WO2013180078A1 - Radiographic imaging equipment, radiographic imaging system, radiographic imaging method, and radiographic imaging program - Google Patents

Radiographic imaging equipment, radiographic imaging system, radiographic imaging method, and radiographic imaging program Download PDF

Info

Publication number
WO2013180078A1
WO2013180078A1 PCT/JP2013/064674 JP2013064674W WO2013180078A1 WO 2013180078 A1 WO2013180078 A1 WO 2013180078A1 JP 2013064674 W JP2013064674 W JP 2013064674W WO 2013180078 A1 WO2013180078 A1 WO 2013180078A1
Authority
WO
WIPO (PCT)
Prior art keywords
defective pixel
resolution
radiation
pixels
pixel map
Prior art date
Application number
PCT/JP2013/064674
Other languages
French (fr)
Japanese (ja)
Inventor
美広 岡田
北野 浩一
大田 恭義
孝明 伊藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013180078A1 publication Critical patent/WO2013180078A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/766Addressed sensors, e.g. MOS or CMOS sensors comprising control or output lines used for a plurality of functions, e.g. for pixel output, driving, reset or power

Definitions

  • the present invention relates to a radiographic imaging device, a radiographic imaging system, a radiographic imaging method, and a radiographic imaging program.
  • Radiographic imaging apparatus that uses this radiation detector to capture a radiographic image represented by the irradiated radiation dose has been put into practical use.
  • the non-binning area is binned by digital addition or the like after reading out the charge without binning.
  • the technique described in Japanese Patent Laid-Open No. 2003-190126 includes a photographing mode in which charges are read from all elements to obtain a high-resolution photographed image, and a perspective image in which a plurality of element data is added to obtain a low-resolution perspective image. Mode.
  • This technique generates offset information corresponding to the fluoroscopic mode based on the offset information obtained in the photographing mode.
  • the present invention provides a radiographic imaging apparatus, a radiographic imaging system, a radiographic imaging method, and a radiographic imaging program capable of easily obtaining respective defective pixel maps at a plurality of resolutions.
  • a radiographic imaging control device including a sensor unit that generates a charge corresponding to irradiated radiation, and a switching element that reads the charge generated by the sensor unit and outputs the charge.
  • a radiation detector provided with a plurality of pixels including, a generation means for detecting a defect of a pixel used in predetermined high-resolution imaging in the radiation detector and generating a high-resolution defect pixel map, and generated by the generation means Conversion means for converting the high-resolution defective pixel map thus obtained into a low-resolution defective pixel map having a resolution lower than the high resolution.
  • the high resolution defect pixel map is generated by the generation unit, and the conversion unit converts the high resolution defect pixel map generated by the generation unit to the low resolution defect pixel map. Convert. Therefore, according to the first aspect of the present invention, defective pixel maps of high resolution and low resolution can be generated by detecting defective pixels once. Therefore, the first aspect of the present invention can easily obtain each defective pixel map at a plurality of resolutions.
  • the radiation detector includes a sensor unit that generates a charge corresponding to the irradiated radiation, and a first unit that reads the charge from the sensor unit and outputs the charge.
  • a switching element and a second switching element that reads out charges from the sensor unit and outputs charges are provided as switching elements, and each of a plurality of pixels arranged two-dimensionally and a plurality of pixels adjacent in the first direction.
  • a signal wiring is provided for each arrangement along a second direction different from the one direction, and the output terminals of the first switching elements of a plurality of pixels adjacent to the second direction are connected to each signal wiring, and the first A signal wiring group in which the output ends of the second switching elements of the plurality of pixels adjacent in the direction and the output ends of the second switching elements of the plurality of pixels adjacent in the first direction are connected to a part of the signal wiring; May be provided.
  • the high resolution defective pixel map and the low resolution defective pixel map may be defined according to the type of defective pixel.
  • the high resolution defective pixel map and the low resolution defective pixel map may be defined according to the cause of the defective pixel.
  • the radiographic imaging device of the present invention further includes a correcting unit that corrects the defective pixel based on the high-resolution defective pixel map or the low-resolution defective pixel map. It may be.
  • the correction unit is configured to detect a high-resolution pixel included in the low-resolution pixel that is a defective pixel in the low-resolution defective pixel map when photographing at a low resolution. The defective pixels may be corrected by adjusting the gain according to the number of defective pixels.
  • the switching element may be configured in the same direction and size in each pixel.
  • the electrical parameters of the switching elements can be made uniform.
  • the eighth aspect of the present invention is a radiographic imaging system, comprising the radiographic imaging apparatus of the above aspect and radiation irradiating means for irradiating a radiation detector via a subject.
  • the eighth aspect of the present invention includes the radiographic imaging control device according to the above aspect, each defective pixel map at a plurality of resolutions can be easily obtained as in the above aspect.
  • a radiographic imaging method wherein a plurality of pixels including a sensor unit that generates electric charges according to irradiated radiation and a switching element that reads out electric charges generated by the sensor units are provided.
  • the generation step generates a high-resolution defective pixel map
  • the conversion means converts the high-resolution defective pixel map generated in the generation step into a low-resolution defective pixel map. Convert. Therefore, the ninth aspect of the present invention can generate high-resolution and low-resolution defective pixel maps with one defective pixel detection. Accordingly, the ninth aspect of the present invention can easily obtain respective defective pixel maps at a plurality of resolutions.
  • the radiation detector is configured such that the radiation detector generates a charge corresponding to the irradiated radiation, and reads out the charge from the sensor unit and outputs the charge.
  • a plurality of pixels arranged in a two-dimensional manner and a plurality of pixels adjacent to each other in the first direction.
  • signal lines are provided for each array along a second direction different from the first direction, and the output terminals of the first switching elements of a plurality of pixels adjacent to each other in the second direction are connected for each signal line.
  • a signal in which the output ends of the second switching elements of a plurality of pixels adjacent in the second direction and the output ends of the second switching elements of the plurality of pixels adjacent in the first direction are connected to some signal wirings.
  • a wiring group is
  • the high resolution defective pixel map and the low resolution defective pixel map may be defined according to the type of defective pixel.
  • the high resolution defective pixel map and the low resolution defective pixel map may be defined according to the cause of the defective pixel.
  • the thirteenth aspect of the present invention is the ninth to twelfth aspects, further comprising correction means for correcting the defective pixel based on the high resolution defective pixel map or the low resolution defective pixel map. Good.
  • the correction means is configured to detect a high-resolution pixel included in a low-resolution pixel that is a defective pixel in the low-resolution defective pixel map when photographing at a low resolution.
  • the defective pixels may be corrected by adjusting the gain according to the number of defective pixels.
  • the fifteenth aspect of the present invention may be a radiographic image capturing program for causing a computer to function as each means of the radiographic image capturing apparatus of the above aspect of the present invention.
  • the radiographic image capturing program of the fifteenth aspect of the present invention can easily obtain each defective pixel map at a plurality of resolutions, as in the above aspect.
  • the present invention can provide a radiographic imaging apparatus, a radiographic imaging system, a radiographic imaging method, and a radiographic imaging program that can easily obtain respective defective pixel maps at a plurality of resolutions.
  • FIG. 1 is a schematic configuration diagram of an outline of an overall configuration of an example of a radiographic imaging system according to an exemplary embodiment of the present invention. It is the schematic which shows the outline of the cross section of an example of the indirect conversion type radiation detector which concerns on exemplary embodiment of this invention. It is the schematic which shows the outline of the cross section of an example of the direct conversion type
  • FIG. 1 shows a schematic configuration diagram of an outline of an overall configuration of an example of the radiographic imaging system of the present exemplary embodiment.
  • the radiographic image capturing system 10 of the present exemplary embodiment can capture still images in addition to moving images.
  • “radiation image” refers to both a moving image and a still image unless otherwise specified.
  • a moving image refers to displaying still images one after another at a high speed and recognizing them as moving images. A still image is shot, converted into an electric signal, transmitted, and transmitted from the electric signal to the still image. The process of playing back is repeated at high speed. Therefore, the moving image also includes so-called “frame advance” in which the same area (part or all) is shot a plurality of times within a predetermined time and continuously played back depending on the degree of “high speed”. And
  • the radiographic imaging system 10 of the present exemplary embodiment is based on an instruction (imaging menu) input from an external system (for example, RIS: Radiology Information System: radiation information system) via the console 16. It has a function of taking a radiographic image by an operation of an engineer or the like.
  • an external system for example, RIS: Radiology Information System: radiation information system
  • the radiographic imaging system 10 of the present exemplary embodiment has a function of causing a doctor, a radiographer, or the like to interpret a radiographic image by displaying the radiographic image that has been captured on the display 50 of the console 16 or the radiographic image interpretation device 18. It is what has.
  • the radiographic imaging system 10 of this exemplary embodiment includes a radiation generation device 12, a radiographic image processing device 14, a console 16, a storage unit 17, a radiographic image interpretation device 18, and a radiation panel unit 20.
  • the radiation generator 12 includes a radiation irradiation control unit 22.
  • the radiation irradiation control unit 22 has a function of irradiating the imaging target region of the subject 30 on the imaging table 32 with the radiation X from the radiation irradiation source 22 ⁇ / b> A based on the control of the radiation control unit 62 of the radiation image processing apparatus 14. .
  • the radiation X transmitted through the subject 30 is irradiated to the radiation panel unit 20 held by the holding unit 34 inside the imaging table 32.
  • the radiation panel unit 20 has a function of generating charges according to the dose of the radiation X that has passed through the subject 30, and generating and outputting image information indicating a radiation image based on the generated charge amount.
  • the radiation panel unit 20 of the present exemplary embodiment is configured to include a radiation detector 26.
  • the image information indicating the radiation image output by the radiation panel unit 20 is input to the console 16 via the radiation image processing device 14.
  • the console 16 of the present exemplary embodiment uses a radiography (LAN: Local Area Network) or the like, a radiation generation apparatus 12 and a radiation panel unit using an imaging menu or various information acquired from an external system (RIS) or the like. It has a function of performing 20 controls.
  • the console 16 according to the present exemplary embodiment transmits and receives various types of information to and from the radiation panel unit 20 together with a function of transmitting and receiving various types of information including image information of radiographic images to and from the radiation image processing apparatus 14. Has the function to perform.
  • the console 16 of the present exemplary embodiment is configured as a server computer, and includes a control unit 40, a display driver 48, a display 50, an operation input detection unit 52, an operation panel 54, an I / O unit 56, and an I / F. A portion 58 is provided.
  • the control unit 40 has a function of controlling the operation of the entire console 16, and includes a CPU, a ROM, a RAM, and an HDD.
  • the CPU has a function of controlling the operation of the entire console 16, and various programs including a control program used by the CPU are stored in advance in the ROM.
  • the RAM has a function of temporarily storing various data
  • the HDD hard disk drive
  • the display driver 48 has a function of controlling display of various information on the display 50.
  • the display 50 of the present exemplary embodiment has a function of displaying an imaging menu, a captured radiographic image, and the like.
  • the operation input detection unit 52 has a function of detecting an operation state with respect to the operation panel 54.
  • the operation panel 54 is used by a doctor, a radiographer, or the like to input operation instructions related to radiographic image capturing.
  • the operation panel 54 includes, for example, a touch panel, a touch pen, a plurality of keys, a mouse, and the like. When configured as a touch panel, it may be configured the same as the display 50.
  • the I / O unit 56 and the I / F unit 58 transmit and receive various types of information to and from the radiation image processing device 14 and the radiation generation device 24 through wireless communication, and also perform an image with the radiation panel unit 20. It has a function of transmitting and receiving various information such as information.
  • the control unit 40, the display driver 48, the operation input detection unit 52, the I / F unit 58, and the I / O unit 56 are connected to each other via a bus 59 such as a system bus or a control bus so that information can be exchanged. ing. Therefore, the control unit 40 controls the display of various information on the display 50 via the display driver 48, and controls the transmission / reception of various information with the radiation generator 12 and the radiation panel unit 20 via the I / F unit 58. Can be performed respectively.
  • the radiation image processing apparatus 14 has a function of controlling the radiation generation apparatus 12 and the radiation panel unit 20 based on an instruction from the console 16.
  • the radiation image processing device 14 has a function of controlling storage of the radiation image received from the radiation panel unit 20 in the storage unit 17 and display on the display 50 of the console 16 and the radiation image interpretation device 18. is there.
  • the radiation image processing apparatus 14 of this exemplary embodiment includes a system control unit 60, a radiation control unit 62, a panel control unit 64, an image processing control unit 66, and an I / F unit 68.
  • the system control unit 60 has a function of controlling the entire radiographic image processing apparatus 14 and a function of controlling the radiographic image capturing system 10.
  • the system control unit 60 includes a CPU, ROM, RAM, and HDD.
  • the CPU has a function of controlling operations of the entire radiographic image processing apparatus 14 and the radiographic imaging system 10, and various programs including a control program used by the CPU are stored in advance in the ROM.
  • the RAM has a function of temporarily storing various data
  • the HDD has a function of storing and holding various data.
  • the radiation control unit 62 has a function of controlling the radiation irradiation control unit 22 of the radiation generator 12 based on an instruction from the console 16.
  • the panel control unit 64 has a function of receiving information from the radiation panel unit 20 wirelessly or by wire, and the image processing control unit 66 has a function of performing various image processes on the radiation image. .
  • the system control unit 60, the radiation control unit 62, the panel control unit 64, and the image processing control unit 66 are connected to each other through a bus 69 such as a system bus or a control bus so as to be able to exchange information.
  • the storage unit 17 of the present exemplary embodiment has a function of storing a captured radiographic image and information related to the radiographic image.
  • An example of the storage unit 17 is an HDD.
  • the radiological image interpretation device 18 of the exemplary embodiment is a device having a function for a radiographer to interpret a captured radiographic image, and is not particularly limited, but includes a so-called radiological image viewer, a console, and the like. .
  • the radiographic image interpretation device 18 of the present exemplary embodiment is configured as a personal computer, and, like the console 16 and the radiographic image processing device 14, a CPU, ROM, RAM, HDD, display driver, display 23, operation input.
  • a detection unit, an operation panel 24, an I / O unit, and an I / F unit are provided. In FIG. 1, only the display 23 and the operation panel 24 are shown, and other descriptions are omitted in order to avoid complicated description.
  • the radiation detector 26 provided in the radiation panel unit 20 includes a TFT substrate.
  • FIG. 2 a schematic cross-sectional view of an example of the indirect conversion type radiation detector 26 is shown in FIG.
  • the radiation detector 26 shown in FIG. 2 includes a TFT substrate and a radiation conversion layer.
  • the bias electrode 72 has a function of applying a bias voltage to the radiation conversion layer 74.
  • radiation detector 26 is a hole reading sensor. Therefore, a positive bias voltage is supplied to the bias electrode 72 from a high voltage power source (not shown).
  • a negative bias voltage is supplied to the bias electrode 72.
  • the radiation conversion layer 74 is a scintillator, and is formed so as to be laminated between the bias electrode 72 and the upper electrode 82 via the upper electrode 82 and the transparent insulating film 80 in the radiation detector 26 of this exemplary embodiment. Has been.
  • the radiation conversion layer 74 is formed by forming a phosphor that emits light by converting the radiation X incident from above or below into light. Providing such a radiation conversion layer 74 absorbs the radiation X and emits light.
  • the wavelength range of light emitted by the radiation conversion layer 74 is preferably a visible light range (wavelength 360 nm to 830 nm). In order to enable monochrome imaging by the radiation detector 26, the wavelength range of green is included. More preferably.
  • a scintillator that generates fluorescence having a relatively wide wavelength region that can generate light in a wavelength region that can be absorbed by the TFT substrate 70 is desirable.
  • Examples of such a scintillator include CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), LaOBr: Tm, and GOS.
  • CsI cesium iodide
  • Tl Tl (thallium is added) having an emission spectrum of 400 nm to 700 nm upon X-ray irradiation.
  • CsI cesium iodide
  • CsI Na
  • the emission peak wavelength in the visible light region of CsI: Tl is 565 nm.
  • the scintillator containing CsI it is preferable to use what was formed as a strip-like columnar crystal structure by the vacuum evaporation method.
  • the upper electrode 82 needs to cause the light generated by the radiation conversion layer 74 to enter the photoelectric conversion film 86. Therefore, the upper electrode 82 is preferably made of a conductive material that is transparent at least with respect to the emission wavelength of the radiation conversion layer 74. Specifically, the transparent electrode has a high visible light transmittance and a low resistance value. It is preferable to use a conductive oxide (TCO). Although a metal thin film such as Au can be used as the upper electrode 82, the TCO is preferable because the resistance value tends to increase when the transmittance of 90% or more is obtained.
  • TCO conductive oxide
  • ITO ITO, IZO, AZO, FTO, SnO 2 , TiO 2 , ZnO 2 and the like
  • ITO is most preferable from the viewpoint of process simplicity, low resistance, and transparency.
  • the upper electrode 82 may have a single configuration common to all pixels, or may be divided for each pixel.
  • the photoelectric conversion film 86 is made of an organic photoelectric conversion material that absorbs light emitted from the radiation conversion layer 74 and generates charges.
  • the photoelectric conversion film 86 includes an organic photoelectric conversion material, absorbs light emitted from the radiation conversion layer 74, and generates electric charges according to the absorbed light.
  • the photoelectric conversion film 86 containing an organic photoelectric conversion material has a sharp absorption spectrum in the visible range, and electromagnetic waves other than light emission by the radiation conversion layer 74 are hardly absorbed by the photoelectric conversion film 86. Noise generated by the radiation X such as X-rays being absorbed by the photoelectric conversion film 86 can be effectively suppressed.
  • the organic photoelectric conversion material constituting the photoelectric conversion film 86 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the radiation conversion layer 74 in order to most efficiently absorb the light emitted from the radiation conversion layer 74.
  • the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the radiation conversion layer 74, but if the difference between the two is small, the light emitted from the radiation conversion layer 74 is sufficiently absorbed. Is possible.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation of the radiation conversion layer 74 is preferably within 10 nm, and more preferably within 5 nm.
  • organic photoelectric conversion materials that can satisfy such conditions include quinacridone-based organic compounds and phthalocyanine-based organic compounds.
  • quinacridone-based organic compounds since the absorption peak wavelength of quinacridone in the visible region is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the radiation conversion layer 74, the difference in the peak wavelength may be within 5 nm. The amount of charge generated in the photoelectric conversion film 86 can be substantially maximized.
  • the electron blocking film 88 and the hole blocking film 84 In order to suppress an increase in dark current, it is preferable to provide at least one of the electron blocking film 88 and the hole blocking film 84, and it is more preferable to provide both.
  • the electron blocking film 88 can be provided between the lower electrode 90 and the photoelectric conversion film 86.
  • An electron donating organic material can be used for the electron blocking film 88.
  • the hole blocking film 84 can be provided between the photoelectric conversion film 86 and the upper electrode 82.
  • the photoelectric conversion film is formed from the upper electrode 82. It is possible to suppress the increase of dark current due to the injection of holes into 86.
  • An electron-accepting organic material can be used for the hole blocking film 84.
  • a plurality of lower electrodes 90 are formed in a lattice shape (matrix shape) at intervals, and one lower electrode 90 corresponds to one pixel.
  • Each lower electrode 90 is connected to a field effect thin film transistor (hereinafter referred to simply as “TFT”) 98 and a storage capacitor 96 of the signal output unit 94.
  • TFT field effect thin film transistor
  • An insulating film 92 is interposed between the signal output unit 94 and the lower electrode 90, and the signal output unit 94 is formed on the insulating substrate 93.
  • the insulating substrate 93 absorbs the radiation X in the radiation conversion layer 74, the insulating substrate 93 has a low X radiation absorbability and is a flexible electrically insulating thin substrate (a substrate having a thickness of about several tens of ⁇ m). Specifically, it is preferably a synthetic resin, aramid, bionanofiber, or film glass (ultra thin glass) that can be wound into a roll.
  • the signal output unit 94 corresponds to the lower electrode 90, and is a storage capacitor 96 that stores the charge transferred to the lower electrode 90, and a switching element that converts the charge stored in the storage capacitor 96 into an electrical signal and outputs the electrical signal.
  • a TFT 98 is formed.
  • the region where the storage capacitor 96 and the TFT 98 are formed has a portion overlapping the lower electrode 90 in plan view. In order to minimize the plane area of the radiation detector 26 (pixel), it is desirable that the region where the storage capacitor 96 and the TFT 98 are formed is completely covered by the lower electrode 90.
  • the radiation detector 26 is irradiated with radiation X from the side on which the radiation conversion layer 74 is formed, and a radiation image is obtained by a TFT substrate 70 provided on the back side of the incident surface of the radiation X.
  • PSS Purification Side Sampling
  • ISS Surface Reading Method
  • the radiation X transmitted through the TFT substrate 70 enters the radiation conversion layer 74 and the TFT substrate 70 side of the radiation conversion layer 74 emits light more strongly. Electric charges are generated in the photoelectric conversion portion 87 of each pixel 100 provided on the TFT substrate 70 by the light generated in the radiation conversion layer 74. For this reason, the radiation detector 26 is closer to the emission position of the radiation conversion layer 74 with respect to the TFT substrate 70 when the front surface reading method is used than when the rear surface reading method is used. High resolution.
  • the radiation detector 26 may be a direct conversion type radiation detector as shown in a schematic cross-sectional view of an example in FIG.
  • the radiation detector 26 shown in FIG. 3 also includes a TFT substrate and a radiation conversion layer, as in the indirect conversion type described above.
  • the TFT substrate 110 has a function of collecting and reading (detecting) carriers (holes) that are charges generated in the radiation conversion layer 118.
  • the TFT substrate 110 includes an insulating substrate 122 and a signal output unit 124.
  • the radiation detector 26 is configured as an electronic reading sensor, the TFT substrate 110 is configured to have a function of collecting and reading out electrons.
  • the insulating substrate 122 absorbs the radiation X in the radiation conversion layer 118, the insulating substrate 122 has a low X radiation absorbability and is a flexible electrically insulating thin substrate (a substrate having a thickness of about several tens of ⁇ m). Specifically, it is preferably a synthetic resin, aramid, bionanofiber, or film glass (ultra thin glass) that can be wound into a roll.
  • the signal detection unit 85 includes a storage capacitor 126 that is a charge storage capacitor, a TFT 128 that is a switching element that converts the electric charge stored in the storage capacitor 126 into an electric signal, and the charge collecting electrode 121.
  • a plurality of charge collection electrodes 121 are formed in a lattice shape (matrix shape) at intervals, and one charge collection electrode 121 corresponds to one pixel. Each charge collecting electrode 121 is connected to the TFT 128 and the storage capacitor 126.
  • the storage capacitor 126 has a function of storing charges (holes) collected by the charge collection electrodes 121.
  • the charges accumulated in the respective storage capacitors 126 are read out by the TFT 128.
  • a radiographic image is taken by the TFT substrate 110.
  • the undercoat layer 120 is formed between the radiation conversion layer 118 and the TFT substrate 110.
  • the undercoat layer 120 preferably has a rectifying characteristic from the viewpoint of reducing dark current and leakage current. Therefore, the resistivity of the undercoat layer 120 is preferably 10 8 ⁇ cm or more, and the film thickness is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the radiation conversion layer 118 is a photoelectric conversion layer made of a photoconductive material that absorbs irradiated radiation and generates positive and negative charges (electron-hole carrier pairs) according to the radiation. It is preferable that ( ⁇ -Se) is a main component.
  • the radiation conversion layer 118 includes Bi 2 MO 20 (M: Ti, Si, Ge), Bi 4 M 3 O 12 (M: Ti, Si, Ge), Bi 2 O 3 , BiMO 4 (M: Nb).
  • a compound mainly composed of at least one of CdTe, BiI 3 , GaAs, etc. may be used, but it has a high dark resistance, shows good photoconductivity against radiation irradiation, and is formed at a low temperature by vacuum deposition.
  • An amorphous material capable of forming a large area is preferable.
  • the thickness of the radiation conversion layer 118 is preferably 100 ⁇ m or more and 2000 ⁇ m or less in the case of a photoconductive material containing ⁇ -Se as a main component, as in the present exemplary embodiment, for example.
  • the thickness of the radiation conversion layer 118 is preferably in the range of 100 ⁇ m to 250 ⁇ m for mammography applications and 500 ⁇ m to 1200 ⁇ m for general imaging applications.
  • the electrode interface layer 116 has a function of blocking hole injection and a function of preventing crystallization, and is formed between the radiation conversion layer 118 and the overcoat layer 114.
  • the electrode interface layer 116 is preferably an inorganic material such as CdS, CeO 2 , Ta 2 O 5 , or SiO, or an organic polymer.
  • the layer made of an inorganic material is preferably used by adjusting the carrier selectivity by changing the composition from the stoichiometric composition or by using a multi-component composition with two or more kinds of homologous elements.
  • an insulating polymer such as polycarbonate, polystyrene, polyimide, polycycloolefin, and the like can be used by mixing a low molecular weight electron transport material in a weight ratio of 5% to 80%.
  • electron transporting materials trinitrofluorene and derivatives thereof, diphenoquinone derivatives, bisnaphthyl quinone derivatives, oxazole derivatives, triazole derivatives, C 60 (fullerene), such a mixture of carbon clusters such as C 70 are preferred.
  • Specific examples include TNF, DMDB, PBD, and TAZ.
  • a thin insulating polymer layer can also be used preferably.
  • acrylic resins such as parylene, polycarbonate, PVA, PVP, PVB, polyester resin, and polymethyl methacrylate are preferable.
  • the film thickness is preferably 2 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the overcoat layer 114 is formed between the electrode interface layer 116 and the bias electrode 112.
  • the overcoat layer 114 preferably has rectification characteristics from the viewpoint of reducing dark current and leakage current. Therefore, the resistivity of the overcoat layer 114 is preferably 10 8 ⁇ cm or more, and the film thickness is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the bias electrode 112 is substantially the same as the bias electrode 72 in the direct conversion type described above, and has a function of applying a bias voltage to the radiation conversion layer 118.
  • the radiation detector 26 is not limited to that shown in FIGS. 2 and 3 and can be variously modified.
  • the signal output units (94, 124) with low possibility of arrival of radiation X are CMOS (ComplementaryarMetal-Oxide Semiconductor) images with low resistance to radiation X instead of the above-described ones.
  • CMOS ComplementaryarMetal-Oxide Semiconductor
  • You may combine TFT with other imaging elements, such as a sensor. Further, it may be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting them with a shift pulse corresponding to the gate signal of the TFT.
  • CCD Charge-Coupled Device
  • a flexible substrate may be used.
  • the flexible substrate it is preferable to apply a substrate using ultra-thin glass by a recently developed float method as a base material in order to improve the radiation transmittance.
  • a substrate using ultra-thin glass by a recently developed float method as a base material.
  • the ultra-thin glass that can be applied at this time, for example, “Asahi Glass Co., Ltd.,“ Successfully developed the world's thinnest 0.1 mm thick ultra-thin glass by the float method ”, [online], [2011 Aug. 20 search], Internet ⁇ URL: http://www.agc.com/news/2011/0516.pdf> ”.
  • FIG. 4 shows a schematic configuration diagram of a radiation panel unit 20 including a radiation detector 26 according to an exemplary embodiment of the present invention
  • FIG. 5 shows a schematic circuit configuration diagram of an example of the radiation panel unit 20.
  • the radiation panel unit 20 including the radiation detector 26 shown in FIG. 2 will be described as a specific example.
  • the indirect conversion type radiation detector 26 is applied will be described. 4 and 5, the radiation conversion layer (scintillator) 74 that converts radiation into light is omitted.
  • the radiation panel unit 20 includes the radiation detector 26 described above. As shown in FIG. 5, the radiation detector 26 generates a charge upon receiving light, stores a photoelectric conversion unit 87 that accumulates the generated charge, and a switching element for reading out the charge stored in the photoelectric conversion unit 87. A plurality of pixels 21 including two TFTs (TFT1, TFT2) are arranged in a matrix. In the present exemplary embodiment, the photoelectric conversion unit 87 generates electric charges when irradiated with light converted by the scintillator.
  • a plurality of pixels 21 are arranged in a two-dimensional matrix in one direction (the horizontal direction in FIG. 5, hereinafter also referred to as “row direction”) and the cross direction with respect to the row direction (the vertical direction in FIG. 5, hereinafter also referred to as “column direction”).
  • row direction the horizontal direction in FIG. 5, hereinafter also referred to as “row direction”
  • column direction the vertical direction in FIG. 5, hereinafter also referred to as “column direction”.
  • FIG. 5 the arrangement of the pixels 21 is shown in a simplified manner. For example, 1024 ⁇ 1024 pixels 21 are arranged in the row direction and the column direction.
  • the radiation detector 26 includes a plurality of control wires G (G1 to G4 in FIG. 5) for controlling ON / OFF of the TFT 1 and a plurality of control wires M (for controlling ON / OFF of the TFT 2).
  • M1 and M2) and a plurality of signal wirings D (D1 to D4 in FIG. 5) provided for each column of the pixels 21 for reading out the electric charges accumulated in the photoelectric conversion unit 87 are provided. They are provided to cross each other.
  • 1024 control wirings G and signal wirings D are provided.
  • the number of the control wirings M is half that of the control wirings G, that is, 512.
  • the photoelectric conversion unit 87 of each pixel 21 is connected to a common wiring (not shown), and is configured to be applied with a bias voltage from a power source (not shown) via the common wiring.
  • Control signal for switching each TFT 1 flows through the control wiring G. In this way, when the control signal flows through each control wiring G, each TFT 1 is switched.
  • a control signal for switching each TFT 2 flows through the control wiring M. In this way, when the control signal flows through each control wiring M, each TFT 2 is switched.
  • an electrical signal corresponding to the amount of charge accumulated in each pixel 21 flows through the TFT 1 or TFT 2 according to the switching state of the TFT 1 and the switching state of the TFT 2 of each pixel 21 (details will be described later).
  • Each signal wiring D is connected to a signal detection circuit 130 that detects an electrical signal flowing out to each signal wiring D.
  • Each control wiring G is connected to a first gate circuit 132 that outputs a control signal for turning on / off the TFT 1 to each control wiring G.
  • Each control wiring M is turned on / off the TFT 2 to each control wiring M.
  • a second gate circuit 134 that outputs a control signal for turning OFF is connected. 4 and 5, two gate circuits of the first gate circuit 132 and the second gate circuit 134 are provided for simplification of illustration of wiring and the like, but in the present exemplary embodiment, these are provided. They may not be separate but may be the same or separate.
  • the signal detection circuit 130, the first gate circuit 132, and the second gate circuit 134 are illustrated in a simplified manner, but for example, the signal detection circuit 130, the first gate circuit 132.
  • the two-gate circuit 134 includes a plurality of drivers 131, 133, and 135 each connected with a signal wiring D, a control wiring G, and a control wiring M for every predetermined number (for example, 256). Has been. Since the number of control lines M connected to the second gate circuit 134 is smaller than the number of control lines G connected to the first gate circuit 132, the number of drivers 133 of the first gate circuit 132 is smaller than the number of drivers 133. The number of drivers 134 is reduced.
  • the signal detection circuit 130 incorporates an amplification circuit (not shown) for amplifying an input electric signal for each signal wiring D.
  • an electric signal input from each signal wiring D is amplified by an amplifier circuit and converted into a digital signal by an ADC (analog / digital converter, not shown).
  • the signal detection circuit 130, the first gate circuit 132, and the second gate circuit 134 are subjected to predetermined processing such as noise removal on the digital signal converted by the signal detection circuit 130, and the signal detection circuit 130
  • a panel control unit 136 that outputs a control signal indicating the timing of signal detection and outputs a control signal indicating the output timing of the scan signal to the first gate circuit 132 and the second gate circuit 134 is connected.
  • the panel control unit 136 of the present exemplary embodiment is configured by a microcomputer and includes a nonvolatile storage unit including a CPU (Central Processing Unit), ROM and RAM, flash memory, and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • flash memory any type of nonvolatile storage unit
  • the panel control unit 136 may be configured using an FPGA (Field-Programmable-Gate-Array).
  • the panel control unit 136 performs predetermined processing on the image data of the radiation detection pixels 21 to generate and output a radiation image indicated by the irradiated radiation.
  • the radiation panel unit 20 detects the start of radiation irradiation, accumulates charges in each pixel 21 of the radiation detector 26, and outputs a radiation image based on image data corresponding to the accumulated charges to capture a radiation image. To do.
  • the radiation panel unit 20 of the present exemplary embodiment when shooting with high resolution (for example, shooting a still image), and shooting with low resolution and a high frame rate (for example, shooting of a moving image).
  • high resolution for example, shooting a still image
  • low resolution and a high frame rate for example, shooting of a moving image
  • either high-resolution shooting or low-resolution shooting is performed based on an instruction from the console 16. Regardless of high-resolution imaging or low-resolution imaging, charges corresponding to the irradiated radiation are accumulated by the photoelectric conversion unit 87.
  • a control signal is output from the second gate circuit 134 to the control wiring M so that the TFT 2 is turned off.
  • a control signal is sequentially output from the first gate circuit 132 to the control wiring G so as to turn on the TFT 1.
  • the charge is read from the photoelectric conversion unit 87 and the charge is output to the signal wiring D.
  • the electric signal corresponding to the electric charge is converted into a digital signal by the signal detection circuit 130, and the radiation image based on the image data corresponding to the electric signal is generated by the panel control unit 136.
  • a control signal is output from the first gate circuit 132 to the control wiring G so that the TFT 1 is turned off.
  • a control signal is sequentially output from the second gate circuit 134 to the control wiring M so as to turn on the TFT 2.
  • the charge is read from the photoelectric conversion unit 87 and the charge is output to the signal wiring D.
  • the sum of charges of 2 pixels ⁇ 2 pixels is alternately (even) in the adjacent signal wiring D.
  • each pixel of the radiation detector 26 may include a defective pixel, it is necessary to generate and correct a defective pixel map.
  • a defective pixel map is required for each.
  • a low-resolution defective pixel map is generated using the generated high-resolution defective pixel map.
  • the defective pixel detection method may be such that the defective pixel is detected based on the value of each pixel when a predetermined amount of radiation is irradiated, or the defective pixel is based on the value of each pixel during a period when radiation is not irradiated. May be detected.
  • a specific method for detecting a defective pixel can be detected by, for example, a well-known technique (for example, a method described in JP 2008-252564 A or JP 2010-233886 A).
  • these known techniques are used to determine the type of defective pixel, such as a point defect or a line defect, and whether it is a disconnected pixel, and define it in the defective pixel map. It is like that.
  • defective pixels are detected and a high-resolution defective pixel map as shown in (1) of FIG. 7 is generated.
  • a defect pixel map is generated by defining the type of defect.
  • a low resolution defective pixel map is generated as shown in (2) of FIG.
  • the hatched part in FIG. 7 shows a defective pixel, and shows an example in which there are a line defect and a point defect.
  • Defective pixels can be corrected by the panel control unit 136 using the defective pixel maps generated in this way.
  • a defective pixel such as a point defect or a line defect can be corrected by interpolation using peripheral pixels.
  • the gain is adjusted according to the number of defective pixels of the high-resolution pixels included in the low-resolution pixels 31 (for example, when one of the four pixels is a defective pixel, The gain may be corrected by increasing the gain by 4/3 times, or may be corrected by interpolating using peripheral low-resolution pixels, or may be corrected by interpolating in the high-resolution pixels and then low-resolution. Pixels may be obtained.
  • a threshold is provided for the number of defective pixels of the high-resolution pixel in the low-resolution pixel 31, and if there is a defective pixel that is greater than or equal to the threshold, interpolation is performed from surrounding pixels, and if the number of defective pixels is less than the threshold, the gain is You may make it correct
  • the panel control unit 136 corrects the defective pixel.
  • the generated defective pixel map may be transmitted to the radiation image processing apparatus 14 or the console 16 to perform correction.
  • a low-resolution defective pixel map is generated from a high-resolution defective pixel map.
  • the defect map and the correction map cannot be shared. It is necessary to make the sizes and orientations of the two TFTs (TFT1, TFT2), which are switching elements for reading out the electric charges accumulated in the portion 87, uniform.
  • the drain / source direction (length direction) of the two TFTs (TFT1, TFT2) and the gate direction (width direction) orthogonal to the length direction are respectively shown. It is set as the structure arrange
  • FIG. 9 is a flowchart illustrating an example of a defective pixel map generation process performed by the panel control unit 136 according to an exemplary embodiment of the present invention.
  • a predetermined amount of radiation is irradiated to the radiation panel unit 20 from the radiation generator 12.
  • step 202 it is determined whether or not the pixel is a defective pixel. If the determination is affirmative, the process proceeds to step 204. If the determination is negative, the process proceeds to step 210.
  • a method for determining a defective pixel it may be determined based on the value of each pixel when a predetermined amount of radiation is irradiated, or a known technique (for example, Japanese Patent Application Laid-Open No. 2008-252564 or a special technique). The method may be determined by a method described in Japanese Unexamined Patent Publication No. 2010-233886.
  • step 204 the type of defective pixel is detected, and the process proceeds to step 206.
  • a method for detecting the type of defective pixel it is possible to detect whether it is a point defect or a line defect using the method described in Japanese Patent Application Laid-Open No. 2008-252564.
  • the cause of the defective pixel may be detected instead of the type of the defective pixel, or both the type and cause may be detected.
  • a method for detecting the cause of a defective pixel for example, it can be detected by using a method described in JP 2010-233886 A.
  • step 206 the pixel of interest X is defined as a defective pixel and a high-resolution defective pixel map is generated as a defective pixel, and the process proceeds to step 210.
  • the cause of the defective pixel is detected, the cause of the defective pixel is also defined and a high resolution defective pixel map is generated as the defective pixel.
  • step 208 a high-resolution defective pixel map is generated with the target pixel X as a normal defect, and the process proceeds to step 210.
  • step 210 the high resolution pixel X of interest is incremented by 1 (X + 1), and the process proceeds to step 212.
  • step 212 it is determined whether or not the detection of defective pixels of all pixels has been completed. If the determination is negative, the process returns to step 202 and the above processing is repeated. If the determination is affirmative, the process returns to step 214. Transition.
  • step 214 a low-resolution defective pixel map generation process for converting from a high-resolution defective pixel map to a low-resolution defective pixel map is performed, and a series of defective pixel map generation processes ends.
  • FIG. 10 is a flowchart illustrating an example of the flow of low-resolution defective pixel map generation processing.
  • step 300 the high-resolution defective pixel map generated above is acquired, and the process proceeds to step 302.
  • step 304 the state of the high resolution pixel corresponding to the low resolution pixel 31 of interest is read from the high resolution defective pixel map, and the process proceeds to step 306.
  • step 306 it is determined whether or not the high-resolution pixel 21 in the target low-resolution pixel 31 has a defective pixel. If the determination is affirmative, the process proceeds to step 308. If the determination is negative, the determination is negative. The process proceeds to step 310.
  • step 308 the type is defined and a low resolution defective pixel map is generated as a defective pixel, and the process proceeds to step 312. Similar to the high-resolution defective pixel map, the cause of the defective pixel may be defined instead of the type of the defective pixel, or both the type and the cause may be defined.
  • step 310 a low-resolution defective pixel map is generated as a normal pixel, and the process proceeds to step 312.
  • step 312 the noticed high resolution pixel X is incremented by 1 (X + 1), and the process proceeds to step 314.
  • step 314 it is determined whether or not the detection of defective pixels of all pixels has been completed. If the determination is negative, the process returns to step 302 and the above-described processing is repeated. When the determination is affirmative, a series of processing is performed. Exit.
  • a defective pixel map for high resolution is generated, a defective pixel map for low resolution is generated by pixel density conversion of the generated defective pixel map for high resolution.
  • a defective pixel map having two resolutions can be generated with one defective pixel detection, so that a defective pixel map can be easily obtained.
  • the panel control unit 136 can correct the defective pixels.
  • the configuration of the radiation panel unit 20 is not limited to the configuration described in the above exemplary embodiment, and other configurations may be applied.
  • the modification of a radiation panel unit is demonstrated.
  • the same part as the radiation panel unit 20 of the above exemplary embodiment is described as such, and detailed description thereof is omitted.
  • the radiation panel unit of a modification differs in the structure of the radiation detector from the radiation detector 26 of the said exemplary embodiment, the radiation detector in a modification is demonstrated in detail.
  • FIG. 11 shows a configuration diagram of an example of a schematic configuration of the radiation detector in the radiation panel unit of the modified example.
  • the radiation detector 27 of the modified example includes a photoelectric conversion unit 87 and two TFTs (switching elements for reading out charges accumulated in the photoelectric conversion unit 87 (A plurality of pixels 21 including a still image TFT 1 and a moving image TFT 2) are arranged in a matrix.
  • the radiation detector 26 includes a plurality of control wires G (G1 to G4 in FIG. 11) for controlling ON / OFF of the TFT 1 and a plurality of control wires M (FIG. 11) for controlling ON / OFF of the TFT 2. Then, M1) and a plurality of signal wirings D (D1 to D5 in FIG. 11) provided for each column of the pixels 21 for reading out the charges accumulated in the photoelectric conversion unit 87 intersect each other. Is provided. In FIG. 11, only one control wiring M (control wiring M1) is shown, but the number according to the number of rows of the pixels 21, more specifically, the number of control wirings G (the number of the control lines M1). (Number of lines) is provided.
  • the positional relationship of the control wiring G and the control wiring M connected to the control terminals of the TFT1 and TFT2 connected to the same photoelectric conversion unit 87 with respect to the pixels 21 is an even row of the pixel array. It is configured to invert with odd lines. As shown in FIG. 11, the arrangement relationship between the TFT 1, the TFT 2, and the photoelectric conversion unit 87 is inverted between the even lines and the odd lines of the control wiring G. That is, for example, as can be seen by referring to the pixel 21 (1) and the pixel 21 (5), the TFT1, the TFT2, and the photoelectric conversion unit 87 are arranged so that the arrangement positions are line-symmetric with respect to the control wiring M. Has been placed.
  • the TFT 2 of the pixel 21 (1) and the pixel 21 (5) can also be used as the control wiring M. Therefore, the number of the control wiring M is compared with the above exemplary embodiment. Can be reduced. Therefore, the number of control wirings (control wiring G + control wiring M) can be reduced as compared with the above exemplary embodiment.
  • the control wiring G includes four control wirings G1 to G4, and the control wiring M includes four control wirings M1 and M2 ⁇ 2, for a total of eight. Control wiring is required. Therefore, the number of rows ⁇ 2 control wirings is required.
  • the control wiring G has four control wirings G1 to G4, the control wiring M has two control wirings M1 ⁇ 2, and a total of six control wirings. Necessary. Therefore, the number of rows ⁇ 1.5 control wirings is required. Thus, in the radiation detector 26 according to the modification, the number of control wirings can be reduced.
  • the connection wiring for connecting the TFT 1 to the control wiring G can be shortened.
  • the connection wiring for connecting the TFT 2 to the control wiring M can be shortened. As a result, it is possible to improve the manufacturing yield.
  • a control signal is output from the second gate circuit 134 to the control wiring M so that the TFT 2 is turned off.
  • a control signal is sequentially output from the first gate circuit 132 to the control wiring G so as to turn on the TFT 1.
  • the charge is read from the photoelectric conversion unit 87 and the charge is output to the signal wiring D.
  • a control signal is output from the first gate circuit 132 to the control wiring G so that the TFT 1 is turned off.
  • a control signal is output from the second gate circuit 134 to the control wiring M so as to turn on the TFT 2.
  • the charge is read from the photoelectric conversion unit 87 and the charge is output to the signal wiring D.
  • the TFT2 of the 16 pixels 21 (21 (1) to 21 (16)) is turned on.
  • the charges of the two pixels 21 (21 (1) and 21 (5)) are output to the signal wiring D1.
  • the charges of the four pixels 21 (21 (9), 21 (10), 21 (13), 21 (14)) are output to the signal wiring D2.
  • the charges of the four pixels 21 (21 (2), 21 (3), 21 (6), 21 (7)) are output to the signal wiring D3.
  • the charges of the four pixels 21 (21 (11), 21 (12), 21 (15), 21 (16)) are output to the signal wiring D4.
  • the charges of the two pixels 21 (21 (4), 21 (8)) are output to the signal wiring D5.
  • the radiation detector 26 of the modified example when low-resolution imaging is performed, the sum of charges of 2 pixels ⁇ 2 pixels flows to the adjacent signal wiring D.
  • the 2 pixels 20 ⁇ 2 pixels 21 are regarded as one pixel 31 and the charge is extracted. Therefore, although the resolution is lower than that in high-resolution imaging, the frame rate is quadrupled ( The frame period can be reduced to 1/4).
  • each element (TFT1, TFT2, photoelectric conversion unit 87) is arranged so that the 2 pixels 20 ⁇ 2 pixels 21 can be regarded as one pixel 31 in advance. Therefore, the frame rate can be improved as compared with high-resolution imaging.
  • the pixels 31 that can be regarded as one pixel are arranged so as to be staggered in the column direction. Accordingly, since the charge can flow through the adjacent signal wiring D by one reading, the frame rate can be quadrupled.
  • connection electrodes (illustrated) between the outputs of the TFT1 and TFT2 and the signal wiring D are shown. (Omitted) can be shortened. Thereby, a manufacturing yield can be maintained high.
  • the high-resolution defect pixel map is generated after using the generated high-resolution defect map, as in the above exemplary embodiment. Generate a low resolution defective pixel map.
  • a defective pixel is detected and a high-resolution defect map as shown in (1) of FIG. 13 is generated.
  • a defect pixel map is generated by defining the type of defect.
  • the high-resolution defective pixel map is converted into a normal array by converting the pixel density to a low resolution, thereby generating a low-resolution defective pixel map as shown in FIG.
  • the hatched part in FIG. 13 shows a defective pixel, and shows an example with a line defect and a point defect.
  • high-resolution imaging is performed during normal periodic calibration (for example, various corrections for removing noise caused by dark current of the radiation panel unit 20 and measures for image sticking by irradiation of radiation). Since it is only necessary to switch and perform calibration using one high-definition still image, it is not necessary to detect defective pixels for each resolution. For example, when a plurality of resolutions can be selected in moving image shooting or the like, it is unrealistic to detect each defective pixel, but if this exemplary embodiment is applied, only defective pixel detection is performed once. Therefore, it is possible to easily generate a defective pixel map having a plurality of resolutions.
  • the radiation panel unit 20 requires a smaller number of drivers to be used in low-resolution imaging than in high-resolution imaging, and is expected to reduce power consumption.
  • switching to low-resolution imaging with a small number of drivers may be used to obtain a power consumption reduction effect.
  • the power consumption may be reduced by switching to low-resolution imaging.
  • reset operation is performed after switching to low-resolution imaging, the time required to complete the reset of the entire imaging area can be shortened compared to high-resolution imaging, and detection of the start of radiation irradiation is detected. The period from the start to the charge accumulation mode can be shortened.
  • the processing shown in each flowchart in the above exemplary embodiment may be stored and distributed as various programs in various storage media.
  • the configuration of the radiation detector 26 is not limited to the above-described exemplary embodiment, and a configuration described in JP 2009-267326 A may be used.
  • the photoelectric conversion film 86 may be made of a-Si.
  • the insulating substrates 93 and 122 may be glass substrates.
  • the radiation to be detected may be visible light, ultraviolet rays, infrared ray ⁇ , ⁇ ray, or the like.
  • the configuration of the radiographic image capturing system, the configuration of the radiographic image capturing apparatus, and the like described in the above exemplary embodiment are merely examples, and can be appropriately changed without departing from the gist of the present invention.

Abstract

The present invention provides radiographic imaging equipment, a radiographic imaging system, a radiographic imaging method, and a radiographic imaging program with which a defective pixel map for each of a plurality of resolutions can easily be obtained. This radiographic imaging equipment generates a high-resolution defective pixel map by detecting defective pixels. At this time, the types of defects are defined, and the defective pixel map is generated. In addition, a low-resolution defective pixel map is generated by converting the high-resolution defective pixel map to a pixel density at low resolution.

Description

放射線画撮影装置、放射線画像撮影システム、放射線画撮影方法、及び放射線画撮影プログラムRadiographic imaging apparatus, radiographic imaging system, radiographic imaging method, and radiographic imaging program
 本発明は、放射線画撮影装置、放射線画撮影システム、放射線画像撮影方法、及び放射線画撮影プログラムに関する。 The present invention relates to a radiographic imaging device, a radiographic imaging system, a radiographic imaging method, and a radiographic imaging program.
 近年、TFT(Thin Film Transistor)アクティブマトリクス基板上に放射線感応層を配置し、放射線量をデジタルデータ(電気信号)に変換できるFPD(Flat Panel Detector)等の放射線検出器(「放射線パネルユニット」等という場合がある)が実用化されている。さらに、この放射線検出器を用いて、照射された放射線量により表わされる放射線画像を撮影する放射線画像撮影装置が実用化されている。 In recent years, radiation detectors such as FPD (Flat Panel Detector) that can arrange radiation sensitive layers on TFT (Thin Film Transistor) active matrix substrates and convert radiation dose into digital data (electrical signals) ("Radiation Panel Unit" etc.) Have been put to practical use. Furthermore, a radiographic imaging apparatus that uses this radiation detector to capture a radiographic image represented by the irradiated radiation dose has been put into practical use.
 例えば、特開2009-159497号公報に記載の技術は、非ビニングモードで欠陥があると判断した場合、欠陥画素が含まれる領域を非ビニング領域として記憶する。次に、この技術は、ビニングを行う際に、非ビニング領域はビニングせずに電荷を読み出してから、デジタル加算等によりビニングする。 For example, when the technique described in JP2009-159497A determines that there is a defect in the non-binning mode, the area including the defective pixel is stored as a non-binning area. Next, in this technique, when binning is performed, the non-binning area is binned by digital addition or the like after reading out the charge without binning.
 また、特開2003-190126号公報に記載の技術は、全ての素子から電荷を読み出して高解像度の撮影画像を得る撮影モードと、複数の素子データを加算して低解像度の透視画像を得る透視モードとを備える。この技術は、撮影モードにおいて得られたオフセット情報に基づいて、透視モードに対応するオフセット情報を生成する。 In addition, the technique described in Japanese Patent Laid-Open No. 2003-190126 includes a photographing mode in which charges are read from all elements to obtain a high-resolution photographed image, and a perspective image in which a plurality of element data is added to obtain a low-resolution perspective image. Mode. This technique generates offset information corresponding to the fluoroscopic mode based on the offset information obtained in the photographing mode.
 しかしながら、特開2009-159497号公報、特開2003-190126号公報に記載の技術では、複数の解像度におけるそれぞれの欠陥画素マップの生成については触れていない。したがって、それぞれの解像度における欠陥画素マップを容易に得るためには、改善の余地がある。 However, the techniques described in Japanese Patent Application Laid-Open Nos. 2009-159497 and 2003-190126 do not mention generation of defective pixel maps at a plurality of resolutions. Therefore, there is room for improvement in order to easily obtain a defective pixel map at each resolution.
 本発明は、複数の解像度におけるそれぞれの欠陥画素マップを容易に得ることができる放射線画撮影装置、放射線画像撮影システム、放射線画撮影方法、及び放射線画撮影プログラムを提供する。 The present invention provides a radiographic imaging apparatus, a radiographic imaging system, a radiographic imaging method, and a radiographic imaging program capable of easily obtaining respective defective pixel maps at a plurality of resolutions.
 本発明の第1の態様は、放射線画像撮影制御装置であって、照射された放射線に応じた電荷を発生するセンサ部、及びセンサ部により発生された電荷を読み出して電荷を出力するスイッチング素子を含む複数の画素が設けられた放射線検出器と、放射線検出器における予め定めた高解像度の撮影で使用する画素の欠陥を検出して高解像度欠陥画素マップを生成する生成手段と、生成手段によって生成された高解像度欠陥画素マップを高解像度より低い解像度の低解像度欠陥画素マップに変換する変換手段と、を備えている。 According to a first aspect of the present invention, there is provided a radiographic imaging control device including a sensor unit that generates a charge corresponding to irradiated radiation, and a switching element that reads the charge generated by the sensor unit and outputs the charge. A radiation detector provided with a plurality of pixels including, a generation means for detecting a defect of a pixel used in predetermined high-resolution imaging in the radiation detector and generating a high-resolution defect pixel map, and generated by the generation means Conversion means for converting the high-resolution defective pixel map thus obtained into a low-resolution defective pixel map having a resolution lower than the high resolution.
 本発明の第1の態様における放射線画像撮影制御装置によれば、生成手段によって高解像度欠陥画素マップを生成し、変換手段では、生成手段によって生成した高解像度欠陥画素マップから低解像度欠陥画素マップに変換する。したがって、本発明の第1の態様は、1回の欠陥画素検出で高解像度と低解像度のそれぞれの欠陥画素マップを生成することができる。従って、本発明の第1の態様は、複数の解像度におけるそれぞれの欠陥画素マップを容易に得ることができる。 According to the radiographic imaging control apparatus in the first aspect of the present invention, the high resolution defect pixel map is generated by the generation unit, and the conversion unit converts the high resolution defect pixel map generated by the generation unit to the low resolution defect pixel map. Convert. Therefore, according to the first aspect of the present invention, defective pixel maps of high resolution and low resolution can be generated by detecting defective pixels once. Therefore, the first aspect of the present invention can easily obtain each defective pixel map at a plurality of resolutions.
 本発明の第2の態様は、上記第1の態様において、上記放射線検出器は、照射された放射線に応じた電荷を発生するセンサ部、並びに、センサ部から電荷を読み出して電荷を出力する第1スイッチング素子及びセンサ部から電荷を読み出して電荷を出力する第2スイッチング素子をスイッチング素子として各々備え、かつ2次元状に配列された複数の画素と、第1方向に隣接する複数の画素の第1スイッチング素子の制御端に接続された複数の第1制御配線と、第1方向に隣接する複数の画素の第2スイッチング素子の制御端に接続された複数の第2制御配線と、画素の第1方向と異なる第2方向に沿った配列毎に信号配線を備え、かつ信号配線毎に第2方向に隣接する複数の画素の第1スイッチング素子の出力端が接続されると共に、第2方向に隣接する複数の画素の第2スイッチング素子の出力端及び、第1方向に隣接する複数の画素の第2スイッチング素子の出力端が、一部の信号配線に接続された信号配線群と、を備えていてもよい。 According to a second aspect of the present invention, in the first aspect, the radiation detector includes a sensor unit that generates a charge corresponding to the irradiated radiation, and a first unit that reads the charge from the sensor unit and outputs the charge. A switching element and a second switching element that reads out charges from the sensor unit and outputs charges are provided as switching elements, and each of a plurality of pixels arranged two-dimensionally and a plurality of pixels adjacent in the first direction. A plurality of first control wirings connected to a control end of one switching element; a plurality of second control wirings connected to control ends of second switching elements of a plurality of pixels adjacent in the first direction; A signal wiring is provided for each arrangement along a second direction different from the one direction, and the output terminals of the first switching elements of a plurality of pixels adjacent to the second direction are connected to each signal wiring, and the first A signal wiring group in which the output ends of the second switching elements of the plurality of pixels adjacent in the direction and the output ends of the second switching elements of the plurality of pixels adjacent in the first direction are connected to a part of the signal wiring; May be provided.
 また、本発明の第3の態様は、上記態様において、高解像度欠陥画素マップ及び低解像度欠陥画素マップは、欠陥画素の種類に応じて定義するようにしてもよい。本発明の第4の態様は、上記態様において、高解像度欠陥画素マップ及び低解像度欠陥画素マップは、欠陥画素の原因に応じて定義するようにしてもよい。 In the third aspect of the present invention, in the above aspect, the high resolution defective pixel map and the low resolution defective pixel map may be defined according to the type of defective pixel. In a fourth aspect of the present invention, in the above aspect, the high resolution defective pixel map and the low resolution defective pixel map may be defined according to the cause of the defective pixel.
 また、本発明の第5の態様は、上記態様において、本発明の放射線画像撮影装置は、高解像度欠陥画素マップ又は低解像度欠陥画素マップに基づいて、欠陥画素を補正する補正手段を更に備えるようにしてもよい。本発明の第6の態様は、上記第5の態様において、補正手段は、低解像度の撮影の際には、低解像度欠陥画素マップの欠陥画素とされた低解像度画素に含まれる高解像度画素の欠陥画素数に応じてゲインを調整することにより欠陥画素を補正するようにしてもよい。 Further, according to a fifth aspect of the present invention, in the above aspect, the radiographic imaging device of the present invention further includes a correcting unit that corrects the defective pixel based on the high-resolution defective pixel map or the low-resolution defective pixel map. It may be. According to a sixth aspect of the present invention, in the fifth aspect, the correction unit is configured to detect a high-resolution pixel included in the low-resolution pixel that is a defective pixel in the low-resolution defective pixel map when photographing at a low resolution. The defective pixels may be corrected by adjusting the gain according to the number of defective pixels.
 また、本発明の第7の態様は、上記態様において、スイッチング素子は、向き及び大きさが各画素で同一に構成されていてもよい。このことにより、本発明の第7の態様は、スイッチング素子の電気パラメータを揃えることができる。 Further, according to a seventh aspect of the present invention, in the above aspect, the switching element may be configured in the same direction and size in each pixel. Thus, according to the seventh aspect of the present invention, the electrical parameters of the switching elements can be made uniform.
 本発明の第8の態様は、放射線画像撮影システムであって、上記態様の放射線画像撮影装置と、被検体を介して放射線検出器に放射線を照射する放射線照射手段と、を備えている。 The eighth aspect of the present invention is a radiographic imaging system, comprising the radiographic imaging apparatus of the above aspect and radiation irradiating means for irradiating a radiation detector via a subject.
 すなわち、本発明の第8の態様は、上記態様の放射線画像撮影制御装置を備えているので、上記態様と同様に、複数の解像度におけるそれぞれの欠陥画素マップを容易に得ることができる。 That is, since the eighth aspect of the present invention includes the radiographic imaging control device according to the above aspect, each defective pixel map at a plurality of resolutions can be easily obtained as in the above aspect.
 本発明の第9の態様は、放射線画像撮影方法であって、照射された放射線に応じた電荷を発生するセンサ部、及びセンサ部により発生された電荷を読み出すスイッチング素子を含む複数の画素が設けられた放射線検出器における予め定めた高解像度の撮影で使用する画素の欠陥を検出して高解像度欠陥画素マップを生成する生成ステップと、生成ステップで生成した高解像度欠陥画素マップを高解像度より低い解像度の低解像度欠陥画素マップに変換する変換ステップと、を有する。 According to a ninth aspect of the present invention, there is provided a radiographic imaging method, wherein a plurality of pixels including a sensor unit that generates electric charges according to irradiated radiation and a switching element that reads out electric charges generated by the sensor units are provided. A generation step of generating a high-resolution defect pixel map by detecting a defect of a pixel used in predetermined high-resolution imaging in a given radiation detector, and a high-resolution defect pixel map generated in the generation step being lower than the high resolution Converting to a low resolution defective pixel map of resolution.
 本発明の第9の態様の放射線画像撮影方法によれば、生成ステップでは、高解像度欠陥画素マップを生成し、変換手段では、生成ステップで生成した高解像度欠陥画素マップから低解像度欠陥画素マップに変換する。したがって、本発明の第9の態様は、1回の欠陥画素検出で高解像度と低解像度のそれぞれの欠陥画素マップを生成することができる。従って、本発明の第9の態様は、複数の解像度におけるそれぞれの欠陥画素マップを容易に得ることができる。 According to the radiographic imaging method of the ninth aspect of the present invention, the generation step generates a high-resolution defective pixel map, and the conversion means converts the high-resolution defective pixel map generated in the generation step into a low-resolution defective pixel map. Convert. Therefore, the ninth aspect of the present invention can generate high-resolution and low-resolution defective pixel maps with one defective pixel detection. Accordingly, the ninth aspect of the present invention can easily obtain respective defective pixel maps at a plurality of resolutions.
 なお、本発明の第10の態様は、上記第9の態様において、上記放射線検出器は、照射された放射線に応じた電荷を発生するセンサ部、並びに、センサ部から電荷を読み出して電荷を出力する第1スイッチング素子及びセンサ部から電荷を読み出して電荷を出力する第2スイッチング素子をスイッチング素子として各々備え、かつ2次元状に配列された複数の画素と、第1方向に隣接する複数の画素の第1スイッチング素子の制御端に接続された複数の第1制御配線と、第1方向に隣接する複数の画素の第2スイッチング素子の制御端に接続された複数の第2制御配線と、画素の第1方向と異なる第2方向に沿った配列毎に信号配線を備え、かつ信号配線毎に第2方向に隣接する複数の画素の第1スイッチング素子の出力端が接続されると共に、第2方向に隣接する複数の画素の第2スイッチング素子の出力端及び、第1方向に隣接する複数の画素の第2スイッチング素子の出力端が、一部の信号配線に接続された信号配線群と、を備えていてもよい。 According to a tenth aspect of the present invention, in the ninth aspect, the radiation detector is configured such that the radiation detector generates a charge corresponding to the irradiated radiation, and reads out the charge from the sensor unit and outputs the charge. A plurality of pixels arranged in a two-dimensional manner and a plurality of pixels adjacent to each other in the first direction. A plurality of first control wirings connected to the control ends of the first switching elements, a plurality of second control wirings connected to the control ends of the second switching elements of the plurality of pixels adjacent in the first direction, and pixels When signal lines are provided for each array along a second direction different from the first direction, and the output terminals of the first switching elements of a plurality of pixels adjacent to each other in the second direction are connected for each signal line. In addition, a signal in which the output ends of the second switching elements of a plurality of pixels adjacent in the second direction and the output ends of the second switching elements of the plurality of pixels adjacent in the first direction are connected to some signal wirings. And a wiring group.
 また、本発明の第11の態様は、上記第9、又は第10の態様において、高解像度欠陥画素マップ及び低解像度欠陥画素マップは、欠陥画素の種類に応じて定義するようにしてもよい。また、本発明の第12の態様は、上記第9から第11の態様において、高解像度欠陥画素マップ及び低解像度欠陥画素マップは、欠陥画素の原因に応じて定義するようにしてもよい。 Also, in an eleventh aspect of the present invention, in the ninth or tenth aspect, the high resolution defective pixel map and the low resolution defective pixel map may be defined according to the type of defective pixel. According to a twelfth aspect of the present invention, in the ninth to eleventh aspects, the high resolution defective pixel map and the low resolution defective pixel map may be defined according to the cause of the defective pixel.
 また、本発明の第13の態様は、上記第9から第12の態様において、高解像度欠陥画素マップ又は低解像度欠陥画素マップに基づいて、欠陥画素を補正する補正手段を更に備えるようにしてもよい。本発明の第14の態様は、上記第13の態様において、補正手段は、低解像度の撮影の際には、低解像度欠陥画素マップの欠陥画素とされた低解像度画素に含まれる高解像度画素の欠陥画素数に応じてゲインを調整することにより欠陥画素を補正するようにしてもよい。 The thirteenth aspect of the present invention is the ninth to twelfth aspects, further comprising correction means for correcting the defective pixel based on the high resolution defective pixel map or the low resolution defective pixel map. Good. According to a fourteenth aspect of the present invention, in the thirteenth aspect, the correction means is configured to detect a high-resolution pixel included in a low-resolution pixel that is a defective pixel in the low-resolution defective pixel map when photographing at a low resolution. The defective pixels may be corrected by adjusting the gain according to the number of defective pixels.
 なお、本発明の第15の態様は、コンピュータを、本発明の上記態様の放射線画像撮影装置の各手段として機能させるための放射線画像撮影プログラムとしてもよい。本発明の第15の態様の放射線画像撮影プログラムは、上記態様と同様に、複数の解像度におけるそれぞれの欠陥画素マップを容易に得ることができる。 The fifteenth aspect of the present invention may be a radiographic image capturing program for causing a computer to function as each means of the radiographic image capturing apparatus of the above aspect of the present invention. The radiographic image capturing program of the fifteenth aspect of the present invention can easily obtain each defective pixel map at a plurality of resolutions, as in the above aspect.
 本発明の上記態様は、高解像度欠陥画素マップから低解像度欠陥画素マップに変換することにより、1回の欠陥画素検出で高解像度と低解像度のそれぞれの欠陥画素マップを生成することができる。したがって、本発明は、複数の解像度におけるそれぞれの欠陥画素マップを容易に得ることができる放射線画撮影装置、放射線画像撮影システム、放射線画撮影方法、及び放射線画撮影プログラムを提供できる。 In the above aspect of the present invention, by converting a high-resolution defective pixel map into a low-resolution defective pixel map, it is possible to generate high-resolution and low-resolution defective pixel maps with a single defective pixel detection. Therefore, the present invention can provide a radiographic imaging apparatus, a radiographic imaging system, a radiographic imaging method, and a radiographic imaging program that can easily obtain respective defective pixel maps at a plurality of resolutions.
本発明の例示的実施形態に係る放射線画像撮影システムの一例の全体構成の概略の概略構成図である。1 is a schematic configuration diagram of an outline of an overall configuration of an example of a radiographic imaging system according to an exemplary embodiment of the present invention. 本発明の例示的実施形態に係る間接変換型の放射線検出器の一例の断面の概略を示す概略図である。It is the schematic which shows the outline of the cross section of an example of the indirect conversion type radiation detector which concerns on exemplary embodiment of this invention. 本発明の例示的実施形態に係る直接変換型の放射線検出器の一例の断面の概略を示す概略図である。It is the schematic which shows the outline of the cross section of an example of the direct conversion type | mold radiation detector which concerns on exemplary embodiment of this invention. 本発明の例示的実施形態に係る放射線パネルユニットの概略構成図である。It is a schematic block diagram of the radiation panel unit which concerns on exemplary embodiment of this invention. 本発明の例示的実施形態に係る放射線パネルユニットの全体構成の一例を示す構成図である。It is a block diagram which shows an example of the whole structure of the radiation panel unit which concerns on exemplary embodiment of this invention. 本発明の例示的実施形態に係る放射線パネルユニットにおける撮影動作を説明するための図である。It is a figure for demonstrating the imaging operation in the radiation panel unit which concerns on exemplary embodiment of this invention. 本発明の例示的実施形態に係わる放射線パネルユニットの高解像度欠陥画素マップの一例、及び高解像度欠陥画素マップから変換した低解像度欠陥画素マップの一例を示す図である。It is a figure which shows an example of the high resolution defect pixel map of the radiation panel unit concerning exemplary embodiment of this invention, and an example of the low resolution defect pixel map converted from the high resolution defect pixel map. 本発明の例示的実施形態に係る放射線パネルユニットにおけるTFTパラメータを説明するための図である。It is a figure for demonstrating the TFT parameter in the radiation panel unit which concerns on exemplary embodiment of this invention. 本発明の例示的実施形態に係るパネル制御部で行われる欠陥画素マップ生成処理の一例の流れを示すフローチャートである。It is a flowchart which shows the flow of an example of the defective pixel map production | generation process performed with the panel control part which concerns on exemplary embodiment of this invention. 低解像度欠陥画素マップ生成処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a low-resolution defect pixel map production | generation process. 変形例の放射線パネルユニットにおける放射線検出器の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the radiation detector in the radiation panel unit of a modification. 変形例の放射線パネルユニットにおける撮影動作を説明するための図である。It is a figure for demonstrating the imaging | photography operation | movement in the radiation panel unit of a modification. 変形例の放射線パネルユニットにおける高解像度欠陥画素マップの一例、及び高解像度欠陥画素マップから変換した変形例の低解像度欠陥画素マップの一例を示す図である。It is a figure which shows an example of the high resolution defect pixel map in the radiation panel unit of a modification, and an example of the low resolution defect pixel map of the modification converted from the high resolution defect pixel map.
 以下、各図面を参照して本例示的実施形態の一例について説明する。 Hereinafter, an example of the exemplary embodiment will be described with reference to the drawings.
 まず、本発明の例示的実施形態に係る放射線画像処理装置を備えた放射線画像撮影システム全体の概略構成について説明する。図1には、本例示的実施形態の放射線画像撮影システムの一例の全体構成の概略の概略構成図を示す。なお、本例示的実施形態の放射線画像撮影システム10は、動画に加え、静止画を撮影することが可能である。また、本例示的実施形態において「放射線画像」とは、特に明記しない場合は、動画及び静止画の両者のことを言う。本例示的実施形態において動画とは、静止画を高速に次々と表示して、動画として認知させることをいい、静止画を撮影し、電気信号に変換し、伝送して当該電気信号から静止画を再生する、というプロセスを高速に繰り返すものである。従って、前記「高速」の度合いによって、予め定められた時間内に同一領域(一部または全部)を複数回撮影し、かつ連続的に再生する、いわゆる「コマ送り」も動画に包含されるものとする。 First, a schematic configuration of an entire radiographic imaging system including a radiographic image processing apparatus according to an exemplary embodiment of the present invention will be described. FIG. 1 shows a schematic configuration diagram of an outline of an overall configuration of an example of the radiographic imaging system of the present exemplary embodiment. In addition, the radiographic image capturing system 10 of the present exemplary embodiment can capture still images in addition to moving images. Further, in this exemplary embodiment, “radiation image” refers to both a moving image and a still image unless otherwise specified. In the present exemplary embodiment, a moving image refers to displaying still images one after another at a high speed and recognizing them as moving images. A still image is shot, converted into an electric signal, transmitted, and transmitted from the electric signal to the still image. The process of playing back is repeated at high speed. Therefore, the moving image also includes so-called “frame advance” in which the same area (part or all) is shot a plurality of times within a predetermined time and continuously played back depending on the degree of “high speed”. And
 本例示的実施形態の放射線画像撮影システム10は、コンソール16を介して外部のシステム(例えば、RIS:Radiology Information System:放射線情報システム)から入力された指示(撮影メニュー)に基づいて、医師や放射線技師等の操作により放射線画像の撮影を行う機能を有するものである。 The radiographic imaging system 10 of the present exemplary embodiment is based on an instruction (imaging menu) input from an external system (for example, RIS: Radiology Information System: radiation information system) via the console 16. It has a function of taking a radiographic image by an operation of an engineer or the like.
 また、本例示的実施形態の放射線画像撮影システム10は、撮影された放射線画像をコンソール16のディスプレイ50や放射線画像読影装置18に表示させることにより、医師や放射線技師等に放射線画像を読影させる機能を有するものである。 Further, the radiographic imaging system 10 of the present exemplary embodiment has a function of causing a doctor, a radiographer, or the like to interpret a radiographic image by displaying the radiographic image that has been captured on the display 50 of the console 16 or the radiographic image interpretation device 18. It is what has.
 本例示的実施形態の放射線画像撮影システム10は、放射線発生装置12、放射線画像処理装置14、コンソール16、記憶部17、放射線画像読影装置18、及び放射線パネルユニット20を備えている。 The radiographic imaging system 10 of this exemplary embodiment includes a radiation generation device 12, a radiographic image processing device 14, a console 16, a storage unit 17, a radiographic image interpretation device 18, and a radiation panel unit 20.
 放射線発生装置12は、放射線照射制御ユニット22を備えている。放射線照射制御ユニット22は、放射線画像処理装置14の放射線制御部62の制御に基づいて放射線照射源22Aから放射線Xを撮影台32上の被験者30の撮影対象部位に照射させる機能を有している。 The radiation generator 12 includes a radiation irradiation control unit 22. The radiation irradiation control unit 22 has a function of irradiating the imaging target region of the subject 30 on the imaging table 32 with the radiation X from the radiation irradiation source 22 </ b> A based on the control of the radiation control unit 62 of the radiation image processing apparatus 14. .
 被験者30を透過した放射線Xは、撮影台32内部の保持部34に保持された放射線パネルユニット20に照射される。放射線パネルユニット20は、被験者30を透過した放射線Xの線量に応じた電荷を発生し、発生した電荷量に基づいて放射線画像を示す画像情報を生成して出力する機能を有するものである。本例示的実施形態の放射線パネルユニット20は、放射線検出器26を備えて構成されている。 The radiation X transmitted through the subject 30 is irradiated to the radiation panel unit 20 held by the holding unit 34 inside the imaging table 32. The radiation panel unit 20 has a function of generating charges according to the dose of the radiation X that has passed through the subject 30, and generating and outputting image information indicating a radiation image based on the generated charge amount. The radiation panel unit 20 of the present exemplary embodiment is configured to include a radiation detector 26.
 本例示的実施形態では、放射線パネルユニット20により出力された放射線画像を示す画像情報は、放射線画像処理装置14を介してコンソール16に入力される。本例示的実施形態のコンソール16は、無線通信(LAN:Local Area Network)等を介して外部システム(RIS)等から取得した撮影メニューや各種情報等を用いて、放射線発生装置12及び放射線パネルユニット20の制御を行う機能を有している。また、本例示的実施形態のコンソール16は、放射線画像処理装置14との間で放射線画像の画像情報を含む各種情報の送受信を行う機能と共に、放射線パネルユニット20との間で各種情報の送受信を行う機能を有している。 In the exemplary embodiment, the image information indicating the radiation image output by the radiation panel unit 20 is input to the console 16 via the radiation image processing device 14. The console 16 of the present exemplary embodiment uses a radiography (LAN: Local Area Network) or the like, a radiation generation apparatus 12 and a radiation panel unit using an imaging menu or various information acquired from an external system (RIS) or the like. It has a function of performing 20 controls. In addition, the console 16 according to the present exemplary embodiment transmits and receives various types of information to and from the radiation panel unit 20 together with a function of transmitting and receiving various types of information including image information of radiographic images to and from the radiation image processing apparatus 14. Has the function to perform.
 本例示的実施形態のコンソール16は、サーバー・コンピュータとして構成されており、制御部40、ディスプレイドライバ48、ディスプレイ50、操作入力検出部52、操作パネル54、I/O部56、及びI/F部58を備えて構成されている。 The console 16 of the present exemplary embodiment is configured as a server computer, and includes a control unit 40, a display driver 48, a display 50, an operation input detection unit 52, an operation panel 54, an I / O unit 56, and an I / F. A portion 58 is provided.
 制御部40は、コンソール16全体の動作を制御する機能を有しており、CPU、ROM、RAM、及びHDDを備えている。CPUは、コンソール16全体の動作を制御する機能を有しており、ROMには、CPUで使用される制御プログラムを含む各種プログラム等が予め記憶されている。RAMは、各種データを一時的に記憶する機能を有しており、HDD(ハードディスク・ドライブ)は、各種データを記憶して保持する機能を有している。 The control unit 40 has a function of controlling the operation of the entire console 16, and includes a CPU, a ROM, a RAM, and an HDD. The CPU has a function of controlling the operation of the entire console 16, and various programs including a control program used by the CPU are stored in advance in the ROM. The RAM has a function of temporarily storing various data, and the HDD (hard disk drive) has a function of storing and holding various data.
 ディスプレイドライバ48は、ディスプレイ50への各種情報の表示を制御する機能を有している。本例示的実施形態のディスプレイ50は、撮影メニューや撮影された放射線画像等を表示する機能を有している。操作入力検出部52は、操作パネル54に対する操作状態を検出する機能を有している。操作パネル54は、放射線画像の撮影に関する操作指示を、医師や放射線技師等が入力するためのものである。本例示的実施形態では操作パネル54は、例えば、タッチパネル、タッチペン、複数のキー、及びマウス等を含んで構成されている。なお、タッチパネルとして構成する場合は、ディスプレイ50と同一として構成してもよい。 The display driver 48 has a function of controlling display of various information on the display 50. The display 50 of the present exemplary embodiment has a function of displaying an imaging menu, a captured radiographic image, and the like. The operation input detection unit 52 has a function of detecting an operation state with respect to the operation panel 54. The operation panel 54 is used by a doctor, a radiographer, or the like to input operation instructions related to radiographic image capturing. In the exemplary embodiment, the operation panel 54 includes, for example, a touch panel, a touch pen, a plurality of keys, a mouse, and the like. When configured as a touch panel, it may be configured the same as the display 50.
 また、I/O部56及びI/F部58は、無線通信により、放射線画像処理装置14及び放射線発生装置24との間で各種情報の送受信を行うと共に、放射線パネルユニット20との間で画像情報等の各種情報の送受信を行う機能を有している。 Further, the I / O unit 56 and the I / F unit 58 transmit and receive various types of information to and from the radiation image processing device 14 and the radiation generation device 24 through wireless communication, and also perform an image with the radiation panel unit 20. It has a function of transmitting and receiving various information such as information.
 制御部40、ディスプレイドライバ48、操作入力検出部52、I/F部58、I/O部56は、システムバスやコントロールバス等のバス59を介して相互に情報等の授受が可能に接続されている。従って、制御部40は、ディスプレイドライバ48を介したディスプレイ50への各種情報の表示の制御、及びI/F部58を介した放射線発生装置12及び放射線パネルユニット20との各種情報の送受信の制御を各々行うことができる。 The control unit 40, the display driver 48, the operation input detection unit 52, the I / F unit 58, and the I / O unit 56 are connected to each other via a bus 59 such as a system bus or a control bus so that information can be exchanged. ing. Therefore, the control unit 40 controls the display of various information on the display 50 via the display driver 48, and controls the transmission / reception of various information with the radiation generator 12 and the radiation panel unit 20 via the I / F unit 58. Can be performed respectively.
 本例示的実施形態の放射線画像処理装置14は、コンソール16からの指示に基づいて、放射線発生装置12及び放射線パネルユニット20を制御する機能を有する。これと共に、放射線画像処理装置14は、放射線パネルユニット20から受信した放射線画像の記憶部17への記憶、及びコンソール16のディスプレイ50や放射線画像読影装置18への表示を制御する機能を有するものである。 The radiation image processing apparatus 14 according to the exemplary embodiment has a function of controlling the radiation generation apparatus 12 and the radiation panel unit 20 based on an instruction from the console 16. At the same time, the radiation image processing device 14 has a function of controlling storage of the radiation image received from the radiation panel unit 20 in the storage unit 17 and display on the display 50 of the console 16 and the radiation image interpretation device 18. is there.
 本例示的実施形態の放射線画像処理装置14は、システム制御部60、放射線制御部62、パネル制御部64、画像処理制御部66、及びI/F部68を備えている。 The radiation image processing apparatus 14 of this exemplary embodiment includes a system control unit 60, a radiation control unit 62, a panel control unit 64, an image processing control unit 66, and an I / F unit 68.
 システム制御部60は、放射線画像処理装置14全体を制御する機能を有すると共に、放射線画像撮影システム10を制御する機能を有している。システム制御部60は、CPU、ROM、RAM、及びHDDを備えている。CPUは、放射線画像処理装置14全体及び放射線画像撮影システム10の動作を制御する機能を有しており、ROMには、CPUで使用される制御プログラムを含む各種プログラム等が予め記憶されている。RAMは、各種データを一時的に記憶する機能を有しており、HDDは、各種データを記憶して保持する機能を有している。放射線制御部62は、コンソール16の指示に基づいて、放射線発生装置12の放射線照射制御ユニット22を制御する機能を有している。パネル制御部64は、放射線パネルユニット20からの情報を、無線または有線により受け付ける機能を有しており、画像処理制御部66は、放射線画像に対して各種画像処理を施す機能を有している。 The system control unit 60 has a function of controlling the entire radiographic image processing apparatus 14 and a function of controlling the radiographic image capturing system 10. The system control unit 60 includes a CPU, ROM, RAM, and HDD. The CPU has a function of controlling operations of the entire radiographic image processing apparatus 14 and the radiographic imaging system 10, and various programs including a control program used by the CPU are stored in advance in the ROM. The RAM has a function of temporarily storing various data, and the HDD has a function of storing and holding various data. The radiation control unit 62 has a function of controlling the radiation irradiation control unit 22 of the radiation generator 12 based on an instruction from the console 16. The panel control unit 64 has a function of receiving information from the radiation panel unit 20 wirelessly or by wire, and the image processing control unit 66 has a function of performing various image processes on the radiation image. .
 システム制御部60、放射線制御部62、パネル制御部64、及び画像処理制御部66は、システムバスやコントロールバス等のバス69を介して相互に情報等の授受が可能に接続されている。 The system control unit 60, the radiation control unit 62, the panel control unit 64, and the image processing control unit 66 are connected to each other through a bus 69 such as a system bus or a control bus so as to be able to exchange information.
 本例示的実施形態の記憶部17は、撮影された放射線画像及び当該放射線画像に関係する情報を記憶する機能を有するものである。記憶部17としては、例えば、HDD等が挙げられる。 The storage unit 17 of the present exemplary embodiment has a function of storing a captured radiographic image and information related to the radiographic image. An example of the storage unit 17 is an HDD.
 また、本例示的実施形態の放射線画像読影装置18は、撮影された放射線画像を読影者が読影するための機能を有する装置であり、特に限定されないが、いわゆる、読影ビューワやコンソール等が挙げられる。本例示的実施形態の放射線画像読影装置18は、パーソナル・コンピュータとして構成されており、コンソール16や放射線画像処理装置14と同様に、CPU、ROM、RAM、HDD、ディスプレイドライバ、ディスプレイ23、操作入力検出部、操作パネル24、I/O部、及びI/F部を備えて構成されている。なお、図1では、記載が煩雑になるのを避けるため、これらの構成のうち、ディスプレイ23及び操作パネル24のみを示し、その他の記載を省略している。 The radiological image interpretation device 18 of the exemplary embodiment is a device having a function for a radiographer to interpret a captured radiographic image, and is not particularly limited, but includes a so-called radiological image viewer, a console, and the like. . The radiographic image interpretation device 18 of the present exemplary embodiment is configured as a personal computer, and, like the console 16 and the radiographic image processing device 14, a CPU, ROM, RAM, HDD, display driver, display 23, operation input. A detection unit, an operation panel 24, an I / O unit, and an I / F unit are provided. In FIG. 1, only the display 23 and the operation panel 24 are shown, and other descriptions are omitted in order to avoid complicated description.
 次に、放射線パネルユニット20について詳細に説明する。まず、放射線パネルユニット20に備えられた放射線検出器26について説明する。本例示的実施形態の放射線検出器26は、TFT基板を備えて構成されている。 Next, the radiation panel unit 20 will be described in detail. First, the radiation detector 26 provided in the radiation panel unit 20 will be described. The radiation detector 26 of the present exemplary embodiment includes a TFT substrate.
 放射線検出器26の一例として、間接変換型の放射線検出器26の一例の断面の概略図を図2に示す。図2に示した放射線検出器26は、TFT基板と、放射線変換層とを備えている。 As an example of the radiation detector 26, a schematic cross-sectional view of an example of the indirect conversion type radiation detector 26 is shown in FIG. The radiation detector 26 shown in FIG. 2 includes a TFT substrate and a radiation conversion layer.
 バイアス電極72は、放射線変換層74へバイアス電圧を印加する機能を有している。本例示的実施形態では、放射線検出器26が正孔読取センサである。このため、バイアス電極72には、高圧電源(図示せず)からプラスのバイアス電圧が供給される。なお、放射線検出器26が照射された放射線に応じて発生した電子を読み取る電子読取センサとして構成されている場合は、バイアス電極72には、マイナスのバイアス電圧が供給される。 The bias electrode 72 has a function of applying a bias voltage to the radiation conversion layer 74. In the exemplary embodiment, radiation detector 26 is a hole reading sensor. Therefore, a positive bias voltage is supplied to the bias electrode 72 from a high voltage power source (not shown). In the case where the radiation detector 26 is configured as an electronic reading sensor that reads electrons generated according to the irradiated radiation, a negative bias voltage is supplied to the bias electrode 72.
 放射線変換層74はシンチレータであり、本例示的実施形態の放射線検出器26では、バイアス電極72と上部電極82との間に、上部電極82と透明絶縁膜80を介して積層されるように形成されている。放射線変換層74は、上方または下方から入射してくる放射線Xを光に変換して発光する蛍光体を成膜したものである。このような放射線変換層74を設けることで放射線Xを吸収して発光することになる。 The radiation conversion layer 74 is a scintillator, and is formed so as to be laminated between the bias electrode 72 and the upper electrode 82 via the upper electrode 82 and the transparent insulating film 80 in the radiation detector 26 of this exemplary embodiment. Has been. The radiation conversion layer 74 is formed by forming a phosphor that emits light by converting the radiation X incident from above or below into light. Providing such a radiation conversion layer 74 absorbs the radiation X and emits light.
 放射線変換層74が発する光の波長域は、可視光域(波長360nm~830nm)であることが好ましく、この放射線検出器26によってモノクロ撮像を可能とするためには、緑色の波長域を含んでいることがより好ましい。 The wavelength range of light emitted by the radiation conversion layer 74 is preferably a visible light range (wavelength 360 nm to 830 nm). In order to enable monochrome imaging by the radiation detector 26, the wavelength range of green is included. More preferably.
 放射線変換層74に用いるシンチレータとしては、TFT基板70で吸収可能な波長領域の光を発生できるような、比較的広範囲の波長領域を有した蛍光を発生するシンチレータが望ましい。このようなシンチレータとしては、CsI:Na、CaWO、YTaO:Nb、BaFX:Eu(XはBrまたはCl)、または、LaOBr:Tm、及びGOS等がある。具体的には、放射線XとしてX線を用いて撮像する場合、ヨウ化セシウム(CsI)を含むものが好ましく、X線照射時の発光スペクトルが400nm~700nmにあるCsI:Tl(タリウムが添加されたヨウ化セシウム)やCsI:Naを用いることが特に好ましい。なお、CsI:Tlの可視光域における発光ピーク波長は565nmである。なお、放射線変換層74としてCsIを含むシンチレータを用いる場合、真空蒸着法で短冊状の柱状結晶構造として形成したものを用いることが好ましい。 As the scintillator used for the radiation conversion layer 74, a scintillator that generates fluorescence having a relatively wide wavelength region that can generate light in a wavelength region that can be absorbed by the TFT substrate 70 is desirable. Examples of such a scintillator include CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), LaOBr: Tm, and GOS. Specifically, when imaging is performed using X-rays as radiation X, those containing cesium iodide (CsI) are preferable, and CsI: Tl (thallium is added) having an emission spectrum of 400 nm to 700 nm upon X-ray irradiation. It is particularly preferable to use cesium iodide) or CsI: Na. Note that the emission peak wavelength in the visible light region of CsI: Tl is 565 nm. In addition, when using the scintillator containing CsI as the radiation conversion layer 74, it is preferable to use what was formed as a strip-like columnar crystal structure by the vacuum evaporation method.
 上部電極82は、放射線変換層74により生じた光を光電変換膜86に入射させる必要がある。このため、上部電極82は、少なくとも放射線変換層74の発光波長に対して透明な導電性材料で構成することが好ましく、具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO)を用いることが好ましい。なお、上部電極82としてAu等の金属薄膜を用いることもできるが、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。例えば、ITO、IZO、AZO、FTO、SnO、TiO、ZnO等を好ましく用いることができ、プロセス簡易性、低抵抗性、透明性の観点からはITOが最も好ましい。なお、上部電極82は、全画素で共通の一枚構成としてもよく、画素毎に分割してもよい。 The upper electrode 82 needs to cause the light generated by the radiation conversion layer 74 to enter the photoelectric conversion film 86. Therefore, the upper electrode 82 is preferably made of a conductive material that is transparent at least with respect to the emission wavelength of the radiation conversion layer 74. Specifically, the transparent electrode has a high visible light transmittance and a low resistance value. It is preferable to use a conductive oxide (TCO). Although a metal thin film such as Au can be used as the upper electrode 82, the TCO is preferable because the resistance value tends to increase when the transmittance of 90% or more is obtained. For example, ITO, IZO, AZO, FTO, SnO 2 , TiO 2 , ZnO 2 and the like can be preferably used, and ITO is most preferable from the viewpoint of process simplicity, low resistance, and transparency. Note that the upper electrode 82 may have a single configuration common to all pixels, or may be divided for each pixel.
 光電変換膜86は、放射線変換層74が発する光を吸収して電荷が発生する有機光電変換材料により構成されている。光電変換膜86は、有機光電変換材料を含み、放射線変換層74から発せられた光を吸収し、吸収した光に応じた電荷を発生する。このように有機光電変換材料を含む光電変換膜86であれば、可視域にシャープな吸収スペクトルを持ち、放射線変換層74による発光以外の電磁波が光電変換膜86に吸収されることがほとんどなく、X線等の放射線Xが光電変換膜86で吸収されることによって発生するノイズを効果的に抑制することができる。 The photoelectric conversion film 86 is made of an organic photoelectric conversion material that absorbs light emitted from the radiation conversion layer 74 and generates charges. The photoelectric conversion film 86 includes an organic photoelectric conversion material, absorbs light emitted from the radiation conversion layer 74, and generates electric charges according to the absorbed light. Thus, the photoelectric conversion film 86 containing an organic photoelectric conversion material has a sharp absorption spectrum in the visible range, and electromagnetic waves other than light emission by the radiation conversion layer 74 are hardly absorbed by the photoelectric conversion film 86. Noise generated by the radiation X such as X-rays being absorbed by the photoelectric conversion film 86 can be effectively suppressed.
 光電変換膜86を構成する有機光電変換材料は、放射線変換層74で発光した光を最も効率よく吸収するために、その吸収ピーク波長が、放射線変換層74の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長と放射線変換層74の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければ放射線変換層74から発された光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、放射線変換層74の放射線に対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。このような条件を満たすことが可能な有機光電変換材料としては、例えばキナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、放射線変換層74の材料としてCsI:Tlを用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜86で発生する電荷量をほぼ最大にすることができる。 The organic photoelectric conversion material constituting the photoelectric conversion film 86 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the radiation conversion layer 74 in order to most efficiently absorb the light emitted from the radiation conversion layer 74. Ideally, the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the radiation conversion layer 74, but if the difference between the two is small, the light emitted from the radiation conversion layer 74 is sufficiently absorbed. Is possible. Specifically, the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation of the radiation conversion layer 74 is preferably within 10 nm, and more preferably within 5 nm. Examples of organic photoelectric conversion materials that can satisfy such conditions include quinacridone-based organic compounds and phthalocyanine-based organic compounds. For example, since the absorption peak wavelength of quinacridone in the visible region is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the radiation conversion layer 74, the difference in the peak wavelength may be within 5 nm. The amount of charge generated in the photoelectric conversion film 86 can be substantially maximized.
 なお、暗電流の増加を抑制するため、電子ブロッキング膜88及び正孔ブロッキング膜84の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。電子ブロッキング膜88は、下部電極90と光電変換膜86との間に設けることができ、下部電極90と上部電極82間にバイアス電圧を印加したときに、下部電極90から光電変換膜86に電子が注入されて暗電流が増加してしまうのを抑制することができる。電子ブロッキング膜88には、電子供与性有機材料を用いることができる。一方、正孔ブロッキング膜84は、光電変換膜86と上部電極82との間に設けることができ、下部電極90と上部電極82間にバイアス電圧を印加したときに、上部電極82から光電変換膜86に正孔が注入されて暗電流が増加してしまうのを抑制できる。正孔ブロッキング膜84には、電子受容性有機材料を用いることができる。 In order to suppress an increase in dark current, it is preferable to provide at least one of the electron blocking film 88 and the hole blocking film 84, and it is more preferable to provide both. The electron blocking film 88 can be provided between the lower electrode 90 and the photoelectric conversion film 86. When a bias voltage is applied between the lower electrode 90 and the upper electrode 82, electrons are transferred from the lower electrode 90 to the photoelectric conversion film 86. It is possible to suppress the dark current from increasing due to the injection of. An electron donating organic material can be used for the electron blocking film 88. On the other hand, the hole blocking film 84 can be provided between the photoelectric conversion film 86 and the upper electrode 82. When a bias voltage is applied between the lower electrode 90 and the upper electrode 82, the photoelectric conversion film is formed from the upper electrode 82. It is possible to suppress the increase of dark current due to the injection of holes into 86. An electron-accepting organic material can be used for the hole blocking film 84.
 下部電極90は、間隔を隔てて格子状(マトリックス状)に複数形成されており、1つの下部電極90が1画素に対応している。各々の下部電極90は、信号出力部94の電界効果型薄膜トランジスタ(Thin Film Transistor、以下、単にTFTという)98及び蓄積容量96に接続されている。なお、信号出力部94と下部電極90との間には、絶縁膜92が介在されており、信号出力部94は、絶縁性基板93上に形成されている。絶縁性基板93は、放射線変換層74において放射線Xを吸収させるため、放射線Xの吸収性が低く、且つ、可撓性を有する電気絶縁性の薄厚の基板(数十μm程度の厚みを有する基板)、具体的には、合成樹脂、アラミド、バイオナノファイバ、あるいは、ロール状に巻き取ることが可能なフイルム状ガラス(超薄板ガラス)等であることが好ましい。 A plurality of lower electrodes 90 are formed in a lattice shape (matrix shape) at intervals, and one lower electrode 90 corresponds to one pixel. Each lower electrode 90 is connected to a field effect thin film transistor (hereinafter referred to simply as “TFT”) 98 and a storage capacitor 96 of the signal output unit 94. An insulating film 92 is interposed between the signal output unit 94 and the lower electrode 90, and the signal output unit 94 is formed on the insulating substrate 93. Since the insulating substrate 93 absorbs the radiation X in the radiation conversion layer 74, the insulating substrate 93 has a low X radiation absorbability and is a flexible electrically insulating thin substrate (a substrate having a thickness of about several tens of μm). Specifically, it is preferably a synthetic resin, aramid, bionanofiber, or film glass (ultra thin glass) that can be wound into a roll.
 信号出力部94は、下部電極90に対応して、下部電極90に移動した電荷を蓄積する蓄積容量96と、蓄積容量96に蓄積された電荷を電気信号に変換して出力するスイッチング素子であるTFT98が形成されている。蓄積容量96及びTFT98の形成された領域は、平面視において下部電極90と重なる部分を有している。なお、放射線検出器26(画素)の平面積を最小にするために、蓄積容量96及びTFT98の形成された領域が下部電極90によって完全に覆われていることが望ましい。 The signal output unit 94 corresponds to the lower electrode 90, and is a storage capacitor 96 that stores the charge transferred to the lower electrode 90, and a switching element that converts the charge stored in the storage capacitor 96 into an electrical signal and outputs the electrical signal. A TFT 98 is formed. The region where the storage capacitor 96 and the TFT 98 are formed has a portion overlapping the lower electrode 90 in plan view. In order to minimize the plane area of the radiation detector 26 (pixel), it is desirable that the region where the storage capacitor 96 and the TFT 98 are formed is completely covered by the lower electrode 90.
 放射線検出器26は、図2に示すように、放射線変換層74が形成された側から放射線Xが照射されて、当該放射線Xの入射面の裏面側に設けられたTFT基板70により放射線画像を読み取る、いわゆる裏面読取方式(PSS(Pentration Side Sampling)方式)とされた場合、放射線変換層74の同図上面側でより強く発光する。一方、TFT基板70側から放射線Xが照射されて、当該放射線Xの入射面の表面側に設けられたTFT基板70により放射線画像を読み取る、いわゆる表面読取方式(ISS(Irradiation Side Sampling)方式)とされた場合、TFT基板70を透過した放射線Xが放射線変換層74に入射して放射線変換層74のTFT基板70側がより強く発光する。TFT基板70に設けられた各画素100の光電変換部87には、放射線変換層74で発生した光により電荷が発生する。このため、放射線検出器26は、表面読取方式とされた場合の方が裏面読取方式とされた場合よりもTFT基板70に対する放射線変換層74の発光位置が近いため、撮影によって得られる放射線画像の分解能が高い。 As shown in FIG. 2, the radiation detector 26 is irradiated with radiation X from the side on which the radiation conversion layer 74 is formed, and a radiation image is obtained by a TFT substrate 70 provided on the back side of the incident surface of the radiation X. When the so-called back side reading method (PSS (Pentration Side Sampling) method) is used, light is emitted more strongly on the upper surface side of the radiation conversion layer 74 in FIG. On the other hand, there is a so-called surface reading method (ISS (Irradiation Side Sampling) method) in which radiation X is irradiated from the TFT substrate 70 side and a radiation image is read by the TFT substrate 70 provided on the surface side of the incident surface of the radiation X. In this case, the radiation X transmitted through the TFT substrate 70 enters the radiation conversion layer 74 and the TFT substrate 70 side of the radiation conversion layer 74 emits light more strongly. Electric charges are generated in the photoelectric conversion portion 87 of each pixel 100 provided on the TFT substrate 70 by the light generated in the radiation conversion layer 74. For this reason, the radiation detector 26 is closer to the emission position of the radiation conversion layer 74 with respect to the TFT substrate 70 when the front surface reading method is used than when the rear surface reading method is used. High resolution.
 なお、放射線検出器26は、図3に一例の断面の概略図を示すように直接変換型の放射線検出器であってもよい。図3に示した放射線検出器26も、上述した間接変換型と同様に、TFT基板と、放射線変換層とを備えている。 The radiation detector 26 may be a direct conversion type radiation detector as shown in a schematic cross-sectional view of an example in FIG. The radiation detector 26 shown in FIG. 3 also includes a TFT substrate and a radiation conversion layer, as in the indirect conversion type described above.
 TFT基板110は、放射線変換層118で発生した電荷であるキャリア(正孔)を収集し読み出す(検出する)機能を有するものである。TFT基板110は、絶縁性基板122、及び信号出力部124を備えて構成されている。なお、放射線検出器26が電子読取センサとして構成されている場合は、TFT基板110は、電子を収集し読み出す機能を有するものとして構成される。 The TFT substrate 110 has a function of collecting and reading (detecting) carriers (holes) that are charges generated in the radiation conversion layer 118. The TFT substrate 110 includes an insulating substrate 122 and a signal output unit 124. When the radiation detector 26 is configured as an electronic reading sensor, the TFT substrate 110 is configured to have a function of collecting and reading out electrons.
 絶縁性基板122は、放射線変換層118において放射線Xを吸収させるため、放射線Xの吸収性が低く、且つ、可撓性を有する電気絶縁性の薄厚の基板(数十μm程度の厚みを有する基板)、具体的には、合成樹脂、アラミド、バイオナノファイバ、あるいは、ロール状に巻き取ることが可能なフイルム状ガラス(超薄板ガラス)等であることが好ましい。 Since the insulating substrate 122 absorbs the radiation X in the radiation conversion layer 118, the insulating substrate 122 has a low X radiation absorbability and is a flexible electrically insulating thin substrate (a substrate having a thickness of about several tens of μm). Specifically, it is preferably a synthetic resin, aramid, bionanofiber, or film glass (ultra thin glass) that can be wound into a roll.
 信号検出部85は、電荷蓄積容量である蓄積容量126、蓄積容量126に蓄積された電荷を電気信号に変換して出力するスイッチング素子であるTFT128、及び電荷収集電極121を備えている。 The signal detection unit 85 includes a storage capacitor 126 that is a charge storage capacitor, a TFT 128 that is a switching element that converts the electric charge stored in the storage capacitor 126 into an electric signal, and the charge collecting electrode 121.
 電荷収集電極121は、間隔を隔てて格子状(マトリックス状)に複数形成されており、1つの電荷収集電極121が1画素に対応している。各々の電荷収集電極121は、TFT128及び蓄積容量126に接続されている。 A plurality of charge collection electrodes 121 are formed in a lattice shape (matrix shape) at intervals, and one charge collection electrode 121 corresponds to one pixel. Each charge collecting electrode 121 is connected to the TFT 128 and the storage capacitor 126.
 蓄積容量126は、各電荷収集電極121で収集された電荷(正孔)を蓄積する機能を有するものである。この各蓄積容量126に蓄積された電荷が、TFT128によって読み出される。これによりTFT基板110による放射線画像の撮影が行われる。 The storage capacitor 126 has a function of storing charges (holes) collected by the charge collection electrodes 121. The charges accumulated in the respective storage capacitors 126 are read out by the TFT 128. As a result, a radiographic image is taken by the TFT substrate 110.
 下引層120は、放射線変換層118とTFT基板110との間に形成されている。下引層120は、暗電流、リーク電流低減の観点から、整流特性を有することが好ましい。そのため、下引層120の抵抗率は、10Ωcm以上であること、膜厚は、0.01μm~10μmであることが好ましい。 The undercoat layer 120 is formed between the radiation conversion layer 118 and the TFT substrate 110. The undercoat layer 120 preferably has a rectifying characteristic from the viewpoint of reducing dark current and leakage current. Therefore, the resistivity of the undercoat layer 120 is preferably 10 8 Ωcm or more, and the film thickness is preferably 0.01 μm to 10 μm.
 放射線変換層118は、照射された放射線を吸収して、放射線に応じてプラス及びマイナスの電荷(電子-正孔キャリア対)を発生する光導電物質で構成された光電変換層であり、アモルファスSe(α-Se)を主成分とすることが好ましい。また、放射線変換層118としては、BiMO20(M:Ti、Si、Ge)、Bi12(M:Ti、Si、Ge)、Bi、BiMO(M:Nb、Ta、V)、BiWO、Bi2439、ZnO、ZnS、ZnSe、ZnTe、MNbO(M:Li、Na、K)、PbO、HgI、PbI、CdS、CdSe、CdTe、BiI、GaAs等のうち、少なくとも1つを主成分とする化合物を用いてもよいが、暗抵抗が高く、放射線照射に対して良好な光導電性を示し、真空蒸着法により低温で大面積成膜が可能な非晶質(アモルファス)材料が好ましい。 The radiation conversion layer 118 is a photoelectric conversion layer made of a photoconductive material that absorbs irradiated radiation and generates positive and negative charges (electron-hole carrier pairs) according to the radiation. It is preferable that (α-Se) is a main component. The radiation conversion layer 118 includes Bi 2 MO 20 (M: Ti, Si, Ge), Bi 4 M 3 O 12 (M: Ti, Si, Ge), Bi 2 O 3 , BiMO 4 (M: Nb). , Ta, V), Bi 2 WO 6 , Bi 24 B 2 O 39 , ZnO, ZnS, ZnSe, ZnTe, MNbO 3 (M: Li, Na, K), PbO, HgI 2 , PbI 2 , CdS, CdSe, A compound mainly composed of at least one of CdTe, BiI 3 , GaAs, etc. may be used, but it has a high dark resistance, shows good photoconductivity against radiation irradiation, and is formed at a low temperature by vacuum deposition. An amorphous material capable of forming a large area is preferable.
 放射線変換層118の厚みは、例えば本例示的実施形態のように、α-Seを主成分とする光導電物質の場合、100μm以上2000μm以下であることが好ましい。放射線変換層118の厚みは、特に、マンモグラフィ用途では100μm以上250μm以下、一般撮影用途においては500μm以上1200μm以下の範囲であることが好ましい。 The thickness of the radiation conversion layer 118 is preferably 100 μm or more and 2000 μm or less in the case of a photoconductive material containing α-Se as a main component, as in the present exemplary embodiment, for example. The thickness of the radiation conversion layer 118 is preferably in the range of 100 μm to 250 μm for mammography applications and 500 μm to 1200 μm for general imaging applications.
 電極界面層116は、正孔の注入を阻止する機能と、結晶化を防止する機能と、を有しており放射線変換層118と上引層114との間に形成されている。電極界面層116としては、CdS、CeO、Ta、SiO等の無機材料、または有機高分子が好ましい。無機材料からなる層は、その組成を化学量論組成から変化させ、または2種類以上の同族元素との多元組成とすることでキャリア選択性を調節して用いることが好ましい。有機高分子からなる層としては、ポリカーボネート、ポリスチレン、ポリイミド、ポリシクロオレフィン等の絶縁性高分子に、低分子の電子輸送材料を5%~80%の重量比で混合して用いることができる。こうした電子輸送材料としては、トリニトロフルオレンとその誘導体、ジフェノキノン誘導体、ビスナフチルキノン誘導体、オキサゾール誘導体、トリアゾール誘導体、C60(フラーレン)、C70等のカーボンクラスターを混合したもの等が好ましい。具体的にはTNF、DMDB、PBD、TAZが挙げられる。一方、薄い絶縁性高分子層も好ましく用いることができ、例えば、パリレン、ポリカーボネート、PVA、PVP、PVB、ポリエステル樹脂、ポリメチルメタクリレート等のアクリル樹脂が好ましい。この場合、膜厚は、2μm以下が好ましく、0.5μm以下がより好ましい。 The electrode interface layer 116 has a function of blocking hole injection and a function of preventing crystallization, and is formed between the radiation conversion layer 118 and the overcoat layer 114. The electrode interface layer 116 is preferably an inorganic material such as CdS, CeO 2 , Ta 2 O 5 , or SiO, or an organic polymer. The layer made of an inorganic material is preferably used by adjusting the carrier selectivity by changing the composition from the stoichiometric composition or by using a multi-component composition with two or more kinds of homologous elements. As the layer made of an organic polymer, an insulating polymer such as polycarbonate, polystyrene, polyimide, polycycloolefin, and the like can be used by mixing a low molecular weight electron transport material in a weight ratio of 5% to 80%. As such electron transporting materials, trinitrofluorene and derivatives thereof, diphenoquinone derivatives, bisnaphthyl quinone derivatives, oxazole derivatives, triazole derivatives, C 60 (fullerene), such a mixture of carbon clusters such as C 70 are preferred. Specific examples include TNF, DMDB, PBD, and TAZ. On the other hand, a thin insulating polymer layer can also be used preferably. For example, acrylic resins such as parylene, polycarbonate, PVA, PVP, PVB, polyester resin, and polymethyl methacrylate are preferable. In this case, the film thickness is preferably 2 μm or less, and more preferably 0.5 μm or less.
 上引層114は、電極界面層116とバイアス電極112との間に形成されている。上引層114は、暗電流、リーク電流低減の観点から、整流特性を有することが好ましい。そのため、上引層114の抵抗率は、10Ωcm以上であること、膜厚は、0.01μm~10μmであることが好ましい。バイアス電極112は、上述の直接変換型におけるバイアス電極72と略同様であり、放射線変換層118へバイアス電圧を印加する機能を有している。 The overcoat layer 114 is formed between the electrode interface layer 116 and the bias electrode 112. The overcoat layer 114 preferably has rectification characteristics from the viewpoint of reducing dark current and leakage current. Therefore, the resistivity of the overcoat layer 114 is preferably 10 8 Ωcm or more, and the film thickness is preferably 0.01 μm to 10 μm. The bias electrode 112 is substantially the same as the bias electrode 72 in the direct conversion type described above, and has a function of applying a bias voltage to the radiation conversion layer 118.
 さらに、放射線検出器26は、図2及び図3に示したものに限らず、種々の変形が可能である。例えば、裏面読取方式の場合、放射線Xが到達する可能性が低い信号出力部(94、124)は、上述のものに代えて、放射線Xに対する耐性が低い、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の他の撮影素子とTFTとを組み合わせてもよい。また、TFTのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge-Coupled Device)イメージセンサに置き換えるようにしてもよい。 Furthermore, the radiation detector 26 is not limited to that shown in FIGS. 2 and 3 and can be variously modified. For example, in the case of the back side scanning method, the signal output units (94, 124) with low possibility of arrival of radiation X are CMOS (ComplementaryarMetal-Oxide Semiconductor) images with low resistance to radiation X instead of the above-described ones. You may combine TFT with other imaging elements, such as a sensor. Further, it may be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting them with a shift pulse corresponding to the gate signal of the TFT.
 また例えば、フレキシブル基板を用いたものでもよい。フレキシブル基板としては、近年開発されたフロート法による超薄板ガラスを基材として用いたものを適用することが、放射線の透過率を向上させるうえで好ましい。なお、この際に適用できる超薄板ガラスについては、例えば、「旭硝子株式会社、"フロート法による世界最薄0.1ミリ厚の超薄板ガラスの開発に成功"、[online]、[平成23年8月20日検索]、インターネット<URL:http://www.agc.com/news/2011/0516.pdf>」に開示されている。 For example, a flexible substrate may be used. As the flexible substrate, it is preferable to apply a substrate using ultra-thin glass by a recently developed float method as a base material in order to improve the radiation transmittance. As for the ultra-thin glass that can be applied at this time, for example, “Asahi Glass Co., Ltd.,“ Successfully developed the world's thinnest 0.1 mm thick ultra-thin glass by the float method ”, [online], [2011 Aug. 20 search], Internet <URL: http://www.agc.com/news/2011/0516.pdf> ”.
 次に上述の本例示的実施形態の放射線検出器26を備えた、放射線画像撮影装置である放射線パネルユニット20の回路構成について説明する。図4に本発明の例示的実施形態に係る放射線検出器26を含む放射線パネルユニット20の概略構成図を示し、図5に放射線パネルユニット20の一例の概略の回路構成図を示す。なお、以下では、具体的例として図2に示した放射線検出器26を備えた放射線パネルユニット20について説明する。また、本例示的実施形態では、間接変換型の放射線検出器26を適用した場合について説明する。図4、5では、放射線を光に変換する放射線変換層(シンチレータ)74は省略している。 Next, a circuit configuration of the radiation panel unit 20 that is a radiation image capturing apparatus including the radiation detector 26 according to the exemplary embodiment described above will be described. FIG. 4 shows a schematic configuration diagram of a radiation panel unit 20 including a radiation detector 26 according to an exemplary embodiment of the present invention, and FIG. 5 shows a schematic circuit configuration diagram of an example of the radiation panel unit 20. In the following, the radiation panel unit 20 including the radiation detector 26 shown in FIG. 2 will be described as a specific example. Further, in the present exemplary embodiment, a case where the indirect conversion type radiation detector 26 is applied will be described. 4 and 5, the radiation conversion layer (scintillator) 74 that converts radiation into light is omitted.
 放射線パネルユニット20は、上述の放射線検出器26を備えている。放射線検出器26には、図5に示すように、光を受けて電荷を発生し、発生した電荷を蓄積する光電変換部87と、光電変換部87に蓄積された電荷を読み出すためのスイッチング素子である2つのTFT(TFT1、TFT2)と、を含んで構成される画素21が複数、マトリックス状に配置されている。本例示的実施形態では、シンチレータによって変換された光が照射されることにより、光電変換部87が、電荷を発生する。 The radiation panel unit 20 includes the radiation detector 26 described above. As shown in FIG. 5, the radiation detector 26 generates a charge upon receiving light, stores a photoelectric conversion unit 87 that accumulates the generated charge, and a switching element for reading out the charge stored in the photoelectric conversion unit 87. A plurality of pixels 21 including two TFTs (TFT1, TFT2) are arranged in a matrix. In the present exemplary embodiment, the photoelectric conversion unit 87 generates electric charges when irradiated with light converted by the scintillator.
 画素21は、一方向(図5の横方向、以下「行方向」ともいう)及び当該行方向に対する交差方向(図5の縦方向、以下「列方向」ともいう)に2次元マトリックス状に複数配置されている。図5では、画素21の配列を簡略化して示しているが、例えば、画素21は行方向及び列方向に1024×1024個配置されている。 A plurality of pixels 21 are arranged in a two-dimensional matrix in one direction (the horizontal direction in FIG. 5, hereinafter also referred to as “row direction”) and the cross direction with respect to the row direction (the vertical direction in FIG. 5, hereinafter also referred to as “column direction”). Has been placed. In FIG. 5, the arrangement of the pixels 21 is shown in a simplified manner. For example, 1024 × 1024 pixels 21 are arranged in the row direction and the column direction.
 また、放射線検出器26には、TFT1のON/OFFを制御するための複数の制御配線G(図5では、G1~G4)及びTFT2のON/OFFを制御するための複数の制御配線M(図5では、M1、M2)と、上記光電変換部87に蓄積された電荷を読み出すための画素21の列毎に備えられた複数の信号配線D(図5では、D1~D4)と、が互いに交差して設けられている。本例示的実施形態では、例えば、画素21が行向及び列方向に1024×1024個配置されている場合、制御配線G及び信号配線Dは1024本ずつ設けられている。また、この場合、制御配線Mは、制御配線Gの半分の本数、すなわち512本設けられている。 Further, the radiation detector 26 includes a plurality of control wires G (G1 to G4 in FIG. 5) for controlling ON / OFF of the TFT 1 and a plurality of control wires M (for controlling ON / OFF of the TFT 2). In FIG. 5, M1 and M2) and a plurality of signal wirings D (D1 to D4 in FIG. 5) provided for each column of the pixels 21 for reading out the electric charges accumulated in the photoelectric conversion unit 87 are provided. They are provided to cross each other. In the present exemplary embodiment, for example, when 1024 × 1024 pixels 21 are arranged in the row direction and the column direction, 1024 control wirings G and signal wirings D are provided. In this case, the number of the control wirings M is half that of the control wirings G, that is, 512.
 なお、各画素21の光電変換部87は、図示しない共通配線に接続されており、共通配線を介して電源(図示省略)からバイアス電圧が印加されるように構成されている。 The photoelectric conversion unit 87 of each pixel 21 is connected to a common wiring (not shown), and is configured to be applied with a bias voltage from a power source (not shown) via the common wiring.
 制御配線Gには、各TFT1をスイッチングするための制御信号が流れる。このように制御信号が各制御配線Gに流れることによって、各TFT1がスイッチングされる。また、制御配線Mには、各TFT2をスイッチングするための制御信号が流れる。このように制御信号が各制御配線Mに流れることによって、各TFT2がスイッチングされる。 Control signal for switching each TFT 1 flows through the control wiring G. In this way, when the control signal flows through each control wiring G, each TFT 1 is switched. A control signal for switching each TFT 2 flows through the control wiring M. In this way, when the control signal flows through each control wiring M, each TFT 2 is switched.
 信号配線Dには、各画素21のTFT1のスイッチング状態及びTFT2のスイッチング状態に応じて、各画素21に蓄積された電荷量に応じた電気信号がTFT1またはTFT2を介して流れる(詳細後述)。 In the signal wiring D, an electrical signal corresponding to the amount of charge accumulated in each pixel 21 flows through the TFT 1 or TFT 2 according to the switching state of the TFT 1 and the switching state of the TFT 2 of each pixel 21 (details will be described later).
 各信号配線Dには、各信号配線Dに流れ出した電気信号を検出する信号検出回路130が接続されている。各制御配線Gには、各制御配線GにTFT1をON/OFFするための制御信号を出力する第1ゲート回路132が接続され、各制御配線Mには、各制御配線MにTFT2をON/OFFするための制御信号を出力する第2ゲート回路134が接続されている。なお、図4、5では、配線等の図示の簡略化のため、第1ゲート回路132及び第2ゲート回路134の2つのゲート回路を設けるようにしているが、本例示的実施形態ではこれらは別個のものではなく、同一のものであってもよいし、別個のものであってもよい。 Each signal wiring D is connected to a signal detection circuit 130 that detects an electrical signal flowing out to each signal wiring D. Each control wiring G is connected to a first gate circuit 132 that outputs a control signal for turning on / off the TFT 1 to each control wiring G. Each control wiring M is turned on / off the TFT 2 to each control wiring M. A second gate circuit 134 that outputs a control signal for turning OFF is connected. 4 and 5, two gate circuits of the first gate circuit 132 and the second gate circuit 134 are provided for simplification of illustration of wiring and the like, but in the present exemplary embodiment, these are provided. They may not be separate but may be the same or separate.
 また、図5では、信号検出回路130、第1ゲート回路132、及び第2ゲート回路134を1つに簡略化して示しているが、例えば、信号検出回路130、第1ゲート回路132、及び第2ゲート回路134は、図4に示すように、所定本(例えば、256本)毎に信号配線D又は制御配線G、制御配線Mをそれぞれ接続した複数のドライバ131、133、135を含んで構成されている。なお、第1ゲート回路132に接続された制御線Gより第2ゲート回路134に接続された制御線Mの方が少ないため、第1ゲート回路132のドライバ133の数より、第2ゲート回路134のドライバ134の数が少なくなっている。 In FIG. 5, the signal detection circuit 130, the first gate circuit 132, and the second gate circuit 134 are illustrated in a simplified manner, but for example, the signal detection circuit 130, the first gate circuit 132, As shown in FIG. 4, the two-gate circuit 134 includes a plurality of drivers 131, 133, and 135 each connected with a signal wiring D, a control wiring G, and a control wiring M for every predetermined number (for example, 256). Has been. Since the number of control lines M connected to the second gate circuit 134 is smaller than the number of control lines G connected to the first gate circuit 132, the number of drivers 133 of the first gate circuit 132 is smaller than the number of drivers 133. The number of drivers 134 is reduced.
 信号検出回路130は、各信号配線D毎に、入力される電気信号を増幅する増幅回路(図示省略)を内蔵している。信号検出回路130では、各信号配線Dより入力される電気信号を増幅回路により増幅し、ADC(アナログ・デジタル変換器、図示省略)によりデジタル信号へ変換する。 The signal detection circuit 130 incorporates an amplification circuit (not shown) for amplifying an input electric signal for each signal wiring D. In the signal detection circuit 130, an electric signal input from each signal wiring D is amplified by an amplifier circuit and converted into a digital signal by an ADC (analog / digital converter, not shown).
 この信号検出回路130、第1ゲート回路132、及び第2ゲート回路134には、信号検出回路130において変換されたデジタル信号に対してノイズ除去などの所定の処理を施すと共に、信号検出回路130に対して信号検出のタイミングを示す制御信号を出力し、第1ゲート回路132及び第2ゲート回路134に対してスキャン信号の出力のタイミングを示す制御信号を出力するパネル制御部136が接続されている。 The signal detection circuit 130, the first gate circuit 132, and the second gate circuit 134 are subjected to predetermined processing such as noise removal on the digital signal converted by the signal detection circuit 130, and the signal detection circuit 130 A panel control unit 136 that outputs a control signal indicating the timing of signal detection and outputs a control signal indicating the output timing of the scan signal to the first gate circuit 132 and the second gate circuit 134 is connected. .
 本例示的実施形態のパネル制御部136は、マイクロコンピュータによって構成されており、CPU(中央処理装置)、ROMおよびRAM、フラッシュメモリ等からなる不揮発性の記憶部を備えている。例えば、パネル制御部136は、図4に示すように、FPGA(Field Programmable Gate Array)を用いて構成するようにしてもよい。パネル制御部136は、放射線検出用の画素21の画像データに所定の処理を施し、照射された放射線が示す放射線画像を生成して出力する。 The panel control unit 136 of the present exemplary embodiment is configured by a microcomputer and includes a nonvolatile storage unit including a CPU (Central Processing Unit), ROM and RAM, flash memory, and the like. For example, as shown in FIG. 4, the panel control unit 136 may be configured using an FPGA (Field-Programmable-Gate-Array). The panel control unit 136 performs predetermined processing on the image data of the radiation detection pixels 21 to generate and output a radiation image indicated by the irradiated radiation.
 ここで、本例示的実施形態の放射線パネルユニット20による放射線画像の撮影動作について図5、6を参照して、説明する。放射線パネルユニット20は、放射線の照射開始を検出して放射線検出器26の各画素21で電荷を蓄積し、蓄積した電荷に応じた画像データに基づいた放射線画像を出力することにより放射線画像を撮影する。 Here, the radiographic image capturing operation by the radiation panel unit 20 of the present exemplary embodiment will be described with reference to FIGS. The radiation panel unit 20 detects the start of radiation irradiation, accumulates charges in each pixel 21 of the radiation detector 26, and outputs a radiation image based on image data corresponding to the accumulated charges to capture a radiation image. To do.
 本例示的実施形態の放射線パネルユニット20では、高解像度で撮影を行う場合(例えば、静止画の撮影など)と、低解像度で高いフレームレート(例えば、動画の撮影など)の撮影を行う場合と2種類の撮影を行うことができるものであるが、それぞれの種類に応じて、動作が異なる。 In the radiation panel unit 20 of the present exemplary embodiment, when shooting with high resolution (for example, shooting a still image), and shooting with low resolution and a high frame rate (for example, shooting of a moving image). Although two types of photographing can be performed, the operation differs depending on each type.
 なお、本例示的実施形態では、コンソール16からの指示に基づいて、高解像度撮影及び低解像度撮影のいずれを行う。なお、高解像度撮影及び低解像度撮影に係わらず、照射された放射線に応じた電荷が、光電変換部87により蓄積される。 In the exemplary embodiment, either high-resolution shooting or low-resolution shooting is performed based on an instruction from the console 16. Regardless of high-resolution imaging or low-resolution imaging, charges corresponding to the irradiated radiation are accumulated by the photoelectric conversion unit 87.
 まず、静止画の撮影等の高解像度撮影を行う場合について説明する。 First, the case of performing high-resolution shooting such as still image shooting will be described.
 静止画の撮影等の高解像度撮影を行う場合、TFT2をオフにするよう、制御配線Mに第2ゲート回路134から制御信号が出力される。一方、TFT1をオンにするよう、順次、制御配線Gに第1ゲート回路132から制御信号が出力される。TFT1がオン状態の画素21では、光電変換部87から電荷が読み出され、信号配線Dに電荷が出力される。 When performing high-resolution shooting such as still image shooting, a control signal is output from the second gate circuit 134 to the control wiring M so that the TFT 2 is turned off. On the other hand, a control signal is sequentially output from the first gate circuit 132 to the control wiring G so as to turn on the TFT 1. In the pixel 21 in which the TFT 1 is in the on state, the charge is read from the photoelectric conversion unit 87 and the charge is output to the signal wiring D.
 このように、本例示的実施形態の放射線パネルユニット20では、静止画の撮影等の高解像度撮影を行う場合では、信号配線D1~D4の全てに、各列毎に、電荷が流れる。すなわち、各画素21毎に、信号配線Dに電荷が流れる。 As described above, in the radiation panel unit 20 of the present exemplary embodiment, when high-resolution imaging such as still image imaging is performed, electric charges flow in all the signal wirings D1 to D4 for each column. That is, charge flows through the signal wiring D for each pixel 21.
 信号検出回路130により、電荷に応じた電気信号が、デジタル信号に変換され、パネル制御部136により、当該電気信号に応じた画像データに基づいた放射線画像を生成する。 The electric signal corresponding to the electric charge is converted into a digital signal by the signal detection circuit 130, and the radiation image based on the image data corresponding to the electric signal is generated by the panel control unit 136.
 次に、動画の撮影等の低解像度撮影を行う場合について説明する。 Next, a case where low resolution shooting such as movie shooting is performed will be described.
 動画の撮影等の低解像度撮影を行う場合、TFT1をオフにするよう、制御配線Gに第1ゲート回路132から制御信号が出力される。一方、TFT2をオンにするよう、順次、制御配線Mに第2ゲート回路134から制御信号が出力される。TFT2がオン状態の画素21では、光電変換部87から電荷が読み出され、信号配線Dに電荷が出力される。 When performing low-resolution shooting such as moving image shooting, a control signal is output from the first gate circuit 132 to the control wiring G so that the TFT 1 is turned off. On the other hand, a control signal is sequentially output from the second gate circuit 134 to the control wiring M so as to turn on the TFT 2. In the pixel 21 in which the TFT 2 is on, the charge is read from the photoelectric conversion unit 87 and the charge is output to the signal wiring D.
 図6に示すように、制御配線M1に、TFT2をオンにするよう制御信号が出力されると、8個の画素21(21(1)~21(8))のTFT2がオン状態になり、4個の画素21(21(1)、21(2)、21(5)、21(6))の電荷が、信号配線D1に出力される。また、4個の画素21(21(3)、21(4)、21(7)、21(8))の電荷が、信号配線D3に出力される。 As shown in FIG. 6, when a control signal is output to the control wiring M1 to turn on the TFT2, the TFT2 of the eight pixels 21 (21 (1) to 21 (8)) is turned on, The charges of the four pixels 21 (21 (1), 21 (2), 21 (5), 21 (6)) are output to the signal wiring D1. In addition, the charges of the four pixels 21 (21 (3), 21 (4), 21 (7), 21 (8)) are output to the signal wiring D3.
 さらに、制御配線M2に、TFT2をオンにするよう制御信号が出力されると、8個の画素21(21(9)~21(16))のTFT2がオン状態になり、4個の画素21(21(9)、21(10)、21(13)、21(14))の電荷が、信号配線D2に出力される。また、4個の画素21(21(11)、21(12)、21(15)、21(16))の電荷が、信号配線D4に出力される。 Further, when a control signal is output to the control wiring M2 to turn on the TFT2, the TFTs 2 of the eight pixels 21 (21 (9) to 21 (16)) are turned on, and the four pixels 21 are turned on. The charges (21 (9), 21 (10), 21 (13), 21 (14)) are output to the signal wiring D2. In addition, the charges of the four pixels 21 (21 (11), 21 (12), 21 (15), 21 (16)) are output to the signal wiring D4.
 このように、本例示的実施形態の放射線パネルユニット20では、動画の撮影等の低解像度撮影を行う場合では、2画素×2画素の電荷の和が、隣接する信号配線Dに交互に(偶数番号が付与された信号配線Dと奇数番号が付与された信号配線Dとで交互に)流れる。 As described above, in the radiation panel unit 20 of the present exemplary embodiment, when low-resolution shooting such as moving image shooting is performed, the sum of charges of 2 pixels × 2 pixels is alternately (even) in the adjacent signal wiring D. The signal wiring D to which numbers are assigned and the signal wiring D to which odd numbers are assigned alternately).
 また、動画の撮影等の低解像度撮影を行う場合は、2画素×2画素を1つの画素31のようにみなして電荷を取り出すため、高解像度撮影に比べて解像度が低くなるものの、フレームレートを2倍(フレーム期間を1/2)にすることができる。 In addition, when performing low-resolution shooting such as moving image shooting, 2 × 2 pixels are regarded as one pixel 31 and a charge is taken out. Therefore, although the resolution is lower than that in high-resolution shooting, the frame rate is reduced. It can be doubled (frame period is halved).
 ところで、放射線検出器26の各画素は、欠陥画素を含むことがあるので、欠陥画素マップを生成して補正する必要がある。本例示的実施形態では、上述のように、高解像度撮影と低解像度撮影とを切り換えることができるので、それぞれ欠陥画素マップが必要となる。 Incidentally, since each pixel of the radiation detector 26 may include a defective pixel, it is necessary to generate and correct a defective pixel map. In the present exemplary embodiment, as described above, since it is possible to switch between high-resolution imaging and low-resolution imaging, a defective pixel map is required for each.
 そこで、本例示的実施形態では、高解像度欠陥画素マップを生成してから、生成した高解像度欠陥画素マップを用いて低解像度欠陥画素マップを生成する。 Therefore, in this exemplary embodiment, after generating a high-resolution defective pixel map, a low-resolution defective pixel map is generated using the generated high-resolution defective pixel map.
 欠陥画素の検出方法は、所定量の放射線を照射したときの各画素の値に基づいて欠陥画素を検出するようにしてもよいし、放射線を照射しない期間の各画素の値に基づいて欠陥画素を検出するようにしてもよい。具体的な欠陥画素の検出方法については、例えば、周知の技術(例えば、特開2008-252564号公報や特開2010-233886号公報に記載の方法等)によって検出することができる。 The defective pixel detection method may be such that the defective pixel is detected based on the value of each pixel when a predetermined amount of radiation is irradiated, or the defective pixel is based on the value of each pixel during a period when radiation is not irradiated. May be detected. A specific method for detecting a defective pixel can be detected by, for example, a well-known technique (for example, a method described in JP 2008-252564 A or JP 2010-233886 A).
 また、本例示的実施形態では、これら周知の技術を用いて、点欠陥であるか線欠陥であるか等の欠陥画素の種類や、断線画素であるかを判定して欠陥画素マップに定義するようになっている。 Further, in this exemplary embodiment, these known techniques are used to determine the type of defective pixel, such as a point defect or a line defect, and whether it is a disconnected pixel, and define it in the defective pixel map. It is like that.
 本例示的実施形態では、欠陥画素を検出して、図7の(1)に示すような高解像度欠陥画素マップを生成する。このとき、欠陥の種類を定義して欠陥画素マップを生成する。 In the present exemplary embodiment, defective pixels are detected and a high-resolution defective pixel map as shown in (1) of FIG. 7 is generated. At this time, a defect pixel map is generated by defining the type of defect.
 そして、高解像度欠陥画素マップを低解像度に画素密度変換することにより、図7の(2)に示すように、低解像度欠陥画素マップを生成するようになっている。なお、図7中の斜線部分は欠陥画素を示し、ライン欠陥と点欠陥がある例を示す。 Then, by converting the pixel resolution of the high resolution defective pixel map to a low resolution, a low resolution defective pixel map is generated as shown in (2) of FIG. In addition, the hatched part in FIG. 7 shows a defective pixel, and shows an example in which there are a line defect and a point defect.
 このようにして生成した各欠陥画素マップを用いてパネル制御部136が補正を行うことにより、欠陥画素を補正することができる。例えば、補正方法としては、点欠陥や線欠陥等の欠陥画素については周辺画素を用いて補間することにより補正することができる。また、低解像度用の撮影に対する補正については、低解像度の画素31中に含まれる高解像度画素の欠陥画素数に応じてゲインを調整(例えば、4画素中1画素が欠陥画素の場合には、4/3倍にゲイン増加)して補正するようにしてもよいし、周辺の低解像度画素を用いて補間することにより補正するようにしてもよいし、高解像度画素において補間してから低解像度画素を求めるようにしてもよい。或いは、低解像度の画素31中の高解像度画素の欠陥画素数に閾値を設けて閾値以上の欠陥画素が存在する場合には周辺画素から補間し、閾値未満の欠陥画素数の場合にはゲインを増加することによって補正するようにしてもよい。 Defective pixels can be corrected by the panel control unit 136 using the defective pixel maps generated in this way. For example, as a correction method, a defective pixel such as a point defect or a line defect can be corrected by interpolation using peripheral pixels. For correction for low-resolution shooting, the gain is adjusted according to the number of defective pixels of the high-resolution pixels included in the low-resolution pixels 31 (for example, when one of the four pixels is a defective pixel, The gain may be corrected by increasing the gain by 4/3 times, or may be corrected by interpolating using peripheral low-resolution pixels, or may be corrected by interpolating in the high-resolution pixels and then low-resolution. Pixels may be obtained. Alternatively, a threshold is provided for the number of defective pixels of the high-resolution pixel in the low-resolution pixel 31, and if there is a defective pixel that is greater than or equal to the threshold, interpolation is performed from surrounding pixels, and if the number of defective pixels is less than the threshold, the gain is You may make it correct | amend by increasing.
 なお、本実施形態では、パネル制御部136が欠陥画素の補正を行うが、放射線画像処理装置14やコンソール16に生成した欠陥画素マップを送信して補正を行うようにしてもよい。 In the present embodiment, the panel control unit 136 corrects the defective pixel. However, the generated defective pixel map may be transmitted to the radiation image processing apparatus 14 or the console 16 to perform correction.
 また、本例示的実施形態では、高解像度欠陥画素マップから低解像度欠陥画素マップを生成するが、TFTのパラメータが異なると、欠陥マップや補正マップ等の共有化ができなくなってしまうため、光電変換部87に蓄積された電荷を読み出すためのスイッチング素子である2つのTFT(TFT1、TFT2)のサイズや向き等を揃える必要がある。 In this exemplary embodiment, a low-resolution defective pixel map is generated from a high-resolution defective pixel map. However, if the TFT parameters are different, the defect map and the correction map cannot be shared. It is necessary to make the sizes and orientations of the two TFTs (TFT1, TFT2), which are switching elements for reading out the electric charges accumulated in the portion 87, uniform.
 そこで、本例示的実施形態では、図8に示すように、2つのTFT(TFT1、TFT2)のドレイン/ソース方向(長さ方向)及び該長さ方向に直行するゲート方向(幅方向)のそれぞれの向きを揃えて配置した構成とされている。また、TFTの長さ/幅の比を同じにしてもリーク電流値が異なるため、それぞれの方向の長さを同じにする必要があるので、各方向の長さについても同じになるように構成されている。このようにTFTの向きを同じにすることで露光機やフォトマスクによる差異を抑制することができるので、TFTのIoff、Ion等の電気パラメータを同じにすることができる。 Therefore, in this exemplary embodiment, as shown in FIG. 8, the drain / source direction (length direction) of the two TFTs (TFT1, TFT2) and the gate direction (width direction) orthogonal to the length direction are respectively shown. It is set as the structure arrange | positioned so that it may be aligned. Further, since the leakage current value is different even if the length / width ratio of the TFT is the same, the length in each direction needs to be the same, so the length in each direction is also the same. Has been. Thus, by making the TFT directions the same, differences due to the exposure machine and the photomask can be suppressed, so that the electrical parameters such as Ioff and Ion of the TFT can be made the same.
 続いて、パネル制御部136で行われる欠陥画素マップを生成する際の処理について説明する。図9は、本発明の例示的実施形態に係るパネル制御部136で行われる欠陥画素マップ生成処理の一例の流れを示すフローチャートである。 Subsequently, processing when generating a defective pixel map performed by the panel control unit 136 will be described. FIG. 9 is a flowchart illustrating an example of a defective pixel map generation process performed by the panel control unit 136 according to an exemplary embodiment of the present invention.
 欠陥画素マップを生成する場合には、例えば、コンソール16からの指示によって、放射線発生装置12から所定量の放射線が放射線パネルユニット20に照射される。 When generating a defective pixel map, for example, according to an instruction from the console 16, a predetermined amount of radiation is irradiated to the radiation panel unit 20 from the radiation generator 12.
 放射線パネルユニット20に放射線が照射されると、ステップ200では、注目する高解像度画素X=1としてステップ202へ移行する。すなわち、注目する画素(高解像度用画素)21を選択する。 When the radiation panel unit 20 is irradiated with radiation, in step 200, the target high resolution pixel X = 1 is set and the process proceeds to step 202. That is, the pixel of interest (high resolution pixel) 21 is selected.
 ステップ202では、欠陥画素か否か判定され、該判定が該判定が肯定された場合にはステップ204へ移行し、否定された場合にはステップ210へ移行する。なお、欠陥画素の判定方法としては、所定量の放射線を照射したときの各画素の値に基づいて判定するようにしてもよいし、周知の技術(例えば、特開2008-252564号公報や特開2010-233886号公報に記載の方法等)によって判定するようにしてもよい。 In step 202, it is determined whether or not the pixel is a defective pixel. If the determination is affirmative, the process proceeds to step 204. If the determination is negative, the process proceeds to step 210. As a method for determining a defective pixel, it may be determined based on the value of each pixel when a predetermined amount of radiation is irradiated, or a known technique (for example, Japanese Patent Application Laid-Open No. 2008-252564 or a special technique). The method may be determined by a method described in Japanese Unexamined Patent Publication No. 2010-233886.
 ステップ204では、欠陥画素の種類が検出されてステップ206へ移行する。欠陥画素の種類の検出方法としては、特開2008-252564号公報に記載の方法を用いて点欠陥であるか線欠陥であるかを検出することができる。なお、欠陥画素の種類の代わりに欠陥画素の原因を検出するようにしてもよいし、種類及び原因を共に検出するようにしてもよい。欠陥画素の原因の検出方法としては、例えば、特開2010-233886号公報に記載の方法を用いて検出することができる。 In step 204, the type of defective pixel is detected, and the process proceeds to step 206. As a method for detecting the type of defective pixel, it is possible to detect whether it is a point defect or a line defect using the method described in Japanese Patent Application Laid-Open No. 2008-252564. The cause of the defective pixel may be detected instead of the type of the defective pixel, or both the type and cause may be detected. As a method for detecting the cause of a defective pixel, for example, it can be detected by using a method described in JP 2010-233886 A.
 ステップ206では、注目画素Xを欠陥画素の種類を定義して欠陥画素として高解像度欠陥画素マップが生成されてステップ210へ移行する。なお、欠陥画素の原因を検出する場合には欠陥画素の原因についても定義して欠陥画素として高解像度欠陥画素マップを生成する。 In step 206, the pixel of interest X is defined as a defective pixel and a high-resolution defective pixel map is generated as a defective pixel, and the process proceeds to step 210. When the cause of the defective pixel is detected, the cause of the defective pixel is also defined and a high resolution defective pixel map is generated as the defective pixel.
 一方、ステップ208では、注目画素Xを正常欠陥として高解像度欠陥画素マップが生成されてステップ210へ移行する。 On the other hand, in step 208, a high-resolution defective pixel map is generated with the target pixel X as a normal defect, and the process proceeds to step 210.
 ステップ210では、注目する高解像度画素Xが1インクリメント(X+1)されてステップ212へ移行する。 In step 210, the high resolution pixel X of interest is incremented by 1 (X + 1), and the process proceeds to step 212.
 ステップ212では、全画素の欠陥画素の検出が終了したか判定され、該判定が否定された場合にはステップ202に戻って上述の処理が繰り返され、判定が肯定された場合にはステップ214へ移行する。 In step 212, it is determined whether or not the detection of defective pixels of all pixels has been completed. If the determination is negative, the process returns to step 202 and the above processing is repeated. If the determination is affirmative, the process returns to step 214. Transition.
 ステップ214では、高解像度欠陥画素マップから低解像度欠陥画素マップへ変換を行う低解像度欠陥画素マップ生成処理が行われて一連の欠陥画素マップ生成処理を終了する。 In step 214, a low-resolution defective pixel map generation process for converting from a high-resolution defective pixel map to a low-resolution defective pixel map is performed, and a series of defective pixel map generation processes ends.
 ここで、ステップ214で行われる低解像度欠陥画素マップ生成処理について詳細に説明する。図10は、低解像度欠陥画素マップ生成処理の流れの一例を示すフローチャートである。 Here, the low-resolution defective pixel map generation process performed in step 214 will be described in detail. FIG. 10 is a flowchart illustrating an example of the flow of low-resolution defective pixel map generation processing.
 ステップ300では、上記で生成された高解像度欠陥画素マップが取得されてステップ302へ移行する。 In step 300, the high-resolution defective pixel map generated above is acquired, and the process proceeds to step 302.
 ステップ302では、注目する低解像度画素Y=1としてステップ304へ移行する。すなわち、注目する2画素(高解像度の画素21)×2画素(高解像度の画素21)の画素(低解像度の画素31)を選択する。 In step 302, the target low resolution pixel Y = 1 is set, and the process proceeds to step 304. That is, the pixel (low-resolution pixel 31) of 2 pixels (high-resolution pixel 21) × 2 pixels (high-resolution pixel 21) of interest is selected.
 ステップ304では、注目する低解像度の画素31に対応する高解像度画素の状態が高解像度欠陥画素マップから読み出されてステップ306へ移行する。 In step 304, the state of the high resolution pixel corresponding to the low resolution pixel 31 of interest is read from the high resolution defective pixel map, and the process proceeds to step 306.
 ステップ306では、注目する低解像度の画素31中の高解像度の画素21に欠陥画素があるか否か判定され、該判定が肯定された場合にはステップ308へ移行し、否定された場合にはステップ310へ移行する。 In step 306, it is determined whether or not the high-resolution pixel 21 in the target low-resolution pixel 31 has a defective pixel. If the determination is affirmative, the process proceeds to step 308. If the determination is negative, the determination is negative. The process proceeds to step 310.
 ステップ308では、種類を定義して欠陥画素として低解像度欠陥画素マップが生成されてステップ312へ移行する。なお、高解像度欠陥画素マップと同様に、欠陥画素の種類の代わりに欠陥画素の原因を定義するようにしてもよいし、種類及び原因を共に定義するようにしてもよい。 In step 308, the type is defined and a low resolution defective pixel map is generated as a defective pixel, and the process proceeds to step 312. Similar to the high-resolution defective pixel map, the cause of the defective pixel may be defined instead of the type of the defective pixel, or both the type and the cause may be defined.
 一方、ステップ310では、正常画素として低解像度欠陥画素マップが生成されてステップ312へ移行する。 On the other hand, in step 310, a low-resolution defective pixel map is generated as a normal pixel, and the process proceeds to step 312.
 ステップ312では、注目する高解像度画素Xが1インクリメント(X+1)されてステップ314へ移行する。 In step 312, the noticed high resolution pixel X is incremented by 1 (X + 1), and the process proceeds to step 314.
 そして、ステップ314では、全画素の欠陥画素の検出が終了したか判定され、該判定が否定された場合にはステップ302に戻って上述の処理が繰り返され、判定が肯定されたところで一連の処理を終了する。 In step 314, it is determined whether or not the detection of defective pixels of all pixels has been completed. If the determination is negative, the process returns to step 302 and the above-described processing is repeated. When the determination is affirmative, a series of processing is performed. Exit.
 このようにして、本例示的実施形態では、高解像度用の欠陥画素マップを生成した後に、生成した高解像度用の欠陥画素マップを画素密度変換して低解像度用の欠陥画素マップを生成する。これにより、1回の欠陥画素検出で2つの解像度の欠陥画素マップを生成することができるので、容易に欠陥画素マップを得ることができる。また、このようにして得られる高解像度撮影と低解像度撮影のそれぞれの欠陥画素マップを用いることで、パネル制御部136が欠陥画素の補正を行うことが可能となる。 In this way, in the present exemplary embodiment, after a defective pixel map for high resolution is generated, a defective pixel map for low resolution is generated by pixel density conversion of the generated defective pixel map for high resolution. As a result, a defective pixel map having two resolutions can be generated with one defective pixel detection, so that a defective pixel map can be easily obtained. Further, by using the defective pixel maps of the high-resolution imaging and the low-resolution imaging obtained as described above, the panel control unit 136 can correct the defective pixels.
 なお、放射線パネルユニット20の構成は、上記例示的実施形態で説明した構成に限るものではなく、他の構成を適用するようにしてもよい。以下では、放射線パネルユニットの変形例について説明する。変形例の放射線パネルユニットは、上記例示的実施形態の放射線パネルユニット20と同一部分についてはその旨を記し、詳細な説明を省略する。なお、変形例の放射線パネルユニットは放射線検出器の構成が、上記例示的実施形態の放射線検出器26と異なるため、変形例における放射線検出器について詳細に説明する。 The configuration of the radiation panel unit 20 is not limited to the configuration described in the above exemplary embodiment, and other configurations may be applied. Below, the modification of a radiation panel unit is demonstrated. In the radiation panel unit of the modification, the same part as the radiation panel unit 20 of the above exemplary embodiment is described as such, and detailed description thereof is omitted. In addition, since the radiation panel unit of a modification differs in the structure of the radiation detector from the radiation detector 26 of the said exemplary embodiment, the radiation detector in a modification is demonstrated in detail.
 図11に、変形例の放射線パネルユニットにおける放射線検出器の概略構成の一例の構成図を示す。 FIG. 11 shows a configuration diagram of an example of a schematic configuration of the radiation detector in the radiation panel unit of the modified example.
 変形例の放射線検出器27は、上記例示的実施形態の放射線検出器26と同様に、光電変換部87と、光電変換部87に蓄積された電荷を読み出すためのスイッチング素子である2つのTFT(静止画用TFT1、動画用TFT2)と、を含んで構成される画素21が複数、マトリックス状に配置されている。 Similar to the radiation detector 26 of the above exemplary embodiment, the radiation detector 27 of the modified example includes a photoelectric conversion unit 87 and two TFTs (switching elements for reading out charges accumulated in the photoelectric conversion unit 87 ( A plurality of pixels 21 including a still image TFT 1 and a moving image TFT 2) are arranged in a matrix.
 放射線検出器26には、TFT1のON/OFFを制御するための複数の制御配線G(図11では、G1~G4)及びTFT2のON/OFFを制御するための複数の制御配線M(図11では、M1)と、上記光電変換部87に蓄積された電荷を読み出すための画素21の列毎に備えられた複数の信号配線D(図11では、D1~D5)と、が互いに交差して設けられている。なお、図11中では、制御配線Mは、1本(制御配線M1)のみ記載しているが、画素21の行数に応じた本数、より具体的には制御配線Gの数(画素21の行数)の1/4の本数が備えられている。 The radiation detector 26 includes a plurality of control wires G (G1 to G4 in FIG. 11) for controlling ON / OFF of the TFT 1 and a plurality of control wires M (FIG. 11) for controlling ON / OFF of the TFT 2. Then, M1) and a plurality of signal wirings D (D1 to D5 in FIG. 11) provided for each column of the pixels 21 for reading out the charges accumulated in the photoelectric conversion unit 87 intersect each other. Is provided. In FIG. 11, only one control wiring M (control wiring M1) is shown, but the number according to the number of rows of the pixels 21, more specifically, the number of control wirings G (the number of the control lines M1). (Number of lines) is provided.
 変形例の放射線検出器26は、同一の光電変換部87に接続されているTFT1、TFT2各々の制御端子が接続する制御配線G及び制御配線Mの画素21に対する位置関係が画素配列の偶数行と奇数行とで反転するように構成されている。図11に示すように、制御配線Gの偶数ラインと、奇数ラインとで、TFT1、TFT2、及び光電変換部87の配置関係が反転するように構成されている。すなわち、例えば、画素21(1)及び画素21(5)を参照すればわかるように、制御配線Mを挟んで、配置位置が線対称になるように、TFT1、TFT2、及び光電変換部87が配置されている。このように各素子を配置することにより、画素21(1)及び画素21(5)のTFT2が制御配線Mを兼用することができるため、制御配線Mの本数を上記例示的実施形態に比べて少なくすることができる。従って、制御配線の本数(制御配線G+制御配線M)を上記例示的実施形態に比べて少なくすることができる。 In the radiation detector 26 of the modification, the positional relationship of the control wiring G and the control wiring M connected to the control terminals of the TFT1 and TFT2 connected to the same photoelectric conversion unit 87 with respect to the pixels 21 is an even row of the pixel array. It is configured to invert with odd lines. As shown in FIG. 11, the arrangement relationship between the TFT 1, the TFT 2, and the photoelectric conversion unit 87 is inverted between the even lines and the odd lines of the control wiring G. That is, for example, as can be seen by referring to the pixel 21 (1) and the pixel 21 (5), the TFT1, the TFT2, and the photoelectric conversion unit 87 are arranged so that the arrangement positions are line-symmetric with respect to the control wiring M. Has been placed. By disposing each element in this manner, the TFT 2 of the pixel 21 (1) and the pixel 21 (5) can also be used as the control wiring M. Therefore, the number of the control wiring M is compared with the above exemplary embodiment. Can be reduced. Therefore, the number of control wirings (control wiring G + control wiring M) can be reduced as compared with the above exemplary embodiment.
 図5に示した上記例示的実施形態の放射線検出器26では、制御配線Gは制御配線G1~G4の4本、制御配線Mは、制御配線M1、M2×2の4本、合計8本の制御配線が必要となる。従って、行数×2本の制御配線が必要となる。一方、変形例の図11に示した放射線検出器26では、制御配線Gは制御配線G1~G4の4本、制御配線Mは、制御配線M1×2の2本、合計6本の制御配線が必要となる。従って、行数×1.5本の制御配線が必要となる。このように変形例の放射線検出器26では、制御配線の本数を少なくすることができる。 In the radiation detector 26 of the exemplary embodiment shown in FIG. 5, the control wiring G includes four control wirings G1 to G4, and the control wiring M includes four control wirings M1 and M2 × 2, for a total of eight. Control wiring is required. Therefore, the number of rows × 2 control wirings is required. On the other hand, in the radiation detector 26 shown in FIG. 11 of the modified example, the control wiring G has four control wirings G1 to G4, the control wiring M has two control wirings M1 × 2, and a total of six control wirings. Necessary. Therefore, the number of rows × 1.5 control wirings is required. Thus, in the radiation detector 26 according to the modification, the number of control wirings can be reduced.
 また、変形例の放射線検出器26では、TFT1は、TFT2よりも制御配線Gに近い位置に配置されているため、TFT1を制御配線Gへ接続する接続配線を短くすることができる。一方、TFT2は、TFT1よりも制御配線Mに近い位置に配置されているため、TFT2を制御配線Mへ接続する接続配線を短くすることができる。これにより、製造歩留まりを向上させることがでる、という効果が得られる。 Further, in the radiation detector 26 of the modified example, since the TFT 1 is disposed at a position closer to the control wiring G than the TFT 2, the connection wiring for connecting the TFT 1 to the control wiring G can be shortened. On the other hand, since the TFT 2 is disposed at a position closer to the control wiring M than the TFT 1, the connection wiring for connecting the TFT 2 to the control wiring M can be shortened. As a result, it is possible to improve the manufacturing yield.
 次に、変形例の放射線検出器26による放射線画像の撮影動作について図11、12を参照して、説明する。 Next, a radiographic image capturing operation by the radiation detector 26 according to the modification will be described with reference to FIGS.
 まず、静止画の撮影等の高解像度撮影を行う場合について説明する。 First, the case of performing high-resolution shooting such as still image shooting will be described.
 静止画の撮影等の高解像度撮影を行う場合、TFT2をオフにするよう、制御配線Mに第2ゲート回路134から制御信号が出力される。一方、TFT1をオンにするよう、順次、制御配線Gに第1ゲート回路132から制御信号が出力される。TFT1がオン状態の画素21では、光電変換部87から電荷が読み出され、信号配線Dに電荷が出力される。 When performing high-resolution shooting such as still image shooting, a control signal is output from the second gate circuit 134 to the control wiring M so that the TFT 2 is turned off. On the other hand, a control signal is sequentially output from the first gate circuit 132 to the control wiring G so as to turn on the TFT 1. In the pixel 21 in which the TFT 1 is in the on state, the charge is read from the photoelectric conversion unit 87 and the charge is output to the signal wiring D.
 このように、変形例の放射線検出器26では、静止画の撮影を行う場合では、上記例示的実施形態と同様に、信号配線D1~D4の全てに、各列毎に、電荷が流れる。すなわち、各画素21毎に、信号配線Dに電荷が流れる。 As described above, in the radiation detector 26 according to the modified example, when a still image is taken, a charge flows in each of the signal wirings D1 to D4 for each column as in the above exemplary embodiment. That is, charge flows through the signal wiring D for each pixel 21.
 次に、動画の撮影等の低解像度撮影を行う場合について説明する。 Next, a case where low resolution shooting such as movie shooting is performed will be described.
 動画の撮影等の低解像度撮影を行う場合、TFT1をオフにするよう、制御配線Gに第1ゲート回路132から制御信号が出力される。一方、TFT2をオンにするよう、制御配線Mに第2ゲート回路134から制御信号が出力される。TFT2がオン状態の画素21では、光電変換部87から電荷が読み出され、信号配線Dに電荷が出力される。 When performing low-resolution shooting such as moving image shooting, a control signal is output from the first gate circuit 132 to the control wiring G so that the TFT 1 is turned off. On the other hand, a control signal is output from the second gate circuit 134 to the control wiring M so as to turn on the TFT 2. In the pixel 21 in which the TFT 2 is on, the charge is read from the photoelectric conversion unit 87 and the charge is output to the signal wiring D.
 図12に示すように、制御配線M1に、TFT2をオンにするよう制御信号が出力されると、16個の画素21(21(1)~21(16))のTFT2がオン状態になる。2個の画素21(21(1)、21(5))の電荷が、信号配線D1に出力される。また、4個の画素21(21(9)、21(10)、21(13)、21(14))の電荷が、信号配線D2に出力される。また、4個の画素21(21(2)、21(3)、21(6)、21(7))の電荷が、信号配線D3に出力される。さらに、4個の画素21(21(11)、21(12)、21(15)、21(16))の電荷が、信号配線D4に出力される。またさらに、2個の画素21(21(4)、21(8))の電荷が、信号配線D5に出力される。 As shown in FIG. 12, when a control signal is output to the control wiring M1 to turn on the TFT2, the TFT2 of the 16 pixels 21 (21 (1) to 21 (16)) is turned on. The charges of the two pixels 21 (21 (1) and 21 (5)) are output to the signal wiring D1. Further, the charges of the four pixels 21 (21 (9), 21 (10), 21 (13), 21 (14)) are output to the signal wiring D2. In addition, the charges of the four pixels 21 (21 (2), 21 (3), 21 (6), 21 (7)) are output to the signal wiring D3. Furthermore, the charges of the four pixels 21 (21 (11), 21 (12), 21 (15), 21 (16)) are output to the signal wiring D4. Furthermore, the charges of the two pixels 21 (21 (4), 21 (8)) are output to the signal wiring D5.
 このように、変形例の放射線検出器26では、低解像度撮影を行う場合では、2画素×2画素の電荷の和が、隣接する信号配線Dに流れる。また、低解像度撮影を行う場合は、2画素20×2画素21を1つの画素31のようにみなして電荷を取り出すため、高解像度撮影に比べて解像度が低くなるものの、フレームレートを4倍(フレーム期間を1/4)にすることができる。 As described above, in the radiation detector 26 of the modified example, when low-resolution imaging is performed, the sum of charges of 2 pixels × 2 pixels flows to the adjacent signal wiring D. In addition, when performing low-resolution imaging, the 2 pixels 20 × 2 pixels 21 are regarded as one pixel 31 and the charge is extracted. Therefore, although the resolution is lower than that in high-resolution imaging, the frame rate is quadrupled ( The frame period can be reduced to 1/4).
 以上説明したように、変形例の放射線検出器26では、2画素20×2画素21を予め、1画素31とみなせるように各素子(TFT1、TFT2、光電変換部87)を配列している。従って、高解像度撮影に比べて、フレームレートを向上することができる。特に、変形例では、1画素とみなせる画素31が列方向に、互い違いの位置になるように配列されている。従って、1回の読み出しで隣接する信号配線Dに電荷を流すことができるため、フレームレートを4倍にすることができる。 As described above, in the radiation detector 26 of the modified example, each element (TFT1, TFT2, photoelectric conversion unit 87) is arranged so that the 2 pixels 20 × 2 pixels 21 can be regarded as one pixel 31 in advance. Therefore, the frame rate can be improved as compared with high-resolution imaging. In particular, in the modified example, the pixels 31 that can be regarded as one pixel are arranged so as to be staggered in the column direction. Accordingly, since the charge can flow through the adjacent signal wiring D by one reading, the frame rate can be quadrupled.
 また、制御配線Mに対して線対称になるように、配置しているため、制御配線の本数の増加を抑制することができるので、TFT1、TFT2出力と、信号配線Dとの接続電極(図示省略)の長さを短くすることできる。これにより、製造歩留まりを高く維持することができる。 In addition, since it is arranged so as to be symmetric with respect to the control wiring M, an increase in the number of control wirings can be suppressed, so that the connection electrodes (illustrated) between the outputs of the TFT1 and TFT2 and the signal wiring D are shown. (Omitted) can be shortened. Thereby, a manufacturing yield can be maintained high.
 このように構成された変形例においても、欠陥画素マップを生成する際には、上記例示的実施形態と同様に、高解像度欠陥画素マップを生成してから、生成した高解像度欠陥マップを用いて低解像度欠陥画素マップを生成する。 Even in the modified example configured as described above, when the defective pixel map is generated, the high-resolution defect pixel map is generated after using the generated high-resolution defect map, as in the above exemplary embodiment. Generate a low resolution defective pixel map.
 すなわち、欠陥画素を検出して、図13の(1)に示すような高解像度欠陥マップを生成する。このとき、欠陥の種類を定義して欠陥画素マップを生成する。その後、高解像度欠陥画素マップを低解像度に画素密度変換して正規配列に変換することにより、図13の(2)に示すように、低解像度欠陥画素マップを生成する。なお、図13中の斜線部分は欠陥画素を示し、ライン欠陥と点欠陥がある例を示す。 That is, a defective pixel is detected and a high-resolution defect map as shown in (1) of FIG. 13 is generated. At this time, a defect pixel map is generated by defining the type of defect. Thereafter, the high-resolution defective pixel map is converted into a normal array by converting the pixel density to a low resolution, thereby generating a low-resolution defective pixel map as shown in FIG. In addition, the hatched part in FIG. 13 shows a defective pixel, and shows an example with a line defect and a point defect.
 これにより、上記の例示的実施形態と同様に、欠陥画素マップを用いて欠陥画素の補正を行うことが可能となる。 This makes it possible to correct a defective pixel using a defective pixel map, as in the above exemplary embodiment.
 本例示的実施形態では、通常の定期キャリブレーション(例えば、放射線パネルユニット20の暗電流等によるノイズ除去や放射線の照射による残像の焼き付き対策等を行う各種補正)の際に、高解像度の撮影に切り替えて1枚の高精細な静止画によるキャリブレーションのみ行えばよいので、解像度毎に欠陥画素検出を行う必要がなくなる。例えば、動画撮影などにおいて複数の解像度が選択可能な場合には、それぞれの欠陥画素検出を行うのは非現実的であるが、本例示的実施形態を適用すれば、1回の欠陥画素検出だけでよいので、複数の解像度の欠陥画素マップの生成を容易に行うことができる。 In the present exemplary embodiment, high-resolution imaging is performed during normal periodic calibration (for example, various corrections for removing noise caused by dark current of the radiation panel unit 20 and measures for image sticking by irradiation of radiation). Since it is only necessary to switch and perform calibration using one high-definition still image, it is not necessary to detect defective pixels for each resolution. For example, when a plurality of resolutions can be selected in moving image shooting or the like, it is unrealistic to detect each defective pixel, but if this exemplary embodiment is applied, only defective pixel detection is performed once. Therefore, it is possible to easily generate a defective pixel map having a plurality of resolutions.
 また、本例示的実施形態に係わる放射線パネルユニット20は、低解像度の撮影では、高解像度の撮影に比べて使用するドライバ数が少なく、消費電力低減効果が期待されるので、待機時などのリセット動作を行う際などではドライバ数の少ない低解像度の撮影に切り替えて、消費電力低減効果を得るようにしてもよい。また、放射線検出開始を検出する場合などにおいても低解像度の撮影に切り替えて消費電力を低減するようにしてもよい。さらに、低解像度の撮影に切り替えてリセット動作を実施した場合、高解像度の撮影の場合と比較して撮像エリア全体のリセット完了するまでに要する時間を短縮することができ、放射線の照射開始の検出から電荷蓄積モードに至るまでの期間を短縮することができる。 In addition, the radiation panel unit 20 according to this exemplary embodiment requires a smaller number of drivers to be used in low-resolution imaging than in high-resolution imaging, and is expected to reduce power consumption. When performing an operation or the like, switching to low-resolution imaging with a small number of drivers may be used to obtain a power consumption reduction effect. Also, when detecting the start of radiation detection, the power consumption may be reduced by switching to low-resolution imaging. In addition, when reset operation is performed after switching to low-resolution imaging, the time required to complete the reset of the entire imaging area can be shortened compared to high-resolution imaging, and detection of the start of radiation irradiation is detected. The period from the start to the charge accumulation mode can be shortened.
 また、上記の例示的実施形態における各フローチャートで示した処理は、プログラムとして各種記憶媒体に記憶して流通するようにしてもよい。
 また、放射線検出器26の構成は、上記例示的実施形態に限定されず、特開2009-267326号公報等に記載されているものを用いてもよい。例えば、光電変換膜86は、a-Siにより構成されていてもよい。また、絶縁性基板93、122は、ガラス基板であってもよい。
Further, the processing shown in each flowchart in the above exemplary embodiment may be stored and distributed as various programs in various storage media.
Further, the configuration of the radiation detector 26 is not limited to the above-described exemplary embodiment, and a configuration described in JP 2009-267326 A may be used. For example, the photoelectric conversion film 86 may be made of a-Si. Further, the insulating substrates 93 and 122 may be glass substrates.
 また、上記例示的実施形態では、検出対象とする放射線としてX線を検出する場合について説明した。しかしながら、本発明は、これに限定されるものではない。例えば、検出対象とする放射線は、可視光や紫外線、赤外線α線、γ線等いずれであってもよい。 In the exemplary embodiment, the case where X-rays are detected as radiation to be detected has been described. However, the present invention is not limited to this. For example, the radiation to be detected may be visible light, ultraviolet rays, infrared ray α, γ ray, or the like.
 その他、上記例示的実施形態で説明した放射線画像撮影システムの構成、放射線画像撮影装置の構成等は一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能である。 In addition, the configuration of the radiographic image capturing system, the configuration of the radiographic image capturing apparatus, and the like described in the above exemplary embodiment are merely examples, and can be appropriately changed without departing from the gist of the present invention.
 日本出願2012-123628の開示は、その全体が参照により本明細書に取り込まれる。 The entire disclosure of Japanese application 2012-123628 is incorporated herein by reference.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (15)

  1.  照射された放射線に応じた電荷を発生するセンサ部、及び前記センサ部により発生された電荷を読み出して前記電荷を出力するスイッチング素子を含む複数の画素が設けられた放射線検出器と、
     前記放射線検出器における予め定めた高解像度の撮影で使用する画素の欠陥を検出して高解像度欠陥画素マップを生成する生成手段と、
     前記生成手段によって生成された前記高解像度欠陥画素マップを前記高解像度より低い解像度の低解像度欠陥画素マップに変換する変換手段と、
     を備えた放射線画像撮影装置。
    A radiation detector provided with a plurality of pixels including a sensor unit that generates electric charge according to irradiated radiation, and a switching element that reads out the electric charge generated by the sensor unit and outputs the electric charge;
    Generating means for detecting a defect of a pixel used in photographing at a predetermined high resolution in the radiation detector and generating a high resolution defective pixel map;
    Conversion means for converting the high resolution defective pixel map generated by the generation means into a low resolution defective pixel map having a resolution lower than the high resolution;
    A radiographic imaging apparatus comprising:
  2.  前記放射線検出器は、
     照射された放射線に応じた電荷を発生するセンサ部、並びに、前記センサ部から前記電荷を読み出して前記電荷を出力する第1スイッチング素子及び前記センサ部から前記電荷を読み出して前記電荷を出力する第2スイッチング素子を前記スイッチング素子として各々備え、かつ2次元状に配列された複数の画素と、
     第1方向に隣接する複数の画素の前記第1スイッチング素子の制御端に接続された複数の第1制御配線と、
     第1方向に隣接する複数の画素の前記第2スイッチング素子の制御端に接続された複数の第2制御配線と、
     前記画素の第1方向と異なる第2方向に沿った配列毎に信号配線を備え、かつ前記信号配線毎に前記第2方向に隣接する複数の画素の前記第1スイッチング素子の出力端が接続されると共に、前記第2方向に隣接する複数の画素の前記第2スイッチング素子の出力端及び、前記第1方向に隣接する複数の画素の前記第2スイッチング素子の出力端が、一部の前記信号配線に接続された信号配線群と、
     を備える請求項1に記載の放射線画像撮影装置。
    The radiation detector is
    A sensor unit that generates a charge corresponding to the irradiated radiation; a first switching element that reads the charge from the sensor unit and outputs the charge; and a first switching element that reads the charge from the sensor unit and outputs the charge. A plurality of pixels each having two switching elements as the switching elements and arranged two-dimensionally;
    A plurality of first control wirings connected to control ends of the first switching elements of a plurality of pixels adjacent in the first direction;
    A plurality of second control wirings connected to control ends of the second switching elements of a plurality of pixels adjacent in the first direction;
    A signal wiring is provided for each arrangement along a second direction different from the first direction of the pixels, and the output ends of the first switching elements of a plurality of pixels adjacent to the second direction are connected for each signal wiring. The output ends of the second switching elements of a plurality of pixels adjacent in the second direction and the output ends of the second switching elements of the plurality of pixels adjacent in the first direction are part of the signal. A group of signal wires connected to the wires;
    The radiographic imaging apparatus of Claim 1 provided with.
  3.  前記高解像度欠陥画素マップ及び前記低解像度欠陥画素マップは、欠陥画素の種類に応じて定義する請求項1又は請求項2に記載の放射線画像撮影装置。 The radiographic imaging device according to claim 1 or 2, wherein the high-resolution defective pixel map and the low-resolution defective pixel map are defined according to a type of defective pixel.
  4.  前記高解像度欠陥画素マップ及び前記低解像度欠陥画素マップは、欠陥画素の原因に応じて定義する請求項1~3の何れか1項に記載の放射線画像撮影装置。 4. The radiographic image capturing apparatus according to claim 1, wherein the high resolution defective pixel map and the low resolution defective pixel map are defined according to a cause of the defective pixel.
  5.  前記高解像度欠陥画素マップ又は前記低解像度欠陥画素マップに基づいて、欠陥画素を補正する補正手段を更に備えた請求項1~4の何れか1項に記載の放射線画像撮影装置。 The radiographic image capturing apparatus according to any one of claims 1 to 4, further comprising correction means for correcting defective pixels based on the high resolution defective pixel map or the low resolution defective pixel map.
  6.  前記補正手段は、低解像度の撮影の際には、前記低解像度欠陥画素マップの欠陥画素とされた低解像度画素に含まれる高解像度画素の欠陥画素数に応じてゲインを調整することにより欠陥画素を補正する請求項5に記載の放射線画像撮影装置。 The correcting means adjusts the gain according to the number of defective pixels of the high resolution pixels included in the low resolution pixels that are the defective pixels of the low resolution defective pixel map at the time of low resolution imaging. The radiographic imaging apparatus of Claim 5 which correct | amends.
  7.  前記スイッチング素子は、向き及び大きさが各画素で同一に構成されている請求項1~6の何れか1項に記載の放射線画像撮影装置。 The radiographic imaging apparatus according to any one of claims 1 to 6, wherein the switching element is configured to have the same orientation and size for each pixel.
  8.  請求項1~7の何れか1項に記載の放射線画像撮影装置と、
     被検体を介して前記放射線検出器に放射線を照射する放射線照射手段と、
     を備えた放射線画像撮影システム。
    A radiographic imaging apparatus according to any one of claims 1 to 7,
    Radiation irradiating means for irradiating the radiation detector through the subject with radiation;
    Radiographic imaging system equipped with.
  9.  照射された放射線に応じた電荷を発生するセンサ部、及び前記センサ部により発生された電荷を読み出すスイッチング素子を含む複数の画素が設けられた放射線検出器における予め定めた高解像度の撮影で使用する画素の欠陥を検出して高解像度欠陥画素マップを生成する生成ステップと、
     前記生成ステップで生成した前記高解像度欠陥画素マップを前記高解像度より低い解像度の低解像度欠陥画素マップに変換する変換ステップと、
     を有する放射線画像撮影方法。
    Used for high-definition radiography in a radiation detector provided with a plurality of pixels including a sensor unit that generates electric charge according to the irradiated radiation and a switching element that reads out electric charge generated by the sensor unit. A generation step of detecting a defect in the pixel and generating a high-resolution defect pixel map;
    Converting the high resolution defective pixel map generated in the generating step into a low resolution defective pixel map having a resolution lower than the high resolution;
    A radiographic imaging method comprising:
  10.  前記放射線検出器は、
     照射された放射線に応じた電荷を発生するセンサ部、並びに、前記センサ部から前記電荷を読み出して前記電荷を出力する第1スイッチング素子及び前記センサ部から前記電荷を読み出して前記電荷を出力する第2スイッチング素子を前記スイッチング素子として各々備え、かつ2次元状に配列された複数の画素と、
     第1方向に隣接する複数の画素の前記第1スイッチング素子の制御端に接続された複数の第1制御配線と、
     第1方向に隣接する複数の画素の前記第2スイッチング素子の制御端に接続された複数の第2制御配線と、
     前記画素の第1方向と異なる第2方向に沿った配列毎に信号配線を備え、かつ前記信号配線毎に前記第2方向に隣接する複数の画素の前記第1スイッチング素子の出力端が接続されると共に、前記第2方向に隣接する複数の画素の前記第2スイッチング素子の出力端及び、前記第1方向に隣接する複数の画素の前記第2スイッチング素子の出力端が、一部の前記信号配線に接続された信号配線群と、
     を備える請求項9に記載の放射線画像撮影方法。
    The radiation detector is
    A sensor unit that generates a charge corresponding to the irradiated radiation; a first switching element that reads the charge from the sensor unit and outputs the charge; and a first switching element that reads the charge from the sensor unit and outputs the charge. A plurality of pixels each having two switching elements as the switching elements and arranged two-dimensionally;
    A plurality of first control wirings connected to control ends of the first switching elements of a plurality of pixels adjacent in the first direction;
    A plurality of second control wirings connected to control ends of the second switching elements of a plurality of pixels adjacent in the first direction;
    A signal wiring is provided for each arrangement along a second direction different from the first direction of the pixels, and the output ends of the first switching elements of a plurality of pixels adjacent to the second direction are connected for each signal wiring. The output ends of the second switching elements of a plurality of pixels adjacent in the second direction and the output ends of the second switching elements of the plurality of pixels adjacent in the first direction are part of the signal. A group of signal wires connected to the wires;
    The radiographic imaging method of Claim 9.
  11.  前記高解像度欠陥画素マップ及び前記低解像度欠陥画素マップは、欠陥画素の種類に応じて定義する請求項9又は請求項10に記載の放射線画像撮影方法。 The radiographic image capturing method according to claim 9 or 10, wherein the high-resolution defective pixel map and the low-resolution defective pixel map are defined according to a type of defective pixel.
  12.  前記高解像度欠陥画素マップ及び前記低解像度欠陥画素マップは、欠陥画素の原因に応じて定義する請求項9~11の何れか1項に記載の放射線画像撮影方法。 12. The radiographic image capturing method according to claim 9, wherein the high resolution defective pixel map and the low resolution defective pixel map are defined according to a cause of the defective pixel.
  13.  前記高解像度欠陥画素マップ又は前記低解像度欠陥画素マップに基づいて、欠陥画素を補正する補正ステップを更に有する請求項9~12の何れか1項に記載の放射線画像撮影方法。 13. The radiographic image capturing method according to claim 9, further comprising a correcting step of correcting a defective pixel based on the high resolution defective pixel map or the low resolution defective pixel map.
  14.  前記補正ステップは、低解像度の撮影の際には、前記低解像度欠陥画素マップの欠陥画素とされた低解像度画素に含まれる高解像度画素の欠陥画素数に応じてゲインを調整することにより欠陥画素を補正する請求項13に記載の放射線画像撮影方法。 In the correction step, the defective pixel is adjusted by adjusting the gain according to the number of defective pixels of the high resolution pixel included in the low resolution pixel which is the defective pixel of the low resolution defective pixel map at the time of low resolution photographing. The radiographic imaging method according to claim 13, wherein the correction is performed.
  15.  コンピュータを、請求項1~7の何れか1項に記載の放射線画像撮影装置の各手段として機能させるための放射線画像撮影プログラム。 A radiographic imaging program for causing a computer to function as each means of the radiographic imaging apparatus according to any one of claims 1 to 7.
PCT/JP2013/064674 2012-05-30 2013-05-27 Radiographic imaging equipment, radiographic imaging system, radiographic imaging method, and radiographic imaging program WO2013180078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012123628 2012-05-30
JP2012-123628 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013180078A1 true WO2013180078A1 (en) 2013-12-05

Family

ID=49673272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064674 WO2013180078A1 (en) 2012-05-30 2013-05-27 Radiographic imaging equipment, radiographic imaging system, radiographic imaging method, and radiographic imaging program

Country Status (1)

Country Link
WO (1) WO2013180078A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076766A (en) * 2015-10-15 2017-04-20 日本化薬株式会社 Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022520A (en) * 2006-03-16 2008-01-31 Canon Inc Imaging apparatus, its processing method and program
JP2008252564A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Image processing device, method, and program
JP2009290659A (en) * 2008-05-30 2009-12-10 Sony Corp Solid-state imaging device, imaging device, and drive method of the solid-state imaging device
JP2010233886A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Image processing method and radiation imaging apparatus
JP2011013180A (en) * 2009-07-06 2011-01-20 Shimadzu Corp Radiation imaging device
JP2012130656A (en) * 2010-11-30 2012-07-12 Fujifilm Corp Radiation detection element and radiographic imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022520A (en) * 2006-03-16 2008-01-31 Canon Inc Imaging apparatus, its processing method and program
JP2008252564A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Image processing device, method, and program
JP2009290659A (en) * 2008-05-30 2009-12-10 Sony Corp Solid-state imaging device, imaging device, and drive method of the solid-state imaging device
JP2010233886A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Image processing method and radiation imaging apparatus
JP2011013180A (en) * 2009-07-06 2011-01-20 Shimadzu Corp Radiation imaging device
JP2012130656A (en) * 2010-11-30 2012-07-12 Fujifilm Corp Radiation detection element and radiographic imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076766A (en) * 2015-10-15 2017-04-20 日本化薬株式会社 Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same

Similar Documents

Publication Publication Date Title
JP5683850B2 (en) Radiation detection element and radiographic imaging device
JP5714770B2 (en) Radiation image capturing apparatus, radiation image capturing system, method for controlling radiation image capturing apparatus, and control program for radiation image capturing apparatus
JP5625833B2 (en) Radiation detector and radiography apparatus
US7557355B2 (en) Image pickup apparatus and radiation image pickup apparatus
KR101819757B1 (en) Photodiode and other sensor structures in flat-panel x-ray imagers and method for improving topological uniformity of the photodiode and other sensor structures in flat-panel x-ray imagers based on thin-film electronics
JP5043374B2 (en) Conversion device, radiation detection device, and radiation detection system
US9833214B2 (en) Radiographic image capturing device, method for detecting radiation doses, and computer readable storage medium
US8792618B2 (en) Radiographic detector including block address pixel architecture, imaging apparatus and methods using the same
US9698193B1 (en) Multi-sensor pixel architecture for use in a digital imaging system
WO2013065645A1 (en) Radiological imaging device, program and radiological imaging method
WO2013180076A1 (en) Radiographic imaging equipment, radiographic imaging system, control method for radiographic imaging equipment, and control program for radiographic imaging equipment
US8220993B2 (en) Radiographic apparatus
JP2006346011A (en) Radiation imaging device and its control method
WO2013180078A1 (en) Radiographic imaging equipment, radiographic imaging system, radiographic imaging method, and radiographic imaging program
WO2013065680A1 (en) Radiological imaging device, radiological image processing device, radiological imaging system, radiological imaging method, and radiological imaging program
JP2006128644A (en) Imaging apparatus, radiation imaging apparatus, and radiation imaging system
WO2013065681A1 (en) Radiological imaging system, radiological image processing device, radiological imaging device, radiological video image processing device, and radiological video image processing program
WO2013125325A1 (en) Radiography device, radiography system, radiography device control method, and radiography device control program
WO2013065682A1 (en) Radiological imaging device, radiological image processing device, radiological imaging system, radiological imaging method, and radiological imaging program
JP2004167075A (en) Apparatus and method for radiography
WO2013180075A1 (en) Radiographic imaging equipment, radiographic imaging system, control method for radiographic imaging equipment, and control program for radiographic imaging equipment
WO2013125316A1 (en) Radiography device, radiography system, radiography device control method, and radiography device control program
JP2014068882A (en) Radiation image photographing control device, radiation moving image photographing system, defect determination method for radiation image photographing apparatus and radiation image photographing control program
JP2014068857A (en) Radiation image photographing control device, radiation moving image photographing system, defect determination method for radiation image photographing apparatus, and radiation image photographing control program
JP2012107887A (en) Radiographic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP