WO2013180009A1 - Optical sheet manufacturing method, optical sheet processing device, and optical sheet processing method - Google Patents

Optical sheet manufacturing method, optical sheet processing device, and optical sheet processing method Download PDF

Info

Publication number
WO2013180009A1
WO2013180009A1 PCT/JP2013/064373 JP2013064373W WO2013180009A1 WO 2013180009 A1 WO2013180009 A1 WO 2013180009A1 JP 2013064373 W JP2013064373 W JP 2013064373W WO 2013180009 A1 WO2013180009 A1 WO 2013180009A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sheet
transfer
stage
incident end
guide plate
Prior art date
Application number
PCT/JP2013/064373
Other languages
French (fr)
Japanese (ja)
Inventor
尚規 奥
英則 角谷
規光 坂田
武志 川上
顕 谷河
則希 川端
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012121912A external-priority patent/JP2013244717A/en
Priority claimed from JP2012126090A external-priority patent/JP2013251185A/en
Priority claimed from JP2012256558A external-priority patent/JP6066689B2/en
Priority claimed from JP2012256555A external-priority patent/JP6033053B2/en
Priority claimed from JP2012267058A external-priority patent/JP6033066B2/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013180009A1 publication Critical patent/WO2013180009A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/043Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for profiled articles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • B29C2035/0816Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction using eddy currents

Definitions

  • the present invention relates to an optical sheet manufacturing method for manufacturing an optical sheet having an uneven portion on a light incident end surface, and an optical sheet processing apparatus and method for forming an uneven portion on a light incident end surface of an optical sheet.
  • An example of the optical sheet is a light guide plate used in a backlight unit of a liquid crystal display device.
  • a plurality of light sources are arranged in an array facing the light incident end face of the light guide plate, and light incident from the light incident end face of the light guide plate is emitted from the light exit surface, thereby liquid crystal Illuminate the display panel.
  • luminance unevenness occurs in the illumination light emitted from the vicinity of the light incident end surface of the light exit surface of the light guide plate.
  • Patent Document 1 a technique is known in which a cut and polished surface is formed on a light incident end surface of a light guide plate.
  • the cutting and polishing surface described in Patent Document 1 is a rough surface having a large number of fine vertical irregularities extending in a direction perpendicular to the light emitting surface of the light guide plate.
  • the present invention is an optical sheet manufacturing method for manufacturing an optical sheet made of a thermoplastic resin and having an uneven portion on the light incident end surface, and has a transfer surface for providing the uneven portion on the light incident end surface of the optical sheet. It includes a preparation step of preparing a transfer mold and a processing step of forming an uneven portion on the light incident end surface by pressing the transfer surface and the light incident end surface with the transfer mold heated. Is.
  • the transfer surface of the transfer mold and the optical sheet are heated while the transfer mold having the transfer surface for imparting the uneven portion to the light incident end surface of the optical sheet is heated.
  • the uneven portions are formed by cutting by forming the uneven portions on the light incident end surfaces of the optical sheet by pressing the light incident end surfaces to each other.
  • chips are not generated. Thereby, mixing and adhesion of swarf to the optical sheet can be prevented.
  • the processing time tends to be long.
  • the heating temperature of the transfer mold, the transfer surface of the transfer mold, and the optical sheet By adjusting the pressing pressure between the end faces, the processing time can be shortened.
  • the transfer mold may be heated to a temperature that is equal to or higher than the Vicat softening temperature of the thermoplastic resin and equal to or lower than the Vicat softening temperature of the thermoplastic resin + 50 ° C.
  • the heating temperature of the transfer mold By setting the heating temperature of the transfer mold to be equal to or higher than the Vicat softening temperature of the thermoplastic resin, the thermoplastic resin is moderately softened, so that the optical sheet is prevented from cracking and an uneven portion is formed on the light incident end face of the optical sheet. It can transfer well.
  • the heating temperature of the transfer mold to the Vicat softening temperature of the thermoplastic resin + 50 ° C. or less, the melt flow of the thermoplastic resin is prevented, so the elastic modulus of the thermoplastic resin is lowered and the optical sheet is deformed. And the transfer mold is hardly contaminated.
  • the transfer mold has a metal roll part, and the peripheral surface of the roll part is a transfer surface.
  • the transfer part and the light incident end face are pressed against each other and the roll part is rotated.
  • the roll portion may be moved relative to the optical sheet along the light incident end surface of the optical sheet to form an uneven portion on the light incident end surface.
  • the transfer surface of the transfer mold (the peripheral surface of the roll part) and the light incident end surfaces of the optical sheet are pressed against each other, they are not in surface contact but in line contact. The pressure can be reduced.
  • the transfer surface is provided with a convex or concave portion for transfer having a prism shape or a lenticular shape
  • the pitch of the concave and convex portions for transfer is 10 ⁇ m to 500 ⁇ m
  • the height of the concave and convex portions for transfer is 10 ⁇ m to 300 ⁇ m. Also good.
  • the uneven portion is transferred to the light incident end face of the optical sheet at a desired transfer rate. can do.
  • the transfer surface and the light incident end surface may be pressed together with a pressure of 0.05 MPa to 50 MPa.
  • a pressure of 0.05 MPa to 50 MPa By setting the pressing pressure to 0.05 MPa or more, the concavo-convex portion can be satisfactorily transferred to the light incident end face of the optical sheet. Moreover, the crack of an optical sheet can be prevented by making pressing pressure into 50 Mpa or less.
  • thermoplastic resin an amorphous resin having high dimensional accuracy, impact strength, and transparency may be used.
  • the transfer mold and the optical sheet may be released before the transfer surface is completely filled with the thermoplastic resin.
  • the uneven part can be processed in a short time.
  • the tip of the concavo-convex portion becomes a flat surface or a surface that is almost flat.
  • the nearly flat surface means that, for example, when the uneven portion for transfer having a prism shape is transferred to the light incident end surface of the optical sheet, the inclination is clearly smooth compared to the concave oblique side of the uneven portion. It refers to the surface of the level.
  • the concavo-convex portion has a shape in which a flat region (including a region close to flat) and a concave region are mixed. Accordingly, the optical characteristics (light diffusibility) of the optical sheet are improved, and the tip of the concavo-convex portion is prevented from being chipped.
  • the transfer mold may be heated to a temperature that is equal to or higher than the Vicat softening temperature of the thermoplastic resin and equal to or lower than the Vicat softening temperature of the thermoplastic resin + 40 ° C.
  • the heating temperature of the transfer mold By setting the heating temperature of the transfer mold to be equal to or higher than the Vicat softening temperature of the thermoplastic resin, the thermoplastic resin is moderately softened, so that the optical sheet is prevented from cracking and an uneven portion is formed on the light incident end face of the optical sheet. It can transfer well.
  • the heating temperature of the transfer mold to the Vicat softening temperature of the thermoplastic resin + 40 ° C. or lower, the melt flow of the thermoplastic resin is prevented, so that the elastic modulus of the thermoplastic resin is lowered and the optical sheet is deformed. And the transfer mold is hardly contaminated.
  • the transfer surface is provided with a transfer uneven portion having a prism shape or a lenticular shape, and in the processing step, the length F of the base flat region and the length of the convex region at one pitch of the transfer uneven portion.
  • the ratio F / Wa to Wa is 0 to 50%
  • the ratio F ′ / Wa ′ of the length F ′ of the tip flat region and the length Wa ′ of the concave region at one pitch of the concavo-convex portion is 10
  • a concavo-convex portion may be formed on the light incident end face so as to be ⁇ 300%.
  • the base flat region and the tip flat region include not only a completely flat region but also a region close to flat.
  • the present invention also provides an optical sheet processing apparatus for forming an uneven portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the stage supporting the optical sheet, and the light incident end surface of the optical sheet supported by the stage.
  • a transfer mold having a transfer surface for providing an uneven portion, a heating means for heating the transfer mold, a pressure applying means for applying pressure so as to press the transfer surface and the light incident end surfaces, and a light incident end surface
  • a driving means for driving at least one of a stage and a transfer mold so as to form an uneven portion.
  • the above-described optical sheet manufacturing method can be carried out.
  • chips are not generated as described above, and therefore, mixing and adhesion of chips to the optical sheet can be prevented. Further, as described above, the processing time can be shortened.
  • the transfer mold has a metal roll part, and the peripheral surface of the roll part is a transfer surface.
  • the driving means is a means for rotating the roll part and a roll part along the light incident end face of the optical sheet.
  • the optical sheet processing apparatus may further include a clamping unit that clamps the optical sheet with respect to the stage.
  • a clamping unit that clamps the optical sheet with respect to the stage.
  • this invention is an optical sheet processing apparatus which forms an uneven part in the light-incidence end surface of the optical sheet which consists of thermoplastic resins in another side surface, Comprising: For giving an uneven part to the light-incidence end surface of an optical sheet A metal transfer roll having a transfer surface, a pair of stages arranged to sandwich the transfer roll and supporting the optical sheet, a heating means for heating the transfer roll, and the transfer surface and the light incident end surface are pressed against each other. And a pressure applying means for applying pressure to the stage, a rotating means for rotating the transfer roll, and a moving means for moving the stage in the direction of forming the concavo-convex portion with respect to the transfer roll.
  • an optical sheet processing apparatus of the present invention when forming a concavo-convex portion on the light incident end surface of an optical sheet made of a thermoplastic resin, the metal transfer roll is heated and the transfer surface of the transfer roll and While the pressure is applied to the stage so that the light incident end faces of the optical sheet are pressed against each other, the optical sheet is made incident by moving the stage in the direction of forming the concavo-convex part with respect to the transfer roll while rotating the transfer roll.
  • An uneven portion is provided on the end face.
  • the optical sheet supported by the other stage is not formed during the period in which the concave and convex portions are formed on the light incident end face of the optical sheet supported by one stage (for example, the period during which the optical sheet is inserted or removed).
  • An uneven portion can be formed on the light incident end face. In this case, it is not necessary to interrupt the process of forming the concavo-convex portion on the light incident end face of the optical sheet for loading and unloading the optical sheet. Thereby, the processing tact of an optical sheet can be improved.
  • the rotating means has a pair of motors provided corresponding to each stage, and a rotation power transmission mechanism for transmitting the driving force of each motor to the transfer roll, and the moving means is the above-mentioned pair of motors. And a moving power transmission mechanism for transmitting the driving force of each motor to each stage.
  • a pair of motors are shared as components of the rotating means and moving means, it is not necessary to separate the motor for rotating the transfer roll and the motor for moving each stage, and the number of motors to be used. Can be minimized.
  • the rotational power transmission mechanism includes a first spur gear attached to the roll shaft of the transfer roll, a pair of second spur gears that mesh with the first spur gear, and motors for the second spur gears. And a pair of clutches for intermittently transmitting and receiving the driving force of each, and a power transmission mechanism for movement is attached to each pair of racks provided on each stage and each motor output shaft, and each rack And a pair of pinions that mesh with each other.
  • the rotation power transmission mechanism and the movement power transmission mechanism can be realized with a simple configuration.
  • the present invention in this aspect is an optical sheet processing method for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the preparation step for preparing the optical sheet processing apparatus described above, and a transfer roll. While heating, with the pressure applied to the stage so that the transfer surface and the light incident end surface are pressed together, the stage is moved in the direction of forming the concavo-convex part while rotating the transfer roll. Forming a concavo-convex portion on the light end face, and in the forming step, the concavo-convex portion is not formed on the light incident end face of the optical sheet supported by one of the pair of stages. An uneven portion is formed on the light incident end face of the optical sheet supported on the other side.
  • the transfer roll is heated and the transfer roll is rotated in a state where pressure is applied to the stage so as to press the transfer face of the transfer roll and the light incident end faces of the optical sheet. Then, by moving the stage in the formation direction of the concavo-convex portion with respect to the transfer roll, the concavo-convex portion is imparted to the light incident end surface of the optical sheet.
  • the light incident end surface of the optical sheet supported by the other stage during a period in which the uneven portion is not formed on the light incident end surface of the optical sheet supported by one stage (for example, the period during which the optical sheet is inserted or removed)
  • the concavo-convex portion By forming the concavo-convex portion on the optical sheet, it is not necessary to interrupt the step of forming the concavo-convex portion on the light incident end surface of the optical sheet in order to load and unload the optical sheet. Thereby, the processing tact of an optical sheet can be improved.
  • the other stage is moved from one side to the other side, and an uneven portion is formed on the light incident end face of the optical sheet supported by the other stage.
  • one stage is moved from one side to the other side and supported by one stage.
  • the second step of forming the uneven portion on the light incident end face of the optical sheet, and the second stage is moved from the other side to the one side while the optical sheet is taken out from the one stage after performing the second step.
  • the third step of forming an uneven portion on the light incident end surface of the optical sheet supported by the other stage and the third step are performed, and then the optical sheet is taken out from the other stage.
  • the one stage is moved to one side from the other side may comprise a fourth step of forming an uneven portion to the light incident face of the optical sheet supported on one stage.
  • the concave and convex portions can be formed on the light incident end face from both directions for both the optical sheet supported by one stage and the optical sheet supported by the other stage.
  • the other stage is moved from one side to the other, and the light incident end face of the optical sheet supported by the other stage is uneven.
  • the first step for forming the part, the second step for moving the other stage from the other side to the one side, and the second step while one stage is waiting after the first step is performed After that, while taking out the optical sheet from the other stage, one stage is moved from the other side to one side to form an uneven portion on the light incident end face of the optical sheet supported by one stage.
  • the third step may include a fourth step of moving one stage from one side to the other while the other stage is waiting after the third step is performed. In this case, since it is sufficient that one worker is provided on each of the one side and the other side of the optical sheet processing apparatus, the number of workers can be reduced.
  • the other stage is moved from one side to the other, and the light incident end face of the optical sheet supported by the other stage is uneven.
  • the first step for forming the part, the second step for moving the other stage from the other side to the one side, and the second step while one stage is waiting after the first step is performed After that, while taking out the optical sheet from the other stage, one stage is moved from one side to the other to form a concavo-convex portion on the light incident end surface of the optical sheet supported by one stage.
  • a fourth step of moving one stage from the other side to the one side while the other stage is waiting after the third step is performed.
  • the number of workers can be reduced. Also, even if it is difficult for a worker to work on the other side of the optical sheet processing apparatus because there is a wall or the like on the other side of the optical sheet processing apparatus, the work can be performed without trouble on one side of the optical sheet processing apparatus. It can be performed.
  • the present invention is an optical sheet processing apparatus for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the stage supporting the optical sheet, and the optical supported by the stage.
  • Metal transfer roll having a transfer surface for imparting irregularities to the light incident end face of the sheet, heating means for heating the transfer roll, and pressure application for applying pressure so as to press the transfer face and the light incident end face together
  • Means a rotating means for rotating the transfer roll, a first moving means for moving the stage relative to the transfer roll in the direction of forming the concavo-convex portion, and a transfer roll in the roll axis direction of the transfer roll with respect to the stage.
  • a second moving means for relatively moving.
  • an optical sheet processing apparatus of the present invention when forming a concavo-convex portion on the light incident end surface of an optical sheet made of a thermoplastic resin, the metal transfer roll is heated and the transfer surface of the transfer roll and With the pressure applied so that the light incident end faces of the optical sheet are pressed against each other, the stage is moved relative to the transfer roll in the direction of forming the concavo-convex part while rotating the transfer roll.
  • An uneven portion is provided on the light end face.
  • the transfer surface of the transfer roll when the transfer surface of the transfer roll is thermally transferred to the light incident end surface of the optical sheet, the thermoplastic resin that is the material of the optical sheet is thermally decomposed, and the additive contained in the thermoplastic resin is precipitated. It may adhere to the transfer surface of the transfer roll as dirt.
  • the transfer roll When contamination occurs on the transfer surface of the transfer roll in this way, the transfer roll is placed on the stage so that the incident end surface of the optical sheet does not come into contact with the occurrence of contamination on the transfer surface of the transfer roll. Move relatively in the roll axis direction of the transfer roll. As a result, even if the transfer surface of the transfer roll becomes dirty, the formation of uneven portions on the light incident end surface of the optical sheet is continuously performed on the clean transfer surface of the transfer roll without cleaning the transfer surface. Can do.
  • a masking film may be bonded to the main surface of the optical sheet.
  • the paste component used for bonding the masking film adheres to the transfer roll as dirt. There is. Therefore, it is particularly effective to apply the present invention to the processing of such an optical sheet with a masking film.
  • the heating means may include an induction coil provided in the transfer roll and a power supply unit that supplies current to the induction coil.
  • the temperature distribution in the roll axis direction of the transfer roll is higher than when the transfer roll is heated with oil. It is made uniform. Therefore, by moving the transfer roll relative to the stage in the roll axis direction of the transfer roll, stable transfer accuracy can be achieved even if the contact location between the transfer surface of the transfer roll and the light incident end surface of the optical sheet is changed. Obtainable.
  • the present invention in this aspect is an optical sheet processing method for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the preparation step for preparing the optical sheet processing apparatus described above, and a transfer roll.
  • a transfer roll By heating and moving the stage relative to the transfer roll in the direction of formation of the concavo-convex part while rotating the transfer roll in a state where pressure is applied so as to press the transfer surface and the light incident end surfaces, After the molding process for forming the concavo-convex portion on the light incident end face and the foreign substance adhering to the transfer surface after the molding process is performed, it is avoided that the light incident end face comes into contact with the foreign matter adhesion portion on the transfer surface. And an avoidance step of moving the transfer roll relative to the stage in the roll axis direction of the transfer roll.
  • the transfer roll is heated and the transfer roll is rotated in a state where pressure is applied so as to press the transfer surface of the transfer roll and the light incident end faces of the optical sheet.
  • the uneven portion is imparted to the light incident end surface of the optical sheet.
  • the present invention is an optical sheet processing apparatus for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the stage supporting the optical sheet, and the optical supported by the stage.
  • a metal transfer roll having a transfer surface for imparting a concavo-convex portion to the light incident end face of the sheet, and a stage disposed on the side corresponding to the transfer roll with respect to the stage, for setting a reference position of the optical sheet with respect to the transfer roll
  • an optical sheet processing apparatus of the present invention when forming a concavo-convex portion on the light incident end surface of an optical sheet made of a thermoplastic resin, the metal transfer roll is heated and the transfer surface of the transfer roll and With the pressure applied so that the light incident end faces of the optical sheet are pressed against each other, the stage is moved relative to the transfer roll in the direction of forming the concavo-convex part while rotating the transfer roll.
  • An uneven portion is provided on the light end face.
  • the optical sheet is cut, a positioning member is arranged on the side corresponding to the transfer roll with respect to the stage, the optical sheet is pressed against the positioning member by the pressing member, and the reference position of the optical sheet with respect to the transfer roll is set. Even if the size of the optical sheet differs from one sheet to another due to the tolerance, the reference position of the optical sheet with respect to the transfer roll is always constant. Therefore, when a pressure is applied so as to press the transfer surface of the transfer roll and the light incident end surfaces of the optical sheet, the contact distance between the optical sheet and the transfer roll is always kept constant. Thereby, even if the size of the optical sheet is different, stable transfer accuracy can be obtained.
  • the positioning member may be a freely rotatable roller.
  • the stage moves relative to the transfer roll relative to the transfer roll in a state where the optical sheet contacts the positioning member (roller) and the reference position of the optical sheet relative to the transfer roll is set.
  • the optical sheet moves relative to the transfer roll while the roller rotates, the optical sheet is prevented from being damaged.
  • the pressing member may be at least one of a bar extending in the moving direction of the stage and a plurality of pins arranged side by side in the moving direction of the stage.
  • the pressing member can be realized with a simple structure.
  • the bar has a plurality of pins protruding to the stage side, and the upper surface of the stage extends in the pressing direction of the optical sheet and is provided with a plurality of guide grooves for sliding each pin. Also good.
  • the lower surface of the bar and the upper surface of the stage are prevented from being rubbed and damaged. Even when the optical sheet is thin, the optical sheet can be reliably pressed against the positioning member by the plurality of pins.
  • the depth of unevenness on the transfer surface may be 0.01 mm to 0.30 mm.
  • Experiments and the like have revealed that when a large number of optical sheets (for example, about 50 sheets) are cut at once, a tolerance of about 0.1 mm at maximum is generated. For this reason, if the depth of the unevenness on the transfer surface of the transfer roll is in the above range, the influence of the contact distance between the optical sheet and the transfer roll on the transfer accuracy increases. Therefore, it is particularly effective to apply the present invention to a transfer roll having such a transfer surface.
  • the present invention in this aspect is an optical sheet processing method for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the preparation step for preparing the above optical sheet processing apparatus, and an optical sheet on the stage
  • the optical sheet is pressed against the positioning member by the pressing member to set the reference position of the optical sheet with respect to the transfer roll, the transfer roll is heated, and the transfer surface and the light incident end surface are pressed against each other.
  • Forming a concavo-convex portion on the light incident end surface by moving the stage relative to the transfer roll while rotating the transfer roll while pressure is applied. It is characterized by.
  • the transfer roll is heated and the transfer roll is rotated in a state where pressure is applied so as to press the transfer surface of the transfer roll and the light incident end faces of the optical sheet.
  • the uneven portion is imparted to the light incident end surface of the optical sheet.
  • the optical sheet is pressed against a positioning member arranged on the side corresponding to the transfer roll with respect to the stage, and the reference position of the optical sheet with respect to the transfer roll is set, so that the tolerance of the optical sheet can be reduced by the tolerance of the optical sheet.
  • the reference position of the optical sheet with respect to the transfer roll is always constant. Therefore, when a pressure is applied so as to press the transfer surface of the transfer roll and the light incident end surfaces of the optical sheet, the contact distance between the optical sheet and the transfer roll is always kept constant. Thereby, even if the size of the optical sheet is different, stable transfer accuracy can be obtained.
  • the present invention it is possible to prevent chips from being mixed and adhered to the optical sheet. As a result, the quality of the optical sheet can be stabilized and the yield can be improved. Further, according to one aspect of the present invention, even when the transfer surface of the transfer roll is contaminated, the formation of the uneven portion on the light incident end surface of the optical sheet is continuously performed on the clean transfer surface of the transfer roll. Can do. Thereby, the quality of the optical sheet can be stabilized and the yield can be improved. In addition, according to one aspect of the present invention, stable transfer accuracy can be obtained even if the size of the optical sheet is different. Thereby, the quality of the optical sheet can be stabilized and the yield can be improved.
  • grooved part can be processed in an optical sheet in a short time, and productivity can be improved.
  • the processing tact of the optical sheet can be increased and the productivity can be improved.
  • FIG. 1 It is a schematic sectional drawing which shows the liquid crystal display device containing the light-guide plate as an optical sheet manufactured by one Embodiment of the optical sheet manufacturing method concerning this invention. It is a perspective view of the light-guide plate shown in FIG. It is a flowchart which shows the process of manufacturing the light-guide plate shown in FIG. It is a schematic block diagram which shows the optical sheet processing apparatus used when performing a thermal transfer process to the light-incidence end surface of the light-guide plate shown in FIG. It is a figure which shows the uneven
  • FIG. 1 It is a schematic block diagram which shows the other modification of the optical sheet processing apparatus shown in FIG. It is a schematic block diagram which shows the modification of the optical sheet processing apparatus shown in FIG. It is a figure which shows the other uneven
  • FIG. 14 It is a perspective view of the light-guide plate shown in FIG. It is a flowchart which shows the process of manufacturing the light-guide plate shown in FIG. It is a schematic block diagram which shows the optical sheet processing apparatus used when performing a thermal transfer process to the light-incidence end surface of the light-guide plate shown in FIG. It is a figure which shows the uneven
  • FIG. 1 It is a schematic block diagram which shows the other modification of the optical sheet processing apparatus shown in FIG. It is a schematic block diagram which shows the modification of the optical sheet processing apparatus shown in FIG. It is a figure which shows the other uneven
  • FIG. 26 is a main portion sectional view taken along line XXVI-XXVI in FIG. 25. It is a principal part enlarged view of FIG. FIG. 26 is an enlarged cross-sectional view taken along line XXVIII-XXVIII in FIG. 25.
  • FIG. 25 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. 24 and the like.
  • FIG. 25 is a view showing a modification of the mechanism for rotating the transfer roll and moving the stage in the optical sheet processing apparatus shown in FIG. 24 and the like.
  • FIG. 25 is a view showing a modification of the mechanism for rotating the transfer roll and moving the stage in the optical sheet processing apparatus shown in FIG. 24 and the like.
  • FIG. 25 is a view showing a modification of the mechanism for rotating the transfer roll and moving the stage in the optical sheet processing apparatus shown in FIG. 24 and the like.
  • FIG. 39 is a cross-sectional view of the main part of the line XXXIX-XXXIX in FIG. 38. It is a principal part enlarged view of FIG. FIG. 39 is an enlarged cross-sectional view of the main part XLI-XLI in FIG. 38.
  • FIG. 38 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. 37 and the like.
  • FIG. 40 is a cross-sectional view showing a state where the transfer roll is raised in the optical sheet processing apparatus shown in FIG.
  • FIG. 1 It is a conceptual diagram which shows an example of the process of shape
  • FIG. 52 is a main-portion cross-sectional view taken along line LI-LI in FIG. It is a principal part enlarged view of FIG. FIG. 52 is an enlarged cross-sectional view of a main part taken along line LIII-LIII in FIG. 50.
  • FIG. 50 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. 49 and the like. It is a conceptual diagram which shows the uneven
  • FIG. 55 is a perspective view showing a structure for setting a reference position of the light guide plate with respect to the transfer roll shown in FIG. 54. It is a top view which shows a mode that the light-guide plate shown in FIG. 57 is pressed on the positioning roller, and a light-guide plate is moved toward a transfer roll in the state. It is a conceptual diagram which shows an example of the process of shape
  • FIG. 56 is a perspective view showing a modification of the structure for setting the reference position of the light guide plate with respect to the transfer roll shown in FIG. 54.
  • FIG. 1 is a schematic cross-sectional view showing a liquid crystal display device including a light guide plate as an optical sheet manufactured by an embodiment of the optical sheet manufacturing method according to the present invention.
  • a liquid crystal display device 101 according to the present embodiment is used for a liquid crystal television, for example.
  • the liquid crystal display device 101 includes a liquid crystal panel 102 and an edge type backlight unit 103 disposed on the back side of the liquid crystal panel 102.
  • the thickness of the liquid crystal panel 102 is about 1.8 mm, for example.
  • the backlight unit 103 has a box-shaped metal backlight housing 104.
  • a plurality of electronic components 105 are provided on the back surface (back surface) of the backlight housing 104 via a substrate (not shown).
  • a plurality of LEDs 106 for irradiating light are attached to the inner wall surfaces of the backlight housing 104 facing each other.
  • a light guide plate 107 having a rectangular cross section for guiding the light emitted from the LED 106 to the liquid crystal panel 102 is accommodated via a reflection sheet 108.
  • the reflection sheet 108 is disposed on the back surface (back surface) side of the light guide plate 107.
  • the light incident end face 107a of the light guide plate 107 is provided with a concavo-convex portion 109 having a substantially corrugated cross section.
  • the thickness of the light guide plate 107 is 3 mm, for example.
  • the light guide plate 107 is made of a thermoplastic resin. Specifically, the light guide plate 107 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency. Examples of the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), and cycloolefin polymer (COP).
  • PMMA polymethyl methacrylate resin
  • PS polystyrene
  • PC polycarbonate
  • COP cycloolefin polymer
  • the light emitted from the LED 106 is incident on the light incident end surface 107 a of the light guide plate 107.
  • the back surface of the light guide plate 107 is a reflective surface that reflects the light emitted from the LED 106
  • the front surface of the light guide plate 107 is a light output surface that emits the light emitted from the LED 106 and the light reflected by the reflective surface. It has become.
  • the back surface (reflection surface) of the light guide plate 107 has a structure that easily reflects and scatters light, such as dot pattern printing with ink. Depending on the usage, a lenticular shape, a prism shape, or the like may be formed on the light exit surface.
  • an optical film group 110 formed by laminating a plurality (three in this case) of optical films is disposed on the front side of the light guide plate 107.
  • the thickness of the optical film group 110 is, for example, about 0.2 mm.
  • the edges of the light guide plate 107 and the optical film group 110 are fixed to the backlight housing 104 by a frame body 111 made of resin (for example, PC).
  • the liquid crystal panel 102 is fixed to the backlight unit 103 by a metal frame body 112.
  • FIG. 3 is a flowchart showing a process of manufacturing the light guide plate 107 described above.
  • a light guide plate original plate is produced by a melt extrusion sheet forming process or the like (step S101).
  • the light guide plate original plate is roughly cut with a panel saw, a running saw, or the like to obtain the light guide plate 107 (step S102).
  • the light incident end face 107a of the light guide plate 107 is mirror finished (step S103).
  • step S104 the uneven
  • FIG. 4 is a schematic configuration diagram showing the optical sheet processing apparatus 120 used when step S104 of FIG. 3 is performed.
  • an optical sheet processing apparatus 120 includes a stage 121 that supports a light guide plate 107, and a clamp plate 122 that presses and clamps the light guide plate 107 placed on the stage 121 against the stage 121 from above. It has. Two positioning protrusions 123 for aligning the light guide plate 107 are provided on the upper surface of the stage 121.
  • the optical sheet processing apparatus 120 further includes a transfer mold 124 that performs thermal transfer on the light incident end surface 107 a of the light guide plate 107 placed on the stage 121.
  • the transfer mold 124 includes a rotatable metal rigid roll portion 125.
  • a transfer uneven portion 126 is formed along the circumferential direction of the rigid roll portion 125.
  • the peripheral surface of the rigid roll portion 125 is a transfer surface 125 a for providing the uneven portion 109 to the light incident end surface 107 a of the light guide plate 107.
  • the transfer uneven portion 126 is formed in a prism shape (triangular prism shape) with respect to the axial direction of the rigid roll portion 125 (see FIG. 5).
  • the pitch (width) P of the concavo-convex portion for transfer 126 is preferably 10 ⁇ m to 500 ⁇ m, and more preferably 10 ⁇ m to 200 ⁇ m.
  • the height (depth) H of the uneven portion for transfer 126 is preferably 10 ⁇ m to 300 ⁇ m in accordance with the pitch P of the uneven portion for transfer 126.
  • the transfer uneven portions 126 are shown to be arranged in a straight line.
  • the optical sheet processing apparatus 120 is configured to press the heating unit 127 that heats the transfer mold 124, the transfer surface 125 a of the rigid roll unit 125 of the transfer mold 124, and the light incident end surface 107 a of the light guide plate 107.
  • a pressure application unit 128 that applies pressure to 121, a movement drive unit 129 that moves the stage 121 in a direction perpendicular to the pressure application direction (the direction of arrow A in FIG. 4), and a rotation that rotates the rigid roll unit 125 And a drive unit 130.
  • the uneven portion 109 is formed on the light incident end face 107a of the light guide plate 107 using such an optical sheet processing apparatus 120, first, the one light guide plate 107 is placed on the stage 121, and the clamp plate 122 is in that state. Thus, the light guide plate 107 is clamped. Note that a masking film may be bonded to the light guide plate 107 mounted on the stage 121 to prevent damage.
  • the transfer mold 124 is heated by the heating unit 127.
  • the heating temperature of the transfer mold 124 is preferably equal to or higher than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 107 and is equal to or lower than the Vicat softening temperature of the thermoplastic resin + 50 ° C. It is more preferable that the Vicat softening temperature of the resin + 5 ° C. or higher and the Vicat softening temperature of the thermoplastic resin + 35 ° C. or lower.
  • the heating temperature of the transfer mold 124 is preferably 104 ° C. to 154 ° C., more preferably 110 ° C. to 140 ° C., and further preferably 120 ° C. to 130 ° C.
  • the transfer surface 125 a of the rigid roll unit 125 and the light incident end surface 107 a of the light guide plate 107 are pressed against each other.
  • the pressing pressure can be reduced accordingly.
  • the pressing pressure set at this time is preferably 0.05 MPa to 50 MPa, more preferably 0.2 MPa to 0.6 MPa. Further, since the light guide plate 107 is clamped by the clamp plate 122, the pressing pressure does not escape above the light guide plate 107, and the transfer surface 125a and the light incident end surface 107a can be effectively pressed.
  • the stage 121 is moved in the direction perpendicular to the pressure application direction with respect to the transfer mold 124 by the movement driving unit 129, and the rigid roll unit 125 is rotated by the rotation driving unit 130. Since the rotation of the light guide plate 107 relatively moves along the light incident end surface 107 a of the light guide plate 107, the transfer uneven portion 126 of the rigid roll portion 125 is transferred to the light incident end surface 107 a of the light guide plate 107. At this time, the movement of the stage 121 and the rotation of the rigid roll unit 125 are performed in synchronization.
  • the transfer time is preferably 1 to 10 seconds, more preferably 1 to 5 seconds.
  • the uneven portion 109 corresponding to the transfer uneven portion 126 is formed on the light incident end surface 107 a of the light guide plate 107.
  • the transfer surface 125a of the rigid roll portion 125 and the light incident end surface 107a of the light guide plate 107 are pressed against each other.
  • the transfer surface 125 a of the rigid roll portion 125 and the light incident end surface 107 a of the light guide plate 107 may be pressed against each other.
  • FIG. 6 is a schematic configuration diagram showing a modification of the optical sheet processing apparatus 120 shown in FIG.
  • the optical sheet processing apparatus 120 of this modification is arranged in a direction perpendicular to the pressure application direction with respect to the stage 121 (in the direction of arrow B in FIG. 6) instead of the movement drive unit 129. ) Is provided. Therefore, the rigid roll portion 125 itself moves along the light incident end surface 107a of the light guide plate 107 while rotating. Other configurations are the same as those shown in FIG. Even in this case, the transfer uneven portion 126 of the rigid roll portion 125 can be transferred to the light incident end surface 107 a of the light guide plate 107.
  • FIG. 7 is a schematic configuration diagram showing another modification of the optical sheet processing apparatus 120 shown in FIG.
  • an optical sheet processing apparatus 120 of this modification includes a stage 132 that supports a plurality of light guide plates 107 in a stacked state.
  • Other configurations are the same as those shown in FIG. In this case, the concavo-convex portions for transfer 126 of the rigid roll portion 125 can be collectively transferred to the light incident end surfaces 107 a of the plurality of light guide plates 107. Therefore, productivity can be improved.
  • FIG. 8 is a schematic configuration diagram showing a modification of the optical sheet processing apparatus 120 shown in FIG.
  • the optical sheet processing apparatus 120 of this modified example replaces the movement drive unit 129 with the rigid roll unit 125 in the direction perpendicular to the pressure application direction with respect to the stage 132 (the direction of arrow B in FIG. 8).
  • a movement drive unit 131 for movement is provided.
  • Other configurations are the same as those shown in FIG. Also in this case, the uneven portions for transfer 126 of the rigid roll portion 125 can be collectively transferred to the light incident end surfaces 107 a of the plurality of light guide plates 107.
  • the transfer mold 124 is heated, and the transfer surface 125a of the rigid roll portion 125 of the transfer mold 124 and the light incident end surface 107a of the light guide plate 107 are pressed against each other to thereby form the rigid roll portion. Since the uneven portion for transfer 126 provided on the transfer surface 125a of 125 is transferred to the light incident end surface 107a of the light guide plate 107, the uneven portion 109 is formed on the light incident end surface 107a of the light guide plate 107. As in the case where the uneven portion 109 is formed on the light incident end surface 107a of the light guide plate 107 by mechanical cutting processing or the like, chips are not generated. For this reason, since chips do not adhere to or mix in the light guide plate 107, the quality of the product can be stabilized and the yield can be improved.
  • the heating temperature of the transfer mold 124 is set to be equal to or higher than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 107, the light incident end surface 107a of the light guide plate 107 is appropriately softened.
  • the transfer uneven portion 126 can be satisfactorily transferred to the light incident end surface 107a of the light guide plate 107, and the light guide plate 107 can be prevented from cracking.
  • the heating temperature of the transfer mold 124 is set to the Vicat softening temperature of the thermoplastic resin forming the light guide plate 107 + 50 ° C. or less, the melt flow of the thermoplastic resin is prevented, so the elastic modulus of the thermoplastic resin. Is suppressed, and the light guide plate 107 is hardly deformed. In addition, significant contamination of the transfer mold 124 can be prevented.
  • the transfer uneven portion 126 of the rigid roll portion 125 is changed to the light incident end surface of the light guide plate 107.
  • 107a can be transferred more satisfactorily.
  • the pressing pressure of the transfer surface 125a of the rigid roll portion 125 and the light incident end surface 107a of the light guide plate 107 50 MPa or less it is possible to further prevent the light guide plate 107 from being cracked.
  • the uneven portion 109 is formed on the light incident end surface 107a of the light guide plate 107 by cutting, it takes time to process the fine uneven portion 109, and it is difficult to reduce the pitch of the uneven portion 109. There is a problem that the uneven portion 109 is changed due to wear of the cutting tool.
  • the uneven portion 109 is formed on the light incident end surface 107a of the light guide plate 107 by thermal transfer processing using the transfer mold 124. Therefore, the heating temperature of the transfer mold 124, the transfer surface 125a of the rigid roll portion 125, and By controlling the pressing pressure and pressing time of the light incident end face 107a of the light guide plate 107, the processing time can be easily reduced. Further, by producing and using an arbitrary transfer mold, it is possible to form the uneven portions 109 having various shapes, and it is possible to realize a narrow pitch of the uneven portions 109.
  • the present invention is not limited to the above embodiment.
  • the prism-shaped transfer uneven portion 126 is formed on the transfer surface 125a of the rigid roll portion 125.
  • the shape of the transfer uneven portion 126 is not particularly limited to the prism shape, and FIG. A lenticular shape as shown in FIG. Even in this case, it is preferable that the pitch P of the transfer uneven portion 126 is 10 ⁇ m to 500 ⁇ m and the height H of the transfer uneven portion 126 is 10 ⁇ m to 300 ⁇ m.
  • the shape of the uneven portion 109 may be a pyramid shape, a mat shape, or the like.
  • the transfer mold 124 has the rigid roll portion 125, and the peripheral surface of the rigid roll portion 125 becomes the transfer surface 125 a for providing the uneven portion 109 to the light incident end surface 107 a of the light guide plate 107.
  • the transfer mold to be used is not particularly limited thereto.
  • the shape of the transfer mold may be a flat plate shape, and one side surface of the transfer mold may be a transfer surface for providing the uneven portion 109 on the light incident end surface 107a of the light guide plate 107.
  • the said embodiment manufactures the light-guide plate 107 with which the backlight unit 103 of the liquid crystal display device 101 used for a liquid crystal television is equipped
  • the optical sheet manufacturing method of this invention is for illumination, for example It can also be applied to the production of an optical sheet as a decorative light guide plate.
  • the uneven part was thermally transferred to the light incident end face of the light guide plate.
  • the used light guide plate is formed of PMMA (Vicat softening temperature: 104 ° C.).
  • the temperature of the light guide plate is 25 ° C.
  • a prism-shaped transfer uneven portion is provided on the peripheral surface of the rigid roll portion.
  • the apex angle ⁇ (see FIG. 5) of the transfer uneven portion of the rigid roll portion is 110 degrees
  • the pitch P of the transfer uneven portion is 100 ⁇ m, 200 ⁇ m, and 300 ⁇ m. .
  • the transfer unevenness pitch P is 100 ⁇ m
  • the transfer unevenness height H is 34.7 ⁇ m
  • the transfer unevenness pitch P is 200 ⁇ m
  • the transfer unevenness height is 104.0 ⁇ m.
  • the heating temperature of the transfer mold was any one of 110 ° C., 120 ° C., 130 ° C. and 140 ° C.
  • the pressing pressure of the transfer surface of the rigid roll portion and the light incident end surface of the light guide plate was either 0.4 MPa or 0.6 MPa.
  • the pressing time of the transfer surface of the rigid roll portion and the light incident end surface of the light guide plate was either 1 second or 5 seconds.
  • FIG. 10 shows the result of thermal transfer processing of the concavo-convex portion on the light incident end face of the light guide plate by the above transfer mold.
  • FIG. 10 (a) is a table showing the results when a transfer mold having a transfer unevenness portion of the rigid roll portion having a pitch of 300 ⁇ m is used, and the pitches of the uneven portions of the light guide plate are all 300 ⁇ m. The height and the transfer rate are as shown in the table.
  • FIG. 10 (b) shows the results when a transfer mold having a transfer uneven portion of the rigid roll portion having a pitch of 200 ⁇ m is used. The pitch of the uneven portion of the light guide plate is all 200 ⁇ m, and the height of the uneven portion. The transfer rate is as shown in the table.
  • FIG. 10 (b) shows the results when a transfer mold having a transfer uneven portion of the rigid roll portion having a pitch of 200 ⁇ m is used. The pitch of the uneven portion of the light guide plate is all 200 ⁇ m, and the height of the uneven portion. The
  • FIG. 11 is a schematic cross-sectional view showing a liquid crystal display device including a light guide plate as an optical sheet manufactured by an embodiment of the optical sheet manufacturing method according to the present invention.
  • a liquid crystal display device 201 according to the present embodiment is used for a liquid crystal television, for example.
  • the liquid crystal display device 201 includes a liquid crystal panel 202 and an edge-type backlight unit 203 disposed on the back side of the liquid crystal panel 202.
  • the thickness of the liquid crystal panel 202 is, for example, about 1.8 mm.
  • the backlight unit 203 has a box-shaped metal backlight housing 204.
  • a plurality of electronic components 205 are provided on the back surface (back surface) of the backlight housing 204 via a substrate (not shown).
  • a plurality of LEDs 206 for irradiating light are attached to the inner wall surfaces of the backlight housing 204 facing each other.
  • a light guide plate 207 having a rectangular cross section for guiding the light emitted from the LED 206 to the liquid crystal panel 202 is accommodated via a reflection sheet 208.
  • the reflection sheet 208 is disposed on the back surface (back surface) side of the light guide plate 207.
  • the light incident end face 207a of the light guide plate 207 is provided with a concavo-convex portion 209 having a substantially corrugated cross section.
  • the thickness of the light guide plate 207 is 4 mm, for example.
  • the light guide plate 207 is made of a thermoplastic resin. Specifically, the light guide plate 207 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency. Examples of the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), and cycloolefin polymer (COP).
  • PMMA polymethyl methacrylate resin
  • PS polystyrene
  • PC polycarbonate
  • COP cycloolefin polymer
  • the light emitted from the LED 206 is incident on the light incident end surface 207 a of the light guide plate 207.
  • the back surface of the light guide plate 207 is a reflective surface that reflects the light emitted from the LED 206
  • the front surface of the light guide plate 207 is a light output surface that emits the light emitted from the LED 206 and the light reflected by the reflective surface. It has become.
  • the back surface (reflection surface) of the light guide plate 207 has a structure that easily reflects and scatters light, such as dot pattern printing with ink.
  • an optical film group 210 formed by laminating a plurality (three in this case) of optical films is disposed on the front side of the light guide plate 207.
  • the thickness of the optical film group 210 is, for example, about 1 mm.
  • the edges of the light guide plate 207 and the optical film group 210 are fixed to the backlight housing 204 by a frame body 211 made of resin (for example, PC).
  • the liquid crystal panel 202 is fixed to the backlight unit 203 by a metal frame body 212.
  • FIG. 13 is a flowchart showing a process of manufacturing the light guide plate 207 described above.
  • a light guide plate original plate is produced by a melt extrusion sheet forming process or the like (step S201).
  • the light guide plate original plate is roughly cut with a panel saw, a running saw, or the like to obtain the light guide plate 207 (step S202).
  • the mirror finish is applied to the light incident end face 207a of the light guide plate 207 using a mirror finish machine (step S203).
  • step S204 by performing thermal transfer processing on the light incident end surface 207a of the light guide plate 207, an uneven portion 209 is formed on the light incident end surface 207a (step S204). Note that step S203 is not necessarily performed.
  • FIG. 14 is a schematic configuration diagram showing the optical sheet processing apparatus 220 used when step S204 of FIG. 13 is performed.
  • an optical sheet processing apparatus 220 includes a stage 221 that supports a light guide plate 207, and a clamp plate 222 that presses and clamps the light guide plate 207 placed on the stage 221 against the stage 221 from above. It has. Two positioning protrusions 223 for aligning the light guide plate 207 are provided on the upper surface of the stage 221.
  • the optical sheet processing apparatus 220 further includes a transfer mold 224 that performs thermal transfer on the light incident end surface 207 a of the light guide plate 207 placed on the stage 221.
  • the transfer die 224 has a rotatable metal rigid roll 225.
  • an uneven portion for transfer 226 is formed along the circumferential direction of the rigid roll portion 225.
  • the peripheral surface of the rigid roll portion 225 is a transfer surface 225 a for providing the uneven portion 209 to the light incident end surface 207 a of the light guide plate 207.
  • the transfer uneven portion 226 is formed in a prism shape (triangular prism shape) with respect to the axial direction of the rigid roll portion 225 (see FIG. 15). A flat surface is not provided at the base of the uneven portion for transfer 226.
  • the apex angle ⁇ of the uneven portion for transfer 226 is 60 ° to 140 °, preferably 80 ° to 120 °.
  • the pitch (width) Wa of the concavo-convex portion for transfer 226 is 10 ⁇ m to 1000 ⁇ m, preferably 30 ⁇ m to 400 ⁇ m.
  • the transfer concavo-convex portions 226 are shown to be arranged in a straight line.
  • the optical sheet processing apparatus 220 is configured so that the heating unit 227 that heats the transfer mold 224, the transfer surface 225a of the rigid roll unit 225 of the transfer mold 224, and the light incident end surface 207a of the light guide plate 207 are pressed against each other.
  • a pressure applying unit 228 that applies pressure to the 221; a movement driving unit 229 that moves the stage 221 in a direction perpendicular to the direction of applying pressure (the direction of arrow A in FIG. 14); and a rotation that rotates the rigid roll unit 225.
  • a drive unit 230 that drives the rigid roll unit 225.
  • the light guide plate 207 is first placed on the stage 221, and the clamp plate 222 is in that state. Thus, the light guide plate 207 is clamped.
  • the transfer mold 224 is heated by the heating unit 227.
  • the heating temperature of the transfer mold 224 is preferably higher than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 207 and lower than the Vicat softening temperature of the thermoplastic resin + 40 ° C.
  • the heating temperature of the transfer mold 224 is preferably 104 ° C. to 144 ° C., more preferably 110 ° C. to 140 ° C.
  • the pressing pressure set at this time is preferably 0.05 MPa to 50 MPa, more preferably 0.2 MPa to 0.6 MPa.
  • the stage 221 is moved in the direction perpendicular to the pressure application direction with respect to the transfer mold 224 by the movement drive unit 229 and the rigid roll unit 225 is rotated by the rotation drive unit 230, thereby causing the rigid roll unit 225.
  • While rotating relatively moves along the light incident end surface 207 a of the light guide plate 207, so that the transfer uneven portion 226 of the rigid roll portion 225 is transferred to the light incident end surface 207 a of the light guide plate 207.
  • the movement of the stage 221 and the rotation of the rigid roll unit 225 are performed in synchronization.
  • the thermoplastic resin forming the light guide plate 207 is filled in the transfer surface 225a of the rigid roll portion 225, and the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207.
  • the transfer mold 224 and the light guide plate 207 are released before the thermoplastic resin forming the light guide plate 207 is completely filled in the transfer surface 225 a of the rigid roll portion 225.
  • complete filling refers to filling in which there is no thermoplastic resin unfilled space on the transfer surface 225a and the transfer rate is 100%.
  • a flat surface is formed at the tip of the concavo-convex portion 209. That is, the concavo-convex portion 209 has a shape in which regions of the flat surface of the tip portion (tip portion flat region) and concave regions (concave region) are alternately arranged.
  • the flat surface referred to here includes not only a completely flat surface but also a surface that is nearly flat. Therefore, the uneven portion 209 having a transfer rate of 100% is never obtained.
  • the length of the tip flat region is F ′
  • the length of the concave region is Wa ′
  • the height of the uneven portion 209 is H ′ at one pitch of the uneven portion 209, F ′ / Wa ′.
  • the transfer mold 224 is heated so that H ′ / Wa ′ is 0.15 to 0.65, preferably 0.25 to 0.55.
  • the temperature, the pressing pressure and pressing time of the transfer surface 225a of the rigid roll unit 225 and the light incident end surface 207a of the light guide plate 207 are set.
  • F ′ / Wa ′ decreases as the heating temperature increases
  • F ′ / Wa ′ decreases as the pressing pressure increases
  • F ′ / Wa ′ decreases as the pressing time increases.
  • the heating temperature of the transfer mold 224 is set as described above. It is preferable that the temperature is not lower than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 207 and not higher than the Vicat softening temperature of the thermoplastic resin + 40 ° C.
  • pressure is applied to the stage 221, and the transfer surface 225a of the rigid roll unit 225 and the light incident end surface 207a of the light guide plate 207 are pressed against each other.
  • the transfer surface 225a of the rigid roll unit 225 and the light incident end surface 207a of the light guide plate 207 may be pressed against each other.
  • FIG. 16 is a schematic configuration diagram showing a modification of the optical sheet processing apparatus 220 shown in FIG.
  • the optical sheet processing apparatus 220 of this modification is arranged in the direction perpendicular to the pressure application direction with respect to the stage 221 (in the direction of arrow B in FIG. 16) instead of the movement drive unit 229. ) Is moved. Therefore, the rigid roll unit 225 itself moves along the light incident end surface 207a of the light guide plate 207 while rotating. Other configurations are the same as those shown in FIG. Even in this case, the transfer uneven portion 226 of the rigid roll portion 225 can be transferred to the light incident end surface 207 a of the light guide plate 207.
  • FIG. 17 is a schematic configuration diagram showing another modification of the optical sheet processing apparatus 220 shown in FIG.
  • an optical sheet processing apparatus 220 according to this modification includes a stage 232 that supports a plurality of light guide plates 207 in a stacked state.
  • Other configurations are the same as those shown in FIG.
  • the concavo-convex portion 226 for transfer of the rigid roll portion 225 can be collectively transferred to the light incident end surfaces 207 a of the plurality of light guide plates 207. Therefore, productivity can be improved.
  • FIG. 18 is a schematic configuration diagram showing a modification of the optical sheet processing apparatus 220 shown in FIG.
  • the optical sheet processing apparatus 220 of this modified example replaces the movement drive unit 229 with a rigid roll unit 225 in a direction perpendicular to the pressure application direction with respect to the stage 232 (in the direction of arrow B in FIG. 18).
  • a movement drive unit 231 for movement is provided.
  • Other configurations are the same as those shown in FIG. Also in this case, the transfer uneven portion 226 of the rigid roll portion 225 can be collectively transferred to the light incident end surfaces 207 a of the plurality of light guide plates 207.
  • the transfer mold 224 is heated, and the transfer surface 225a of the rigid roll portion 225 of the transfer mold 224 and the light incident end surface 207a of the light guide plate 207 are pressed against each other to thereby form a rigid roll. Since the transfer uneven portion 226 provided on the transfer surface 225a of the portion 225 is transferred to the light incident end surface 207a of the light guide plate 207, the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207. Chips are not generated unlike the case where the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207 by mechanical cutting with a cutting tool or the like. For this reason, since chips do not adhere to or mix in the light guide plate 207, the quality of the product can be stabilized and the yield can be improved.
  • the heating temperature of the transfer mold 224 is set to be equal to or higher than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 207, the light incident end face 207a of the light guide plate 207 is appropriately softened.
  • the transfer uneven portion 226 can be satisfactorily transferred to the light incident end surface 207a of the light guide plate 207, and the light guide plate 207 can be prevented from cracking.
  • the melting temperature of the thermoplastic resin is prevented by setting the heating temperature of the transfer mold 224 to the Vicat softening temperature of the thermoplastic resin forming the light guide plate 207 + 40 ° C. or less, the elastic modulus of the thermoplastic resin Is suppressed, and the light guide plate 207 is hardly deformed. In addition, significant contamination of the transfer mold 224 can be prevented.
  • the transfer uneven portion 226 of the rigid roll portion 225 is changed to the light incident end surface of the light guide plate 207. It is possible to transfer more favorably to 207a. Further, by making the pressing pressure of the transfer surface 225a of the rigid roll portion 225 and the light incident end surface 207a of the light guide plate 207 50 MPa or less, it is possible to further prevent the light guide plate 207 from cracking.
  • the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207 by cutting, it takes time to process the fine uneven portion 209.
  • the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207 by thermal transfer processing using the transfer mold 224, the heating temperature of the transfer mold 224, the transfer surface 225a of the rigid roll unit 225, and By controlling the pressing pressure and pressing time between the light incident end faces 207a of the light guide plate 207, it is possible to easily reduce the processing time of the uneven portion 209.
  • the transfer mold 224 and the light guide plate 207 are released before the thermoplastic resin forming the light guide plate 207 is completely filled in the transfer surface 225a of the rigid roll portion 225.
  • the processing time of the part 209 can be further shortened. Thereby, the tact time of product manufacture becomes short and productivity can be improved.
  • the transfer mold 224 and the light guide plate 207 are separated from each other.
  • the shape of the concavo-convex portion 209 formed on the light incident end surface 207a is a shape in which a flat tip end region and a concave region are combined. For this reason, the optical characteristics (light diffusibility) of the light guide plate 207 are improved.
  • grooved part 209 is a flat surface without being sharpened, the chip
  • the base of the transfer uneven portion 226 provided on the transfer surface 225 a of the rigid roll portion 225 has no flat surface, but a flat surface may be formed at the base of the transfer uneven portion 226. That is, the uneven portion for transfer 226 may have a shape in which regions of the flat surface of the base portion (base portion flat region) and convex regions (convex region) are alternately arranged.
  • the ratio F ′ / Wa ′ (see FIG. 15) of the length F ′ of the flat tip end region and the length Wa ′ of the concave region at one pitch of the portion 209 is 10% to 300%, preferably 20% to 80%. It is preferable to process the uneven portion 209 so that
  • the prism-shaped transfer uneven portion 226 is formed on the transfer surface 225a of the rigid roll portion 225.
  • the shape of the transfer uneven portion 226 is not particularly limited to a prism shape. A lenticular lens shape as shown in FIG.
  • the said embodiment manufactures the light-guide plate 207 with which the backlight unit 203 of the liquid crystal display device 201 used for a liquid crystal television is equipped
  • the optical sheet manufacturing method of this invention is for illumination, for example, It can also be applied to the production of an optical sheet as a decorative light guide plate.
  • the uneven transfer portion was thermally transferred to the light incident end face of the light guide plate.
  • the used light guide plate is formed of PMMA (Vicat softening temperature: 104 ° C.).
  • the temperature of the light guide plate is 25 ° C.
  • On the peripheral surface of the rigid roll portion of the transfer mold there are provided prism-shaped or lenticular-shaped transfer uneven portions.
  • the apex angle ⁇ (see FIG. 15) of the uneven portion for transfer is 110 degrees
  • the pitch Wa (see FIG. 15) of the uneven portion for transfer is 300 ⁇ m.
  • the ratio H / Wa between the pitch Wa and the height H (see FIG. 15) of the uneven portions for transfer was 0.347.
  • the pitch Wa (see FIG. 19) of the uneven portion for transfer is 400 ⁇ m
  • the pitch Wa and the height H (see FIG. 19) of the uneven portion for transfer is 400 ⁇ m
  • a ratio H / Wa of 0.455 was used. Then, using such a transfer mold, an uneven portion was formed on the light incident end face of the light guide plate by the method described above.
  • the heating temperature of the transfer mold was any one of 110 ° C., 120 ° C., 130 ° C., 140 ° C. and 150 ° C.
  • the pressing pressure between the transfer surface of the rigid roll part and the light incident end surfaces of the light guide plate was any of 0.2 MPa, 0.4 MPa, and 0.6 MPa.
  • the pressing time between the transfer surface of the rigid roll portion and the light incident end surfaces of the light guide plate was 5 seconds or 10 seconds.
  • the uneven portion formed on the light incident end face of the light guide plate obtained by the above method was evaluated with a laser measuring instrument (“LT-9000” manufactured by Keyence), and the height H ′ of the uneven portion was measured. Then, from the height H ′ of the concavo-convex part, the length F ′ of the flat part at the tip of the concavo-convex part and the length Wa ′ of the concave part were calculated to obtain F ′ / Wa ′ and H ′ / Wa ′. Moreover, the transfer rate of the uneven part for transfer was calculated.
  • FIG. 20 As can be seen from FIG. 20, before the thermoplastic resin forming the light guide plate is completely filled into the transfer surface of the rigid roll portion of the transfer die, the transfer mold and the light guide plate are separated to transfer the light guide plate. As a result, there is no increase in the transfer rate of the concavo-convex portion for use, and a concavo-convex portion having a shape in which the flat end region and the concave region are combined is obtained. At this time, the transfer rate and F ′ / Wa ′ change by changing the heating temperature of the transfer mold, the pressing pressure and pressing time between the transfer surface of the rigid roll portion and the light incident end surface of the light guide plate.
  • FIG. 21 is a schematic cross-sectional view showing a liquid crystal display device including a light guide plate which is an optical sheet obtained by one embodiment of the optical sheet processing apparatus according to the present invention.
  • a liquid crystal display device 301 according to this embodiment is used for a liquid crystal television, for example.
  • the liquid crystal display device 301 includes a liquid crystal panel 302 and an edge type backlight unit 303 disposed on the back side of the liquid crystal panel 302.
  • the thickness of the liquid crystal panel 302 is, for example, about 1.8 mm.
  • the backlight unit 303 has a box-shaped metal backlight housing 304.
  • a plurality of electronic components 305 are provided on the back surface (back surface) of the backlight housing 304 via a substrate (not shown).
  • a plurality of LEDs 306 for irradiating light are attached to the inner wall surfaces of the backlight housing 304 facing each other.
  • a light guide plate 307 having a rectangular cross section for guiding the light emitted from the LED 306 to the liquid crystal panel 302 is accommodated via a reflection sheet 308.
  • the light incident end surface 307a of the light guide plate 307 is provided with a concavo-convex portion 309 having a substantially corrugated cross section.
  • the thickness of the light guide plate 307 is 3 mm, for example.
  • the light guide plate 307 is made of a thermoplastic resin. Specifically, the light guide plate 307 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency.
  • the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), and cycloolefin polymer (COP).
  • the light emitted from the LED 306 enters the light incident end surface 307a of the light guide plate 307.
  • the back surface of the light guide plate 307 is a reflective surface that reflects the light emitted from the LED 306, and the front surface of the light guide plate 307 is a light output surface that emits the light emitted from the LED 306 and the light reflected by the reflective surface. It has become.
  • the back surface (reflection surface) of the light guide plate 307 has a structure that easily reflects and scatters light, such as dot pattern printing with ink.
  • an optical film group 310 formed by laminating a plurality (three in this case) of optical films is disposed on the front side of the light guide plate 307.
  • the thickness of the optical film group 310 is, for example, about 0.2 mm.
  • the edges of the light guide plate 307 and the optical film group 310 are fixed to the backlight housing 304 by a frame body 311 made of resin (for example, PC).
  • the liquid crystal panel 302 is fixed to the backlight unit 303 by a metal frame body 312.
  • FIG. 23 is a flowchart showing a process of manufacturing the light guide plate 307.
  • an original light guide plate is produced by a melt extrusion sheet forming process or the like (step S301).
  • the light guide plate original plate is roughly cut and cut using a panel saw, a running saw, or the like to obtain the light guide plate 307 (step S302).
  • the mirror surface processing is performed on the light incident end surface 307a of the light guide plate 307 using a mirror processing machine (step S303).
  • step S304 the uneven
  • FIG. 24 is a plan view showing an embodiment of the optical sheet processing apparatus according to the present invention.
  • 25 is a front view of the optical sheet processing apparatus shown in FIG. 24,
  • FIG. 26 is a sectional view taken along the line VI-VI in FIG. 25, and
  • FIG. 27 is an enlarged view of the relevant part in FIG. 28 is an enlarged cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 29 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. In each figure, the optical sheet processing apparatus 320 of this embodiment is used when step S304 shown in FIG. 23 is implemented.
  • the optical sheet processing apparatus 320 includes an apparatus frame 321.
  • a rack 322 is disposed at the center of the apparatus frame 321, and a metal transfer roll 323 is rotatably supported on the rack 322 (see FIG. 26).
  • an uneven surface portion 319 for transfer is formed on the outer peripheral surface 323 a of the transfer roll 323 along the circumferential direction of the transfer roll 323.
  • the outer peripheral surface 323a of the transfer roll 323 serves as a transfer surface for imparting an uneven portion to the light incident end surface 307a of the light guide plate 307.
  • the transfer concavo-convex portion 319 is formed in a prism shape or a lenticular shape with respect to the roll axis direction of the transfer roll 323, for example.
  • the transfer roll 323 is an electric heater roll in which an induction coil 341 (heater unit) is incorporated.
  • a power supply unit 342 that supplies high-frequency current to the induction coil 341 is disposed on the upper side of the transfer roll 323.
  • the induction coil 341 and the power supply unit 342 constitute a heating unit that heats the transfer roll 323.
  • an oil heater roll heated by oil may be used.
  • pedestals 325A and 325B are arranged below the apparatus frame 321 so as to sandwich the transfer roll 323 in the apparatus horizontal direction (X direction).
  • Stage bases 326A and 326B are attached to the upper portions of the bases 325A and 325B through the guide rails 327A and 327B, respectively, so as to be movable in the apparatus front-rear direction (Y direction).
  • Stages 328A and 328B are attached to the upper portions of the stage bases 326A and 326B so as to be movable in the left-right direction (X direction) of the apparatus via guide rails 329A and 329B, respectively.
  • a light guide plate 307 is placed (supported) on the upper surfaces of the stages 328A and 328B.
  • Light guide plates 307 of various sizes can be placed on the top surfaces of the stages 328A and 328B in a vertically or horizontally placed state (see FIG. 24).
  • the vertical placement is such that the longitudinal direction of the light guide plate 307 is matched with the Y direction.
  • the horizontal placement is such that the longitudinal direction of the light guide plate 307 is aligned with the X direction.
  • the light guide plate 307 placed on the upper surfaces of the stages 328A and 328B is positioned by positioning means not described in detail.
  • the light guide plate 307 placed on the upper surfaces of the stages 328A and 328B is pressed against the stages 328A and 328B by the clamp plates 318A and 318B (see FIG. 29).
  • Press cylinders 330A and 330B for moving the stages 328A and 328B in the X direction are attached to the upper portions of the stage bases 326A and 326B, respectively (see FIG. 25).
  • the pressure cylinders 330A and 330B are pressure applying means for applying pressure to the stages 328A and 328B so as to press the light incident end surface 307a of the light guide plate 307 placed on the stages 328A and 328B against the transfer surface 323a of the transfer roll 323. Is configured.
  • the optical sheet processing apparatus 320 is disposed so as to sandwich the transfer roll 323 in an oblique direction with respect to the X direction and the Y direction corresponding to the stages 328A and 328B.
  • Serving motors 331A and 331B are provided.
  • Pinion gears 332A and 332B are attached to the output shafts 331a of the forming servomotors 331A and 331B, respectively.
  • Rack gears 333A and 333B extending in the Y direction and meshing with the pinion gears 332A and 332B are provided on inner side surfaces of the lower portions of the stage bases 326A and 326B, respectively.
  • the rotation of the forming servomotors 331A and 331B is transmitted to the stage bases 326A and 326B via the pinion gears 332A and 332B and the rack gears 333A and 333B, and the stage base 326A. , 326B move in the Y direction, and accordingly, the stages 328A, 328B move in the Y direction.
  • shafts 334A and 334B extending in the vertical direction of the apparatus (Z direction) are rotatably supported. These shafts 334A and 334B are arranged so as to sandwich the transfer roll 323 in the Y direction.
  • Spur gears 335A and 335B that mesh with the above-described pinion gears 332A and 332B are provided in the middle portions of the shafts 334A and 334B, respectively.
  • electromagnetic clutches 336A and 336B are attached to the upper ends of the shafts 334A and 334B, respectively.
  • the shafts 334A and 334B and the spur gears 335A and 335B have a rotary ball spline structure, and the shafts 334A and 334B can move up and down with respect to the spur gears 335A and 335B.
  • the rack 322 can be lifted and lowered by a lifting means, and the transfer roll 323 can be lifted and lowered accordingly.
  • the support plate 322a is connected to the rack 322.
  • Shafts 337A and 337B extending downward are respectively rotatably supported at portions of the support plate 322a corresponding to the shafts 334A and 334B.
  • Spur gears 338A and 338B are provided in the middle of the shafts 337A and 337B, respectively.
  • the lower ends of the shafts 337A and 337B are attached to the electromagnetic clutches 336A and 336B, respectively.
  • the electromagnetic clutch 336A interrupts the transmission of power from the spur gear 335A to the spur gear 338A by interrupting the connection between the shafts 334A and 337A. Specifically, when the electromagnetic clutch 336A is ON, the shafts 334A and 337A are connected to each other, and when the electromagnetic clutch 336A is OFF, the connections between the shafts 334A and 337A are released.
  • the electromagnetic clutch 336B interrupts transmission of power from the spur gear 335B to the spur gear 338B by intermittently connecting the shafts 334B and 337B. Specifically, when the electromagnetic clutch 336B is ON, the shafts 334B and 337B are connected to each other, and when the electromagnetic clutch 336B is OFF, the connections between the shafts 334B and 337B are released.
  • the roll shaft 323 b of the transfer roll 323 extends below the rack 322.
  • a spur gear 339 that meshes with the spur gears 338A and 338B is attached to the lower end of the roll shaft 323b.
  • the stage 328A can be moved and the transfer roll 323 can be rotated by the forming servo motor 331A
  • the stage 328B can be moved and the transfer roll 323 can be rotated by the forming servo motor 331B.
  • the pinion gears 332A and 332B, the shafts 334A and 334B, the spur gears 335A and 335B, the electromagnetic clutches 336A and 336B, the shafts 337A and 337B, the spur gears 338A and 338B, and the spur gear 339 are formed by the forming servomotors 331A and 331B.
  • a rotational power transmission mechanism that transmits the driving force to the transfer roll 323 is configured.
  • the forming servomotors 331A and 331B and the rotating power transmission mechanism constitute rotating means for rotating the transfer roll 323.
  • the pinion gears 332A and 332B, the rack gears 333A and 333B, the stage bases 326A and 326B, and the guide rails 327A and 327B provide a moving power transmission mechanism that transmits the driving force of the forming servomotors 331A and 331B to the stages 328A and 328B. It is composed.
  • the forming servomotors 331A and 331B and the moving power transmission mechanism constitute moving means for moving the stages 328A and 328B in the forming direction of the uneven portion 309 with respect to the transfer roll 323.
  • the transfer roll 323 is heated to a certain temperature (for example, 100 ° C. to 200 ° C.) by the induction coil 341 and the power supply unit 342.
  • the molding servo motor 331B is used. Is rotated in a predetermined direction to turn on the electromagnetic clutch 336B. Note that the driving of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is OFF.
  • the stage 328B moves to the rear side while the transfer roll 323 rotates counterclockwise.
  • a constant pressure for example, 0.05 MPa to 50 MPa
  • a constant pressure for example, 0.05 MPa to 50 MPa
  • the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328B.
  • the drive of the molding servo motor 331B is stopped, and the electromagnetic clutch 335B is turned OFF.
  • the rotation of the transfer roll 323 stops, and the stage 328B on which the molded light guide plate 307 is placed stops on the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328A.
  • the stage 328A on which the new light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320, and the stage 328B on which the molded light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320.
  • the molding servo motor 331A is rotationally driven in a predetermined direction, and the electromagnetic clutch 336A is turned on.
  • the stage 328A moves to the rear side while the transfer roll 323 rotates in the clockwise direction.
  • a constant pressure is applied to the stage 328A by the pressing cylinder 330A so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328A is pressed against the transfer surface 323a of the transfer roll 323.
  • the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328A.
  • the molded light guide plate 307 is taken out from the stage 328B.
  • the drive of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is turned OFF.
  • the rotation of the transfer roll 323 stops, and the stage 328A on which the molded light guide plate 307 is placed stops on the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328B.
  • the molding servo motor 331B is used. Is rotated in the opposite direction to turn on the electromagnetic clutch 336B.
  • the stage 328B moves forward while the transfer roll 323 rotates clockwise.
  • a constant pressure is applied to the stage 328B by the pressing cylinder 330B so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328B is pressed against the transfer surface 323a of the transfer roll 323.
  • the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328B.
  • the light guide plate 307 placed on the stage 328B is being molded as described above, the molded light guide plate 307 is taken out from the stage 328A.
  • the drive of the molding servo motor 331B is stopped, and the electromagnetic clutch 336B is turned OFF.
  • the rotation of the transfer roll 323 stops and the stage 328B on which the molded light guide plate 307 is placed stops on the front side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328A.
  • the stage 328A on which the new light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320, and the stage 328B on which the molded light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320.
  • the molding servo motor 331A is rotated in the opposite direction, and the electromagnetic clutch 336A is turned on.
  • the stage 328A moves to the front side while the transfer roll 323 rotates counterclockwise.
  • a constant pressure is applied to the stage 328A by the pressing cylinder 330A so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328A is pressed against the transfer surface 323a of the transfer roll 323.
  • the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328A.
  • the molded light guide plate 307 is taken out from the stage 328B.
  • any light guide plate 307 placed on the stages 328A and 328B can be formed from both the front and rear directions.
  • FIG. 3 Another molding process for forming the uneven portion 309 on the light incident end surface 307a of the light guide plate 307 using the optical sheet processing apparatus 320 will be described with reference to FIG.
  • one worker is arranged on each of the front side and the rear side of the optical sheet processing apparatus 320. That is, work is performed by a total of two workers.
  • the transfer roll 323 is heated to a constant temperature by the induction coil 341 and the power supply unit 342.
  • the stage 328A on which the molded light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320, and the stage 328B on which the light guide plate 307 before molding is placed is located on the front side of the optical sheet processing apparatus 320.
  • the molding servo motor 331B is rotated in a predetermined direction to turn on the electromagnetic clutch 336B. Note that the driving of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is OFF.
  • the stage 328B moves to the rear side while the transfer roll 323 rotates counterclockwise.
  • a constant pressure is applied to the stage 328B by the pressing cylinder 330B so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328B is pressed against the transfer surface 323a of the transfer roll 323.
  • the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328B.
  • the molded light guide plate 307 is taken out from the stage 328A.
  • the drive of the molding servo motor 331B is stopped, and the electromagnetic clutch 336B is turned OFF.
  • the rotation of the transfer roll 323 stops, and the stage 328B on which the molded light guide plate 307 is placed stops at the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328A.
  • the electromagnetic clutch 336B is turned off with the stage 328A on which the new light guide plate 307 is placed and the stage 328B on which the molded light guide plate 307 is placed positioned on the rear side of the optical sheet processing apparatus 320.
  • the molding servo motor 331B is rotationally driven in the opposite direction.
  • the stage 328B on which the molded light guide plate 307 is mounted moves to the front side while the rotation of the transfer roll 323 is stopped.
  • no pressure is applied to the stage 328B by the pressing cylinder 330B.
  • the molding servo motor 331B is stopped.
  • the stage 328A on which the new light guide plate 307 is placed stands by at the same position.
  • the stage 328A on which the new light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320, and the stage 328B on which the molded light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320.
  • the molding servo motor 331A is rotationally driven in a predetermined direction, and the electromagnetic clutch 336A is turned on.
  • the stage 328A moves to the front side while the transfer roll 323 rotates counterclockwise.
  • a constant pressure is applied to the stage 328A by the pressing cylinder 330A so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328A is pressed against the transfer surface 323a of the transfer roll 323.
  • the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328A.
  • the molded light guide plate 307 is taken out from the stage 328B.
  • the drive of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is turned OFF.
  • the rotation of the transfer roll 323 stops, and the stage 328A on which the molded light guide plate 307 is placed stops at the front side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328B.
  • the electromagnetic clutch 336A is turned OFF in a state where the stage 328A on which the molded light guide plate 307 is placed and the stage 328B on which the new light guide plate 307 is placed are located on the front side of the optical sheet processing apparatus 320.
  • the molding servomotor 331A is rotated in the opposite direction.
  • the stage 328A on which the molded light guide plate 307 is placed moves to the rear side while the rotation of the transfer roll 323 is stopped.
  • no pressure is applied to the stage 328A by the pressing cylinder 330A.
  • the molding servo motor 331A is stopped.
  • the stage 328B on which the new light guide plate 307 is placed stands by at the same position.
  • the light guide plate 307 is placed on the stage 328B.
  • An uneven portion 309 is formed on the light incident end face 307a of the placed light guide plate 307, the molded light guide plate 307 placed on the stage 328B is taken out, and a new light guide plate 307 is placed on the stage 328B.
  • the uneven portion 309 can be formed on the light incident end face 307a of the light guide plate 307 placed on the stage 328A.
  • the light guide plate 307 can be formed by a minimum required number of workers.
  • FIG. 32 still another molding process for forming the uneven portion 309 on the light incident end surface 307a of the light guide plate 307 using the optical sheet processing apparatus 320 described above will be described.
  • two workers W are arranged on the front side of the optical sheet processing apparatus 320 (see FIG. 24).
  • the transfer roll 323 is heated to a constant temperature by the induction coil 341 and the power supply unit 342.
  • the molding servo motor 331B is used. Is rotated in a predetermined direction to turn on the electromagnetic clutch 336B. Note that the driving of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is OFF.
  • the stage 328B moves to the rear side while the transfer roll 323 rotates counterclockwise.
  • a constant pressure is applied to the stage 328B by the pressing cylinder 330B so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328B is pressed against the transfer surface 323a of the transfer roll 323.
  • the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328B.
  • the molded light guide plate 307 is taken out from the stage 328A.
  • the drive of the molding servo motor 331B is stopped, and the electromagnetic clutch 336B is turned OFF.
  • the rotation of the transfer roll 323 stops, and the stage 328B on which the molded light guide plate 307 is placed stops on the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328A.
  • the stage 328A on which the new light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320, and the stage 328B on which the molded light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320.
  • the molding servo motor 331B is driven to rotate in the opposite direction.
  • the stage 328B on which the molded light guide plate 307 is mounted moves to the front side while the rotation of the transfer roll 323 is stopped.
  • no pressure is applied to the stage 328B by the pressing cylinder 330B.
  • the driving of the molding servo motor 331B is stopped. Meanwhile, the stage 328A on which the new light guide plate 307 is placed stands by at the same position.
  • the forming servo motor 331A is operated.
  • the electromagnetic clutch 336A is turned ON by rotating in a predetermined direction.
  • the stage 328A moves to the rear side while the transfer roll 323 rotates clockwise.
  • a constant pressure is applied to the stage 328A by the pressing cylinder 330A so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328A is pressed against the transfer surface 323a of the transfer roll 323.
  • the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328A.
  • the molded light guide plate 307 is taken out from the stage 328B.
  • the drive of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is turned OFF.
  • the rotation of the transfer roll 323 stops and the stage 328A on which the molded light guide plate 307 is placed stops on the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328B.
  • the stage 328A on which the molded light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320, and the stage 328B on which the new light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320.
  • the molding servo motor 331A is driven to rotate in the opposite direction.
  • the stage 328A on which the molded light guide plate 307 is placed moves to the front side while the rotation of the transfer roll 323 is stopped. At this time, no pressure is applied to the stage 328A by the pressing cylinder 330A. When the stage 328A returns to the original position, the driving of the molding servo motor 331A is stopped. Meanwhile, the stage 328B on which the new light guide plate 307 is placed stands by at the same position.
  • the light guide plate 307 placed on the stage 328A is taken out and a new light guide plate 307 is placed on the stage 328A
  • the light guide plate 307 is placed on the stage 328B.
  • An uneven portion 309 is formed on the light incident end face 307a of the placed light guide plate 307
  • the molded light guide plate 307 placed on the stage 328B is taken out, and a new light guide plate 307 is placed on the stage 328B.
  • the uneven portion 309 can be formed on the light incident end face 307a of the light guide plate 307 placed on the stage 328A.
  • the molding work of the light guide plate 307 is performed by a minimum required number of workers. Can do.
  • the moving speed of the stages 328A and 328B is not necessarily constant.
  • the uneven portion 309 may be formed only on the light incident end surface 307 a around the LED 306.
  • the transfer surface 323a of the transfer roll 323 and the light incident end surface 307a of the light guide plate 307 are pressed against each other, when the light incident end surface 307a at the position facing the LED 306 and the transfer surface 323a are in contact with each other, a desired uneven portion 309 is formed.
  • the stages 328A and 328B When the stages 328A and 328B are moved at the obtained transfer (molding) speed and the other light incident end surface 307a and the transfer surface 323a are in contact with each other, the stages 328A and 328B may be moved at a higher speed. Thereby, the processing tact of the light guide plate 307 can be improved.
  • the light incident end face 307 a around the LED 306 indicates +1 mm from the width size of the LED 306 in the direction orthogonal to the thickness direction of the light guide plate 307.
  • the transfer roll 323 is heated and the transfer surface 323a of the transfer roll 323 and the light incident end surface 307a of the light guide plate 307 are pressed against each other to be provided on the transfer surface 323a of the transfer roll 323.
  • the uneven portion 319 for transfer is thermally transferred to the light incident end surface 307a of the light guide plate 307 so that the uneven portion 309 is formed on the light incident end surface 307a of the light guide plate 307.
  • the uneven portion 309 is formed on the light incident end surface 307a of the light guide plate 307, no chips are generated. Accordingly, the chips are not attached to or mixed into the light guide plate 307, so that the quality of the product can be stabilized.
  • the molding process of the light guide plate 307 is not interrupted during the period during which the light guide plate 307 is placed on the stage and during the period during which the light guide plate 307 is removed from the stage. I do not get. Accordingly, the tact of the light guide plate 307 is reduced.
  • the two stages 328A and 328B on which the light guide plate 307 is placed are arranged so as to sandwich the transfer roll 323, and the light guide plate 307 placed on the stage 328A is not molded.
  • the light guide plate 307 placed on the stage 328B is molded during the period, and the light guide plate 307 placed over the stage 328B is not molded during the period.
  • Make the molding process Since the light guide plate 307 is molded from both the left and right sides of the transfer roll 323 in this way, the light guide plate 307 is placed in a period during which the light guide plate 307 is inserted into the stages 328A and 328B and during which the light guide plate 307 is removed from the stages 328A and 328B. There is no need to interrupt the molding process. Thereby, the forming tact of the light guide plate 307 can be increased, and the productivity can be improved.
  • the present invention is not limited to the above embodiment.
  • the mechanism for rotating the transfer roll 323 and moving the stages 328A and 328B in the front-rear direction (Y direction) of the apparatus is not limited to the above-described one.
  • FIG. 33 The structure shown in FIG.
  • the electromagnetic clutch 336A intermittently connects the output shaft 331a of the forming servomotor 331A and the shaft 337A fixed to the spur gear 338A.
  • the electromagnetic clutch 336B intermittently connects the output shaft 331a of the forming servomotor 331B and the shaft 337B fixed to the spur gear 338B.
  • a belt and a pulley may be used in addition to the meshing of the spur gears.
  • the transfer roll 323 is rotated by the forming servo motors 331A and 331B and the stages 328A and 328B are moved in the Y direction.
  • the present invention is not limited to this, and means for rotating the transfer roll 323 is not limited thereto.
  • means for moving the stages 328A and 328B different motors may be used, and the respective motors may be driven synchronously.
  • the light guide plate 307 supported on the other of the stages 328A and 328B is formed while the light guide plate 307 supported on one of the stages 328A and 328B is not formed.
  • the light guide plates 307 supported by the stages 328A and 328B may be simultaneously molded.
  • one light guide plate 307 is supported on the stages 328A and 328B.
  • the number of light guide plates 307 supported on the stages 328A and 328B is not limited to one, and a plurality of light guide plates 307 are supported. There may be.
  • the said embodiment forms the uneven
  • the optical of this invention can be applied to, for example, an optical sheet forming process as a light guide plate for illumination or decoration.
  • FIG. 34 is a schematic cross-sectional view showing a liquid crystal display device including a light guide plate which is an optical sheet obtained by one embodiment of the optical sheet processing apparatus according to the present invention.
  • a liquid crystal display device 401 according to this embodiment is used for a liquid crystal television, for example.
  • the liquid crystal display device 401 includes a liquid crystal panel 402 and an edge type backlight unit 403 disposed on the back side of the liquid crystal panel 402.
  • the thickness of the liquid crystal panel 402 is about 1.8 mm, for example.
  • the backlight unit 403 has a box-shaped metal backlight housing 404.
  • a plurality of electronic components 405 are provided on the back surface (back surface) of the backlight housing 404 via a substrate (not shown).
  • a plurality of LEDs 406 for irradiating light are attached to the inner wall surfaces of the backlight housing 404 facing each other.
  • a light guide plate 407 having a rectangular cross section for guiding the light emitted from the LED 406 to the liquid crystal panel 402 is accommodated via a reflection sheet 408.
  • the light incident end surface 407a of the light guide plate 407 is provided with an uneven portion 409 having a substantially corrugated cross section.
  • the thickness of the light guide plate 407 is 3 mm, for example.
  • the light guide plate 407 is made of a thermoplastic resin. Specifically, the light guide plate 407 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency. Examples of the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), and cycloolefin polymer (COP). Although not shown in particular, a protective masking film is preferably bonded to the main surface of one or both sides of the light guide plate 407.
  • PMMA polymethyl methacrylate resin
  • PS polystyrene
  • PC polycarbonate
  • COP cycloolefin polymer
  • a protective masking film is preferably bonded to the main surface of one or both sides of the light guide plate 407.
  • the masking film is attached to prevent the main surface of the light guide plate 407 from being damaged.
  • the masking film has a base material and an adhesive layer that is a paste component formed on the base material.
  • the adhesive layer is disposed between the base material and the light guide plate 407.
  • the base material is made of, for example, a polyolefin (PO) resin such as a polypropylene (PP) resin or a polyethylene (PE) resin, a polyethylene terephthalate (PET) resin, or the like.
  • the adhesive layer is formed of, for example, a polyolefin (PO) elastomer, an ethylene / vinyl acetate copolymer (EVA), or the like.
  • the thickness of the masking film is, for example, 40 ⁇ m to 90 ⁇ m.
  • the light emitted from the LED 406 is incident on the light incident end surface 407a of the light guide plate 407.
  • the back surface of the light guide plate 407 is a reflective surface that reflects the light emitted from the LED 406, and the front surface of the light guide plate 407 is a light output surface that emits the light emitted from the LED 406 and the light reflected by the reflective surface. It has become.
  • the back surface (reflection surface) of the light guide plate 407 has a structure that easily reflects and scatters light, such as dot pattern printing with ink.
  • an optical film group 410 formed by laminating a plurality (three in this case) of optical films is disposed on the front side of the light guide plate 407.
  • the thickness of the optical film group 410 is, for example, about 0.2 mm.
  • Edge portions of the light guide plate 407 and the optical film group 410 are fixed to the backlight housing 404 by a frame body 411 made of resin (for example, PC).
  • the liquid crystal panel 402 is fixed to the backlight unit 403 by a metal frame body 412.
  • FIG. 36 is a flowchart showing a process for manufacturing the light guide plate 407 described above.
  • a light guide plate original plate is produced by a melt extrusion sheet forming process or the like (step S401).
  • the light guide plate original plate is roughly cut and cut using a panel saw, a running saw, or the like to obtain the light guide plate 407 (step S402).
  • the light incident end surface 407a of the light guide plate 407 is subjected to mirror surface processing (step S403).
  • step S404 the uneven
  • FIG. 37 is a plan view showing an embodiment of an optical sheet processing apparatus according to the present invention.
  • 38 is a front view of the optical sheet processing apparatus shown in FIG. 37
  • FIG. 39 is a sectional view taken along the line VI-VI in FIG. 38
  • FIG. 40 is an enlarged view of the relevant part in FIG. 41 is an enlarged sectional view taken along the line VIII-VIII in FIG.
  • FIG. 42 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG.
  • the optical sheet processing apparatus 20 of the present embodiment is used when performing Step S404 shown in FIG.
  • the optical sheet processing apparatus 420 includes an apparatus frame 421.
  • a rack 422 is disposed at the center of the apparatus frame 421, and a metal transfer roll 423 is rotatably supported on the rack 422 (see FIG. 39).
  • a transfer uneven portion 419 is formed on the outer peripheral surface 423 a of the transfer roll 423 along the circumferential direction of the transfer roll 423.
  • the outer peripheral surface 423a of the transfer roll 423 serves as a transfer surface for providing an uneven portion on the light incident end surface 407a of the light guide plate 407.
  • the transfer concavo-convex portion 419 is formed in a prism shape or a lenticular shape with respect to the roll axis direction of the transfer roll 423, for example.
  • the transfer roll 423 is an electric heater roll in which an induction coil 441 is incorporated.
  • a power supply unit 442 that supplies high-frequency current to the induction coil 441 is disposed above the transfer roll 423.
  • the induction coil 441 and the power source unit 442 constitute a heating unit that heats the transfer roll 423.
  • pedestals 425A and 425B are arranged below the apparatus frame 421 so as to sandwich the transfer roll 423 in the apparatus left-right direction (X direction).
  • Stage bases 426A and 426B are attached to the upper portions of the bases 425A and 425B via guide rails 427A and 427B, respectively, so as to be movable in the apparatus front-rear direction (Y direction).
  • Stages 428A and 428B are attached to the upper portions of the stage bases 426A and 426B via guide rails 429A and 429B so as to be movable in the left-right direction (X direction) of the apparatus.
  • a light guide plate 407 is placed (supported) on the upper surfaces of the stages 428A and 428B.
  • a variety of sizes of light guide plates 407 can be placed vertically or horizontally on the top surfaces of the stages 428A and 428B (see FIG. 37).
  • the vertical placement is such that the longitudinal direction of the light guide plate 407 is matched with the Y direction.
  • the horizontal placement is such that the longitudinal direction of the light guide plate 407 matches the X direction.
  • the light guide plate 407 placed on the upper surfaces of the stages 428A and 428B is positioned by positioning means not described in detail.
  • the light guide plate 407 placed on the upper surfaces of the stages 428A and 428B is pressed against the stages 428A and 428B by the clamp plates 418A and 418B (see FIG. 42).
  • Press cylinders 430A and 430B for moving the stages 428A and 428B in the X direction are respectively attached to the upper portions of the stage bases 426A and 426B (see FIG. 38).
  • the pressure cylinders 430A and 430B are pressure applying means for applying pressure to the stages 428A and 428B so as to press the light incident end surface 407a of the light guide plate 407 mounted on the stages 428A and 428B against the transfer surface 423a of the transfer roll 423. Is configured.
  • the optical sheet processing apparatus 420 is disposed so as to sandwich the transfer roll 423 in an oblique direction with respect to the X direction and the Y direction corresponding to the stages 428A and 428B.
  • Serving motors 431A and 431B are provided.
  • Pinion gears 432A and 432B are attached to the output shafts 431a of the forming servomotors 431A and 431B, respectively.
  • Rack gears 433A and 433B extending in the Y direction and meshing with the pinion gears 432A and 432B are provided on the inner side surfaces of the lower portions of the stage bases 426A and 426B, respectively.
  • the rotation of the forming servo motors 431A and 431B is transmitted to the stage bases 426A and 426B via the pinion gears 432A and 432B and the rack gears 433A and 433B, and the stage base 426A. , 426B move in the Y direction, and accordingly, the stages 428A, 428B move in the Y direction.
  • shafts 434A and 434B extending in the Z direction are rotatably supported. These shafts 434A and 434B are arranged so as to sandwich the transfer roll 423 in the Y direction.
  • Spur gears 435A and 435B that mesh with the above-described pinion gears 432A and 432B are provided in the middle portions of the shafts 434A and 434B, respectively.
  • the shafts 434A and 434B and the spur gears 435A and 435B have a rotary ball spline structure.
  • electromagnetic clutches 436A and 436B are attached to the upper ends of the shafts 434A and 434B, respectively.
  • the support plate 422a is connected to the rack 422.
  • Shafts 437A and 437B extending downward are rotatably supported at portions of the support plate 422a corresponding to the shafts 434A and 434B.
  • Spur gears 438A and 438B are provided in the middle of the shafts 437A and 437B, respectively.
  • the lower ends of the shafts 437A and 437B are attached to the electromagnetic clutches 436A and 436B, respectively.
  • the electromagnetic clutch 436A interrupts transmission of power from the spur gear 435A to the spur gear 438A by intermittently connecting the shafts 434A and 437A. Specifically, when the electromagnetic clutch 436A is ON, the shafts 434A and 437A are connected to each other, and when the electromagnetic clutch 436A is OFF, the connections between the shafts 434A and 437A are released.
  • the electromagnetic clutch 436B interrupts transmission of power from the spur gear 435B to the spur gear 438B by intermittently connecting the shafts 434B and 437B. Specifically, when the electromagnetic clutch 436B is ON, the shafts 434B and 437B are connected to each other, and when the electromagnetic clutch 436B is OFF, the connection between the shafts 434B and 437B is released.
  • the roll shaft 423 b of the transfer roll 423 extends below the rack 422.
  • Spur gears 439 that mesh with the spur gears 438A and 438B are attached to the lower end of the roll shaft 423b.
  • a ball screw 443 extending in the vertical direction of the apparatus (Z direction) is disposed on the rear side of the optical sheet processing apparatus 420.
  • the ball screw 443 includes a screw shaft 443a and a nut 443b that meshes with the screw shaft 443a.
  • a main elevating body 444 is attached to the nut 443b.
  • the main elevating body 444 is fixed to one side surface of the rack 422.
  • the screw shaft 443a is rotated by the lifting servo motor 445.
  • Linear guides 446 extending in the Z direction are respectively disposed on both front and rear sides of the rack 422.
  • a plurality of auxiliary lifting bodies 447 that are slidable along the linear guide 446 are fixed to the side surfaces on both sides of the rack 422.
  • the servo motors 431A and 431B, the pinion gears 432A and 432B, the shafts 434A and 434B, the spur gears 435A and 435B, the electromagnetic clutches 436A and 436B, the shafts 437A and 437B, the spur gears 438A and 438B, and the spur gear 439 are Rotating means for rotating the transfer roll 423 is configured.
  • Servo motors 431A and 431B, pinion gears 432A and 432B, rack gears 433A and 433B, stage bases 426A and 426B, and guide rails 427A and 427B move the stages 428A and 428B in the direction in which the concavo-convex portion 409 is formed with respect to the transfer roll 423.
  • the 1st moving means to move relatively is comprised.
  • the rack 422, the ball screw 443, the main elevating body 444, the elevating servo motor 445, the linear guide 446, and the auxiliary elevating bodies 447 make the transfer roll 423 relative to the stages 428A and 428B in the roll axis direction of the transfer roll 423.
  • the second moving means for moving the image automatically is configured.
  • the shafts 434A and 434B and the spur gears 435A and 435B have a rotary ball spline structure as described above. That is, the shafts 434A and 434B can move up and down relatively with respect to the spur gears 435A and 435B. Therefore, by rotating the screw shaft 443a of the ball screw 443 by the lifting servo motor 445, as shown in FIG. 43, when the transfer roll 423 is lifted, the spur gears 435A and 435B are not always lifted and always have the same height.
  • the shafts 434A and 434B, the electromagnetic clutches 4436A and 436B, the shafts 437A and 437B, the spur gears 438A and 438B, and the spur gear 439 are lifted together with the rack 422.
  • the transfer roll 423 is heated to a constant temperature (for example, 100 ° C. to 200 ° C.) by the induction coil 441 and the power supply unit 442.
  • the molding servo motor 431B In the state where both the stage 428A on which the molded light guide plate 407 is mounted and the stage 428B on which the unformed light guide plate 407 is mounted are positioned on the front side of the optical sheet processing apparatus 420, the molding servo motor 431B. Is rotated in a predetermined direction to turn on the electromagnetic clutch 436B. Note that the drive of the molding servo motor 431A is stopped, and the electromagnetic clutch 436A is OFF.
  • the stage 428B moves to the rear side while the transfer roll 423 rotates counterclockwise.
  • a constant pressure for example, 0.05 MPa to 50 MPa
  • a constant pressure for example, 0.05 MPa to 50 MPa
  • the stage 428B so that the light incident end surface 407a of the light guide plate 407 placed on the stage 428B is pressed against the transfer surface 423a of the transfer roll 423 by the pressing cylinder 430B. Is applied.
  • the uneven portion for transfer 419 of the transfer roll 423 is transferred to the light incident end surface 407a of the light guide plate 407 placed on the stage 428B.
  • the molded light guide plate 407 is taken out from the stage 428A.
  • the stage 428A on which the new light guide plate 407 is placed is located on the front side of the optical sheet processing apparatus 420, and the stage 428B on which the molded light guide plate 407 is placed is located on the rear side of the optical sheet processing apparatus 420.
  • the molding servo motor 431B is rotated in the opposite direction.
  • the stage 428B on which the molded light guide plate 407 is mounted moves to the front side while the rotation of the transfer roll 423 is stopped. At this time, no pressure is applied to the stage 428B by the pressing cylinder 430B.
  • the stage 428B returns to the original position, the drive of the molding servo motor 431B is stopped. Meanwhile, the stage 428A on which the new light guide plate 407 is placed stands by at the same position.
  • the molding servo motor 431A is The electromagnetic clutch 436A is turned on by rotating in a predetermined direction.
  • the stage 428A moves to the rear side while the transfer roll 423 rotates in the clockwise direction.
  • a constant pressure is applied to the stage 428A by the pressing cylinder 430A so that the light incident end surface 407a of the light guide plate 407 placed on the stage 428A is pressed against the transfer surface 423a of the transfer roll 423.
  • the transfer uneven portion 419 of the transfer roll 423 is transferred to the light incident end surface 407a of the light guide plate 407 placed on the stage 428A.
  • the molded light guide plate 407 is taken out from the stage 428B.
  • the driving of the molding servo motor 431A is stopped, and the electromagnetic clutch 436A is turned OFF.
  • the rotation of the transfer roll 423 stops, and the stage 428A on which the molded light guide plate 407 is placed stops on the rear side of the optical sheet processing apparatus 420. Meanwhile, a new light guide plate 407 is placed and placed on the stage 428B.
  • the stage 428A on which the molded light guide plate 407 is placed is located on the rear side of the optical sheet processing apparatus 420, and the stage 428B on which the new light guide plate 407 is placed is located on the front side of the optical sheet processing apparatus 420.
  • the molding servo motor 431A is rotated in the opposite direction.
  • the stage 428A on which the molded light guide plate 407 is placed moves to the front side while the rotation of the transfer roll 423 is stopped. At this time, no pressure is applied to the stage 428A by the pressing cylinder 430A.
  • the stage 428A returns to the original position, the driving of the molding servo motor 431A is stopped. Meanwhile, the stage 428B on which the new light guide plate 407 is placed stands by at the same position.
  • the molded light guide plate 407 placed on the stage 428A is taken out and a new light guide plate 407 is put on the stage 428A, it is placed on the stage 428B.
  • An uneven portion 409 is formed on the light incident end face 407a of the placed light guide plate 407, the molded light guide plate 407 placed on the stage 428B is taken out, and a new light guide plate 407 is placed on the stage 428B.
  • an uneven portion 409 is formed on the light incident end surface 407a of the light guide plate 407 placed on the stage 428A.
  • the moving speed of the stages 428A and 428B is not necessarily constant.
  • the uneven portion 409 may be formed only on the light incident end surface 407 a around the LED 406. Therefore, when the transfer surface 423a of the transfer roll 423 and the light incident end surface 407a of the light guide plate 407 are pressed against each other, when the light incident end surface 407a at the position facing the LED 406 and the transfer surface 423a are in contact with each other, a desired uneven portion 409 is formed.
  • the stages 428A and 428B When the stages 428A and 428B are moved at the obtained transfer (molding) speed and the other light incident end surface 407a and the transfer surface 423a are in contact with each other, the stages 428A and 428B may be moved at a higher speed. Thereby, the processing tact of the light guide plate 407 can be improved.
  • the light incident end surface 407 a around the LED 406 indicates +1 mm from the width size of the LED 406 in the direction orthogonal to the thickness direction of the light guide plate 407.
  • the transfer uneven portion 419 provided on the transfer surface 423 a of the transfer roll 423 is thermally transferred to the light incident end surface 407 a of the light guide plate 407, the resin is thermally decomposed at the light guide plate 407, and the addition contained in the light guide plate 407.
  • the additive may precipitate due to decomposition of the agent and adhere to the transfer surface 423a of the transfer roll 423.
  • the paste component used for bonding the masking film adheres to the transfer surface 423a of the transfer roll 423 by applying pressure during molding. Sometimes.
  • the transfer roll 423 is moved up and down by the lifting servo motor 445, and the transfer roll 423 is moved up and down.
  • the portion of the transfer surface 423a that comes into contact with the light incident end surface 407a of the light guide plate 407 is shifted, and the next molding step is performed using the clean transfer surface 423a to which no foreign matter is attached.
  • the transfer roll 423 is heated and the transfer surface 423a of the transfer roll 423 and the light incident end surface 407a of the light guide plate 407 are pressed against each other to be provided on the transfer surface 423a of the transfer roll 423.
  • the uneven portion 419 for transfer is thermally transferred to the light incident end surface 407a of the light guide plate 407, so that the uneven portion 409 is formed on the light incident end surface 407a of the light guide plate 407. Chips are not generated unlike the case where the uneven portion 409 is formed on the light incident end surface 407a of the light guide plate 407. Accordingly, the chips are not attached to or mixed into the light guide plate 407, so that the quality of the product can be stabilized.
  • a means for moving the transfer roll 423 up and down with respect to the stages 428A and 428B is provided, and when the transfer surface 423a of the transfer roll 423 is soiled, the soiled portion of the transfer surface 423a is removed from the light guide plate 407. Since the transfer roll 423 is moved up and down so as to avoid contact with the light incident end surface 407a, the molding process can be quickly continued using the clean transfer surface 423a. Thereby, the quality of the product can be further stabilized. Further, for example, it is not necessary to remove the transfer roll 423 and perform ultrasonic cleaning of the transfer roll 423, so that the labor of an operator can be saved.
  • the induction coil 441 is built in the transfer roll 423, and the transfer roll 423 is heated by passing an electric current through the induction coil 441. Therefore, when the transfer roll 423 is heated by adjusting the temperature with oil.
  • the temperature distribution in the roll axis direction of the transfer roll 423 can be made uniform. For example, when an oil heater roll having a diameter of 200 mm and a length of 300 mm is used, temperature unevenness of 3 ° C. to 5 ° C. occurs in the roll axis direction, but when using an electric heater roll of the same size, The temperature unevenness in the roll axis direction is within about ⁇ 0.5 ° C.
  • the transfer roll 423 by moving the transfer roll 423 up and down, the transfer roll 423 with respect to the light incident end surface 407a of the light guide plate 407 can be changed even if the contact position of the transfer surface 423a of the transfer roll 423 with the light incident end surface 407a of the light guide plate 407 is changed.
  • the transfer accuracy of the transfer concavo-convex portion 419 can be stabilized.
  • the present invention is not limited to the above embodiment.
  • the transfer roll 423 is moved up and down with respect to the stages 428A and 428B.
  • the transfer roll 423 is not particularly limited thereto, and the stage 428A and 428B is moved up and down with respect to the transfer roll 423.
  • the contact height position between the roll 423 and the light guide plate 407 may be changed.
  • the transfer roll 423 is rotated by meshing the spur gears.
  • the mechanism for rotating the transfer roll 423 is not particularly limited, and for example, a belt and a pulley may be used. Good.
  • the transfer roll 23 is rotated by the forming servomotors 431A and 431B and the stages 428A and 428B are moved in the Y direction.
  • the present invention is not limited to this, and means for rotating the transfer roll 423 is not limited thereto.
  • means for moving the stages 428A and 428B different motors may be used, and the respective motors may be driven synchronously.
  • the rotational speed of the transfer roll 423 and the moving speed of the stages 428A and 428B are greatly shifted, the appearance of the light guide plate 407 is deteriorated. To do. Therefore, when a motor dedicated to the roll that rotates the transfer roll 423 is not installed, the diameter management of the transfer roll 423 is important. On the other hand, when a motor dedicated to the roll that rotates the transfer roll 423 is installed, the rotation speed of the motor can be adjusted according to the diameter of the transfer roll 423, so that the appearance defect of the light guide plate 407 is caused. Can be prevented.
  • the stages 428A and 428B are arranged so as to sandwich the transfer roll 423, but it goes without saying that the number of stages supporting the light guide plate 407 may be one as shown in FIG.
  • the light incident end surface 407a of the light guide plate 407 may be pressed against the transfer surface 423a of the transfer roll 423 as described above, but the transfer surface 423a of the transfer roll 423 is pressed against the light incident end surface 407a of the light guide plate 407. May be.
  • the number of light guide plates 407 supported on the stage is not limited to one, and may be a plurality.
  • the roll shaft 423b of the transfer roll 423 extends in the apparatus vertical direction (Z direction).
  • the roll shaft 423b of the transfer roll 423 is in the horizontal direction (X direction).
  • the present invention can be applied to those extending in the Y direction.
  • the said embodiment forms the uneven
  • the optical of this invention can be applied to, for example, an optical sheet forming process as a light guide plate for illumination or decoration.
  • FIG. 46 is a schematic sectional view showing a liquid crystal display device including a light guide plate which is an optical sheet obtained by one embodiment of the optical sheet processing apparatus according to the present invention.
  • a liquid crystal display device 501 according to this embodiment is used for a liquid crystal television, for example.
  • the liquid crystal display device 501 includes a liquid crystal panel 502 and an edge type backlight unit 503 disposed on the back side of the liquid crystal panel 502.
  • the thickness of the liquid crystal panel 502 is, for example, about 1.8 mm.
  • the backlight unit 503 has a box-shaped metal backlight housing 504.
  • a plurality of electronic components 505 are provided on the back surface (back surface) of the backlight housing 504 via a substrate (not shown).
  • a plurality of LEDs 506 for irradiating light are attached to the inner wall surfaces of the backlight housing 504 facing each other.
  • a light guide plate 507 having a rectangular cross section for guiding the light emitted from the LED 506 to the liquid crystal panel 502 is accommodated via a reflection sheet 508.
  • the light incident end surface 507a of the light guide plate 507 is provided with an uneven portion 509 having a substantially corrugated cross section.
  • the thickness of the light guide plate 507 is 3 mm, for example.
  • the light guide plate 507 is formed of a thermoplastic resin. Specifically, the light guide plate 507 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency.
  • the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), cycloolefin polymer (COP), and methyl methacrylate-styrene copolymer resin (MS).
  • the light emitted from the LED 506 is incident on the light incident end surface 507a of the light guide plate 507.
  • the back surface of the light guide plate 507 is a reflective surface that reflects the light emitted from the LED 506, and the front surface of the light guide plate 507 is a light output surface that emits the light emitted from the LED 506 and the light reflected by the reflective surface. It has become.
  • the back surface (reflecting surface) of the light guide plate 507 has a structure that easily reflects and scatters light, such as dot pattern printing with ink.
  • an optical film group 510 formed by laminating a plurality of (here, three) optical films is disposed on the front side of the light guide plate 507.
  • the thickness of the optical film group 510 is, for example, about 0.2 mm.
  • the edges of the light guide plate 507 and the optical film group 510 are fixed to the backlight housing 504 by a frame body 511 made of resin (for example, PC).
  • the liquid crystal panel 502 is fixed to the backlight unit 503 by a metal frame body 512.
  • FIG. 48 is a flowchart showing a process for manufacturing the light guide plate 507 described above.
  • a light guide plate original plate is produced by a melt extrusion sheet forming process or the like (step S501).
  • the light guide plate original plate is roughly cut and cut using a panel saw, a running saw, or the like to obtain the light guide plate 507 (step S502).
  • the mirror surface processing is performed on the light incident end surface 507a of the light guide plate 507 using a mirror processing machine (step S503).
  • step S503 the uneven
  • FIG. 49 is a plan view showing an embodiment of an optical sheet processing apparatus according to the present invention.
  • 50 is a front view of the optical sheet processing apparatus shown in FIG. 49
  • FIG. 51 is a sectional view taken along the line VI-VI in FIG. 50
  • FIG. 52 is an enlarged view of the relevant part in FIG. 53 is an enlarged cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 54 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. 49 and the like.
  • the optical sheet processing apparatus 520 of this embodiment is used when step S504 shown in FIG. 48 is performed.
  • the optical sheet processing apparatus 520 includes an apparatus frame 521.
  • a rack 522 is disposed at the center of the apparatus frame 521, and a metal transfer roll 523 is rotatably supported on the rack 522 (see FIG. 51).
  • a transfer concavo-convex portion 519 is formed on the outer peripheral surface 523 a of the transfer roll 523 along the circumferential direction of the transfer roll 523.
  • the outer peripheral surface 523a of the transfer roll 523 serves as a transfer surface for providing an uneven portion to the light incident end surface 507a of the light guide plate 507.
  • the transfer uneven portion 519 is formed in a prism shape or a lenticular shape with respect to the axial direction of the transfer roll 523, for example.
  • the unevenness depth F (see FIG. 55) of the transfer uneven portion 519 is 0.01 mm to 0.30 mm.
  • the transfer roll 523 is an electric heater roll in which an induction coil 541 (heater unit) is incorporated.
  • a power supply unit 542 that supplies a high-frequency current to the induction coil 541 is disposed above the transfer roll 523.
  • the induction coil 541 and the power supply unit 542 constitute a heating unit that heats the transfer roll 523.
  • an oil heater roll heated by oil may be used as the transfer roll 523.
  • pedestals 525A and 525B are arranged below the apparatus frame 521 so as to sandwich the transfer roll 523 in the apparatus horizontal direction (X direction).
  • Stage bases 526A and 526B are attached to the upper portions of the bases 525A and 525B through the guide rails 527A and 527B so as to be movable in the longitudinal direction of the apparatus (Y direction).
  • Stages 528A and 528B are attached to the upper portions of the stage bases 526A and 526B so as to be movable in the left-right direction (X direction) of the apparatus via guide rails 529A and 529B.
  • a light guide plate 507 is placed (supported) on the upper surfaces of the stages 528A and 528B.
  • Light guide plates 507 of various sizes can be placed vertically or horizontally on the upper surfaces of the stages 528A and 528B (see FIG. 49).
  • the vertical placement is such that the longitudinal direction of the light guide plate 507 coincides with the Y direction.
  • the horizontal placement is such that the longitudinal direction of the light guide plate 507 coincides with the X direction.
  • the light guide plate 507 placed on the upper surfaces of the stages 528A and 528B is pressed against the stages 528A and 528B by the clamp plates 518A and 518B.
  • the light guide plate 507 is placed on the upper surfaces of the stages 528A and 528B so as to protrude by a predetermined amount from the clamp plates 518A and 518B to the side corresponding to the transfer roll 523.
  • the thickness of the light guide plate 507 is 1. In the case of .5 to 4.0 mm, even if the projection amount of the light guide plate 507 is 10 mm, the bending amount of the light guide plate 507 is 1.0 mm or less, and the thickness of the light guide plate 507 is as thin as 0.6 to 0.8 mm. In this case, if the protruding amount of the light guide plate 507 is 3 mm, the bending amount of the light guide plate 507 is 1.0 mm or less. It has been confirmed through experiments that the light guide plate 507 is not crushed if the bending amount of the light guide plate 507 is 1.0 mm or less.
  • Press cylinders 530A and 530B for moving the stages 528A and 528B in the X direction are attached to the upper portions of the stage bases 526A and 526B, respectively (see FIG. 50).
  • the pressure cylinders 530A and 530B are pressure applying means for applying pressure to the stages 528A and 528B so as to press the light incident end surface 507a of the light guide plate 507 placed on the stages 528A and 528B against the transfer surface 523a of the transfer roll 523. Is configured.
  • the optical sheet processing apparatus 520 is disposed so as to sandwich the transfer roll 523 in an oblique direction with respect to the X direction and the Y direction, corresponding to the stages 528A and 528B.
  • Serving motors 531A and 531B are provided.
  • Pinion gears 532A and 532B are attached to the output shafts 531a of the forming servomotors 531A and 531B, respectively.
  • Rack gears 533A and 533B extending in the Y direction and meshing with the pinion gears 532A and 532B are provided on the inner side surfaces of the lower portions of the stage bases 526A and 526B, respectively.
  • the rotation of the forming servo motors 531A and 531B is transmitted to the stage bases 526A and 526B via the pinion gears 532A and 532B and the rack gears 533A and 533B, and the stage base 526A. , 526B move in the Y direction, and accordingly, the stages 528A, 528B move in the Y direction.
  • shafts 534A and 534B extending in the vertical direction (Z direction) of the apparatus are rotatably supported. These shafts 534A and 534B are arranged so as to sandwich the transfer roll 523 in the Y direction.
  • Spur gears 535A and 535B that mesh with the above-described pinion gears 532A and 532B are provided in the middle portions of the shafts 534A and 534B, respectively.
  • Electromagnetic clutches 536A and 536B are attached to the upper ends of the shafts 534A and 534B, respectively.
  • the support plate 522a is connected to the rack 522.
  • Shafts 537A and 537B extending downward are respectively rotatably supported at portions of the support plate 522a corresponding to the shafts 534A and 534B.
  • Spur gears 538A and 538B are provided in the middle of the shafts 537A and 537B, respectively.
  • the lower ends of the shafts 537A and 537B are attached to the electromagnetic clutches 536A and 536B, respectively.
  • the electromagnetic clutch 536A interrupts the transmission of power from the spur gear 535A to the spur gear 538A by intermittently connecting the shafts 534A and 537A. Specifically, when the electromagnetic clutch 536A is ON, the shafts 534A and 537A are connected to each other, and when the electromagnetic clutch 536A is OFF, the connections between the shafts 534A and 537A are released.
  • the electromagnetic clutch 536B interrupts the transmission of power from the spur gear 535B to the spur gear 538B by intermittently connecting the shafts 534B and 537B. Specifically, when the electromagnetic clutch 536B is ON, the shafts 534B and 537B are connected to each other, and when the electromagnetic clutch 536B is OFF, the connections between the shafts 534B and 537B are released.
  • the roll shaft 523 b of the transfer roll 523 extends below the rack 522.
  • a spur gear 539 that meshes with the spur gears 538A and 538B is attached to the lower end of the roll shaft 523b.
  • the transfer is performed via the pinion gear 532A, the spur gear 535A, the shaft 534A, the electromagnetic clutch 536A, the shaft 537A, the spur gear 538A, and the spur gear 539.
  • the roll 523 rotates.
  • the forming servo motor 531B is driven to rotate while the electromagnetic clutch 536B is ON, the pinion gear 532B, the spur gear 535B, the shaft 534B, the electromagnetic clutch 536B, the shaft 537B, the spur gear 538B, and the spur gear 539 are passed through. As a result, the transfer roll 523 rotates.
  • the stage 528A can be moved and the transfer roll 523 can be rotated by the forming servo motor 531A
  • the stage 528B can be moved and the transfer roll 523 can be rotated by the forming servo motor 531B.
  • the forming servo motors 531A and 531B, the pinion gears 532A and 532B, the shafts 534A and 534B, the spur gears 535A and 535B, the electromagnetic clutches 536A and 536B, the shafts 537A and 537B, the spur gears 538A and 538B, and the spur gear 539 are Rotating means for rotating the transfer roll 523 is configured.
  • Servo motors 531A and 531B for molding, pinion gears 532A and 532B, rack gears 533A and 533B, stage bases 526A and 526B, and guide rails 527A and 527B are arranged so that the stage 528A and 528B are in the direction of forming the uneven portion 509 with respect to the transfer roll 523.
  • the moving means to move relatively is comprised.
  • the X direction of the light guide plate 507 with respect to the transfer roll 523 (the direction perpendicular to the formation direction of the uneven portion 509)
  • the cylindrical positioning rollers 551 for setting the reference position) are respectively arranged. That is, two positioning rollers 551 are disposed between the stages 528A and 528B.
  • the positioning roller 551 is freely rotatable around an axis parallel to the Z direction (the roll axis direction of the transfer roll 523).
  • pressing bars 552 for pressing the light guide plate 507 placed on the stages 528A and 528B against the positioning rollers 551 are arranged.
  • the pressing bar 552 extends in the Y direction (the moving direction of the stages 528A and 528B).
  • the pressing bar 552 slides the upper surfaces of the stages 528A and 528B in the X direction by the positioning actuator 553.
  • the positioning actuator 553 is configured by an air cylinder, a solenoid, or the like.
  • the stages 528A and 528B in FIG. 58.
  • the light guide plate 507 is placed on the upper surface (not shown), and the light incident end surface 507 a of the light guide plate 507 is applied to the positioning roller 551.
  • the pressing bar 552 is moved in the X direction by a positioning actuator 553 (not shown in FIG. 58), and the light guide plate 507 is pressed against the positioning roller 551 by the pressing bar 552.
  • the light guide plate 507 is positioned in the X direction with respect to the transfer roll 523. Accordingly, the distance between the light incident end surface 507a of the light guide plate 507 and the transfer surface 523a of the transfer roll 523 is a constant amount.
  • the light guide plate 507 is moved in the Y direction toward the transfer roll 523 by moving the stages 528A and 528B in the Y direction toward the transfer roll 523 by the moving means.
  • the stage 528A, 528B is moved by a predetermined amount in the X direction by pressing cylinders 530A, 530B (not shown in FIG. 58), so that the light incident end surface of the light guide plate 507 is obtained.
  • 507a is pressed against the transfer surface 523a of the transfer roll 523 (see the two-dot chain line in FIG. 58).
  • the light guide plate 507 is moved in the Y direction toward the transfer roll 523 by the moving means while the transfer roll 523 is rotated by the rotating means.
  • the uneven portion for transfer 519 of the transfer roll 523 is transferred to the light incident end surface 507a of the light guide plate 507, and the uneven portion 509 is provided to the light incident end surface 507a.
  • the servo motor 531B for molding is rotated in a predetermined direction to turn on the electromagnetic clutch 536B. Note that the drive of the molding servo motor 531A is stopped, and the electromagnetic clutch 536A is OFF.
  • the stage 528B moves to the rear side while the transfer roll 523 rotates counterclockwise.
  • a constant pressure for example, 0.05 MPa to 50 MPa
  • a constant pressure for example, 0.05 MPa to 50 MPa
  • the transfer uneven portion 519 of the transfer roll 523 is transferred to the light incident end surface 507a of the light guide plate 507 placed on the stage 528B.
  • the stage 528A on which the new light guide plate 507 is placed is located on the front side of the optical sheet processing apparatus 520, and the stage 528B on which the molded light guide plate 507 is placed is located on the rear side of the optical sheet processing apparatus 520.
  • the forming servo motor 531B is rotated in the opposite direction.
  • the stage 528B on which the molded light guide plate 507 is placed moves to the front side while the rotation of the transfer roll 523 is stopped.
  • no pressure is applied to the stage 528B by the pressing cylinder 530B.
  • the stage 528B returns to the original position, the driving of the forming servo motor 531B is stopped. Meanwhile, the stage 528A on which the new light guide plate 507 is placed stands by at the same position.
  • the molding servo motor 531A is moved.
  • the electromagnetic clutch 536A is turned on by rotating in a predetermined direction.
  • the stage 528A moves to the rear side while the transfer roll 523 rotates in the clockwise direction.
  • a constant pressure is applied to the stage 528A by the pressing cylinder 530A so that the light incident end surface 507a of the light guide plate 507 placed on the stage 528A is pressed against the transfer surface 523a of the transfer roll 523.
  • the transfer uneven portion 519 of the transfer roll 523 is transferred to the light incident end surface 507a of the light guide plate 507 placed on the stage 528A.
  • the molded light guide plate 507 is taken out from the stage 528B.
  • the stage 528A on which the molded light guide plate 507 is placed is located on the rear side of the optical sheet processing apparatus 520, and the stage 528B on which a new light guide plate 507 is placed is located on the front side of the optical sheet processing apparatus 520.
  • the molding servo motor 531A is rotated in the opposite direction while the electromagnetic clutch 536A is turned off.
  • the stage 528A on which the molded light guide plate 507 is placed moves to the front side while the rotation of the transfer roll 523 is stopped. At this time, no pressure is applied to the stage 528A by the pressing cylinder 530A.
  • the stage 528A returns to the original position, the driving of the forming servo motor 531A is stopped. Meanwhile, the stage 528B on which the new light guide plate 507 is placed stands by at the same position.
  • the light guide plate 507 placed on the stage 528A is taken out and a new light guide plate 507 is put on the stage 528A
  • the light guide plate 507 is placed on the stage 528B.
  • An uneven portion 509 is formed on the light incident end face 507a of the placed light guide plate 507
  • the molded light guide plate 507 placed on the stage 528B is taken out, and a new light guide plate 507 is placed on the stage 528B.
  • the uneven portion 509 is formed on the light incident end surface 507a of the light guide plate 507 placed on the stage 528A.
  • the moving speed of the stages 528A and 528B is not necessarily constant.
  • the uneven portion 509 may be formed only on the light incident end surface 507a around the LED 506. Therefore, when pressing the transfer surface 523a of the transfer roll 523 and the light incident end surfaces 507a of the light guide plate 507, when the light incident end surface 507a at the position facing the LED 506 and the transfer surface 523a are in contact with each other, a desired uneven portion 509 is formed.
  • the stages 528A and 528B When the stages 528A and 528B are moved at the transfer (molding) speed obtained and the other light incident end surface 507a and the transfer surface 523a are in contact with each other, the stages 528A and 528B may be moved at a higher speed. Thereby, the processing tact of the light guide plate 507 can be improved.
  • the light incident end face 507a around the LED 506 indicates +1 mm from the width size of the LED 506 in the direction orthogonal to the thickness direction of the light guide plate 507.
  • the transfer roll 523 is heated and the transfer surface 523a of the transfer roll 523 and the light incident end surface 507a of the light guide plate 507 are pressed against each other to be provided on the transfer surface 523a of the transfer roll 523.
  • the uneven portion for transfer 519 is thermally transferred to the light incident end surface 507a of the light guide plate 507 so that the uneven portion 509 is formed on the light incident end surface 507a of the light guide plate 507. Chips are not generated unlike the case where the uneven portion 509 is formed on the light incident end surface 507a of the light guide plate 507. Accordingly, the chips are not attached to or mixed in the light guide plate 507, and the product quality can be stabilized.
  • each light guide plate 507 is Finished with some tolerance.
  • the outer dimension of the light guide plate 507 is shifted by 0.12 mm at the maximum.
  • the unevenness depth F see FIG. 55
  • a deviation of 0.12 mm in the outer dimension of the light guide plate 507 is allowed. I can't.
  • the contact distance D (see FIG. 58) between the light incident end surface 507a of the light guide plate 507 and the transfer surface 523a of the transfer roll 523 changes greatly. For this reason, the transfer rate of the transfer uneven portion 519 of the transfer roll 523 is also greatly changed, and stable transfer accuracy cannot be obtained.
  • a positioning roller 551 for setting a reference position in the X direction of the light guide plate 507 with respect to the transfer roll 523 is disposed on the side corresponding to the transfer roll 523 with respect to the stages 528A and 528B. Since the light guide plate 507 is pressed against the positioning roller 551 by the pressing bar 552, the distance between the light incident end surface 507a of the light guide plate 507 and the transfer surface 523a of the transfer roll 523 is always a constant amount.
  • the contact distance D between the light incident end surface 507a of the light guide plate 507 and the transfer surface 523a of the transfer roll 523 is always constant. It becomes quantity.
  • the transfer rate of the transfer irregularities 519 of the transfer roll 523 is substantially constant, so that stable transfer Accuracy can be obtained. As a result, the quality of the product can be further stabilized.
  • the positioning roller 551 is a cylindrical roller that can freely rotate around an axis parallel to the Z direction, when the light guide plate 507 moves toward the transfer roll 523 in contact with the positioning roller 551, Then, the positioning roller 551 rotates. Therefore, the light guide plate 507 is prevented from being damaged.
  • the pressing bar 552 is configured to slide the upper surfaces of the stages 528A and 528B and press the light guide plate 507 against the positioning roller 551.
  • the configuration is not particularly limited, and the pressing bar 552, for example.
  • a gap may be formed between the stage 528A and the upper surfaces of the stages 528A and 528B, wall portions may be provided on both sides of the stages 528A and 528B, and the pressing bar 552 may slide along the inner side surface of each wall portion.
  • a plurality of pressing pins arranged in the X direction may be provided, and these pressing pins may slide the upper surfaces of the stages 528A and 528B and press the light guide plate 507.
  • FIG. 60 is a perspective view showing a modification of the structure for setting the reference position of the light guide plate 507 with respect to the transfer roll 523.
  • a pressing member 555 for pressing the light guide plate 507 against the positioning roller 551 is disposed on the opposite side of the positioning roller 551 in the stages 528A and 528B.
  • the pressing member 555 has a bar 556 extending in the Y direction, and a plurality of (here, two) pressing pins 557 projecting toward the stages 528A and 528B are attached to the lower surface of the bar 556.
  • a plurality of (here, two) guide grooves 558 are formed on the upper surfaces of the stages 528A and 528B so as to extend in the X direction and slide the pressing pins 557.
  • the pressing pin 557 slides on the bottom surface of the guide groove 558, so that the upper surfaces of the stages 528A and 528B and the lower surface of the bar 556 are formed. There is no rubbing and scratching.
  • the thickness is 0.
  • the thin light guide plate 507 having a thickness of 1 to 1.0 mm can be reliably pressed against the positioning roller 551.
  • the positioning member for setting the reference position of the light guide plate 507 with respect to the transfer roll 523 is the columnar positioning roller 551 that can freely rotate. Etc.
  • the transfer roll 523 is rotated by meshing the spur gears.
  • the mechanism for rotating the transfer roll 523 is not particularly limited, and for example, a belt and a pulley may be used. Good.
  • the transfer roll 523 is rotated by the forming servomotors 531A and 531B and the stages 528A and 528B are moved in the Y direction.
  • the present invention is not limited to this, and means for rotating the transfer roll 523 is not limited thereto.
  • means for moving the stages 528A and 528B different motors may be used, and the respective motors may be driven synchronously.
  • the stages 528A and 528B are disposed so as to sandwich the transfer roll 523, but it goes without saying that the number of stages supporting the light guide plate 507 may be one as shown in FIGS. Yes.
  • the light incident end surface 507a of the light guide plate 507 may be pressed against the transfer surface 523a of the transfer roll 523 as described above, but the transfer surface 523a of the transfer roll 523 is pressed against the light incident end surface 507a of the light guide plate 507. May be.
  • the number of light guide plates 507 supported on the stage is not limited to one, but may be a plurality.
  • the said embodiment forms the uneven
  • the optical of this invention can be applied to, for example, an optical sheet forming process as a light guide plate for illumination or decoration.
  • first moving means guide rail
  • second moving means stage, 430A, 430B ... pressure cylinder (pressure applying means), 431A, 431B ... Molding servo motor (rotating means, first moving means), 432A, 432B ... Pinion gear (rotating means, first moving means), 433A, 433B ... Rack gear (first moving means), 434A, 434B ... Shaft (rotating means), 435A, 435B ... spur gear (rotating means), 436A, 436B ... electromagnetic clutch ( 437A, 437B ... shaft (rotating means), 438A, 438B ... spur gear (rotating means), 439 ... spur gear (rotating means), 441 ...
  • induction coil heating means
  • 442 power supply (heating means)
  • 443 Ball screw
  • second moving means Main elevating body
  • second moving means Main elevating body
  • Elevating servo motor second moving means
  • 446 Linear guide
  • second moving means 447 ... Auxiliary lifting body (second moving means).
  • 507 ... Light guide plate (optical sheet), 507 a ... Light incident end face, 509 ... Uneven portion, 519 ... Uneven portion for transfer, 520 ...
  • Optical sheet processing device 523 ... Transfer roll, 523a ... Outer peripheral surface (transfer surface), 523b ... Roll shaft, 526A, 526B ...
  • Stage base (moving means), 527A, 527B ... Guide rail (moving means), 528A, 528B ... Stage, 530A, 530B ... Press cylinder (pressure applying means), 531A, 531B ... Servo for molding Motor (rotating means, moving means), 532A, 532B ... Pinion gear (rotating means, moving means), 533A, 533B ... Rack gear (moving means), 534A, 534B ... Shaft (rotating means), 535A, 535B ... Spur gear ( Rotating means), 536A, 536B ... Electromagnetic clutch (rotating means), 537A, 537B Shaft (rotating means), 538A, 538B ...
  • spur gear (rotating means), 539 ... spur gear (rotating means), 541 ... induction coil (heating means), 542 ... power supply (heating means), 551 ... positioning roller ( Positioning member), 552... Pressing bar (pressing member), 555... Pressing member, 556... Bar, 557.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

This optical sheet manufacturing method is an optical sheet manufacturing method for manufacturing an optical sheet (107) produced from thermoplastic resin and having a light incident end surface (107a) in which recessed and protruding portions are provided, the method comprising: a preparation step for preparing a transfer mold (124) having a transfer surface (125a) for imparting the recessed and protruding portions to the light incident end surface (107a) of the optical sheet (107); and a processing step for forming the recessed and protruding portions on the light incident end surface (107a) by pressing the transfer surface (125a) and the light incident end surface (107a) against each other while heating the transfer mold (124). According to the present invention, chips can be prevented from being mixed into and adhering to the optical sheet, thereby making it possible to stabilize the quality of the optical sheet and enhance yield.

Description

光学シート製造方法、光学シート加工装置、光学シート加工方法Optical sheet manufacturing method, optical sheet processing apparatus, and optical sheet processing method
 本発明は、入光端面に凹凸部が設けられた光学シートを製造する光学シート製造方法、並びに、光学シートの入光端面に凹凸部を形成する光学シート加工装置及び方法に関するものである。 The present invention relates to an optical sheet manufacturing method for manufacturing an optical sheet having an uneven portion on a light incident end surface, and an optical sheet processing apparatus and method for forming an uneven portion on a light incident end surface of an optical sheet.
 光学シートの一つとして、例えば液晶表示装置のバックライトユニットに用いられる導光板が挙げられる。エッジライト型のバックライトユニットでは、導光板の入光端面に対向して複数の光源をアレイ状に配置し、導光板の入光端面から入射した光を光出射面から出射することで、液晶表示パネルを照明する。しかし、エッジライト型のバックライトユニットでは、導光板の光出射面のうち入光端面付近から出射される照明光に輝度ムラが発生する。 An example of the optical sheet is a light guide plate used in a backlight unit of a liquid crystal display device. In the edge-light type backlight unit, a plurality of light sources are arranged in an array facing the light incident end face of the light guide plate, and light incident from the light incident end face of the light guide plate is emitted from the light exit surface, thereby liquid crystal Illuminate the display panel. However, in the edge light type backlight unit, luminance unevenness occurs in the illumination light emitted from the vicinity of the light incident end surface of the light exit surface of the light guide plate.
 そこで、そのような不具合を解決すべく、例えば特許文献1に記載されているように、導光板の入光端面に切削研磨面を形成してなる技術が知られている。特許文献1に記載の切削研磨面は、導光板の光出射面に垂直な方向に延在する縦スジ状の微細な凹凸を多数有する粗面となっている。 Therefore, in order to solve such a problem, for example, as described in Patent Document 1, a technique is known in which a cut and polished surface is formed on a light incident end surface of a light guide plate. The cutting and polishing surface described in Patent Document 1 is a rough surface having a large number of fine vertical irregularities extending in a direction perpendicular to the light emitting surface of the light guide plate.
特開2010-182478号公報JP 2010-182478 A
 しかしながら、上記従来技術においては、フライス盤、NCルータ、プレーナ等の工作機械を用いた機械加工によって導光板の入光端面に切削研磨面を形成しているため、切削による切り粉が発生してしまう。このため、導光板へ切り粉が混入・付着し、結果的に品質不良となることがある。また、生産性等の観点から、導光板の入光端面に対する凹凸部の加工時間を短縮することが望まれている。 However, in the above-described prior art, cutting and polishing surfaces are formed on the light incident end surface of the light guide plate by machining using a machine tool such as a milling machine, NC router, or planar, and thus cutting chips are generated by cutting. . For this reason, cutting powder mixes and adheres to the light guide plate, resulting in poor quality. Further, from the viewpoint of productivity and the like, it is desired to shorten the processing time of the uneven portion with respect to the light incident end face of the light guide plate.
 本発明の目的は、光学シートへの切り粉の混入・付着を防止することができる光学シート製造方法、光学シート加工装置、及び光学シート加工方法を提供することである。また、本発明の他の目的は、切り粉を発生させること無く、光学シートの入光端面に対して凹凸部を短時間で加工することができる光学シート製造方法を提供することである。 An object of the present invention is to provide an optical sheet manufacturing method, an optical sheet processing apparatus, and an optical sheet processing method capable of preventing mixing and adhesion of chips to the optical sheet. Another object of the present invention is to provide an optical sheet manufacturing method capable of processing a concavo-convex portion in a short time with respect to a light incident end face of an optical sheet without generating chips.
 本発明は、熱可塑性樹脂からなり入光端面に凹凸部が設けられた光学シートを製造する光学シート製造方法であって、光学シートの入光端面に凹凸部を付与するための転写面を有する転写金型を用意する準備工程と、転写金型を加熱した状態で、転写面及び入光端面同士を押し付けることで、入光端面に凹凸部を形成する加工工程とを含むことを特徴とするものである。 The present invention is an optical sheet manufacturing method for manufacturing an optical sheet made of a thermoplastic resin and having an uneven portion on the light incident end surface, and has a transfer surface for providing the uneven portion on the light incident end surface of the optical sheet. It includes a preparation step of preparing a transfer mold and a processing step of forming an uneven portion on the light incident end surface by pressing the transfer surface and the light incident end surface with the transfer mold heated. Is.
 このような本発明の光学シート製造方法においては、光学シートの入光端面に凹凸部を付与するための転写面を有する転写金型を加熱した状態で、転写金型の転写面及び光学シートの入光端面同士を押し付けることで、光学シートの入光端面に凹凸部を形成することにより、切削加工によって凹凸部を形成する場合と異なり、切り粉が発生することは無い。これにより、光学シートへの切り粉の混入・付着を防止することができる。また、切削加工によって凹凸部を形成する場合には、加工時間が長くなりやすいが、転写金型を使用する本発明では、転写金型の加熱温度や、転写金型の転写面及び光学シートの端面同士の押し付け圧力を調整することで、加工時間の短縮化を図ることができる。 In such an optical sheet manufacturing method of the present invention, the transfer surface of the transfer mold and the optical sheet are heated while the transfer mold having the transfer surface for imparting the uneven portion to the light incident end surface of the optical sheet is heated. Unlike the case where the uneven portions are formed by cutting by forming the uneven portions on the light incident end surfaces of the optical sheet by pressing the light incident end surfaces to each other, chips are not generated. Thereby, mixing and adhesion of swarf to the optical sheet can be prevented. Further, when the uneven portion is formed by cutting, the processing time tends to be long. However, in the present invention using the transfer mold, the heating temperature of the transfer mold, the transfer surface of the transfer mold, and the optical sheet By adjusting the pressing pressure between the end faces, the processing time can be shortened.
 加工工程では、熱可塑性樹脂のビカット軟化温度以上であり且つ熱可塑性樹脂のビカット軟化温度+50℃以下の温度に転写金型を加熱してもよい。転写金型の加熱温度を熱可塑性樹脂のビカット軟化温度以上とすることにより、熱可塑性樹脂が適度に軟化するため、光学シートの割れが防止されると共に、光学シートの入光端面に凹凸部を良好に転写することができる。また、転写金型の加熱温度を熱可塑性樹脂のビカット軟化温度+50℃以下とすることにより、熱可塑性樹脂の溶融流動が防止されるため、熱可塑性樹脂の弾性率が低下して光学シートが変形したり、転写金型が著しく汚染したりすることが殆ど無い。 In the processing step, the transfer mold may be heated to a temperature that is equal to or higher than the Vicat softening temperature of the thermoplastic resin and equal to or lower than the Vicat softening temperature of the thermoplastic resin + 50 ° C. By setting the heating temperature of the transfer mold to be equal to or higher than the Vicat softening temperature of the thermoplastic resin, the thermoplastic resin is moderately softened, so that the optical sheet is prevented from cracking and an uneven portion is formed on the light incident end face of the optical sheet. It can transfer well. In addition, by setting the heating temperature of the transfer mold to the Vicat softening temperature of the thermoplastic resin + 50 ° C. or less, the melt flow of the thermoplastic resin is prevented, so the elastic modulus of the thermoplastic resin is lowered and the optical sheet is deformed. And the transfer mold is hardly contaminated.
 また、転写金型は、金属製のロール部を有し、ロール部の周面が転写面となっており、加工工程では、転写面及び入光端面同士を押し付けた状態で、ロール部を回転させると共に、光学シートの入光端面に沿ってロール部を光学シートに対して相対的に移動させて、入光端面に凹凸部を形成してもよい。この場合には、転写金型の転写面(ロール部の周面)及び光学シートの入光端面同士を押し付けたときに、両者が面接触ではなく線接触の状態となるため、その分だけ押し付け圧力を小さくすることができる。 In addition, the transfer mold has a metal roll part, and the peripheral surface of the roll part is a transfer surface. In the processing step, the transfer part and the light incident end face are pressed against each other and the roll part is rotated. In addition, the roll portion may be moved relative to the optical sheet along the light incident end surface of the optical sheet to form an uneven portion on the light incident end surface. In this case, when the transfer surface of the transfer mold (the peripheral surface of the roll part) and the light incident end surfaces of the optical sheet are pressed against each other, they are not in surface contact but in line contact. The pressure can be reduced.
 さらに、転写面には、プリズム形状またはレンチキュラー形状の転写用凹凸部が設けられており、転写用凹凸部のピッチが10μm~500μmであり、転写用凹凸部の高さが10μm~300μmであってもよい。転写用凹凸部の形状をプリズム形状またはレンチキュラー形状とすることにより、転写用凹凸部を有する転写面を比較的簡単に作ることができる。また、転写用凹凸部のピッチを10μm~500μmとし、これに合わせて転写用凹凸部の高さを10μm~300μmとすることにより、光学シートの入光端面に凹凸部を所望の転写率で転写することができる。 Further, the transfer surface is provided with a convex or concave portion for transfer having a prism shape or a lenticular shape, the pitch of the concave and convex portions for transfer is 10 μm to 500 μm, and the height of the concave and convex portions for transfer is 10 μm to 300 μm. Also good. By making the shape of the concavo-convex portion for transfer into a prism shape or a lenticular shape, a transfer surface having the concavo-convex portion for transfer can be made relatively easily. Also, by setting the pitch of the uneven portion for transfer to 10 μm to 500 μm and the height of the uneven portion for transfer to 10 μm to 300 μm in accordance with this, the uneven portion is transferred to the light incident end face of the optical sheet at a desired transfer rate. can do.
 また、加工工程では、0.05MPa~50MPaの圧力で転写面及び入光端面同士を押し付けてもよい。押し付け圧力を0.05MPa以上とすることにより、光学シートの入光端面に凹凸部を良好に転写することができる。また、押し付け圧力を50MPa以下とすることにより、光学シートの割れを防止することができる。 In the processing step, the transfer surface and the light incident end surface may be pressed together with a pressure of 0.05 MPa to 50 MPa. By setting the pressing pressure to 0.05 MPa or more, the concavo-convex portion can be satisfactorily transferred to the light incident end face of the optical sheet. Moreover, the crack of an optical sheet can be prevented by making pressing pressure into 50 Mpa or less.
 また、熱可塑性樹脂として、寸法精度や衝撃強度、透明度の高い非晶性樹脂を用いてもよい。 Further, as the thermoplastic resin, an amorphous resin having high dimensional accuracy, impact strength, and transparency may be used.
 また、加工工程では、転写面に熱可塑性樹脂が完全に充填される前に、転写金型と光学シートとを離型させてもよい。 In the processing step, the transfer mold and the optical sheet may be released before the transfer surface is completely filled with the thermoplastic resin.
 この場合、光学シートの入光端面に凹凸部を付与するための転写面を有する転写金型を加熱した状態で、転写金型の転写面及び光学シートの入光端面同士を押し付けることで、光学シートの入光端面に凹凸部を形成することにより、切削加工によって凹凸部を形成する場合と異なり、切り粉を発生させなくて済む。 In this case, by pressing the transfer mold of the transfer mold and the light incident end faces of the optical sheet in a state where the transfer mold having the transfer surface for imparting the uneven portion to the light incident end face of the optical sheet is heated, By forming the uneven portion on the light incident end surface of the sheet, unlike the case of forming the uneven portion by cutting, it is not necessary to generate chips.
 また、光学シートの入光端面に凹凸部を形成するときは、転写金型の転写面に熱可塑性樹脂が完全に充填される前に、転写金型と光学シートとを離型することにより、凹凸部を短時間で加工することができる。このとき、転写金型の転写面に熱可塑性樹脂が完全に充填される前に、転写金型と光学シートとを離型するので、凹凸部の先端部は平坦面または平坦に近い面となる。ここで、平坦に近い面とは、例えばプリズム形状を有する転写用凹凸部が光学シートの入光端面に転写された場合には、凹凸部の凹状の斜辺と比較して明らかに傾斜が滑らかになっている程度の面をいう。つまり、凹凸部は、平坦領域(平坦に近い領域も含む)と凹状領域とが混在する形状を有することになる。従って、光学シートの光学特性(光の拡散性)が良好になると共に、凹凸部の先端部が欠けることが防止される。 In addition, when forming an uneven portion on the light incident end surface of the optical sheet, by releasing the transfer mold and the optical sheet before the transfer surface of the transfer mold is completely filled with the thermoplastic resin, The uneven part can be processed in a short time. At this time, since the transfer mold and the optical sheet are released before the transfer surface of the transfer mold is completely filled with the thermoplastic resin, the tip of the concavo-convex portion becomes a flat surface or a surface that is almost flat. . Here, the nearly flat surface means that, for example, when the uneven portion for transfer having a prism shape is transferred to the light incident end surface of the optical sheet, the inclination is clearly smooth compared to the concave oblique side of the uneven portion. It refers to the surface of the level. That is, the concavo-convex portion has a shape in which a flat region (including a region close to flat) and a concave region are mixed. Accordingly, the optical characteristics (light diffusibility) of the optical sheet are improved, and the tip of the concavo-convex portion is prevented from being chipped.
 加工工程では、熱可塑性樹脂のビカット軟化温度以上であり且つ熱可塑性樹脂のビカット軟化温度+40℃以下の温度に転写金型を加熱してもよい。転写金型の加熱温度を熱可塑性樹脂のビカット軟化温度以上とすることにより、熱可塑性樹脂が適度に軟化するため、光学シートの割れが防止されると共に、光学シートの入光端面に凹凸部を良好に転写することができる。また、転写金型の加熱温度を熱可塑性樹脂のビカット軟化温度+40℃以下とすることにより、熱可塑性樹脂の溶融流動が防止されるため、熱可塑性樹脂の弾性率が低下して光学シートが変形したり、転写金型が著しく汚染したりすることが殆ど無い。 In the processing step, the transfer mold may be heated to a temperature that is equal to or higher than the Vicat softening temperature of the thermoplastic resin and equal to or lower than the Vicat softening temperature of the thermoplastic resin + 40 ° C. By setting the heating temperature of the transfer mold to be equal to or higher than the Vicat softening temperature of the thermoplastic resin, the thermoplastic resin is moderately softened, so that the optical sheet is prevented from cracking and an uneven portion is formed on the light incident end face of the optical sheet. It can transfer well. In addition, by setting the heating temperature of the transfer mold to the Vicat softening temperature of the thermoplastic resin + 40 ° C. or lower, the melt flow of the thermoplastic resin is prevented, so that the elastic modulus of the thermoplastic resin is lowered and the optical sheet is deformed. And the transfer mold is hardly contaminated.
 また、転写面には、プリズム形状またはレンチキュラー形状を有する転写用凹凸部が設けられており、加工工程では、転写用凹凸部の1ピッチにおける基部平坦領域の長さFと凸状領域の長さWaとの比F/Waが0~50%であるときに、凹凸部の1ピッチにおける先端部平坦領域の長さF’と凹状領域の長さWa’との比F’/Wa’が10~300%となるように、入光端面に凹凸部を形成してもよい。ここで、基部平坦領域及び先端部平坦領域は、完全な平坦な領域だけでなく、平坦に近い領域も含んでいる。転写金型の加熱温度や、転写金型の転写面及び光学シートの入光端面同士の押し付け圧力及び押し付け時間を調整することで、凹凸部の先端部平坦領域の長さを所望な値とすることができる。 Also, the transfer surface is provided with a transfer uneven portion having a prism shape or a lenticular shape, and in the processing step, the length F of the base flat region and the length of the convex region at one pitch of the transfer uneven portion. When the ratio F / Wa to Wa is 0 to 50%, the ratio F ′ / Wa ′ of the length F ′ of the tip flat region and the length Wa ′ of the concave region at one pitch of the concavo-convex portion is 10 A concavo-convex portion may be formed on the light incident end face so as to be ˜300%. Here, the base flat region and the tip flat region include not only a completely flat region but also a region close to flat. By adjusting the heating temperature of the transfer mold, the pressing pressure and the pressing time between the transfer surface of the transfer mold and the light incident end surface of the optical sheet, the length of the flat region at the tip of the uneven portion is set to a desired value. be able to.
 また、本発明は、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工装置であって、光学シートを支持するステージと、ステージに支持された光学シートの入光端面に凹凸部を付与するための転写面を有する転写金型と、転写金型を加熱する加熱手段と、転写面及び入光端面同士を押し付けるように圧力を印加する圧力印加手段と、入光端面に凹凸部を形成するようにステージ及び転写金型の少なくとも一方を駆動する駆動手段とを備えることを特徴とするものである。 The present invention also provides an optical sheet processing apparatus for forming an uneven portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the stage supporting the optical sheet, and the light incident end surface of the optical sheet supported by the stage. A transfer mold having a transfer surface for providing an uneven portion, a heating means for heating the transfer mold, a pressure applying means for applying pressure so as to press the transfer surface and the light incident end surfaces, and a light incident end surface And a driving means for driving at least one of a stage and a transfer mold so as to form an uneven portion.
 このような本発明の光学シート加工装置を使用することにより、上述した光学シート製造方法を実施することができる。これにより、上述したように切り粉が発生することは無いため、光学シートへの切り粉の混入・付着を防止することができる。また、上述したように加工時間の短縮化を図ることができる。 By using such an optical sheet processing apparatus of the present invention, the above-described optical sheet manufacturing method can be carried out. As a result, chips are not generated as described above, and therefore, mixing and adhesion of chips to the optical sheet can be prevented. Further, as described above, the processing time can be shortened.
 転写金型は、金属製のロール部を有し、ロール部の周面が転写面となっており、駆動手段は、ロール部を回転させる手段と、光学シートの入光端面に沿ってロール部をステージに対して相対的に移動させる手段とを有していてもよい。この場合には、転写金型の転写面及び光学シートの入光端面同士を押し付けたときに、両者が線接触の状態となるため、押し付け圧力を小さくすることができる。 The transfer mold has a metal roll part, and the peripheral surface of the roll part is a transfer surface. The driving means is a means for rotating the roll part and a roll part along the light incident end face of the optical sheet. There may be a means for moving the relative to the stage. In this case, when the transfer surface of the transfer mold and the light incident end surfaces of the optical sheet are pressed against each other, both are in a line contact state, so that the pressing pressure can be reduced.
 また、この光学シート加工装置は、光学シートをステージに対してクランプするクランプ手段を更に備えていてもよい。この場合には、クランプ手段により光学シートがステージに対してクランプされた状態では、圧力印加手段により印加される圧力が上方に逃げることが無いため、転写金型の転写面及び光学シートの入光端面同士を効果的に押し付けることができる。 The optical sheet processing apparatus may further include a clamping unit that clamps the optical sheet with respect to the stage. In this case, in a state where the optical sheet is clamped with respect to the stage by the clamping means, the pressure applied by the pressure applying means does not escape upward, so that the transfer surface of the transfer mold and the incident light of the optical sheet The end faces can be effectively pressed against each other.
 また、本発明は、他の側面において、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工装置であって、光学シートの入光端面に凹凸部を付与するための転写面を有する金属製の転写ロールと、転写ロールを挟むように配置され、光学シートを支持する1対のステージと、転写ロールを加熱する加熱手段と、転写面及び入光端面同士を押し付けるようにステージに圧力を印加する圧力印加手段と、転写ロールを回転させる回転手段と、ステージを転写ロールに対して凹凸部の形成方向に移動させる移動手段とを備えることを特徴とするものである。 Moreover, this invention is an optical sheet processing apparatus which forms an uneven part in the light-incidence end surface of the optical sheet which consists of thermoplastic resins in another side surface, Comprising: For giving an uneven part to the light-incidence end surface of an optical sheet A metal transfer roll having a transfer surface, a pair of stages arranged to sandwich the transfer roll and supporting the optical sheet, a heating means for heating the transfer roll, and the transfer surface and the light incident end surface are pressed against each other. And a pressure applying means for applying pressure to the stage, a rotating means for rotating the transfer roll, and a moving means for moving the stage in the direction of forming the concavo-convex portion with respect to the transfer roll.
 このような本発明の光学シート加工装置を用いて、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成するときは、金属製の転写ロールを加熱すると共に、転写ロールの転写面及び光学シートの入光端面同士を押し付けるようにステージに圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に移動させることで、光学シートの入光端面に凹凸部を付与する。これにより、切削加工によって凹凸部を形成する場合と異なり、切り粉が発生することは無いため、光学シートへの切り粉の混入・付着を防止することができる。 Using such an optical sheet processing apparatus of the present invention, when forming a concavo-convex portion on the light incident end surface of an optical sheet made of a thermoplastic resin, the metal transfer roll is heated and the transfer surface of the transfer roll and While the pressure is applied to the stage so that the light incident end faces of the optical sheet are pressed against each other, the optical sheet is made incident by moving the stage in the direction of forming the concavo-convex part with respect to the transfer roll while rotating the transfer roll. An uneven portion is provided on the end face. Thereby, unlike the case where an uneven | corrugated | grooved part is formed by cutting, since a swarf does not generate | occur | produce, the mixing and adhesion of the swarf to an optical sheet can be prevented.
 また、光学シートを支持する1対のステージを、転写ロールを挟むように配置することにより、転写ロールの両側において光学シートの入光端面に凹凸部を形成することができる。具体的には、一方のステージに支持された光学シートの入光端面に凹凸部を形成していない期間(例えば光学シートの投入や取り出しの期間)に、他方のステージに支持された光学シートの入光端面に凹凸部を形成することができる。この場合には、光学シートの投入や取り出しのために、光学シートの入光端面に凹凸部を形成する工程を中断させる必要が無くなる。これにより、光学シートの加工タクトを向上させることができる。 Further, by arranging a pair of stages that support the optical sheet so as to sandwich the transfer roll, it is possible to form an uneven portion on the light incident end face of the optical sheet on both sides of the transfer roll. Specifically, the optical sheet supported by the other stage is not formed during the period in which the concave and convex portions are formed on the light incident end face of the optical sheet supported by one stage (for example, the period during which the optical sheet is inserted or removed). An uneven portion can be formed on the light incident end face. In this case, it is not necessary to interrupt the process of forming the concavo-convex portion on the light incident end face of the optical sheet for loading and unloading the optical sheet. Thereby, the processing tact of an optical sheet can be improved.
 ここで、回転手段は、各ステージに対応して設けられた1対のモータと、各モータの駆動力を転写ロールに伝達する回転用動力伝達機構とを有し、移動手段は、上記1対のモータと、各モータの駆動力を各ステージにそれぞれ伝達する移動用動力伝達機構とを有していてもよい。この場合には、1対のモータが回転手段及び移動手段の構成部品として共用されるので、転写ロールを回転させるモータと各ステージを移動させるモータとを別々としなくて済み、使用するモータの数を最小限に抑えることができる。 Here, the rotating means has a pair of motors provided corresponding to each stage, and a rotation power transmission mechanism for transmitting the driving force of each motor to the transfer roll, and the moving means is the above-mentioned pair of motors. And a moving power transmission mechanism for transmitting the driving force of each motor to each stage. In this case, since a pair of motors are shared as components of the rotating means and moving means, it is not necessary to separate the motor for rotating the transfer roll and the motor for moving each stage, and the number of motors to be used. Can be minimized.
 このとき、回転用動力伝達機構は、転写ロールのロール軸に取り付けられた第1平歯車と、第1平歯車とそれぞれ噛み合う1対の第2平歯車と、各第2平歯車への各モータの駆動力の伝達をそれぞれ断続する1対のクラッチとを有し、移動用動力伝達機構は、各ステージにそれぞれ設けられた1対のラックと、各モータの出力軸にそれぞれ取り付けられ、各ラックとそれぞれ噛み合う1対のピニオンとを有していてもよい。この場合には、回転用動力伝達機構及び移動用動力伝達機構を簡単な構成で実現することができる。 At this time, the rotational power transmission mechanism includes a first spur gear attached to the roll shaft of the transfer roll, a pair of second spur gears that mesh with the first spur gear, and motors for the second spur gears. And a pair of clutches for intermittently transmitting and receiving the driving force of each, and a power transmission mechanism for movement is attached to each pair of racks provided on each stage and each motor output shaft, and each rack And a pair of pinions that mesh with each other. In this case, the rotation power transmission mechanism and the movement power transmission mechanism can be realized with a simple configuration.
 また、この側面における本発明は、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工方法であって、上記の光学シート加工装置を用意する準備工程と、転写ロールを加熱すると共に、転写面及び入光端面同士を押し付けるようにステージに圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に移動させることにより、入光端面に凹凸部を形成する成形工程とを含み、成形工程では、1対のステージの一方に支持された光学シートの入光端面に凹凸部を形成していない間に、1対のステージの他方に支持された光学シートの入光端面に凹凸部を形成することを特徴とするものである。 Further, the present invention in this aspect is an optical sheet processing method for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the preparation step for preparing the optical sheet processing apparatus described above, and a transfer roll. While heating, with the pressure applied to the stage so that the transfer surface and the light incident end surface are pressed together, the stage is moved in the direction of forming the concavo-convex part while rotating the transfer roll. Forming a concavo-convex portion on the light end face, and in the forming step, the concavo-convex portion is not formed on the light incident end face of the optical sheet supported by one of the pair of stages. An uneven portion is formed on the light incident end face of the optical sheet supported on the other side.
 このような本発明の光学シート加工方法においては、転写ロールを加熱すると共に、転写ロールの転写面及び光学シートの入光端面同士を押し付けるようにステージに圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に移動させることで、光学シートの入光端面に凹凸部を付与する。これにより、切削加工によって凹凸部を形成する場合と異なり、切り粉が発生することは無いため、光学シートへの切り粉の混入・付着を防止することができる。 In such an optical sheet processing method of the present invention, the transfer roll is heated and the transfer roll is rotated in a state where pressure is applied to the stage so as to press the transfer face of the transfer roll and the light incident end faces of the optical sheet. Then, by moving the stage in the formation direction of the concavo-convex portion with respect to the transfer roll, the concavo-convex portion is imparted to the light incident end surface of the optical sheet. Thereby, unlike the case where an uneven | corrugated | grooved part is formed by cutting, since a swarf does not generate | occur | produce, the mixing and adhesion of the swarf to an optical sheet can be prevented.
 また、一方のステージに支持された光学シートの入光端面に凹凸部を形成していない期間(例えば光学シートの投入や取り出しの期間)に、他方のステージに支持された光学シートの入光端面に凹凸部を形成することにより、光学シートの投入や取り出しのために、光学シートの入光端面に凹凸部を形成する工程を中断させる必要が無くなる。これにより、光学シートの加工タクトを向上させることができる。 In addition, the light incident end surface of the optical sheet supported by the other stage during a period in which the uneven portion is not formed on the light incident end surface of the optical sheet supported by one stage (for example, the period during which the optical sheet is inserted or removed) By forming the concavo-convex portion on the optical sheet, it is not necessary to interrupt the step of forming the concavo-convex portion on the light incident end surface of the optical sheet in order to load and unload the optical sheet. Thereby, the processing tact of an optical sheet can be improved.
 成形工程は、一方のステージに対する光学シートの取り出しを行っている間に、他方のステージを一側から他側に移動させて、他方のステージに支持された光学シートの入光端面に凹凸部を形成する第1工程と、第1工程を実施した後、他方のステージに対する光学シートの取り出しを行っている間に、一方のステージを一側から他側に移動させて、一方のステージに支持された光学シートの入光端面に凹凸部を形成する第2工程と、第2工程を実施した後、一方のステージに対する光学シートの取り出しを行っている間に、他方のステージを他側から一側に移動させて、他方のステージに支持された光学シートの入光端面に凹凸部を形成する第3工程と、第3工程を実施した後、他方のステージに対する光学シートの取り出しを行っている間に、一方のステージを他側から一側に移動させて、一方のステージに支持された光学シートの入光端面に凹凸部を形成する第4工程とを含んでいてもよい。この場合には、一方のステージに支持された光学シート及び他方のステージに支持された光学シートの何れについても、両方向から入光端面に凹凸部を形成することができる。 In the molding process, while the optical sheet is taken out from one stage, the other stage is moved from one side to the other side, and an uneven portion is formed on the light incident end face of the optical sheet supported by the other stage. After performing the first step to be formed and the first step, while the optical sheet is being taken out from the other stage, one stage is moved from one side to the other side and supported by one stage. The second step of forming the uneven portion on the light incident end face of the optical sheet, and the second stage is moved from the other side to the one side while the optical sheet is taken out from the one stage after performing the second step. The third step of forming an uneven portion on the light incident end surface of the optical sheet supported by the other stage and the third step are performed, and then the optical sheet is taken out from the other stage. During the one stage is moved to one side from the other side may comprise a fourth step of forming an uneven portion to the light incident face of the optical sheet supported on one stage. In this case, the concave and convex portions can be formed on the light incident end face from both directions for both the optical sheet supported by one stage and the optical sheet supported by the other stage.
 また、成形工程は、一方のステージに対する光学シートの取り出しを行っている間に、他方のステージを一側から他側に移動させて、他方のステージに支持された光学シートの入光端面に凹凸部を形成する第1工程と、第1工程を実施した後、一方のステージが待機している間に、他方のステージを他側から一側に移動させる第2工程と、第2工程を実施した後、他方のステージに対する光学シートの取り出しを行っている間に、一方のステージを他側から一側に移動させて、一方のステージに支持された光学シートの入光端面に凹凸部を形成する第3工程と、第3工程を実施した後、他方のステージが待機している間に、一方のステージを一側から他側に移動させる第4工程とを含んでいてもよい。この場合には、光学シート加工装置の一側及び他側に作業員が1人ずついればよいので、作業員工数を下げることができる。 Further, in the molding process, while the optical sheet is being taken out from one stage, the other stage is moved from one side to the other, and the light incident end face of the optical sheet supported by the other stage is uneven. The first step for forming the part, the second step for moving the other stage from the other side to the one side, and the second step while one stage is waiting after the first step is performed After that, while taking out the optical sheet from the other stage, one stage is moved from the other side to one side to form an uneven portion on the light incident end face of the optical sheet supported by one stage. The third step may include a fourth step of moving one stage from one side to the other while the other stage is waiting after the third step is performed. In this case, since it is sufficient that one worker is provided on each of the one side and the other side of the optical sheet processing apparatus, the number of workers can be reduced.
 さらに、成形工程は、一方のステージに対する光学シートの取り出しを行っている間に、他方のステージを一側から他側に移動させて、他方のステージに支持された光学シートの入光端面に凹凸部を形成する第1工程と、第1工程を実施した後、一方のステージが待機している間に、他方のステージを他側から一側に移動させる第2工程と、第2工程を実施した後、他方のステージに対する光学シートの取り出しを行っている間に、一方のステージを一側から他側に移動させて、一方のステージに支持された光学シートの入光端面に凹凸部を形成する第3工程と、第3工程を実施した後、他方のステージが待機している間に、一方のステージを他側から一側に移動させる第4工程とを含んでいてもよい。この場合には、光学シート加工装置の一側に作業員が2人いればよいので、作業員工数を下げることができる。また、光学シート加工装置の他側に壁等があるために光学シート加工装置の他側で作業員が作業することが困難な場合であっても、光学シート加工装置の一側において支障なく作業を行うことができる。 Further, in the molding process, while the optical sheet is being taken out from one stage, the other stage is moved from one side to the other, and the light incident end face of the optical sheet supported by the other stage is uneven. The first step for forming the part, the second step for moving the other stage from the other side to the one side, and the second step while one stage is waiting after the first step is performed After that, while taking out the optical sheet from the other stage, one stage is moved from one side to the other to form a concavo-convex portion on the light incident end surface of the optical sheet supported by one stage. And a fourth step of moving one stage from the other side to the one side while the other stage is waiting after the third step is performed. In this case, since it is sufficient that there are two workers on one side of the optical sheet processing apparatus, the number of workers can be reduced. Also, even if it is difficult for a worker to work on the other side of the optical sheet processing apparatus because there is a wall or the like on the other side of the optical sheet processing apparatus, the work can be performed without trouble on one side of the optical sheet processing apparatus. It can be performed.
 また、本発明は、他の側面において、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工装置であって、光学シートを支持するステージと、ステージに支持された光学シートの入光端面に凹凸部を付与するための転写面を有する金属製の転写ロールと、転写ロールを加熱する加熱手段と、転写面及び入光端面同士を押し付けるように圧力を印加する圧力印加手段と、転写ロールを回転させる回転手段と、ステージを転写ロールに対して凹凸部の形成方向に相対的に移動させる第1移動手段と、転写ロールをステージに対して転写ロールのロール軸方向に相対的に移動させる第2移動手段とを備えることを特徴とするものである。 In another aspect, the present invention is an optical sheet processing apparatus for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the stage supporting the optical sheet, and the optical supported by the stage. Metal transfer roll having a transfer surface for imparting irregularities to the light incident end face of the sheet, heating means for heating the transfer roll, and pressure application for applying pressure so as to press the transfer face and the light incident end face together Means, a rotating means for rotating the transfer roll, a first moving means for moving the stage relative to the transfer roll in the direction of forming the concavo-convex portion, and a transfer roll in the roll axis direction of the transfer roll with respect to the stage. And a second moving means for relatively moving.
 このような本発明の光学シート加工装置を用いて、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成するときは、金属製の転写ロールを加熱すると共に、転写ロールの転写面及び光学シートの入光端面同士を押し付けるように圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に相対的に移動させることで、光学シートの入光端面に凹凸部を付与する。これにより、切削加工によって凹凸部を形成する場合と異なり、切り粉が発生することは無いため、光学シートへの切り粉の混入・付着を防止することができる。 Using such an optical sheet processing apparatus of the present invention, when forming a concavo-convex portion on the light incident end surface of an optical sheet made of a thermoplastic resin, the metal transfer roll is heated and the transfer surface of the transfer roll and With the pressure applied so that the light incident end faces of the optical sheet are pressed against each other, the stage is moved relative to the transfer roll in the direction of forming the concavo-convex part while rotating the transfer roll. An uneven portion is provided on the light end face. Thereby, unlike the case where an uneven | corrugated | grooved part is formed by cutting, since a swarf does not generate | occur | produce, the mixing and adhesion of the swarf to an optical sheet can be prevented.
 また、例えば転写ロールの転写面を光学シートの入光端面に熱転写すると、光学シートの材料である熱可塑性樹脂の熱分解が起こり、熱可塑性樹脂に含まれる添加剤が析出するため、添加剤が汚れとして転写ロールの転写面に付着することがある。このように転写ロールの転写面に汚れが発生したときは、転写ロールの転写面における汚れの発生箇所に光学シートの入光端面が接触することを回避するように、転写ロールをステージに対して転写ロールのロール軸方向に相対的に移動させる。これにより、転写ロールの転写面に汚れが発生しても、転写面を洗浄すること無く、転写ロールの綺麗な転写面において光学シートの入光端面への凹凸部の形成を継続して行うことができる。 Further, for example, when the transfer surface of the transfer roll is thermally transferred to the light incident end surface of the optical sheet, the thermoplastic resin that is the material of the optical sheet is thermally decomposed, and the additive contained in the thermoplastic resin is precipitated. It may adhere to the transfer surface of the transfer roll as dirt. When contamination occurs on the transfer surface of the transfer roll in this way, the transfer roll is placed on the stage so that the incident end surface of the optical sheet does not come into contact with the occurrence of contamination on the transfer surface of the transfer roll. Move relatively in the roll axis direction of the transfer roll. As a result, even if the transfer surface of the transfer roll becomes dirty, the formation of uneven portions on the light incident end surface of the optical sheet is continuously performed on the clean transfer surface of the transfer roll without cleaning the transfer surface. Can do.
 光学シートの主面には、マスキングフィルムが貼合されていてもよい。この場合には、転写ロールの転写面及び光学シートの入光端面同士を押し付けるように圧力を印加したときに、マスキングフィルムの貼合に用いられている糊成分が汚れとして転写ロールに付着することがある。従って、そのようなマスキングフィルム付きの光学シートの加工に本発明を適用することが特に効果的である。 A masking film may be bonded to the main surface of the optical sheet. In this case, when pressure is applied so as to press the transfer surface of the transfer roll and the light incident end surfaces of the optical sheet, the paste component used for bonding the masking film adheres to the transfer roll as dirt. There is. Therefore, it is particularly effective to apply the present invention to the processing of such an optical sheet with a masking film.
 また、加熱手段は、転写ロールに設けられた誘導コイルと、誘導コイルに電流を供給する電源部とを有していてもよい。このように誘導コイル付きの転写ロールを使用し、誘導コイルに電流を流して転写ロールを加熱することにより、オイルにより転写ロールを加熱する場合に比べて、転写ロールのロール軸方向の温度分布が均一化される。従って、転写ロールをステージに対して転写ロールのロール軸方向に相対的に移動させることで、転写ロールの転写面と光学シートの入光端面との接触箇所を変えても、安定した転写精度を得ることができる。 Further, the heating means may include an induction coil provided in the transfer roll and a power supply unit that supplies current to the induction coil. By using a transfer roll with an induction coil in this way and passing a current through the induction coil to heat the transfer roll, the temperature distribution in the roll axis direction of the transfer roll is higher than when the transfer roll is heated with oil. It is made uniform. Therefore, by moving the transfer roll relative to the stage in the roll axis direction of the transfer roll, stable transfer accuracy can be achieved even if the contact location between the transfer surface of the transfer roll and the light incident end surface of the optical sheet is changed. Obtainable.
 また、この側面における本発明は、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工方法であって、上記の光学シート加工装置を用意する準備工程と、転写ロールを加熱すると共に、転写面及び入光端面同士を押し付けるように圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に相対的に移動させることにより、入光端面に凹凸部を形成する成形工程と、成形工程を実施した後、転写面に異物が付着している場合に、転写面における異物の付着箇所に入光端面が接触することが回避されるように、転写ロールをステージに対して転写ロールのロール軸方向に相対的に移動させる回避工程とを含むことを特徴とするものである。 Further, the present invention in this aspect is an optical sheet processing method for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the preparation step for preparing the optical sheet processing apparatus described above, and a transfer roll. By heating and moving the stage relative to the transfer roll in the direction of formation of the concavo-convex part while rotating the transfer roll in a state where pressure is applied so as to press the transfer surface and the light incident end surfaces, After the molding process for forming the concavo-convex portion on the light incident end face and the foreign substance adhering to the transfer surface after the molding process is performed, it is avoided that the light incident end face comes into contact with the foreign matter adhesion portion on the transfer surface. And an avoidance step of moving the transfer roll relative to the stage in the roll axis direction of the transfer roll.
 このような本発明の光学シート加工方法においては、転写ロールを加熱すると共に、転写ロールの転写面及び光学シートの入光端面同士を押し付けるように圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に相対的に移動させることで、光学シートの入光端面に凹凸部を付与する。これにより、切削加工によって凹凸部を形成する場合と異なり、切り粉が発生することは無いため、光学シートへの切り粉の混入・付着を防止することができる。 In such an optical sheet processing method of the present invention, the transfer roll is heated and the transfer roll is rotated in a state where pressure is applied so as to press the transfer surface of the transfer roll and the light incident end faces of the optical sheet. By moving the stage relative to the transfer roll in the direction of forming the uneven portion, the uneven portion is imparted to the light incident end surface of the optical sheet. Thereby, unlike the case where an uneven | corrugated | grooved part is formed by cutting, since a swarf does not generate | occur | produce, the mixing and adhesion of the swarf to an optical sheet can be prevented.
 また、光学シートの入光端面に凹凸部を形成した後、転写ロールの転写面に異物が付着している場合には、転写面における異物の付着箇所に入光端面が接触することが回避されるように、転写ロールをステージに対して転写ロールのロール軸方向に相対的に移動させる。これにより、転写ロールの転写面に汚れが発生しても、転写面を洗浄すること無く、転写ロールの綺麗な転写面において光学シートの入光端面への凹凸部の形成を継続して行うことができる。 In addition, when foreign matter adheres to the transfer surface of the transfer roll after forming the concavo-convex portion on the light entrance end surface of the optical sheet, it is avoided that the light entrance end surface comes into contact with the foreign matter attachment location on the transfer surface. In this manner, the transfer roll is moved relative to the stage in the roll axis direction of the transfer roll. As a result, even if the transfer surface of the transfer roll becomes dirty, the formation of uneven portions on the light incident end surface of the optical sheet is continuously performed on the clean transfer surface of the transfer roll without cleaning the transfer surface. Can do.
 また、本発明は、他の側面において、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工装置であって、光学シートを支持するステージと、ステージに支持された光学シートの入光端面に凹凸部を付与するための転写面を有する金属製の転写ロールと、ステージに対して転写ロールに対応する側に配置され、転写ロールに対する光学シートの基準位置を設定するための位置決め部材と、光学シートを位置決め部材に押し付けるための押付部材と、転写ロールを加熱する加熱手段と、転写面及び入光端面同士を押し付けるように圧力を印加する圧力印加手段と、転写ロールを回転させる回転手段と、ステージを転写ロールに対して凹凸部の形成方向に相対的に移動させる移動手段とを備えることを特徴とするものである。 In another aspect, the present invention is an optical sheet processing apparatus for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the stage supporting the optical sheet, and the optical supported by the stage. A metal transfer roll having a transfer surface for imparting a concavo-convex portion to the light incident end face of the sheet, and a stage disposed on the side corresponding to the transfer roll with respect to the stage, for setting a reference position of the optical sheet with respect to the transfer roll A positioning member, a pressing member for pressing the optical sheet against the positioning member, a heating unit for heating the transfer roll, a pressure applying unit for applying pressure so as to press the transfer surface and the light incident end surface, and a transfer roll. Rotating means for rotating, and moving means for moving the stage relative to the transfer roll in the direction of forming the concavo-convex portion A.
 このような本発明の光学シート加工装置を用いて、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成するときは、金属製の転写ロールを加熱すると共に、転写ロールの転写面及び光学シートの入光端面同士を押し付けるように圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に相対的に移動させることで、光学シートの入光端面に凹凸部を付与する。これにより、切削加工によって凹凸部を形成する場合と異なり、切り粉が発生することは無いため、光学シートへの切り粉の混入・付着を防止することができる。 Using such an optical sheet processing apparatus of the present invention, when forming a concavo-convex portion on the light incident end surface of an optical sheet made of a thermoplastic resin, the metal transfer roll is heated and the transfer surface of the transfer roll and With the pressure applied so that the light incident end faces of the optical sheet are pressed against each other, the stage is moved relative to the transfer roll in the direction of forming the concavo-convex part while rotating the transfer roll. An uneven portion is provided on the light end face. Thereby, unlike the case where an uneven | corrugated | grooved part is formed by cutting, since a swarf does not generate | occur | produce, the mixing and adhesion of the swarf to an optical sheet can be prevented.
 また、ステージに対して転写ロールに対応する側に位置決め部材を配置し、押付部材により光学シートを位置決め部材に押し付けて、転写ロールに対する光学シートの基準位置を設定することにより、光学シートのカット時の公差により光学シートのサイズが一枚一枚異なったとしても、転写ロールに対する光学シートの基準位置が常に一定になる。従って、転写ロールの転写面及び光学シートの入光端面同士を押し付けるように圧力を印加するときに、光学シートと転写ロールとの接触距離が常に一定に保たれるようになる。これにより、光学シートのサイズが異なっても、安定した転写精度を得ることができる。 In addition, when the optical sheet is cut, a positioning member is arranged on the side corresponding to the transfer roll with respect to the stage, the optical sheet is pressed against the positioning member by the pressing member, and the reference position of the optical sheet with respect to the transfer roll is set. Even if the size of the optical sheet differs from one sheet to another due to the tolerance, the reference position of the optical sheet with respect to the transfer roll is always constant. Therefore, when a pressure is applied so as to press the transfer surface of the transfer roll and the light incident end surfaces of the optical sheet, the contact distance between the optical sheet and the transfer roll is always kept constant. Thereby, even if the size of the optical sheet is different, stable transfer accuracy can be obtained.
 位置決め部材は、自由回転自在なローラであってもよい。この場合には、光学シートが位置決め部材(ローラ)に接触して、転写ロールに対する光学シートの基準位置が設定された状態で、ステージが転写ロールに対して凹凸部の形成方向に相対的に移動するときに、ローラが回転しながら光学シートが転写ロールに対して相対的に移動するようになるため、光学シートに傷が付くことが防止される。 The positioning member may be a freely rotatable roller. In this case, the stage moves relative to the transfer roll relative to the transfer roll in a state where the optical sheet contacts the positioning member (roller) and the reference position of the optical sheet relative to the transfer roll is set. In this case, since the optical sheet moves relative to the transfer roll while the roller rotates, the optical sheet is prevented from being damaged.
 また、押付部材は、ステージの移動方向に延びるバーとステージの移動方向に並んで配置された複数のピンとの少なくとも一方であってもよい。この場合には、押付部材を簡単な構造で実現することができる。 Further, the pressing member may be at least one of a bar extending in the moving direction of the stage and a plurality of pins arranged side by side in the moving direction of the stage. In this case, the pressing member can be realized with a simple structure.
 このとき、バーには、複数のピンがステージ側に突出しており、ステージの上面には、光学シートの押し付け方向に延在し、各ピンをスライドさせるための複数のガイド溝が設けられていてもよい。この場合には、バーを位置決め部材側に移動させて、光学シートを位置決め部材に押し付ける際に、バーの下面とステージの上面とが擦れて傷付け合うことが防止される。また、光学シートが薄い場合でも、複数のピンにより光学シートを位置決め部材に確実に押し付けることができる。 At this time, the bar has a plurality of pins protruding to the stage side, and the upper surface of the stage extends in the pressing direction of the optical sheet and is provided with a plurality of guide grooves for sliding each pin. Also good. In this case, when the bar is moved toward the positioning member and the optical sheet is pressed against the positioning member, the lower surface of the bar and the upper surface of the stage are prevented from being rubbed and damaged. Even when the optical sheet is thin, the optical sheet can be reliably pressed against the positioning member by the plurality of pins.
 さらに、転写面の凹凸の深さが0.01mm~0.30mmであってもよい。多数枚(例えば50枚程度)の光学シートを一度にまとめてカットすると、最大で0.1mm程度の公差が生じることが実験等で明らかにされている。このため、転写ロールの転写面の凹凸の深さを上記範囲とすると、光学シートと転写ロールとの接触距離が転写精度に与える影響が大きくなる。従って、そのような転写面を有する転写ロールに本発明を適用することが特に効果的である。 Furthermore, the depth of unevenness on the transfer surface may be 0.01 mm to 0.30 mm. Experiments and the like have revealed that when a large number of optical sheets (for example, about 50 sheets) are cut at once, a tolerance of about 0.1 mm at maximum is generated. For this reason, if the depth of the unevenness on the transfer surface of the transfer roll is in the above range, the influence of the contact distance between the optical sheet and the transfer roll on the transfer accuracy increases. Therefore, it is particularly effective to apply the present invention to a transfer roll having such a transfer surface.
 この側面における本発明は、熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工方法であって、上記の光学シート加工装置を用意する準備工程と、ステージに光学シートを支持した状態で、押付部材により光学シートを位置決め部材に押し付けて、転写ロールに対する光学シートの基準位置を設定する位置決め工程と、転写ロールを加熱すると共に、転写面及び入光端面同士を押し付けるように圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に相対的に移動させることにより、入光端面に凹凸部を形成する成形工程とを含むことを特徴とするものである。 The present invention in this aspect is an optical sheet processing method for forming a concavo-convex portion on a light incident end surface of an optical sheet made of a thermoplastic resin, the preparation step for preparing the above optical sheet processing apparatus, and an optical sheet on the stage In the supported state, the optical sheet is pressed against the positioning member by the pressing member to set the reference position of the optical sheet with respect to the transfer roll, the transfer roll is heated, and the transfer surface and the light incident end surface are pressed against each other. Forming a concavo-convex portion on the light incident end surface by moving the stage relative to the transfer roll while rotating the transfer roll while pressure is applied. It is characterized by.
 このような本発明の光学シート加工方法においては、転写ロールを加熱すると共に、転写ロールの転写面及び光学シートの入光端面同士を押し付けるように圧力を印加した状態で、転写ロールを回転させながら、ステージを転写ロールに対して凹凸部の形成方向に相対的に移動させることで、光学シートの入光端面に凹凸部を付与する。これにより、切削加工によって凹凸部を形成する場合と異なり、切り粉が発生することは無いため、光学シートへの切り粉の混入・付着を防止することができる。 In such an optical sheet processing method of the present invention, the transfer roll is heated and the transfer roll is rotated in a state where pressure is applied so as to press the transfer surface of the transfer roll and the light incident end faces of the optical sheet. By moving the stage relative to the transfer roll in the direction of forming the uneven portion, the uneven portion is imparted to the light incident end surface of the optical sheet. Thereby, unlike the case where an uneven | corrugated | grooved part is formed by cutting, since a swarf does not generate | occur | produce, the mixing and adhesion of the swarf to an optical sheet can be prevented.
 また、ステージに対して転写ロールに対応する側に配置された位置決め部材に光学シートを押し付けて、転写ロールに対する光学シートの基準位置を設定することにより、光学シートのカット時の公差により光学シートのサイズが一枚一枚異なったとしても、転写ロールに対する光学シートの基準位置が常に一定になる。従って、転写ロールの転写面及び光学シートの入光端面同士を押し付けるように圧力を印加するときに、光学シートと転写ロールとの接触距離が常に一定に保たれるようになる。これにより、光学シートのサイズが異なっても、安定した転写精度を得ることができる。 In addition, the optical sheet is pressed against a positioning member arranged on the side corresponding to the transfer roll with respect to the stage, and the reference position of the optical sheet with respect to the transfer roll is set, so that the tolerance of the optical sheet can be reduced by the tolerance of the optical sheet. Even if the sizes differ one by one, the reference position of the optical sheet with respect to the transfer roll is always constant. Therefore, when a pressure is applied so as to press the transfer surface of the transfer roll and the light incident end surfaces of the optical sheet, the contact distance between the optical sheet and the transfer roll is always kept constant. Thereby, even if the size of the optical sheet is different, stable transfer accuracy can be obtained.
 本発明によれば、光学シートへの切り粉の混入・付着を防止することができる。これにより、光学シートの品質が安定化し、歩留まりを向上させることが可能となる。
 また、本発明の一側面によれば、転写ロールの転写面に汚染が発生しても、転写ロールの綺麗な転写面において光学シートの入光端面への凹凸部の形成を継続して行うことができる。これにより、光学シートの品質を安定化させ、歩留まりを向上させることが可能となる。
 また、本発明の一側面によれば、光学シートのサイズが異なっても、安定した転写精度を得ることができる。これにより、光学シートの品質を安定化させ、歩留まりを向上させることが可能となる。
 また、本発明の一側面によれば、光学シートに凹凸部を短時間で加工し、生産性を向上させることができる。
 また、本発明の一側面によれば、光学シートの加工タクトを上げ、生産性を向上させることができる。
According to the present invention, it is possible to prevent chips from being mixed and adhered to the optical sheet. As a result, the quality of the optical sheet can be stabilized and the yield can be improved.
Further, according to one aspect of the present invention, even when the transfer surface of the transfer roll is contaminated, the formation of the uneven portion on the light incident end surface of the optical sheet is continuously performed on the clean transfer surface of the transfer roll. Can do. Thereby, the quality of the optical sheet can be stabilized and the yield can be improved.
In addition, according to one aspect of the present invention, stable transfer accuracy can be obtained even if the size of the optical sheet is different. Thereby, the quality of the optical sheet can be stabilized and the yield can be improved.
Moreover, according to one side of this invention, an uneven | corrugated | grooved part can be processed in an optical sheet in a short time, and productivity can be improved.
In addition, according to one aspect of the present invention, the processing tact of the optical sheet can be increased and the productivity can be improved.
本発明に係わる光学シート製造方法の一実施形態によって製造される光学シートとしての導光板を含む液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device containing the light-guide plate as an optical sheet manufactured by one Embodiment of the optical sheet manufacturing method concerning this invention. 図1に示した導光板の斜視図である。It is a perspective view of the light-guide plate shown in FIG. 図1に示した導光板を製造する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the light-guide plate shown in FIG. 図1に示した導光板の入光端面に熱転写加工を施す際に使用される光学シート加工装置を示す概略構成図である。It is a schematic block diagram which shows the optical sheet processing apparatus used when performing a thermal transfer process to the light-incidence end surface of the light-guide plate shown in FIG. 図4に示した転写金型の剛体ロール部の周面に形成された凹凸部を示す図である。It is a figure which shows the uneven | corrugated | grooved part formed in the surrounding surface of the rigid roll part of the transfer metal mold | die shown in FIG. 図4に示した光学シート加工装置の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the optical sheet processing apparatus shown in FIG. 図4に示した光学シート加工装置の他の変形例を示す概略構成図である。It is a schematic block diagram which shows the other modification of the optical sheet processing apparatus shown in FIG. 図7に示した光学シート加工装置の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the optical sheet processing apparatus shown in FIG. 図4等に示した転写金型の剛体ロール部の周面に形成された他の凹凸部を示す図である。It is a figure which shows the other uneven | corrugated | grooved part formed in the surrounding surface of the rigid roll part of the transfer metal mold | die shown in FIG. 転写金型によって導光板の入光端面に凹凸部を熱転写加工したときの条件及び結果を示す表である。It is a table | surface which shows the conditions and result when an uneven | corrugated | grooved part is heat-transfer-processed on the light-incidence end surface of a light-guide plate with a transfer metal mold | die. 本発明に係わる光学シート製造方法の一実施形態によって製造される光学シートとしての導光板を含む液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device containing the light-guide plate as an optical sheet manufactured by one Embodiment of the optical sheet manufacturing method concerning this invention. 図11に示した導光板の斜視図である。It is a perspective view of the light-guide plate shown in FIG. 図11に示した導光板を製造する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the light-guide plate shown in FIG. 図11に示した導光板の入光端面に熱転写加工を施す際に使用される光学シート加工装置を示す概略構成図である。It is a schematic block diagram which shows the optical sheet processing apparatus used when performing a thermal transfer process to the light-incidence end surface of the light-guide plate shown in FIG. 図14に示した転写金型の剛体ロール部の周面に設けられた転写用凹凸部と熱転写加工により導光板の入光端面に形成された凹凸部とを示す図である。It is a figure which shows the uneven | corrugated part for transcription | transfer provided in the surrounding surface of the rigid roll part of the transfer metal mold | die shown in FIG. 14, and the uneven | corrugated | grooved part formed in the light-incidence end surface of a light-guide plate by thermal transfer process. 図14に示した光学シート加工装置の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the optical sheet processing apparatus shown in FIG. 図14に示した光学シート加工装置の他の変形例を示す概略構成図である。It is a schematic block diagram which shows the other modification of the optical sheet processing apparatus shown in FIG. 図17に示した光学シート加工装置の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the optical sheet processing apparatus shown in FIG. 図14等に示した転写金型の剛体ロール部の周面に設けられた他の転写用凹凸部を示す図である。It is a figure which shows the other uneven | corrugated | grooving part for transcription | transfer provided in the surrounding surface of the rigid roll part of the transfer metal mold | die shown in FIG. 転写金型によって導光板の入光端面に凹凸部を熱転写加工するときの条件及び結果を示す表である。It is a table | surface which shows the conditions and results when an uneven | corrugated | grooved part is heat-transfer processed to the light-incidence end surface of a light-guide plate with a transfer metal mold | die. 本発明に係わる光学シート加工装置の一実施形態によって得られる光学シートである導光板を含む液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device containing the light-guide plate which is an optical sheet obtained by one Embodiment of the optical sheet processing apparatus concerning this invention. 図21に示した導光板の斜視図である。It is a perspective view of the light-guide plate shown in FIG. 図21に示した導光板を製造する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the light-guide plate shown in FIG. 本発明に係わる光学シート加工装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the optical sheet processing apparatus concerning this invention. 図24に示した光学シート加工装置の正面図である。It is a front view of the optical sheet processing apparatus shown in FIG. 図25のXXVI-XXVI線要部断面図である。FIG. 26 is a main portion sectional view taken along line XXVI-XXVI in FIG. 25. 図25の要部拡大図である。It is a principal part enlarged view of FIG. 図25のXXVIII-XXVIII線要部拡大断面図である。FIG. 26 is an enlarged cross-sectional view taken along line XXVIII-XXVIII in FIG. 25. 図24等に示した光学シート加工装置を概略的に示す斜視図である。FIG. 25 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. 24 and the like. 図24等に示した光学シート加工装置を用いて導光板を成形する工程を示す概念図である。It is a conceptual diagram which shows the process of shape | molding a light-guide plate using the optical sheet processing apparatus shown in FIG. 図24等に示した光学シート加工装置を用いて導光板を成形する他の工程を示す概念図である。It is a conceptual diagram which shows the other process of shape | molding a light-guide plate using the optical sheet processing apparatus shown in FIG. 図24等に示した光学シート加工装置を用いて導光板を成形する更に他の工程を示す概念図である。It is a conceptual diagram which shows the further another process of shape | molding a light-guide plate using the optical sheet processing apparatus shown in FIG. 図24等に示した光学シート加工装置において、転写ロールを回転させると共にステージを移動させる機構の変形例を示す図である。FIG. 25 is a view showing a modification of the mechanism for rotating the transfer roll and moving the stage in the optical sheet processing apparatus shown in FIG. 24 and the like. 本発明に係わる光学シート加工装置の一実施形態によって得られる光学シートである導光板を含む液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device containing the light-guide plate which is an optical sheet obtained by one Embodiment of the optical sheet processing apparatus concerning this invention. 図34に示した導光板の斜視図である。It is a perspective view of the light-guide plate shown in FIG. 図34に示した導光板を製造する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the light-guide plate shown in FIG. 本発明に係わる光学シート加工装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the optical sheet processing apparatus concerning this invention. 図37に示した光学シート加工装置の正面図である。It is a front view of the optical sheet processing apparatus shown in FIG. 図38のXXXIX-XXXIX線要部断面図である。FIG. 39 is a cross-sectional view of the main part of the line XXXIX-XXXIX in FIG. 38. 図38の要部拡大図である。It is a principal part enlarged view of FIG. 図38のXLI-XLI線要部拡大断面図である。FIG. 39 is an enlarged cross-sectional view of the main part XLI-XLI in FIG. 38. 図37等に示した光学シート加工装置を概略的に示す斜視図である。FIG. 38 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. 37 and the like. 図39に示した光学シート加工装置において転写ロールが上昇した状態を示す断面図である。FIG. 40 is a cross-sectional view showing a state where the transfer roll is raised in the optical sheet processing apparatus shown in FIG. 図37等に示した光学シート加工装置を用いて導光板を成形する工程の一例を示す概念図である。It is a conceptual diagram which shows an example of the process of shape | molding a light-guide plate using the optical sheet processing apparatus shown in FIG. 図42に示した光学シート加工装置の変形例を示す斜視図である。It is a perspective view which shows the modification of the optical sheet processing apparatus shown in FIG. 本発明に係わる光学シート加工装置の一実施形態によって得られる光学シートである導光板を含む液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device containing the light-guide plate which is an optical sheet obtained by one Embodiment of the optical sheet processing apparatus concerning this invention. 図46に示した導光板の斜視図である。It is a perspective view of the light-guide plate shown in FIG. 図46に示した導光板を製造する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the light-guide plate shown in FIG. 本発明に係わる光学シート加工装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the optical sheet processing apparatus concerning this invention. 図49に示した光学シート加工装置の正面図である。It is a front view of the optical sheet processing apparatus shown in FIG. 図50のLI-LI線要部断面図である。FIG. 52 is a main-portion cross-sectional view taken along line LI-LI in FIG. 図50の要部拡大図である。It is a principal part enlarged view of FIG. 図50のLIII-LIII線要部拡大断面図である。FIG. 52 is an enlarged cross-sectional view of a main part taken along line LIII-LIII in FIG. 50. 図49等に示した光学シート加工装置を概略的に示す斜視図である。FIG. 50 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. 49 and the like. 図49等に示した転写ロールの転写面に形成された転写用凹凸部を示す概念図である。It is a conceptual diagram which shows the uneven | corrugated | grooving part for transfer formed in the transfer surface of the transfer roll shown in FIG. 図54に示したクランプ板からの導光板の突出部分に曲げ応力をかける様子を示す概念図である。It is a conceptual diagram which shows a mode that a bending stress is applied to the protrusion part of the light-guide plate from the clamp plate shown in FIG. 図54に示した転写ロールに対する導光板の基準位置を設定する構造を示す斜視図である。FIG. 55 is a perspective view showing a structure for setting a reference position of the light guide plate with respect to the transfer roll shown in FIG. 54. 図57に示した導光板を位置決め用ローラに押し付け、その状態で導光板を転写ロールに向けて移動させる様子を示す平面図である。It is a top view which shows a mode that the light-guide plate shown in FIG. 57 is pressed on the positioning roller, and a light-guide plate is moved toward a transfer roll in the state. 図49等に示した光学シート加工装置を用いて導光板を成形する工程の一例を示す概念図である。It is a conceptual diagram which shows an example of the process of shape | molding a light-guide plate using the optical sheet processing apparatus shown in FIG. 図54に示した転写ロールに対する導光板の基準位置を設定する構造の変形例を示す斜視図である。FIG. 56 is a perspective view showing a modification of the structure for setting the reference position of the light guide plate with respect to the transfer roll shown in FIG. 54.
 以下、本発明に係わる光学シート製造方法及び光学シート加工装置について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, an optical sheet manufacturing method and an optical sheet processing apparatus according to the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明に係わる光学シート製造方法の一実施形態によって製造される光学シートとしての導光板を含む液晶表示装置を示す概略断面図である。同図において、本実施形態に係わる液晶表示装置101は、例えば液晶テレビに使用されるものである。液晶表示装置101は、液晶パネル102と、この液晶パネル102の背面側に配置されたエッジ型のバックライトユニット103とを備えている。液晶パネル102の厚みは、例えば1.8mm程度である。 FIG. 1 is a schematic cross-sectional view showing a liquid crystal display device including a light guide plate as an optical sheet manufactured by an embodiment of the optical sheet manufacturing method according to the present invention. In the figure, a liquid crystal display device 101 according to the present embodiment is used for a liquid crystal television, for example. The liquid crystal display device 101 includes a liquid crystal panel 102 and an edge type backlight unit 103 disposed on the back side of the liquid crystal panel 102. The thickness of the liquid crystal panel 102 is about 1.8 mm, for example.
 バックライトユニット103は、箱型の金属製のバックライト筐体104を有している。バックライト筐体104の裏面(背面)には、複数の電子部品類105が基板(図示せず)を介して設けられている。バックライト筐体104の対向する内壁面には、光を照射するLED106が複数ずつ取り付けられている。 The backlight unit 103 has a box-shaped metal backlight housing 104. A plurality of electronic components 105 are provided on the back surface (back surface) of the backlight housing 104 via a substrate (not shown). A plurality of LEDs 106 for irradiating light are attached to the inner wall surfaces of the backlight housing 104 facing each other.
 バックライト筐体104には、LED106から照射された光を液晶パネル102へ導くための断面矩形状の導光板107が反射シート108を介して収容されている。反射シート108は、導光板107の裏面(背面)側に配置されている。導光板107の入光端面107aには、図2に示すように、断面略波形状の凹凸部109が設けられている。導光板107の厚みは、例えば3mmである。 In the backlight housing 104, a light guide plate 107 having a rectangular cross section for guiding the light emitted from the LED 106 to the liquid crystal panel 102 is accommodated via a reflection sheet 108. The reflection sheet 108 is disposed on the back surface (back surface) side of the light guide plate 107. As shown in FIG. 2, the light incident end face 107a of the light guide plate 107 is provided with a concavo-convex portion 109 having a substantially corrugated cross section. The thickness of the light guide plate 107 is 3 mm, for example.
 導光板107は、熱可塑性樹脂で形成されている。具体的には、導光板107は、寸法精度や衝撃強度、透明性が高い非晶性樹脂からなっている。非晶性樹脂としては、ポリメタクリル酸メチル樹脂(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)等が挙げられる。 The light guide plate 107 is made of a thermoplastic resin. Specifically, the light guide plate 107 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency. Examples of the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), and cycloolefin polymer (COP).
 LED106から照射された光は、導光板107の入光端面107aに入射される。導光板107の背面は、LED106から照射された光を反射させる反射面となっており、導光板107の前面は、LED106から照射された光や反射面で反射された光を出射させる出光面となっている。導光板107の背面(反射面)には、インクによるドットパターン印刷等、光を反射・散乱させやすい構造が施されている。なお、使用用途によっては、出光面にレンチキュラー形状やプリズム形状等が形成されていてもよい。 The light emitted from the LED 106 is incident on the light incident end surface 107 a of the light guide plate 107. The back surface of the light guide plate 107 is a reflective surface that reflects the light emitted from the LED 106, and the front surface of the light guide plate 107 is a light output surface that emits the light emitted from the LED 106 and the light reflected by the reflective surface. It has become. The back surface (reflection surface) of the light guide plate 107 has a structure that easily reflects and scatters light, such as dot pattern printing with ink. Depending on the usage, a lenticular shape, a prism shape, or the like may be formed on the light exit surface.
 導光板107の前面側には、複数枚(ここでは3枚)の光学フィルムを積層してなる光学フィルム群110が配置されている。光学フィルム群110の厚みは、例えば0.2mm程度である。導光板107及び光学フィルム群110の縁部は、樹脂(例えばPC)製のフレーム体111によりバックライト筐体104に対して固定されている。上記の液晶パネル102は、金属製のフレーム体112によりバックライトユニット103に対して固定されている。 On the front side of the light guide plate 107, an optical film group 110 formed by laminating a plurality (three in this case) of optical films is disposed. The thickness of the optical film group 110 is, for example, about 0.2 mm. The edges of the light guide plate 107 and the optical film group 110 are fixed to the backlight housing 104 by a frame body 111 made of resin (for example, PC). The liquid crystal panel 102 is fixed to the backlight unit 103 by a metal frame body 112.
 図3は、上記の導光板107を製造する工程を示すフローチャートである。同図において、まず溶融押出シート成形工程等により導光板原板を作製する(ステップS101)。続いて、パネルソーやランニングソー等により導光板原板を粗切りカットして、導光板107を得る(ステップS102)。続いて、鏡面加工機を用いて、導光板107の入光端面107aに鏡面加工を施す(ステップS103)。続いて、導光板107の入光端面107aに熱転写加工を施すことにより、入光端面107aに凹凸部109を形成する(ステップS104)。なお、ステップS103については、必ずしも実施しなくてもよい。 FIG. 3 is a flowchart showing a process of manufacturing the light guide plate 107 described above. In the figure, first, a light guide plate original plate is produced by a melt extrusion sheet forming process or the like (step S101). Subsequently, the light guide plate original plate is roughly cut with a panel saw, a running saw, or the like to obtain the light guide plate 107 (step S102). Subsequently, using a mirror finishing machine, the light incident end face 107a of the light guide plate 107 is mirror finished (step S103). Then, the uneven | corrugated | grooved part 109 is formed in the light-incidence end surface 107a by performing a thermal transfer process to the light-incidence end surface 107a of the light-guide plate 107 (step S104). Note that step S103 is not necessarily performed.
 図4は、図3のステップS104を実施する際に使用される光学シート加工装置120を示す概略構成図である。同図において、光学シート加工装置120は、導光板107を支持するステージ121と、このステージ121上に載置された導光板107を上方からステージ121に対して押さえ付けてクランプするクランプ板122とを備えている。ステージ121の上面には、導光板107を位置合わせするための2つの位置決め用突起123が設けられている。 FIG. 4 is a schematic configuration diagram showing the optical sheet processing apparatus 120 used when step S104 of FIG. 3 is performed. In the figure, an optical sheet processing apparatus 120 includes a stage 121 that supports a light guide plate 107, and a clamp plate 122 that presses and clamps the light guide plate 107 placed on the stage 121 against the stage 121 from above. It has. Two positioning protrusions 123 for aligning the light guide plate 107 are provided on the upper surface of the stage 121.
 また、光学シート加工装置120は、ステージ121上に載置された導光板107の入光端面107aに対して熱転写を行う転写金型124を更に備えている。転写金型124は、回転可能な金属製の剛体ロール部125を有している。剛体ロール部125の周面には、剛体ロール部125の周方向に沿って転写用凹凸部126が形成されている。剛体ロール部125の周面は、導光板107の入光端面107aに凹凸部109を付与するための転写面125aとなっている。転写用凹凸部126は、剛体ロール部125の軸方向に対してプリズム状(三角柱状)に形成されている(図5参照)。 The optical sheet processing apparatus 120 further includes a transfer mold 124 that performs thermal transfer on the light incident end surface 107 a of the light guide plate 107 placed on the stage 121. The transfer mold 124 includes a rotatable metal rigid roll portion 125. On the peripheral surface of the rigid roll portion 125, a transfer uneven portion 126 is formed along the circumferential direction of the rigid roll portion 125. The peripheral surface of the rigid roll portion 125 is a transfer surface 125 a for providing the uneven portion 109 to the light incident end surface 107 a of the light guide plate 107. The transfer uneven portion 126 is formed in a prism shape (triangular prism shape) with respect to the axial direction of the rigid roll portion 125 (see FIG. 5).
 図5に示すように、転写用凹凸部126のピッチ(幅)Pは、好ましくは10μm~500μmであり、より好ましくは10μm~200μmである。転写用凹凸部126の高さ(深さ)Hは、転写用凹凸部126のピッチPに合わせて10μm~300μmであるのが好ましい。なお、図5では、便宜上、転写用凹凸部126が直線状に配列されるように示している。 As shown in FIG. 5, the pitch (width) P of the concavo-convex portion for transfer 126 is preferably 10 μm to 500 μm, and more preferably 10 μm to 200 μm. The height (depth) H of the uneven portion for transfer 126 is preferably 10 μm to 300 μm in accordance with the pitch P of the uneven portion for transfer 126. In FIG. 5, for convenience, the transfer uneven portions 126 are shown to be arranged in a straight line.
 また、光学シート加工装置120は、転写金型124を加熱する加熱部127と、転写金型124の剛体ロール部125の転写面125a及び導光板107の入光端面107a同士を押し付けるように、ステージ121に圧力を印加する圧力印加部128と、ステージ121を圧力印加方向に対して垂直な方向(図4中の矢印A方向)に移動させる移動駆動部129と、剛体ロール部125を回転させる回転駆動部130とを更に備えている。 In addition, the optical sheet processing apparatus 120 is configured to press the heating unit 127 that heats the transfer mold 124, the transfer surface 125 a of the rigid roll unit 125 of the transfer mold 124, and the light incident end surface 107 a of the light guide plate 107. A pressure application unit 128 that applies pressure to 121, a movement drive unit 129 that moves the stage 121 in a direction perpendicular to the pressure application direction (the direction of arrow A in FIG. 4), and a rotation that rotates the rigid roll unit 125 And a drive unit 130.
 このような光学シート加工装置120を用いて、導光板107の入光端面107aに凹凸部109を形成するときは、まずステージ121上に1枚の導光板107を載せ、その状態でクランプ板122により導光板107をクランプする。なお、ステージ121に搭載される導光板107には、傷付き防止のためにマスキングフィルムが貼合されていてもよい。 When the uneven portion 109 is formed on the light incident end face 107a of the light guide plate 107 using such an optical sheet processing apparatus 120, first, the one light guide plate 107 is placed on the stage 121, and the clamp plate 122 is in that state. Thus, the light guide plate 107 is clamped. Note that a masking film may be bonded to the light guide plate 107 mounted on the stage 121 to prevent damage.
 そして、加熱部127によって転写金型124を加熱する。このとき、転写金型124の加熱温度としては、導光板107を形成する熱可塑性樹脂のビカット軟化温度以上であり且つ熱可塑性樹脂のビカット軟化温度+50℃以下の温度であるのが好ましく、熱可塑性樹脂のビカット軟化温度+5℃以上であり且つ熱可塑性樹脂のビカット軟化温度+35℃以下の温度であるのがより好ましい。例えば熱可塑性樹脂としてPMMAを用いる場合は、PMMAのビカット軟化温度は104℃である。このため、転写金型124の加熱温度としては、好ましくは104℃~154℃であり、より好ましくは110℃~140℃であり、更に好ましくは120℃~130℃である。 Then, the transfer mold 124 is heated by the heating unit 127. At this time, the heating temperature of the transfer mold 124 is preferably equal to or higher than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 107 and is equal to or lower than the Vicat softening temperature of the thermoplastic resin + 50 ° C. It is more preferable that the Vicat softening temperature of the resin + 5 ° C. or higher and the Vicat softening temperature of the thermoplastic resin + 35 ° C. or lower. For example, when PMMA is used as the thermoplastic resin, the Vicat softening temperature of PMMA is 104 ° C. Therefore, the heating temperature of the transfer mold 124 is preferably 104 ° C. to 154 ° C., more preferably 110 ° C. to 140 ° C., and further preferably 120 ° C. to 130 ° C.
 また、圧力印加部128によってステージ121に一定の圧力を印加することで、剛体ロール部125の転写面125a及び導光板107の入光端面107a同士を押し付ける。このとき、転写面125a及び入光端面107a同士は面接触ではなく線接触の状態となるため、その分だけ押し付け圧力を小さくすることができる。この時に設定される押し付け圧力としては、好ましくは0.05MPa~50MPaであり、より好ましくは0.2MPa~0.6MPaである。また、導光板107がクランプ板122によりクランプされているので、押し付け圧力が導光板107の上方に逃げることが無く、転写面125a及び入光端面107a同士を効果的に押し付けることができる。 Further, by applying a certain pressure to the stage 121 by the pressure application unit 128, the transfer surface 125 a of the rigid roll unit 125 and the light incident end surface 107 a of the light guide plate 107 are pressed against each other. At this time, since the transfer surface 125a and the light incident end surface 107a are not in surface contact but in line contact, the pressing pressure can be reduced accordingly. The pressing pressure set at this time is preferably 0.05 MPa to 50 MPa, more preferably 0.2 MPa to 0.6 MPa. Further, since the light guide plate 107 is clamped by the clamp plate 122, the pressing pressure does not escape above the light guide plate 107, and the transfer surface 125a and the light incident end surface 107a can be effectively pressed.
 その状態で、移動駆動部129によってステージ121を転写金型124に対して圧力印加方向に垂直な方向に移動させると共に、回転駆動部130によって剛体ロール部125を回転させることにより、剛体ロール部125が回転しながら導光板107の入光端面107aに沿って相対的に移動するため、剛体ロール部125の転写用凹凸部126が導光板107の入光端面107aに転写されるようになる。このとき、ステージ121の移動と剛体ロール部125の回転とを同期させて行う。また、転写時間としては、1秒~10秒とするのが好ましく、1秒~5秒とするのがより好ましい。以上により、導光板107の入光端面107aに転写用凹凸部126に対応する凹凸部109が形成されるようになる。 In this state, the stage 121 is moved in the direction perpendicular to the pressure application direction with respect to the transfer mold 124 by the movement driving unit 129, and the rigid roll unit 125 is rotated by the rotation driving unit 130. Since the rotation of the light guide plate 107 relatively moves along the light incident end surface 107 a of the light guide plate 107, the transfer uneven portion 126 of the rigid roll portion 125 is transferred to the light incident end surface 107 a of the light guide plate 107. At this time, the movement of the stage 121 and the rotation of the rigid roll unit 125 are performed in synchronization. The transfer time is preferably 1 to 10 seconds, more preferably 1 to 5 seconds. Thus, the uneven portion 109 corresponding to the transfer uneven portion 126 is formed on the light incident end surface 107 a of the light guide plate 107.
 なお、光学シート加工装置120では、ステージ121に圧力を印加することで、剛体ロール部125の転写面125a及び導光板107の入光端面107a同士を押し付けるようにしたが、特にそれには限られず、剛体ロール部125に圧力を印加することで、剛体ロール部125の転写面125a及び導光板107の入光端面107a同士を押し付けるようにしてもよい。 In the optical sheet processing apparatus 120, by applying pressure to the stage 121, the transfer surface 125a of the rigid roll portion 125 and the light incident end surface 107a of the light guide plate 107 are pressed against each other. By applying pressure to the rigid roll portion 125, the transfer surface 125 a of the rigid roll portion 125 and the light incident end surface 107 a of the light guide plate 107 may be pressed against each other.
 図6は、図4に示した光学シート加工装置120の変形例を示す概略構成図である。同図において、本変形例の光学シート加工装置120は、上記の移動駆動部129に代えて、剛体ロール部125をステージ121に対して圧力印加方向に垂直な方向(図6中の矢印B方向)に移動させる移動駆動部131を備えている。従って、剛体ロール部125自体が回転しながら導光板107の入光端面107aに沿って移動することとなる。その他の構成は、図4に示したものと同様である。この場合でも、剛体ロール部125の転写用凹凸部126を導光板107の入光端面107aに転写させることができる。 FIG. 6 is a schematic configuration diagram showing a modification of the optical sheet processing apparatus 120 shown in FIG. In the same figure, the optical sheet processing apparatus 120 of this modification is arranged in a direction perpendicular to the pressure application direction with respect to the stage 121 (in the direction of arrow B in FIG. 6) instead of the movement drive unit 129. ) Is provided. Therefore, the rigid roll portion 125 itself moves along the light incident end surface 107a of the light guide plate 107 while rotating. Other configurations are the same as those shown in FIG. Even in this case, the transfer uneven portion 126 of the rigid roll portion 125 can be transferred to the light incident end surface 107 a of the light guide plate 107.
 図7は、図4に示した光学シート加工装置120の他の変形例を示す概略構成図である。同図において、本変形例の光学シート加工装置120は、複数枚の導光板107を積層状態で支持するステージ132を備えている。その他の構成は、図4に示したものと同様である。この場合には、剛体ロール部125の転写用凹凸部126を複数枚の導光板107の入光端面107aに一括して転写させることができる。従って、生産性を向上させることが可能となる。 FIG. 7 is a schematic configuration diagram showing another modification of the optical sheet processing apparatus 120 shown in FIG. In the figure, an optical sheet processing apparatus 120 of this modification includes a stage 132 that supports a plurality of light guide plates 107 in a stacked state. Other configurations are the same as those shown in FIG. In this case, the concavo-convex portions for transfer 126 of the rigid roll portion 125 can be collectively transferred to the light incident end surfaces 107 a of the plurality of light guide plates 107. Therefore, productivity can be improved.
 図8は、図7に示した光学シート加工装置120の変形例を示す概略構成図である。同図において、本変形例の光学シート加工装置120は、移動駆動部129に代えて、剛体ロール部125をステージ132に対して圧力印加方向に垂直な方向(図8中の矢印B方向)に移動させる移動駆動部131を備えている。その他の構成は、図7に示したものと同様である。この場合にも、剛体ロール部125の転写用凹凸部126を複数枚の導光板107の入光端面107aに一括して転写させることができる。 FIG. 8 is a schematic configuration diagram showing a modification of the optical sheet processing apparatus 120 shown in FIG. In the same figure, the optical sheet processing apparatus 120 of this modified example replaces the movement drive unit 129 with the rigid roll unit 125 in the direction perpendicular to the pressure application direction with respect to the stage 132 (the direction of arrow B in FIG. 8). A movement drive unit 131 for movement is provided. Other configurations are the same as those shown in FIG. Also in this case, the uneven portions for transfer 126 of the rigid roll portion 125 can be collectively transferred to the light incident end surfaces 107 a of the plurality of light guide plates 107.
 以上のように本実施形態にあっては、転写金型124を加熱すると共に転写金型124の剛体ロール部125の転写面125a及び導光板107の入光端面107a同士を押し付けて、剛体ロール部125の転写面125aに設けられた転写用凹凸部126を導光板107の入光端面107aに転写させることにより、導光板107の入光端面107aに凹凸部109を形成するようにしたので、バイト等による機械的な切削加工によって導光板107の入光端面107aに凹凸部109を形成する場合のように切り粉が発生することは無い。このため、導光板107に切り粉が付着したり混入したりすることも無いため、製品の品質が安定化し、歩留まりを向上させることができる。 As described above, in the present embodiment, the transfer mold 124 is heated, and the transfer surface 125a of the rigid roll portion 125 of the transfer mold 124 and the light incident end surface 107a of the light guide plate 107 are pressed against each other to thereby form the rigid roll portion. Since the uneven portion for transfer 126 provided on the transfer surface 125a of 125 is transferred to the light incident end surface 107a of the light guide plate 107, the uneven portion 109 is formed on the light incident end surface 107a of the light guide plate 107. As in the case where the uneven portion 109 is formed on the light incident end surface 107a of the light guide plate 107 by mechanical cutting processing or the like, chips are not generated. For this reason, since chips do not adhere to or mix in the light guide plate 107, the quality of the product can be stabilized and the yield can be improved.
 このとき、転写金型124の加熱温度を、導光板107を形成する熱可塑性樹脂のビカット軟化温度以上とすることにより、導光板107の入光端面107aが適度に軟化するため、剛体ロール部125の転写用凹凸部126を導光板107の入光端面107aに良好に転写させることができると共に、導光板107に割れが生じることを防止できる。また、転写金型124の加熱温度を、導光板107を形成する熱可塑性樹脂のビカット軟化温度+50℃以下とすることにより、熱可塑性樹脂の溶融流動が防止されるため、熱可塑性樹脂の弾性率の低下が抑えられ、導光板107が変形しにくくなる。また、転写金型124の著しい汚染を防ぐこともできる。 At this time, by setting the heating temperature of the transfer mold 124 to be equal to or higher than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 107, the light incident end surface 107a of the light guide plate 107 is appropriately softened. The transfer uneven portion 126 can be satisfactorily transferred to the light incident end surface 107a of the light guide plate 107, and the light guide plate 107 can be prevented from cracking. Further, since the heating temperature of the transfer mold 124 is set to the Vicat softening temperature of the thermoplastic resin forming the light guide plate 107 + 50 ° C. or less, the melt flow of the thermoplastic resin is prevented, so the elastic modulus of the thermoplastic resin. Is suppressed, and the light guide plate 107 is hardly deformed. In addition, significant contamination of the transfer mold 124 can be prevented.
 また、剛体ロール部125の転写面125a及び導光板107の入光端面107aの押し付け圧力を0.05MPa以上とすることにより、剛体ロール部125の転写用凹凸部126を導光板107の入光端面107aに更に良好に転写させることができる。また、剛体ロール部125の転写面125a及び導光板107の入光端面107aの押し付け圧力を50MPa以下とすることにより、導光板107に割れが生じることを一層防止できる。 Further, by setting the pressing pressure of the transfer surface 125a of the rigid roll portion 125 and the light incident end surface 107a of the light guide plate 107 to 0.05 MPa or more, the transfer uneven portion 126 of the rigid roll portion 125 is changed to the light incident end surface of the light guide plate 107. 107a can be transferred more satisfactorily. Further, by making the pressing pressure of the transfer surface 125a of the rigid roll portion 125 and the light incident end surface 107a of the light guide plate 107 50 MPa or less, it is possible to further prevent the light guide plate 107 from being cracked.
 さらに、切削加工によって導光板107の入光端面107aに凹凸部109を形成する場合には、微細な凹凸部109を加工するのに時間がかかる、凹凸部109の狭ピッチ化が困難である、バイトの摩耗により凹凸部109が変化する等といった不具合が発生する。本実施形態では、転写金型124を用いた熱転写加工によって導光板107の入光端面107aに凹凸部109を形成するので、転写金型124の加熱温度や、剛体ロール部125の転写面125a及び導光板107の入光端面107aの押し付け圧力及び押し付け時間を制御することで、加工時間の短縮化を容易に実現することができる。また、任意の転写金型を作製して使用することで、多種多様な形状の凹凸部109を形成することができ、凹凸部109の狭ピッチ化も実現可能となる。 Furthermore, when the uneven portion 109 is formed on the light incident end surface 107a of the light guide plate 107 by cutting, it takes time to process the fine uneven portion 109, and it is difficult to reduce the pitch of the uneven portion 109. There is a problem that the uneven portion 109 is changed due to wear of the cutting tool. In the present embodiment, the uneven portion 109 is formed on the light incident end surface 107a of the light guide plate 107 by thermal transfer processing using the transfer mold 124. Therefore, the heating temperature of the transfer mold 124, the transfer surface 125a of the rigid roll portion 125, and By controlling the pressing pressure and pressing time of the light incident end face 107a of the light guide plate 107, the processing time can be easily reduced. Further, by producing and using an arbitrary transfer mold, it is possible to form the uneven portions 109 having various shapes, and it is possible to realize a narrow pitch of the uneven portions 109.
 なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、剛体ロール部125の転写面125aにプリズム状の転写用凹凸部126が形成されているが、転写用凹凸部126の形状としては、特にプリズム状には限られず、図9に示すようなレンチキュラー状としてもよい。この場合でも、転写用凹凸部126のピッチPを10μm~500μmとし、転写用凹凸部126の高さHを10μm~300μmとするのが好ましい。また、凹凸部109の形状としては、それ以外にも、ピラミッド状やマット状等であってもよい。 Note that the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the prism-shaped transfer uneven portion 126 is formed on the transfer surface 125a of the rigid roll portion 125. However, the shape of the transfer uneven portion 126 is not particularly limited to the prism shape, and FIG. A lenticular shape as shown in FIG. Even in this case, it is preferable that the pitch P of the transfer uneven portion 126 is 10 μm to 500 μm and the height H of the transfer uneven portion 126 is 10 μm to 300 μm. In addition, the shape of the uneven portion 109 may be a pyramid shape, a mat shape, or the like.
 また、上記実施形態では、転写金型124が剛体ロール部125を有し、剛体ロール部125の周面が導光板107の入光端面107aに凹凸部109を付与するための転写面125aとなっているが、使用する転写金型としては、特にそれには限られない。例えば、転写金型の形状を平板状とし、その転写金型の一側面を導光板107の入光端面107aに凹凸部109を付与するための転写面としてもよい。 In the above embodiment, the transfer mold 124 has the rigid roll portion 125, and the peripheral surface of the rigid roll portion 125 becomes the transfer surface 125 a for providing the uneven portion 109 to the light incident end surface 107 a of the light guide plate 107. However, the transfer mold to be used is not particularly limited thereto. For example, the shape of the transfer mold may be a flat plate shape, and one side surface of the transfer mold may be a transfer surface for providing the uneven portion 109 on the light incident end surface 107a of the light guide plate 107.
 さらに、上記実施形態は、液晶テレビに使用される液晶表示装置101のバックライトユニット103に具備される導光板107を製造するものであるが、本発明の光学シート製造方法は、例えば照明用や装飾用の導光板としての光学シートの製造にも適用可能である。 Furthermore, although the said embodiment manufactures the light-guide plate 107 with which the backlight unit 103 of the liquid crystal display device 101 used for a liquid crystal television is equipped, the optical sheet manufacturing method of this invention is for illumination, for example It can also be applied to the production of an optical sheet as a decorative light guide plate.
[実験例-1]
 以下、本発明に係わる光学シート製造方法の一実施例について説明する。
[Experimental example 1]
Hereinafter, an example of the optical sheet manufacturing method according to the present invention will be described.
 剛体ロール部を有する転写金型を使用して、導光板の入光端面に対して凹凸部の熱転写を行った。使用した導光板は、PMMA(ビカット軟化温度:104℃)で形成されている。導光板の温度は25℃である。剛体ロール部の周面には、プリズム状の転写用凹凸部が設けられている。転写金型としては、剛体ロール部の転写用凹凸部の頂角θ(図5参照)が110度であり、転写用凹凸部のピッチPが100μm、200μm、300μmの3種類のものを使用した。なお、転写用凹凸部のピッチPが100μmのものでは、転写用凹凸部の高さHが34.7μmであり、転写用凹凸部のピッチPが200μmのものでは、転写用凹凸部の高さHが69.3μmであり、転写用凹凸部のピッチPが300μmのものでは、転写用凹凸部の高さHが104.0μmである。 Using a transfer mold having a rigid roll part, the uneven part was thermally transferred to the light incident end face of the light guide plate. The used light guide plate is formed of PMMA (Vicat softening temperature: 104 ° C.). The temperature of the light guide plate is 25 ° C. On the peripheral surface of the rigid roll portion, a prism-shaped transfer uneven portion is provided. As the transfer mold, the apex angle θ (see FIG. 5) of the transfer uneven portion of the rigid roll portion is 110 degrees, and the pitch P of the transfer uneven portion is 100 μm, 200 μm, and 300 μm. . When the transfer unevenness pitch P is 100 μm, the transfer unevenness height H is 34.7 μm, and when the transfer unevenness pitch P is 200 μm, the transfer unevenness height. When H is 69.3 μm and the pitch P of the uneven portions for transfer is 300 μm, the height H of the uneven portions for transfer is 104.0 μm.
 図10に示すように、転写金型の加熱温度は、110℃、120℃、130℃及び140℃のいずれかとした。剛体ロール部の転写面及び導光板の入光端面の押し付け圧力は、0.4MPa及び0.6MPaのいずれかとした。剛体ロール部の転写面及び導光板の入光端面の押し付け時間は、1秒及び5秒のいずれかとした。 As shown in FIG. 10, the heating temperature of the transfer mold was any one of 110 ° C., 120 ° C., 130 ° C. and 140 ° C. The pressing pressure of the transfer surface of the rigid roll portion and the light incident end surface of the light guide plate was either 0.4 MPa or 0.6 MPa. The pressing time of the transfer surface of the rigid roll portion and the light incident end surface of the light guide plate was either 1 second or 5 seconds.
 上記の転写金型によって導光板の入光端面に凹凸部を熱転写加工した結果を図10に示す。図10(a)は、剛体ロール部の転写用凹凸部のピッチが300μmの転写金型を使用した場合の結果を示す表であり、導光板の凹凸部のピッチは全て300μmであり、凹凸部の高さ及び転写率は表に示す通りである。図10(b)は、剛体ロール部の転写用凹凸部のピッチが200μmの転写金型を使用した場合の結果であり、導光板の凹凸部のピッチは全て200μmであり、凹凸部の高さ及び転写率は表に示す通りである。図10(c)は、剛体ロール部の転写用凹凸部のピッチが100μmの転写金型を使用した場合の結果であり、導光板の凹凸部のピッチは全て100μmであり、凹凸部の高さ及び転写率は表に示す通りである。なお、転写率は、下記式で表される(図5参照)。
   転写率(%)=導光板の凹凸部の高さHr/剛体ロール部の転写用凹凸部の高さH
FIG. 10 shows the result of thermal transfer processing of the concavo-convex portion on the light incident end face of the light guide plate by the above transfer mold. FIG. 10 (a) is a table showing the results when a transfer mold having a transfer unevenness portion of the rigid roll portion having a pitch of 300 μm is used, and the pitches of the uneven portions of the light guide plate are all 300 μm. The height and the transfer rate are as shown in the table. FIG. 10 (b) shows the results when a transfer mold having a transfer uneven portion of the rigid roll portion having a pitch of 200 μm is used. The pitch of the uneven portion of the light guide plate is all 200 μm, and the height of the uneven portion. The transfer rate is as shown in the table. FIG. 10C shows the result when a transfer mold having a transfer unevenness portion of the rigid roll portion having a pitch of 100 μm is used. The unevenness portion pitches of the light guide plate are all 100 μm, and the height of the unevenness portion. The transfer rate is as shown in the table. The transfer rate is expressed by the following formula (see FIG. 5).
Transfer rate (%) = height / roughness height Hr of light guide plate / height / recession height H of rigid body roll portion
 図10から分かるように、剛体ロール部の転写用凹凸部のピッチが100μm、200μmの転写金型を使用した場合には、剛体ロール部の転写用凹凸部のピッチが300μmの転写金型を使用した場合に比べて、転写率が高くなる傾向にある。また、転写金型の加熱温度を120℃、130℃としたときは、転写金型の加熱温度を110℃、140℃としたときに比べて転写率が高くなる傾向にある。 As can be seen from FIG. 10, when a transfer mold having a transfer rugged portion pitch of 100 μm and 200 μm in the rigid roll portion is used, a transfer mold having a transfer rugged portion pitch of 300 μm in the rigid roll portion is used. Compared with the case, the transfer rate tends to be higher. Also, when the heating temperature of the transfer mold is 120 ° C. and 130 ° C., the transfer rate tends to be higher than when the heating temperature of the transfer mold is 110 ° C. and 140 ° C.
 以下、本発明に係わる他の実施形態の光学シート製造方法について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, an optical sheet manufacturing method according to another embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図11は、本発明に係わる光学シート製造方法の一実施形態によって製造される光学シートとしての導光板を含む液晶表示装置を示す概略断面図である。同図において、本実施形態に係わる液晶表示装置201は、例えば液晶テレビに使用されるものである。液晶表示装置201は、液晶パネル202と、この液晶パネル202の背面側に配置されたエッジ型のバックライトユニット203とを備えている。液晶パネル202の厚みは、例えば1.8mm程度である。 FIG. 11 is a schematic cross-sectional view showing a liquid crystal display device including a light guide plate as an optical sheet manufactured by an embodiment of the optical sheet manufacturing method according to the present invention. In the figure, a liquid crystal display device 201 according to the present embodiment is used for a liquid crystal television, for example. The liquid crystal display device 201 includes a liquid crystal panel 202 and an edge-type backlight unit 203 disposed on the back side of the liquid crystal panel 202. The thickness of the liquid crystal panel 202 is, for example, about 1.8 mm.
 バックライトユニット203は、箱型の金属製のバックライト筐体204を有している。バックライト筐体204の裏面(背面)には、複数の電子部品類205が基板(図示せず)を介して設けられている。バックライト筐体204の対向する内壁面には、光を照射するLED206が複数ずつ取り付けられている。 The backlight unit 203 has a box-shaped metal backlight housing 204. A plurality of electronic components 205 are provided on the back surface (back surface) of the backlight housing 204 via a substrate (not shown). A plurality of LEDs 206 for irradiating light are attached to the inner wall surfaces of the backlight housing 204 facing each other.
 バックライト筐体204には、LED206から照射された光を液晶パネル202へ導くための断面矩形状の導光板207が反射シート208を介して収容されている。反射シート208は、導光板207の裏面(背面)側に配置されている。導光板207の入光端面207aには、図12に示すように、断面略波形状の凹凸部209が設けられている。導光板207の厚みは、例えば4mmである。 In the backlight housing 204, a light guide plate 207 having a rectangular cross section for guiding the light emitted from the LED 206 to the liquid crystal panel 202 is accommodated via a reflection sheet 208. The reflection sheet 208 is disposed on the back surface (back surface) side of the light guide plate 207. As shown in FIG. 12, the light incident end face 207a of the light guide plate 207 is provided with a concavo-convex portion 209 having a substantially corrugated cross section. The thickness of the light guide plate 207 is 4 mm, for example.
 導光板207は、熱可塑性樹脂で形成されている。具体的には、導光板207は、寸法精度や衝撃強度、透明性が高い非晶性樹脂からなっている。非晶性樹脂としては、ポリメタクリル酸メチル樹脂(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)等が挙げられる。 The light guide plate 207 is made of a thermoplastic resin. Specifically, the light guide plate 207 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency. Examples of the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), and cycloolefin polymer (COP).
 LED206から照射された光は、導光板207の入光端面207aに入射される。導光板207の背面は、LED206から照射された光を反射させる反射面となっており、導光板207の前面は、LED206から照射された光や反射面で反射された光を出射させる出光面となっている。導光板207の背面(反射面)には、インクによるドットパターン印刷等、光を反射・散乱させやすい構造が施されている。 The light emitted from the LED 206 is incident on the light incident end surface 207 a of the light guide plate 207. The back surface of the light guide plate 207 is a reflective surface that reflects the light emitted from the LED 206, and the front surface of the light guide plate 207 is a light output surface that emits the light emitted from the LED 206 and the light reflected by the reflective surface. It has become. The back surface (reflection surface) of the light guide plate 207 has a structure that easily reflects and scatters light, such as dot pattern printing with ink.
 導光板207の前面側には、複数枚(ここでは3枚)の光学フィルムを積層してなる光学フィルム群210が配置されている。光学フィルム群210の厚みは、例えば1mm程度である。導光板207及び光学フィルム群210の縁部は、樹脂(例えばPC)製のフレーム体211によりバックライト筐体204に対して固定されている。上記の液晶パネル202は、金属製のフレーム体212によりバックライトユニット203に対して固定されている。 On the front side of the light guide plate 207, an optical film group 210 formed by laminating a plurality (three in this case) of optical films is disposed. The thickness of the optical film group 210 is, for example, about 1 mm. The edges of the light guide plate 207 and the optical film group 210 are fixed to the backlight housing 204 by a frame body 211 made of resin (for example, PC). The liquid crystal panel 202 is fixed to the backlight unit 203 by a metal frame body 212.
 図13は、上記の導光板207を製造する工程を示すフローチャートである。同図において、まず溶融押出シート成形工程等により導光板原板を作製する(ステップS201)。続いて、パネルソーやランニングソー等により導光板原板を粗切りカットして、導光板207を得る(ステップS202)。続いて、鏡面加工機を用いて、導光板207の入光端面207aに鏡面加工を施す(ステップS203)。続いて、導光板207の入光端面207aに熱転写加工を施すことにより、入光端面207aに凹凸部209を形成する(ステップS204)。なお、ステップS203については、必ずしも実施しなくてもよい。 FIG. 13 is a flowchart showing a process of manufacturing the light guide plate 207 described above. In the figure, first, a light guide plate original plate is produced by a melt extrusion sheet forming process or the like (step S201). Subsequently, the light guide plate original plate is roughly cut with a panel saw, a running saw, or the like to obtain the light guide plate 207 (step S202). Subsequently, the mirror finish is applied to the light incident end face 207a of the light guide plate 207 using a mirror finish machine (step S203). Subsequently, by performing thermal transfer processing on the light incident end surface 207a of the light guide plate 207, an uneven portion 209 is formed on the light incident end surface 207a (step S204). Note that step S203 is not necessarily performed.
 図14は、図13のステップS204を実施する際に使用される光学シート加工装置220を示す概略構成図である。同図において、光学シート加工装置220は、導光板207を支持するステージ221と、このステージ221上に載置された導光板207を上方からステージ221に対して押さえ付けてクランプするクランプ板222とを備えている。ステージ221の上面には、導光板207を位置合わせするための2つの位置決め用突起223が設けられている。 FIG. 14 is a schematic configuration diagram showing the optical sheet processing apparatus 220 used when step S204 of FIG. 13 is performed. In the figure, an optical sheet processing apparatus 220 includes a stage 221 that supports a light guide plate 207, and a clamp plate 222 that presses and clamps the light guide plate 207 placed on the stage 221 against the stage 221 from above. It has. Two positioning protrusions 223 for aligning the light guide plate 207 are provided on the upper surface of the stage 221.
 また、光学シート加工装置220は、ステージ221上に載置された導光板207の入光端面207aに対して熱転写を行う転写金型224を更に備えている。転写金型224は、回転可能な金属製の剛体ロール部225を有している。 The optical sheet processing apparatus 220 further includes a transfer mold 224 that performs thermal transfer on the light incident end surface 207 a of the light guide plate 207 placed on the stage 221. The transfer die 224 has a rotatable metal rigid roll 225.
 剛体ロール部225の周面には、剛体ロール部225の周方向に沿って転写用凹凸部226が形成されている。剛体ロール部225の周面は、導光板207の入光端面207aに凹凸部209を付与するための転写面225aとなっている。転写用凹凸部226は、剛体ロール部225の軸方向に対してプリズム状(三角柱状)に形成されている(図15参照)。転写用凹凸部226の基部には、平坦面が設けられていない。 On the peripheral surface of the rigid roll portion 225, an uneven portion for transfer 226 is formed along the circumferential direction of the rigid roll portion 225. The peripheral surface of the rigid roll portion 225 is a transfer surface 225 a for providing the uneven portion 209 to the light incident end surface 207 a of the light guide plate 207. The transfer uneven portion 226 is formed in a prism shape (triangular prism shape) with respect to the axial direction of the rigid roll portion 225 (see FIG. 15). A flat surface is not provided at the base of the uneven portion for transfer 226.
 図15に示すように、転写用凹凸部226の頂角θは、60°~140°であり、好ましくは80°~120°である。転写用凹凸部226のピッチ(幅)Waは、10μm~1000μmであり、好ましくは30μm~400μmである。なお、図15では、便宜上、転写用凹凸部226が直線状に配列されるように示している。 As shown in FIG. 15, the apex angle θ of the uneven portion for transfer 226 is 60 ° to 140 °, preferably 80 ° to 120 °. The pitch (width) Wa of the concavo-convex portion for transfer 226 is 10 μm to 1000 μm, preferably 30 μm to 400 μm. In FIG. 15, for the sake of convenience, the transfer concavo-convex portions 226 are shown to be arranged in a straight line.
 また、光学シート加工装置220は、転写金型224を加熱する加熱部227と、転写金型224の剛体ロール部225の転写面225a及び導光板207の入光端面207a同士を押し付けるように、ステージ221に圧力を印加する圧力印加部228と、ステージ221を圧力印加方向に対して垂直な方向(図14中の矢印A方向)に移動させる移動駆動部229と、剛体ロール部225を回転させる回転駆動部230とを更に備えている。 Further, the optical sheet processing apparatus 220 is configured so that the heating unit 227 that heats the transfer mold 224, the transfer surface 225a of the rigid roll unit 225 of the transfer mold 224, and the light incident end surface 207a of the light guide plate 207 are pressed against each other. A pressure applying unit 228 that applies pressure to the 221; a movement driving unit 229 that moves the stage 221 in a direction perpendicular to the direction of applying pressure (the direction of arrow A in FIG. 14); and a rotation that rotates the rigid roll unit 225. And a drive unit 230.
 このような光学シート加工装置220を用いて、導光板207の入光端面207aに凹凸部209を形成するときは、まずステージ221上に1枚の導光板207を載せ、その状態でクランプ板222により導光板207をクランプする。 When the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207 using such an optical sheet processing apparatus 220, the light guide plate 207 is first placed on the stage 221, and the clamp plate 222 is in that state. Thus, the light guide plate 207 is clamped.
 そして、加熱部227によって転写金型224を加熱する。このとき、転写金型224の加熱温度としては、導光板207を形成する熱可塑性樹脂のビカット軟化温度以上であり且つ熱可塑性樹脂のビカット軟化温度+40℃以下の温度であるのが好ましい。例えば熱可塑性樹脂としてPMMAを用いる場合は、PMMAのビカット軟化温度は104℃である。このため、転写金型224の加熱温度としては、好ましくは104℃~144℃であり、より好ましくは110℃~140℃である。 Then, the transfer mold 224 is heated by the heating unit 227. At this time, the heating temperature of the transfer mold 224 is preferably higher than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 207 and lower than the Vicat softening temperature of the thermoplastic resin + 40 ° C. For example, when PMMA is used as the thermoplastic resin, the Vicat softening temperature of PMMA is 104 ° C. Therefore, the heating temperature of the transfer mold 224 is preferably 104 ° C. to 144 ° C., more preferably 110 ° C. to 140 ° C.
 また、圧力印加部228によってステージ21に一定の圧力を印加することで、剛体ロール部225の転写面225a及び導光板207の入光端面207a同士を押し付ける。この時に設定される押し付け圧力としては、好ましくは0.05MPa~50MPaであり、より好ましくは0.2MPa~0.6MPaである。 Further, by applying a certain pressure to the stage 21 by the pressure applying unit 228, the transfer surface 225a of the rigid roll unit 225 and the light incident end surface 207a of the light guide plate 207 are pressed against each other. The pressing pressure set at this time is preferably 0.05 MPa to 50 MPa, more preferably 0.2 MPa to 0.6 MPa.
 その状態で、移動駆動部229によってステージ221を転写金型224に対して圧力印加方向に垂直な方向に移動させると共に、回転駆動部230によって剛体ロール部225を回転させることにより、剛体ロール部225が回転しながら導光板207の入光端面207aに沿って相対的に移動するため、剛体ロール部225の転写用凹凸部226が導光板207の入光端面207aに転写されるようになる。このとき、ステージ221の移動と剛体ロール部225の回転とを同期させて行う。これにより、導光板207を形成する熱可塑性樹脂が剛体ロール部225の転写面225aに充填され、導光板207の入光端面207aに凹凸部209が形成される。 In this state, the stage 221 is moved in the direction perpendicular to the pressure application direction with respect to the transfer mold 224 by the movement drive unit 229 and the rigid roll unit 225 is rotated by the rotation drive unit 230, thereby causing the rigid roll unit 225. , While rotating, relatively moves along the light incident end surface 207 a of the light guide plate 207, so that the transfer uneven portion 226 of the rigid roll portion 225 is transferred to the light incident end surface 207 a of the light guide plate 207. At this time, the movement of the stage 221 and the rotation of the rigid roll unit 225 are performed in synchronization. Thereby, the thermoplastic resin forming the light guide plate 207 is filled in the transfer surface 225a of the rigid roll portion 225, and the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207.
 このとき、導光板207を形成する熱可塑性樹脂が剛体ロール部225の転写面225aに完全に充填される前に、転写金型224と導光板207とを離型する。ここで、完全充填とは、転写面225aに対して熱可塑性樹脂の未充填空間が無く、転写率が100%となるような充填をいう。これにより、図15に示すように、凹凸部209の先端部には、平坦面が形成されるようになる。つまり、凹凸部209は、先端部の平坦面の領域(先端部平坦領域)と凹状となっている領域(凹状領域)とが交互に配列された形状を有している。ここでいう平坦面は、完全な平坦面のみならず、平坦に近い面も含んでいる。従って、転写率100%の凹凸部209が得られることは無い。なお、転写率は、下記式で表される(図15参照)。
   転写率(%)=導光板の凹凸部の高さH’/剛体ロール部の転写用凹凸部の高さH
At this time, the transfer mold 224 and the light guide plate 207 are released before the thermoplastic resin forming the light guide plate 207 is completely filled in the transfer surface 225 a of the rigid roll portion 225. Here, complete filling refers to filling in which there is no thermoplastic resin unfilled space on the transfer surface 225a and the transfer rate is 100%. As a result, as shown in FIG. 15, a flat surface is formed at the tip of the concavo-convex portion 209. That is, the concavo-convex portion 209 has a shape in which regions of the flat surface of the tip portion (tip portion flat region) and concave regions (concave region) are alternately arranged. The flat surface referred to here includes not only a completely flat surface but also a surface that is nearly flat. Therefore, the uneven portion 209 having a transfer rate of 100% is never obtained. The transfer rate is expressed by the following formula (see FIG. 15).
Transfer rate (%) = height H ′ of the uneven portion of the light guide plate / height H of the uneven portion for transfer of the rigid roll portion
 ここで、凹凸部209の1ピッチにおいて、先端部平坦領域の長さをF’、凹状領域の長さをWa’、凹凸部209の高さをH’としたときに、F’/Wa’が10%~300%、好ましくは20%~100%となり、H’/Wa’が0.15~0.65、好ましくは0.25~0.55となるように、転写金型224の加熱温度、剛体ロール部225の転写面225a及び導光板207の入光端面207aの押し付け圧力及び押し付け時間を設定する。このとき、加熱温度を高くするほどF’/Wa’が低くなり、押し付け圧力を高くするほどF’/Wa’が低くなり、押し付け時間を長くするほどF’/Wa’が低くなる。なお、転写金型224の加熱温度を高くする場合には、加熱温度を高くしすぎると逆にF’/Wa’が高くなる傾向もあるため、転写金型224の加熱温度を、上述したように導光板207を形成する熱可塑性樹脂のビカット軟化温度以上であり且つ熱可塑性樹脂のビカット軟化温度+40℃以下の温度とするのが好ましい。 Here, when the length of the tip flat region is F ′, the length of the concave region is Wa ′, and the height of the uneven portion 209 is H ′ at one pitch of the uneven portion 209, F ′ / Wa ′. Is 10% to 300%, preferably 20% to 100%, and the transfer mold 224 is heated so that H ′ / Wa ′ is 0.15 to 0.65, preferably 0.25 to 0.55. The temperature, the pressing pressure and pressing time of the transfer surface 225a of the rigid roll unit 225 and the light incident end surface 207a of the light guide plate 207 are set. At this time, F ′ / Wa ′ decreases as the heating temperature increases, F ′ / Wa ′ decreases as the pressing pressure increases, and F ′ / Wa ′ decreases as the pressing time increases. Note that when the heating temperature of the transfer mold 224 is increased, if the heating temperature is increased too much, F ′ / Wa ′ tends to increase, so the heating temperature of the transfer mold 224 is set as described above. It is preferable that the temperature is not lower than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 207 and not higher than the Vicat softening temperature of the thermoplastic resin + 40 ° C.
 なお、光学シート加工装置220では、ステージ221に圧力を印加することで、剛体ロール部225の転写面225a及び導光板207の入光端面207a同士を押し付けるようにしたが、特にそれには限られず、剛体ロール部225に圧力を印加することで、剛体ロール部225の転写面225a及び導光板207の入光端面207a同士を押し付けるようにしてもよい。 In the optical sheet processing apparatus 220, pressure is applied to the stage 221, and the transfer surface 225a of the rigid roll unit 225 and the light incident end surface 207a of the light guide plate 207 are pressed against each other. By applying pressure to the rigid roll unit 225, the transfer surface 225a of the rigid roll unit 225 and the light incident end surface 207a of the light guide plate 207 may be pressed against each other.
 図16は、図14に示した光学シート加工装置220の変形例を示す概略構成図である。同図において、本変形例の光学シート加工装置220は、上記の移動駆動部229に代えて、剛体ロール部225をステージ221に対して圧力印加方向に垂直な方向(図16中の矢印B方向)に移動させる移動駆動部231を備えている。従って、剛体ロール部225自体が回転しながら導光板207の入光端面207aに沿って移動することとなる。その他の構成は、図14に示したものと同様である。この場合でも、剛体ロール部225の転写用凹凸部226を導光板207の入光端面207aに転写させることができる。 FIG. 16 is a schematic configuration diagram showing a modification of the optical sheet processing apparatus 220 shown in FIG. In the same figure, the optical sheet processing apparatus 220 of this modification is arranged in the direction perpendicular to the pressure application direction with respect to the stage 221 (in the direction of arrow B in FIG. 16) instead of the movement drive unit 229. ) Is moved. Therefore, the rigid roll unit 225 itself moves along the light incident end surface 207a of the light guide plate 207 while rotating. Other configurations are the same as those shown in FIG. Even in this case, the transfer uneven portion 226 of the rigid roll portion 225 can be transferred to the light incident end surface 207 a of the light guide plate 207.
 図17は、図14に示した光学シート加工装置220の他の変形例を示す概略構成図である。同図において、本変形例の光学シート加工装置220は、複数枚の導光板207を積層状態で支持するステージ232を備えている。その他の構成は、図14に示したものと同様である。この場合には、剛体ロール部225の転写用凹凸部226を複数枚の導光板207の入光端面207aに一括して転写させることができる。従って、生産性を向上させることが可能となる。 FIG. 17 is a schematic configuration diagram showing another modification of the optical sheet processing apparatus 220 shown in FIG. In the figure, an optical sheet processing apparatus 220 according to this modification includes a stage 232 that supports a plurality of light guide plates 207 in a stacked state. Other configurations are the same as those shown in FIG. In this case, the concavo-convex portion 226 for transfer of the rigid roll portion 225 can be collectively transferred to the light incident end surfaces 207 a of the plurality of light guide plates 207. Therefore, productivity can be improved.
 図18は、図17に示した光学シート加工装置220の変形例を示す概略構成図である。同図において、本変形例の光学シート加工装置220は、移動駆動部229に代えて、剛体ロール部225をステージ232に対して圧力印加方向に垂直な方向(図18中の矢印B方向)に移動させる移動駆動部231を備えている。その他の構成は、図17に示したものと同様である。この場合にも、剛体ロール部225の転写用凹凸部226を複数枚の導光板207の入光端面207aに一括して転写させることができる。 FIG. 18 is a schematic configuration diagram showing a modification of the optical sheet processing apparatus 220 shown in FIG. In the same figure, the optical sheet processing apparatus 220 of this modified example replaces the movement drive unit 229 with a rigid roll unit 225 in a direction perpendicular to the pressure application direction with respect to the stage 232 (in the direction of arrow B in FIG. 18). A movement drive unit 231 for movement is provided. Other configurations are the same as those shown in FIG. Also in this case, the transfer uneven portion 226 of the rigid roll portion 225 can be collectively transferred to the light incident end surfaces 207 a of the plurality of light guide plates 207.
 以上のように本実施形態にあっては、転写金型224を加熱すると共に、転写金型224の剛体ロール部225の転写面225a及び導光板207の入光端面207a同士を押し付けて、剛体ロール部225の転写面225aに設けられた転写用凹凸部226を導光板207の入光端面207aに転写させることにより、導光板207の入光端面207aに凹凸部209を形成するようにしたので、バイト等による機械的な切削加工によって導光板207の入光端面207aに凹凸部209を形成する場合のように切り粉が発生することは無い。このため、導光板207に切り粉が付着したり混入したりすることも無いため、製品の品質が安定化し、歩留まりを向上させることができる。 As described above, in the present embodiment, the transfer mold 224 is heated, and the transfer surface 225a of the rigid roll portion 225 of the transfer mold 224 and the light incident end surface 207a of the light guide plate 207 are pressed against each other to thereby form a rigid roll. Since the transfer uneven portion 226 provided on the transfer surface 225a of the portion 225 is transferred to the light incident end surface 207a of the light guide plate 207, the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207. Chips are not generated unlike the case where the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207 by mechanical cutting with a cutting tool or the like. For this reason, since chips do not adhere to or mix in the light guide plate 207, the quality of the product can be stabilized and the yield can be improved.
 このとき、転写金型224の加熱温度を、導光板207を形成する熱可塑性樹脂のビカット軟化温度以上とすることにより、導光板207の入光端面207aが適度に軟化するため、剛体ロール部225の転写用凹凸部226を導光板207の入光端面207aに良好に転写させることができると共に、導光板207に割れが生じることを防止できる。また、転写金型224の加熱温度を、導光板207を形成する熱可塑性樹脂のビカット軟化温度+40℃以下とすることにより、熱可塑性樹脂の溶融流動が防止されるため、熱可塑性樹脂の弾性率の低下が抑えられ、導光板207が変形しにくくなる。また、転写金型224の著しい汚染を防ぐこともできる。 At this time, by setting the heating temperature of the transfer mold 224 to be equal to or higher than the Vicat softening temperature of the thermoplastic resin forming the light guide plate 207, the light incident end face 207a of the light guide plate 207 is appropriately softened. The transfer uneven portion 226 can be satisfactorily transferred to the light incident end surface 207a of the light guide plate 207, and the light guide plate 207 can be prevented from cracking. Moreover, since the melting temperature of the thermoplastic resin is prevented by setting the heating temperature of the transfer mold 224 to the Vicat softening temperature of the thermoplastic resin forming the light guide plate 207 + 40 ° C. or less, the elastic modulus of the thermoplastic resin Is suppressed, and the light guide plate 207 is hardly deformed. In addition, significant contamination of the transfer mold 224 can be prevented.
 また、剛体ロール部225の転写面225a及び導光板207の入光端面207aの押し付け圧力を0.05MPa以上とすることにより、剛体ロール部225の転写用凹凸部226を導光板207の入光端面207aに更に良好に転写させることができる。また、剛体ロール部225の転写面225a及び導光板207の入光端面207aの押し付け圧力を50MPa以下とすることにより、導光板207に割れが生じることを一層防止できる。 Further, by setting the pressing pressure of the transfer surface 225a of the rigid roll portion 225 and the light incident end surface 207a of the light guide plate 207 to 0.05 MPa or more, the transfer uneven portion 226 of the rigid roll portion 225 is changed to the light incident end surface of the light guide plate 207. It is possible to transfer more favorably to 207a. Further, by making the pressing pressure of the transfer surface 225a of the rigid roll portion 225 and the light incident end surface 207a of the light guide plate 207 50 MPa or less, it is possible to further prevent the light guide plate 207 from cracking.
 また、切削加工によって導光板207の入光端面207aに凹凸部209を形成する場合には、微細な凹凸部209を加工するのに時間がかかる。本実施形態では、転写金型224を用いた熱転写加工によって導光板207の入光端面207aに凹凸部209を形成するので、転写金型224の加熱温度や、剛体ロール部225の転写面225a及び導光板207の入光端面207a同士の押し付け圧力及び押し付け時間を制御することで、凹凸部209の加工時間の短縮化を容易に実現することができる。 Further, when the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207 by cutting, it takes time to process the fine uneven portion 209. In this embodiment, since the uneven portion 209 is formed on the light incident end surface 207a of the light guide plate 207 by thermal transfer processing using the transfer mold 224, the heating temperature of the transfer mold 224, the transfer surface 225a of the rigid roll unit 225, and By controlling the pressing pressure and pressing time between the light incident end faces 207a of the light guide plate 207, it is possible to easily reduce the processing time of the uneven portion 209.
 さらに、本実施形態では、導光板207を形成する熱可塑性樹脂が剛体ロール部225の転写面225aに完全に充填される前に、転写金型224と導光板207とを離型するので、凹凸部209の加工時間を一層短縮することができる。これにより、製品作製のタクトが短くなり、生産性を向上させることができる。 Further, in this embodiment, the transfer mold 224 and the light guide plate 207 are released before the thermoplastic resin forming the light guide plate 207 is completely filled in the transfer surface 225a of the rigid roll portion 225. The processing time of the part 209 can be further shortened. Thereby, the tact time of product manufacture becomes short and productivity can be improved.
 このとき、導光板207を形成する熱可塑性樹脂が剛体ロール部225の転写面225aに完全に充填される前に、転写金型224と導光板207とを離型することにより、導光板207の入光端面207aに形成された凹凸部209の形状は、図15に示すように、先端部平坦領域と凹状領域とが組み合わされた形状となる。このため、導光板207の光学特性(光拡散性)が良好になる。また、凹凸部209の先端部が尖らずに平坦面となっているので、凹凸部209の先端部の欠けを防止することができる。 At this time, before the thermoplastic resin forming the light guide plate 207 is completely filled in the transfer surface 225a of the rigid roll portion 225, the transfer mold 224 and the light guide plate 207 are separated from each other. As shown in FIG. 15, the shape of the concavo-convex portion 209 formed on the light incident end surface 207a is a shape in which a flat tip end region and a concave region are combined. For this reason, the optical characteristics (light diffusibility) of the light guide plate 207 are improved. Moreover, since the front-end | tip part of the uneven | corrugated | grooved part 209 is a flat surface without being sharpened, the chip | tip of the uneven | corrugated | grooved part 209 can be prevented from being chipped.
 なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、剛体ロール部225の転写面225aに設けられた転写用凹凸部226の基部には平坦面が無いが、転写用凹凸部226の基部に平坦面を形成してもよい。つまり、転写用凹凸部226は、基部の平坦面の領域(基部平坦領域)と凸状となっている領域(凸状領域)とが交互に配列された形状を有していてもよい。このとき、転写用凹凸部226の1ピッチにおける基部平坦領域の長さFと凸状領域の長さWaとの比F/Wa(図15参照)が0%~50%であるときに、凹凸部209の1ピッチにおける先端部平坦領域の長さF’と凹状領域の長さWa’との比F’/Wa’(図15参照)が10%~300%、好ましくは20%~80%となるように、凹凸部209を加工するのが好ましい。 Note that the present invention is not limited to the above embodiment. For example, in the above embodiment, the base of the transfer uneven portion 226 provided on the transfer surface 225 a of the rigid roll portion 225 has no flat surface, but a flat surface may be formed at the base of the transfer uneven portion 226. That is, the uneven portion for transfer 226 may have a shape in which regions of the flat surface of the base portion (base portion flat region) and convex regions (convex region) are alternately arranged. At this time, when the ratio F / Wa (see FIG. 15) of the length F of the base flat region to the length Wa of the convex region at one pitch of the concave and convex portions for transfer 226 is 0% to 50%, The ratio F ′ / Wa ′ (see FIG. 15) of the length F ′ of the flat tip end region and the length Wa ′ of the concave region at one pitch of the portion 209 is 10% to 300%, preferably 20% to 80%. It is preferable to process the uneven portion 209 so that
 また、上記実施形態では、剛体ロール部225の転写面225aにプリズム状の転写用凹凸部226が形成されているが、転写用凹凸部226の形状としては、特にプリズム状には限られず、図19に示すようなレンチキュラーレンズ状としてもよい。 Further, in the above-described embodiment, the prism-shaped transfer uneven portion 226 is formed on the transfer surface 225a of the rigid roll portion 225. However, the shape of the transfer uneven portion 226 is not particularly limited to a prism shape. A lenticular lens shape as shown in FIG.
 さらに、上記実施形態は、液晶テレビに使用される液晶表示装置201のバックライトユニット203に具備される導光板207を製造するものであるが、本発明の光学シート製造方法は、例えば照明用や装飾用の導光板としての光学シートの製造にも適用可能である。 Furthermore, although the said embodiment manufactures the light-guide plate 207 with which the backlight unit 203 of the liquid crystal display device 201 used for a liquid crystal television is equipped, the optical sheet manufacturing method of this invention is for illumination, for example, It can also be applied to the production of an optical sheet as a decorative light guide plate.
[実験例-2]
 以下、本発明に係わる光学シート製造方法の一実施例について説明する。
[Experimental example 2]
Hereinafter, an example of the optical sheet manufacturing method according to the present invention will be described.
 上記の転写金型を使用して、導光板の入光端面に対して凹凸部の熱転写加工を行った。使用した導光板は、PMMA(ビカット軟化温度:104℃)で形成されている。導光板の温度は25℃である。転写金型の剛体ロール部の周面には、プリズム状またはレンチキュラー状の転写用凹凸部が設けられている。プリズム状の転写用凹凸部が設けられた剛体ロール部としては、転写用凹凸部の頂角θ(図15参照)が110度であり、転写用凹凸部のピッチWa(図15参照)が300μmまたは400μmであり、転写用凹凸部のピッチWaと高さH(図15参照)との比H/Waが0.347のものを使用した。また、レンチキュラー状の転写用凹凸部が設けられた剛体ロール部としては、転写用凹凸部のピッチWa(図19参照)が400μmであり、転写用凹凸部のピッチWaと高さH(図19参照)との比H/Waが0.455のものを使用した。そして、そのような転写金型を用いて、上述した方法により導光板の入光端面に凹凸部を形成した。 Using the above-mentioned transfer mold, the uneven transfer portion was thermally transferred to the light incident end face of the light guide plate. The used light guide plate is formed of PMMA (Vicat softening temperature: 104 ° C.). The temperature of the light guide plate is 25 ° C. On the peripheral surface of the rigid roll portion of the transfer mold, there are provided prism-shaped or lenticular-shaped transfer uneven portions. As the rigid roll portion provided with the prism-shaped uneven portion for transfer, the apex angle θ (see FIG. 15) of the uneven portion for transfer is 110 degrees, and the pitch Wa (see FIG. 15) of the uneven portion for transfer is 300 μm. Alternatively, 400 μm was used, and the ratio H / Wa between the pitch Wa and the height H (see FIG. 15) of the uneven portions for transfer was 0.347. In addition, as the rigid roll portion provided with the lenticular-shaped uneven portion for transfer, the pitch Wa (see FIG. 19) of the uneven portion for transfer is 400 μm, and the pitch Wa and the height H (see FIG. 19) of the uneven portion for transfer. And a ratio H / Wa of 0.455 was used. Then, using such a transfer mold, an uneven portion was formed on the light incident end face of the light guide plate by the method described above.
 このとき、図20に示すように、転写金型の加熱温度は、110℃、120℃、130℃、140℃及び150℃のいずれかとした。剛体ロール部の転写面及び導光板の入光端面同士の押し付け圧力は、0.2MPa、0.4MPa及び0.6MPaのいずれかとした。剛体ロール部の転写面及び導光板の入光端面同士の押し付け時間は、5秒または10秒とした。 At this time, as shown in FIG. 20, the heating temperature of the transfer mold was any one of 110 ° C., 120 ° C., 130 ° C., 140 ° C. and 150 ° C. The pressing pressure between the transfer surface of the rigid roll part and the light incident end surfaces of the light guide plate was any of 0.2 MPa, 0.4 MPa, and 0.6 MPa. The pressing time between the transfer surface of the rigid roll portion and the light incident end surfaces of the light guide plate was 5 seconds or 10 seconds.
 上記方法により得られた導光板の入光端面に形成された凹凸部をレーザー測定器(キーエンス製「LT-9000」)で評価し、凹凸部の高さH’を測定した。そして、凹凸部の高さH’から、凹凸部の先端部平坦領域の長さF’及び凹状領域の長さWa’を算出し、F’/Wa’及びH’/Wa’を求めた。また、転写用凹凸部の転写率を算出した。 The uneven portion formed on the light incident end face of the light guide plate obtained by the above method was evaluated with a laser measuring instrument (“LT-9000” manufactured by Keyence), and the height H ′ of the uneven portion was measured. Then, from the height H ′ of the concavo-convex part, the length F ′ of the flat part at the tip of the concavo-convex part and the length Wa ′ of the concave part were calculated to obtain F ′ / Wa ′ and H ′ / Wa ′. Moreover, the transfer rate of the uneven part for transfer was calculated.
 その結果を図20に示す。図20から分かるように、導光板を形成する熱可塑性樹脂が転写金型の剛体ロール部の転写面に完全に充填される前に、転写金型と導光板とを離型することにより、転写用凹凸部の転写率が高くなることが無く、先端部平坦領域と凹状領域とが組み合わされた形状を有する凹凸部が得られる。このとき、転写金型の加熱温度、剛体ロール部の転写面及び導光板の入光端面同士の押し付け圧力及び押し付け時間を変えることにより、転写率及びF’/Wa’が変化する。 The result is shown in FIG. As can be seen from FIG. 20, before the thermoplastic resin forming the light guide plate is completely filled into the transfer surface of the rigid roll portion of the transfer die, the transfer mold and the light guide plate are separated to transfer the light guide plate. As a result, there is no increase in the transfer rate of the concavo-convex portion for use, and a concavo-convex portion having a shape in which the flat end region and the concave region are combined is obtained. At this time, the transfer rate and F ′ / Wa ′ change by changing the heating temperature of the transfer mold, the pressing pressure and pressing time between the transfer surface of the rigid roll portion and the light incident end surface of the light guide plate.
 以下、本発明の他の側面に係わる光学シート加工装置及び方法について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, an optical sheet processing apparatus and method according to another aspect of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図21は、本発明に係わる光学シート加工装置の一実施形態によって得られる光学シートである導光板を含む液晶表示装置を示す概略断面図である。同図において、本実施形態に係わる液晶表示装置301は、例えば液晶テレビに使用されるものである。液晶表示装置301は、液晶パネル302と、この液晶パネル302の背面側に配置されたエッジ型のバックライトユニット303とを備えている。液晶パネル302の厚みは、例えば1.8mm程度である。 FIG. 21 is a schematic cross-sectional view showing a liquid crystal display device including a light guide plate which is an optical sheet obtained by one embodiment of the optical sheet processing apparatus according to the present invention. In the figure, a liquid crystal display device 301 according to this embodiment is used for a liquid crystal television, for example. The liquid crystal display device 301 includes a liquid crystal panel 302 and an edge type backlight unit 303 disposed on the back side of the liquid crystal panel 302. The thickness of the liquid crystal panel 302 is, for example, about 1.8 mm.
 バックライトユニット303は、箱型の金属製のバックライト筐体304を有している。バックライト筐体304の裏面(背面)には、複数の電子部品類305が基板(図示せず)を介して設けられている。バックライト筐体304の対向する内壁面には、光を照射するLED306が複数ずつ取り付けられている。 The backlight unit 303 has a box-shaped metal backlight housing 304. A plurality of electronic components 305 are provided on the back surface (back surface) of the backlight housing 304 via a substrate (not shown). A plurality of LEDs 306 for irradiating light are attached to the inner wall surfaces of the backlight housing 304 facing each other.
 バックライト筐体304には、LED306から照射された光を液晶パネル302へ導くための断面矩形状の導光板307が反射シート308を介して収容されている。導光板307の入光端面307aには、図22に示すように、断面略波形状の凹凸部309が設けられている。導光板307の厚みは、例えば3mmである。 In the backlight housing 304, a light guide plate 307 having a rectangular cross section for guiding the light emitted from the LED 306 to the liquid crystal panel 302 is accommodated via a reflection sheet 308. As shown in FIG. 22, the light incident end surface 307a of the light guide plate 307 is provided with a concavo-convex portion 309 having a substantially corrugated cross section. The thickness of the light guide plate 307 is 3 mm, for example.
 導光板307は、熱可塑性樹脂で形成されている。具体的には、導光板307は、寸法精度や衝撃強度、透明性が高い非晶性樹脂からなっている。非晶性樹脂としては、ポリメタクリル酸メチル樹脂(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)等が挙げられる。 The light guide plate 307 is made of a thermoplastic resin. Specifically, the light guide plate 307 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency. Examples of the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), and cycloolefin polymer (COP).
 LED306から照射された光は、導光板307の入光端面307aに入射される。導光板307の背面は、LED306から照射された光を反射させる反射面となっており、導光板307の前面は、LED306から照射された光や反射面で反射された光を出射させる出光面となっている。導光板307の背面(反射面)には、インクによるドットパターン印刷等、光を反射・散乱させやすい構造が施されている。 The light emitted from the LED 306 enters the light incident end surface 307a of the light guide plate 307. The back surface of the light guide plate 307 is a reflective surface that reflects the light emitted from the LED 306, and the front surface of the light guide plate 307 is a light output surface that emits the light emitted from the LED 306 and the light reflected by the reflective surface. It has become. The back surface (reflection surface) of the light guide plate 307 has a structure that easily reflects and scatters light, such as dot pattern printing with ink.
 導光板307の前面側には、複数枚(ここでは3枚)の光学フィルムを積層してなる光学フィルム群310が配置されている。光学フィルム群310の厚みは、例えば0.2mm程度である。導光板307及び光学フィルム群310の縁部は、樹脂(例えばPC)製のフレーム体311によりバックライト筐体304に対して固定されている。上記の液晶パネル302は、金属製のフレーム体312によりバックライトユニット303に対して固定されている。 On the front side of the light guide plate 307, an optical film group 310 formed by laminating a plurality (three in this case) of optical films is disposed. The thickness of the optical film group 310 is, for example, about 0.2 mm. The edges of the light guide plate 307 and the optical film group 310 are fixed to the backlight housing 304 by a frame body 311 made of resin (for example, PC). The liquid crystal panel 302 is fixed to the backlight unit 303 by a metal frame body 312.
 図23は、上記の導光板307を製造する工程を示すフローチャートである。同図において、まず溶融押出シート成形工程等により導光板原板を作製する(ステップS301)。続いて、パネルソーやランニングソー等により導光板原板を粗切りカットして、導光板307を得る(ステップS302)。続いて、鏡面加工機を用いて、導光板307の入光端面307aに鏡面加工を施す(ステップS303)。続いて、導光板307の入光端面307aに熱転写加工を施すことにより、入光端面307aに凹凸部309を形成する(ステップS304)。なお、ステップS303については、必ずしも実施しなくてもよい。 FIG. 23 is a flowchart showing a process of manufacturing the light guide plate 307. In the figure, first, an original light guide plate is produced by a melt extrusion sheet forming process or the like (step S301). Subsequently, the light guide plate original plate is roughly cut and cut using a panel saw, a running saw, or the like to obtain the light guide plate 307 (step S302). Subsequently, the mirror surface processing is performed on the light incident end surface 307a of the light guide plate 307 using a mirror processing machine (step S303). Then, the uneven | corrugated | grooved part 309 is formed in the light-incidence end surface 307a by performing a thermal transfer process to the light-incidence end surface 307a of the light-guide plate 307 (step S304). Note that step S303 is not necessarily performed.
 図24は、本発明に係わる光学シート加工装置の一実施形態を示す平面図である。図25は、図24に示した光学シート加工装置の正面図であり、図26は、図25のVI-VI線要部断面図であり、図27は、図25の要部拡大図であり、図28は、図25のVIII-VIII線要部拡大断面図である。また、図29は、図24等に示した光学シート加工装置を概略的に示す斜視図である。各図において、本実施形態の光学シート加工装置320は、図23に示すステップS304を実施する際に使用される。 FIG. 24 is a plan view showing an embodiment of the optical sheet processing apparatus according to the present invention. 25 is a front view of the optical sheet processing apparatus shown in FIG. 24, FIG. 26 is a sectional view taken along the line VI-VI in FIG. 25, and FIG. 27 is an enlarged view of the relevant part in FIG. 28 is an enlarged cross-sectional view taken along the line VIII-VIII in FIG. FIG. 29 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. In each figure, the optical sheet processing apparatus 320 of this embodiment is used when step S304 shown in FIG. 23 is implemented.
 光学シート加工装置320は、装置枠体321を備えている。装置枠体321の中央部にはラック322が配置され、このラック322には、金属製の転写ロール323が回転可能に支持されている(図26参照)。転写ロール323の外周面323aには、図29に示すように、転写ロール323の周方向に沿って転写用凹凸部319が形成されている。転写ロール323の外周面323aは、導光板307の入光端面307aに凹凸部を付与するための転写面となっている。転写用凹凸部319は、例えば転写ロール323のロール軸方向に対してプリズム状またはレンチキュラー状に形成されている。 The optical sheet processing apparatus 320 includes an apparatus frame 321. A rack 322 is disposed at the center of the apparatus frame 321, and a metal transfer roll 323 is rotatably supported on the rack 322 (see FIG. 26). As shown in FIG. 29, an uneven surface portion 319 for transfer is formed on the outer peripheral surface 323 a of the transfer roll 323 along the circumferential direction of the transfer roll 323. The outer peripheral surface 323a of the transfer roll 323 serves as a transfer surface for imparting an uneven portion to the light incident end surface 307a of the light guide plate 307. The transfer concavo-convex portion 319 is formed in a prism shape or a lenticular shape with respect to the roll axis direction of the transfer roll 323, for example.
 転写ロール323は、図26に示すように、誘導コイル341(ヒータ部)が内蔵された電気ヒータロールである。転写ロール323の上側には、誘導コイル341に高周波の電流を供給する電源部342が配置されている。これらの誘導コイル341及び電源部342は、転写ロール323を加熱する加熱手段を構成している。なお、転写ロール323としては、オイルにより加熱されるオイルヒータロールを用いてもよい。 As shown in FIG. 26, the transfer roll 323 is an electric heater roll in which an induction coil 341 (heater unit) is incorporated. A power supply unit 342 that supplies high-frequency current to the induction coil 341 is disposed on the upper side of the transfer roll 323. The induction coil 341 and the power supply unit 342 constitute a heating unit that heats the transfer roll 323. As the transfer roll 323, an oil heater roll heated by oil may be used.
 図25に示すように、装置枠体321の下部には、台座325A,325Bが装置左右方向(X方向)に転写ロール323を挟むように配置されている。台座325A,325Bの上部には、ステージベース326A,326Bがガイドレール327A,327Bを介して装置前後方向(Y方向)に移動可能にそれぞれ取り付けられている。ステージベース326A,326Bの上部には、ステージ328A,328Bがガイドレール329A,329Bを介して装置左右方向(X方向)に移動可能にそれぞれ取り付けられている。 25, pedestals 325A and 325B are arranged below the apparatus frame 321 so as to sandwich the transfer roll 323 in the apparatus horizontal direction (X direction). Stage bases 326A and 326B are attached to the upper portions of the bases 325A and 325B through the guide rails 327A and 327B, respectively, so as to be movable in the apparatus front-rear direction (Y direction). Stages 328A and 328B are attached to the upper portions of the stage bases 326A and 326B so as to be movable in the left-right direction (X direction) of the apparatus via guide rails 329A and 329B, respectively.
 ステージ328A,328Bの上面には、導光板307が載置(支持)される。ステージ328A,328Bの上面には、多種多様なサイズの導光板307を縦置き又は横置きの状態で置くことができる(図24参照)。縦置きは、導光板307の長手方向をY方向に一致させるような置き方である。横置きは、導光板307の長手方向をX方向に一致させるような置き方である。なお、ステージ328A,328Bの上面に載置された導光板307は、詳述しない位置決め手段により位置決めされる。また、ステージ328A,328Bの上面に載置された導光板307は、クランプ板318A,318Bによってステージ328A,328Bに対して押さえ付けられる(図29参照)。 A light guide plate 307 is placed (supported) on the upper surfaces of the stages 328A and 328B. Light guide plates 307 of various sizes can be placed on the top surfaces of the stages 328A and 328B in a vertically or horizontally placed state (see FIG. 24). The vertical placement is such that the longitudinal direction of the light guide plate 307 is matched with the Y direction. The horizontal placement is such that the longitudinal direction of the light guide plate 307 is aligned with the X direction. The light guide plate 307 placed on the upper surfaces of the stages 328A and 328B is positioned by positioning means not described in detail. The light guide plate 307 placed on the upper surfaces of the stages 328A and 328B is pressed against the stages 328A and 328B by the clamp plates 318A and 318B (see FIG. 29).
 ステージベース326A,326Bの上部には、ステージ328A,328BをX方向に移動させる押圧シリンダ330A,330Bがそれぞれ取り付けられている(図25参照)。押圧シリンダ330A,330Bは、ステージ328A,328B上に載置された導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328A,328Bに圧力を印加する圧力印加手段を構成している。 Press cylinders 330A and 330B for moving the stages 328A and 328B in the X direction are attached to the upper portions of the stage bases 326A and 326B, respectively (see FIG. 25). The pressure cylinders 330A and 330B are pressure applying means for applying pressure to the stages 328A and 328B so as to press the light incident end surface 307a of the light guide plate 307 placed on the stages 328A and 328B against the transfer surface 323a of the transfer roll 323. Is configured.
 また、光学シート加工装置320は、図25~図28に示すように、ステージ328A,328Bに対応して、X方向及びY方向に対して斜めの方向に転写ロール323を挟むように配置された成形用サーボモータ331A,331Bを備えている。成形用サーボモータ331A,331Bの各出力軸331aには、ピニオンギア332A,332Bがそれぞれ取り付けられている。ステージベース326A,326Bの下部の内側面には、Y方向に延在し、ピニオンギア332A,332Bと噛み合うラックギア333A,333Bがそれぞれ設けられている。これにより、成形用サーボモータ331A,331Bを回転駆動させると、成形用サーボモータ331A,331Bの回転がピニオンギア332A,332B及びラックギア333A,333Bを介してステージベース326A,326Bに伝わり、ステージベース326A,326BがY方向に移動し、これに伴ってステージ328A,328BがY方向に移動する。 Further, as shown in FIGS. 25 to 28, the optical sheet processing apparatus 320 is disposed so as to sandwich the transfer roll 323 in an oblique direction with respect to the X direction and the Y direction corresponding to the stages 328A and 328B. Serving motors 331A and 331B are provided. Pinion gears 332A and 332B are attached to the output shafts 331a of the forming servomotors 331A and 331B, respectively. Rack gears 333A and 333B extending in the Y direction and meshing with the pinion gears 332A and 332B are provided on inner side surfaces of the lower portions of the stage bases 326A and 326B, respectively. Accordingly, when the forming servomotors 331A and 331B are driven to rotate, the rotation of the forming servomotors 331A and 331B is transmitted to the stage bases 326A and 326B via the pinion gears 332A and 332B and the rack gears 333A and 333B, and the stage base 326A. , 326B move in the Y direction, and accordingly, the stages 328A, 328B move in the Y direction.
 ラック322の下部には、装置上下方向(Z方向)に延びるシャフト334A,334Bが回転可能に支持されている。これらのシャフト334A,334Bは、Y方向に転写ロール323を挟むように配置されている。シャフト334A,334Bの途中部分には、上記のピニオンギア332A,332Bと噛み合う平歯車335A,335Bがそれぞれ設けられている。また、シャフト334A,334Bの上端部には、電磁クラッチ336A,336Bがそれぞれ取り付けられている。 In the lower part of the rack 322, shafts 334A and 334B extending in the vertical direction of the apparatus (Z direction) are rotatably supported. These shafts 334A and 334B are arranged so as to sandwich the transfer roll 323 in the Y direction. Spur gears 335A and 335B that mesh with the above-described pinion gears 332A and 332B are provided in the middle portions of the shafts 334A and 334B, respectively. In addition, electromagnetic clutches 336A and 336B are attached to the upper ends of the shafts 334A and 334B, respectively.
 なお、特に詳述はしないが、シャフト334A,334B及び平歯車335A,335Bはロータリーボールスプライン構造となっており、シャフト334A,334Bが平歯車335A,335Bに対して上下移動可能となっている。そして、ラック322は昇降手段により昇降可能であり、これに伴って転写ロール323が昇降可能となっている。 Although not specifically described, the shafts 334A and 334B and the spur gears 335A and 335B have a rotary ball spline structure, and the shafts 334A and 334B can move up and down with respect to the spur gears 335A and 335B. The rack 322 can be lifted and lowered by a lifting means, and the transfer roll 323 can be lifted and lowered accordingly.
 ラック322には、支持板322aが連結されている。支持板322aにおけるシャフト334A,334Bに対応する部位には、下方に延びるシャフト337A,337Bがそれぞれ回転可能に支持されている。シャフト337A,337Bの途中部分には、平歯車338A,338Bがそれぞれ設けられている。また、シャフト337A,337Bの下端部は、上記の電磁クラッチ336A,336Bにそれぞれ取り付けられている。 The support plate 322a is connected to the rack 322. Shafts 337A and 337B extending downward are respectively rotatably supported at portions of the support plate 322a corresponding to the shafts 334A and 334B. Spur gears 338A and 338B are provided in the middle of the shafts 337A and 337B, respectively. The lower ends of the shafts 337A and 337B are attached to the electromagnetic clutches 336A and 336B, respectively.
 電磁クラッチ336Aは、シャフト334A,337A同士の連結を断続することで、平歯車335Aから平歯車338Aへの動力の伝達を断続する。具体的には、電磁クラッチ336AがONのときは、シャフト334A,337A同士が連結され、電磁クラッチ336AがOFFのときは、シャフト334A,337A同士の連結が解除される。電磁クラッチ336Bは、シャフト334B,337B同士の連結を断続することで、平歯車335Bから平歯車338Bへの動力の伝達を断続する。具体的には、電磁クラッチ336BがONのときは、シャフト334B,337B同士が連結され、電磁クラッチ336BがOFFのときは、シャフト334B,337B同士の連結が解除される。 The electromagnetic clutch 336A interrupts the transmission of power from the spur gear 335A to the spur gear 338A by interrupting the connection between the shafts 334A and 337A. Specifically, when the electromagnetic clutch 336A is ON, the shafts 334A and 337A are connected to each other, and when the electromagnetic clutch 336A is OFF, the connections between the shafts 334A and 337A are released. The electromagnetic clutch 336B interrupts transmission of power from the spur gear 335B to the spur gear 338B by intermittently connecting the shafts 334B and 337B. Specifically, when the electromagnetic clutch 336B is ON, the shafts 334B and 337B are connected to each other, and when the electromagnetic clutch 336B is OFF, the connections between the shafts 334B and 337B are released.
 転写ロール323のロール軸323bは、ラック322の下方に延びている。ロール軸323bの下端部には、平歯車338A,338Bとそれぞれ噛み合う平歯車339が取り付けられている。 The roll shaft 323 b of the transfer roll 323 extends below the rack 322. A spur gear 339 that meshes with the spur gears 338A and 338B is attached to the lower end of the roll shaft 323b.
 電磁クラッチ336AをONにした状態で、成形用サーボモータ331Aを回転駆動させると、ピニオンギア332A、平歯車335A、シャフト334A、電磁クラッチ336A、シャフト337A、平歯車338A及び平歯車339を介して転写ロール323が回転する。また、電磁クラッチ336BをONにした状態で、成形用サーボモータ331Bを回転駆動させると、ピニオンギア332B、平歯車335B、シャフト334B、電磁クラッチ336B、シャフト337B、平歯車338B及び平歯車339を介して転写ロール323が回転する。従って、成形用サーボモータ331Aによってステージ328Aを移動させると共に転写ロール323を回転させることができ、成形用サーボモータ331Bによってステージ328Bを移動させると共に転写ロール323を回転させることができる。 When the forming servomotor 331A is driven to rotate with the electromagnetic clutch 336A turned on, transfer is performed via the pinion gear 332A, spur gear 335A, shaft 334A, electromagnetic clutch 336A, shaft 337A, spur gear 338A, and spur gear 339. The roll 323 rotates. Further, when the forming servo motor 331B is driven to rotate with the electromagnetic clutch 336B turned on, the pinion gear 332B, the spur gear 335B, the shaft 334B, the electromagnetic clutch 336B, the shaft 337B, the spur gear 338B, and the spur gear 339 are driven. As a result, the transfer roll 323 rotates. Accordingly, the stage 328A can be moved and the transfer roll 323 can be rotated by the forming servo motor 331A, and the stage 328B can be moved and the transfer roll 323 can be rotated by the forming servo motor 331B.
 以上において、ピニオンギア332A,332B、シャフト334A,334B、平歯車335A,335B、電磁クラッチ336A,336B、シャフト337A,337B、平歯車338A,338B及び平歯車339は、成形用サーボモータ331A,331Bの駆動力を転写ロール323に伝達する回転用動力伝達機構を構成している。そして、成形用サーボモータ331A,331B及び当該回転用動力伝達機構は、転写ロール323を回転させる回転手段を構成している。 In the above, the pinion gears 332A and 332B, the shafts 334A and 334B, the spur gears 335A and 335B, the electromagnetic clutches 336A and 336B, the shafts 337A and 337B, the spur gears 338A and 338B, and the spur gear 339 are formed by the forming servomotors 331A and 331B. A rotational power transmission mechanism that transmits the driving force to the transfer roll 323 is configured. The forming servomotors 331A and 331B and the rotating power transmission mechanism constitute rotating means for rotating the transfer roll 323.
 また、ピニオンギア332A,332B、ラックギア333A,333B、ステージベース326A,326B及びガイドレール327A,327Bは、成形用サーボモータ331A,331Bの駆動力をステージ328A,328Bに伝達する移動用動力伝達機構を構成している。そして、成形用サーボモータ331A,331B及び当該移動用動力伝達機構は、ステージ328A,328Bを転写ロール323に対して凹凸部309の形成方向に移動させる移動手段を構成している。 The pinion gears 332A and 332B, the rack gears 333A and 333B, the stage bases 326A and 326B, and the guide rails 327A and 327B provide a moving power transmission mechanism that transmits the driving force of the forming servomotors 331A and 331B to the stages 328A and 328B. It is composed. The forming servomotors 331A and 331B and the moving power transmission mechanism constitute moving means for moving the stages 328A and 328B in the forming direction of the uneven portion 309 with respect to the transfer roll 323.
 次に、以上のように構成された光学シート加工装置320を用いて、導光板307の入光端面307aに凹凸部309を形成する成形工程について、図30により説明する。本成形工程では、光学シート加工装置320の前側及び後側に作業員が2人ずつ配される。つまり、計4人の作業員によって作業が行われる。このとき、転写ロール323は、誘導コイル341及び電源部342によって一定の温度(例えば100℃~200℃)に加熱される。 Next, a forming process for forming the uneven portion 309 on the light incident end face 307a of the light guide plate 307 using the optical sheet processing apparatus 320 configured as described above will be described with reference to FIG. In the main forming process, two workers are arranged on the front side and the rear side of the optical sheet processing apparatus 320. That is, work is performed by a total of four workers. At this time, the transfer roll 323 is heated to a certain temperature (for example, 100 ° C. to 200 ° C.) by the induction coil 341 and the power supply unit 342.
 まず、成形済みの導光板307が載っているステージ328A及び成形前の導光板307が載っているステージ328Bが何れも光学シート加工装置320の前側に位置している状態で、成形用サーボモータ331Bを所定方向に回転駆動させ、電磁クラッチ336BをONにする。なお、成形用サーボモータ331Aの駆動は停止しており、電磁クラッチ336AはOFFとなっている。 First, in the state where both the stage 328A on which the molded light guide plate 307 is placed and the stage 328B on which the light guide plate 307 before molding is placed are located on the front side of the optical sheet processing apparatus 320, the molding servo motor 331B is used. Is rotated in a predetermined direction to turn on the electromagnetic clutch 336B. Note that the driving of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is OFF.
 すると、図30(a)に示すように、転写ロール323が反時計方向に回転しながら、ステージ328Bが後側に移動する。このとき、押圧シリンダ330Bによって、ステージ328B上に置かれた導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328Bに一定の圧力(例えば0.05MPa~50MPa)を印加する。これにより、ステージ328B上に置かれた導光板307の入光端面307aに、転写ロール323の転写用凹凸部319が転写されるようになる。このようにステージ328B上に置かれた導光板307の成形を行っている間に、ステージ328A上から成形済みの導光板307が取り出される。 Then, as shown in FIG. 30A, the stage 328B moves to the rear side while the transfer roll 323 rotates counterclockwise. At this time, a constant pressure (for example, 0.05 MPa to 50 MPa) is applied to the stage 328B so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328B is pressed against the transfer surface 323a of the transfer roll 323 by the pressing cylinder 330B. Is applied. As a result, the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328B. While the light guide plate 307 placed on the stage 328B is being molded as described above, the molded light guide plate 307 is taken out from the stage 328A.
 次いで、成形用サーボモータ331Bの駆動を停止させ、電磁クラッチ335BをOFFにする。すると、図30(b)に示すように、転写ロール323の回転が停止すると共に、成形済みの導光板307が載っているステージ328Bが光学シート加工装置320の後側で停止する。その間に、ステージ328A上に新たな導光板307が投入・載置される。 Next, the drive of the molding servo motor 331B is stopped, and the electromagnetic clutch 335B is turned OFF. Then, as shown in FIG. 30B, the rotation of the transfer roll 323 stops, and the stage 328B on which the molded light guide plate 307 is placed stops on the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328A.
 次いで、新たな導光板307が載っているステージ328Aが光学シート加工装置320の前側に位置し、成形済みの導光板307が載っているステージ328Bが光学シート加工装置320の後側に位置している状態で、成形用サーボモータ331Aを所定方向に回転駆動させ、電磁クラッチ336AをONにする。 Next, the stage 328A on which the new light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320, and the stage 328B on which the molded light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320. In this state, the molding servo motor 331A is rotationally driven in a predetermined direction, and the electromagnetic clutch 336A is turned on.
 すると、図30(c)に示すように、転写ロール323が時計方向に回転しながら、ステージ328Aが後側に移動する。このとき、押圧シリンダ330Aによって、ステージ328A上に置かれた導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328Aに一定の圧力を印加する。これにより、ステージ328A上に置かれた導光板307の入光端面307aに、転写ロール323の転写用凹凸部319が転写されるようになる。このようにステージ328A上に置かれた導光板307の成形を行っている間に、ステージ328B上から成形済みの導光板307が取り出される。 Then, as shown in FIG. 30C, the stage 328A moves to the rear side while the transfer roll 323 rotates in the clockwise direction. At this time, a constant pressure is applied to the stage 328A by the pressing cylinder 330A so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328A is pressed against the transfer surface 323a of the transfer roll 323. As a result, the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328A. While the light guide plate 307 placed on the stage 328A is being molded in this way, the molded light guide plate 307 is taken out from the stage 328B.
 次いで、成形用サーボモータ331Aの駆動を停止させ、電磁クラッチ336AをOFFにする。すると、図30(d)に示すように、転写ロール323の回転が停止すると共に、成形済みの導光板307が載っているステージ328Aが光学シート加工装置320の後側で停止する。その間に、ステージ328B上に新たな導光板307が投入・載置される。 Next, the drive of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is turned OFF. Then, as shown in FIG. 30D, the rotation of the transfer roll 323 stops, and the stage 328A on which the molded light guide plate 307 is placed stops on the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328B.
 次いで、成形済みの導光板307が載っているステージ328A及び新たな導光板307が載っているステージ328Bが何れも光学シート加工装置320の後側に位置している状態で、成形用サーボモータ331Bを反対方向に回転駆動させ、電磁クラッチ336BをONにする。 Next, in a state where both the stage 328A on which the molded light guide plate 307 is placed and the stage 328B on which the new light guide plate 307 is placed are positioned on the rear side of the optical sheet processing apparatus 320, the molding servo motor 331B is used. Is rotated in the opposite direction to turn on the electromagnetic clutch 336B.
 すると、図30(e)に示すように、転写ロール323が時計方向に回転しながら、ステージ328Bが前側に移動する。このとき、押圧シリンダ330Bによって、ステージ328B上に置かれた導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328Bに一定の圧力を印加する。これにより、ステージ328B上に置かれた導光板307の入光端面307aに、転写ロール323の転写用凹凸部319が転写されるようになる。このようにステージ328B上に置かれた導光板307の成形を行っている間に、ステージ328A上から成形済みの導光板307が取り出される。 Then, as shown in FIG. 30E, the stage 328B moves forward while the transfer roll 323 rotates clockwise. At this time, a constant pressure is applied to the stage 328B by the pressing cylinder 330B so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328B is pressed against the transfer surface 323a of the transfer roll 323. As a result, the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328B. While the light guide plate 307 placed on the stage 328B is being molded as described above, the molded light guide plate 307 is taken out from the stage 328A.
 次いで、成形用サーボモータ331Bの駆動を停止させ、電磁クラッチ336BをOFFにする。すると、図30(f)に示すように、転写ロール323の回転が停止すると共に、成形済みの導光板307が載っているステージ328Bが光学シート加工装置320の前側で停止する。その間に、ステージ328A上に新たな導光板307が投入・載置される。 Next, the drive of the molding servo motor 331B is stopped, and the electromagnetic clutch 336B is turned OFF. Then, as shown in FIG. 30F, the rotation of the transfer roll 323 stops and the stage 328B on which the molded light guide plate 307 is placed stops on the front side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328A.
 次いで、新たな導光板307が載っているステージ328Aが光学シート加工装置320の後側に位置し、成形済みの導光板307が載っているステージ328Bが光学シート加工装置320の前側に位置している状態で、成形用サーボモータ331Aを反対方向に回転駆動させ、電磁クラッチ336AをONにする。 Next, the stage 328A on which the new light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320, and the stage 328B on which the molded light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320. In this state, the molding servo motor 331A is rotated in the opposite direction, and the electromagnetic clutch 336A is turned on.
 すると、図示は省略するが、転写ロール323が反時計方向に回転しながら、ステージ328Aが前側に移動する。このとき、押圧シリンダ330Aによって、ステージ328A上に置かれた導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328Aに一定の圧力を印加する。これにより、ステージ328A上に置かれた導光板307の入光端面307aに、転写ロール323の転写用凹凸部319が転写されるようになる。このようにステージ328A上に置かれた導光板307の成形を行っている間に、ステージ328B上から成形済みの導光板307が取り出される。 Then, although illustration is omitted, the stage 328A moves to the front side while the transfer roll 323 rotates counterclockwise. At this time, a constant pressure is applied to the stage 328A by the pressing cylinder 330A so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328A is pressed against the transfer surface 323a of the transfer roll 323. As a result, the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328A. While the light guide plate 307 placed on the stage 328A is being molded in this way, the molded light guide plate 307 is taken out from the stage 328B.
 次いで、成形用サーボモータ331Aの駆動を停止させ、電磁クラッチ336AをOFFにすると、転写ロール323の回転が停止すると共に、成形済みの導光板307が載っているステージ328Aが光学シート加工装置320の前側で停止する。その間に、ステージ328B上に新たな導光板307が投入・載置される。 Next, when the drive of the forming servo motor 331A is stopped and the electromagnetic clutch 336A is turned OFF, the rotation of the transfer roll 323 is stopped, and the stage 328A on which the formed light guide plate 307 is mounted is provided on the optical sheet processing apparatus 320. Stop at the front side. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328B.
 このように本成形工程においては、ステージ328A上に載置された成形済みの導光板307の取り出し及び当該ステージ328A上への新たな導光板307の投入を行っている間に、ステージ328B上に載置された導光板307の入光端面307aに凹凸部309を形成し、ステージ328B上に載置された成形済みの導光板307の取り出し及び当該ステージ328B上への新たな導光板307の投入を行っている間に、ステージ328A上に載置された導光板307の入光端面307aに凹凸部309を形成することができる。また、本成形工程では、ステージ328A,328B上に載置された何れの導光板307についても、前後両方向から成形を行うことができる。 As described above, in the main forming step, while the molded light guide plate 307 placed on the stage 328A is taken out and a new light guide plate 307 is placed on the stage 328A, the light guide plate 307 is placed on the stage 328B. An uneven portion 309 is formed on the light incident end face 307a of the placed light guide plate 307, the molded light guide plate 307 placed on the stage 328B is taken out, and a new light guide plate 307 is placed on the stage 328B. During the process, the uneven portion 309 can be formed on the light incident end face 307a of the light guide plate 307 placed on the stage 328A. In the main forming step, any light guide plate 307 placed on the stages 328A and 328B can be formed from both the front and rear directions.
 上記の光学シート加工装置320を用いて、導光板307の入光端面307aに凹凸部309を形成する他の成形工程について、図31により説明する。本成形工程では、光学シート加工装置320の前側及び後側に作業員が1人ずつ配される。つまり、計2人の作業員によって作業が行われる。このとき、転写ロール323は、誘導コイル341及び電源部342によって一定の温度に加熱される。 Another molding process for forming the uneven portion 309 on the light incident end surface 307a of the light guide plate 307 using the optical sheet processing apparatus 320 will be described with reference to FIG. In the main forming step, one worker is arranged on each of the front side and the rear side of the optical sheet processing apparatus 320. That is, work is performed by a total of two workers. At this time, the transfer roll 323 is heated to a constant temperature by the induction coil 341 and the power supply unit 342.
 まず、成形済みの導光板307が載っているステージ328Aが光学シート加工装置320の後側に位置し、成形前の導光板307が載っているステージ328Bが光学シート加工装置320の前側に位置している状態で、成形用サーボモータ331Bを所定方向に回転駆動させ、電磁クラッチ336BをONにする。なお、成形用サーボモータ331Aの駆動は停止しており、電磁クラッチ336AはOFFとなっている。 First, the stage 328A on which the molded light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320, and the stage 328B on which the light guide plate 307 before molding is placed is located on the front side of the optical sheet processing apparatus 320. In this state, the molding servo motor 331B is rotated in a predetermined direction to turn on the electromagnetic clutch 336B. Note that the driving of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is OFF.
 すると、図31(a)に示すように、転写ロール323が反時計方向に回転しながら、ステージ328Bが後側に移動する。このとき、押圧シリンダ330Bによって、ステージ328B上に置かれた導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328Bに一定の圧力を印加する。これにより、ステージ328B上に置かれた導光板307の入光端面307aに、転写ロール323の転写用凹凸部319が転写されるようになる。このようにステージ328B上に置かれた導光板307の成形を行っている間に、ステージ328A上から成形済みの導光板307が取り出される。 Then, as shown in FIG. 31A, the stage 328B moves to the rear side while the transfer roll 323 rotates counterclockwise. At this time, a constant pressure is applied to the stage 328B by the pressing cylinder 330B so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328B is pressed against the transfer surface 323a of the transfer roll 323. As a result, the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328B. While the light guide plate 307 placed on the stage 328B is being molded as described above, the molded light guide plate 307 is taken out from the stage 328A.
 次いで、成形用サーボモータ331Bの駆動を停止させ、電磁クラッチ336BをOFFにする。すると、図31(b)に示すように、転写ロール323の回転が停止すると共に、成形済みの導光板307が載っているステージ328Bが光学シート加工装置320の後側で停止する。その間に、ステージ328A上に新たな導光板307が投入・載置される。 Next, the drive of the molding servo motor 331B is stopped, and the electromagnetic clutch 336B is turned OFF. Then, as shown in FIG. 31B, the rotation of the transfer roll 323 stops, and the stage 328B on which the molded light guide plate 307 is placed stops at the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328A.
 次いで、新たな導光板307が載っているステージ328A及び成形済みの導光板307が載っているステージ328Bが何れも光学シート加工装置320の後側に位置している状態で、電磁クラッチ336BをOFFにしたまま、成形用サーボモータ331Bを反対方向に回転駆動させる。すると、図31(c)に示すように、転写ロール323の回転が停止したまま、成形済みの導光板307が載っているステージ328Bが前側に移動する。このとき、押圧シリンダ330Bによるステージ328Bへの圧力の印加が行われることは無い。そして、当該ステージ328Bが元の位置に戻ると、成形用サーボモータ331Bを停止させる。その間、新たな導光板307が載っているステージ328Aは、同じ位置で待機している。 Next, the electromagnetic clutch 336B is turned off with the stage 328A on which the new light guide plate 307 is placed and the stage 328B on which the molded light guide plate 307 is placed positioned on the rear side of the optical sheet processing apparatus 320. The molding servo motor 331B is rotationally driven in the opposite direction. Then, as shown in FIG. 31C, the stage 328B on which the molded light guide plate 307 is mounted moves to the front side while the rotation of the transfer roll 323 is stopped. At this time, no pressure is applied to the stage 328B by the pressing cylinder 330B. When the stage 328B returns to the original position, the molding servo motor 331B is stopped. Meanwhile, the stage 328A on which the new light guide plate 307 is placed stands by at the same position.
 次いで、新たな導光板307が載っているステージ328Aが光学シート加工装置320の後側に位置し、成形済みの導光板307が載っているステージ328Bが光学シート加工装置320の前側に位置している状態で、成形用サーボモータ331Aを所定方向に回転駆動させ、電磁クラッチ336AをONにする。 Next, the stage 328A on which the new light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320, and the stage 328B on which the molded light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320. In this state, the molding servo motor 331A is rotationally driven in a predetermined direction, and the electromagnetic clutch 336A is turned on.
 すると、図31(d)に示すように、転写ロール323が反時計方向に回転しながら、ステージ328Aが前側に移動する。このとき、押圧シリンダ330Aによって、ステージ328A上に置かれた導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328Aに一定の圧力を印加する。これにより、ステージ328A上に置かれた導光板307の入光端面307aに、転写ロール323の転写用凹凸部319が転写されるようになる。このようにステージ328A上に置かれた導光板307の成形を行っている間に、ステージ328B上から成形済みの導光板307が取り出される。 Then, as shown in FIG. 31D, the stage 328A moves to the front side while the transfer roll 323 rotates counterclockwise. At this time, a constant pressure is applied to the stage 328A by the pressing cylinder 330A so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328A is pressed against the transfer surface 323a of the transfer roll 323. As a result, the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328A. While the light guide plate 307 placed on the stage 328A is being molded in this way, the molded light guide plate 307 is taken out from the stage 328B.
 次いで、成形用サーボモータ331Aの駆動を停止させ、電磁クラッチ336AをOFFにする。すると、図31(e)に示すように、転写ロール323の回転が停止すると共に、成形済みの導光板307が載っているステージ328Aが光学シート加工装置320の前側で停止する。その間に、ステージ328B上に新たな導光板307が投入・載置される。 Next, the drive of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is turned OFF. Then, as shown in FIG. 31E, the rotation of the transfer roll 323 stops, and the stage 328A on which the molded light guide plate 307 is placed stops at the front side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328B.
 次いで、成形済みの導光板307が載っているステージ328A及び新たな導光板307が載っているステージ328Bが何れも光学シート加工装置320の前側に位置している状態で、電磁クラッチ336AをOFFにしたまま、成形用サーボモータ331Aを反対方向に回転駆動させる。すると、図31(f)に示すように、転写ロール323の回転が停止したまま、成形済みの導光板307が載っているステージ328Aが後側に移動する。このとき、押圧シリンダ330Aによるステージ328Aへの圧力の印加が行われることは無い。そして、当該ステージ328Aが元の位置に戻ると、成形用サーボモータ331Aを停止させる。その間、新たな導光板307が載っているステージ328Bは、同じ位置で待機している。 Next, the electromagnetic clutch 336A is turned OFF in a state where the stage 328A on which the molded light guide plate 307 is placed and the stage 328B on which the new light guide plate 307 is placed are located on the front side of the optical sheet processing apparatus 320. As it is, the molding servomotor 331A is rotated in the opposite direction. Then, as shown in FIG. 31F, the stage 328A on which the molded light guide plate 307 is placed moves to the rear side while the rotation of the transfer roll 323 is stopped. At this time, no pressure is applied to the stage 328A by the pressing cylinder 330A. When the stage 328A returns to the original position, the molding servo motor 331A is stopped. Meanwhile, the stage 328B on which the new light guide plate 307 is placed stands by at the same position.
 このように本成形工程においても、ステージ328A上に載置された成形済みの導光板307の取り出し及び当該ステージ328A上への新たな導光板307の投入を行っている間に、ステージ328B上に載置された導光板307の入光端面307aに凹凸部309を形成し、ステージ328B上に載置された成形済みの導光板307の取り出し及び当該ステージ328B上への新たな導光板307の投入を行っている間に、ステージ328A上に載置された導光板307の入光端面307aに凹凸部309を形成することができる。また、本成形工程では、2人という必要最小限の作業員により導光板307の成形作業を実施することができる。 As described above, also in the main forming step, while the molded light guide plate 307 placed on the stage 328A is taken out and a new light guide plate 307 is placed on the stage 328A, the light guide plate 307 is placed on the stage 328B. An uneven portion 309 is formed on the light incident end face 307a of the placed light guide plate 307, the molded light guide plate 307 placed on the stage 328B is taken out, and a new light guide plate 307 is placed on the stage 328B. During the process, the uneven portion 309 can be formed on the light incident end face 307a of the light guide plate 307 placed on the stage 328A. In the main forming step, the light guide plate 307 can be formed by a minimum required number of workers.
 上記の光学シート加工装置320を用いて、導光板307の入光端面307aに凹凸部309を形成する更に他の成形工程について、図32により説明する。本成形工程では、光学シート加工装置320の前側に2人の作業員Wが配される(図24参照)。このとき、転写ロール323は、誘導コイル341及び電源部342によって一定の温度に加熱される。 Referring to FIG. 32, still another molding process for forming the uneven portion 309 on the light incident end surface 307a of the light guide plate 307 using the optical sheet processing apparatus 320 described above will be described. In the main forming step, two workers W are arranged on the front side of the optical sheet processing apparatus 320 (see FIG. 24). At this time, the transfer roll 323 is heated to a constant temperature by the induction coil 341 and the power supply unit 342.
 まず、成形済みの導光板307が載っているステージ328A及び成形前の導光板307が載っているステージ328Bが何れも光学シート加工装置320の前側に位置している状態で、成形用サーボモータ331Bを所定方向に回転駆動させ、電磁クラッチ336BをONにする。なお、成形用サーボモータ331Aの駆動は停止しており、電磁クラッチ336AはOFFとなっている。 First, in the state where both the stage 328A on which the molded light guide plate 307 is placed and the stage 328B on which the light guide plate 307 before molding is placed are located on the front side of the optical sheet processing apparatus 320, the molding servo motor 331B is used. Is rotated in a predetermined direction to turn on the electromagnetic clutch 336B. Note that the driving of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is OFF.
 すると、図32(a)に示すように、転写ロール323が反時計方向に回転しながら、ステージ328Bが後側に移動する。このとき、押圧シリンダ330Bによって、ステージ328B上に置かれた導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328Bに一定の圧力を印加する。これにより、ステージ328B上に置かれた導光板307の入光端面307aに、転写ロール323の転写用凹凸部319が転写されるようになる。このようにステージ328B上に置かれた導光板307の成形を行っている間に、ステージ328A上から成形済みの導光板307が取り出される。 Then, as shown in FIG. 32A, the stage 328B moves to the rear side while the transfer roll 323 rotates counterclockwise. At this time, a constant pressure is applied to the stage 328B by the pressing cylinder 330B so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328B is pressed against the transfer surface 323a of the transfer roll 323. As a result, the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328B. While the light guide plate 307 placed on the stage 328B is being molded as described above, the molded light guide plate 307 is taken out from the stage 328A.
 次いで、成形用サーボモータ331Bの駆動を停止させ、電磁クラッチ336BをOFFにする。すると、図32(b)に示すように、転写ロール323の回転が停止すると共に、成形済みの導光板307が載っているステージ328Bが光学シート加工装置320の後側で停止する。その間に、ステージ328A上に新たな導光板307が投入・載置される。 Next, the drive of the molding servo motor 331B is stopped, and the electromagnetic clutch 336B is turned OFF. Then, as shown in FIG. 32B, the rotation of the transfer roll 323 stops, and the stage 328B on which the molded light guide plate 307 is placed stops on the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328A.
 次いで、新たな導光板307が載っているステージ328Aが光学シート加工装置320の前側に位置し、成形済みの導光板307が載っているステージ328Bが光学シート加工装置320の後側に位置している状態で、電磁クラッチ336BをOFFにしたまま、成形用サーボモータ331Bを反対方向に回転駆動させる。すると、図32(c)に示すように、転写ロール323の回転が停止したまま、成形済みの導光板307が載っているステージ328Bが前側に移動する。このとき、押圧シリンダ330Bによるステージ328Bへの圧力の印加が行われることは無い。そして、当該ステージ328Bが元の位置に戻ると、成形用サーボモータ331Bの駆動を停止させる。その間、新たな導光板307が載置されたステージ328Aは、同じ位置で待機している。 Next, the stage 328A on which the new light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320, and the stage 328B on which the molded light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320. In a state where the electromagnetic clutch 336B is OFF, the molding servo motor 331B is driven to rotate in the opposite direction. Then, as shown in FIG. 32C, the stage 328B on which the molded light guide plate 307 is mounted moves to the front side while the rotation of the transfer roll 323 is stopped. At this time, no pressure is applied to the stage 328B by the pressing cylinder 330B. Then, when the stage 328B returns to the original position, the driving of the molding servo motor 331B is stopped. Meanwhile, the stage 328A on which the new light guide plate 307 is placed stands by at the same position.
 次いで、新たな導光板307が載っているステージ328A及び成形済みの導光板307が載っているステージ328Bが何れも光学シート加工装置320の前側に位置している状態で、成形用サーボモータ331Aを所定方向に回転駆動させ、電磁クラッチ336AをONにする。 Next, in a state where both the stage 328A on which the new light guide plate 307 is placed and the stage 328B on which the molded light guide plate 307 is placed are positioned on the front side of the optical sheet processing apparatus 320, the forming servo motor 331A is operated. The electromagnetic clutch 336A is turned ON by rotating in a predetermined direction.
 すると、図32(d)に示すように、転写ロール323が時計方向に回転しながら、ステージ328Aが後側に移動する。このとき、押圧シリンダ330Aによって、ステージ328A上に置かれた導光板307の入光端面307aを転写ロール323の転写面323aに押し付けるように、ステージ328Aに一定の圧力を印加する。これにより、ステージ328A上に置かれた導光板307の入光端面307aに、転写ロール323の転写用凹凸部319が転写されるようになる。このようにステージ328A上に置かれた導光板307の成形を行っている間に、ステージ328B上から成形済みの導光板307が取り出される。 Then, as shown in FIG. 32 (d), the stage 328A moves to the rear side while the transfer roll 323 rotates clockwise. At this time, a constant pressure is applied to the stage 328A by the pressing cylinder 330A so that the light incident end surface 307a of the light guide plate 307 placed on the stage 328A is pressed against the transfer surface 323a of the transfer roll 323. As a result, the transfer uneven portion 319 of the transfer roll 323 is transferred to the light incident end surface 307a of the light guide plate 307 placed on the stage 328A. While the light guide plate 307 placed on the stage 328A is being molded in this way, the molded light guide plate 307 is taken out from the stage 328B.
 次いで、成形用サーボモータ331Aの駆動を停止させ、電磁クラッチ336AをOFFにする。すると、図32(e)に示すように、転写ロール323の回転が停止すると共に、成形済みの導光板307が載っているステージ328Aが光学シート加工装置320の後側で停止する。その間に、ステージ328B上に新たな導光板307が投入・載置される。 Next, the drive of the molding servo motor 331A is stopped, and the electromagnetic clutch 336A is turned OFF. Then, as shown in FIG. 32E, the rotation of the transfer roll 323 stops and the stage 328A on which the molded light guide plate 307 is placed stops on the rear side of the optical sheet processing apparatus 320. Meanwhile, a new light guide plate 307 is placed and placed on the stage 328B.
 次いで、成形済みの導光板307が載っているステージ328Aが光学シート加工装置320の後側に位置し、新たな導光板307が載っているステージ328Bが光学シート加工装置320の前側に位置している状態で、電磁クラッチ336AをOFFにしたまま、成形用サーボモータ331Aを反対方向に回転駆動させる。 Next, the stage 328A on which the molded light guide plate 307 is placed is located on the rear side of the optical sheet processing apparatus 320, and the stage 328B on which the new light guide plate 307 is placed is located on the front side of the optical sheet processing apparatus 320. In the state where the electromagnetic clutch 336A is OFF, the molding servo motor 331A is driven to rotate in the opposite direction.
 すると、図32(f)に示すように、転写ロール323の回転が停止したまま、成形済みの導光板307が載っているステージ328Aが前側に移動する。このとき、押圧シリンダ330Aによるステージ328Aへの圧力の印加が行われることは無い。そして、当該ステージ328Aが元の位置に戻ると、成形用サーボモータ331Aの駆動を停止させる。その間、新たな導光板307が載置されたステージ328Bは、同じ位置で待機している。 Then, as shown in FIG. 32 (f), the stage 328A on which the molded light guide plate 307 is placed moves to the front side while the rotation of the transfer roll 323 is stopped. At this time, no pressure is applied to the stage 328A by the pressing cylinder 330A. When the stage 328A returns to the original position, the driving of the molding servo motor 331A is stopped. Meanwhile, the stage 328B on which the new light guide plate 307 is placed stands by at the same position.
 このように本成形工程においても、ステージ328A上に載置された成形済みの導光板307の取り出し及び当該ステージ328A上への新たな導光板307の投入を行っている間に、ステージ328B上に載置された導光板307の入光端面307aに凹凸部309を形成し、ステージ328B上に載置された成形済みの導光板307の取り出し及び当該ステージ328B上への新たな導光板307の投入を行っている間に、ステージ328A上に載置された導光板307の入光端面307aに凹凸部309を形成することができる。また、本成形工程では、光学シート加工装置320の後側に壁がある等といったレイアウト上の問題がある場合でも、2人という必要最小限の作業員により導光板307の成形作業を実施することができる。 As described above, also in the main forming step, while the molded light guide plate 307 placed on the stage 328A is taken out and a new light guide plate 307 is placed on the stage 328A, the light guide plate 307 is placed on the stage 328B. An uneven portion 309 is formed on the light incident end face 307a of the placed light guide plate 307, the molded light guide plate 307 placed on the stage 328B is taken out, and a new light guide plate 307 is placed on the stage 328B. During the process, the uneven portion 309 can be formed on the light incident end face 307a of the light guide plate 307 placed on the stage 328A. Further, in this molding process, even if there is a layout problem such as a wall on the rear side of the optical sheet processing apparatus 320, the molding work of the light guide plate 307 is performed by a minimum required number of workers. Can do.
 なお、ステージ328A,328Bの移動スピードは、必ずしも一定とは限らない。例えば、導光板307の入光端面307aに対向して複数のLED306を配置する場合は、LED306周辺の入光端面307aにのみ凹凸部309を形成すればよい。そのため、転写ロール323の転写面323a及び導光板307の入光端面307a同士を押し付ける際に、LED306と対向する位置の入光端面307aと転写面323aとが接するときは、所望の凹凸部309が得られる転写(成形)スピードでステージ328A,328Bを移動させ、それ以外の入光端面307aと転写面323aとが接するときは、より高速でステージ328A,328Bを移動させてもよい。これにより、導光板307の加工タクトを向上させることができる。なお、LED306周辺の入光端面307aとは、導光板307の厚み方向に直交する方向におけるLED306の幅サイズから、+1mmを指す。 Note that the moving speed of the stages 328A and 328B is not necessarily constant. For example, when a plurality of LEDs 306 are arranged facing the light incident end surface 307 a of the light guide plate 307, the uneven portion 309 may be formed only on the light incident end surface 307 a around the LED 306. For this reason, when the transfer surface 323a of the transfer roll 323 and the light incident end surface 307a of the light guide plate 307 are pressed against each other, when the light incident end surface 307a at the position facing the LED 306 and the transfer surface 323a are in contact with each other, a desired uneven portion 309 is formed. When the stages 328A and 328B are moved at the obtained transfer (molding) speed and the other light incident end surface 307a and the transfer surface 323a are in contact with each other, the stages 328A and 328B may be moved at a higher speed. Thereby, the processing tact of the light guide plate 307 can be improved. The light incident end face 307 a around the LED 306 indicates +1 mm from the width size of the LED 306 in the direction orthogonal to the thickness direction of the light guide plate 307.
 以上のように本実施形態にあっては、転写ロール323を加熱すると共に転写ロール323の転写面323a及び導光板307の入光端面307a同士を押し付けて、転写ロール323の転写面323aに設けられた転写用凹凸部319を導光板307の入光端面307aに熱転写させることにより、導光板307の入光端面307aに凹凸部309を形成するようにしたので、バイト等による機械的な切削加工によって導光板307の入光端面307aに凹凸部309を形成する場合のように切り粉が発生することは無い。従って、導光板307に切り粉が付着したり混入したりすることも無いため、製品の品質を安定化させることができる。 As described above, in the present embodiment, the transfer roll 323 is heated and the transfer surface 323a of the transfer roll 323 and the light incident end surface 307a of the light guide plate 307 are pressed against each other to be provided on the transfer surface 323a of the transfer roll 323. The uneven portion 319 for transfer is thermally transferred to the light incident end surface 307a of the light guide plate 307 so that the uneven portion 309 is formed on the light incident end surface 307a of the light guide plate 307. As in the case where the uneven portion 309 is formed on the light incident end surface 307a of the light guide plate 307, no chips are generated. Accordingly, the chips are not attached to or mixed into the light guide plate 307, so that the quality of the product can be stabilized.
 ところで、導光板307が載置されるステージが1つしかない場合には、導光板307をステージに投入する期間、ステージから導光板307を取り出す期間は、導光板307の成形加工を中断せざるを得ない。従って、導光板307の成形タクトの低下につながる。 By the way, when there is only one stage on which the light guide plate 307 is placed, the molding process of the light guide plate 307 is not interrupted during the period during which the light guide plate 307 is placed on the stage and during the period during which the light guide plate 307 is removed from the stage. I do not get. Accordingly, the tact of the light guide plate 307 is reduced.
 これに対し本実施形態では、導光板307が載置される2つのステージ328A,328Bを転写ロール323を挟むように配置し、ステージ328A上に置かれた導光板307の成形加工を行っていない期間に、ステージ328B上に置かれた導光板307の成形加工を行い、ステージ328B上に置かれた導光板307の成形加工を行っていない期間に、ステージ328A上に置かれた導光板307の成形加工を行うようにする。このように転写ロール323の左右両側から導光板307の成形加工を行うので、導光板307をステージ328A,328Bに投入する期間、ステージ328A,328Bから導光板307を取り出す期間に、導光板307の成形加工を中断させなくて済む。これにより、導光板307の成形タクトを上げて、生産性を向上させることができる。 On the other hand, in the present embodiment, the two stages 328A and 328B on which the light guide plate 307 is placed are arranged so as to sandwich the transfer roll 323, and the light guide plate 307 placed on the stage 328A is not molded. The light guide plate 307 placed on the stage 328B is molded during the period, and the light guide plate 307 placed over the stage 328B is not molded during the period. Make the molding process. Since the light guide plate 307 is molded from both the left and right sides of the transfer roll 323 in this way, the light guide plate 307 is placed in a period during which the light guide plate 307 is inserted into the stages 328A and 328B and during which the light guide plate 307 is removed from the stages 328A and 328B. There is no need to interrupt the molding process. Thereby, the forming tact of the light guide plate 307 can be increased, and the productivity can be improved.
 なお、本発明は、上記実施形態に限定されるものではない。例えば、転写ロール323を回転させると共にステージ328A,328Bを装置前後方向(Y方向)に移動させる機構としては、特に上述したものには限られず、例えば転写ロール323を昇降させる必要が無ければ、図33に示す構造であってもよい。図33に示す構造では、電磁クラッチ336Aは、成形用サーボモータ331Aの出力軸331aと平歯車338Aに固定されたシャフト337Aとの連結を断続する。また、電磁クラッチ336Bは、成形用サーボモータ331Bの出力軸331aと平歯車338Bに固定されたシャフト337Bとの連結を断続する。 Note that the present invention is not limited to the above embodiment. For example, the mechanism for rotating the transfer roll 323 and moving the stages 328A and 328B in the front-rear direction (Y direction) of the apparatus is not limited to the above-described one. For example, if there is no need to raise and lower the transfer roll 323, FIG. The structure shown in FIG. In the structure shown in FIG. 33, the electromagnetic clutch 336A intermittently connects the output shaft 331a of the forming servomotor 331A and the shaft 337A fixed to the spur gear 338A. Further, the electromagnetic clutch 336B intermittently connects the output shaft 331a of the forming servomotor 331B and the shaft 337B fixed to the spur gear 338B.
 また、転写ロール323を回転させる機構としては、上記の平歯車同士の噛み合わせ以外に、例えばベルト及びプーリ等を用いてもよい。 Further, as a mechanism for rotating the transfer roll 323, for example, a belt and a pulley may be used in addition to the meshing of the spur gears.
 また、上記実施形態では、成形用サーボモータ331A,331Bによって転写ロール323を回転させると共にステージ328A,328BをY方向に移動させる構成としたが、特にそれには限られず、転写ロール323の回転させる手段及びステージ328A,328Bを移動させる手段として、それぞれ別のモータを使用し、各モータを同期駆動させてもよい。 In the above-described embodiment, the transfer roll 323 is rotated by the forming servo motors 331A and 331B and the stages 328A and 328B are moved in the Y direction. However, the present invention is not limited to this, and means for rotating the transfer roll 323 is not limited thereto. Further, as means for moving the stages 328A and 328B, different motors may be used, and the respective motors may be driven synchronously.
 ここで、導光板307と転写ロール323とが接触する際、転写ロール323の回転速度とステージ328A,328Bの移動速度とに大きなズレがあると、導光板307の外観が悪くなるという不具合が発生する。そのため、転写ロール323を回転させるロール専用のモータを設置しない場合には、転写ロール323の直径管理が重要となる。一方、転写ロール323を回転させるロール専用のモータを設置する場合には、転写ロール323の直径に合わせてモータの回転速度を調整することが可能になるので、導光板307の外観不良の発生を防止することができる。 Here, when the light guide plate 307 and the transfer roll 323 come into contact with each other, if there is a large difference between the rotation speed of the transfer roll 323 and the movement speed of the stages 328A and 328B, the appearance of the light guide plate 307 deteriorates. To do. For this reason, when the motor dedicated to the roll for rotating the transfer roll 323 is not installed, the diameter management of the transfer roll 323 is important. On the other hand, when a dedicated motor for rotating the transfer roll 323 is installed, the rotation speed of the motor can be adjusted in accordance with the diameter of the transfer roll 323, so that the appearance defect of the light guide plate 307 is generated. Can be prevented.
 さらに、上記実施形態では、ステージ328A,328Bの一方に支持された導光板307の成形加工を行っていない間に、ステージ328A,328Bの他方に支持された導光板307の成形加工を行うようにしたが、可能であれば、ステージ328A,328Bに支持された各導光板307の成形加工を同時に行ってもよい。 Further, in the above embodiment, the light guide plate 307 supported on the other of the stages 328A and 328B is formed while the light guide plate 307 supported on one of the stages 328A and 328B is not formed. However, if possible, the light guide plates 307 supported by the stages 328A and 328B may be simultaneously molded.
 また、上記実施形態では、ステージ328A,328Bに1枚の導光板307を支持するようにしたが、ステージ328A,328Bに支持する導光板307の数としては、1枚に限られず、複数枚であってもよい。 In the above embodiment, one light guide plate 307 is supported on the stages 328A and 328B. However, the number of light guide plates 307 supported on the stages 328A and 328B is not limited to one, and a plurality of light guide plates 307 are supported. There may be.
 さらに、上記実施形態は、液晶テレビに使用される液晶表示装置301のバックライトユニット303に具備される導光板307の入光端面307aに凹凸部309を形成するものであるが、本発明の光学シート加工装置及び方法は、例えば照明用や装飾用の導光板としての光学シートの成形加工にも適用可能である。 Furthermore, although the said embodiment forms the uneven | corrugated | grooved part 309 in the light-incidence end surface 307a of the light-guide plate 307 comprised in the backlight unit 303 of the liquid crystal display device 301 used for a liquid crystal television, the optical of this invention The sheet processing apparatus and method can be applied to, for example, an optical sheet forming process as a light guide plate for illumination or decoration.
 以下、本発明の他の側面に係わる光学シート加工装置及び方法について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, an optical sheet processing apparatus and method according to another aspect of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図34は、本発明に係わる光学シート加工装置の一実施形態によって得られる光学シートである導光板を含む液晶表示装置を示す概略断面図である。同図において、本実施形態に係わる液晶表示装置401は、例えば液晶テレビに使用されるものである。液晶表示装置401は、液晶パネル402と、この液晶パネル402の背面側に配置されたエッジ型のバックライトユニット403とを備えている。液晶パネル402の厚みは、例えば1.8mm程度である。 FIG. 34 is a schematic cross-sectional view showing a liquid crystal display device including a light guide plate which is an optical sheet obtained by one embodiment of the optical sheet processing apparatus according to the present invention. In the figure, a liquid crystal display device 401 according to this embodiment is used for a liquid crystal television, for example. The liquid crystal display device 401 includes a liquid crystal panel 402 and an edge type backlight unit 403 disposed on the back side of the liquid crystal panel 402. The thickness of the liquid crystal panel 402 is about 1.8 mm, for example.
 バックライトユニット403は、箱型の金属製のバックライト筐体404を有している。バックライト筐体404の裏面(背面)には、複数の電子部品類405が基板(図示せず)を介して設けられている。バックライト筐体404の対向する内壁面には、光を照射するLED406が複数ずつ取り付けられている。 The backlight unit 403 has a box-shaped metal backlight housing 404. A plurality of electronic components 405 are provided on the back surface (back surface) of the backlight housing 404 via a substrate (not shown). A plurality of LEDs 406 for irradiating light are attached to the inner wall surfaces of the backlight housing 404 facing each other.
 バックライト筐体404には、LED406から照射された光を液晶パネル402へ導くための断面矩形状の導光板407が反射シート408を介して収容されている。導光板407の入光端面407aには、図35に示すように、断面略波形状の凹凸部409が設けられている。導光板407の厚みは、例えば3mmである。 In the backlight housing 404, a light guide plate 407 having a rectangular cross section for guiding the light emitted from the LED 406 to the liquid crystal panel 402 is accommodated via a reflection sheet 408. As shown in FIG. 35, the light incident end surface 407a of the light guide plate 407 is provided with an uneven portion 409 having a substantially corrugated cross section. The thickness of the light guide plate 407 is 3 mm, for example.
 導光板407は、熱可塑性樹脂で形成されている。具体的には、導光板407は、寸法精度や衝撃強度、透明性が高い非晶性樹脂からなっている。非晶性樹脂としては、ポリメタクリル酸メチル樹脂(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)等が挙げられる。導光板407の片側または両側の主面には、特に図示はしないが、保護用のマスキングフィルムが貼合されていることが好ましい。 The light guide plate 407 is made of a thermoplastic resin. Specifically, the light guide plate 407 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency. Examples of the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), and cycloolefin polymer (COP). Although not shown in particular, a protective masking film is preferably bonded to the main surface of one or both sides of the light guide plate 407.
 マスキングフィルムは、導光板407の主面の傷付き防止のために貼られている。マスキングフィルムは、基材と、この基材上に形成された糊成分である粘着層とを有している。粘着層は、基材と導光板407との間に配置されている。基材は、例えばポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂等のポリオレフィン(PO)樹脂や、ポリエチレンテレフタレート(PET)樹脂等から形成される。粘着層は、例えばポリオレフィン(PO)エラストマー、エチレン・酢酸ビニル共重合体(EVA)等から形成される。マスキングフィルムの厚みは、例えば40μm~90μmである。 The masking film is attached to prevent the main surface of the light guide plate 407 from being damaged. The masking film has a base material and an adhesive layer that is a paste component formed on the base material. The adhesive layer is disposed between the base material and the light guide plate 407. The base material is made of, for example, a polyolefin (PO) resin such as a polypropylene (PP) resin or a polyethylene (PE) resin, a polyethylene terephthalate (PET) resin, or the like. The adhesive layer is formed of, for example, a polyolefin (PO) elastomer, an ethylene / vinyl acetate copolymer (EVA), or the like. The thickness of the masking film is, for example, 40 μm to 90 μm.
 LED406から照射された光は、導光板407の入光端面407aに入射される。導光板407の背面は、LED406から照射された光を反射させる反射面となっており、導光板407の前面は、LED406から照射された光や反射面で反射された光を出射させる出光面となっている。導光板407の背面(反射面)には、インクによるドットパターン印刷等、光を反射・散乱させやすい構造が施されている。 The light emitted from the LED 406 is incident on the light incident end surface 407a of the light guide plate 407. The back surface of the light guide plate 407 is a reflective surface that reflects the light emitted from the LED 406, and the front surface of the light guide plate 407 is a light output surface that emits the light emitted from the LED 406 and the light reflected by the reflective surface. It has become. The back surface (reflection surface) of the light guide plate 407 has a structure that easily reflects and scatters light, such as dot pattern printing with ink.
 導光板407の前面側には、複数枚(ここでは3枚)の光学フィルムを積層してなる光学フィルム群410が配置されている。光学フィルム群410の厚みは、例えば0.2mm程度である。導光板407及び光学フィルム群410の縁部は、樹脂(例えばPC)製のフレーム体411によりバックライト筐体404に対して固定されている。上記の液晶パネル402は、金属製のフレーム体412によりバックライトユニット403に対して固定されている。 On the front side of the light guide plate 407, an optical film group 410 formed by laminating a plurality (three in this case) of optical films is disposed. The thickness of the optical film group 410 is, for example, about 0.2 mm. Edge portions of the light guide plate 407 and the optical film group 410 are fixed to the backlight housing 404 by a frame body 411 made of resin (for example, PC). The liquid crystal panel 402 is fixed to the backlight unit 403 by a metal frame body 412.
 図36は、上記の導光板407を製造する工程を示すフローチャートである。同図において、まず溶融押出シート成形工程等により導光板原板を作製する(ステップS401)。続いて、パネルソーやランニングソー等により導光板原板を粗切りカットして、導光板407を得る(ステップS402)。続いて、鏡面加工機を用いて、導光板407の入光端面407aに鏡面加工を施す(ステップS403)。続いて、導光板407の入光端面407aに熱転写加工を施すことにより、入光端面407aに凹凸部409を形成する(ステップS404)。なお、ステップS403については、必ずしも実施しなくてもよい。 FIG. 36 is a flowchart showing a process for manufacturing the light guide plate 407 described above. In the figure, first, a light guide plate original plate is produced by a melt extrusion sheet forming process or the like (step S401). Subsequently, the light guide plate original plate is roughly cut and cut using a panel saw, a running saw, or the like to obtain the light guide plate 407 (step S402). Subsequently, using a mirror surface processing machine, the light incident end surface 407a of the light guide plate 407 is subjected to mirror surface processing (step S403). Then, the uneven | corrugated | grooved part 409 is formed in the light-incidence end surface 407a by performing a thermal transfer process to the light-incidence end surface 407a of the light-guide plate 407 (step S404). Note that step S403 is not necessarily performed.
 図37は、本発明に係わる光学シート加工装置の一実施形態を示す平面図である。図38は、図37に示した光学シート加工装置の正面図であり、図39は、図38のVI-VI線要部断面図であり、図40は、図38の要部拡大図であり、図41は、図38のVIII-VIII線要部拡大断面図である。また、図42は、図37等に示した光学シート加工装置を概略的に示す斜視図である。各図において、本実施形態の光学シート加工装置20は、図36に示すステップS404を実施する際に使用される。 FIG. 37 is a plan view showing an embodiment of an optical sheet processing apparatus according to the present invention. 38 is a front view of the optical sheet processing apparatus shown in FIG. 37, FIG. 39 is a sectional view taken along the line VI-VI in FIG. 38, and FIG. 40 is an enlarged view of the relevant part in FIG. 41 is an enlarged sectional view taken along the line VIII-VIII in FIG. FIG. 42 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. In each figure, the optical sheet processing apparatus 20 of the present embodiment is used when performing Step S404 shown in FIG.
 光学シート加工装置420は、装置枠体421を備えている。装置枠体421の中央部にはラック422が配置され、このラック422には、金属製の転写ロール423が回転可能に支持されている(図39参照)。転写ロール423の外周面423aには、図42に示すように、転写ロール423の周方向に沿って転写用凹凸部419が形成されている。転写ロール423の外周面423aは、導光板407の入光端面407aに凹凸部を付与するための転写面となっている。転写用凹凸部419は、例えば転写ロール423のロール軸方向に対してプリズム状またはレンチキュラー状に形成されている。 The optical sheet processing apparatus 420 includes an apparatus frame 421. A rack 422 is disposed at the center of the apparatus frame 421, and a metal transfer roll 423 is rotatably supported on the rack 422 (see FIG. 39). As shown in FIG. 42, a transfer uneven portion 419 is formed on the outer peripheral surface 423 a of the transfer roll 423 along the circumferential direction of the transfer roll 423. The outer peripheral surface 423a of the transfer roll 423 serves as a transfer surface for providing an uneven portion on the light incident end surface 407a of the light guide plate 407. The transfer concavo-convex portion 419 is formed in a prism shape or a lenticular shape with respect to the roll axis direction of the transfer roll 423, for example.
 転写ロール423は、図39に示すように、誘導コイル441が内蔵された電気ヒータロールである。転写ロール423の上側には、誘導コイル441に高周波の電流を供給する電源部442が配置されている。これらの誘導コイル441及び電源部442は、転写ロール423を加熱する加熱手段を構成している。誘導コイル441に高周波の電流が流れると、誘導コイル441に発生した磁界により転写ロール423に渦電流が生じ、転写ロール423が発熱する。 As shown in FIG. 39, the transfer roll 423 is an electric heater roll in which an induction coil 441 is incorporated. A power supply unit 442 that supplies high-frequency current to the induction coil 441 is disposed above the transfer roll 423. The induction coil 441 and the power source unit 442 constitute a heating unit that heats the transfer roll 423. When a high-frequency current flows through the induction coil 441, an eddy current is generated in the transfer roll 423 by the magnetic field generated in the induction coil 441, and the transfer roll 423 generates heat.
 図38に示すように、装置枠体421の下部には、台座425A,425Bが装置左右方向(X方向)に転写ロール423を挟むように配置されている。台座425A,425Bの上部には、ステージベース426A,426Bがガイドレール427A,427Bを介して装置前後方向(Y方向)に移動可能にそれぞれ取り付けられている。ステージベース426A,426Bの上部には、ステージ428A,428Bがガイドレール429A,429Bを介して装置左右方向(X方向)に移動可能にそれぞれ取り付けられている。 38, pedestals 425A and 425B are arranged below the apparatus frame 421 so as to sandwich the transfer roll 423 in the apparatus left-right direction (X direction). Stage bases 426A and 426B are attached to the upper portions of the bases 425A and 425B via guide rails 427A and 427B, respectively, so as to be movable in the apparatus front-rear direction (Y direction). Stages 428A and 428B are attached to the upper portions of the stage bases 426A and 426B via guide rails 429A and 429B so as to be movable in the left-right direction (X direction) of the apparatus.
 ステージ428A,428Bの上面には、導光板407が載置(支持)される。ステージ428A,428Bの上面には、多種多様なサイズの導光板407を縦置き又は横置きの状態で置くことができる(図37参照)。縦置きは、導光板407の長手方向をY方向に一致させるような置き方である。横置きは、導光板407の長手方向をX方向に一致させるような置き方である。なお、ステージ428A,428Bの上面に載置された導光板407は、詳述しない位置決め手段により位置決めされる。また、ステージ428A,428Bの上面に載置された導光板407は、クランプ板418A,418Bによってステージ428A,428Bに対して押さえ付けられる(図42参照)。 A light guide plate 407 is placed (supported) on the upper surfaces of the stages 428A and 428B. A variety of sizes of light guide plates 407 can be placed vertically or horizontally on the top surfaces of the stages 428A and 428B (see FIG. 37). The vertical placement is such that the longitudinal direction of the light guide plate 407 is matched with the Y direction. The horizontal placement is such that the longitudinal direction of the light guide plate 407 matches the X direction. The light guide plate 407 placed on the upper surfaces of the stages 428A and 428B is positioned by positioning means not described in detail. The light guide plate 407 placed on the upper surfaces of the stages 428A and 428B is pressed against the stages 428A and 428B by the clamp plates 418A and 418B (see FIG. 42).
 ステージベース426A,426Bの上部には、ステージ428A,428BをX方向に移動させる押圧シリンダ430A,430Bがそれぞれ取り付けられている(図38参照)。押圧シリンダ430A,430Bは、ステージ428A,428B上に載置された導光板407の入光端面407aを転写ロール423の転写面423aに押し付けるように、ステージ428A,428Bに圧力を印加する圧力印加手段を構成している。 Press cylinders 430A and 430B for moving the stages 428A and 428B in the X direction are respectively attached to the upper portions of the stage bases 426A and 426B (see FIG. 38). The pressure cylinders 430A and 430B are pressure applying means for applying pressure to the stages 428A and 428B so as to press the light incident end surface 407a of the light guide plate 407 mounted on the stages 428A and 428B against the transfer surface 423a of the transfer roll 423. Is configured.
 また、光学シート加工装置420は、図38~図41に示すように、ステージ428A,428Bに対応して、X方向及びY方向に対して斜めの方向に転写ロール423を挟むように配置された成形用サーボモータ431A,431Bを備えている。成形用サーボモータ431A,431Bの各出力軸431aには、ピニオンギア432A,432Bがそれぞれ取り付けられている。ステージベース426A,426Bの下部の内側面には、Y方向に延在し、ピニオンギア432A,432Bと噛み合うラックギア433A,433Bがそれぞれ設けられている。これにより、成形用サーボモータ431A,431Bを回転駆動させると、成形用サーボモータ431A,431Bの回転がピニオンギア432A,432B及びラックギア433A,433Bを介してステージベース426A,426Bに伝わり、ステージベース426A,426BがY方向に移動し、これに伴ってステージ428A,428BがY方向に移動する。 Further, as shown in FIGS. 38 to 41, the optical sheet processing apparatus 420 is disposed so as to sandwich the transfer roll 423 in an oblique direction with respect to the X direction and the Y direction corresponding to the stages 428A and 428B. Serving motors 431A and 431B are provided. Pinion gears 432A and 432B are attached to the output shafts 431a of the forming servomotors 431A and 431B, respectively. Rack gears 433A and 433B extending in the Y direction and meshing with the pinion gears 432A and 432B are provided on the inner side surfaces of the lower portions of the stage bases 426A and 426B, respectively. Accordingly, when the forming servo motors 431A and 431B are driven to rotate, the rotation of the forming servo motors 431A and 431B is transmitted to the stage bases 426A and 426B via the pinion gears 432A and 432B and the rack gears 433A and 433B, and the stage base 426A. , 426B move in the Y direction, and accordingly, the stages 428A, 428B move in the Y direction.
 ラック422の下部には、Z方向に延びるシャフト434A,434Bが回転可能に支持されている。これらのシャフト434A,434Bは、Y方向に転写ロール423を挟むように配置されている。シャフト434A,434Bの途中部分には、上記のピニオンギア432A,432Bと噛み合う平歯車435A,435Bがそれぞれ設けられている。シャフト434A,434B及び平歯車435A,435Bは、ロータリーボールスプライン構造となっている。また、シャフト434A,434Bの上端部には、電磁クラッチ436A,436Bがそれぞれ取り付けられている。 In the lower part of the rack 422, shafts 434A and 434B extending in the Z direction are rotatably supported. These shafts 434A and 434B are arranged so as to sandwich the transfer roll 423 in the Y direction. Spur gears 435A and 435B that mesh with the above-described pinion gears 432A and 432B are provided in the middle portions of the shafts 434A and 434B, respectively. The shafts 434A and 434B and the spur gears 435A and 435B have a rotary ball spline structure. Further, electromagnetic clutches 436A and 436B are attached to the upper ends of the shafts 434A and 434B, respectively.
 ラック422には、支持板422aが連結されている。支持板422aにおけるシャフト434A,434Bに対応する部位には、下方に延びるシャフト437A,437Bがそれぞれ回転可能に支持されている。シャフト437A,437Bの途中部分には、平歯車438A,438Bがそれぞれ設けられている。また、シャフト437A,437Bの下端部は、上記の電磁クラッチ436A,436Bにそれぞれ取り付けられている。 The support plate 422a is connected to the rack 422. Shafts 437A and 437B extending downward are rotatably supported at portions of the support plate 422a corresponding to the shafts 434A and 434B. Spur gears 438A and 438B are provided in the middle of the shafts 437A and 437B, respectively. The lower ends of the shafts 437A and 437B are attached to the electromagnetic clutches 436A and 436B, respectively.
 電磁クラッチ436Aは、シャフト434A,437A同士の連結を断続することで、平歯車435Aから平歯車438Aへの動力の伝達を断続する。具体的には、電磁クラッチ436AがONのときは、シャフト434A,437A同士が連結され、電磁クラッチ436AがOFFのときは、シャフト434A,437A同士の連結が解除される。電磁クラッチ436Bは、シャフト434B,437B同士の連結を断続することで、平歯車435Bから平歯車438Bへの動力の伝達を断続する。具体的には、電磁クラッチ436BがONのときは、シャフト434B,437B同士が連結され、電磁クラッチ436BがOFFのときは、シャフト434B,437B同士の連結が解除される。 The electromagnetic clutch 436A interrupts transmission of power from the spur gear 435A to the spur gear 438A by intermittently connecting the shafts 434A and 437A. Specifically, when the electromagnetic clutch 436A is ON, the shafts 434A and 437A are connected to each other, and when the electromagnetic clutch 436A is OFF, the connections between the shafts 434A and 437A are released. The electromagnetic clutch 436B interrupts transmission of power from the spur gear 435B to the spur gear 438B by intermittently connecting the shafts 434B and 437B. Specifically, when the electromagnetic clutch 436B is ON, the shafts 434B and 437B are connected to each other, and when the electromagnetic clutch 436B is OFF, the connection between the shafts 434B and 437B is released.
 転写ロール423のロール軸423bは、ラック422の下方に延びている。ロール軸423bの下端部には、平歯車438A,438Bとそれぞれ噛み合う平歯車439が取り付けられている。 The roll shaft 423 b of the transfer roll 423 extends below the rack 422. Spur gears 439 that mesh with the spur gears 438A and 438B are attached to the lower end of the roll shaft 423b.
 光学シート加工装置420の後側には、装置上下方向(Z方向)に延びるボールネジ443が配置されている。ボールネジ443は、ネジ軸443aと、このネジ軸443aと噛み合うナット443bとからなっている。ナット443bには、主昇降体444が取り付けられている。主昇降体444は、ラック422の一側面に固定されている。ネジ軸443aは、昇降用サーボモータ445によって回転する。ラック422を挟んだ前後両側には、Z方向に延びるリニアガイド446がそれぞれ配置されている。ラック422の両側の側面には、リニアガイド446に沿って摺動可能な補助昇降体447がそれぞれ複数ずつ固定されている。昇降用サーボモータ445によりボールネジ443のネジ軸443aを回転させると、主昇降体444及び各補助昇降体447がZ方向に移動し、これに伴ってラック422が昇降し、ラック422に支持された転写ロール423が昇降する。 A ball screw 443 extending in the vertical direction of the apparatus (Z direction) is disposed on the rear side of the optical sheet processing apparatus 420. The ball screw 443 includes a screw shaft 443a and a nut 443b that meshes with the screw shaft 443a. A main elevating body 444 is attached to the nut 443b. The main elevating body 444 is fixed to one side surface of the rack 422. The screw shaft 443a is rotated by the lifting servo motor 445. Linear guides 446 extending in the Z direction are respectively disposed on both front and rear sides of the rack 422. A plurality of auxiliary lifting bodies 447 that are slidable along the linear guide 446 are fixed to the side surfaces on both sides of the rack 422. When the screw shaft 443a of the ball screw 443 is rotated by the lifting / lowering servo motor 445, the main lifting / lowering body 444 and the auxiliary lifting / lowering bodies 447 move in the Z direction, and the rack 422 is lifted and lowered and supported by the rack 422. The transfer roll 423 moves up and down.
 以上において、成形用サーボモータ431A,431B、ピニオンギア432A,432B、シャフト434A,434B、平歯車435A,435B、電磁クラッチ436A,436B、シャフト437A,437B、平歯車438A,438B及び平歯車439は、転写ロール423を回転させる回転手段を構成している。成形用サーボモータ431A,431B、ピニオンギア432A,432B、ラックギア433A,433B、ステージベース426A,426B及びガイドレール427A,427Bは、ステージ428A,428Bを転写ロール423に対して凹凸部409の形成方向に相対的に移動させる第1移動手段を構成している。 In the above, the servo motors 431A and 431B, the pinion gears 432A and 432B, the shafts 434A and 434B, the spur gears 435A and 435B, the electromagnetic clutches 436A and 436B, the shafts 437A and 437B, the spur gears 438A and 438B, and the spur gear 439 are Rotating means for rotating the transfer roll 423 is configured. Servo motors 431A and 431B, pinion gears 432A and 432B, rack gears 433A and 433B, stage bases 426A and 426B, and guide rails 427A and 427B move the stages 428A and 428B in the direction in which the concavo-convex portion 409 is formed with respect to the transfer roll 423. The 1st moving means to move relatively is comprised.
 また、ラック422、ボールネジ443、主昇降体444、昇降用サーボモータ445、リニアガイド446及び各補助昇降体447は、転写ロール423をステージ428A,428Bに対して転写ロール423のロール軸方向に相対的に移動させる第2移動手段を構成している。 Further, the rack 422, the ball screw 443, the main elevating body 444, the elevating servo motor 445, the linear guide 446, and the auxiliary elevating bodies 447 make the transfer roll 423 relative to the stages 428A and 428B in the roll axis direction of the transfer roll 423. The second moving means for moving the image automatically is configured.
 電磁クラッチ436AをONにした状態で、成形用サーボモータ431Aを回転駆動させると、ピニオンギア432A、平歯車435A、シャフト434A、電磁クラッチ436A、シャフト437A、平歯車438A及び平歯車439を介して転写ロール423が回転する。また、電磁クラッチ436BをONにした状態で、成形用サーボモータ431Bを回転駆動させると、ピニオンギア432B、平歯車435B、シャフト434B、電磁クラッチ436B、シャフト437B、平歯車438B及び平歯車439を介して転写ロール423が回転する。従って、成形用サーボモータ431Aによってステージ428Aを移動させると共に転写ロール423を回転させることができ、成形用サーボモータ431Bによってステージ428Bを移動させると共に転写ロール423を回転させることができる。 When the forming servo motor 431A is driven to rotate with the electromagnetic clutch 436A turned ON, transfer is performed via the pinion gear 432A, the spur gear 435A, the shaft 434A, the electromagnetic clutch 436A, the shaft 437A, the spur gear 438A, and the spur gear 439. The roll 423 rotates. Further, when the forming servo motor 431B is rotated with the electromagnetic clutch 436B turned on, the pinion gear 432B, the spur gear 435B, the shaft 434B, the electromagnetic clutch 436B, the shaft 437B, the spur gear 438B, and the spur gear 439 are used. As a result, the transfer roll 423 rotates. Accordingly, the stage 428A can be moved by the molding servo motor 431A and the transfer roll 423 can be rotated, and the stage 428B can be moved by the molding servo motor 431B and the transfer roll 423 can be rotated.
 ここで、シャフト434A,434B及び平歯車435A,435Bは、上述したようにロータリーボールスプライン構造となっている。つまり、シャフト434A,434Bは、平歯車435A,435Bに対して相対的に上下移動可能である。このため、昇降用サーボモータ445によりボールネジ443のネジ軸443aを回転させることで、図43に示すように、転写ロール423が上昇するときには、平歯車435A,435Bは上昇せずに常に同じ高さ位置に保たれ、シャフト434A,434B、電磁クラッチ4436A,436B、シャフト437A,437B、平歯車438A,438B及び平歯車439がラック422と一緒に上昇する。 Here, the shafts 434A and 434B and the spur gears 435A and 435B have a rotary ball spline structure as described above. That is, the shafts 434A and 434B can move up and down relatively with respect to the spur gears 435A and 435B. Therefore, by rotating the screw shaft 443a of the ball screw 443 by the lifting servo motor 445, as shown in FIG. 43, when the transfer roll 423 is lifted, the spur gears 435A and 435B are not always lifted and always have the same height. The shafts 434A and 434B, the electromagnetic clutches 4436A and 436B, the shafts 437A and 437B, the spur gears 438A and 438B, and the spur gear 439 are lifted together with the rack 422.
 次に、以上のように構成された光学シート加工装置420を用いて、導光板407の入光端面407aに凹凸部409を形成する成形工程の一例について、図44により説明する。本成形工程では、光学シート加工装置420の前側に2人の作業員Wが配される(図37参照)。このとき、転写ロール423は、誘導コイル441及び電源部442によって一定の温度(例えば100℃~200℃)に加熱される。 Next, an example of a forming process for forming the uneven portion 409 on the light incident end surface 407a of the light guide plate 407 using the optical sheet processing apparatus 420 configured as described above will be described with reference to FIG. In the main forming step, two workers W are arranged on the front side of the optical sheet processing apparatus 420 (see FIG. 37). At this time, the transfer roll 423 is heated to a constant temperature (for example, 100 ° C. to 200 ° C.) by the induction coil 441 and the power supply unit 442.
 まず、成形済みの導光板407が載っているステージ428A及び成形前の導光板407が載っているステージ428Bが何れも光学シート加工装置420の前側に位置している状態で、成形用サーボモータ431Bを所定方向に回転駆動させ、電磁クラッチ436BをONにする。なお、成形用サーボモータ431Aの駆動は停止しており、電磁クラッチ436AはOFFとなっている。 First, in the state where both the stage 428A on which the molded light guide plate 407 is mounted and the stage 428B on which the unformed light guide plate 407 is mounted are positioned on the front side of the optical sheet processing apparatus 420, the molding servo motor 431B. Is rotated in a predetermined direction to turn on the electromagnetic clutch 436B. Note that the drive of the molding servo motor 431A is stopped, and the electromagnetic clutch 436A is OFF.
 すると、図44(a)に示すように、転写ロール423が反時計方向に回転しながら、ステージ428Bが後側に移動する。このとき、押圧シリンダ430Bによって、ステージ428B上に置かれた導光板407の入光端面407aを転写ロール423の転写面423aに押し付けるように、ステージ428Bに一定の圧力(例えば0.05MPa~50MPa)を印加する。これにより、ステージ428B上に置かれた導光板407の入光端面407aに、転写ロール423の転写用凹凸部419が転写されるようになる。このようにステージ428B上に置かれた導光板407の成形を行っている間に、ステージ428A上から成形済みの導光板407が取り出される。 Then, as shown in FIG. 44A, the stage 428B moves to the rear side while the transfer roll 423 rotates counterclockwise. At this time, a constant pressure (for example, 0.05 MPa to 50 MPa) is applied to the stage 428B so that the light incident end surface 407a of the light guide plate 407 placed on the stage 428B is pressed against the transfer surface 423a of the transfer roll 423 by the pressing cylinder 430B. Is applied. As a result, the uneven portion for transfer 419 of the transfer roll 423 is transferred to the light incident end surface 407a of the light guide plate 407 placed on the stage 428B. While the light guide plate 407 placed on the stage 428B is being molded in this way, the molded light guide plate 407 is taken out from the stage 428A.
 次いで、成形用サーボモータ431Bの駆動を停止させ、電磁クラッチ436BをOFFにする。すると、図44(b)に示すように、転写ロール423の回転が停止すると共に、成形済みの導光板407が載っているステージ428Bが光学シート加工装置420の後側で停止する。その間に、ステージ428A上に新たな導光板407が投入・載置される。 Next, the drive of the molding servo motor 431B is stopped, and the electromagnetic clutch 436B is turned OFF. Then, as shown in FIG. 44B, the rotation of the transfer roll 423 stops, and the stage 428B on which the molded light guide plate 407 is placed stops on the rear side of the optical sheet processing apparatus 420. In the meantime, a new light guide plate 407 is placed and placed on the stage 428A.
 次いで、新たな導光板407が載っているステージ428Aが光学シート加工装置420の前側に位置し、成形済みの導光板407が載っているステージ428Bが光学シート加工装置420の後側に位置している状態で、電磁クラッチ436BをOFFにしたまま、成形用サーボモータ431Bを反対方向に回転駆動させる。すると、図44(c)に示すように、転写ロール423の回転が停止したまま、成形済みの導光板407が載っているステージ428Bが前側に移動する。このとき、押圧シリンダ430Bによるステージ428Bへの圧力の印加が行われることは無い。そして、当該ステージ428Bが元の位置に戻ると、成形用サーボモータ431Bの駆動を停止させる。その間、新たな導光板407が載置されたステージ428Aは、同じ位置で待機している。 Next, the stage 428A on which the new light guide plate 407 is placed is located on the front side of the optical sheet processing apparatus 420, and the stage 428B on which the molded light guide plate 407 is placed is located on the rear side of the optical sheet processing apparatus 420. In the state where the electromagnetic clutch 436B is OFF, the molding servo motor 431B is rotated in the opposite direction. Then, as shown in FIG. 44C, the stage 428B on which the molded light guide plate 407 is mounted moves to the front side while the rotation of the transfer roll 423 is stopped. At this time, no pressure is applied to the stage 428B by the pressing cylinder 430B. When the stage 428B returns to the original position, the drive of the molding servo motor 431B is stopped. Meanwhile, the stage 428A on which the new light guide plate 407 is placed stands by at the same position.
 次いで、新たな導光板407が載っているステージ428A及び成形済みの導光板407が載っているステージ428Bが何れも光学シート加工装置420の前側に位置している状態で、成形用サーボモータ431Aを所定方向に回転駆動させ、電磁クラッチ436AをONにする。 Next, with the stage 428A on which the new light guide plate 407 is placed and the stage 428B on which the molded light guide plate 407 is placed positioned on the front side of the optical sheet processing apparatus 420, the molding servo motor 431A is The electromagnetic clutch 436A is turned on by rotating in a predetermined direction.
 すると、図44(d)に示すように、転写ロール423が時計方向に回転しながら、ステージ428Aが後側に移動する。このとき、押圧シリンダ430Aによって、ステージ428A上に置かれた導光板407の入光端面407aを転写ロール423の転写面423aに押し付けるように、ステージ428Aに一定の圧力を印加する。これにより、ステージ428A上に置かれた導光板407の入光端面407aに、転写ロール423の転写用凹凸部419が転写されるようになる。このようにステージ428A上に置かれた導光板407の成形を行っている間に、ステージ428B上から成形済みの導光板407が取り出される。 Then, as shown in FIG. 44 (d), the stage 428A moves to the rear side while the transfer roll 423 rotates in the clockwise direction. At this time, a constant pressure is applied to the stage 428A by the pressing cylinder 430A so that the light incident end surface 407a of the light guide plate 407 placed on the stage 428A is pressed against the transfer surface 423a of the transfer roll 423. As a result, the transfer uneven portion 419 of the transfer roll 423 is transferred to the light incident end surface 407a of the light guide plate 407 placed on the stage 428A. Thus, while the light guide plate 407 placed on the stage 428A is being molded, the molded light guide plate 407 is taken out from the stage 428B.
 次いで、成形用サーボモータ431Aの駆動を停止させ、電磁クラッチ436AをOFFにする。すると、図44(e)に示すように、転写ロール423の回転が停止すると共に、成形済みの導光板407が載っているステージ428Aが光学シート加工装置420の後側で停止する。その間に、ステージ428B上に新たな導光板407が投入・載置される。 Next, the driving of the molding servo motor 431A is stopped, and the electromagnetic clutch 436A is turned OFF. Then, as shown in FIG. 44E, the rotation of the transfer roll 423 stops, and the stage 428A on which the molded light guide plate 407 is placed stops on the rear side of the optical sheet processing apparatus 420. Meanwhile, a new light guide plate 407 is placed and placed on the stage 428B.
 次いで、成形済みの導光板407が載っているステージ428Aが光学シート加工装置420の後側に位置し、新たな導光板407が載っているステージ428Bが光学シート加工装置420の前側に位置している状態で、電磁クラッチ436AをOFFにしたまま、成形用サーボモータ431Aを反対方向に回転駆動させる。 Next, the stage 428A on which the molded light guide plate 407 is placed is located on the rear side of the optical sheet processing apparatus 420, and the stage 428B on which the new light guide plate 407 is placed is located on the front side of the optical sheet processing apparatus 420. In the state where the electromagnetic clutch 436A is OFF, the molding servo motor 431A is rotated in the opposite direction.
 すると、図44(f)に示すように、転写ロール423の回転が停止したまま、成形済みの導光板407が載っているステージ428Aが前側に移動する。このとき、押圧シリンダ430Aによるステージ428Aへの圧力の印加が行われることは無い。そして、当該ステージ428Aが元の位置に戻ると、成形用サーボモータ431Aの駆動を停止させる。その間、新たな導光板407が載置されたステージ428Bは、同じ位置で待機している。 Then, as shown in FIG. 44 (f), the stage 428A on which the molded light guide plate 407 is placed moves to the front side while the rotation of the transfer roll 423 is stopped. At this time, no pressure is applied to the stage 428A by the pressing cylinder 430A. When the stage 428A returns to the original position, the driving of the molding servo motor 431A is stopped. Meanwhile, the stage 428B on which the new light guide plate 407 is placed stands by at the same position.
 このように本成形工程においては、ステージ428A上に載置された成形済みの導光板407の取り出し及び当該ステージ428A上への新たな導光板407の投入を行っている間に、ステージ428B上に載置された導光板407の入光端面407aに凹凸部409を形成し、ステージ428B上に載置された成形済みの導光板407の取り出し及び当該ステージ428B上への新たな導光板407の投入を行っている間に、ステージ428A上に載置された導光板407の入光端面407aに凹凸部409を形成する。 As described above, in the main forming step, while the molded light guide plate 407 placed on the stage 428A is taken out and a new light guide plate 407 is put on the stage 428A, it is placed on the stage 428B. An uneven portion 409 is formed on the light incident end face 407a of the placed light guide plate 407, the molded light guide plate 407 placed on the stage 428B is taken out, and a new light guide plate 407 is placed on the stage 428B. During the process, an uneven portion 409 is formed on the light incident end surface 407a of the light guide plate 407 placed on the stage 428A.
 このとき、ステージ428A,428Bの移動スピードは、必ずしも一定とは限らない。例えば、導光板407の入光端面407aに対向して複数のLED406を配置する場合は、LED406周辺の入光端面407aにのみ凹凸部409を形成すればよい。そのため、転写ロール423の転写面423a及び導光板407の入光端面407a同士を押し付ける際に、LED406と対向する位置の入光端面407aと転写面423aとが接するときは、所望の凹凸部409が得られる転写(成形)スピードでステージ428A,428Bを移動させ、それ以外の入光端面407aと転写面423aとが接するときは、より高速でステージ428A,428Bを移動させてもよい。これにより、導光板407の加工タクトを向上させることができる。なお、LED406周辺の入光端面407aとは、導光板407の厚み方向に直交する方向におけるLED406の幅サイズから、+1mmを指す。 At this time, the moving speed of the stages 428A and 428B is not necessarily constant. For example, when a plurality of LEDs 406 are arranged facing the light incident end surface 407 a of the light guide plate 407, the uneven portion 409 may be formed only on the light incident end surface 407 a around the LED 406. Therefore, when the transfer surface 423a of the transfer roll 423 and the light incident end surface 407a of the light guide plate 407 are pressed against each other, when the light incident end surface 407a at the position facing the LED 406 and the transfer surface 423a are in contact with each other, a desired uneven portion 409 is formed. When the stages 428A and 428B are moved at the obtained transfer (molding) speed and the other light incident end surface 407a and the transfer surface 423a are in contact with each other, the stages 428A and 428B may be moved at a higher speed. Thereby, the processing tact of the light guide plate 407 can be improved. The light incident end surface 407 a around the LED 406 indicates +1 mm from the width size of the LED 406 in the direction orthogonal to the thickness direction of the light guide plate 407.
 ところで、転写ロール423の転写面423aに設けられた転写用凹凸部419を導光板407の入光端面407aに熱転写させると、導光板407で樹脂の熱分解が起こり、導光板407に含まれる添加剤の分解によって添加剤が析出して転写ロール423の転写面423aに付着することがある。また、導光板407の主面にマスキングフィルムが貼合されている場合には、マスキングフィルムの貼合に用いられている糊成分が成形時の圧力印加によって転写ロール423の転写面423aに付着することもある。 By the way, when the transfer uneven portion 419 provided on the transfer surface 423 a of the transfer roll 423 is thermally transferred to the light incident end surface 407 a of the light guide plate 407, the resin is thermally decomposed at the light guide plate 407, and the addition contained in the light guide plate 407. The additive may precipitate due to decomposition of the agent and adhere to the transfer surface 423a of the transfer roll 423. Moreover, when the masking film is bonded to the main surface of the light guide plate 407, the paste component used for bonding the masking film adheres to the transfer surface 423a of the transfer roll 423 by applying pressure during molding. Sometimes.
 そこで、成形工程の実施後に、転写ロール423の転写面423aに添加剤や糊成分等の異物が付着している場合には、昇降用サーボモータ445によって転写ロール423を昇降させて、転写ロール423の転写面423aにおける導光板407の入光端面407aと接触する箇所をずらし、異物が付着していない綺麗な転写面423aを用いて次の成形工程を実施する。 Therefore, after the molding process is performed, if foreign matters such as additives and glue components adhere to the transfer surface 423a of the transfer roll 423, the transfer roll 423 is moved up and down by the lifting servo motor 445, and the transfer roll 423 is moved up and down. The portion of the transfer surface 423a that comes into contact with the light incident end surface 407a of the light guide plate 407 is shifted, and the next molding step is performed using the clean transfer surface 423a to which no foreign matter is attached.
 以上のように本実施形態にあっては、転写ロール423を加熱すると共に転写ロール423の転写面423a及び導光板407の入光端面407a同士を押し付けて、転写ロール423の転写面423aに設けられた転写用凹凸部419を導光板407の入光端面407aに熱転写させることにより、導光板407の入光端面407aに凹凸部409を形成するようにしたので、バイト等による機械的な切削加工によって導光板407の入光端面407aに凹凸部409を形成する場合のように切り粉が発生することは無い。従って、導光板407に切り粉が付着したり混入したりすることも無いため、製品の品質を安定化させることができる。 As described above, in the present embodiment, the transfer roll 423 is heated and the transfer surface 423a of the transfer roll 423 and the light incident end surface 407a of the light guide plate 407 are pressed against each other to be provided on the transfer surface 423a of the transfer roll 423. The uneven portion 419 for transfer is thermally transferred to the light incident end surface 407a of the light guide plate 407, so that the uneven portion 409 is formed on the light incident end surface 407a of the light guide plate 407. Chips are not generated unlike the case where the uneven portion 409 is formed on the light incident end surface 407a of the light guide plate 407. Accordingly, the chips are not attached to or mixed into the light guide plate 407, so that the quality of the product can be stabilized.
 また、本実施形態では、転写ロール423をステージ428A,428Bに対して昇降させる手段を設け、転写ロール423の転写面423aに汚れが発生したときは、転写面423aの汚れ箇所が導光板407の入光端面407aに接触することを回避するように転写ロール423を昇降させるようにしたので、綺麗な転写面423aを用いて成形工程を速やかに継続することができる。これにより、製品の品質を更に安定化させることができる。また、例えば転写ロール423を取り外して転写ロール423の超音波洗浄を行う必要が無いため、作業員の手間を省くことができる。 Further, in this embodiment, a means for moving the transfer roll 423 up and down with respect to the stages 428A and 428B is provided, and when the transfer surface 423a of the transfer roll 423 is soiled, the soiled portion of the transfer surface 423a is removed from the light guide plate 407. Since the transfer roll 423 is moved up and down so as to avoid contact with the light incident end surface 407a, the molding process can be quickly continued using the clean transfer surface 423a. Thereby, the quality of the product can be further stabilized. Further, for example, it is not necessary to remove the transfer roll 423 and perform ultrasonic cleaning of the transfer roll 423, so that the labor of an operator can be saved.
 このとき、転写ロール423に誘導コイル441を内蔵し、この誘導コイル441に電流を流すことで転写ロール423を加熱するようにしたので、オイルにより温度調整を行って転写ロール423を加熱する場合に比べて、転写ロール423のロール軸方向の温度分布を均一化することができる。例えば、直径が200mm、長さが300mmのオイルヒータロールを用いる場合には、ロール軸方向に対して3℃~5℃の温度ムラが生じるが、同じサイズの電気ヒータロールを用いる場合には、ロール軸方向に対する温度ムラが±0.5℃程度に収まる。これにより、転写ロール423を昇降させることで、転写ロール423の転写面423aにおける導光板407の入光端面407aとの接触箇所を変更しても、導光板407の入光端面407aに対する転写ロール423の転写用凹凸部419の転写精度を安定化させることができる。 At this time, the induction coil 441 is built in the transfer roll 423, and the transfer roll 423 is heated by passing an electric current through the induction coil 441. Therefore, when the transfer roll 423 is heated by adjusting the temperature with oil. In comparison, the temperature distribution in the roll axis direction of the transfer roll 423 can be made uniform. For example, when an oil heater roll having a diameter of 200 mm and a length of 300 mm is used, temperature unevenness of 3 ° C. to 5 ° C. occurs in the roll axis direction, but when using an electric heater roll of the same size, The temperature unevenness in the roll axis direction is within about ± 0.5 ° C. Accordingly, by moving the transfer roll 423 up and down, the transfer roll 423 with respect to the light incident end surface 407a of the light guide plate 407 can be changed even if the contact position of the transfer surface 423a of the transfer roll 423 with the light incident end surface 407a of the light guide plate 407 is changed. The transfer accuracy of the transfer concavo-convex portion 419 can be stabilized.
 なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、転写ロール423をステージ428A,428Bに対して昇降させるようにしたが、特にそれには限られず、ステージ428A,428Bを転写ロール423に対して昇降させる構成とすることで、転写ロール423と導光板407との接触高さ位置を変えてもよい。 Note that the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the transfer roll 423 is moved up and down with respect to the stages 428A and 428B. However, the transfer roll 423 is not particularly limited thereto, and the stage 428A and 428B is moved up and down with respect to the transfer roll 423. The contact height position between the roll 423 and the light guide plate 407 may be changed.
 また、上記実施形態では、平歯車同士の噛み合わせによって転写ロール423を回転させるようにしたが、転写ロール423を回転させる機構としては、特にそれには限られず、例えばベルト及びプーリ等を用いてもよい。 In the above embodiment, the transfer roll 423 is rotated by meshing the spur gears. However, the mechanism for rotating the transfer roll 423 is not particularly limited, and for example, a belt and a pulley may be used. Good.
 さらに、上記実施形態では、成形用サーボモータ431A,431Bによって転写ロール23を回転させると共にステージ428A,428BをY方向に移動させる構成としたが、特にそれには限られず、転写ロール423を回転させる手段及びステージ428A,428Bを移動させる手段として、それぞれ別のモータを使用し、各モータを同期駆動させてもよい。 Furthermore, in the above embodiment, the transfer roll 23 is rotated by the forming servomotors 431A and 431B and the stages 428A and 428B are moved in the Y direction. However, the present invention is not limited to this, and means for rotating the transfer roll 423 is not limited thereto. Further, as means for moving the stages 428A and 428B, different motors may be used, and the respective motors may be driven synchronously.
 ここで、導光板407と転写ロール423とが接触する際、転写ロール423の回転速度とステージ428A,428Bの移動速度とに大きなズレがあると、導光板407の外観が悪くなるという不具合が発生する。そのため、転写ロール423を回転させるロール専用のモータを設置しない場合には、転写ロール423の直径管理が重要となる。一方、転写ロール423を回転させるロール専用のモータを設置する場合には、転写ロール423の直径に合わせてモータの回転速度を調整することが可能になるので、導光板407の外観不良の発生を防止することができる。 Here, when the light guide plate 407 and the transfer roll 423 are in contact with each other, if the rotational speed of the transfer roll 423 and the moving speed of the stages 428A and 428B are greatly shifted, the appearance of the light guide plate 407 is deteriorated. To do. Therefore, when a motor dedicated to the roll that rotates the transfer roll 423 is not installed, the diameter management of the transfer roll 423 is important. On the other hand, when a motor dedicated to the roll that rotates the transfer roll 423 is installed, the rotation speed of the motor can be adjusted according to the diameter of the transfer roll 423, so that the appearance defect of the light guide plate 407 is caused. Can be prevented.
 また、上記実施形態では、転写ロール423を挟むようにステージ428A,428Bを配置したが、図45に示すように、導光板407を支持するステージの数が1つでもよいことは言うまでもない。このとき、上記のように導光板407の入光端面407aを転写ロール423の転写面423aに押し付けてもよいが、転写ロール423の転写面423aを導光板407の入光端面407aに押し付けるようにしてもよい。また、ステージに支持する導光板407の数としては、1枚に限られず、複数枚であってもよい。 In the above embodiment, the stages 428A and 428B are arranged so as to sandwich the transfer roll 423, but it goes without saying that the number of stages supporting the light guide plate 407 may be one as shown in FIG. At this time, the light incident end surface 407a of the light guide plate 407 may be pressed against the transfer surface 423a of the transfer roll 423 as described above, but the transfer surface 423a of the transfer roll 423 is pressed against the light incident end surface 407a of the light guide plate 407. May be. Further, the number of light guide plates 407 supported on the stage is not limited to one, and may be a plurality.
 さらに、上記実施形態では、転写ロール423のロール軸423bが装置上下方向(Z方向)に延びているが、本発明の光学シート加工装置は、転写ロール423のロール軸423bが水平方向(X方向またはY方向)に延びているものにも適用可能である。 Further, in the above embodiment, the roll shaft 423b of the transfer roll 423 extends in the apparatus vertical direction (Z direction). However, in the optical sheet processing apparatus of the present invention, the roll shaft 423b of the transfer roll 423 is in the horizontal direction (X direction). Alternatively, the present invention can be applied to those extending in the Y direction.
 また、上記実施形態は、液晶テレビに使用される液晶表示装置401のバックライトユニット403に具備される導光板407の入光端面407aに凹凸部409を形成するものであるが、本発明の光学シート加工装置及び方法は、例えば照明用や装飾用の導光板としての光学シートの成形加工にも適用可能である。 Moreover, although the said embodiment forms the uneven | corrugated | grooved part 409 in the light-incidence end surface 407a of the light-guide plate 407 with which the backlight unit 403 of the liquid crystal display device 401 used for a liquid crystal television is comprised, the optical of this invention The sheet processing apparatus and method can be applied to, for example, an optical sheet forming process as a light guide plate for illumination or decoration.
 以下、本発明の他の側面に係わる光学シート加工装置及び方法について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, an optical sheet processing apparatus and method according to another aspect of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図46は、本発明に係わる光学シート加工装置の一実施形態によって得られる光学シートである導光板を含む液晶表示装置を示す概略断面図である。同図において、本実施形態に係わる液晶表示装置501は、例えば液晶テレビに使用されるものである。液晶表示装置501は、液晶パネル502と、この液晶パネル502の背面側に配置されたエッジ型のバックライトユニット503とを備えている。液晶パネル502の厚みは、例えば1.8mm程度である。 FIG. 46 is a schematic sectional view showing a liquid crystal display device including a light guide plate which is an optical sheet obtained by one embodiment of the optical sheet processing apparatus according to the present invention. In the figure, a liquid crystal display device 501 according to this embodiment is used for a liquid crystal television, for example. The liquid crystal display device 501 includes a liquid crystal panel 502 and an edge type backlight unit 503 disposed on the back side of the liquid crystal panel 502. The thickness of the liquid crystal panel 502 is, for example, about 1.8 mm.
 バックライトユニット503は、箱型の金属製のバックライト筐体504を有している。バックライト筐体504の裏面(背面)には、複数の電子部品類505が基板(図示せず)を介して設けられている。バックライト筐体504の対向する内壁面には、光を照射するLED506が複数ずつ取り付けられている。 The backlight unit 503 has a box-shaped metal backlight housing 504. A plurality of electronic components 505 are provided on the back surface (back surface) of the backlight housing 504 via a substrate (not shown). A plurality of LEDs 506 for irradiating light are attached to the inner wall surfaces of the backlight housing 504 facing each other.
 バックライト筐体504には、LED506から照射された光を液晶パネル502へ導くための断面矩形状の導光板507が反射シート508を介して収容されている。導光板507の入光端面507aには、図47に示すように、断面略波形状の凹凸部509が設けられている。導光板507の厚みは、例えば3mmである。 In the backlight housing 504, a light guide plate 507 having a rectangular cross section for guiding the light emitted from the LED 506 to the liquid crystal panel 502 is accommodated via a reflection sheet 508. As shown in FIG. 47, the light incident end surface 507a of the light guide plate 507 is provided with an uneven portion 509 having a substantially corrugated cross section. The thickness of the light guide plate 507 is 3 mm, for example.
 導光板507は、熱可塑性樹脂で形成されている。具体的には、導光板507は、寸法精度や衝撃強度、透明性が高い非晶性樹脂からなっている。非晶性樹脂としては、ポリメタクリル酸メチル樹脂(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、メタクリル酸メチル-スチレン共重合体樹脂(MS)等が挙げられる。 The light guide plate 507 is formed of a thermoplastic resin. Specifically, the light guide plate 507 is made of an amorphous resin having high dimensional accuracy, impact strength, and transparency. Examples of the amorphous resin include polymethyl methacrylate resin (PMMA), polystyrene (PS), polycarbonate (PC), cycloolefin polymer (COP), and methyl methacrylate-styrene copolymer resin (MS).
 LED506から照射された光は、導光板507の入光端面507aに入射される。導光板507の背面は、LED506から照射された光を反射させる反射面となっており、導光板507の前面は、LED506から照射された光や反射面で反射された光を出射させる出光面となっている。導光板507の背面(反射面)には、インクによるドットパターン印刷等、光を反射・散乱させやすい構造が施されている。 The light emitted from the LED 506 is incident on the light incident end surface 507a of the light guide plate 507. The back surface of the light guide plate 507 is a reflective surface that reflects the light emitted from the LED 506, and the front surface of the light guide plate 507 is a light output surface that emits the light emitted from the LED 506 and the light reflected by the reflective surface. It has become. The back surface (reflecting surface) of the light guide plate 507 has a structure that easily reflects and scatters light, such as dot pattern printing with ink.
 導光板507の前面側には、複数枚(ここでは3枚)の光学フィルムを積層してなる光学フィルム群510が配置されている。光学フィルム群510の厚みは、例えば0.2mm程度である。導光板507及び光学フィルム群510の縁部は、樹脂(例えばPC)製のフレーム体511によりバックライト筐体504に対して固定されている。上記の液晶パネル502は、金属製のフレーム体512によりバックライトユニット503に対して固定されている。 On the front side of the light guide plate 507, an optical film group 510 formed by laminating a plurality of (here, three) optical films is disposed. The thickness of the optical film group 510 is, for example, about 0.2 mm. The edges of the light guide plate 507 and the optical film group 510 are fixed to the backlight housing 504 by a frame body 511 made of resin (for example, PC). The liquid crystal panel 502 is fixed to the backlight unit 503 by a metal frame body 512.
 図48は、上記の導光板507を製造する工程を示すフローチャートである。同図において、まず溶融押出シート成形工程等により導光板原板を作製する(ステップS501)。続いて、パネルソーやランニングソー等により導光板原板を粗切りカットして、導光板507を得る(ステップS502)。続いて、鏡面加工機を用いて、導光板507の入光端面507aに鏡面加工を施す(ステップS503)。続いて、導光板507の入光端面507aに熱転写加工を施すことにより、入光端面507aに凹凸部509を形成する(ステップS504)。なお、ステップS503については、必ずしも実施しなくてもよい。 FIG. 48 is a flowchart showing a process for manufacturing the light guide plate 507 described above. In the figure, first, a light guide plate original plate is produced by a melt extrusion sheet forming process or the like (step S501). Subsequently, the light guide plate original plate is roughly cut and cut using a panel saw, a running saw, or the like to obtain the light guide plate 507 (step S502). Subsequently, the mirror surface processing is performed on the light incident end surface 507a of the light guide plate 507 using a mirror processing machine (step S503). Then, the uneven | corrugated | grooved part 509 is formed in the light-incidence end surface 507a by performing a thermal transfer process to the light-incidence end surface 507a of the light-guide plate 507 (step S504). Note that step S503 is not necessarily performed.
 図49は、本発明に係わる光学シート加工装置の一実施形態を示す平面図である。図50は、図49に示した光学シート加工装置の正面図であり、図51は、図50のVI-VI線要部断面図であり、図52は、図50の要部拡大図であり、図53は、図50のVIII-VIII線要部拡大断面図である。また、図54は、図49等に示した光学シート加工装置を概略的に示す斜視図である。各図において、本実施形態の光学シート加工装置520は、図48に示すステップS504を実施する際に使用される。 FIG. 49 is a plan view showing an embodiment of an optical sheet processing apparatus according to the present invention. 50 is a front view of the optical sheet processing apparatus shown in FIG. 49, FIG. 51 is a sectional view taken along the line VI-VI in FIG. 50, and FIG. 52 is an enlarged view of the relevant part in FIG. 53 is an enlarged cross-sectional view taken along the line VIII-VIII in FIG. FIG. 54 is a perspective view schematically showing the optical sheet processing apparatus shown in FIG. 49 and the like. In each figure, the optical sheet processing apparatus 520 of this embodiment is used when step S504 shown in FIG. 48 is performed.
 光学シート加工装置520は、装置枠体521を備えている。装置枠体521の中央部にはラック522が配置され、このラック522には、金属製の転写ロール523が回転可能に支持されている(図51参照)。転写ロール523の外周面523aには、図54に示すように、転写ロール523の周方向に沿って転写用凹凸部519が形成されている。転写ロール523の外周面523aは、導光板507の入光端面507aに凹凸部を付与するための転写面となっている。転写用凹凸部519は、例えば転写ロール523の軸方向に対してプリズム状またはレンチキュラー状に形成されている。転写用凹凸部519の凹凸の深さF(図55参照)は、0.01mm~0.30mmとなっている。 The optical sheet processing apparatus 520 includes an apparatus frame 521. A rack 522 is disposed at the center of the apparatus frame 521, and a metal transfer roll 523 is rotatably supported on the rack 522 (see FIG. 51). As shown in FIG. 54, a transfer concavo-convex portion 519 is formed on the outer peripheral surface 523 a of the transfer roll 523 along the circumferential direction of the transfer roll 523. The outer peripheral surface 523a of the transfer roll 523 serves as a transfer surface for providing an uneven portion to the light incident end surface 507a of the light guide plate 507. The transfer uneven portion 519 is formed in a prism shape or a lenticular shape with respect to the axial direction of the transfer roll 523, for example. The unevenness depth F (see FIG. 55) of the transfer uneven portion 519 is 0.01 mm to 0.30 mm.
 転写ロール523は、図51に示すように、誘導コイル541(ヒータ部)が内蔵された電気ヒータロールである。転写ロール523の上側には、誘導コイル541に高周波の電流を供給する電源部542が配置されている。これらの誘導コイル541及び電源部542は、転写ロール523を加熱する加熱手段を構成している。なお、転写ロール523としては、オイルにより加熱されるオイルヒータロールを用いてもよい。 As shown in FIG. 51, the transfer roll 523 is an electric heater roll in which an induction coil 541 (heater unit) is incorporated. A power supply unit 542 that supplies a high-frequency current to the induction coil 541 is disposed above the transfer roll 523. The induction coil 541 and the power supply unit 542 constitute a heating unit that heats the transfer roll 523. As the transfer roll 523, an oil heater roll heated by oil may be used.
 図50に示すように、装置枠体521の下部には、台座525A,525Bが装置左右方向(X方向)に転写ロール523を挟むように配置されている。台座525A,525Bの上部には、ステージベース526A,526Bがガイドレール527A,527Bを介して装置前後方向(Y方向)に移動可能にそれぞれ取り付けられている。ステージベース526A,526Bの上部には、ステージ528A,528Bがガイドレール529A,529Bを介して装置左右方向(X方向)に移動可能にそれぞれ取り付けられている。 50, pedestals 525A and 525B are arranged below the apparatus frame 521 so as to sandwich the transfer roll 523 in the apparatus horizontal direction (X direction). Stage bases 526A and 526B are attached to the upper portions of the bases 525A and 525B through the guide rails 527A and 527B so as to be movable in the longitudinal direction of the apparatus (Y direction). Stages 528A and 528B are attached to the upper portions of the stage bases 526A and 526B so as to be movable in the left-right direction (X direction) of the apparatus via guide rails 529A and 529B.
 ステージ528A,528Bの上面には、導光板507が載置(支持)される。ステージ528A,528Bの上面には、多種多様なサイズの導光板507を縦置き又は横置きの状態で置くことができる(図49参照)。縦置きは、導光板507の長手方向をY方向に一致させるような置き方である。横置きは、導光板507の長手方向をX方向に一致させるような置き方である。 A light guide plate 507 is placed (supported) on the upper surfaces of the stages 528A and 528B. Light guide plates 507 of various sizes can be placed vertically or horizontally on the upper surfaces of the stages 528A and 528B (see FIG. 49). The vertical placement is such that the longitudinal direction of the light guide plate 507 coincides with the Y direction. The horizontal placement is such that the longitudinal direction of the light guide plate 507 coincides with the X direction.
 図54に示すように、ステージ528A,528Bの上面に載置された導光板507は、クランプ板518A,518Bによってステージ528A,528Bに対して押さえ付けられる。導光板507は、クランプ板518A,518Bから転写ロール523に対応する側に所定量だけはみ出るようにステージ528A,528Bの上面に載置される。 As shown in FIG. 54, the light guide plate 507 placed on the upper surfaces of the stages 528A and 528B is pressed against the stages 528A and 528B by the clamp plates 518A and 518B. The light guide plate 507 is placed on the upper surfaces of the stages 528A and 528B so as to protrude by a predetermined amount from the clamp plates 518A and 518B to the side corresponding to the transfer roll 523.
 このとき、図56に示すように、クランプ板518A,518B(図56ではクランプ板518Aのみ図示)からの導光板507の突出部分に曲げ応力をかけたときに、例えば導光板507の厚みが1.5~4.0mmの場合は、導光板507の突出量が10mmとしても、導光板507の曲げ量は1.0mm以下であり、導光板507の厚みが0.6~0.8mmと薄い場合は、導光板507の突出量が3mmであれば、導光板507の曲げ量は1.0mm以下となる。導光板507の曲げ量が1.0mm以下であれば、導光板507が破砕しないことが実験で確認されている。 At this time, as shown in FIG. 56, when bending stress is applied to the protruding portion of the light guide plate 507 from the clamp plates 518A and 518B (only the clamp plate 518A is shown in FIG. 56), for example, the thickness of the light guide plate 507 is 1. In the case of .5 to 4.0 mm, even if the projection amount of the light guide plate 507 is 10 mm, the bending amount of the light guide plate 507 is 1.0 mm or less, and the thickness of the light guide plate 507 is as thin as 0.6 to 0.8 mm. In this case, if the protruding amount of the light guide plate 507 is 3 mm, the bending amount of the light guide plate 507 is 1.0 mm or less. It has been confirmed through experiments that the light guide plate 507 is not crushed if the bending amount of the light guide plate 507 is 1.0 mm or less.
 ステージベース526A,526Bの上部には、ステージ528A,528BをX方向に移動させる押圧シリンダ530A,530Bがそれぞれ取り付けられている(図50参照)。押圧シリンダ530A,530Bは、ステージ528A,528B上に載置された導光板507の入光端面507aを転写ロール523の転写面523aに押し付けるように、ステージ528A,528Bに圧力を印加する圧力印加手段を構成している。 Press cylinders 530A and 530B for moving the stages 528A and 528B in the X direction are attached to the upper portions of the stage bases 526A and 526B, respectively (see FIG. 50). The pressure cylinders 530A and 530B are pressure applying means for applying pressure to the stages 528A and 528B so as to press the light incident end surface 507a of the light guide plate 507 placed on the stages 528A and 528B against the transfer surface 523a of the transfer roll 523. Is configured.
 また、光学シート加工装置520は、図50~図53に示すように、ステージ528A,528Bに対応して、X方向及びY方向に対して斜めの方向に転写ロール523を挟むように配置された成形用サーボモータ531A,531Bを備えている。成形用サーボモータ531A,531Bの各出力軸531aには、ピニオンギア532A,532Bがそれぞれ取り付けられている。ステージベース526A,526Bの下部の内側面には、Y方向に延在し、ピニオンギア532A,532Bと噛み合うラックギア533A,533Bがそれぞれ設けられている。これにより、成形用サーボモータ531A,531Bを回転駆動させると、成形用サーボモータ531A,531Bの回転がピニオンギア532A,532B及びラックギア533A,533Bを介してステージベース526A,526Bに伝わり、ステージベース526A,526BがY方向に移動し、これに伴ってステージ528A,528BがY方向に移動する。 Further, as shown in FIGS. 50 to 53, the optical sheet processing apparatus 520 is disposed so as to sandwich the transfer roll 523 in an oblique direction with respect to the X direction and the Y direction, corresponding to the stages 528A and 528B. Serving motors 531A and 531B are provided. Pinion gears 532A and 532B are attached to the output shafts 531a of the forming servomotors 531A and 531B, respectively. Rack gears 533A and 533B extending in the Y direction and meshing with the pinion gears 532A and 532B are provided on the inner side surfaces of the lower portions of the stage bases 526A and 526B, respectively. Accordingly, when the forming servo motors 531A and 531B are driven to rotate, the rotation of the forming servo motors 531A and 531B is transmitted to the stage bases 526A and 526B via the pinion gears 532A and 532B and the rack gears 533A and 533B, and the stage base 526A. , 526B move in the Y direction, and accordingly, the stages 528A, 528B move in the Y direction.
 ラック522の下部には、装置上下方向(Z方向)に延びるシャフト534A,534Bが回転可能に支持されている。これらのシャフト534A,534Bは、Y方向に転写ロール523を挟むように配置されている。シャフト534A,534Bの途中部分には、上記のピニオンギア532A,532Bと噛み合う平歯車535A,535Bがそれぞれ設けられている。また、シャフト534A,534Bの上端部には、電磁クラッチ536A,536Bがそれぞれ取り付けられている。 In the lower part of the rack 522, shafts 534A and 534B extending in the vertical direction (Z direction) of the apparatus are rotatably supported. These shafts 534A and 534B are arranged so as to sandwich the transfer roll 523 in the Y direction. Spur gears 535A and 535B that mesh with the above-described pinion gears 532A and 532B are provided in the middle portions of the shafts 534A and 534B, respectively. Electromagnetic clutches 536A and 536B are attached to the upper ends of the shafts 534A and 534B, respectively.
 ラック522には、支持板522aが連結されている。支持板522aにおけるシャフト534A,534Bに対応する部位には、下方に延びるシャフト537A,537Bがそれぞれ回転可能に支持されている。シャフト537A,537Bの途中部分には、平歯車538A,538Bがそれぞれ設けられている。また、シャフト537A,537Bの下端部は、上記の電磁クラッチ536A,536Bにそれぞれ取り付けられている。 The support plate 522a is connected to the rack 522. Shafts 537A and 537B extending downward are respectively rotatably supported at portions of the support plate 522a corresponding to the shafts 534A and 534B. Spur gears 538A and 538B are provided in the middle of the shafts 537A and 537B, respectively. The lower ends of the shafts 537A and 537B are attached to the electromagnetic clutches 536A and 536B, respectively.
 電磁クラッチ536Aは、シャフト534A,537A同士の連結を断続することで、平歯車535Aから平歯車538Aへの動力の伝達を断続する。具体的には、電磁クラッチ536AがONのときは、シャフト534A,537A同士が連結され、電磁クラッチ536AがOFFのときは、シャフト534A,537A同士の連結が解除される。電磁クラッチ536Bは、シャフト534B,537B同士の連結を断続することで、平歯車535Bから平歯車538Bへの動力の伝達を断続する。具体的には、電磁クラッチ536BがONのときは、シャフト534B,537B同士が連結され、電磁クラッチ536BがOFFのときは、シャフト534B,537B同士の連結が解除される。 The electromagnetic clutch 536A interrupts the transmission of power from the spur gear 535A to the spur gear 538A by intermittently connecting the shafts 534A and 537A. Specifically, when the electromagnetic clutch 536A is ON, the shafts 534A and 537A are connected to each other, and when the electromagnetic clutch 536A is OFF, the connections between the shafts 534A and 537A are released. The electromagnetic clutch 536B interrupts the transmission of power from the spur gear 535B to the spur gear 538B by intermittently connecting the shafts 534B and 537B. Specifically, when the electromagnetic clutch 536B is ON, the shafts 534B and 537B are connected to each other, and when the electromagnetic clutch 536B is OFF, the connections between the shafts 534B and 537B are released.
 転写ロール523のロール軸523bは、ラック522の下方に延びている。ロール軸523bの下端部には、平歯車538A,538Bとそれぞれ噛み合う平歯車539が取り付けられている。 The roll shaft 523 b of the transfer roll 523 extends below the rack 522. A spur gear 539 that meshes with the spur gears 538A and 538B is attached to the lower end of the roll shaft 523b.
 電磁クラッチ536AをONにした状態で、成形用サーボモータ531Aを回転駆動させると、ピニオンギア532A、平歯車535A、シャフト534A、電磁クラッチ536A、シャフト537A、平歯車538A及び平歯車539を介して転写ロール523が回転する。また、電磁クラッチ536BをONにした状態で、成形用サーボモータ531Bを回転駆動させると、ピニオンギア532B、平歯車535B、シャフト534B、電磁クラッチ536B、シャフト537B、平歯車538B及び平歯車539を介して転写ロール523が回転する。従って、成形用サーボモータ531Aによってステージ528Aを移動させると共に転写ロール523を回転させることができ、成形用サーボモータ531Bによってステージ528Bを移動させると共に転写ロール523を回転させることができる。 When the forming servo motor 531A is rotated with the electromagnetic clutch 536A turned on, the transfer is performed via the pinion gear 532A, the spur gear 535A, the shaft 534A, the electromagnetic clutch 536A, the shaft 537A, the spur gear 538A, and the spur gear 539. The roll 523 rotates. Further, when the forming servo motor 531B is driven to rotate while the electromagnetic clutch 536B is ON, the pinion gear 532B, the spur gear 535B, the shaft 534B, the electromagnetic clutch 536B, the shaft 537B, the spur gear 538B, and the spur gear 539 are passed through. As a result, the transfer roll 523 rotates. Accordingly, the stage 528A can be moved and the transfer roll 523 can be rotated by the forming servo motor 531A, and the stage 528B can be moved and the transfer roll 523 can be rotated by the forming servo motor 531B.
 以上において、成形用サーボモータ531A,531B、ピニオンギア532A,532B、シャフト534A,534B、平歯車535A,535B、電磁クラッチ536A,536B、シャフト537A,537B、平歯車538A,538B及び平歯車539は、転写ロール523を回転させる回転手段を構成している。成形用サーボモータ531A,531B、ピニオンギア532A,532B、ラックギア533A,533B、ステージベース526A,526B及びガイドレール527A,527Bは、ステージ528A,528Bを転写ロール523に対して凹凸部509の形成方向に相対的に移動させる移動手段を構成している。 In the above, the forming servo motors 531A and 531B, the pinion gears 532A and 532B, the shafts 534A and 534B, the spur gears 535A and 535B, the electromagnetic clutches 536A and 536B, the shafts 537A and 537B, the spur gears 538A and 538B, and the spur gear 539 are Rotating means for rotating the transfer roll 523 is configured. Servo motors 531A and 531B for molding, pinion gears 532A and 532B, rack gears 533A and 533B, stage bases 526A and 526B, and guide rails 527A and 527B are arranged so that the stage 528A and 528B are in the direction of forming the uneven portion 509 with respect to the transfer roll 523. The moving means to move relatively is comprised.
 また、図49及び図57に示すように、ステージ528A,528Bに対して転写ロール523に対応する側には、転写ロール523に対する導光板507のX方向(凹凸部509の形成方向に垂直な方向)の基準位置を設定するための円柱状の位置決め用ローラ551がそれぞれ配置されている。つまり、ステージ528A,528B間には、2つの位置決め用ローラ551が配置されている。位置決め用ローラ551は、Z方向(転写ロール523のロール軸方向)に平行な軸回りに自由回転自在となっている。 Further, as shown in FIGS. 49 and 57, on the side corresponding to the transfer roll 523 with respect to the stages 528A and 528B, the X direction of the light guide plate 507 with respect to the transfer roll 523 (the direction perpendicular to the formation direction of the uneven portion 509) The cylindrical positioning rollers 551 for setting the reference position) are respectively arranged. That is, two positioning rollers 551 are disposed between the stages 528A and 528B. The positioning roller 551 is freely rotatable around an axis parallel to the Z direction (the roll axis direction of the transfer roll 523).
 ステージ528A,528Bにおける位置決め用ローラ551の反対側には、ステージ528A,528B上に載置された導光板507を位置決め用ローラ551に押し付けるための押付バー552がそれぞれ配置されている。押付バー552は、Y方向(ステージ528A,528Bの移動方向)に延在している。押付バー552は、位置決めアクチュエータ553によってステージ528A,528Bの上面をX方向にスライドする。位置決めアクチュエータ553は、詳しく図示されていないが、エアーシリンダやソレノイド等で構成されている。 On the opposite side of the positioning rollers 551 in the stages 528A and 528B, pressing bars 552 for pressing the light guide plate 507 placed on the stages 528A and 528B against the positioning rollers 551 are arranged. The pressing bar 552 extends in the Y direction (the moving direction of the stages 528A and 528B). The pressing bar 552 slides the upper surfaces of the stages 528A and 528B in the X direction by the positioning actuator 553. Although not shown in detail, the positioning actuator 553 is configured by an air cylinder, a solenoid, or the like.
 以上のように構成された光学シート加工装置520を用いて、導光板507の入光端面507aに凹凸部509を形成するときは、図58に示すように、まずステージ528A,528B(図58では不図示)の上面に導光板507を載せ、導光板507の入光端面507aを位置決め用ローラ551に当てる。そして、位置決めアクチュエータ553(図58では不図示)によって押付バー552をX方向に移動させて、押付バー552により導光板507を位置決め用ローラ551に押し付ける。これにより、導光板507が転写ロール523に対してX方向に位置決めされるようになる。従って、導光板507の入光端面507aと転写ロール523の転写面523aとの距離が一定量となる。 When the uneven portion 509 is formed on the light incident end surface 507a of the light guide plate 507 using the optical sheet processing apparatus 520 configured as described above, first, as shown in FIG. 58, the stages 528A and 528B (in FIG. 58). The light guide plate 507 is placed on the upper surface (not shown), and the light incident end surface 507 a of the light guide plate 507 is applied to the positioning roller 551. Then, the pressing bar 552 is moved in the X direction by a positioning actuator 553 (not shown in FIG. 58), and the light guide plate 507 is pressed against the positioning roller 551 by the pressing bar 552. As a result, the light guide plate 507 is positioned in the X direction with respect to the transfer roll 523. Accordingly, the distance between the light incident end surface 507a of the light guide plate 507 and the transfer surface 523a of the transfer roll 523 is a constant amount.
 続いて、上記の移動手段によってステージ528A,528Bを転写ロール523に向けてY方向に移動させることで、導光板507を転写ロール523に向けてY方向に移動させる。そして、導光板507が転写ロール523に達する直前に、押圧シリンダ530A,530B(図58では不図示)によってステージ528A,528BをX方向に所定量だけ移動させることで、導光板507の入光端面507aを転写ロール523の転写面523aに押し付ける(図58中の2点鎖線参照)。 Subsequently, the light guide plate 507 is moved in the Y direction toward the transfer roll 523 by moving the stages 528A and 528B in the Y direction toward the transfer roll 523 by the moving means. Immediately before the light guide plate 507 reaches the transfer roll 523, the stage 528A, 528B is moved by a predetermined amount in the X direction by pressing cylinders 530A, 530B (not shown in FIG. 58), so that the light incident end surface of the light guide plate 507 is obtained. 507a is pressed against the transfer surface 523a of the transfer roll 523 (see the two-dot chain line in FIG. 58).
 その後、上記の回転手段によって転写ロール523を回転させた状態で、引き続き上記の移動手段によって導光板507を転写ロール523に向けてY方向に移動させる。これにより、導光板507の入光端面507aに転写ロール523の転写用凹凸部519が転写され、入光端面507aに凹凸部509が付与されるようになる。 Thereafter, the light guide plate 507 is moved in the Y direction toward the transfer roll 523 by the moving means while the transfer roll 523 is rotated by the rotating means. As a result, the uneven portion for transfer 519 of the transfer roll 523 is transferred to the light incident end surface 507a of the light guide plate 507, and the uneven portion 509 is provided to the light incident end surface 507a.
 導光板507の入光端面507aに凹凸部509を形成する成形工程の一例について、図59を用いて具体的に説明する。ここでは、押付バー552により導光板507を位置決め用ローラ551に押し付けることで、転写ロール523に対する導光板507の基準位置を設定する工程の説明については省略する。本成形工程では、光学シート加工装置520の前側に2人の作業員Wが配される(図49参照)。このとき、転写ロール523は、誘導コイル541及び電源部542によって一定の温度(例えば100℃~200℃)に加熱される。 An example of a molding process for forming the uneven portion 509 on the light incident end surface 507a of the light guide plate 507 will be specifically described with reference to FIG. Here, description of the step of setting the reference position of the light guide plate 507 with respect to the transfer roll 523 by pressing the light guide plate 507 against the positioning roller 551 by the pressing bar 552 is omitted. In this molding process, two workers W are arranged on the front side of the optical sheet processing apparatus 520 (see FIG. 49). At this time, the transfer roll 523 is heated to a certain temperature (for example, 100 ° C. to 200 ° C.) by the induction coil 541 and the power supply unit 542.
 まず、成形済みの導光板507が載っているステージ528A及び成形前の導光板507が載っているステージ528Bが何れも光学シート加工装置520の前側に位置している状態で、成形用サーボモータ531Bを所定方向に回転駆動させ、電磁クラッチ536BをONにする。なお、成形用サーボモータ531Aの駆動は停止しており、電磁クラッチ536AはOFFとなっている。 First, in the state where both the stage 528A on which the molded light guide plate 507 is placed and the stage 528B on which the light guide plate 507 before molding is placed are positioned on the front side of the optical sheet processing apparatus 520, the servo motor 531B for molding. Is rotated in a predetermined direction to turn on the electromagnetic clutch 536B. Note that the drive of the molding servo motor 531A is stopped, and the electromagnetic clutch 536A is OFF.
 すると、図59(a)に示すように、転写ロール523が反時計方向に回転しながら、ステージ528Bが後側に移動する。このとき、押圧シリンダ530Bによって、ステージ528B上に置かれた導光板507の入光端面507aを転写ロール523の転写面523aに押し付けるように、ステージ528Bに一定の圧力(例えば0.05MPa~50MPa)を印加する。これにより、ステージ528B上に置かれた導光板507の入光端面507aに、転写ロール523の転写用凹凸部519が転写されるようになる。このようにステージ528B上に置かれた導光板507の成形を行っている間に、ステージ528A上から成形済みの導光板507が取り出される。 Then, as shown in FIG. 59A, the stage 528B moves to the rear side while the transfer roll 523 rotates counterclockwise. At this time, a constant pressure (for example, 0.05 MPa to 50 MPa) is applied to the stage 528B so that the light incident end surface 507a of the light guide plate 507 placed on the stage 528B is pressed against the transfer surface 523a of the transfer roll 523 by the pressing cylinder 530B. Is applied. As a result, the transfer uneven portion 519 of the transfer roll 523 is transferred to the light incident end surface 507a of the light guide plate 507 placed on the stage 528B. While the light guide plate 507 placed on the stage 528B is being molded as described above, the molded light guide plate 507 is taken out from the stage 528A.
 次いで、成形用サーボモータ531Bの駆動を停止させ、電磁クラッチ536BをOFFにする。すると、図59(b)に示すように、転写ロール523の回転が停止すると共に、成形済みの導光板507が載っているステージ528Bが光学シート加工装置520の後側で停止する。その間に、ステージ528A上に新たな導光板507が投入・載置される。 Next, the drive of the molding servo motor 531B is stopped, and the electromagnetic clutch 536B is turned OFF. Then, as shown in FIG. 59B, the rotation of the transfer roll 523 stops, and the stage 528B on which the molded light guide plate 507 is placed stops on the rear side of the optical sheet processing apparatus 520. In the meantime, a new light guide plate 507 is placed on and placed on the stage 528A.
 次いで、新たな導光板507が載っているステージ528Aが光学シート加工装置520の前側に位置し、成形済みの導光板507が載っているステージ528Bが光学シート加工装置520の後側に位置している状態で、電磁クラッチ536BをOFFにしたまま、成形用サーボモータ531Bを反対方向に回転駆動させる。すると、図59(c)に示すように、転写ロール523の回転が停止したまま、成形済みの導光板507が載っているステージ528Bが前側に移動する。このとき、押圧シリンダ530Bによるステージ528Bへの圧力の印加が行われることは無い。そして、当該ステージ528Bが元の位置に戻ると、成形用サーボモータ531Bの駆動を停止させる。その間、新たな導光板507が載置されたステージ528Aは、同じ位置で待機している。 Next, the stage 528A on which the new light guide plate 507 is placed is located on the front side of the optical sheet processing apparatus 520, and the stage 528B on which the molded light guide plate 507 is placed is located on the rear side of the optical sheet processing apparatus 520. In the state where the electromagnetic clutch 536B is turned off, the forming servo motor 531B is rotated in the opposite direction. Then, as shown in FIG. 59C, the stage 528B on which the molded light guide plate 507 is placed moves to the front side while the rotation of the transfer roll 523 is stopped. At this time, no pressure is applied to the stage 528B by the pressing cylinder 530B. Then, when the stage 528B returns to the original position, the driving of the forming servo motor 531B is stopped. Meanwhile, the stage 528A on which the new light guide plate 507 is placed stands by at the same position.
 次いで、新たな導光板507が載っているステージ528A及び成形済みの導光板507が載っているステージ528Bが何れも光学シート加工装置520の前側に位置している状態で、成形用サーボモータ531Aを所定方向に回転駆動させ、電磁クラッチ536AをONにする。 Next, with the stage 528A on which the new light guide plate 507 is placed and the stage 528B on which the molded light guide plate 507 is placed positioned on the front side of the optical sheet processing apparatus 520, the molding servo motor 531A is moved. The electromagnetic clutch 536A is turned on by rotating in a predetermined direction.
 すると、図59(d)に示すように、転写ロール523が時計方向に回転しながら、ステージ528Aが後側に移動する。このとき、押圧シリンダ530Aによって、ステージ528A上に置かれた導光板507の入光端面507aを転写ロール523の転写面523aに押し付けるように、ステージ528Aに一定の圧力を印加する。これにより、ステージ528A上に置かれた導光板507の入光端面507aに、転写ロール523の転写用凹凸部519が転写されるようになる。このようにステージ528A上に置かれた導光板507の成形を行っている間に、ステージ528B上から成形済みの導光板507が取り出される。 Then, as shown in FIG. 59 (d), the stage 528A moves to the rear side while the transfer roll 523 rotates in the clockwise direction. At this time, a constant pressure is applied to the stage 528A by the pressing cylinder 530A so that the light incident end surface 507a of the light guide plate 507 placed on the stage 528A is pressed against the transfer surface 523a of the transfer roll 523. As a result, the transfer uneven portion 519 of the transfer roll 523 is transferred to the light incident end surface 507a of the light guide plate 507 placed on the stage 528A. While the light guide plate 507 placed on the stage 528A is being molded in this way, the molded light guide plate 507 is taken out from the stage 528B.
 次いで、成形用サーボモータ531Aの駆動を停止させ、電磁クラッチ536AをOFFにする。すると、図59(e)に示すように、転写ロール523の回転が停止すると共に、成形済みの導光板507が載っているステージ528Aが光学シート加工装置520の後側で停止する。その間に、ステージ528B上に新たな導光板507が投入・載置される。 Next, the drive of the molding servo motor 531A is stopped, and the electromagnetic clutch 536A is turned OFF. Then, as shown in FIG. 59 (e), the rotation of the transfer roll 523 stops, and the stage 528A on which the molded light guide plate 507 is placed stops on the rear side of the optical sheet processing apparatus 520. In the meantime, a new light guide plate 507 is placed and placed on the stage 528B.
 次いで、成形済みの導光板507が載っているステージ528Aが光学シート加工装置520の後側に位置し、新たな導光板507が載っているステージ528Bが光学シート加工装置520の前側に位置している状態で、電磁クラッチ536AをOFFにしたまま、成形用サーボモータ531Aを反対方向に回転駆動させる。 Next, the stage 528A on which the molded light guide plate 507 is placed is located on the rear side of the optical sheet processing apparatus 520, and the stage 528B on which a new light guide plate 507 is placed is located on the front side of the optical sheet processing apparatus 520. In this state, the molding servo motor 531A is rotated in the opposite direction while the electromagnetic clutch 536A is turned off.
 すると、図59(f)に示すように、転写ロール523の回転が停止したまま、成形済みの導光板507が載っているステージ528Aが前側に移動する。このとき、押圧シリンダ530Aによるステージ528Aへの圧力の印加が行われることは無い。そして、当該ステージ528Aが元の位置に戻ると、成形用サーボモータ531Aの駆動を停止させる。その間、新たな導光板507が載置されたステージ528Bは、同じ位置で待機している。 Then, as shown in FIG. 59 (f), the stage 528A on which the molded light guide plate 507 is placed moves to the front side while the rotation of the transfer roll 523 is stopped. At this time, no pressure is applied to the stage 528A by the pressing cylinder 530A. When the stage 528A returns to the original position, the driving of the forming servo motor 531A is stopped. Meanwhile, the stage 528B on which the new light guide plate 507 is placed stands by at the same position.
 このように本成形工程においては、ステージ528A上に載置された成形済みの導光板507の取り出し及び当該ステージ528A上への新たな導光板507の投入を行っている間に、ステージ528B上に載置された導光板507の入光端面507aに凹凸部509を形成し、ステージ528B上に載置された成形済みの導光板507の取り出し及び当該ステージ528B上への新たな導光板507の投入を行っている間に、ステージ528A上に載置された導光板507の入光端面507aに凹凸部509を形成する。 Thus, in the main forming step, while the molded light guide plate 507 placed on the stage 528A is taken out and a new light guide plate 507 is put on the stage 528A, the light guide plate 507 is placed on the stage 528B. An uneven portion 509 is formed on the light incident end face 507a of the placed light guide plate 507, the molded light guide plate 507 placed on the stage 528B is taken out, and a new light guide plate 507 is placed on the stage 528B. During the process, the uneven portion 509 is formed on the light incident end surface 507a of the light guide plate 507 placed on the stage 528A.
 このとき、ステージ528A,528Bの移動スピードは、必ずしも一定とは限らない。例えば、導光板507の入光端面507aに対向して複数のLED506を配置する場合は、LED506周辺の入光端面507aにのみ凹凸部509を形成すればよい。そのため、転写ロール523の転写面523a及び導光板507の入光端面507a同士を押し付ける際に、LED506と対向する位置の入光端面507aと転写面523aとが接するときは、所望の凹凸部509が得られる転写(成形)スピードでステージ528A,528Bを移動させ、それ以外の入光端面507aと転写面523aとが接するときは、より高速でステージ528A,528Bを移動させてもよい。これにより、導光板507の加工タクトを向上させることができる。なお、LED506周辺の入光端面507aとは、導光板507の厚み方向に直交する方向におけるLED506の幅サイズから、+1mmを指す。 At this time, the moving speed of the stages 528A and 528B is not necessarily constant. For example, when a plurality of LEDs 506 are arranged facing the light incident end surface 507a of the light guide plate 507, the uneven portion 509 may be formed only on the light incident end surface 507a around the LED 506. Therefore, when pressing the transfer surface 523a of the transfer roll 523 and the light incident end surfaces 507a of the light guide plate 507, when the light incident end surface 507a at the position facing the LED 506 and the transfer surface 523a are in contact with each other, a desired uneven portion 509 is formed. When the stages 528A and 528B are moved at the transfer (molding) speed obtained and the other light incident end surface 507a and the transfer surface 523a are in contact with each other, the stages 528A and 528B may be moved at a higher speed. Thereby, the processing tact of the light guide plate 507 can be improved. The light incident end face 507a around the LED 506 indicates +1 mm from the width size of the LED 506 in the direction orthogonal to the thickness direction of the light guide plate 507.
 以上のように本実施形態にあっては、転写ロール523を加熱すると共に転写ロール523の転写面523a及び導光板507の入光端面507a同士を押し付けて、転写ロール523の転写面523aに設けられた転写用凹凸部519を導光板507の入光端面507aに熱転写させることにより、導光板507の入光端面507aに凹凸部509を形成するようにしたので、バイト等による機械的な切削加工によって導光板507の入光端面507aに凹凸部509を形成する場合のように切り粉が発生することは無い。従って、導光板507に切り粉が付着したり混入したりすることも無いため、製品の品質を安定化させることができる。 As described above, in the present embodiment, the transfer roll 523 is heated and the transfer surface 523a of the transfer roll 523 and the light incident end surface 507a of the light guide plate 507 are pressed against each other to be provided on the transfer surface 523a of the transfer roll 523. The uneven portion for transfer 519 is thermally transferred to the light incident end surface 507a of the light guide plate 507 so that the uneven portion 509 is formed on the light incident end surface 507a of the light guide plate 507. Chips are not generated unlike the case where the uneven portion 509 is formed on the light incident end surface 507a of the light guide plate 507. Accordingly, the chips are not attached to or mixed in the light guide plate 507, and the product quality can be stabilized.
 ところで、図48に示す導光板507の製造工程における粗切りカット処理(ステップS502)及び鏡面加工処理(ステップS503)を、複数枚のシートを積層した状態で行う場合には、各導光板507はある程度の公差を持って仕上がるようになる。例えば、54枚の550mm×320mm×3mmのシートを一度にまとめて加工した場合には、導光板507の外形寸法は最大で0.12mmずれることが実験により分かっている。上述したように、転写用凹凸部519の凹凸の深さF(図55参照)は0.01mm~0.30mmであるため、導光板507の外形寸法の0.12mmのずれは、許容することはできない。具体的には、導光板507の外形寸法のずれが0.12mmもあると、導光板507の入光端面507aと転写ロール523の転写面523aとの接触距離D(図58参照)が大きく変わるため、転写ロール523の転写用凹凸部519の転写率も大きく変わってしまい、安定した転写精度が得られなくなる。 Incidentally, when the rough cutting process (step S502) and the mirror finishing process (step S503) in the manufacturing process of the light guide plate 507 shown in FIG. 48 are performed in a state where a plurality of sheets are laminated, each light guide plate 507 is Finished with some tolerance. For example, when 54 sheets of 550 mm × 320 mm × 3 mm are processed at once, it has been experimentally known that the outer dimension of the light guide plate 507 is shifted by 0.12 mm at the maximum. As described above, since the unevenness depth F (see FIG. 55) of the transfer uneven portion 519 is 0.01 mm to 0.30 mm, a deviation of 0.12 mm in the outer dimension of the light guide plate 507 is allowed. I can't. Specifically, when the deviation of the outer dimension of the light guide plate 507 is 0.12 mm, the contact distance D (see FIG. 58) between the light incident end surface 507a of the light guide plate 507 and the transfer surface 523a of the transfer roll 523 changes greatly. For this reason, the transfer rate of the transfer uneven portion 519 of the transfer roll 523 is also greatly changed, and stable transfer accuracy cannot be obtained.
 これに対し本実施形態では、ステージ528A,528Bに対して転写ロール523に対応する側に、転写ロール523に対する導光板507のX方向の基準位置を設定するための位置決め用ローラ551を配置し、押付バー552により導光板507を位置決め用ローラ551に押し付けるようにしたので、導光板507の入光端面507aと転写ロール523の転写面523aとの距離が常に一定量となる。このため、押圧シリンダ530A,530Bによりステージ528A,528BをX方向に所定量だけ移動させたときに、導光板507の入光端面507aと転写ロール523の転写面523aとの接触距離Dが常に一定量となる。これにより、導光板507の外形加工時の公差により導光板507の外形寸法が一枚一枚異なっても、転写ロール523の転写用凹凸部519の転写率はほぼ一定となるため、安定した転写精度を得ることができる。その結果、製品の品質を更に安定化させることができる。 On the other hand, in this embodiment, a positioning roller 551 for setting a reference position in the X direction of the light guide plate 507 with respect to the transfer roll 523 is disposed on the side corresponding to the transfer roll 523 with respect to the stages 528A and 528B. Since the light guide plate 507 is pressed against the positioning roller 551 by the pressing bar 552, the distance between the light incident end surface 507a of the light guide plate 507 and the transfer surface 523a of the transfer roll 523 is always a constant amount. Therefore, when the stages 528A and 528B are moved by a predetermined amount in the X direction by the pressing cylinders 530A and 530B, the contact distance D between the light incident end surface 507a of the light guide plate 507 and the transfer surface 523a of the transfer roll 523 is always constant. It becomes quantity. As a result, even if the outer dimensions of the light guide plate 507 differ from one sheet to another due to tolerances when processing the outer shape of the light guide plate 507, the transfer rate of the transfer irregularities 519 of the transfer roll 523 is substantially constant, so that stable transfer Accuracy can be obtained. As a result, the quality of the product can be further stabilized.
 また、位置決め用ローラ551はZ方向に平行な軸回りに自由回転自在な円柱状のローラであるため、導光板507が位置決め用ローラ551に接触した状態で転写ロール523に向って移動するときは、位置決め用ローラ551が回転するようになる。従って、導光板507に傷が付くことが防止される。 In addition, since the positioning roller 551 is a cylindrical roller that can freely rotate around an axis parallel to the Z direction, when the light guide plate 507 moves toward the transfer roll 523 in contact with the positioning roller 551, Then, the positioning roller 551 rotates. Therefore, the light guide plate 507 is prevented from being damaged.
 なお、本実施形態では、押付バー552がステージ528A,528Bの上面をスライドして導光板507を位置決め用ローラ551に押し付ける構成となっているが、特にその構成には限られず、例えば押付バー552とステージ528A,528Bの上面との間に隙間を形成すると共に、ステージ528A,528Bの両側に壁部を設け、押付バー552が各壁部の内側面に沿ってスライドするような構成としてもよい。また、押付バー552の代わりに、X方向に並んで配置された複数の押付ピンを設け、これらの押付ピンがステージ528A,528Bの上面をスライドして導光板507を押し付ける構成としてもよい。 In this embodiment, the pressing bar 552 is configured to slide the upper surfaces of the stages 528A and 528B and press the light guide plate 507 against the positioning roller 551. However, the configuration is not particularly limited, and the pressing bar 552, for example. A gap may be formed between the stage 528A and the upper surfaces of the stages 528A and 528B, wall portions may be provided on both sides of the stages 528A and 528B, and the pressing bar 552 may slide along the inner side surface of each wall portion. . Further, instead of the pressing bar 552, a plurality of pressing pins arranged in the X direction may be provided, and these pressing pins may slide the upper surfaces of the stages 528A and 528B and press the light guide plate 507.
 図60は、転写ロール523に対する導光板507の基準位置を設定する構造の変形例を示す斜視図である。同図において、ステージ528A,528Bにおける位置決め用ローラ551の反対側には、導光板507を位置決め用ローラ551に押し付けるための押付部材555が配置されている。押付部材555は、Y方向に延在するバー556を有し、このバー556の下面には、ステージ528A,528B側に突出する複数(ここでは2つ)の押付ピン557が取り付けられている。ステージ528A,528Bの上面には、X方向に延在し、各押付ピン557をスライドさせるための複数(ここでは2つ)のガイド溝558が形成されている。 FIG. 60 is a perspective view showing a modification of the structure for setting the reference position of the light guide plate 507 with respect to the transfer roll 523. In the drawing, a pressing member 555 for pressing the light guide plate 507 against the positioning roller 551 is disposed on the opposite side of the positioning roller 551 in the stages 528A and 528B. The pressing member 555 has a bar 556 extending in the Y direction, and a plurality of (here, two) pressing pins 557 projecting toward the stages 528A and 528B are attached to the lower surface of the bar 556. A plurality of (here, two) guide grooves 558 are formed on the upper surfaces of the stages 528A and 528B so as to extend in the X direction and slide the pressing pins 557.
 このような構成では、押付部材555により導光板507を位置決め用ローラ551に押し付ける際に、押付ピン557がガイド溝558の底面をスライドするため、ステージ528A,528Bの上面とバー556の下面とが擦れて傷付け合うことが無い。また、バー556の下面から突出する複数の押付ピン557により導光板507を位置決め用ローラ551に押し付けるので、ステージ528A,528Bの上面とバー556の下面との隙間が大きい場合でも、例えば厚みが0.1~1.0mmの薄い導光板507を位置決め用ローラ551に確実に押し付けることができる。 In such a configuration, when the light guide plate 507 is pressed against the positioning roller 551 by the pressing member 555, the pressing pin 557 slides on the bottom surface of the guide groove 558, so that the upper surfaces of the stages 528A and 528B and the lower surface of the bar 556 are formed. There is no rubbing and scratching. In addition, since the light guide plate 507 is pressed against the positioning roller 551 by the plurality of pressing pins 557 protruding from the lower surface of the bar 556, even if the gap between the upper surfaces of the stages 528A and 528B and the lower surface of the bar 556 is large, for example, the thickness is 0. The thin light guide plate 507 having a thickness of 1 to 1.0 mm can be reliably pressed against the positioning roller 551.
 なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、転写ロール523に対する導光板507の基準位置を設定するための位置決め部材を、自由回転自在な円柱状の位置決め用ローラ551としたが、特にそれに限られず、例えば四角柱状の部材等であってもよい。 Note that the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the positioning member for setting the reference position of the light guide plate 507 with respect to the transfer roll 523 is the columnar positioning roller 551 that can freely rotate. Etc.
 また、上記実施形態では、平歯車同士の噛み合わせによって転写ロール523を回転させるようにしたが、転写ロール523を回転させる機構としては、特にそれには限られず、例えばベルト及びプーリ等を用いてもよい。 In the above embodiment, the transfer roll 523 is rotated by meshing the spur gears. However, the mechanism for rotating the transfer roll 523 is not particularly limited, and for example, a belt and a pulley may be used. Good.
 また、上記実施形態では、成形用サーボモータ531A,531Bによって転写ロール523を回転させると共にステージ528A,528BをY方向に移動させる構成としたが、特にそれには限られず、転写ロール523を回転させる手段及びステージ528A,528Bを移動させる手段として、それぞれ別のモータを使用し、各モータを同期駆動させてもよい。 In the above-described embodiment, the transfer roll 523 is rotated by the forming servomotors 531A and 531B and the stages 528A and 528B are moved in the Y direction. However, the present invention is not limited to this, and means for rotating the transfer roll 523 is not limited thereto. Further, as means for moving the stages 528A and 528B, different motors may be used, and the respective motors may be driven synchronously.
 ここで、導光板507と転写ロール523とが接触する際、転写ロール523の回転速度とステージ528A,528Bの移動速度とに大きなズレがあると、導光板507の外観が悪くなるという不具合が発生する。そのため、転写ロール523を回転させるロール専用のモータを設置しない場合には、転写ロール523の直径管理が重要となる。一方、転写ロール523を回転させるロール専用のモータを設置する場合には、転写ロール523の直径に合わせてモータの回転速度を調整することが可能になるので、導光板507の外観不良の発生を防止することができる。 Here, when the light guide plate 507 and the transfer roll 523 come into contact with each other, if the rotational speed of the transfer roll 523 and the moving speed of the stages 528A and 528B are greatly shifted, the appearance of the light guide plate 507 is deteriorated. To do. For this reason, in the case where a dedicated motor for rotating the transfer roll 523 is not installed, the diameter management of the transfer roll 523 is important. On the other hand, when a dedicated motor for rotating the transfer roll 523 is installed, the rotation speed of the motor can be adjusted in accordance with the diameter of the transfer roll 523, so that the appearance defect of the light guide plate 507 occurs. Can be prevented.
 また、上記実施形態では、転写ロール523を挟むようにステージ528A,528Bを配置したが、図57及び図60に示すように、導光板507を支持するステージの数が1つでもよいことは言うまでもない。このとき、上記のように導光板507の入光端面507aを転写ロール523の転写面523aに押し付けてもよいが、転写ロール523の転写面523aを導光板507の入光端面507aに押し付けるようにしてもよい。また、ステージに支持する導光板507の数としては、1枚に限られず、複数枚であってもよい。 In the above embodiment, the stages 528A and 528B are disposed so as to sandwich the transfer roll 523, but it goes without saying that the number of stages supporting the light guide plate 507 may be one as shown in FIGS. Yes. At this time, the light incident end surface 507a of the light guide plate 507 may be pressed against the transfer surface 523a of the transfer roll 523 as described above, but the transfer surface 523a of the transfer roll 523 is pressed against the light incident end surface 507a of the light guide plate 507. May be. Further, the number of light guide plates 507 supported on the stage is not limited to one, but may be a plurality.
 さらに、上記実施形態は、液晶テレビに使用される液晶表示装置501のバックライトユニット503に具備される導光板507の入光端面507aに凹凸部509を形成するものであるが、本発明の光学シート加工装置及び方法は、例えば照明用や装飾用の導光板としての光学シートの成形加工にも適用可能である。 Furthermore, although the said embodiment forms the uneven | corrugated | grooved part 509 in the light-incidence end surface 507a of the light-guide plate 507 comprised in the backlight unit 503 of the liquid crystal display device 501 used for a liquid crystal television, the optical of this invention The sheet processing apparatus and method can be applied to, for example, an optical sheet forming process as a light guide plate for illumination or decoration.
 107…導光板(光学シート)、107a…入光端面、109…凹凸部、120…光学シート加工装置、121…ステージ、122…クランプ板(クランプ手段)、124…転写金型、125…剛体ロール部、125a…周面(転写面)、126…転写用凹凸部、127…加熱部(加熱手段)、128…圧力印加部(圧力印加手段)、129…移動駆動部(駆動手段)、130…回転駆動部(駆動手段)、131…移動駆動部(駆動手段)、132…ステージ、P…ピッチ、H…高さ。
 207…導光板(光学シート)、207a…入光端面、209…凹凸部、224…転写金型、225…剛体ロール部、225a…周面(転写面)、226…転写用凹凸部。
 307…導光板(光学シート)、307a…入光端面、309…凹凸部、319…転写用凹凸部、320…光学シート加工装置、323…転写ロール、323a…外周面(転写面)、323b…ロール軸、326A,326B…ステージベース(移動用動力伝達機構、移動手段)、327A,327B…ガイドレール(移動用動力伝達機構、移動手段)、328A,328B…ステージ、330A,330B…押圧シリンダ(圧力印加手段)、331A,331B…成形用サーボモータ(回転手段、移動手段)、332A,332B…ピニオンギア(回転用動力伝達機構、回転手段、移動用動力伝達機構、移動手段)、333A,333B…ラックギア(移動用動力伝達機構、移動手段)、334A,334B…シャフト(回転用動力伝達機構、回転手段)、335A,335B…平歯車(回転用動力伝達機構、回転手段)、336A,336B…電磁クラッチ(回転用動力伝達機構、回転手段)、337A,337B…シャフト(回転用動力伝達機構、回転手段)、338A,338B…平歯車(第2平歯車、回転用動力伝達機構、回転手段)、339…平歯車(第1平歯車、回転用動力伝達機構、回転手段)、341…誘導コイル(加熱手段)、342…電源部(加熱手段)。
 407…導光板(光学シート)、407a…入光端面、409…凹凸部、420…光学シート加工装置、422…ラック(第2移動手段)、423…転写ロール、423a…外周面(転写面)、423b…ロール軸、426A,426B…ステージベース(第1移動手段)、427A,427B…ガイドレール(第1移動手段)、428A,428B…ステージ、430A,430B…押圧シリンダ(圧力印加手段)、431A,431B…成形用サーボモータ(回転手段、第1移動手段)、432A,432B…ピニオンギア(回転手段、第1移動手段)、433A,433B…ラックギア(第1移動手段)、434A,434B…シャフト(回転手段)、435A,435B…平歯車(回転手段)、436A,436B…電磁クラッチ(回転手段)、437A,437B…シャフト(回転手段)、438A,438B…平歯車(回転手段)、439…平歯車(回転手段)、441…誘導コイル(加熱手段)、442…電源部(加熱手段)、443…ボールネジ(第2移動手段)、444…主昇降体(第2移動手段)、445…昇降用サーボモータ(第2移動手段)、446…リニアガイド(第2移動手段)、447…補助昇降体(第2移動手段)。
 507…導光板(光学シート)、507a…入光端面、509…凹凸部、519…転写用凹凸部、520…光学シート加工装置、523…転写ロール、523a…外周面(転写面)、523b…ロール軸、526A,526B…ステージベース(移動手段)、527A,527B…ガイドレール(移動手段)、528A,528B…ステージ、530A,530B…押圧シリンダ(圧力印加手段)、531A,531B…成形用サーボモータ(回転手段、移動手段)、532A,532B…ピニオンギア(回転手段、移動手段)、533A,533B…ラックギア(移動手段)、534A,534B…シャフト(回転手段)、535A,535B…平歯車(回転手段)、536A,536B…電磁クラッチ(回転手段)、537A,537B…シャフト(回転手段)、538A,538B…平歯車(回転手段)、539…平歯車(回転手段)、541…誘導コイル(加熱手段)、542…電源部(加熱手段)、551…位置決め用ローラ(位置決め部材)、552…押付バー(押付部材)、555…押付部材、556…バー、557…押付ピン、558…ガイド溝。
DESCRIPTION OF SYMBOLS 107 ... Light guide plate (optical sheet), 107a ... Light-incidence end surface, 109 ... Uneven part, 120 ... Optical sheet processing apparatus, 121 ... Stage, 122 ... Clamp plate (clamp means), 124 ... Transfer die, 125 ... Rigid body roll , 125a ... peripheral surface (transfer surface), 126 ... concavo-convex part for transfer, 127 ... heating part (heating means), 128 ... pressure application part (pressure application means), 129 ... movement drive part (drive means), 130 ... Rotation drive unit (drive unit), 131... Movement drive unit (drive unit), 132... Stage, P... Pitch, H.
207 ... Light guide plate (optical sheet), 207 a ... Light incident end face, 209 ... Uneven part, 224 ... Transfer mold, 225 ... Rigid roll part, 225a ... Peripheral surface (transfer surface), 226 ... Uneven part for transfer.
307: Light guide plate (optical sheet), 307a: Light incident end surface, 309: Uneven portion, 319 ... Uneven portion for transfer, 320 ... Optical sheet processing device, 323 ... Transfer roll, 323a ... Outer peripheral surface (transfer surface), 323b ... Roll shaft, 326A, 326B ... stage base (moving power transmission mechanism, moving means), 327A, 327B ... guide rail (moving power transmission mechanism, moving means), 328A, 328B ... stage, 330A, 330B ... pressing cylinder ( Pressure application means), 331A, 331B ... molding servo motor (rotation means, movement means), 332A, 332B ... pinion gear (rotation power transmission mechanism, rotation means, movement power transmission mechanism, movement means), 333A, 333B ... Rack gear (moving power transmission mechanism, moving means), 334A, 334B ... Shaft (rotary power transmission) , Rotation means), 335A, 335B ... spur gear (rotation power transmission mechanism, rotation means), 336A, 336B ... electromagnetic clutch (rotation power transmission mechanism, rotation means), 337A, 337B ... shaft (rotation power transmission mechanism) , Rotating means), 338A, 338B ... spur gear (second spur gear, rotating power transmission mechanism, rotating means), 339 ... spur gear (first spur gear, rotating power transmission mechanism, rotating means), 341 ... induction Coil (heating means), 342... Power supply (heating means).
407 ... Light guide plate (optical sheet), 407a ... light incident end surface, 409 ... uneven portion, 420 ... optical sheet processing apparatus, 422 ... rack (second moving means), 423 ... transfer roll, 423a ... outer peripheral surface (transfer surface) 423b ... roll shaft, 426A, 426B ... stage base (first moving means), 427A, 427B ... guide rail (first moving means), 428A, 428B ... stage, 430A, 430B ... pressure cylinder (pressure applying means), 431A, 431B ... Molding servo motor (rotating means, first moving means), 432A, 432B ... Pinion gear (rotating means, first moving means), 433A, 433B ... Rack gear (first moving means), 434A, 434B ... Shaft (rotating means), 435A, 435B ... spur gear (rotating means), 436A, 436B ... electromagnetic clutch ( 437A, 437B ... shaft (rotating means), 438A, 438B ... spur gear (rotating means), 439 ... spur gear (rotating means), 441 ... induction coil (heating means), 442 ... power supply (heating means) , 443 ... Ball screw (second moving means), 444 ... Main elevating body (second moving means), 445 ... Elevating servo motor (second moving means), 446 ... Linear guide (second moving means), 447 ... Auxiliary lifting body (second moving means).
507 ... Light guide plate (optical sheet), 507 a ... Light incident end face, 509 ... Uneven portion, 519 ... Uneven portion for transfer, 520 ... Optical sheet processing device, 523 ... Transfer roll, 523a ... Outer peripheral surface (transfer surface), 523b ... Roll shaft, 526A, 526B ... Stage base (moving means), 527A, 527B ... Guide rail (moving means), 528A, 528B ... Stage, 530A, 530B ... Press cylinder (pressure applying means), 531A, 531B ... Servo for molding Motor (rotating means, moving means), 532A, 532B ... Pinion gear (rotating means, moving means), 533A, 533B ... Rack gear (moving means), 534A, 534B ... Shaft (rotating means), 535A, 535B ... Spur gear ( Rotating means), 536A, 536B ... Electromagnetic clutch (rotating means), 537A, 537B Shaft (rotating means), 538A, 538B ... spur gear (rotating means), 539 ... spur gear (rotating means), 541 ... induction coil (heating means), 542 ... power supply (heating means), 551 ... positioning roller ( Positioning member), 552... Pressing bar (pressing member), 555... Pressing member, 556... Bar, 557.

Claims (29)

  1.  熱可塑性樹脂からなり入光端面に凹凸部が設けられた光学シートを製造する光学シート製造方法であって、
     前記光学シートの入光端面に前記凹凸部を付与するための転写面を有する転写金型を用意する準備工程と、
     前記転写金型を加熱した状態で、前記転写面及び前記入光端面同士を押し付けることで、前記入光端面に前記凹凸部を形成する加工工程とを含むことを特徴とする光学シート製造方法。
    An optical sheet manufacturing method for manufacturing an optical sheet made of a thermoplastic resin and having an uneven portion on the light incident end face,
    A preparation step of preparing a transfer mold having a transfer surface for imparting the concavo-convex portion to the light incident end surface of the optical sheet;
    An optical sheet manufacturing method comprising: forming the concave and convex portions on the light incident end surface by pressing the transfer surface and the light incident end surface with the transfer mold heated.
  2.  前記加工工程では、前記熱可塑性樹脂のビカット軟化温度以上であり且つ前記熱可塑性樹脂のビカット軟化温度+50℃以下の温度に前記転写金型を加熱することを特徴とする請求項1記載の光学シート製造方法。 2. The optical sheet according to claim 1, wherein in the processing step, the transfer mold is heated to a temperature that is equal to or higher than a Vicat softening temperature of the thermoplastic resin and is equal to or lower than a Vicat softening temperature of the thermoplastic resin + 50 ° C. 3. Production method.
  3.  前記転写金型は、金属製のロール部を有し、
     前記ロール部の周面が前記転写面となっており、
     前記加工工程では、前記転写面及び前記入光端面同士を押し付けた状態で、前記ロール部を回転させると共に、前記光学シートの入光端面に沿って前記ロール部を前記光学シートに対して相対的に移動させて、前記入光端面に前記凹凸部を形成することを特徴とする請求項1または2記載の光学シート製造方法。
    The transfer mold has a metal roll part,
    The peripheral surface of the roll part is the transfer surface,
    In the processing step, the roll unit is rotated in a state where the transfer surface and the light incident end surface are pressed against each other, and the roll unit is relative to the optical sheet along the light incident end surface of the optical sheet. The optical sheet manufacturing method according to claim 1, wherein the uneven portion is formed on the light incident end face.
  4.  前記転写面には、プリズム形状またはレンチキュラー形状の転写用凹凸部が設けられており、
     前記転写用凹凸部のピッチが10μm~500μmであり、
     前記転写用凹凸部の高さが10μm~300μmであることを特徴とする請求項1~3のいずれか一項記載の光学シート製造方法。
    The transfer surface is provided with a prism-shaped or lenticular-shaped concavo-convex portion for transfer,
    The pitch of the uneven portions for transfer is 10 μm to 500 μm,
    The method for producing an optical sheet according to any one of claims 1 to 3, wherein the height of the concavo-convex portion for transfer is 10 袖 m to 300 袖 m.
  5.  前記加工工程では、0.05MPa~50MPaの圧力で前記転写面及び前記入光端面同士を押し付けることを特徴とする請求項1~4のいずれか一項記載の光学シート製造方法。 5. The optical sheet manufacturing method according to claim 1, wherein, in the processing step, the transfer surface and the light incident end surface are pressed against each other with a pressure of 0.05 MPa to 50 MPa.
  6.  前記熱可塑性樹脂として非晶性樹脂を用いることを特徴とする請求項1~5のいずれか一項記載の光学シート製造方法。 6. The method for producing an optical sheet according to claim 1, wherein an amorphous resin is used as the thermoplastic resin.
  7.  前記加工工程では、前記転写面に前記熱可塑性樹脂が完全に充填される前に、前記転写金型と前記光学シートとを離型することを特徴とする請求項1記載の光学シート製造方法。 2. The optical sheet manufacturing method according to claim 1, wherein, in the processing step, the transfer mold and the optical sheet are released before the transfer surface is completely filled with the thermoplastic resin.
  8.  前記加工工程では、前記熱可塑性樹脂のビカット軟化温度以上であり且つ前記熱可塑性樹脂のビカット軟化温度+40℃以下の温度に前記転写金型を加熱することを特徴とする請求項7記載の光学シート製造方法。 8. The optical sheet according to claim 7, wherein, in the processing step, the transfer mold is heated to a temperature that is equal to or higher than a Vicat softening temperature of the thermoplastic resin and is equal to or lower than a Vicat softening temperature of the thermoplastic resin + 40 ° C. Production method.
  9.  前記転写面には、プリズム形状またはレンチキュラー形状を有する転写用凹凸部が設けられており、
     前記加工工程では、前記転写用凹凸部の1ピッチにおける基部平坦領域の長さFと凸状領域の長さWaとの比F/Waが0%~50%であるときに、前記凹凸部の1ピッチにおける先端部平坦領域の長さF’と凹状領域の長さWa’との比F’/Wa’が10%~300%となるように、前記入光端面に前記凹凸部を形成することを特徴とする請求項7または8記載の光学シート製造方法。
    The transfer surface is provided with an uneven portion for transfer having a prism shape or a lenticular shape,
    In the processing step, when the ratio F / Wa between the length F of the base flat region and the length Wa of the convex region at one pitch of the uneven portion for transfer is 0% to 50%, The concavo-convex portion is formed on the light incident end face so that a ratio F ′ / Wa ′ of the length F ′ of the flat tip end region to the length Wa ′ of the concave region at 1 pitch is 10% to 300%. The method for producing an optical sheet according to claim 7 or 8, wherein:
  10.  熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工装置であって、
     前記光学シートを支持するステージと、
     前記ステージに支持された前記光学シートの入光端面に前記凹凸部を付与するための転写面を有する転写金型と、
     前記転写金型を加熱する加熱手段と、
     前記転写面及び前記入光端面同士を押し付けるように圧力を印加する圧力印加手段と、
     前記入光端面に前記凹凸部を形成するように前記ステージ及び前記転写金型の少なくとも一方を駆動する駆動手段とを備えることを特徴とする光学シート加工装置。
    An optical sheet processing apparatus for forming an uneven portion on a light incident end face of an optical sheet made of a thermoplastic resin,
    A stage for supporting the optical sheet;
    A transfer mold having a transfer surface for imparting the concavo-convex portion to the light incident end surface of the optical sheet supported by the stage;
    Heating means for heating the transfer mold;
    Pressure applying means for applying pressure so as to press the transfer surface and the light incident end surfaces;
    An optical sheet processing apparatus comprising: a drive unit that drives at least one of the stage and the transfer mold so as to form the uneven portion on the light incident end surface.
  11.  前記転写金型は、金属製のロール部を有し、
     前記ロール部の周面が前記転写面となっており、
     前記駆動手段は、前記ロール部を回転させる手段と、前記光学シートの入光端面に沿って前記ロール部を前記ステージに対して相対的に移動させる手段とを有することを特徴とする請求項10記載の光学シート加工装置。
    The transfer mold has a metal roll part,
    The peripheral surface of the roll part is the transfer surface,
    The said drive means has a means to rotate the said roll part, and a means to move the said roll part relatively with respect to the said stage along the light-incidence end surface of the said optical sheet, It is characterized by the above-mentioned. The optical sheet processing apparatus as described.
  12.  前記光学シートを前記ステージに対してクランプするクランプ手段を更に備えることを特徴とする請求項10または11記載の光学シート加工装置。 12. The optical sheet processing apparatus according to claim 10, further comprising a clamping unit that clamps the optical sheet with respect to the stage.
  13.  熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工装置であって、
     前記光学シートの入光端面に前記凹凸部を付与するための転写面を有する金属製の転写ロールと、
     前記転写ロールを挟むように配置され、前記光学シートを支持する1対のステージと、
     前記転写ロールを加熱する加熱手段と、
     前記転写面及び前記入光端面同士を押し付けるように前記ステージに圧力を印加する圧力印加手段と、
     前記転写ロールを回転させる回転手段と、
     前記ステージを前記転写ロールに対して前記凹凸部の形成方向に移動させる移動手段とを備えることを特徴とする光学シート加工装置。
    An optical sheet processing apparatus for forming an uneven portion on a light incident end face of an optical sheet made of a thermoplastic resin,
    A metal transfer roll having a transfer surface for imparting the concavo-convex portion to the light incident end surface of the optical sheet;
    A pair of stages arranged to sandwich the transfer roll and supporting the optical sheet;
    Heating means for heating the transfer roll;
    Pressure applying means for applying pressure to the stage so as to press the transfer surface and the light incident end surfaces;
    A rotating means for rotating the transfer roll;
    An optical sheet processing apparatus comprising: a moving unit configured to move the stage in the forming direction of the uneven portion with respect to the transfer roll.
  14.  前記回転手段は、前記各ステージに対応して設けられた1対のモータと、前記各モータの駆動力を前記転写ロールに伝達する回転用動力伝達機構とを有し、
     前記移動手段は、前記1対のモータと、前記各モータの駆動力を前記各ステージにそれぞれ伝達する移動用動力伝達機構とを有することを特徴とする請求項13記載の光学シート加工装置。
    The rotating means includes a pair of motors provided corresponding to the stages, and a rotational power transmission mechanism that transmits a driving force of the motors to the transfer roll.
    The optical sheet processing apparatus according to claim 13, wherein the moving unit includes the pair of motors and a moving power transmission mechanism that transmits a driving force of the motors to the stages.
  15.  前記回転用動力伝達機構は、前記転写ロールのロール軸に取り付けられた第1平歯車と、前記第1平歯車とそれぞれ噛み合う1対の第2平歯車と、前記各第2平歯車への前記各モータの駆動力の伝達をそれぞれ断続する1対のクラッチとを有し、
     前記移動用動力伝達機構は、前記各ステージにそれぞれ設けられた1対のラックと、前記各モータの出力軸にそれぞれ取り付けられ、前記各ラックとそれぞれ噛み合う1対のピニオンとを有することを特徴とする請求項14記載の光学シート加工装置。
    The rotation power transmission mechanism includes a first spur gear attached to a roll shaft of the transfer roll, a pair of second spur gears that mesh with the first spur gear, and the second spur gear to the second spur gear. A pair of clutches for intermittently transmitting and receiving the driving force of each motor,
    The power transmission mechanism for movement includes a pair of racks provided on each stage, and a pair of pinions attached to output shafts of the motors and meshing with the racks, respectively. The optical sheet processing apparatus according to claim 14.
  16.  熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工方法であって、
     請求項13~15のいずれか一項記載の光学シート加工装置を用意する準備工程と、
     前記転写ロールを加熱すると共に、前記転写面及び前記入光端面同士を押し付けるように前記ステージに圧力を印加した状態で、前記転写ロールを回転させながら、前記ステージを前記転写ロールに対して前記凹凸部の形成方向に移動させることにより、前記入光端面に前記凹凸部を形成する成形工程とを含み、
     前記成形工程では、前記1対のステージの一方に支持された前記光学シートの入光端面に前記凹凸部を形成していない間に、前記1対のステージの他方に支持された前記光学シートの入光端面に前記凹凸部を形成することを特徴とする光学シート加工方法。
    An optical sheet processing method for forming a concavo-convex portion on a light incident end face of an optical sheet made of a thermoplastic resin,
    A preparation step of preparing the optical sheet processing apparatus according to any one of claims 13 to 15,
    While heating the transfer roll and applying pressure to the stage so as to press the transfer surface and the light incident end surfaces, the stage is moved with respect to the transfer roll while rotating the transfer roll. Forming the concavo-convex part on the light incident end surface by moving in the forming direction of the part,
    In the molding step, the optical sheet supported on the other of the pair of stages is not formed on the light incident end face of the optical sheet supported on one of the pair of stages. An optical sheet processing method, wherein the uneven portion is formed on a light incident end surface.
  17.  前記成形工程は、
     前記一方のステージに対する前記光学シートの取り出しを行っている間に、前記他方のステージを一側から他側に移動させて、前記他方のステージに支持された前記光学シートの入光端面に前記凹凸部を形成する第1工程と、
     前記第1工程を実施した後、前記他方のステージに対する前記光学シートの取り出しを行っている間に、前記一方のステージを前記一側から前記他側に移動させて、前記一方のステージに支持された前記光学シートの入光端面に前記凹凸部を形成する第2工程と、
     前記第2工程を実施した後、前記一方のステージに対する前記光学シートの取り出しを行っている間に、前記他方のステージを前記他側から前記一側に移動させて、前記他方のステージに支持された前記光学シートの入光端面に前記凹凸部を形成する第3工程と、
     前記第3工程を実施した後、前記他方のステージに対する前記光学シートの取り出しを行っている間に、前記一方のステージを前記他側から前記一側に移動させて、前記一方のステージに支持された前記光学シートの入光端面に前記凹凸部を形成する第4工程とを含むことを特徴とする請求項16記載の光学シート加工方法。
    The molding step includes
    While taking out the optical sheet with respect to the one stage, the other stage is moved from one side to the other side, and the unevenness is formed on the light incident end surface of the optical sheet supported by the other stage. A first step of forming a portion;
    After performing the first step, while the optical sheet is being taken out from the other stage, the one stage is moved from the one side to the other side and supported by the one stage. A second step of forming the concavo-convex portion on the light incident end face of the optical sheet;
    After performing the second step, while taking out the optical sheet from the one stage, the other stage is moved from the other side to the one side and is supported by the other stage. A third step of forming the uneven portion on the light incident end surface of the optical sheet;
    After performing the third step, while the optical sheet is being taken out from the other stage, the one stage is moved from the other side to the one side and supported by the one stage. The optical sheet processing method according to claim 16, further comprising: a fourth step of forming the uneven portion on the light incident end face of the optical sheet.
  18.  前記成形工程は、
     前記一方のステージに対する前記光学シートの取り出しを行っている間に、前記他方のステージを一側から他側に移動させて、前記他方のステージに支持された前記光学シートの入光端面に前記凹凸部を形成する第1工程と、
     前記第1工程を実施した後、前記一方のステージが待機している間に、前記他方のステージを前記他側から前記一側に移動させる第2工程と、
     前記第2工程を実施した後、前記他方のステージに対する前記光学シートの取り出しを行っている間に、前記一方のステージを前記他側から前記一側に移動させて、前記一方のステージに支持された前記光学シートの入光端面に前記凹凸部を形成する第3工程と、
     前記第3工程を実施した後、前記他方のステージが待機している間に、前記一方のステージを前記一側から前記他側に移動させる第4工程とを含むことを特徴とする請求項16記載の光学シート加工方法。
    The molding step includes
    While taking out the optical sheet with respect to the one stage, the other stage is moved from one side to the other side, and the unevenness is formed on the light incident end surface of the optical sheet supported by the other stage. A first step of forming a portion;
    A second step of moving the other stage from the other side to the one side while the one stage is waiting after performing the first step;
    After performing the second step, while taking out the optical sheet from the other stage, the one stage is moved from the other side to the one side and supported by the one stage. A third step of forming the uneven portion on the light incident end surface of the optical sheet;
    17. The fourth step of moving the one stage from the one side to the other side while the other stage is waiting after the third step is performed. The optical sheet processing method as described.
  19.  前記成形工程は、
     前記一方のステージに対する前記光学シートの取り出しを行っている間に、前記他方のステージを一側から他側に移動させて、前記他方のステージに支持された前記光学シートの入光端面に前記凹凸部を形成する第1工程と、
     前記第1工程を実施した後、前記一方のステージが待機している間に、前記他方のステージを前記他側から前記一側に移動させる第2工程と、
     前記第2工程を実施した後、前記他方のステージに対する前記光学シートの取り出しを行っている間に、前記一方のステージを前記一側から前記他側に移動させて、前記一方のステージに支持された前記光学シートの入光端面に前記凹凸部を形成する第3工程と、
     前記第3工程を実施した後、前記他方のステージが待機している間に、前記一方のステージを前記他側から前記一側に移動させる第4工程とを含むことを特徴とする請求項16記載の光学シート加工方法。
    The molding step includes
    While taking out the optical sheet with respect to the one stage, the other stage is moved from one side to the other side, and the unevenness is formed on the light incident end surface of the optical sheet supported by the other stage. A first step of forming a portion;
    A second step of moving the other stage from the other side to the one side while the one stage is waiting after performing the first step;
    After performing the second step, while the optical sheet is being taken out from the other stage, the one stage is moved from the one side to the other side and supported by the one stage. A third step of forming the uneven portion on the light incident end surface of the optical sheet;
    17. The fourth step of moving the one stage from the other side to the one side while the other stage is waiting after the third step is performed. The optical sheet processing method as described.
  20.  熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工装置であって、
     前記光学シートを支持するステージと、
     前記ステージに支持された前記光学シートの入光端面に前記凹凸部を付与するための転写面を有する金属製の転写ロールと、
     前記転写ロールを加熱する加熱手段と、
     前記転写面及び前記入光端面同士を押し付けるように圧力を印加する圧力印加手段と、
     前記転写ロールを回転させる回転手段と、
     前記ステージを前記転写ロールに対して前記凹凸部の形成方向に相対的に移動させる第1移動手段と、
     前記転写ロールを前記ステージに対して前記転写ロールのロール軸方向に相対的に移動させる第2移動手段とを備えることを特徴とする光学シート加工装置。
    An optical sheet processing apparatus for forming an uneven portion on a light incident end face of an optical sheet made of a thermoplastic resin,
    A stage for supporting the optical sheet;
    A metal transfer roll having a transfer surface for imparting the concavo-convex portion to the light incident end surface of the optical sheet supported by the stage;
    Heating means for heating the transfer roll;
    Pressure applying means for applying pressure so as to press the transfer surface and the light incident end surfaces;
    A rotating means for rotating the transfer roll;
    First moving means for moving the stage relative to the transfer roll in the formation direction of the concavo-convex portion;
    An optical sheet processing apparatus comprising: a second moving unit that moves the transfer roll relative to the stage in a roll axis direction of the transfer roll.
  21.  前記光学シートの主面には、マスキングフィルムが貼合されていることを特徴とする請求項20記載の光学シート加工装置。 The optical sheet processing apparatus according to claim 20, wherein a masking film is bonded to a main surface of the optical sheet.
  22.  前記加熱手段は、前記転写ロールに設けられた誘導コイルと、前記誘導コイルに電流を供給する電源部とを有することを特徴とする請求項20または21記載の光学シート加工装置。 The optical sheet processing apparatus according to claim 20 or 21, wherein the heating means includes an induction coil provided in the transfer roll and a power supply unit that supplies a current to the induction coil.
  23.  熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工方法であって、
     請求項20~22のいずれか一項記載の光学シート加工装置を用意する準備工程と、
     前記転写ロールを加熱すると共に、前記転写面及び前記入光端面同士を押し付けるように圧力を印加した状態で、前記転写ロールを回転させながら、前記ステージを前記転写ロールに対して前記凹凸部の形成方向に相対的に移動させることにより、前記入光端面に前記凹凸部を形成する成形工程と、
     前記成形工程を実施した後、前記転写面に異物が付着している場合に、前記転写面における前記異物の付着箇所に前記入光端面が接触することが回避されるように、前記転写ロールを前記ステージに対して前記転写ロールのロール軸方向に相対的に移動させる回避工程とを含むことを特徴とする光学シート加工方法。
    An optical sheet processing method for forming a concavo-convex portion on a light incident end face of an optical sheet made of a thermoplastic resin,
    A preparation step of preparing the optical sheet processing apparatus according to any one of claims 20 to 22;
    While the transfer roll is heated and the pressure is applied so as to press the transfer surface and the light incident end faces, the stage is formed with respect to the transfer roll while rotating the transfer roll. A forming step of forming the concavo-convex portion on the light incident end face by moving in a direction relatively;
    After carrying out the forming step, when the foreign matter adheres to the transfer surface, the transfer roll is arranged so as to avoid the light incident end face coming into contact with the foreign matter attachment location on the transfer surface. An avoiding step of moving the transfer roll relative to the stage in the roll axis direction of the transfer roll.
  24.  熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工装置であって、
     前記光学シートを支持するステージと、
     前記ステージに支持された前記光学シートの入光端面に前記凹凸部を付与するための転写面を有する金属製の転写ロールと、
     前記ステージに対して前記転写ロールに対応する側に配置され、前記転写ロールに対する前記光学シートの基準位置を設定するための位置決め部材と、
     前記光学シートを前記位置決め部材に押し付けるための押付部材と、
     前記転写ロールを加熱する加熱手段と、
     前記転写面及び前記入光端面同士を押し付けるように圧力を印加する圧力印加手段と、
     前記転写ロールを回転させる回転手段と、
     前記ステージを前記転写ロールに対して前記凹凸部の形成方向に相対的に移動させる移動手段とを備えることを特徴とする光学シート加工装置。
    An optical sheet processing apparatus for forming an uneven portion on a light incident end face of an optical sheet made of a thermoplastic resin,
    A stage for supporting the optical sheet;
    A metal transfer roll having a transfer surface for imparting the concavo-convex portion to the light incident end surface of the optical sheet supported by the stage;
    A positioning member disposed on a side corresponding to the transfer roll with respect to the stage, and a positioning member for setting a reference position of the optical sheet with respect to the transfer roll;
    A pressing member for pressing the optical sheet against the positioning member;
    Heating means for heating the transfer roll;
    Pressure applying means for applying pressure so as to press the transfer surface and the light incident end surfaces;
    A rotating means for rotating the transfer roll;
    An optical sheet processing apparatus comprising: a moving unit configured to move the stage relative to the transfer roll in the formation direction of the uneven portion.
  25.  前記位置決め部材は、自由回転自在なローラであることを特徴とする請求項24記載の光学シート加工装置。 25. The optical sheet processing apparatus according to claim 24, wherein the positioning member is a freely rotatable roller.
  26.  前記押付部材は、前記ステージの移動方向に延びるバーと前記ステージの移動方向に並んで配置された複数のピンとの少なくとも一方であることを特徴とする請求項24または25記載の光学シート加工装置。 26. The optical sheet processing apparatus according to claim 24, wherein the pressing member is at least one of a bar extending in the moving direction of the stage and a plurality of pins arranged side by side in the moving direction of the stage.
  27.  前記バーには、前記複数のピンが前記ステージ側に突出しており、
     前記ステージの上面には、前記光学シートの押し付け方向に延在し、前記各ピンをスライドさせるための複数のガイド溝が設けられていることを特徴とする請求項26記載の光学シート加工装置。
    In the bar, the plurality of pins protrude to the stage side,
    27. The optical sheet processing apparatus according to claim 26, wherein a plurality of guide grooves extending in the pressing direction of the optical sheet and sliding the pins are provided on the upper surface of the stage.
  28.  前記転写面の凹凸の深さが0.01mm~0.30mmであることを特徴とする請求項24~27のいずれか一項記載の光学シート加工装置。 The optical sheet processing apparatus according to any one of claims 24 to 27, wherein a depth of the unevenness of the transfer surface is 0.01 mm to 0.30 mm.
  29.  熱可塑性樹脂からなる光学シートの入光端面に凹凸部を形成する光学シート加工方法であって、
     請求項24~28のいずれか一項記載の光学シート加工装置を用意する準備工程と、
     前記ステージに前記光学シートを支持した状態で、前記押付部材により前記光学シートを前記位置決め部材に押し付けて、前記転写ロールに対する前記光学シートの基準位置を設定する位置決め工程と、
     前記転写ロールを加熱すると共に、前記転写面及び前記入光端面同士を押し付けるように圧力を印加した状態で、前記転写ロールを回転させながら、前記ステージを前記転写ロールに対して前記凹凸部の形成方向に相対的に移動させることにより、前記入光端面に前記凹凸部を形成する成形工程とを含むことを特徴とする光学シート加工方法。
    An optical sheet processing method for forming a concavo-convex portion on a light incident end face of an optical sheet made of a thermoplastic resin,
    A preparation step of preparing the optical sheet processing apparatus according to any one of claims 24 to 28;
    A positioning step of setting a reference position of the optical sheet with respect to the transfer roll by pressing the optical sheet against the positioning member by the pressing member with the optical sheet supported on the stage;
    While the transfer roll is heated and the pressure is applied so as to press the transfer surface and the light incident end faces, the stage is formed with respect to the transfer roll while rotating the transfer roll. And a forming step of forming the concavo-convex portion on the light incident end face by moving in a direction relatively.
PCT/JP2013/064373 2012-05-29 2013-05-23 Optical sheet manufacturing method, optical sheet processing device, and optical sheet processing method WO2013180009A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012121912A JP2013244717A (en) 2012-05-29 2012-05-29 Optical sheet manufacturing method
JP2012-121912 2012-05-29
JP2012-126090 2012-06-01
JP2012126090A JP2013251185A (en) 2012-06-01 2012-06-01 Method for manufacturing optical sheet
JP2012-256558 2012-11-22
JP2012256558A JP6066689B2 (en) 2012-11-22 2012-11-22 Optical sheet processing equipment
JP2012-256555 2012-11-22
JP2012256555A JP6033053B2 (en) 2012-11-22 2012-11-22 Optical sheet processing equipment
JP2012267058A JP6033066B2 (en) 2012-12-06 2012-12-06 Optical sheet processing equipment
JP2012-267058 2012-12-06

Publications (1)

Publication Number Publication Date
WO2013180009A1 true WO2013180009A1 (en) 2013-12-05

Family

ID=49673207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064373 WO2013180009A1 (en) 2012-05-29 2013-05-23 Optical sheet manufacturing method, optical sheet processing device, and optical sheet processing method

Country Status (2)

Country Link
TW (1) TW201402309A (en)
WO (1) WO2013180009A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104842550A (en) * 2015-04-28 2015-08-19 合肥京东方显示光源有限公司 Impression device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147255A (en) * 1997-11-19 1999-06-02 Matsushita Electric Ind Co Ltd Manufacture of light conduction plate with prism shape
JP2002214414A (en) * 2001-01-22 2002-07-31 Omron Corp Optical element with thin resin film having micro-rugged pattern, method for producing the same and apparatus therefor
JP2008175996A (en) * 2007-01-18 2008-07-31 Sumitomo Bakelite Co Ltd Manufacturing method of light guide plate
JP2010018649A (en) * 2008-07-08 2010-01-28 Teijin Chem Ltd Shaped film formed of crystalline resin
JP2010182478A (en) * 2009-02-04 2010-08-19 Fujifilm Corp Light guide plate, surface illumination device, and method of manufacturing the light guide plate
WO2010125795A1 (en) * 2009-04-30 2010-11-04 シャープ株式会社 Mold and manufacturing method therefor
JP2011183782A (en) * 2010-03-11 2011-09-22 Toshiba Mach Co Ltd Transfer device and transfer method
WO2012015013A1 (en) * 2010-07-29 2012-02-02 旭化成株式会社 Television receiver and surface light source device
JP2012069282A (en) * 2010-09-21 2012-04-05 Sumitomo Chemical Co Ltd Optical sheet, plane light source device, and transmission image display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147255A (en) * 1997-11-19 1999-06-02 Matsushita Electric Ind Co Ltd Manufacture of light conduction plate with prism shape
JP2002214414A (en) * 2001-01-22 2002-07-31 Omron Corp Optical element with thin resin film having micro-rugged pattern, method for producing the same and apparatus therefor
JP2008175996A (en) * 2007-01-18 2008-07-31 Sumitomo Bakelite Co Ltd Manufacturing method of light guide plate
JP2010018649A (en) * 2008-07-08 2010-01-28 Teijin Chem Ltd Shaped film formed of crystalline resin
JP2010182478A (en) * 2009-02-04 2010-08-19 Fujifilm Corp Light guide plate, surface illumination device, and method of manufacturing the light guide plate
WO2010125795A1 (en) * 2009-04-30 2010-11-04 シャープ株式会社 Mold and manufacturing method therefor
JP2011183782A (en) * 2010-03-11 2011-09-22 Toshiba Mach Co Ltd Transfer device and transfer method
WO2012015013A1 (en) * 2010-07-29 2012-02-02 旭化成株式会社 Television receiver and surface light source device
JP2012069282A (en) * 2010-09-21 2012-04-05 Sumitomo Chemical Co Ltd Optical sheet, plane light source device, and transmission image display device

Also Published As

Publication number Publication date
TW201402309A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
KR102454030B1 (en) Wafer producing method
US9776360B2 (en) Transfer printing apparatus and manufacturing method of light guiding film
CN101031383A (en) Device for cutting glass substrate and its method
JP2007311325A (en) Light guide plate and its manufacturing method, and back light unit using its light guide plate
US10138162B2 (en) Method and device for bonding workpieces each produced from glass substrate or quartz substrate
KR101788321B1 (en) Method of manufacturing bonded member and bonded member manufacturing apparatus
WO2013180009A1 (en) Optical sheet manufacturing method, optical sheet processing device, and optical sheet processing method
US11094567B2 (en) Mounting apparatus and method for manufacturing semiconductor device
JP6995929B2 (en) Laminating equipment
JP2007025090A (en) Diffuse reflecting plate, laminated body for transfer molding, processing method of metallic mold for transfer molding and processing apparatus therefor
JP6066689B2 (en) Optical sheet processing equipment
JP6033053B2 (en) Optical sheet processing equipment
KR101373516B1 (en) Method of manufacturing a shape transferred resin sheet, and resin sheet
JP6033066B2 (en) Optical sheet processing equipment
KR20130126147A (en) Apparatus for forming flatness of glass substrate using the same
JP2008074015A (en) Manufacturing method for lens sheet, and its manufacturing apparatus
JP2020193830A (en) Holding member, inspection mechanism, cutting device, manufacturing method of object to be held, and manufacturing method of holding member
JP2013244717A (en) Optical sheet manufacturing method
JP2013251185A (en) Method for manufacturing optical sheet
KR101560473B1 (en) Manufacturing apparatus and method for a cliche of Metal-Mesh
KR101674236B1 (en) Apparatus and method for forming flatness of glass substrate
JP2009184108A (en) Polishing tool for waveguide forming mold
KR20220072788A (en) Light source Device and 3D Printer having the same
WO2023132145A1 (en) Manufacturing method for laminate-molded article and laminate-molded article manufacturing system
TWI581024B (en) A method of manufacturing a thin trumpet-shaped light guide plate, and the equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797229

Country of ref document: EP

Kind code of ref document: A1