Pixel ⁇ Pixel] The total area of the particle observation surface was 20000 [Pixel ⁇ Pixel]. It should be noted that there is no problem in practical characteristics even if the resin foam is evaluated to be slightly defective.
  • the resin foams of Examples 1 to 3 are very good in both the thickness recovery rate at 23 ° C. and the rebound stress at 50% compression at ⁇ 10 ° C. It is excellent in recoverability of the later thickness, and instantaneous deformation of the resin foam can be expected. In addition, since it was possible to ensure flexibility in a low-temperature environment, it was confirmed that the shock absorption was excellent and the dynamic dust resistance could be further improved.
  • the present invention is useful as an internal insulator for electronic devices, cushioning materials, sound insulating materials, dustproof materials, shock absorbing materials, light shielding materials, heat insulating materials, food packaging materials, clothing materials, building materials, etc., cushioning properties and strain recovery Resin foam and foam sealing material with excellent foaming ratio and high foaming ratio, especially around the display part of mobile phones, portable information terminals, LCDs, etc. ), And can be widely used in various fields.

Abstract

The purpose of the present invention is to provide a resin foam which exhibits excellent thickness recovery performance (speed) after compressive deformation, is flexible even in low-temperature environments, and balances instantaneous recovery properties with shock absorption properties; and a foam sealing material. The resin foam has a thickness recovery rate of 50% or more at 23°C as defined below, and has a repulsive stress of less than 10.0 N/cm2 when at 50% compression at -10°C as defined below. Thickness recovery rate: proportion in relation to initial thickness of resin-foam thickness measured after compressing resin foam for one minute in thickness direction thereof to 20% of initial thickness, releasing state of compression, and allowing one minute to elapse since release of state of compression. Repulsive stress when at 50% compression: opposing repulsive load when compressing resin foam in thickness direction thereof to 50% of initial thickness.

Description

樹脂発泡体及び発泡シール材Resin foam and foam sealing material
 本発明は、樹脂発泡体及び発泡シール材に関する。 The present invention relates to a resin foam and a foam sealing material.
 従来から、携帯電話及び携帯型情報端末機等のガスケット材として、樹脂発泡体が使用されている。
 樹脂発泡体としては、例えば、低発泡で連続気泡構造を有する微細セルのウレタン樹脂発泡体、高発泡ウレタンを圧縮成形したもの、また独立気泡を有する発泡倍率30倍程度のポリエチレン樹脂発泡体、密度が0.2g/cm3以下のポリオレフィン系樹脂発泡体(特許文献1及び2参照)等が提案されている。
Conventionally, resin foam has been used as a gasket material for mobile phones and portable information terminals.
Examples of the resin foam include a low-foam urethane resin foam of fine cells having an open-cell structure, a compression-molded high-foam urethane, and a polyethylene resin foam having closed cells and an expansion ratio of about 30 times, density A polyolefin-based resin foam (see Patent Documents 1 and 2) having a weight of 0.2 g / cm 3 or less has been proposed.
 このような樹脂発泡体は、通常、所定の形状に加工され、これら機器等の所定の部位に固定されることにより、携帯電話及び携帯型情報端末機等ガスケット材として適用される。
 しかし、このような加工及び取り付けの際に、机の角、ロール芯等に衝突して、あるいは、指先及び爪、ピンセット等で把持することにより凹みが生じることがあった。
 このような樹脂発泡体における凹みは、一般に時間の経過とともに回復するが、その一方で、凹みの回復に長時間を要するか、あるいは凹みの回復自体が不十分である場合には、ガスケット材としての本来の機能を十分果たさせることができない。
Such a resin foam is usually applied as a gasket material for mobile phones and portable information terminals by being processed into a predetermined shape and fixed to a predetermined part of these devices.
However, in such processing and attachment, a dent may be caused by colliding with a corner of a desk, a roll core or the like, or by gripping with a fingertip, a nail, tweezers or the like.
Such dents in the resin foam generally recover over time, but on the other hand, if it takes a long time to recover the dent, or if the dent recovery itself is insufficient, a gasket material is used. Cannot fully fulfill its original function.
 特に、近年の携帯電話及び携帯型情報端末機等の小型・薄型、画像表示部の大型化・高機能化(情報入力機能としてのタッチパネル機能の搭載等)の要請等により、これら機器が動的環境下で使用されることが多い。よって、これまで以上に、ごみの侵入、光漏れ等の不具合の発生を防止することができる特性が強く求められている。また、小型・薄型の携帯電話及び携帯型情報端末機等の微小なクリアランスに追従することができる柔軟性をも有することが求められている。さらに、携帯電話や携帯型情報端末機の薄型化は、使用されるLCD等の表示部構成部材にも薄型化をもたらすため、使用されるガスケット材は高圧縮される。このような高圧縮下においても、これらの構成部材の落下時の破損を防ぐなどのために、高い衝撃吸収性能が求められている。 In particular, due to the recent demands for smaller and thinner mobile phones and portable information terminals, and for larger and higher-functionality image display units (equipped with touch panel functions as information input functions, etc.) Often used in environments. Therefore, more than ever, there is a strong demand for characteristics that can prevent the occurrence of problems such as intrusion of dust and light leakage. In addition, there is a demand for flexibility to follow minute clearances such as small and thin mobile phones and portable information terminals. Furthermore, since the thinning of the cellular phone and the portable information terminal also brings the thinning of the display member such as the LCD used, the gasket material used is highly compressed. Even under such high compression, high impact absorbing performance is required to prevent breakage of these components when dropped.
特開2005-227392号公報JP 2005-227392 A 特開2007-291337号公報JP 2007-291337 A
 本発明は、圧縮変形後の厚み回復性能に優れ、低温環境下でも柔軟であり、つまり、瞬間回復性と衝撃吸収性とを両立させた樹脂発泡体及び発泡シール材を提供することを目的とする。 It is an object of the present invention to provide a resin foam and a foam sealing material that are excellent in thickness recovery performance after compression deformation and are flexible even in a low temperature environment, that is, have both instantaneous recovery and shock absorption. To do.
 本発明者らは、上記の問題を解決するために鋭意検討した結果、樹脂発泡体において、厚み回復率を所定の値以上にすること、さらに、低温環境下での圧縮時の反発応力を小さくすることにより、瞬間回復性と衝撃吸収性との両立を図り、これら双方を改善できることを見出し、本発明の完成に至った。そして、圧縮後の回復速度が速ければ、衝撃及び振動に対する筐体の変形に追随し易く、動的環境下で高い防塵性能を発揮する。また、低温環境下でも柔軟な性質であれば、樹脂材料の分子運動が拘束される高速度変形に対しても柔軟な性質を示して高い衝撃吸収性能を発揮する。 As a result of intensive studies to solve the above problems, the present inventors have made the resin foam a thickness recovery rate of a predetermined value or more and further reduce the repulsive stress during compression in a low temperature environment. As a result, it was found that both instantaneous recovery and shock absorption can be achieved, and both of them can be improved, and the present invention has been completed. And if the recovery speed after compression is high, it will be easy to follow the deformation | transformation of the housing | casing with respect to an impact and a vibration, and will demonstrate high dustproof performance in a dynamic environment. Further, if it is a flexible property even in a low temperature environment, it exhibits a flexible property and exhibits a high impact absorbing performance against high-speed deformation in which the molecular motion of the resin material is restricted.
 本発明は以下の発明を含む。
 (1)下記で定義される23℃での厚み回復率が50%以上、かつ下記で定義される-10℃での50%圧縮時の反発応力が10.0N/cm未満である樹脂発泡体。
 厚み回復率:樹脂発泡体を、初期厚みに対して20%の厚みで厚み方向に1分間圧縮した後、圧縮状態を解除し、圧縮状態解除1秒後の厚みの初期厚みに対する割合。
 50%圧縮時の反発応力:樹脂発泡体を、初期厚みに対して50%の厚みまで厚み方向に圧縮した際の対反発荷重。
 (2)23℃での80%圧縮時の反発応力が1.0~9.0N/cmである(1)記載の樹脂発泡体。
 (3)平均セル径が10~200μm、見掛け密度が0.01~0.20g/cmである(1)記載の樹脂発泡体。
 (4)高圧ガスが含浸された樹脂組成物の減圧処理によって得られる(1)~(3)のいずれか1つに記載の樹脂発泡体。
 (5)前記ガスが、不活性ガスである(4)記載の樹脂発泡体。
 (6)前記不活性ガスが、二酸化炭素である(5)記載の樹脂発泡体。
 (7)前記ガスが、超臨界状態のガスである(4)~(6)のいずれか1つに記載の樹脂発泡体。
 (8)上記(1)~(7)のいずれか1つに記載の樹脂発泡体を含むことを特徴とする発泡シール材。
 (9)樹脂発泡体の片面又は両面に配置された粘着剤層を備える(8)記載の発泡シール材。
 (10)粘着剤層が、フィルム層を介して、樹脂発泡体表面に配置されている(9)記載の発泡シール材。
The present invention includes the following inventions.
(1) Resin foam having a thickness recovery rate at 23 ° C. defined below of 50% or more and a rebound stress at 50% compression of −10 ° C. defined below of less than 10.0 N / cm 2 body.
Thickness recovery rate: The ratio of the thickness of the resin foam to the initial thickness after releasing the compressed state after compressing the resin foam in the thickness direction for 1 minute at a thickness of 20% with respect to the initial thickness.
Repulsive stress at 50% compression: Repulsive load when the resin foam is compressed in the thickness direction to a thickness of 50% with respect to the initial thickness.
(2) The resin foam according to (1), wherein the rebound stress at 80% compression at 23 ° C. is 1.0 to 9.0 N / cm 2 .
(3) The resin foam according to (1), having an average cell diameter of 10 to 200 μm and an apparent density of 0.01 to 0.20 g / cm 3 .
(4) The resin foam according to any one of (1) to (3), which is obtained by decompression treatment of a resin composition impregnated with a high-pressure gas.
(5) The resin foam according to (4), wherein the gas is an inert gas.
(6) The resin foam according to (5), wherein the inert gas is carbon dioxide.
(7) The resin foam according to any one of (4) to (6), wherein the gas is a gas in a supercritical state.
(8) A foamed sealing material comprising the resin foam according to any one of (1) to (7) above.
(9) The foamed sealing material according to (8), comprising a pressure-sensitive adhesive layer disposed on one side or both sides of the resin foam.
(10) The foamed sealing material according to (9), wherein the pressure-sensitive adhesive layer is disposed on the surface of the resin foam via the film layer.
 本発明によれば、圧縮変形後の厚み回復性能(速度)に優れ、低温環境下でも柔軟であり、瞬間回復性と衝撃吸収性を両立させた樹脂発泡体及び発泡シール材を提供することができる。 According to the present invention, it is possible to provide a resin foam and a foam sealing material that are excellent in thickness recovery performance (speed) after compression deformation, are flexible even in a low temperature environment, and have both instantaneous recovery and shock absorption. it can.
本発明の樹脂発泡体の厚み回復率の測定方法を説明するための樹脂発泡体の概略図である。It is the schematic of the resin foam for demonstrating the measuring method of the thickness recovery rate of the resin foam of this invention. 動的防塵性を評価する際に使用される評価用サンプルの形状を示す平面図である。It is a top view which shows the shape of the sample for evaluation used when evaluating dynamic dustproofness. 評価用サンプルを組み付けた動的防塵性評価用の評価容器の上面図及びA-A’線の概略断面図である。FIG. 4 is a top view of an evaluation container for dynamic dustproof evaluation assembled with an evaluation sample, and a schematic cross-sectional view taken along line A-A ′. 評価容器を置いたタンブラーを示す概略図である。It is the schematic which shows the tumbler which set | placed the evaluation container. 樹脂発泡体の衝撃吸収性を評価するために用いる振り子試験装置の概略図である。It is the schematic of the pendulum test apparatus used in order to evaluate the impact absorptivity of the resin foam.
 本発明の樹脂発泡体は、樹脂を含む発泡体であり、樹脂組成物を発泡及び成形することにより得られる。本発明の樹脂発泡体の形状は、特に限定されず、例えば、塊状、シート状、フィルム状等のいずれの形態であってもよい。 The resin foam of the present invention is a foam containing a resin, and is obtained by foaming and molding a resin composition. The shape of the resin foam of this invention is not specifically limited, For example, any forms, such as a lump shape, a sheet form, and a film form, may be sufficient.
 本発明の樹脂発泡体は、下記で定義される23℃での厚み回復率が50%以上(例えば、50から100%)であり、好ましくは65%以上(例えば65~100%)であり、より好ましくは70%以上(例えば70~100%)であり、さらに好ましくは75%以上(例えば75~100%)である。
 厚み回復率は、樹脂発泡体を、初期厚みに対して20%の厚みで厚み方向に1分間圧縮した後、圧縮状態を解除し、圧縮状態解除1秒後の厚みの初期の厚みに対する割合として定義される。
The resin foam of the present invention has a thickness recovery rate at 23 ° C. defined below of 50% or more (eg, 50 to 100%), preferably 65% or more (eg, 65 to 100%), More preferably, it is 70% or more (for example, 70 to 100%), and further preferably 75% or more (for example, 75 to 100%).
The thickness recovery rate is defined as the ratio of the thickness of the resin foam to the initial thickness after releasing the compressed state after compressing the resin foam in the thickness direction for 1 minute at a thickness of 20% with respect to the initial thickness. Defined.
 本発明の樹脂発泡体は、50%以上(好ましくは65%以上)の厚み回復率を有するため、歪回復性に優れる。このため、樹脂発泡体は、良好な防塵性、特に良好な動的防塵性(動的環境下での防塵性能)を発揮する。また、本発明の樹脂発泡体を含んで構成された発泡シール材をクリアランスに組み付けた場合において、振動及び落下時の衝撃によって発泡シール材が変形した際、つまり発泡シール材が、圧縮され、組み付けられたクリアランス以下の厚みになった状態であっても、速やかにかつ十分に厚みが回復する。これによって、クリアランスを埋めることができ、塵等の異物の進入を有効に防止することが可能となる。 Since the resin foam of the present invention has a thickness recovery rate of 50% or more (preferably 65% or more), it is excellent in strain recovery. For this reason, the resin foam exhibits good dust resistance, particularly good dynamic dust resistance (dustproof performance in a dynamic environment). In addition, when the foamed sealing material comprising the resin foam of the present invention is assembled to the clearance, when the foamed sealing material is deformed by vibration and impact at the time of dropping, that is, the foamed sealing material is compressed and assembled. Even in a state where the thickness is equal to or less than the clearance, the thickness is recovered quickly and sufficiently. As a result, the clearance can be filled, and entry of foreign matters such as dust can be effectively prevented.
 本発明の樹脂発泡体は、さらに、-10℃での50%圧縮時の反発応力が、好ましくは10.0N/cm未満、より好ましくは、9N/cm以下、8N/cm以下、さらに好ましくは7N/cm2以下、5N/cm2以下(通常0.1N/cm2以上)である。
 -10℃での50%圧縮時の反発応力とは、樹脂発泡体を、-10℃にて、初期厚みに対して50%の厚みで厚み方向に圧縮した際の対反発荷重(反発応力又は圧縮荷重ともいう)として定義される。
 このように、低温における50%圧縮時の反発応力を、この範囲とすることにより、広い温度範囲において、より柔軟性を確保することが可能となる。これによって、微小クリアランスに対する追従性を発揮することができ、高速変形に対しても十分な回復を期待することができる。よって、本発明の樹脂発泡体を発泡シール材として、クリアランスに組み付けた場合、たとえクリアランスが狭くても、発泡シール材の反発による不具合(例えば、発泡シール材の周りの部材又は筐体等を変形させること、画像表示部に色ムラを生じさせること等)の発生を防止することができる。
Resin foam of the present invention further, repulsion stress at 50% compression at -10 ° C. is preferably less than 10.0 N / cm 2, more preferably, 9N / cm 2 or less, 8N / cm 2 or less, More preferably, it is 7 N / cm 2 or less, 5 N / cm 2 or less (usually 0.1 N / cm 2 or more).
The repulsive stress at the time of 50% compression at −10 ° C. means the repulsive load (repulsive stress or the rebound stress when the resin foam is compressed in the thickness direction at a thickness of 50% with respect to the initial thickness at −10 ° C. Defined as compression load).
Thus, by setting the repulsive stress at the time of 50% compression at a low temperature within this range, it becomes possible to ensure more flexibility in a wide temperature range. As a result, the followability with respect to the minute clearance can be exhibited, and sufficient recovery can be expected even for high-speed deformation. Therefore, when the resin foam of the present invention is used as a foam seal material and assembled in a clearance, even if the clearance is narrow, a problem due to the repulsion of the foam seal material (for example, deformation of a member or casing around the foam seal material) Occurrence of color unevenness in the image display unit, etc.) can be prevented.
 特に、本発明の樹脂発泡体は、上述したように、特定の厚み回復率を備えるとともに、特定の低温環境下での50%圧縮時の反発応力を有することにより、微小なクリアランスに対する追従性をより向上させることができる。このようなさらなる防塵性及び柔軟性に起因して、動的防塵性をより一層向上させることができる。 In particular, as described above, the resin foam of the present invention has a specific thickness recovery rate and has a repulsive stress at the time of 50% compression under a specific low-temperature environment, so that it can follow a minute clearance. It can be improved further. Due to such further dustproofness and flexibility, the dynamic dustproofness can be further improved.
 本発明の樹脂発泡体は、さらに、23℃での80%圧縮時の反発応力が、好ましくは1.0~9.0N/cm、より好ましくは1.0~8N/cm、さらに好ましくは1.0~7.5N/cmである。
 ここでの80%圧縮時の反発応力とは、樹脂発泡体を、23℃の雰囲気下、初期厚みに対して80%の厚みで厚み方向に圧縮した際の対反発荷重として定義される。
 このように、80%圧縮時の反発応力をこの範囲とすることにより、良好な柔軟性を発揮させることができる。よって、特に、この樹脂発泡体を発泡シール材として用いた場合、微小クリアランスに対する追従性を発揮させることができる。このため、本発明の樹脂発泡体を発泡シール材として、クリアランスに組み付けた場合、クリアランスが狭くても、発泡シール材の反発による不具合(例えば、発泡シール材の周りの部材又は筐体等を変形させること、画像表示部に色ムラを生じさせること等)の発生を防止することができる。
The resin foam of the present invention further has a repulsive stress at 80% compression at 23 ° C. of preferably 1.0 to 9.0 N / cm 2 , more preferably 1.0 to 8 N / cm 2 , and still more preferably. Is 1.0 to 7.5 N / cm 2 .
The repulsive stress at the time of 80% compression is defined as a repulsive load when the resin foam is compressed in the thickness direction at a thickness of 80% with respect to the initial thickness in an atmosphere of 23 ° C.
Thus, by setting the repulsion stress at the time of 80% compression within this range, it is possible to exhibit good flexibility. Therefore, in particular, when this resin foam is used as a foam seal material, it is possible to exhibit followability with respect to a minute clearance. For this reason, when the resin foam of the present invention is used as a foam sealing material and assembled into a clearance, even if the clearance is narrow, a problem due to the repulsion of the foam sealing material (for example, deformation of a member or casing around the foam sealing material) Occurrence of color unevenness in the image display unit, etc.) can be prevented.
 本発明の樹脂発泡体は、例えば、気泡構造が、独立気泡構造又は半連続半独立気泡構造(独立気泡構造と連続気泡構造とが混在している気泡構造であり、その割合は特に限定されない)であることが好ましい。特に、樹脂発泡体の独立気泡率が50%以下、好ましくは40%以下、より好ましくは35%以下となっている気泡構造が挙げられる。この範囲により、衝撃が作用した際の圧縮変形時、樹脂から空気が抜けやすく、十分な衝撃吸収性を発揮させることができる。また、樹脂発泡体の独立気泡率が10%以上、好ましくは15%以上、より好ましくは20%以上となっている気泡構造が挙げられる。この範囲により、連続気泡の割合を調整して、塵等の微小な粒子の通過を阻止し、防塵性を向上させることができる。
 なお、独立気泡率は、例えば、実施例に記載の方法によって測定することができる。
In the resin foam of the present invention, for example, the cell structure is a closed cell structure or a semi-continuous semi-closed cell structure (a cell structure in which a closed cell structure and an open cell structure are mixed, and the ratio is not particularly limited). It is preferable that In particular, a cell structure in which the closed cell ratio of the resin foam is 50% or less, preferably 40% or less, more preferably 35% or less can be mentioned. By this range, at the time of compressive deformation when an impact is applied, air can easily escape from the resin, and sufficient shock absorption can be exhibited. Further, there is a cell structure in which the closed cell ratio of the resin foam is 10% or more, preferably 15% or more, more preferably 20% or more. With this range, the ratio of open cells can be adjusted to prevent the passage of fine particles such as dust, thereby improving the dust resistance.
The closed cell ratio can be measured, for example, by the method described in the examples.
 本発明の樹脂発泡体は、さらに、気泡構造中の平均セル径が、好ましくは10~200μm又は10~180μm、より好ましくは10~150μm、さらに好ましくは10~90μm、特に好ましくは20~80μmである。
 この平均セル径は、例えば、デジタルマイクロスコープ(商品名「VH-8000」キーエンス株式会社製)により、気泡部の拡大画像を取り込み、画像解析ソフト(商品名「Win ROOF」三谷商事株式会社製)を用いて画像解析することにより求めることができる。
The resin foam of the present invention further has an average cell diameter in the cell structure of preferably 10 to 200 μm or 10 to 180 μm, more preferably 10 to 150 μm, still more preferably 10 to 90 μm, and particularly preferably 20 to 80 μm. is there.
This average cell diameter is obtained by, for example, capturing an enlarged image of the bubble portion with a digital microscope (trade name “VH-8000”, manufactured by Keyence Corporation), and image analysis software (trade name “Win ROOF”, manufactured by Mitani Corporation). It can obtain | require by carrying out image analysis using.
 本願発明の樹脂発泡体において、発泡体の平均セル径の上限を200μm以下、好ましくは180μm以下、150μm以下、さらに好ましくは90μm以下、特に好ましくは80μm以下とする。これによって、防塵性を高めるとともに、遮光性を良好とすることができる。その一方、発泡体の平均セル径の下限を10μm以上、好ましくは20μm以上とする。これによって、クッション性(衝撃吸収性)を良好とすることができる。 In the resin foam of the present invention, the upper limit of the average cell diameter of the foam is 200 μm or less, preferably 180 μm or less, 150 μm or less, more preferably 90 μm or less, and particularly preferably 80 μm or less. Accordingly, it is possible to improve the dustproof property and improve the light shielding property. On the other hand, the lower limit of the average cell diameter of the foam is 10 μm or more, preferably 20 μm or more. Thereby, the cushioning property (impact absorbability) can be improved.
 本発明の樹脂発泡体は、さらに、見掛け密度が、好ましくは0.01~0.20g/cm3、より好ましくは0.01~0.15g/cm3、0.01~0.10g/cm3、さらに好ましくは0.02~0.08g/cm3である。見掛け密度をこの範囲とすると、強度を十分に確保することができ、良好な加工性(特に打ち抜き加工性)を得ることができる。同時に、柔軟性をも確保することができ、発泡シール材として用いた際に微小なクリアランスに対する追従性を得ることができる。 The resin foam of the present invention further has an apparent density of preferably 0.01 to 0.20 g / cm 3 , more preferably 0.01 to 0.15 g / cm 3 , and 0.01 to 0.10 g / cm 3 . 3 , more preferably 0.02 to 0.08 g / cm 3 . When the apparent density is within this range, the strength can be sufficiently secured and good workability (particularly punching workability) can be obtained. At the same time, flexibility can be ensured, and followability to minute clearances can be obtained when used as a foamed sealing material.
 このように、本発明の樹脂発泡体は、23℃での厚み回復率、-10℃での50%圧縮時の反発応力、23℃での80%圧縮時の反発応力の2以上、好ましくは全てを良好なものとする場合には、通常考えられる樹脂発泡体の変形に対して、どのような温度範囲においても、十分かつ速やかに、その形状を回復することができる。また、良好な衝撃吸収性を示すことから、特に本発明で意図する動的環境下での防塵性能を最大限に発揮させることができる。さらに、携帯電話等の画像表示部での使用に際しては、十分な遮光性又は光漏れを防止することができる。 Thus, the resin foam of the present invention has a thickness recovery rate at 23 ° C., a repulsive stress at 50% compression at −10 ° C., and a repulsive stress at 80% compression at 23 ° C. of 2 or more, preferably In the case where all are good, the shape can be recovered sufficiently and quickly in any temperature range with respect to the deformation of the resin foam that is normally considered. In addition, since it exhibits good shock absorption, it is possible to maximize the dustproof performance particularly in the dynamic environment intended by the present invention. Furthermore, when used in an image display unit such as a mobile phone, sufficient light shielding properties or light leakage can be prevented.
 〔樹脂発泡体の材料〕
 本発明の樹脂発泡体は、樹脂によって形成される。樹脂としては、熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレンとプロピレンとの共重合体、エチレン又はプロピレンと他のα-オレフィン(例えば、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1など)との共重合体、エチレンと他のエチレン性不飽和単量体(例えば、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコールなど)との共重合体などのポリオレフィン系樹脂;ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)などのスチレン系樹脂;6-ナイロン、66-ナイロン、12-ナイロンなどのポリアミド系樹脂;ポリアミドイミド;ポリウレタン;ポリイミド;ポリエーテルイミド;ポリメチルメタクリレートなどのアクリル系樹脂;ポリ塩化ビニル;ポリフッ化ビニル;アルケニル芳香族樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂;ビスフェノールA系ポリカーボネートなどのポリカーボネート;ポリアセタール;ポリフェニレンスルフィドなどが挙げられる。
 熱可塑性樹脂は、単独で又は2種以上を組み合わせて用いることができる。熱可塑性樹脂が共重合体である場合、ランダム共重合体、ブロック共重合体のいずれの形態の共重合体であってもよい。
[Material of resin foam]
The resin foam of the present invention is formed of a resin. As the resin, a thermoplastic resin is preferable. Examples of the thermoplastic resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, a copolymer of ethylene and propylene, ethylene or propylene and another α-olefin (for example, butene -1, pentene-1, hexene-1, 4-methylpentene-1, etc.), ethylene and other ethylenically unsaturated monomers (for example, vinyl acetate, acrylic acid, acrylic ester, methacrylic) Polyolefin resins such as copolymers with acid, methacrylic acid ester, vinyl alcohol, etc.); styrene resins such as polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin); 6-nylon, 66-nylon, 12 -Polyamide resins such as nylon; polyamideimide Polyurethane; Polyimide; Polyetherimide; Acrylic resin such as polymethyl methacrylate; Polyvinyl chloride; Polyvinyl fluoride; Alkenyl aromatic resin; Polyester resin such as polyethylene terephthalate and polybutylene terephthalate; Polycarbonate such as bisphenol A polycarbonate; Polyacetal; polyphenylene sulfide and the like.
A thermoplastic resin can be used individually or in combination of 2 or more types. When the thermoplastic resin is a copolymer, the copolymer may be a random copolymer or a block copolymer.
 熱可塑性樹脂としては、機械強度、耐熱性、耐薬品性等の特性面、溶融熱成形が容易等の成形面から、ポリオレフィン系樹脂が好適である。
 ポリオレフィン系樹脂としては、分子量分布が広くかつ高分子量側にショルダーをもつタイプの樹脂、微架橋タイプの樹脂(若干架橋されたタイプの樹脂)、長鎖分岐タイプの樹脂などが好適に挙げられる。
As the thermoplastic resin, a polyolefin-based resin is preferable from the viewpoints of characteristics such as mechanical strength, heat resistance, and chemical resistance, and molding surfaces such as easy melt thermoforming.
Preferred examples of the polyolefin resin include a resin having a broad molecular weight distribution and having a shoulder on the high molecular weight side, a micro-crosslinking type resin (a slightly cross-linked type resin), a long-chain branched type resin, and the like.
 特に、ポリオレフィン系樹脂としては、発泡倍率が高く、かつ、均一な気泡構造を有する樹脂発泡体を得る点から、溶融張力(温度:210℃、引張速度:2.0m/min、キャピラリー:φ1mm×10mm)が3~50cN(好ましくは8~50cN)であるポリオレフィン系樹脂が好ましい。 In particular, as a polyolefin-based resin, melt tension (temperature: 210 ° C., tensile speed: 2.0 m / min, capillary: φ1 mm × from the viewpoint of obtaining a resin foam having a high expansion ratio and a uniform cell structure. A polyolefin resin in which 10 mm) is 3 to 50 cN (preferably 8 to 50 cN) is preferable.
 本発明の樹脂発泡体は、ゴム成分及び/又は熱可塑性エラストマー成分を含む。
 ゴム成分及び熱可塑性エラストマー成分は、例えば、ガラス転移温度が室温以下(例えば20℃以下)であるため、樹脂発泡体としたときの柔軟性及び形状追随性が極めて良好となる。
The resin foam of the present invention contains a rubber component and / or a thermoplastic elastomer component.
Since the rubber component and the thermoplastic elastomer component have, for example, a glass transition temperature of room temperature or lower (for example, 20 ° C. or lower), flexibility and shape followability when a resin foam is obtained are extremely good.
 ゴム成分及び熱可塑性エラストマー成分としては、ゴム弾性を有し、発泡可能なものであれば特に限定はなく、例えば、天然ゴム、ポリイソブチレン、ポリイソプレン、クロロプレンゴム、ブチルゴム、ニトリルブチルゴムなどの天然又は合成ゴム;エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-酢酸ビニル共重合体、ポリブテン、塩素化ポリエチレンなどのオレフィン系エラストマー;スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体及びそれらの水素添加物などのスチレン系エラストマー;ポリエステル系エラストマー;ポリアミド系エラストマー;ポリウレタン系エラストマーなどの各種熱可塑性エラストマーなどが挙げられる。
 これらは単独で又は2種以上を組み合わせて用いてもよい。
The rubber component and the thermoplastic elastomer component are not particularly limited as long as they have rubber elasticity and can be foamed. For example, natural or natural rubber, polyisobutylene, polyisoprene, chloroprene rubber, butyl rubber, nitrile butyl rubber, or the like Synthetic rubbers; Ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-vinyl acetate copolymers, polybutenes, olefinic elastomers such as chlorinated polyethylene; styrene-butadiene-styrene copolymers, styrene-isoprene -Styrene elastomers such as styrene copolymers and hydrogenated products thereof; polyester elastomers; polyamide elastomers; various thermoplastic elastomers such as polyurethane elastomers.
You may use these individually or in combination of 2 or more types.
 なかでも、ゴム成分及び/又は熱可塑性エラストマー成分としては、オレフィン系エラストマーが好ましい。オレフィン系エラストマーは、熱可塑性樹脂として例示されているポリオレフィン系樹脂との相溶性が良好である。 Among these, as the rubber component and / or the thermoplastic elastomer component, an olefin elastomer is preferable. The olefin elastomer has good compatibility with the polyolefin resin exemplified as the thermoplastic resin.
 オレフィン系エラストマーは、樹脂成分A(オレフィン系樹脂成分A)とゴム成分Bとがミクロ相分離した構造を有するタイプであってもよい。また、樹脂成分Aとゴム成分Bとを物理的に分散させたタイプならびに樹脂成分Aとゴム成分Bとを、架橋剤の存在下、動的に熱処理したタイプ(動的架橋型熱可塑性エラストマー、TPV)であってもよい。 The olefin elastomer may be of a type having a structure in which the resin component A (olefin resin component A) and the rubber component B are microphase separated. The resin component A and the rubber component B are physically dispersed, and the resin component A and the rubber component B are dynamically heat treated in the presence of a crosslinking agent (dynamic crosslinking thermoplastic elastomer, TPV).
 特に、オレフィン系エラストマーとしては、動的架橋型熱可塑性オレフィン系エラストマー(TPV)が好ましい。
 動的架橋型熱可塑性オレフィン系エラストマーはTPO(非架橋型の熱可塑性オレフィン系エラストマー)より、弾性率が高く、かつ圧縮永久歪みも小さい。これにより、回復性が良好であり、樹脂発泡体とした場合に優れた回復性を示す。
In particular, as the olefin elastomer, a dynamically crosslinked thermoplastic olefin elastomer (TPV) is preferable.
The dynamically crosslinked thermoplastic olefin elastomer has a higher elastic modulus and a smaller compression set than TPO (non-crosslinked thermoplastic olefin elastomer). Thereby, the recoverability is good, and when the resin foam is used, the excellent recoverability is exhibited.
 動的架橋型熱可塑性オレフィン系エラストマーとは、上述したように、マトリックスを形成する樹脂成分A(オレフィン系樹脂成分A)及びドメインを形成するゴム成分Bを含む混合物を、架橋剤の存在下、動的に熱処理することにより得られ、マトリックス(海相)である樹脂成分A中に、架橋ゴム粒子がドメイン(島相)として細かく分散した海島構造を有する多相系のポリマーである。 As described above, the dynamically crosslinked thermoplastic olefin elastomer is a mixture containing the resin component A (olefin resin component A) forming a matrix and the rubber component B forming a domain, in the presence of a crosslinking agent. It is a multiphase polymer having a sea-island structure in which crosslinked rubber particles are finely dispersed as domains (island phases) in the resin component A, which is a matrix (sea phase), obtained by dynamic heat treatment.
 このような動的架橋型熱可塑性オレフィン系エラストマーとしては、例えば、特開2000-007858号公報、特開2006-052277号公報、特開2012-072306号公報、特開2012-057068号公報、特開2010-241897号公報、特開2009-067969号公報、再表03/002654号等に記載のもの、「ゼオサーム」(日本ゼオン社製)、「サーモラン」(三菱化学社製)、「サーリンク3245D」(東洋紡績株式会社製)等として市販されているもの等が挙げられる。 Examples of such a dynamically crosslinked thermoplastic olefin elastomer include, for example, JP 2000-007858 A, JP 2006-052277 A, JP 2012-072306 A, JP 2012-056768 A, JP-A-2010-241897, JP-A-2009-0697969, RE-list 03/002654, etc., “Zeotherm” (manufactured by Zeon Corporation), “Thermorun” (manufactured by Mitsubishi Chemical Corporation), “Surlink” 3245D "(manufactured by Toyobo Co., Ltd.) and the like.
 本発明の樹脂発泡体の構成する樹脂として、樹脂とともに、ゴム成分及び/又は熱可塑性エラストマー成分を含む場合、その割合は特に限定されないが、ゴム成分及び/又は熱可塑性エラストマー成分の割合が少なすぎると樹脂発泡体のクッション性が低下しやすくなり又は圧縮後の回復性が低下することがある。一方、ゴム成分及び/又は熱可塑性エラストマー成分の割合が多すぎると発泡体形成時にガス抜けが生じやすくなり、高発泡性の発泡体を得ることが困難になることがある。
 このため、本発明の樹脂発泡体を構成する樹脂において、樹脂とゴム成分及び/又は熱可塑性エラストマー成分との割合は、重量基準で、好ましくは70/30~30/70、より好ましくは60/40~30/70であり、さらに好ましくは50/50~30/70であり、特に好ましくは、60/40~10/90、58/42~10/90、55/45~10/90である。
When the resin component of the resin foam of the present invention includes a rubber component and / or a thermoplastic elastomer component together with the resin, the ratio is not particularly limited, but the ratio of the rubber component and / or the thermoplastic elastomer component is too small. And the cushioning property of the resin foam tends to be lowered, or the recoverability after compression may be lowered. On the other hand, if the ratio of the rubber component and / or the thermoplastic elastomer component is too large, outgassing is likely to occur during foam formation, and it may be difficult to obtain a highly foamable foam.
Therefore, in the resin constituting the resin foam of the present invention, the ratio of the resin to the rubber component and / or the thermoplastic elastomer component is preferably 70/30 to 30/70, more preferably 60/30 on a weight basis. 40 to 30/70, more preferably 50/50 to 30/70, and particularly preferably 60/40 to 10/90, 58/42 to 10/90, and 55/45 to 10/90. .
 本発明の樹脂発泡体では、高圧縮時の柔軟性及び圧縮後の形状回復を実現するために、つまり、大変形を可能とし、塑性変形を起こさないようにするためには、いわゆるゴム弾性に優れた材料が適している。その観点から、本発明の樹脂発泡体では、構成する樹脂として、上述した樹脂とともに、ゴム成分及び/又は熱可塑性エラストマー成分を含むことが好ましい。 In the resin foam of the present invention, in order to realize flexibility at high compression and shape recovery after compression, that is, to enable large deformation and prevent plastic deformation, so-called rubber elasticity is used. Good material is suitable. From that viewpoint, it is preferable that the resin foam of the present invention includes a rubber component and / or a thermoplastic elastomer component together with the above-described resin as the constituent resin.
 また、本発明の樹脂発泡体は、さらに造核剤が含まれることが好ましい。造核剤が含まれていると、セル径を容易に調整することができ、適度な柔軟性を有するとともに、切断加工性に優れた発泡体を得ることができる。 Further, the resin foam of the present invention preferably further contains a nucleating agent. When the nucleating agent is contained, the cell diameter can be easily adjusted, and a foam having an appropriate flexibility and excellent cutting processability can be obtained.
 造核剤としては、例えば、タルク、シリカ、アルミナ、ゼオライト、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化亜鉛、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、マイカ、モンモリナイトなどの酸化物、複合酸化物、金属炭酸塩、金属硫酸塩、金属水酸化物;カーボン粒子、グラスファイバー、カーボンチューブなどが挙げられる。なお、造核剤は、単独で又は2種以上を組み合わせて用いられる。 Examples of the nucleating agent include oxides and composite oxides such as talc, silica, alumina, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, zinc oxide, titanium oxide, aluminum hydroxide, magnesium hydroxide, mica, and montmorillonite. Metal carbonates, metal sulfates, metal hydroxides; carbon particles, glass fibers, carbon tubes, and the like. In addition, a nucleating agent is used individually or in combination of 2 or more types.
 造核剤の平均粒子径は、特に限定されないが、好ましくは0.3~1.5μmであり、より好ましくは0.4~1.2μmである。このような平均粒子径とすることにより、造核剤としての十分な機能を発揮させることができる。また、造核剤がセルの壁を突き破ることなく、高発泡倍率を実現できる。
 この平均粒子径は、レーザー回折式の粒度分布測定法により測定することができる。例えば、LEEDS & NORTHRUP INSTRUMENTS 社製「MICROTRAC MT-3000」により、試料の分散希釈液から測定(AUTO測定モード)することができる。
The average particle size of the nucleating agent is not particularly limited, but is preferably 0.3 to 1.5 μm, more preferably 0.4 to 1.2 μm. By setting it as such an average particle diameter, sufficient function as a nucleating agent can be exhibited. In addition, a high expansion ratio can be realized without the nucleating agent breaking through the cell walls.
This average particle diameter can be measured by a laser diffraction particle size distribution measuring method. For example, the measurement can be performed from the sample dispersion dilution (AUTO measurement mode) using “MICROTRAC MT-3000” manufactured by LEEDS & NORTHRUP INSTRUMENTS.
 本発明の樹脂発泡体において、このような造核剤を含む場合の含有量は、特に限定されないが、構成する樹脂100重量部に対して、好ましくは0.5~150重量部、より好ましくは2~140重量部、さらにより好ましくは3~130重量部である。 In the resin foam of the present invention, the content when such a nucleating agent is included is not particularly limited, but is preferably 0.5 to 150 parts by weight, more preferably 100 parts by weight of the constituent resin. 2 to 140 parts by weight, still more preferably 3 to 130 parts by weight.
 本発明の樹脂発泡体は、樹脂により構成されているため燃えやすいことから、難燃剤を含有することが好ましい。
 難燃剤としては、ノンハロゲン-ノンアンチモン系である無機難燃剤が好ましい。
 このような無機難燃剤としては、例えば、金属水酸化物や金属化合物の水和物などが挙げられる。より具体的には、水酸化アルミニウム;水酸化マグネシウム;酸化マグネシウムや酸化ニッケルの水和物;酸化マグネシウムや酸化亜鉛の水和物などが挙げられる。中でも、水酸化マグネシウムが好適に挙げられる。上記水和金属化合物は表面処理されていてもよい。難燃剤は、単独で又は2種以上を組み合わせて用いられる。
Since the resin foam of this invention is comprised with resin and is easy to burn, it is preferable to contain a flame retardant.
As the flame retardant, a non-halogen-nonantimony inorganic flame retardant is preferable.
Examples of such inorganic flame retardants include metal hydroxides and hydrates of metal compounds. More specifically, aluminum hydroxide; magnesium hydroxide; hydrates of magnesium oxide and nickel oxide; hydrates of magnesium oxide and zinc oxide, and the like. Among these, magnesium hydroxide is preferable. The hydrated metal compound may be surface-treated. A flame retardant is used individually or in combination of 2 or more types.
 本発明の樹脂発泡体において、難燃剤が含まれる場合の含有量は、構成する樹脂100重量部に対して、好ましくは5~70重量部、より好ましくは25~65重量部である。 In the resin foam of the present invention, the content when a flame retardant is contained is preferably 5 to 70 parts by weight, more preferably 25 to 65 parts by weight, with respect to 100 parts by weight of the constituent resin.
 本発明の樹脂発泡体は、さらに、極性官能基を有し、融点が50~150℃であり、脂肪酸、脂肪酸アミド及び脂肪酸金属石鹸から選ばれた少なくとも一つの脂肪族系化合物を含有していてもよい。なかでも、脂肪酸及び/又は脂肪酸アミドが好ましい。 The resin foam of the present invention further has a polar functional group, a melting point of 50 to 150 ° C., and contains at least one aliphatic compound selected from fatty acids, fatty acid amides and fatty acid metal soaps. Also good. Of these, fatty acids and / or fatty acid amides are preferred.
 本発明の樹脂発泡体において、このような脂肪族系化合物が含まれていると、加工(特に打ち抜き加工)の際に、気泡構造がつぶれにくくなり、形状回復性が向上し、加工性がより向上する。このような脂肪族系化合物は結晶性が高く、上記樹脂(特にポリオレフィン系樹脂)に添加すると樹脂表面に強固な膜を形成し、気泡構造を形成する気泡の壁面同士が互いにブロッキングすることを防ぐ働きを有するためと推測される。 When such an aliphatic compound is contained in the resin foam of the present invention, the cell structure is less likely to collapse during processing (particularly punching processing), shape recovery is improved, and workability is further improved. improves. Such an aliphatic compound has high crystallinity, and when added to the resin (especially polyolefin resin), it forms a strong film on the resin surface and prevents the wall surfaces of the bubbles forming the cell structure from blocking each other. It is presumed to have a function.
 このような脂肪族系化合物は、特に、ポリオレフィン系樹脂に対しては、極性の高い官能基を含むものが、相溶しにくいため、樹脂発泡体表面に析出しやすく、上記の効果を発揮しやすい。 Such aliphatic compounds, particularly those containing a highly polar functional group, are difficult to be compatible with polyolefin resins, so that they easily precipitate on the surface of the resin foam and exhibit the above effects. Cheap.
 脂肪族系化合物の融点は、樹脂組成物を発泡成形する際の成形温度を下げ、樹脂(特にポリオレフィン系樹脂)の劣化を抑制する、耐昇華性を付与する等の観点から、好ましくは50~150℃であり、より好ましくは70~100℃である。 The melting point of the aliphatic compound is preferably 50 to 50 from the viewpoints of lowering the molding temperature when foam-molding the resin composition, suppressing deterioration of the resin (particularly polyolefin resin), imparting sublimation resistance, and the like. 150 ° C., more preferably 70 to 100 ° C.
 脂肪酸としては、炭素数18~38程度(より好ましくは、18~22)のものが好ましく、具体的には、ステアリン酸、ベヘニン酸、12-ヒドロキシステアリン酸などが挙げられる。なかでも、ベヘニン酸が好ましい。 The fatty acid preferably has about 18 to 38 carbon atoms (more preferably 18 to 22), and specific examples thereof include stearic acid, behenic acid, 12-hydroxystearic acid and the like. Of these, behenic acid is preferable.
 脂肪酸アミドとしては、脂肪酸部分の炭素数が18~38程度(より好ましくは、18~22程度)の脂肪酸アミドが好ましく、モノアミド、ビスアミドの何れであってもよい。具体的には、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミドなどが挙げられる。なかでも、エルカ酸アミドが好ましい。 The fatty acid amide is preferably a fatty acid amide having a fatty acid moiety having about 18 to 38 carbon atoms (more preferably about 18 to 22), and may be either monoamide or bisamide. Specific examples include stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, and ethylene bis stearic acid amide. Of these, erucic acid amide is preferred.
 脂肪酸金属石鹸としては、上記脂肪酸のアルミニウム、カルシウム、マグネシウム、リチウム、バリウム、亜鉛、鉛の塩などが挙げられる。 Examples of the fatty acid metal soap include aluminum, calcium, magnesium, lithium, barium, zinc and lead salts of the above fatty acids.
 本発明の樹脂発泡体において、このような脂肪族系化合物が含まれる場合の含有量は、特に限定されないが、構成する樹脂100重量部に対して、好ましくは1~5重量部、より好ましくは1.5~3.5重量部、さらにより好ましくは2~3重量部である。これにより、樹脂を発泡成形する際に十分な圧力を保つことができ、発泡剤(例えば、二酸化炭素、窒素などの不活性ガス)の含有を確保して、高い発泡倍率が得ることができる。 In the resin foam of the present invention, the content when such an aliphatic compound is included is not particularly limited, but is preferably 1 to 5 parts by weight, more preferably 100 parts by weight of the resin constituting the resin foam. The amount is 1.5 to 3.5 parts by weight, more preferably 2 to 3 parts by weight. Thereby, sufficient pressure can be maintained when the resin is subjected to foam molding, and the content of a foaming agent (for example, an inert gas such as carbon dioxide and nitrogen) can be ensured, and a high foaming ratio can be obtained.
 本発明の樹脂発泡体は、滑剤が含有されていてもよい。これにより、樹脂組成物の流動性を向上させるとともに、樹脂の熱劣化を抑制することができる。滑剤は、単独で又は2種以上を組み合わせて用いられる。 The resin foam of the present invention may contain a lubricant. Thereby, while improving the fluidity | liquidity of a resin composition, the thermal deterioration of resin can be suppressed. A lubricant is used individually or in combination of 2 or more types.
 滑剤としては、特に限定されないが、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックスなどの炭化水素系滑剤;ステアリン酸ブチル、ステアリン酸モノグリセリド、ペンタエリスリトールテトラステアレート、硬化ヒマシ油、ステアリン酸ステアリルなどのエステル系滑剤などが挙げられる。また、滑剤の含有量は、本発明の効果を損なわない範囲で適宜選択することができる。 The lubricant is not particularly limited. For example, hydrocarbon lubricants such as liquid paraffin, paraffin wax, microwax and polyethylene wax; butyl stearate, monoglyceride stearate, pentaerythritol tetrastearate, hydrogenated castor oil, stearyl stearate And ester lubricants. Moreover, content of a lubricant can be suitably selected in the range which does not impair the effect of this invention.
 本発明の樹脂発泡体は、必要に応じて、その他の添加剤が含有されていてもよい。このような添加剤としては、例えば、収縮防止剤、老化防止剤、熱安定剤、HALS等の耐光剤、耐候剤、金属不活性剤、紫外線吸収剤、光安定剤、銅害防止剤等の安定剤、防菌剤、防かび剤、分散剤、粘着付与剤、カーボンブラックや有機顔料等の着色剤、充填剤などが挙げられる。特に、動的架橋型熱可塑性オレフィン系エラストマーを用いる場合、それを含有する組成物として添加剤(例えば、カーボンブラックなどの着色剤、軟化剤等)を含有したものを用いてもよい。これらの添加剤は、単独で又は2種以上を組み合わせて用いられる。
 これらの添加剤の含有量は、本発明の効果を損なわない範囲で適宜選択することができる。
The resin foam of the present invention may contain other additives as necessary. Examples of such additives include anti-shrinkage agents, anti-aging agents, heat stabilizers, light stabilizers such as HALS, weathering agents, metal deactivators, ultraviolet absorbers, light stabilizers, copper damage inhibitors, and the like. Stabilizers, antibacterial agents, fungicides, dispersants, tackifiers, colorants such as carbon black and organic pigments, fillers, and the like. In particular, when a dynamically crosslinked thermoplastic olefin elastomer is used, a composition containing an additive (for example, a colorant such as carbon black, a softening agent, etc.) may be used. These additives are used alone or in combination of two or more.
The content of these additives can be appropriately selected within a range that does not impair the effects of the present invention.
 〔樹脂発泡体の製造方法〕
 本発明の樹脂発泡体を形成する樹脂組成物は、樹脂、ゴム成分及び/又は熱可塑性エラストマー成分、任意に、造核剤、脂肪族系化合物、滑剤等の添加剤を混合・混練することにより製造することができる。
[Method for producing resin foam]
The resin composition forming the resin foam of the present invention is obtained by mixing and kneading an additive such as a resin, a rubber component and / or a thermoplastic elastomer component, and optionally, a nucleating agent, an aliphatic compound, a lubricant and the like. Can be manufactured.
 本発明の樹脂発泡体において、樹脂組成物を発泡及び成形する際に用いられる発泡方法としては、特に限定されず、例えば、物理的方法、化学的方法等の通常用いられる方法が挙げられる。一般的な物理的方法は、クロロフルオロカーボン類又は炭化水素類などの低沸点液体(発泡剤)を樹脂に分散させ、次に加熱し、発泡剤を揮発することにより気泡を形成させる方法である。また、一般的な化学的方法は、樹脂に添加した化合物(発泡剤)の熱分解により生じたガスにより気泡を形成させる方法である。しかし、一般的な物理的方法は、発泡剤として用いられる物質の可燃性、毒性及びオゾン層破壊などの環境への影響が懸念される。また、一般的な化学的方法では、発泡ガスの残渣が発泡体中に残存するため、特に低汚染性の要求が高い電子機器用途においては、腐食性ガスやガス中の不純物による汚染が問題となる。しかも、これらの物理的方法及び化学的方法では、いずれにおいても、微細な気泡構造を形成することは難しく、特に300μm以下の微細気泡を形成することは極めて困難であるといわれている。 In the resin foam of the present invention, the foaming method used when foaming and molding the resin composition is not particularly limited, and examples thereof include usually used methods such as a physical method and a chemical method. A general physical method is a method of forming bubbles by dispersing a low boiling point liquid (foaming agent) such as chlorofluorocarbons or hydrocarbons in a resin, and then heating to volatilize the foaming agent. Moreover, a general chemical method is a method in which bubbles are formed by a gas generated by thermal decomposition of a compound (foaming agent) added to a resin. However, general physical methods are concerned about environmental impacts such as flammability, toxicity, and ozone depletion of substances used as blowing agents. Also, in general chemical methods, foaming gas residues remain in the foam, so that contamination by corrosive gas and impurities in the gas is a problem, especially in electronic equipment applications where low pollution requirements are high. Become. Moreover, in any of these physical methods and chemical methods, it is difficult to form a fine bubble structure, and it is particularly difficult to form a fine bubble of 300 μm or less.
 このため、本発明では、発泡方法としては、セル径が小さくかつセル密度の高い発泡体を容易に得ることができる点から、発泡剤として高圧のガスを用いる方法が好ましい。特に発泡剤として高圧の不活性ガスを用いる方法が好ましい。
 発泡剤として高圧のガスを用いる方法としては、樹脂組成物に高圧のガスを含浸させた後、減圧する工程を経る方法が好ましく、具体的には、樹脂組成物からなる未発泡成形物に高圧のガスを含浸させた後、減圧する工程を経る方法、溶融した樹脂組成物にガスを加圧状態下で含浸させた後、減圧とともに成形に付す方法などが挙げられる。
For this reason, in the present invention, as the foaming method, a method using a high-pressure gas as the foaming agent is preferable because a foam having a small cell diameter and a high cell density can be easily obtained. In particular, a method using a high-pressure inert gas as a foaming agent is preferable.
As a method of using a high-pressure gas as a foaming agent, a method in which a resin composition is impregnated with a high-pressure gas and then subjected to a pressure reducing step is preferable. The method of passing through the process of depressurizing after impregnating this gas, the method of impregnating the molten resin composition with the gas under a pressurized state, and then subjecting it to molding with reduced pressure, and the like.
 不活性ガスとしては、樹脂発泡体を構成する樹脂に対して不活性でかつ含浸可能なものであれば特に限定されず、例えば、二酸化炭素、窒素、空気などが挙げられる。これらのガスは混合して用いてもよい。これらのうち、樹脂への含浸量が多く、含浸速度の速い点から、二酸化炭素又は窒素が好ましく、二酸化炭素がより好ましい。 The inert gas is not particularly limited as long as it is inert with respect to the resin constituting the resin foam and can be impregnated, and examples thereof include carbon dioxide, nitrogen, and air. These gases may be mixed and used. Of these, carbon dioxide or nitrogen is preferred and carbon dioxide is more preferred from the viewpoint that the amount of impregnation into the resin is large and the impregnation rate is fast.
 さらに、樹脂組成物への含浸速度を速めるという観点から、上記高圧のガス(特に不活性ガス、さらには二酸化炭素)は、超臨界状態のガスであることが好ましい。超臨界状態では、樹脂へのガスの溶解度が増大し、高濃度の混入が可能である。また、含浸後の急激な圧力降下時には、上記のように高濃度で含浸することが可能であるため、気泡核の発生が多くなり、その気泡核が成長してできる気泡の密度は気孔率が同じであっても大きくなるため、微細な気泡を得ることができる。例えば、二酸化炭素の臨界温度は31℃、臨界圧力は7.4MPaである。 Furthermore, from the viewpoint of increasing the impregnation rate into the resin composition, the high-pressure gas (particularly inert gas, and further carbon dioxide) is preferably a gas in a supercritical state. In the supercritical state, the solubility of the gas in the resin is increased and high concentration can be mixed. In addition, when the pressure drops suddenly after impregnation, since it is possible to impregnate at a high concentration as described above, the generation of bubble nuclei increases, and the density of bubbles formed by the growth of the bubble nuclei has a porosity. Even if they are the same, they become larger, so that fine bubbles can be obtained. For example, carbon dioxide has a critical temperature of 31 ° C. and a critical pressure of 7.4 MPa.
 本発明の樹脂発泡体において、発泡剤として高圧のガスを用いる方法により樹脂組成物を発泡及び成形する方法としては、予め樹脂組成物を、シート状などの適宜な形状に成形して未発泡樹脂成形体(未発泡樹脂成形物)とした後、この未発泡樹脂成形体に、高圧のガスを含浸させ、圧力を解放することにより発泡させるバッチ方式で行ってもよく、樹脂組成物を加圧下、高圧のガスと共に混練し、成形すると同時に圧力を解放し、成形と発泡を同時に行う連続方式で行ってもよい。 In the resin foam of the present invention, as a method of foaming and molding the resin composition by a method using a high-pressure gas as a foaming agent, the resin composition is previously molded into an appropriate shape such as a sheet shape, and an unfoamed resin After forming a molded body (unfoamed resin molded product), this unfoamed resin molded body may be impregnated with a high-pressure gas and foamed by releasing the pressure. Alternatively, it may be kneaded with a high-pressure gas, molded and simultaneously released, and the pressure may be released to perform molding and foaming simultaneously.
 本発明の樹脂発泡体において、バッチ方式で樹脂組成物を発泡及び成形する際に、発泡に供する未発泡樹脂成形体を形成する方法としては、例えば、樹脂組成物を、単軸押出機、二軸押出機等の押出機を用いて成形する方法;樹脂組成物を、ローラ、カム、ニーダ、バンバリ型等の羽根を設けた混練機を使用して均一に混練し、熱板のプレスなどを用いて所定の厚みにプレス成形する方法;樹脂組成物を、射出成形機を用いて成形する方法などが挙げられる。また、未発泡樹脂成形体は、押出成形、プレス成形、射出成形以外に、他の成形方法でも形成することもできる。さらに、未発泡樹脂成形体の形状は、特に限定されず、用途に応じて種々の形状を選択できる。例えば、シート状、ロール状、板状、塊状等が挙げられる。このように、本発明の樹脂発泡体において、バッチ方式で樹脂組成物を発泡及び成形する際には、所望の形状や厚さの未発泡樹脂成形体が得られる適宜な方法により樹脂組成物を成形することができる。 In the resin foam of the present invention, when the resin composition is foamed and molded in a batch system, as a method of forming an unfoamed resin molded body to be used for foaming, for example, the resin composition is made of a single screw extruder, two A method of molding using an extruder such as a shaft extruder; the resin composition is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, a Banbury mold, etc. And a method of press molding to a predetermined thickness using the resin composition; a method of molding the resin composition using an injection molding machine, and the like. In addition, the unfoamed resin molded body can be formed by other molding methods besides extrusion molding, press molding, and injection molding. Furthermore, the shape of the unfoamed resin molded body is not particularly limited, and various shapes can be selected depending on the application. For example, a sheet shape, a roll shape, a plate shape, a lump shape, etc. are mentioned. Thus, in the resin foam of the present invention, when the resin composition is foamed and molded in a batch system, the resin composition is obtained by an appropriate method that can obtain an unfoamed resin molded body having a desired shape and thickness. Can be molded.
 本発明の樹脂発泡体において、バッチ方式で樹脂組成物を発泡及び成形する場合、得られた未発泡樹脂成形体を耐圧容器(高圧容器)中に入れて、高圧のガス(特に不活性ガス、さらには二酸化炭素)を注入(導入)し、未発泡樹脂成形体中に高圧のガスを含浸させるガス含浸工程、十分に高圧のガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、樹脂中に気泡核を発生させる減圧工程、場合によっては(必要に応じて)、加熱することによって気泡核を成長させる加熱工程を経て、樹脂中に気泡を形成させる。加熱工程を設けずに、室温で気泡核を成長させてもよい。 In the resin foam of the present invention, when the resin composition is foamed and molded in a batch system, the obtained unfoamed resin molded body is put in a pressure vessel (high pressure vessel) and a high pressure gas (especially an inert gas, Furthermore, carbon dioxide) is injected (introduced), and a gas impregnation step in which high-pressure gas is impregnated into the unfoamed resin molded body, and when the sufficiently high-pressure gas is impregnated, the pressure is released (usually up to atmospheric pressure). ), A pressure reducing step for generating bubble nuclei in the resin, and in some cases (if necessary), a bubble is formed in the resin through a heating step for growing the bubble nuclei by heating. Bubble nuclei may be grown at room temperature without providing a heating step.
 本発明の樹脂発泡体において、連続方式での樹脂組成物の発泡及び成形としては、樹脂組成物を、単軸押出機、二軸押出機等の押出機を使用して混練しながら、高圧のガス(特に不活性ガス、さらには二酸化炭素)を注入(導入)し、十分に高圧のガスを樹脂組成物に含浸させる混練含浸工程、押出機の先端に設けられたダイスなどを通して樹脂組成物を押し出すことにより圧力を解放し(通常、大気圧まで)、成形と発泡とを同時に行う成形減圧工程により発泡及び成形することが挙げられる。これら混練含浸工程及び成形減圧工程では、押出機のほか、射出成形機などを用いて行うこともできる。また、連続方式での樹脂組成物の発泡及び成形の際には、必要に応じて、加熱することによって気泡を成長させる加熱工程を設けてもよい。 In the resin foam of the present invention, as the foaming and molding of the resin composition in a continuous mode, the resin composition is mixed with a high pressure while kneading using an extruder such as a single screw extruder or a twin screw extruder. Injecting (introducing) gas (especially inert gas or carbon dioxide) and impregnating the resin composition with a sufficiently high pressure gas, the resin composition is passed through a die provided at the tip of the extruder. The pressure is released by extrusion (usually up to atmospheric pressure), and foaming and molding can be performed by a molding decompression process in which molding and foaming are performed simultaneously. In the kneading impregnation step and the molding pressure reduction step, an injection molding machine or the like can be used in addition to the extruder. Moreover, in the case of foaming and shaping | molding of the resin composition by a continuous system, you may provide the heating process which grows a bubble by heating as needed.
 バッチ方式又は連続方式のいずれにおいても、気泡を成長させた後、必要により冷水などにより急激に冷却し、形状を固定化してもよい。また、高圧のガスの導入は連続的に行ってもよく、不連続的に行ってもよい。気泡核を成長させる際の加熱の方法としては、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの公知の方法を採用することができる。 In either the batch method or the continuous method, after the bubbles are grown, if necessary, the shape may be fixed rapidly by cooling with cold water or the like. The introduction of high-pressure gas may be performed continuously or discontinuously. As a heating method for growing bubble nuclei, known methods such as a water bath, an oil bath, a hot roll, a hot air oven, a far infrared ray, a near infrared ray, and a microwave can be employed.
 本発明の樹脂発泡体において、樹脂組成物の発泡及び成形する際のガスの混合量は、特に限定されないが、例えば、樹脂組成物中の樹脂成分全量に対して、好ましくは2~10重量%、より好ましくは2.5~8重量%、さらにより好ましくは3~6重量%である。この範囲とすることにより、成形機内でガスが分離することなく、発泡率の高い発泡体を得ることができる。 In the resin foam of the present invention, the mixing amount of the gas during foaming and molding of the resin composition is not particularly limited. For example, it is preferably 2 to 10% by weight with respect to the total amount of resin components in the resin composition. More preferably, it is 2.5 to 8% by weight, and still more preferably 3 to 6% by weight. By setting it as this range, a foam with a high foaming rate can be obtained, without gas separating in a molding machine.
 本発明の樹脂発泡体において、樹脂組成物の発泡及び成形する際のバッチ方式におけるガス含浸工程や連続方式における混練含浸工程で、ガスを未発泡樹脂成形体や樹脂組成物に含浸させるときの圧力は、ガスの種類や操作性等を考慮して適宜選択できる。例えば、ガスとして不活性ガスを、特に二酸化炭素を用いる場合には、6MPa以上(例えば、6~100MPa)、好ましくは8MPa以上(例えば、8~100MPa)である。このような圧力に設定することにより、発泡時の気泡成長を適度に制御して、セル径を小さくすることができ、ひいては、良好な防塵効果を与えることができる。これは、ガスの含浸量が適当な量となり、気泡核形成速度を制御して、形成される気泡核数を適度な数に調整することができるからである。また、セル径及び気泡密度の制御が容易となる。 In the resin foam of the present invention, the pressure when impregnating the unfoamed resin molded product or resin composition with gas in the gas impregnation step in a batch method or the kneading impregnation step in a continuous method when foaming and molding the resin composition Can be appropriately selected in consideration of the type of gas and operability. For example, when an inert gas is used as the gas, particularly carbon dioxide, the pressure is 6 MPa or more (for example, 6 to 100 MPa), preferably 8 MPa or more (for example, 8 to 100 MPa). By setting such a pressure, it is possible to moderately control the bubble growth during foaming, to reduce the cell diameter, and to provide a good dustproof effect. This is because the amount of gas impregnation becomes an appropriate amount, and the number of bubble nuclei formed can be adjusted to an appropriate number by controlling the bubble nucleus formation rate. In addition, the cell diameter and the bubble density can be easily controlled.
 本発明の樹脂発泡体において、樹脂組成物の発泡及び成形する際のバッチ方式におけるガス含浸工程や連続方式における混練含浸工程で、高圧のガスを未発泡樹脂成形体や樹脂組成物に含浸させるときの温度は、用いるガスや樹脂の種類等によって異なり、広い範囲で選択できるが、操作性等を考慮した場合、10~350℃程度が適している。例えば、バッチ方式において、シート状の未発泡樹脂成形体に高圧のガスを含浸させる場合の含浸温度は、好ましくは10~250℃、より好ましくは40~240℃、さらにより好ましくは60~230℃である。また、連続方式において、樹脂組成物に高圧のガスを注入し、混練する際の温度は、好ましくは60~350℃、より好ましくは100~320℃、さらにより好ましくは150~300℃である。高圧のガスとして二酸化炭素を用いる場合には、超臨界状態を保持するため、含浸時の温度(含浸温度)は32℃以上(特に40℃以上)であることが好ましい。 In the resin foam of the present invention, when an unfoamed resin molded article or resin composition is impregnated with a high-pressure gas in a gas impregnation process in a batch system or a kneading impregnation process in a continuous system when foaming and molding a resin composition The temperature varies depending on the type of gas and resin used, and can be selected within a wide range. However, considering operability and the like, about 10 to 350 ° C. is suitable. For example, in a batch method, the impregnation temperature when impregnating a sheet-like unfoamed resin molded body with a high-pressure gas is preferably 10 to 250 ° C., more preferably 40 to 240 ° C., and even more preferably 60 to 230 ° C. It is. In the continuous method, the temperature at which high-pressure gas is injected into the resin composition and kneaded is preferably 60 to 350 ° C., more preferably 100 to 320 ° C., and even more preferably 150 to 300 ° C. When carbon dioxide is used as the high-pressure gas, the temperature during impregnation (impregnation temperature) is preferably 32 ° C. or higher (particularly 40 ° C. or higher) in order to maintain a supercritical state.
 本発明の樹脂発泡体において、バッチ方式や連続方式で樹脂組成物を発泡及び成形する際の減圧工程での減圧速度は、特に限定されないが、均一な微細気泡を得るため、好ましくは5~300MPa/秒である。加熱工程での加熱温度は、例えば、40~250℃、好ましくは60~250℃である。 In the resin foam of the present invention, the pressure reduction rate in the pressure reduction step when foaming and molding the resin composition in a batch method or a continuous method is not particularly limited, but preferably 5 to 300 MPa in order to obtain uniform fine bubbles. / Sec. The heating temperature in the heating step is, for example, 40 to 250 ° C., preferably 60 to 250 ° C.
 本発明の樹脂発泡体において、樹脂組成物の発泡及び成形する際に上記の方法を用いると、高発泡の樹脂発泡体を製造することができ、厚い樹脂発泡体を製造することが可能となる。例えば、連続方式で樹脂組成物の発泡及び成形する場合、混練含浸工程において押出し機内部での圧力を保持するためには、押出し機先端に取り付けるダイスのギャップをできるだけ狭く(通常0.1~1.0mm程度)することが有効である。従って、厚い樹脂発泡体を得るためには、狭いギャップを通して押出された樹脂組成物を高い倍率で発泡させることが好ましい。従来は、高い発泡倍率が得られないことから、形成される樹脂発泡体の厚みは薄いもの(例えば0.5~2.0mm)に限定されていた。これに対して、高圧のガスを用いて樹脂組成物を発泡及び成形することにより、最終的に0.50~5.00mmの厚みの樹脂発泡体を連続して得ることが可能である。 In the resin foam of the present invention, when the above method is used when foaming and molding the resin composition, a highly foamed resin foam can be produced, and a thick resin foam can be produced. . For example, when the resin composition is foamed and molded in a continuous mode, in order to maintain the pressure inside the extruder in the kneading and impregnation step, the gap of the die attached to the tip of the extruder is as narrow as possible (usually 0.1 to 1). (About 0.0 mm) is effective. Therefore, in order to obtain a thick resin foam, it is preferable to foam the resin composition extruded through a narrow gap at a high magnification. Conventionally, since a high expansion ratio cannot be obtained, the thickness of the formed resin foam is limited to a thin one (for example, 0.5 to 2.0 mm). On the other hand, by foaming and molding the resin composition using a high-pressure gas, it is possible to finally obtain a resin foam having a thickness of 0.50 to 5.00 mm continuously.
 本発明の樹脂発泡体は、厚み回復率、平均セル径、50%圧縮時の反発応力、見掛け密度、相対密度等を、用いるガス、樹脂やゴム成分及び/又は熱可塑性エラストマー成分などの種類に応じて、例えば、ガス含浸工程や混練含浸工程における温度、圧力、時間などの操作条件、減圧工程や成形減圧工程における減圧速度、温度、圧力などの操作条件、減圧後又は成形減圧後の加熱工程における加熱温度などを適宜選択、設定することでも調整することができる。 The resin foam of the present invention has a thickness recovery rate, an average cell diameter, a repulsion stress at 50% compression, an apparent density, a relative density, etc., in the type of gas, resin, rubber component and / or thermoplastic elastomer component used. Accordingly, for example, operating conditions such as temperature, pressure and time in the gas impregnation process and kneading impregnation process, operating conditions such as pressure reduction speed, temperature and pressure in the decompression process and molding decompression process, heating process after decompression or after molding decompression The heating temperature can be adjusted by appropriately selecting and setting the heating temperature.
 特に、本発明の樹脂発泡体は、樹脂に加えて、造核剤、脂肪族系化合物を少なくとも含む樹脂組成物に、高圧のガス(特に不活性ガス)を含浸させた後、減圧する工程を経て形成されていることが好ましい。平均セル径が小さく、独立気泡構造率の低い気泡構造を有し、高発泡倍率であり、良好な柔軟性を有し、気泡構造が変形又は圧縮しにくく、押圧したときの歪回復性に優れ、加工性に優れる樹脂発泡体を容易に得ることができるからである。 In particular, the resin foam of the present invention comprises a step of reducing the pressure after impregnating a resin composition containing at least a nucleating agent and an aliphatic compound with a high-pressure gas (particularly an inert gas) in addition to the resin. It is preferable that it is formed through. Small cell size, low cell structure ratio, high foaming ratio, good flexibility, bubble structure is difficult to deform or compress, and excellent strain recovery when pressed This is because a resin foam having excellent processability can be easily obtained.
 本発明の樹脂発泡体は、樹脂に加えて、平均粒径が特に小さい造核剤、脂肪族系化合物を少なくとも含む樹脂組成物に、超臨界状態の不活性ガスを含浸させた後、この樹脂組成物を減圧する工程を経て、つまり、この樹脂組成物を減圧処理に付して、形成されていることがより好ましい。平均セル径が極めて小さく、独立気泡構造率の低い気泡構造を有し、高発泡倍率であり、良好な柔軟性を有し、気泡構造が変形又は圧縮しにくく、押圧したときの歪回復性に優れ、造核剤が気泡壁を突き破ることをより抑制でき、より加工性に優れる樹脂発泡体を容易に得ることができるからである。 The resin foam of the present invention is obtained by impregnating a resin composition containing at least a nucleating agent having a particularly small average particle diameter and an aliphatic compound with a supercritical inert gas in addition to the resin. More preferably, the resin composition is formed through a step of decompressing the composition, that is, the resin composition is subjected to a decompression treatment. The average cell diameter is extremely small, the cell structure has a low closed cell structure ratio, high expansion ratio, good flexibility, the cell structure is difficult to deform or compress, and the strain recoverability when pressed This is because it is possible to more easily suppress the nucleating agent from breaking through the cell wall, and to easily obtain a resin foam excellent in workability.
 本発明の樹脂発泡体は、樹脂とゴム成分及び/又は熱可塑性エラストマー成分の混合物であり、その割合が、重量基準で、70/30~40/60である樹脂に加えて、該樹脂100重量部に対して0.5~150重量部の造核剤、該樹脂100重量部に対して1~5重量部の脂肪族系化合物を少なくとも含む樹脂組成物に、高圧のガス(特に不活性ガス)を含浸させた後、減圧する工程を経て形成されていることが好ましい。 The resin foam of the present invention is a mixture of a resin and a rubber component and / or a thermoplastic elastomer component, and in addition to a resin whose ratio is 70/30 to 40/60 on a weight basis, To a resin composition containing at least 0.5 to 150 parts by weight of a nucleating agent and 1 to 5 parts by weight of an aliphatic compound based on 100 parts by weight of the resin, a high pressure gas (particularly an inert gas) ) Is impregnated, and is preferably formed through a step of reducing pressure.
 〔発泡シール材〕
 本発明の発泡シール材は、上記樹脂発泡体を含む部材である。発泡シール材の形状は、特に限定されないが、シート状(フィルム状を含む)が好ましい。発泡シール材は、例えば、樹脂発泡体のみからなる構成であってもよいし、樹脂発泡体に、粘着剤層、基材層などが積層されている構成であってもよい。
[Foamed sealing material]
The foam sealing material of this invention is a member containing the said resin foam. Although the shape of a foaming sealing material is not specifically limited, A sheet form (a film form is included) is preferable. For example, the foamed sealing material may be configured only by a resin foam, or may be configured such that an adhesive layer, a base material layer, and the like are laminated on the resin foam.
 特に、本発明の発泡シール材は、粘着剤層を有することが好ましい。例えば、本発明の発泡シール材がシート状の発泡シール材である場合、その片面又は両面に粘着剤層を有していてもよい。発泡シール材が粘着剤層を有していると、例えば、発泡シール材上に粘着剤層を介して加工用台紙を設けることができ、さらに、被着体へ固定、仮止め等することができる。 In particular, the foamed sealing material of the present invention preferably has an adhesive layer. For example, when the foaming sealing material of this invention is a sheet-like foaming sealing material, you may have an adhesive layer on the single side | surface or both surfaces. When the foamed sealing material has an adhesive layer, for example, a processing mount can be provided on the foamed sealing material via the adhesive layer, and further, fixing to the adherend, temporary fixing, etc. it can.
 粘着剤層を形成する粘着剤としては、特に限定されず、例えば、アクリル系粘着剤、ゴム系粘着剤(天然ゴム系粘着剤、合成ゴム系粘着剤など)、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、ポリアミド系粘着剤、エポキシ系粘着剤、ビニルアルキルエーテル系粘着剤、フッ素系粘着剤などの公知の粘着剤を適宜選択して用いることができる。粘着剤は、単独で又は2種以上組み合わせて使用することができる。なお、粘着剤は、エマルジョン系粘着剤、溶剤系粘着剤、ホットメルト型粘着剤、オリゴマー系粘着剤、固系粘着剤などのいずれの形態の粘着剤であってもよい。なかでも、粘着剤としては、被着体への汚染防止などの観点から、アクリル系粘着剤が好ましい。 The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited. For example, acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive (natural rubber-based pressure-sensitive adhesive, synthetic rubber-based pressure-sensitive adhesive, etc.), silicone-based pressure-sensitive adhesive, and polyester-based pressure-sensitive adhesive. Known pressure-sensitive adhesives such as adhesives, urethane-based pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, and fluorine-based pressure-sensitive adhesives can be appropriately selected and used. An adhesive can be used individually or in combination of 2 or more types. The pressure-sensitive adhesive may be any type of pressure-sensitive adhesive such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, a hot-melt pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, and a solid-type pressure-sensitive adhesive. Among these, as the pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of preventing contamination of the adherend.
 粘着剤層の厚みは、好ましくは2~100μm、より好ましくは10~100μmである。粘着剤層は、薄層であるほど、端部のゴミや埃の付着を防止する効果が高いため、厚みは薄い方が好ましい。
 粘着剤層は、単層、積層体のいずれの形態を有していてもよいし、発泡性又は非発泡性のいずれであってもよい。なかでも、非発泡性の粘着剤層が好ましい。
The thickness of the pressure-sensitive adhesive layer is preferably 2 to 100 μm, more preferably 10 to 100 μm. The thinner the pressure-sensitive adhesive layer, the higher the effect of preventing the adhesion of dust and dirt at the end, so the thinner the adhesive layer is preferable.
The pressure-sensitive adhesive layer may have any form of a single layer or a laminate, and may be foamable or non-foamable. Especially, a non-foaming adhesive layer is preferable.
 本発明の発泡シール材において、粘着剤層は、他の層(下層)を介して、設けられていてもよい。このような下層としては、例えば、他の粘着剤層、中間層、下塗り層、基材層(特にフィルム層、不織布層など)などが挙げられる。下層は、発泡性の層であってもよいし、多孔質の層であってもよいが、非発泡性の層であることが好ましく、樹脂層であることがより好ましい。
 粘着剤層は、剥離フィルム(セパレーター)(例えば、剥離紙、剥離フィルムなど)により保護されていてもよい。
In the foamed sealing material of the present invention, the pressure-sensitive adhesive layer may be provided via another layer (lower layer). Examples of such a lower layer include other pressure-sensitive adhesive layers, intermediate layers, undercoat layers, base material layers (particularly film layers, nonwoven fabric layers, etc.) and the like. The lower layer may be a foamable layer or a porous layer, but is preferably a non-foamable layer, more preferably a resin layer.
The pressure-sensitive adhesive layer may be protected by a release film (separator) (for example, release paper, release film, etc.).
 本発明の発泡シール材は、本発明の樹脂発泡体を含むため、良好な防塵性、特に良好な動的防塵性を有し、微小なクリアランスに対して追従可能な柔軟性を有する。 Since the foamed sealing material of the present invention contains the resin foam of the present invention, it has good dust resistance, particularly good dynamic dust resistance, and has flexibility to follow a minute clearance.
 本発明の発泡シール材は、所望の形状や厚みなどを有するように加工が施されていてもよい。例えば、用いられる装置や機器、筐体、部材等に合わせて種々の形状に加工が施されていてもよい。 The foamed sealing material of the present invention may be processed so as to have a desired shape and thickness. For example, various shapes may be processed according to the device, equipment, casing, member, and the like used.
 本発明の発泡シール材は、各種部材又は部品を、所定の部位に取り付ける(装着する)際に用いられる部材として好適に用いられる。特に、本発明の発泡シール材は、電気又は電子機器において、電気又は電子機器を構成する部品を所定の部位に取り付ける(装着する)際に用いられる部材として好適である。 The foamed sealing material of the present invention is suitably used as a member used when various members or parts are attached (attached) to a predetermined site. In particular, the foamed sealing material of the present invention is suitable as a member used when attaching (attaching) a component constituting an electric or electronic device to a predetermined site in an electric or electronic device.
 発泡部材を利用して取り付け(装着)可能な各種部材又は部品としては、特に限定されず、例えば、電気又は電子機器類における各種部材又は部品などが挙げられる。このような電気又は電子機器用の部材又は部品としては、例えば、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に装着される画像表示部材(表示部)(特に、小型の画像表示部材)、いわゆる「携帯電話」や「携帯情報端末」等の移動体通信の装置に装着されるカメラやレンズ(特に、小型のカメラやレンズ)等の光学部材又は光学部品などが挙げられる。 The various members or parts that can be attached (mounted) using the foamed member are not particularly limited, and examples thereof include various members or parts in electrical or electronic devices. Examples of such a member or component for electric or electronic equipment include an image display member (display unit) (particularly a small image display member) mounted on an image display device such as a liquid crystal display, an electroluminescence display, or a plasma display. ), Optical members or optical components such as cameras and lenses (particularly small cameras and lenses) mounted on mobile communication devices such as so-called “mobile phones” and “portable information terminals”.
 本発明の発泡シール材の好適な具体的使用態様としては、例えば、防塵、遮光、緩衝等を目的として、LCD(液晶ディスプレイ)等の表示部周りや、LCD(液晶ディスプレイ)等の表示部と筐体(窓部)との間に挟み込んで使用するものが挙げられる。
 本発明の発泡シール材を、このような部材又は部品に取り付ける場合には、そのクリアランスを塞ぐように取り付けることが好ましい。このクリアランスとしては、特に限定されないが、例えば、0.05~0.5mm程度が挙げられる。
 以下、本発明の樹脂発泡体及び発泡シール材を、実施例に基づいて説明する。
As a preferable specific usage mode of the foamed sealing material of the present invention, for example, around a display unit such as an LCD (liquid crystal display) and a display unit such as an LCD (liquid crystal display) The thing used by inserting | pinching between housings | casings (window part) is mentioned.
When the foamed sealing material of the present invention is attached to such a member or part, it is preferably attached so as to close the clearance. The clearance is not particularly limited, but may be about 0.05 to 0.5 mm, for example.
Hereinafter, the resin foam and foamed sealing material of this invention are demonstrated based on an Example.
 (実施例1)
 樹脂組成物として、
 ポリプロピレン   35重量部、
 熱可塑性エラストマー組成物   60重量部、
 滑剤   5重量部、
 造核剤   10重量部及び
 エルカ酸アミド(融点80~85℃)   2重量部を、二軸混練機にて200℃の温度で混練した。
Example 1
As a resin composition,
35 parts by weight of polypropylene,
60 parts by weight of a thermoplastic elastomer composition,
5 parts by weight of lubricant,
Ten parts by weight of the nucleating agent and 2 parts by weight of erucic acid amide (melting point: 80 to 85 ° C.) were kneaded at a temperature of 200 ° C. with a twin-screw kneader.
 ここで、
 ポリプロピレンは、メルトフローレート(MFR)が0.35g/10minの樹脂、
 熱可塑性エラストマー組成物は、カーボンブラックを15.0重量%含み、ポリプロピレン(PP)とエチレン/プロピレン/5-エチリデン-2-ノルボルネン三元共重合体(EPT)とのブレンド物(架橋型オレフィン系熱可塑性エラストマー、TPV)、ポリプロピレン:エチレン/プロピレン/5-エチリデン-2-ノルボルネン三元共重合体=25:75(重量基準)、
 滑剤は、ステアリン酸モノグリセリド1重量部にポリエチレン10重量部を配合したマスターバッチ、
 造核剤は、平均粒子径が0.8μmの水酸化マグネシウムである。
here,
Polypropylene is a resin having a melt flow rate (MFR) of 0.35 g / 10 min,
The thermoplastic elastomer composition contains 15.0% by weight of carbon black and is a blend of polypropylene (PP) and ethylene / propylene / 5-ethylidene-2-norbornene terpolymer (EPT) (crosslinked olefin type). Thermoplastic elastomer, TPV), polypropylene: ethylene / propylene / 5-ethylidene-2-norbornene terpolymer = 25: 75 (weight basis),
The lubricant is a master batch in which 1 part by weight of stearic acid monoglyceride is blended with 10 parts by weight of polyethylene,
The nucleating agent is magnesium hydroxide having an average particle size of 0.8 μm.
 その後、樹脂組成物をストランド状に押出し、水冷し、ペレット状に切断して成形した。
 このペレットを、日本製鋼所社製のタンデム型単軸押出機に投入し、220℃の雰囲気下、14(注入後18)MPaの圧力で、二酸化炭素ガスを3.8重量%注入した。二酸化炭素ガスを十分飽和させ、発泡に適した温度まで冷却した。その後、ダイから押出して、樹脂発泡体(シート状)を得た。この樹脂発泡体は、独立気泡率が32%の半連続半独立気泡構造を有していた。
Thereafter, the resin composition was extruded into strands, cooled with water, cut into pellets, and molded.
This pellet was put into a tandem type single screw extruder manufactured by Nippon Steel Works Co., Ltd., and 3.8% by weight of carbon dioxide gas was injected under an atmosphere of 220 ° C. under a pressure of 14 (18 after injection) MPa. Carbon dioxide gas was sufficiently saturated and cooled to a temperature suitable for foaming. Then, it extruded from the die | dye and obtained the resin foam (sheet form). This resin foam had a semi-continuous semi-closed cell structure with a closed cell rate of 32%.
 (実施例2)
 日本製鋼所社製のタンデム型単軸押出機に、二酸化炭素ガスを4.0重量%注入したこと以外は、実施例1と同様にして、樹脂発泡体(シート状)を得た。
(Example 2)
A resin foam (sheet-like) was obtained in the same manner as in Example 1 except that 4.0% by weight of carbon dioxide gas was injected into a tandem single screw extruder manufactured by Nippon Steel Works.
 (実施例3)
 樹脂組成物として、
 ポリプロピレン   50重量部、
 熱可塑性エラストマー組成物   40重量部、
 滑剤   5重量部、
 造核剤   10重量部及び
 エルカ酸アミド(融点80~85℃)   2重量部を、二軸混練機にて200℃の温度で混練した。
 ここで用いた各成分は、実施例1と同様である。
(Example 3)
As a resin composition,
50 parts by weight of polypropylene,
40 parts by weight of a thermoplastic elastomer composition,
5 parts by weight of lubricant,
Ten parts by weight of the nucleating agent and 2 parts by weight of erucic acid amide (melting point: 80 to 85 ° C.) were kneaded at a temperature of 200 ° C. with a twin-screw kneader.
Each component used here is the same as in Example 1.
 その後、樹脂組成物をストランド状に押出し、水冷し、ペレット状に切断して成形した。
 このペレットを、日本製鋼所社製のタンデム型単軸押出機に投入し、220℃の雰囲気下、14(注入後18)MPaの圧力で、二酸化炭素ガスを3.5重量%注入した。二酸化炭素ガスを十分飽和させ、発泡に適した温度まで冷却した。その後、ダイから押出して、樹脂発泡体(シート状)を得た。
Thereafter, the resin composition was extruded into strands, cooled with water, cut into pellets, and molded.
The pellets were put into a tandem single screw extruder manufactured by Nippon Steel Works, and 3.5% by weight of carbon dioxide gas was injected under a pressure of 14 (18 after injection) MPa in an atmosphere of 220 ° C. Carbon dioxide gas was sufficiently saturated and cooled to a temperature suitable for foaming. Then, it extruded from the die | dye and obtained the resin foam (sheet form).
 (比較例1)
 樹脂組成物として、
 ポリプロピレン   45重量部、
 熱可塑性エラストマー組成物   55重量部、及び
 造核剤   10重量部を、二軸混練機にて200℃の温度で混練した。
(Comparative Example 1)
As a resin composition,
45 parts by weight of polypropylene,
55 parts by weight of the thermoplastic elastomer composition and 10 parts by weight of the nucleating agent were kneaded at a temperature of 200 ° C. with a biaxial kneader.
 ここで、
 熱可塑性エラストマー組成物は、カーボンブラックを15.0重量%含み、ポリプロピレン(PP)とエチレン/プロピレン/5-エチリデン-2-ノルボルネン三元共重合体(EPT)とのブレンド物(TPO):ポリプロピレンとエチレン/プロピレン/5-エチリデン-2-ノルボルネン三元共重合体=30/70(重量基準)であり、
 ポリプロピレン、滑剤及び造核剤は実施例1と同様のものを用いた。
here,
The thermoplastic elastomer composition contains 15.0% by weight of carbon black, and a blend (TPO) of polypropylene (PP) and ethylene / propylene / 5-ethylidene-2-norbornene terpolymer (EPT): polypropylene And ethylene / propylene / 5-ethylidene-2-norbornene terpolymer = 30/70 (weight basis),
The same polypropylene, lubricant and nucleating agent as in Example 1 were used.
 その後、樹脂組成物としてストランド状に押出し、水冷し、ペレット状に切断して成形した。
 このペレットを、日本製鋼所社製のタンデム型単軸押出機に投入し、220℃の雰囲気下、14(注入後18)MPaの圧力で、二酸化炭素ガスを3.8重量%注入した。二酸化炭素ガスを十分飽和させ、発泡に適した温度まで冷却した。その後、ダイから押出して、樹脂発泡体(シート状)を得た。この樹脂発泡体は、独立気泡率が46%の半連続半独立気泡構造を有していた。
Thereafter, the resin composition was extruded into a strand shape, cooled with water, cut into a pellet shape, and molded.
This pellet was put into a tandem type single screw extruder manufactured by Nippon Steel Works Co., Ltd., and 3.8% by weight of carbon dioxide gas was injected under an atmosphere of 220 ° C. under a pressure of 14 (18 after injection) MPa. Carbon dioxide gas was sufficiently saturated and cooled to a temperature suitable for foaming. Then, it extruded from the die | dye and obtained the resin foam (sheet form). This resin foam had a semi-continuous semi-closed cell structure with a closed cell ratio of 46%.
 (比較例2)
 ポリウレタンを主成分とする樹脂発泡体(シート状、平均セル径:70~80μm、80%圧縮時の反発力が9.6N/cm、樹脂発泡体見掛け密度:0.15g/cm)を準備した。
(Comparative Example 2)
Resin foam mainly composed of polyurethane (sheet-like, average cell diameter: 70 to 80 μm, repulsive force at 80% compression is 9.6 N / cm 2 , resin foam apparent density: 0.15 g / cm 3 ) Got ready.
 (独立気泡率の測定方法)
 実施例及び比較例で得られた樹脂発泡体の独立気泡率は、以下の方法に従って測定した。
 得られた樹脂発泡体から、一定厚みで、一辺5cmの平面正方形状の試験片を切り出す。続いて、この試験片の重量W(g)及び厚み(cm)を測定して、試験片の見掛け体積V(cm)を算出する。
 次に、得られた値を式(1)に代入し、気泡の占める見掛け体積V(cm)を算出する。なお、試験片を構成する樹脂の密度をρg/cmとする。
 気泡の占める見掛け体積V=V-W/ρ     (1)
 続いて、この試験片を23℃の蒸留水中に、試験片の上面から水面までの距離が40mmとなるように沈め、24時間放置する。その後、試験片を蒸留水中から取り出して、試験片の表面に付着した水分を除去する。得られた試験片の重量W(g)を測定し、式(2)に基づいて、連続気泡率F1を算出する。この連続気泡率Fから独立気泡率Fを求める。
 連続気泡率F=100×(W-W)/V     (2)
 独立気泡率F=100-F            (3) 
(Measurement method of closed cell ratio)
The closed cell ratio of the resin foams obtained in Examples and Comparative Examples was measured according to the following method.
From the obtained resin foam, a flat square test piece having a constant thickness and a side of 5 cm is cut out. Subsequently, the weight W 1 (g) and thickness (cm) of the test piece are measured, and the apparent volume V 1 (cm 3 ) of the test piece is calculated.
Next, the obtained value is substituted into the equation (1), and the apparent volume V 2 (cm 3 ) occupied by the bubbles is calculated. The density of the resin constituting the test piece is ρg / cm 3 .
Apparent volume occupied by bubbles V 2 = V 1 −W 1 / ρ (1)
Subsequently, the test piece is submerged in distilled water at 23 ° C. so that the distance from the upper surface of the test piece to the water surface is 40 mm and left for 24 hours. Then, a test piece is taken out from distilled water and the water | moisture content adhering to the surface of the test piece is removed. The weight W 2 (g) of the obtained test piece is measured, and the open cell ratio F1 is calculated based on the formula (2). The closed cell rate F 2 is determined from the open cell rate F 1 .
Open cell ratio F 1 = 100 × (W 2 −W 1 ) / V 2 (2)
Closed cell ratio F 2 = 100−F 1 (3)
 (評価)
 実施例及び比較例で得られた樹脂発泡体のシートについて、それぞれの見掛け密度、平均セル径、23℃での厚み回復率、-10℃での50%圧縮時の反発力、23℃での80%圧縮時の反発力、粒子総面積及び衝撃吸収率を測定又は評価した。その結果を表1に示す。
(Evaluation)
For the resin foam sheets obtained in the examples and comparative examples, the apparent density, average cell diameter, thickness recovery rate at 23 ° C., repulsive force at 50% compression at −10 ° C., and at 23 ° C. The repulsive force at 80% compression, the total particle area, and the impact absorption rate were measured or evaluated. The results are shown in Table 1.
 (見掛け密度の測定方法)
 発泡体の密度(見掛け密度)を以下のように算出した。
 各実施例及び比較例の発泡体を40mm×40mmサイズに打ち抜き、試験片とし、試験片の寸法をノギスで、また、測定端子φ20mmの1/100ダイヤルゲージにて厚みを測定した。次に、試験片の重量を最小目盛り0.01gの電子天秤にて測定した。そして、次式により算出した。
   見掛け密度(g/cm)=試験片の質量/試験片の体積
(Apparent density measurement method)
The density (apparent density) of the foam was calculated as follows.
The foams of each Example and Comparative Example were punched into a size of 40 mm × 40 mm to form test pieces, and the thickness of the test pieces was measured with a caliper and a 1/100 dial gauge having a measurement terminal φ20 mm. Next, the weight of the test piece was measured with an electronic balance having a minimum scale of 0.01 g. And it computed by following Formula.
Apparent density (g / cm 3 ) = mass of test piece / volume of test piece
 (平均セル径の測定方法)
 デジタルマイクロスコープ(商品名「VH-8000」キーエンス株式会社製)により、樹脂発泡体の気泡の拡大画像を取り込み、同計測器の解析ソフト(三谷商事(株)製:Win ROOF)を用いて、画像解析することにより、平均セル径(μm)を求めた。なお、取り込んだ拡大画像の気泡数は200個程度であり、この200個の平均とした。
(Measurement method of average cell diameter)
Using a digital microscope (trade name “VH-8000” manufactured by Keyence Corporation), an enlarged image of the bubble of the resin foam is captured, and analysis software (Mitani Corporation: Win ROOF) of the measuring instrument is used. The average cell diameter (μm) was determined by image analysis. The number of bubbles in the captured enlarged image is about 200, and the average of these 200 was used.
 (23℃での厚み回復率の測定方法)
 圧縮試験機((株)島津製作所製 マイクロサーボ)を用いて、例えば、図1に示すように、樹脂発泡体1を、23℃にて、厚み方向に、初期厚み(X、1mm)に対して20%の厚みまで1分間圧縮(図1中、M)した。その後、圧縮を解除し、解除1秒後の厚みの回復挙動(Q)を、高速度カメラを用いて撮影した。厚み回復率(%)は、回復した際の樹脂発泡体1の厚みの初期厚みに対する割合(Y/X)として表した。
(Measurement method of thickness recovery rate at 23 ° C.)
Using a compression tester (Micro Servo manufactured by Shimadzu Corporation), for example, as shown in FIG. 1, the resin foam 1 is measured at 23 ° C. in the thickness direction with respect to the initial thickness (X, 1 mm). And compressed to a thickness of 20% for 1 minute (M in FIG. 1). Thereafter, the compression was released, and the thickness recovery behavior (Q) one second after the release was photographed using a high-speed camera. The thickness recovery rate (%) was expressed as a ratio (Y / X) of the thickness of the resin foam 1 when recovered to the initial thickness.
 (50%又は80%圧縮時の対反発荷重)
 JIS K 6767に記載されている圧縮硬さ測定法に準じて測定した。
 樹脂発泡体を幅:30mm×長さ:30mmに切り出し、シート状の試験片とした。次にこの試験片を、-10℃又は23℃にて、圧縮速度:10mm/minで、厚さ方向に、圧縮率が50%又は80%になるまで圧縮したときの応力(N)を単位面積(1cm)当たりに換算して反発応力(N/cm)として表した。
(Repulsive load at 50% or 80% compression)
It measured according to the compression hardness measuring method described in JIS K 6767.
The resin foam was cut into a width of 30 mm and a length of 30 mm to obtain a sheet-like test piece. Next, the stress (N) when this test piece is compressed at −10 ° C. or 23 ° C. at a compression rate of 10 mm / min in the thickness direction until the compression rate becomes 50% or 80% is a unit. It expressed as an area (1 cm 2) in terms to rebound stress per (N / cm 2).
 (動的防塵性の評価方法)
 動的防塵性の評価方法を図2~図4を用いて説明する。
 樹脂発泡体を、図2に示す額縁状(窓枠状)(40mm×56mm、幅:2mm)に打ち抜き、評価用サンプル22とした。
 この評価用サンプル22を、図3に示す動的防塵性評価用容器2に装着した。装着時の評価サンプル22の圧縮率は初期厚みに対して厚み方向に50%とした。
 評価用サンプル22は、図3に示すように、フォーム圧縮板27を介してベース板24にねじ26によって取り付けられた黒色アクリル板211と、ベース板24に、ピンによって固定され、アルミニウムスペーサ23上に配置する黒色アクリル板212との間に設けられている。評価用サンプル22を装着した評価用容器2では、評価用サンプル22により、一定の内部空間29が閉塞された系となっている。
 また、評価用容器2では、評価用サンプル22よりも外側に隣接して位置し、評価用サンプル22とフォーム圧縮版27との間に、一定の外部空間25が閉塞された粉末供給部として構成されている。この外部空間25には、粉塵にみたてた粉末(例えば、粒径17μmのシリカ)が0.1g充填されている。
 このような評価用容器2を、図4に示す評価容器をダンブラー1(回転槽、ドラム式落下試験器)に入れ、1rpmの速度で回転させた。そして、評価用容器2で100回の衝突回数(繰り返し衝撃)が得られるように、所定回数を回転させた。その後、パッケージを分解した。そして、粉末供給部である外部空間25から、評価用サンプル22を通過して、内部空間の上下壁として機能させた黒色アクリル板211及び黒色アクリル板212に付着した粒子を、デジタルマイクロスコープ(装置名「VH-8000」、キーエンス株式会社製)で観察した。
 黒色アクリル板211及び黒色アクリル板212について静止画像を作成し、画像解析ソフト(ソフト名「Win ROOF」、三谷商事株式会社製)を用いて2値化処理を行い、シリカの粒子の個数として粒子総面積を計測した。なお、観察は、空気中の浮遊粉塵の影響を少なくするためクリーンベンチ内で行った。
(Dynamic dustproof evaluation method)
The dynamic dustproof evaluation method will be described with reference to FIGS.
The resin foam was punched into a frame shape (window frame shape) (40 mm × 56 mm, width: 2 mm) shown in FIG.
This evaluation sample 22 was attached to the dynamic dustproof evaluation container 2 shown in FIG. The compression rate of the evaluation sample 22 at the time of mounting was 50% in the thickness direction with respect to the initial thickness.
As shown in FIG. 3, the evaluation sample 22 is fixed to the base plate 24 with a black acrylic plate 211 attached to the base plate 24 via a foam compression plate 27 by screws 26, and fixed on the aluminum spacer 23. It is provided between the black acrylic board 212 arrange | positioned in this. The evaluation container 2 to which the evaluation sample 22 is attached has a system in which a certain internal space 29 is closed by the evaluation sample 22.
Further, the evaluation container 2 is configured as a powder supply unit that is positioned adjacent to the outside of the evaluation sample 22 and in which a constant external space 25 is closed between the evaluation sample 22 and the foam compression plate 27. Has been. The external space 25 is filled with 0.1 g of powder (for example, silica having a particle diameter of 17 μm) that has been dusted.
Such an evaluation container 2 was rotated at a speed of 1 rpm by placing the evaluation container shown in FIG. 4 in a dumbler 1 (rotary tank, drum type drop tester). Then, the evaluation container 2 was rotated a predetermined number of times so that 100 collisions (repetitive impact) were obtained. Thereafter, the package was disassembled. Then, particles attached to the black acrylic plate 211 and the black acrylic plate 212 that have passed through the evaluation sample 22 and functioned as the upper and lower walls of the internal space from the external space 25 that is a powder supply unit are converted into a digital microscope (apparatus Name “VH-8000” (manufactured by Keyence Corporation).
Still images are created for the black acrylic plate 211 and the black acrylic plate 212, binarized using image analysis software (software name “Win ROOF”, manufactured by Mitani Corporation), and the number of silica particles is determined. The total area was measured. The observation was performed in a clean bench to reduce the influence of airborne dust.
 黒色アクリル板211に付着している粒子及び黒色アクリル板212に付着している粒子を合わせた粒子総面積が、
 100mm2未満   良好
 100mm2以上200mm2以下   やや不良
 200mm2を越える    不良と判定した。粒子観察面の総面積は1872mm2であった。
 なお、やや不良と評価された樹脂発泡体であっても実用特性に問題はない。
The total particle area of the particles adhering to the black acrylic plate 211 and the particles adhering to the black acrylic plate 212 is
Less than 100 mm 2 good 100 mm 2 or more 200 mm 2 or less was judged slightly defective exceeding defect 200 mm 2. The total area of the particle observation surface was 1872 mm 2 .
It should be noted that there is no problem in practical characteristics even if the resin foam is evaluated to be slightly defective.
 さらに、黒色アクリル板211に付着している粒子及び黒色アクリル板212に付着している粒子を合わせた粒子総面積が、
 1500[Pixel×Pixel]未満   良好
 1500~2000[Pixel×Pixel]   やや不良
 2000[Pixel×Pixel]を越える   不良と判定した。粒子観察面の総面積は20000[Pixel×Pixel]であった。
 なお、やや不良と評価された樹脂発泡体であっても実用特性に問題はない。
Further, the total particle area of the particles adhering to the black acrylic plate 211 and the particles adhering to the black acrylic plate 212 is:
Less than 1500 [Pixel × Pixel] Good 1500 to 2000 [Pixel × Pixel] Slightly poor More than 2000 [Pixel × Pixel] The total area of the particle observation surface was 20000 [Pixel × Pixel].
It should be noted that there is no problem in practical characteristics even if the resin foam is evaluated to be slightly defective.
 (衝撃吸収性の測定方法)
 図5に示すような、鉄球74により与えられた衝撃エネルギー(20mJ)を圧力センサー71で計測する振り子試験装置7を用いて、樹脂発泡体72を介しない場合の衝撃力(F0)と、樹脂発泡体72を介する場合の衝撃力(F1)とを測定し、下記式より、衝撃吸収性を求めた。評価に用いた樹脂発泡体72は、20mm×20mmの正方形で、厚みは1.0mmとし、アクリル板73と支持板76との間の圧力センサー71上となる位置で、押さえ圧力調整手段75により、その圧縮率を50%に調整した状態で評価を行なった。
         衝撃吸収率(%)=(F0-F1)/F0×100
(Measurement method of shock absorption)
As shown in FIG. 5, using a pendulum test apparatus 7 that measures the impact energy (20 mJ) given by the iron ball 74 with the pressure sensor 71, the impact force (F0) when not passing through the resin foam 72, The impact force (F1) when passing through the resin foam 72 was measured, and the impact absorbability was determined from the following formula. The resin foam 72 used for the evaluation is a square of 20 mm × 20 mm, has a thickness of 1.0 mm, and is positioned on the pressure sensor 71 between the acrylic plate 73 and the support plate 76 by the pressing pressure adjusting means 75. The evaluation was performed with the compression ratio adjusted to 50%.
Shock absorption rate (%) = (F0−F1) / F0 × 100
Figure JPOXMLDOC01-appb-T000001
    
Figure JPOXMLDOC01-appb-T000001
    
 表1によれば、実施例1~3の樹脂発泡体は、23℃での厚み回復率と、-10℃での50%圧縮時の反発応力との双方が極めて良好であることから、変形後の厚みの回復性に優れ、瞬間的な樹脂発泡体の変形を期待することができる。加えて、低温環境下での柔軟性を確保することができるために、衝撃吸収性に優れ、より一層、動的防塵性を向上させることが可能となることが確認された。 According to Table 1, the resin foams of Examples 1 to 3 are very good in both the thickness recovery rate at 23 ° C. and the rebound stress at 50% compression at −10 ° C. It is excellent in recoverability of the later thickness, and instantaneous deformation of the resin foam can be expected. In addition, since it was possible to ensure flexibility in a low-temperature environment, it was confirmed that the shock absorption was excellent and the dynamic dust resistance could be further improved.
 本発明は、電子機器等の内部絶縁体、緩衝材、遮音材、防塵材、衝撃吸収材、遮光材、断熱材、食品包装材、衣用材、建材用等として有用な、クッション性及び歪回復性に優れ、高発泡倍率を有する樹脂発泡体及び発泡シール材であり、特に、携帯電話、携帯型情報端末機、LCD等の表示部周り等、より詳細には、LCDと筐体(窓部)との間など、種々の分野に広く利用することができる。 The present invention is useful as an internal insulator for electronic devices, cushioning materials, sound insulating materials, dustproof materials, shock absorbing materials, light shielding materials, heat insulating materials, food packaging materials, clothing materials, building materials, etc., cushioning properties and strain recovery Resin foam and foam sealing material with excellent foaming ratio and high foaming ratio, especially around the display part of mobile phones, portable information terminals, LCDs, etc. ), And can be widely used in various fields.
 1 タンブラー
 2 動的防塵性評価用容器
 22 評価用サンプル
 24 ベース板
 26 ねじ
 27 フォーム圧縮板
 211、212 黒色アクリル板
 23 アルミニウムスペーサ
 29 内部空間
 25 外部空間
 7 振り子試験装置
 71 圧力センサー
 72 樹脂発泡体
 73 アクリル板
 74 鉄球
 75 押さえ圧力調整手段
 76 支持板
DESCRIPTION OF SYMBOLS 1 Tumbler 2 Dynamic dustproof evaluation container 22 Evaluation sample 24 Base plate 26 Screw 27 Foam compression plate 211, 212 Black acrylic plate 23 Aluminum spacer 29 Internal space 25 External space 7 Pendulum test device 71 Pressure sensor 72 Resin foam 73 Acrylic plate 74 Iron ball 75 Holding pressure adjusting means 76 Support plate

Claims (10)

  1.  下記で定義される23℃での厚み回復率が50%以上、かつ下記で定義される-10℃での50%圧縮時の反発応力が10.0N/cm未満である樹脂発泡体。
     厚み回復率:樹脂発泡体を、初期厚みに対して20%の厚みで厚み方向に1分間圧縮した後、圧縮状態を解除し、圧縮状態解除1秒後の厚みの初期厚みに対する割合。
     50%圧縮時の反発応力:樹脂発泡体を、初期厚みに対して50%の厚みまで厚み方向に圧縮した際の対反発荷重。
    A resin foam having a thickness recovery rate at 23 ° C. defined below of 50% or more and a rebound stress at 50% compression of −10 ° C. defined below of less than 10.0 N / cm 2 .
    Thickness recovery rate: The ratio of the thickness of the resin foam to the initial thickness after releasing the compressed state after compressing the resin foam in the thickness direction for 1 minute at a thickness of 20% with respect to the initial thickness.
    Repulsive stress at 50% compression: Repulsive load when the resin foam is compressed in the thickness direction to a thickness of 50% with respect to the initial thickness.
  2.  23℃での80%圧縮時の反発応力が1.0~9.0N/cmである請求項1記載の樹脂発泡体。 The resin foam according to claim 1, wherein the rebound stress at 80% compression at 23 ° C is 1.0 to 9.0 N / cm 2 .
  3.  平均セル径が10~200μm、見掛け密度が0.01~0.20g/cmである請求項1記載の樹脂発泡体。 2. The resin foam according to claim 1, wherein the average cell diameter is 10 to 200 μm and the apparent density is 0.01 to 0.20 g / cm 3 .

  4.  高圧ガスが含浸された樹脂組成物の減圧処理によって得られる請求項1~3のいずれか1つに記載の樹脂発泡体。

    The resin foam according to any one of claims 1 to 3, obtained by decompression treatment of a resin composition impregnated with a high-pressure gas.
  5.  前記ガスが、不活性ガスである請求項4記載の樹脂発泡体。 The resin foam according to claim 4, wherein the gas is an inert gas.
  6.  前記不活性ガスが、二酸化炭素である請求項5記載の樹脂発泡体。 The resin foam according to claim 5, wherein the inert gas is carbon dioxide.
  7.  前記ガスが、超臨界状態のガスである請求項4~6のいずれか1つに記載の樹脂発泡体。 The resin foam according to any one of claims 4 to 6, wherein the gas is a gas in a supercritical state.
  8.  請求項1~7のいずれか1つに記載の樹脂発泡体を含むことを特徴とする発泡シール材。 A foamed sealing material comprising the resin foam according to any one of claims 1 to 7.
  9.  樹脂発泡体の片面又は両面に配置された粘着剤層を備える請求項8記載の発泡シール材。 The foamed sealing material according to claim 8, further comprising an adhesive layer disposed on one or both sides of the resin foam.
  10.  粘着剤層が、フィルム層を介して、樹脂発泡体表面に配置されている請求項9記載の発泡シール材。 The foamed sealing material according to claim 9, wherein the pressure-sensitive adhesive layer is disposed on the surface of the resin foam via the film layer.
PCT/JP2013/063164 2012-05-11 2013-05-10 Resin foam and foam sealing material WO2013168798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380024698.4A CN104284927A (en) 2012-05-11 2013-05-10 Resin foam and foam sealing material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012109043 2012-05-11
JP2012-109043 2012-05-11
JP2013-099920 2013-05-10
JP2013099920A JP2013253241A (en) 2012-05-11 2013-05-10 Resin foam and foam sealing material

Publications (1)

Publication Number Publication Date
WO2013168798A1 true WO2013168798A1 (en) 2013-11-14

Family

ID=49550830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063164 WO2013168798A1 (en) 2012-05-11 2013-05-10 Resin foam and foam sealing material

Country Status (3)

Country Link
JP (1) JP2013253241A (en)
CN (1) CN104284927A (en)
WO (1) WO2013168798A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114761473A (en) * 2019-11-25 2022-07-15 日东电工株式会社 Resin foam

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6689026B2 (en) * 2014-03-26 2020-04-28 日東電工株式会社 Equipment with resin foam, foam material, and touch panel
KR20230164051A (en) * 2021-03-31 2023-12-01 닛토덴코 가부시키가이샤 resin foam
JP7288994B2 (en) * 2021-03-31 2023-06-08 日東電工株式会社 resin foam

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859876A (en) * 1994-08-18 1996-03-05 Mitsubishi Chem Basf Co Ltd Expandable polypropylene resin particle
JPH09296063A (en) * 1996-03-04 1997-11-18 Mitsui Petrochem Ind Ltd Expandable thermoplastic olefin elastomer composition and foam thereof
JP2000290417A (en) * 1998-07-30 2000-10-17 Mitsui Chemicals Inc Production of olefin-based thermoplastic elastomer foam
JP2001348452A (en) * 2000-06-05 2001-12-18 Nitto Denko Corp Polyolefinic resin foam and manufacturing method therefor
JP2005227392A (en) * 2004-02-10 2005-08-25 Inoac Corp Sealing member and method for manufacturing the same
JP2007291337A (en) * 2006-03-30 2007-11-08 Jsr Corp Polyolefin based resin foamed body and method for producing the same
JP2009126881A (en) * 2007-11-20 2009-06-11 Inoac Corp Open cell foam and method for manufacturing the same
JP2010242061A (en) * 2009-03-19 2010-10-28 Nitto Denko Corp Flame-retardant resin foam and flame-retardant foamed member
JP2011012235A (en) * 2009-07-06 2011-01-20 Nitto Denko Corp Resin foam

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153110B2 (en) * 2006-10-02 2013-02-27 日東電工株式会社 Polyolefin resin foam and production method thereof
JP5032195B2 (en) * 2007-05-01 2012-09-26 積水化成品工業株式会社 Polypropylene resin foam and method for producing the same
JP5123021B2 (en) * 2008-03-28 2013-01-16 積水化成品工業株式会社 Method for producing polypropylene resin foam and polypropylene resin foam
JP5701508B2 (en) * 2009-03-04 2015-04-15 日東電工株式会社 Conductive resin foam
JP5856448B2 (en) * 2010-12-14 2016-02-09 日東電工株式会社 Resin foam and foam sealing material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859876A (en) * 1994-08-18 1996-03-05 Mitsubishi Chem Basf Co Ltd Expandable polypropylene resin particle
JPH09296063A (en) * 1996-03-04 1997-11-18 Mitsui Petrochem Ind Ltd Expandable thermoplastic olefin elastomer composition and foam thereof
JP2000290417A (en) * 1998-07-30 2000-10-17 Mitsui Chemicals Inc Production of olefin-based thermoplastic elastomer foam
JP2001348452A (en) * 2000-06-05 2001-12-18 Nitto Denko Corp Polyolefinic resin foam and manufacturing method therefor
JP2005227392A (en) * 2004-02-10 2005-08-25 Inoac Corp Sealing member and method for manufacturing the same
JP2007291337A (en) * 2006-03-30 2007-11-08 Jsr Corp Polyolefin based resin foamed body and method for producing the same
JP2009126881A (en) * 2007-11-20 2009-06-11 Inoac Corp Open cell foam and method for manufacturing the same
JP2010242061A (en) * 2009-03-19 2010-10-28 Nitto Denko Corp Flame-retardant resin foam and flame-retardant foamed member
JP2011012235A (en) * 2009-07-06 2011-01-20 Nitto Denko Corp Resin foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114761473A (en) * 2019-11-25 2022-07-15 日东电工株式会社 Resin foam

Also Published As

Publication number Publication date
CN104284927A (en) 2015-01-14
JP2013253241A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5856448B2 (en) Resin foam and foam sealing material
JP5969260B2 (en) Resin foam, method for producing the same, and foam sealing material
WO2013183662A1 (en) Resin foam and foaming material
KR101695042B1 (en) Foamed resin having electrical conductivity
KR102121184B1 (en) Resin foam sheet and resin foam composite
KR20100105448A (en) Shock absorbing material
JP6110213B2 (en) Thermoplastic resin foam, foam sealing material, and method for producing thermoplastic resin foam
WO2013168798A1 (en) Resin foam and foam sealing material
WO2013187372A1 (en) Resin foam and foamed sealing material
JP5833213B2 (en) Shock absorber
JP6425973B2 (en) Resin foam and foam member
JP6006350B2 (en) Conductive resin foam
KR102174106B1 (en) Thermoplastic resin foam and foam-based sealing material
JP6181248B2 (en) Resin foam, method for producing the same, and foam sealing material
JP2014094575A (en) Impact absorbing material
JP2013147663A (en) Impact absorbing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788317

Country of ref document: EP

Kind code of ref document: A1