JP2012069282A - Optical sheet, plane light source device, and transmission image display device - Google Patents

Optical sheet, plane light source device, and transmission image display device Download PDF

Info

Publication number
JP2012069282A
JP2012069282A JP2010211053A JP2010211053A JP2012069282A JP 2012069282 A JP2012069282 A JP 2012069282A JP 2010211053 A JP2010211053 A JP 2010211053A JP 2010211053 A JP2010211053 A JP 2010211053A JP 2012069282 A JP2012069282 A JP 2012069282A
Authority
JP
Japan
Prior art keywords
light source
light
optical sheet
image display
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010211053A
Other languages
Japanese (ja)
Inventor
Hisanori Oku
尚規 奥
Takeshi Kawakami
武志 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010211053A priority Critical patent/JP2012069282A/en
Priority to TW100134050A priority patent/TW201222030A/en
Priority to PCT/JP2011/071510 priority patent/WO2012039432A1/en
Publication of JP2012069282A publication Critical patent/JP2012069282A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical sheet capable of substantially uniformly dispersing light from a point light source, as well as a plane light source device and a transmission image display device.SOLUTION: The optical sheet 30 taking on a sheet shape and formed of translucent resin for transmitting light is to be structured of side faces 33 for letting in light irradiated from the point light sources 22 and a light-irradiating face 31 formed in a direction crossing the side faces 33 for irradiating planar light. Protruded parts 35 extended in a thickness direction of the sheet are arranged at a side face 33 in parallel in a length direction Y of the side face 33.

Description

本発明は、離散的に配置された複数の点状光源から入射した光を面状に出射可能な光学シート、面光源装置及び透過型画像表示装置に関するものである。
である。
The present invention relates to an optical sheet, a surface light source device, and a transmissive image display device that can emit light incident from a plurality of discrete point light sources arranged in a planar shape.
It is.

透過型画像表示装置の一例である直下型画像表示装置として、透過型画像表示部の背面側に光源が配置されたものが広く用いられている。透過型画像表示部としては、例えば液晶セルの両面に直線偏光板が配置された液晶表示パネルが挙げられる。光源としては、直管型の冷陰極線管などのような線状光源が複数本、互いに平行に配置されて用いられている。   As a direct type image display device which is an example of a transmission type image display device, a device in which a light source is disposed on the back side of a transmission type image display unit is widely used. Examples of the transmissive image display unit include a liquid crystal display panel in which linear polarizing plates are arranged on both surfaces of a liquid crystal cell. As the light source, a plurality of linear light sources such as a straight tube type cold cathode ray tube are arranged in parallel with each other.

かかる直下型画像表示装置としては、光源からの光を均一に分散させて透過型画像表示部を均一に照明できることが望ましく、このため光源と透過型画像表示部との間には、光源側から入射する光を、その向きを変えて反対側の透過型画像表示部側から出射させる機能を有する一枚の光拡散板といった光制御板が配置されて用いられている(例えば特許文献1参照)。   In such a direct type image display device, it is desirable that the light from the light source can be uniformly dispersed to uniformly illuminate the transmissive image display unit. For this reason, between the light source and the transmissive image display unit, from the light source side. A light control plate such as a single light diffusing plate having a function of changing the direction of the incident light and emitting it from the opposite transmission type image display unit side is used (for example, see Patent Document 1). .

近年、透過型画像表示装置の薄型化が進み、光源が端部側に配置された面光源装置が開発され、従来の光拡散板に代わり、端部から照射された光を画面全体に広げるための導光板が使用され始めている。また、環境対策として水銀(Hg)を含まず、消費電力が低い光源として、発光ダイオード(LED)の使用が増加している。   In recent years, transmissive image display devices have become thinner, and surface light source devices in which light sources are arranged on the edge side have been developed. In order to spread light emitted from the edge portion over the entire screen instead of the conventional light diffusion plate. Light guide plates are starting to be used. In addition, as an environmental measure, mercury (Hg) is not included, and the use of light emitting diodes (LEDs) is increasing as a light source with low power consumption.

そして、導光板には、主に光透過性の高い樹脂が用いられ、導光板の端部に配置されたLEDの光を、導光板内の反射、散乱効果により画面全体に均一に広げることが求められている。   The light guide plate is mainly made of highly light-transmitting resin, and the light of the LED arranged at the end of the light guide plate can be uniformly spread over the entire screen by the reflection and scattering effects in the light guide plate. It has been demanded.

また、LED光源の光を有効に活用し、輝度の均一なエッジライト方式の面状光源として、透光性部材からなる板状部材であり下面に乱反射部が形成され上面を出光面とした導光板を備えるものが知られている(例えば特許文献2参照)。また、エッジライトタイプの導光板として、LED光源からの光を板厚方向に分散させる凹凸形状が入射面に設けられているものが知られている(例えば特許文献3参照)。   In addition, as an edge light type planar light source with uniform brightness using the light from the LED light source effectively, it is a plate-shaped member made of a translucent member. One having an optical plate is known (for example, see Patent Document 2). In addition, as an edge light type light guide plate, one having an uneven surface that disperses light from an LED light source in the thickness direction is provided on an incident surface (see, for example, Patent Document 3).

特開平7−198913号公報JP-A-7-198913 特開2001−342263号公報JP 2001-342263 A 特開2008−10291号公報JP 2008-10291 A

しかし、従来の面光源装置に使用される光制御板では、点状光源からの光を十分に均一なものとすることができず、特に光制御板の端部近傍では、隣接する光源間において明るさが不足する領域が生じるという問題があった。   However, in the light control plate used in the conventional surface light source device, the light from the point light source cannot be made sufficiently uniform, particularly in the vicinity of the end of the light control plate, between adjacent light sources. There was a problem that an area with insufficient brightness occurred.

そこで、本発明は、点状光源からの光を十分に均一に分散させ、明るさが不足する領域を減少させることが可能な光学シート、面光源装置及び透過型画像表示装置を提供することを目的とする。   Therefore, the present invention provides an optical sheet, a surface light source device, and a transmissive image display device that can sufficiently uniformly disperse light from a point light source and reduce an area where brightness is insufficient. Objective.

本発明に係る光学シートは、シート状を成し、光を透過させる透光性樹脂から形成された光学シートであって、点状光源から出射された光を入射する入射面となる側面と、側面と交差する方向に形成され、面状の光を出射する出射面と、を備え、入射面となる側面には、シートの厚み方向に延在し、入射面の長手方向に並列配置された複数の凸状部が形成されていることを特徴としている。   The optical sheet according to the present invention is an optical sheet formed of a translucent resin that is in the form of a sheet and transmits light, and a side surface that serves as an incident surface on which light emitted from a point light source is incident; An exit surface that is formed in a direction intersecting the side surface and emits planar light, and the side surface serving as the entrance surface extends in the thickness direction of the sheet and is arranged in parallel in the longitudinal direction of the entrance surface A plurality of convex portions are formed.

この構成では、光学シートの側面に対向して配置された点状光源からの光を光学シートの側面から入射し、この側面と交差する方向に形成された出射面から面状の光を出射することができる。また、光学シートの入射面となる側面から入射する光は、光学シートの入射面に設けられシートの厚み方向に延在し入射面の長手方向に並列配置された凸状部によって、光学シートの入射面の長手方向に、より広い範囲に広げられる。これにより、正面視において、光学シートの入射面側の端部(側面近傍)の明るさが不足する領域を縮小することができる。なお、光学シートの全ての側面が入射面となる構成でもよく、複数の側面のうちの1つの側面のみが入射面となる構成でもよい。   In this configuration, light from a point light source arranged to face the side surface of the optical sheet is incident from the side surface of the optical sheet, and planar light is emitted from an emission surface formed in a direction intersecting the side surface. be able to. In addition, light incident from the side surface serving as the incident surface of the optical sheet is provided on the incident surface of the optical sheet, extends in the thickness direction of the sheet, and is arranged in parallel in the longitudinal direction of the incident surface. In the longitudinal direction of the incident surface, it is spread over a wider range. Thereby, the area | region where the brightness of the edge part (side surface vicinity) of the entrance plane side of an optical sheet is insufficient in front view can be reduced. In addition, the structure by which all the side surfaces of an optical sheet may become an incident surface may be sufficient, and the structure by which only one side surface among several side surfaces becomes an incident surface may be sufficient.

ここで、凸状部は、入射面の長手方向に0.03mm以上10.0mm以下のピッチで配置され、90°以上150°以下の頂角を有するプリズム形状であることが好適である。これにより、入射面から入射する光を、入射面の長手方向に好適に拡散させることができる。プリズム形状の頂角のより好ましい範囲としては、110°以上140°以下の範囲である。   Here, it is preferable that the convex portions have a prism shape that is arranged at a pitch of 0.03 mm to 10.0 mm in the longitudinal direction of the incident surface and has an apex angle of 90 ° to 150 °. Thereby, the light incident from the incident surface can be suitably diffused in the longitudinal direction of the incident surface. A more preferable range of the apex angle of the prism shape is a range of 110 ° to 140 °.

また、本発明の面光源装置は、上記の光学シートと、光学シートの入射面となる側面と対向し、入射面の長手方向に離散的に配置された複数の点状光源とを備えることを特徴としている。   Moreover, the surface light source device of the present invention includes the above-described optical sheet, and a plurality of point light sources that are opposed to the side surface serving as the incident surface of the optical sheet and are discretely arranged in the longitudinal direction of the incident surface. It is a feature.

この構成では、上記の光学シートを備えているため、光学シートの側面に対向して配置された点状光源からの光を光学シートの側面から入射し、この側面と交差する方向に形成された出射面から面状の光を出射することができる。また、光学シートの入射面となる側面から入射する光は、光学シートの入射面に設けられシートの厚み方向に延在し入射面の長手方向に並列配置された凸状部によって、光学シートの入射面の長手方向に、より広い範囲に広げられる。こりにより、正面視において、光学シートの入射面側の端部(側面近傍)の明るさが不足する領域を縮小することができる。なお、光学シートの全て側面が入射面となる構成でもよく、複数の側面のうちの1つの側面のみが入射面となる構成でもよい。   In this configuration, since the optical sheet is provided, the light from the point light source arranged to face the side surface of the optical sheet is incident from the side surface of the optical sheet and formed in a direction intersecting with the side surface. Planar light can be emitted from the emission surface. In addition, light incident from the side surface serving as the incident surface of the optical sheet is provided on the incident surface of the optical sheet, extends in the thickness direction of the sheet, and is arranged in parallel in the longitudinal direction of the incident surface. In the longitudinal direction of the incident surface, it is spread over a wider range. By this, it is possible to reduce a region where the brightness of the end portion (near the side surface) on the incident surface side of the optical sheet is insufficient in front view. In addition, the structure by which all the side surfaces of an optical sheet may become an incident surface may be sufficient, and the structure by which only one side surface among several side surfaces becomes an incident surface may be sufficient.

また、点状光源は、当該点状光源の法線方向が最大光度となり、光度分布の半値幅が40°以上80°以下であるLED光源であることが好ましい。   Further, the point light source is preferably an LED light source in which the normal direction of the point light source is the maximum luminous intensity and the half value width of the luminous intensity distribution is 40 ° or more and 80 ° or less.

また、本発明の透過型画像表示装置は、上記の面光源装置と、面光源装置の出射面と対向して配置され、面光源装置から出射された光に照射されて画像を表示する透過型画像表示部とを備えることを特徴としている。   A transmissive image display device according to the present invention is a transmissive image display device that is disposed so as to face the above-described surface light source device and the light emission surface of the surface light source device, and displays an image by being irradiated with light emitted from the surface light source device. And an image display unit.

この構成では、上記の面光源装置を備えているため、光学シートの側面に対向して配置された点状光源からの光を光学シートの側面から入射し、この側面と交差する方向に形成された出射面から面状の光を出射することができる。また、光学シートの入射面となる側面から入射する光は、光学シートの入射面に設けられシートの厚み方向に延在し入射面の長手方向に並列配置された凸状部によって、光学シートの入射面の長手方向に、より広い範囲に広げられる。これにより、正面視において、光学シートの入射面側の端部(側面近傍)の明るさが不足する領域を縮小することができる。なお、光学シートの全て側面が入射面となる構成でもよく、複数の側面のうちの1つの側面のみが入射面となる構成でもよい。このような透過型画像表示装置では、点状光源からの光を、十分に均一に分散させて面状の光とすることが可能であり、その均一に分散された面状の光によって、透過型画像表示部を照明することができる。   In this configuration, since the surface light source device described above is provided, the light from the point light source arranged to face the side surface of the optical sheet is incident from the side surface of the optical sheet and is formed in a direction intersecting with the side surface. Planar light can be emitted from the exit surface. In addition, light incident from the side surface serving as the incident surface of the optical sheet is provided on the incident surface of the optical sheet, extends in the thickness direction of the sheet, and is arranged in parallel in the longitudinal direction of the incident surface. In the longitudinal direction of the incident surface, it is spread over a wider range. Thereby, the area | region where the brightness of the edge part (side surface vicinity) of the entrance plane side of an optical sheet is insufficient in front view can be reduced. In addition, the structure by which all the side surfaces of an optical sheet may become an incident surface may be sufficient, and the structure by which only one side surface among several side surfaces becomes an incident surface may be sufficient. In such a transmission-type image display device, light from a point light source can be sufficiently uniformly dispersed to form planar light, and transmission can be performed by the uniformly dispersed planar light. The mold image display unit can be illuminated.

本発明によれば、入射面となる側面から入射した点状光源からの光を、入射面となる側面の長手方向に十分に均一に分散させることが可能な光学シート、面光源装置、及び透過型画像表示装置を提供することができる。   According to the present invention, an optical sheet, a surface light source device, and a transmission that can sufficiently uniformly disperse light from a point light source incident from a side surface serving as an incident surface in the longitudinal direction of the side surface serving as an incident surface. A type image display apparatus can be provided.

本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of one Embodiment of the transmissive image display apparatus which concerns on this invention. 図1中の導光板の端部を示す拡大平面図である。It is an enlarged plan view which shows the edge part of the light-guide plate in FIG. 本発明に係る導光板の一実施形態の構成を示す斜視図である。It is a perspective view which shows the structure of one Embodiment of the light-guide plate which concerns on this invention. 図2に示す導光板の端部に形成されたプリズム形状を拡大して示す拡大平面図である。It is an enlarged plan view which expands and shows the prism shape formed in the edge part of the light-guide plate shown in FIG. LED光源の出光分布の一例を示すグラフである。It is a graph which shows an example of the light emission distribution of a LED light source. プリズム形状、LED光源、輝度値測定点の位置関係を示す平面図である。It is a top view which shows the positional relationship of a prism shape, LED light source, and a luminance value measurement point.

以下、本発明の実施形態について図面を参照しながら説明する。なお、同一または相当要素には同一符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent element, and the overlapping description is abbreviate | omitted. The dimensional ratios in the drawings do not necessarily match those described.

図1は、本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。図1は、透過型画像表示装置1を分解して示している。   FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention. FIG. 1 shows the transmissive image display device 1 in an exploded manner.

(透過型画像表示装置)
透過型画像表示装置1は、透過型画像表示部10と、図1において透過型画像表示部10の背面側に配置された面光源装置20とを備えている。以下の説明では、図1に示すように、面光源装置20と透過型画像表示部10の配列方向をz方向(板厚方向)と称し、z方向に直交する2方向であって互いに直交する2方向をx方向及びy方向と称す。
(Transparent image display device)
The transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 disposed on the back side of the transmissive image display unit 10 in FIG. In the following description, as shown in FIG. 1, the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a z direction (plate thickness direction), which is two directions orthogonal to the z direction and orthogonal to each other. Two directions are referred to as an x direction and a y direction.

透過型画像表示部10としては、例えば液晶セル11の両面に直線偏光板12,12が配置された液晶表示パネルが挙げられる。この場合、透過型画像表示装置1は液晶表示装置(又は液晶テレビ)である。液晶セル11,偏光板12,12は、従来の液晶表示装置等の透過型画像表示装置1で用いられているものを用いることができる。液晶セル11としてはTFT型、STN型等の公知の液晶セルが例示される。透過型画像表示部10は、面光源装置20の出射面31と対向して配置され、面光源装置20から出射された光が照射されて画像を表示する。   Examples of the transmissive image display unit 10 include a liquid crystal display panel in which linearly polarizing plates 12 and 12 are disposed on both surfaces of a liquid crystal cell 11. In this case, the transmissive image display device 1 is a liquid crystal display device (or a liquid crystal television). As the liquid crystal cell 11 and the polarizing plates 12 and 12, those used in the transmissive image display device 1 such as a conventional liquid crystal display device can be used. Examples of the liquid crystal cell 11 include known liquid crystal cells such as TFT type and STN type. The transmissive image display unit 10 is disposed so as to face the emission surface 31 of the surface light source device 20 and displays an image by being irradiated with light emitted from the surface light source device 20.

(面光源装置)
面光源装置20は、導光板(光学シート)30と、導光板30の側面33と対向して配置されたLED光源(点状光源)22とを備えている。
(Surface light source device)
The surface light source device 20 includes a light guide plate (optical sheet) 30 and an LED light source (point light source) 22 arranged to face the side surface 33 of the light guide plate 30.

(光源)
LED光源22は、面光源装置20の点状光源として機能するものであり、図2に示すように、導光板30のy軸方向に延在する側面33,33と対向して配置されている。複数のLED光源22は、側面33の長手方向(y軸方向)に沿って、離散的に配置されている。LED光源22の配置間隔は、通常5mm〜150mmである。
(light source)
The LED light source 22 functions as a point light source of the surface light source device 20, and is disposed to face the side surfaces 33, 33 extending in the y-axis direction of the light guide plate 30, as shown in FIG. . The plurality of LED light sources 22 are discretely arranged along the longitudinal direction (y-axis direction) of the side surface 33. The arrangement interval of the LED light sources 22 is usually 5 mm to 150 mm.

LED光源22は、白色LEDでもよく、一つの箇所に複数のLEDを配置して一つの光源単位を構成してもよい。例えば、一つの光源単位として、赤色、緑色、青色の異なる三色のLEDが、近接され並べられて配置されていてもよい。そして、複数のLEDを有する光源単位が、上述した配置方向に従い離散的に配置される。このような場合には、異なるLED同士は可能な限り近づけられて配置されていることが好ましい。   The LED light source 22 may be a white LED, and a plurality of LEDs may be arranged in one place to constitute one light source unit. For example, as one light source unit, LEDs of three colors different in red, green, and blue may be arranged close to each other. And the light source unit which has several LED is discretely arrange | positioned according to the arrangement | positioning direction mentioned above. In such a case, it is preferable that different LEDs are arranged as close as possible.

LED光源としては、様々な出光分布を有するものが使用可能であるが、LED光源の法線方向(z軸方向)の光度が最大であり、光度分布の半値幅が40度以上80度以下である出光分布を有するものが、好適である。また、LED光源のタイプとしては、具体的に、ランバーシアン型、砲弾型、サイドエミッション型などが挙げられる。   As the LED light source, those having various light emission distributions can be used, but the luminous intensity in the normal direction (z-axis direction) of the LED light source is maximum, and the half-value width of the luminous intensity distribution is 40 degrees or more and 80 degrees or less. Those having a certain light emission distribution are preferred. Specific examples of the LED light source type include a Lambertian type, a shell type, and a side emission type.

図5は、LED光源の出光分布の一例を示すグラフである。LED光源の法線方向(出射角度φ=0°)の出射光強度を1.0(基準)として、出射角度φと出射光強度との関係を示している。図5に示す出光分布を有するLED光源では、半値幅が60°程度となっている。なお、その他の出光分布を有するLED光源を用いてもよい。   FIG. 5 is a graph showing an example of the light output distribution of the LED light source. The relationship between the emission angle φ and the emission light intensity is shown assuming that the emission light intensity in the normal direction of the LED light source (emission angle φ = 0 °) is 1.0 (reference). In the LED light source having the light emission distribution shown in FIG. 5, the half width is about 60 °. In addition, you may use the LED light source which has another light emission distribution.

(導光板)
導光板30は、図2に示すように、長方形を成し、平面視形状のサイズは目的とする透過型画像表示装置10の画面サイズに適合するように選択されるが、通常250mm×440mm以上、好ましくは1020mm×1800mm以下である。導光板30の平面視形状は、長方形に限らず、正方形としてもよいが、以下では、特に断らない限り、長方形として説明する。
(Light guide plate)
As shown in FIG. 2, the light guide plate 30 has a rectangular shape, and the size of the plan view shape is selected so as to match the screen size of the target transmissive image display device 10, but is usually 250 mm × 440 mm or more. It is preferably 1020 mm × 1800 mm or less. The planar view shape of the light guide plate 30 is not limited to a rectangle but may be a square, but in the following, it will be described as a rectangle unless otherwise specified.

導光板30は、光を透過させる透光性樹脂から形成され板状を成している。なお、導光板30は、シート状でもよく、フィルム状でもよい。   The light guide plate 30 is formed of a translucent resin that transmits light and has a plate shape. The light guide plate 30 may be a sheet or a film.

導光板30は、z軸方向(厚み方向)に対向する一対の主面(31,32)、X軸方向に対向する一対の側面33,33、及びY軸方向に対向する一対の側面34,34を備えている。   The light guide plate 30 includes a pair of main surfaces (31, 32) facing in the z-axis direction (thickness direction), a pair of side surfaces 33, 33 facing in the X-axis direction, and a pair of side surfaces 34 facing in the Y-axis direction. 34 is provided.

z軸方向に対向する一対の主面のうち一方の主面(31)は、面状の光を出射する出射面31として機能する。出射面31は、透過型画像表示部10側に配置され、他方の主面(背面32)は、透過型画像表示部10とは反対側に配置される。また、背面32と対面する位置には、光を反射させる反射シートが施工されている。   One main surface (31) of the pair of main surfaces facing each other in the z-axis direction functions as an emission surface 31 that emits planar light. The emission surface 31 is disposed on the transmissive image display unit 10 side, and the other main surface (back surface 32) is disposed on the opposite side to the transmissive image display unit 10. In addition, a reflection sheet that reflects light is applied at a position facing the back surface 32.

(凸状部)
ここで、側面33には、x軸方向の外側へ凸である複数の凸状部35が形成されている。プリズム形状35は、シートの厚み方向(z軸方向)に延在し、複数の凸状部35は、側面33の長手方向(y軸方向)に複数並列配置されている。複数の凸状部35の断面形状はほぼ均一である。複数の凸状部35は、y軸方向に0.03mm以上10.0mm以下のピッチで配置されていることが好ましい。本実施形態では、凸状部35の頂点同士の間隔d1は、例えば8.5mmである。
(Convex part)
Here, a plurality of convex portions 35 that are convex outward in the x-axis direction are formed on the side surface 33. The prism shape 35 extends in the thickness direction (z-axis direction) of the sheet, and a plurality of convex portions 35 are arranged in parallel in the longitudinal direction (y-axis direction) of the side surface 33. The cross-sectional shape of the plurality of convex portions 35 is substantially uniform. The plurality of convex portions 35 are preferably arranged at a pitch of 0.03 mm to 10.0 mm in the y-axis direction. In the present embodiment, the distance d1 between the vertices of the convex portion 35 is, for example, 8.5 mm.

また、凸状部35は、図4に示すように、プリズム形状であることが好ましく、プリズム形状の頂点の角度(頂角)θは、90°以上150°以下であることが好ましく、110°以上140°以下であることがより好ましい。本実施形態では、プリズム形状の頂角θは、例えば120°である。複数のプリズム形状は、LED光源22からの光を、側面33の長手方向(y軸方向)に拡散させる機能を有する。例えば、LED光源22は、図4に示すように、凸状部35,35間の凹部に対応する位置に配置されている。   Further, as shown in FIG. 4, the convex portion 35 is preferably in a prism shape, and the apex angle (vertical angle) θ of the prism shape is preferably 90 ° or more and 150 ° or less, and 110 °. More preferably, it is 140 ° or less. In the present embodiment, the apex angle θ of the prism shape is, for example, 120 °. The plurality of prism shapes have a function of diffusing light from the LED light source 22 in the longitudinal direction (y-axis direction) of the side surface 33. For example, as shown in FIG. 4, the LED light source 22 is disposed at a position corresponding to the concave portion between the convex portions 35 and 35.

(導光板の構成材料)
導光板30は、透光性樹脂から形成されている。透光性樹脂の屈折率は通常、1.49〜1.59である。導光板30に使用される透光性樹脂としては、メタクリル樹脂が主として用いられる。
(Construction material of light guide plate)
The light guide plate 30 is made of a translucent resin. The refractive index of the translucent resin is usually 1.49 to 1.59. As the translucent resin used for the light guide plate 30, methacrylic resin is mainly used.

メタクリル樹脂としては、メタクリル酸メチルを主成分とする単量体が挙げられ、具体的にはメタクリル酸メチルを50質量%以上含む単量体を重合させて得られる重合体であってもよいし、メタクリル酸メチルを単独で重合させて得られるポリメタル酸メチルであってもよいし、メタクリル酸メチル50質量%以上及びこれと共重合可能な単量体50質量%以下との共重合体であってもよい。   Examples of the methacrylic resin include monomers having methyl methacrylate as a main component. Specifically, the methacrylic resin may be a polymer obtained by polymerizing a monomer containing 50% by mass or more of methyl methacrylate. Further, it may be methyl polymetalate obtained by polymerizing methyl methacrylate alone, or a copolymer of 50% by mass or more of methyl methacrylate and 50% by mass or less of a monomer copolymerizable therewith. May be.

メタクリル酸メチルと共重合可能な単量体としては、例えばメタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ベンジル、アクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ボルニル、メタクリル酸アダマンチル、メタクリル酸シクロペンタンジエニルなどメタクリル酸エステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ベンジル、アクリル酸2−エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸ボルニル、アクリル酸アダマンチル、アクリル酸シクロペンタジエニルなどのアクリル酸エステル類、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸などの不飽和などの不飽和カルボン酸およびその酸無水物、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシポロピル、アクリル酸2−ヒドロキシプロピル、アクリル酸、アクリル酸モノグリセロール、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸モノグリセロールなどのヒドロキシル基含有単量体、アクリルアミド、メタクルアミド、アクリロニトリル、メタクリロニトリル、ジアセトンアクリルアミド、メタクリル酸ジメチルアミノエチルなどの窒素含有単量体、アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルなどエポキシ基含有単量体、スチレン、α−メチルスチレンなどのスチレン系単量体などが挙げられる。   Examples of monomers copolymerizable with methyl methacrylate include ethyl methacrylate, propyl methacrylate, butyl methacrylate, benzyl methacrylate, 2-ethylhexyl acrylate, cyclohexyl methacrylate, bornyl methacrylate, adamantyl methacrylate, methacrylic acid. Methacrylic acid esters such as cyclopentanedienyl, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, bornyl acrylate, adamantyl acrylate, acrylic Acrylic esters such as cyclopentadienyl acid, unsaturated calculates such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, etc. Acid and its anhydride, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, acrylic acid, monoglycerol acrylate, 2-hydroxyethyl methacrylate, 2-hydroxy methacrylate Hydroxyl group-containing monomers such as propyl and monoglycerol methacrylate, acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, diacetone acrylamide, nitrogen-containing monomers such as dimethylaminoethyl methacrylate, allyl glycidyl ether, glycidyl acrylate, Examples thereof include epoxy group-containing monomers such as glycidyl methacrylate, and styrene monomers such as styrene and α-methylstyrene.

なお、透光性樹脂は上記のものに限定されず、その他の樹脂でもよく、例えば、スチレン系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、環状オレフィン重合体樹脂、アクリロニトリル−ブタジエン−スチレン樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂などが挙げられる。   The translucent resin is not limited to the above, and other resins may be used, for example, styrene resin, polyethylene resin, polypropylene resin, cyclic olefin polymer resin, acrylonitrile-butadiene-styrene resin, polyethylene terephthalate resin, Examples include polycarbonate resin.

導光板を液晶表示装置に適用するにあたり、導光板には、光拡散剤、紫外線吸収剤、熱安定剤、光重合安定剤などの添加剤が添加されていてもよい。   When the light guide plate is applied to a liquid crystal display device, additives such as a light diffusing agent, an ultraviolet absorber, a heat stabilizer, and a photopolymerization stabilizer may be added to the light guide plate.

(導光板の成形方法)
導光板30の成形方法としては、押出成形、キャスト成形、射出成形が挙げられる。導光板の厚さtは、特に限定されるものではないが、1.0mm〜10.0mmの範囲に設定されることが、特に、1.5mm〜8.0mmであることが好ましく、さらに2.0mm〜4.0mmであることが好ましい。
(Light guide plate forming method)
Examples of the method for forming the light guide plate 30 include extrusion molding, cast molding, and injection molding. The thickness t of the light guide plate is not particularly limited, but is preferably set in the range of 1.0 mm to 10.0 mm, particularly preferably 1.5 mm to 8.0 mm, and further 2 It is preferable that it is 0.0 mm-4.0 mm.

(凸状部の加工方法)
凸状部(凹凸形状)の加工方法として、熱プレス成形法を適用することができる。凸状部と対となる形状が施された反対型を版として熱プレス成形を行うことで、導光板30の側面33に凸状部を形成する。
(Processing method of convex part)
A hot press molding method can be applied as a method of processing the convex portion (uneven shape). A convex portion is formed on the side surface 33 of the light guide plate 30 by performing hot press molding using an opposite mold having a shape paired with the convex portion as a plate.

また、凸状部の加工方法として、射出成形法を適用してもよい。射出成形法であれば、射出成形型の内壁に、凸状部と対となる形状の反対型が施されていることが好適である。また、既に凸状部がその表面に施されたレンズフィルムの非形状面側を、導光板30の側面側へ粘着層を介して貼り合わせることも好適である。   Moreover, you may apply the injection molding method as a processing method of a convex-shaped part. In the case of the injection molding method, it is preferable that the inner wall of the injection mold is provided with an opposite mold having a shape paired with the convex portion. In addition, it is also preferable to bond the non-shaped surface side of the lens film having a convex portion already provided on the surface thereof to the side surface side of the light guide plate 30 via an adhesive layer.

複数の凸状部35の間隔(ピッチ)としては、0.03mm〜10mmの範囲に設定されることが望ましい。複数の凸状部35のピッチが、0.03mm未満であるとその加工精度の低下が懸念され、10mm以上であると導光板の形状が施された側面33が広くなり、導光板30が液晶表示装置に組み込まれた際に、加工面が液晶表示画面から見えないように隠蔽するための額縁部分が大きくなる。   The interval (pitch) between the plurality of convex portions 35 is desirably set in the range of 0.03 mm to 10 mm. If the pitch of the plurality of convex portions 35 is less than 0.03 mm, the processing accuracy may be lowered. If the pitch is 10 mm or more, the side surface 33 on which the shape of the light guide plate is applied becomes wide, and the light guide plate 30 is liquid crystal. When incorporated in the display device, the frame portion for concealing the processed surface from the liquid crystal display screen is increased.

凸状部(凹凸形状)としては、上記のプリズム形状の他、レンチキュラーレンズ形状、台形形状、矩形形状などが挙げられる。特にプリズム形状であれば、そのプリズム頂角は、90°以上150°以下の間に設定されることが好ましく、110°以上140°以下に設定されることがより好ましい。   Examples of the convex portion (concavo-convex shape) include a lenticular lens shape, a trapezoidal shape, and a rectangular shape in addition to the prism shape described above. In particular, in the case of a prism shape, the prism apex angle is preferably set between 90 ° and 150 °, more preferably between 110 ° and 140 °.

このような本実施形態に係る導光板30によれば、導光板30の側面33に対向して配置され複数のLED光源22からの光を側面33から入射し、この側面33と直交(交差)する出射面31から面状の光を出射することができる。そして、導光板30の側面33から入射する光は、凸状部35によって屈折し、y軸方向に広げられる。これにより導光板30の端部(側面33近傍)において明るさが不足する領域を縮小することができる。   According to such a light guide plate 30 according to the present embodiment, the light from the plurality of LED light sources 22 is arranged to face the side surface 33 of the light guide plate 30 and enters from the side surface 33 and is orthogonal to (intersects) the side surface 33. The planar light can be emitted from the emitting surface 31 to be emitted. The light incident from the side surface 33 of the light guide plate 30 is refracted by the convex portion 35 and spread in the y-axis direction. As a result, it is possible to reduce an area where the brightness is insufficient at the end of the light guide plate 30 (in the vicinity of the side surface 33).

また、本実施形態に係る面光源装置20及びこれを備えた透過型画像表示装置1によれば、導光板30の入射面となる側面33に対向し、側面33の長手方向に離散的に配置された複数のLED光源22を備え、これらのLED光源22からの光を側面33から入射し、この側面と直交する出射面31から面状の光を出射することができる。そして、導光板30の側面33から入射する光は、凸状部35によって屈折し、y軸方向に広げられる。これにより導光板30の端部において明るさが不足する領域を縮小することができる。そのため、導光板30の端部において明るさが不足する領域を、表示画面から見えないように隠蔽するための額縁部分を小さくすることができる。透過型画像表示装置1の表示画面の周縁部である額縁部分のデザインの自由度を高めることができる。   Further, according to the surface light source device 20 and the transmissive image display device 1 including the same according to the present embodiment, the light source plate 30 faces the side surface 33 that is the incident surface of the light guide plate 30 and is discretely arranged in the longitudinal direction of the side surface 33. The plurality of LED light sources 22 are provided, light from these LED light sources 22 is incident from the side surface 33, and planar light can be emitted from the emission surface 31 orthogonal to the side surface. The light incident from the side surface 33 of the light guide plate 30 is refracted by the convex portion 35 and spread in the y-axis direction. As a result, the region where the brightness is insufficient at the end of the light guide plate 30 can be reduced. Therefore, the frame part for concealing the region where the brightness is insufficient at the end of the light guide plate 30 so as not to be seen from the display screen can be reduced. The degree of freedom in designing the frame portion that is the peripheral portion of the display screen of the transmissive image display device 1 can be increased.

(実施例)
以下、本発明の光学シートの一実施例について説明する。
(Example)
Hereinafter, an example of the optical sheet of the present invention will be described.

本発明の実施例に係る光学シート、比較例に係る光学シートを作成し、これらについて評価試験を実施した。実施例1〜4及び比較例1〜3では、透光性樹脂としてスミペックE011(商品名、住友化学製、PMMA)を使用して光学シートAを作成した。光学シートAは、厚さ4mmであり、たて(短辺)210mm、よこ(長辺)300mmの矩形を成している。   The optical sheet which concerns on the Example of this invention, and the optical sheet which concerns on a comparative example were created, and the evaluation test was implemented about these. In Examples 1-4 and Comparative Examples 1-3, the optical sheet A was created using Sumipec E011 (trade name, manufactured by Sumitomo Chemical Co., Ltd., PMMA) as the translucent resin. The optical sheet A has a thickness of 4 mm, and has a rectangular shape with a length (short side) of 210 mm and a width (long side) of 300 mm.

光学シートAの長辺側の側面に、厚み方向(z軸方向)に延在する複数の凸状部を、側面(入射面)の長手方向に並列配置した。実施例1〜4では、凸状部(プリズム形状)の頂角をそれぞれ90°、120°、137°、150°とした。また、光学シートAの側面に凸状部が形成されていないもの(側面が平坦面であるもの)を比較例1とした。さらに、比較例2では、凸状部として、170°の頂角を有するプリズム形状を施し、比較例3では、側面に凹みレンズを施した。凹レンズの高さは1.67mmとした。実施例1〜4、比較例2,3において、凹凸形状(プリズム形状、凹レンズ)の間隔Pを8.5mmとした。これらの凹凸形状をレーザー加工により施した。 On the side surface on the long side of the optical sheet A, a plurality of convex portions extending in the thickness direction (z-axis direction) were arranged in parallel in the longitudinal direction of the side surface (incident surface). In Examples 1 to 4, the apex angles of the convex portions (prism shape) were 90 °, 120 °, 137 °, and 150 °, respectively. In addition, Comparative Example 1 was used in which the convex portion is not formed on the side surface of the optical sheet A (the side surface is a flat surface). Furthermore, in Comparative Example 2, a prism shape having an apex angle of 170 ° was applied as the convex portion, and in Comparative Example 3, a concave lens was applied to the side surface. The height of the concave lens was 1.67 mm. In Examples 1-4, Comparative Examples 2 and 3, irregularities (prism shape, a concave lens) the distance P 1 of a 8.5 mm. These uneven shapes were applied by laser processing.

次に、実施例1〜4、比較例1〜3の光学シートAについて、評価ユニットを作成した。評価ユニットの観察者によって視認される観察画面(出射面31)と反対側の主面(背面32)の全面について、白色テープ(TRUSCO製TRT−50両面テープ)によって覆った。光学シートAの背面と密着する側の保護テープのみを剥がして、粘着面を露出させ、白色テープを光学シートAの背面32に密着させた。   Next, the evaluation unit was created about the optical sheet A of Examples 1-4 and Comparative Examples 1-3. The entire surface of the main surface (back surface 32) opposite to the observation screen (outgoing surface 31) viewed by the observer of the evaluation unit was covered with white tape (TRUSCO TRT-50 double-sided tape). Only the protective tape that was in close contact with the back surface of the optical sheet A was peeled off to expose the adhesive surface, and the white tape was adhered to the back surface 32 of the optical sheet A.

評価ユニットでは、LED光源(120°ランバーシアン型;NSSW123B)を光学シートの長辺方向に沿って8.5mm間隔で、光学シートの厚さ方向の中央に配置し、基盤へ配線した。そして、LED光源に電圧12V、電流60mAを印加して、LED光源を点灯させた。このとき、光学シートの長辺方向において、LED光源の法線が、凹凸形状の凹みに対応するように配置した。   In the evaluation unit, LED light sources (120 ° Lambertian type; NSSW 123B) were arranged at the center of the optical sheet in the thickness direction at intervals of 8.5 mm along the long side direction of the optical sheet, and wired to the substrate. And the voltage 12V and the electric current 60mA were applied to the LED light source, and the LED light source was turned on. At this time, in the long side direction of the optical sheet, the normal line of the LED light source was arranged so as to correspond to the concave and convex shape.

そして、光学シートAの出射面31全体が映りこむように輝度計を設置した。輝度計は、出射面31と対向して配置され、出射面31から輝度計のカメラの先端までの距離を800mmとした。   And the luminance meter was installed so that the whole emission surface 31 of the optical sheet A might be reflected. The luminance meter was arranged to face the emission surface 31, and the distance from the emission surface 31 to the tip of the luminance meter camera was 800 mm.

図6は、プリズム形状、LED光源、輝度値測定点の位置関係を示す平面図である。図6に示すように、輝度を測定する測定点Pを等間隔で設け、xy座標を用いて測定位置を設定した。光学シートAの長辺方向をx軸方向とし、短辺方向をy軸方向とし、x軸方向に90点、y軸方向に10点、合計900点の測定点Pを設け、各測定点Pにおける輝度値を測定した。評価ユニットを設置して、5分後に輝度値を採取した。   FIG. 6 is a plan view showing the positional relationship between the prism shape, the LED light source, and the luminance value measurement point. As shown in FIG. 6, measurement points P for measuring luminance were provided at equal intervals, and measurement positions were set using xy coordinates. The long side direction of the optical sheet A is the x-axis direction, the short side direction is the y-axis direction, 90 points in the x-axis direction, 10 points in the y-axis direction, a total of 900 measurement points P are provided. The luminance value at was measured. The luminance value was collected 5 minutes after the evaluation unit was installed.

採取された輝度値について、y軸方向の1点〜10点までの輝度値の平均値を算出した。配置した3つのLED光源のうち中央に位置する光源22から、x軸方向(図示左右方向)の両側へW=6mmの範囲において、上記のy軸方向の輝度値の平均値のうちの最大値Lmaxと最小値Lminとを比較した。具体的には、光の拡散度合いを表す指標D(%)として、D=(Lmin/Lmax)×100を算出した。指標Dでは、数値が大きいほど、LED光源からの光が、側面の長手方向(図示x軸方向)に広げられていることを表している。算出した指標Dを表1に示す。指標Dが60%以上である場合を良好と判定した。

Figure 2012069282
For the collected luminance values, an average value of luminance values from 1 point to 10 points in the y-axis direction was calculated. Among the three LED light sources arranged, from the light source 22 located at the center to both sides in the x-axis direction (the left-right direction in the figure), the maximum of the above average values of the luminance values in the y-axis direction in the range of W 1 = 6 mm The value Lmax was compared with the minimum value Lmin. Specifically, D = (Lmin / Lmax) × 100 was calculated as an index D (%) representing the degree of light diffusion. The index D indicates that the larger the numerical value, the more the light from the LED light source is spread in the longitudinal direction of the side surface (the x-axis direction in the drawing). Table 1 shows the calculated index D. A case where the index D was 60% or more was determined to be good.
Figure 2012069282

以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではない。例えば、点状光源は、光学シートの長辺方向に延在する1つの側面に沿って配列されている構成でもよく、短辺方向に延在する1つの側面に沿って配列されている構成でもよい。また、長辺方向に延在する2つ側面に、点状光源が配列されている構成でもよく、短辺方向に延在する1つの側面に沿って配列されている構成でもよい。なお、点状光源は、隣接する凸状部間に形成された凹部に対応する位置に配置されていることが好ましい。   As mentioned above, although this invention was concretely demonstrated based on the embodiment, this invention is not limited to the said embodiment. For example, the point light sources may be arranged along one side surface extending in the long side direction of the optical sheet, or may be arranged along one side surface extending in the short side direction. Good. Moreover, the structure by which a point light source is arranged in two side surfaces extended in a long side direction may be sufficient, and the structure arranged in one side surface extended in a short side direction may be sufficient. In addition, it is preferable that the point light source is arrange | positioned in the position corresponding to the recessed part formed between adjacent convex-shaped parts.

なお、入射面となる側面の長手方向とは、x軸方向に対向する側面35においては、y軸方向であり、y軸方向に対向する側面34においては、x軸方向である(図3参照)。   The longitudinal direction of the side surface serving as the incident surface is the y-axis direction at the side surface 35 facing the x-axis direction, and the x-axis direction at the side surface 34 facing the y-axis direction (see FIG. 3). ).

また、凸状部は、入射面の長手方向に0.03mm〜10.0mmのピッチで、等間隔で配置されていることが好ましいが、その他のピッチで配置されている構成でもよい。   The convex portions are preferably arranged at equal intervals in the longitudinal direction of the incident surface at a pitch of 0.03 mm to 10.0 mm, but may be arranged at other pitches.

また、凸状部であるプリズム形状の頂角は、90°〜150°であることが好ましいが、その他の角度でもよい。また、凸状部は、プリズム形状以外の形状を有するものでもよい。   Further, the apex angle of the prism shape which is the convex portion is preferably 90 ° to 150 °, but may be other angles. Further, the convex portion may have a shape other than the prism shape.

1…透過型画像表示装置、10…透過型画像表示部、20…面光源装置、22…LED光源(点状光源)、30…導光板(光学シート)、31…出射面、32…背面、33…側面、34…側面、35…凸状部(プリズム形状)。   DESCRIPTION OF SYMBOLS 1 ... Transmission type image display apparatus, 10 ... Transmission type image display part, 20 ... Surface light source device, 22 ... LED light source (point light source), 30 ... Light guide plate (optical sheet), 31 ... Output surface, 32 ... Back surface, 33: side surface, 34: side surface, 35: convex portion (prism shape).

Claims (5)

シート状を成し、光を透過させる透光性樹脂から形成された光学シートであって、
点状光源から出射された光を入射する入射面となる側面と、
前記側面と交差する方向に形成され、面状の光を出射する出射面と、を備え、
前記入射面となる側面には、前記シートの厚み方向に延在し、前記入射面の長手方向に並列配置された複数の凸状部が形成されていることを特徴とする光学シート。
An optical sheet that is formed from a translucent resin that forms a sheet and transmits light,
A side surface serving as an incident surface on which light emitted from a point light source is incident;
An exit surface that is formed in a direction intersecting with the side surface and emits planar light; and
An optical sheet, wherein a plurality of convex portions extending in the thickness direction of the sheet and arranged in parallel in the longitudinal direction of the incident surface are formed on a side surface serving as the incident surface.
前記凸状部は、前記入射面の長手方向に0.03mm以上10.0mm以下のピッチで配置され、90°以上150°以下の頂角を有するプリズム形状であることを特徴する請求項1記載の光学シート。   2. The convex portion is arranged in a longitudinal direction of the incident surface at a pitch of 0.03 mm to 10.0 mm and has a prism shape having an apex angle of 90 ° to 150 °. Optical sheet. 請求項1又は2に記載の光学シートと、
前記光学シートの入射面となる側面と対向し、前記入射面の長手方向に離散的に配置された複数の点状光源とを備えることを特徴とする面光源装置。
The optical sheet according to claim 1 or 2,
A surface light source device comprising: a plurality of point light sources that are opposed to a side surface serving as an incident surface of the optical sheet and are discretely arranged in a longitudinal direction of the incident surface.
前記点状光源は、当該点状光源の法線方向が最大光度となり、光度分布の半値幅が40°以上80°以下であるLED光源である請求項3記載の面光源装置。   4. The surface light source device according to claim 3, wherein the point light source is an LED light source in which a normal direction of the point light source is maximum luminous intensity and a half value width of a luminous intensity distribution is 40 ° or more and 80 ° or less. 請求項3又は4に記載の面光源装置と、
前記面光源装置の出射面と対向して配置され、前記面光源装置から出射された光に照射されて画像を表示する透過型画像表示部とを備えることを特徴とする透過型画像表示装置。
A surface light source device according to claim 3 or 4,
A transmission-type image display device, comprising: a transmission-type image display unit that is disposed to face an emission surface of the surface light source device and displays an image by being irradiated with light emitted from the surface light source device.
JP2010211053A 2010-09-21 2010-09-21 Optical sheet, plane light source device, and transmission image display device Pending JP2012069282A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010211053A JP2012069282A (en) 2010-09-21 2010-09-21 Optical sheet, plane light source device, and transmission image display device
TW100134050A TW201222030A (en) 2010-09-21 2011-09-21 Optical sheet, area light source device, and transmission image display device
PCT/JP2011/071510 WO2012039432A1 (en) 2010-09-21 2011-09-21 Optical sheet, area light source device, and transmission image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211053A JP2012069282A (en) 2010-09-21 2010-09-21 Optical sheet, plane light source device, and transmission image display device

Publications (1)

Publication Number Publication Date
JP2012069282A true JP2012069282A (en) 2012-04-05

Family

ID=45873916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211053A Pending JP2012069282A (en) 2010-09-21 2010-09-21 Optical sheet, plane light source device, and transmission image display device

Country Status (3)

Country Link
JP (1) JP2012069282A (en)
TW (1) TW201222030A (en)
WO (1) WO2012039432A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180009A1 (en) * 2012-05-29 2013-12-05 住友化学株式会社 Optical sheet manufacturing method, optical sheet processing device, and optical sheet processing method
JP2014107017A (en) * 2012-11-22 2014-06-09 Sumitomo Chemical Co Ltd Optical sheet processing device
JP2014116083A (en) * 2012-12-06 2014-06-26 Sumitomo Chemical Co Ltd Optical sheet processing device
JP2019033044A (en) * 2017-08-09 2019-02-28 株式会社小糸製作所 Light guide body and vehicle lamp
JP2020526874A (en) * 2017-06-30 2020-08-31 ブライト ヴュー テクノロジーズ コーポレーションBright View Technologies Corporation Light-transmitting structure for redistribution of light and lighting system containing it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001802A1 (en) * 2007-06-28 2008-12-31 Zeon Corporation Lighting device
JP4774035B2 (en) * 2007-12-28 2011-09-14 シャープ株式会社 Surface light source and display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180009A1 (en) * 2012-05-29 2013-12-05 住友化学株式会社 Optical sheet manufacturing method, optical sheet processing device, and optical sheet processing method
JP2014107017A (en) * 2012-11-22 2014-06-09 Sumitomo Chemical Co Ltd Optical sheet processing device
JP2014116083A (en) * 2012-12-06 2014-06-26 Sumitomo Chemical Co Ltd Optical sheet processing device
JP2020526874A (en) * 2017-06-30 2020-08-31 ブライト ヴュー テクノロジーズ コーポレーションBright View Technologies Corporation Light-transmitting structure for redistribution of light and lighting system containing it
US11885485B2 (en) 2017-06-30 2024-01-30 Brightview Technologies, Inc. Light transmissive structures for redistribution of light and lighting systems including same
JP2019033044A (en) * 2017-08-09 2019-02-28 株式会社小糸製作所 Light guide body and vehicle lamp

Also Published As

Publication number Publication date
TW201222030A (en) 2012-06-01
WO2012039432A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
US9678264B2 (en) Light guide plate and surface light source device
JP5343752B2 (en) Light guide plate, light guide plate manufacturing method, surface light source device, and liquid crystal display device
US9453958B2 (en) Light guide plate and illumination apparatus
US20110038178A1 (en) Planar illumination device
KR20090050940A (en) Light guide plate and backlight unit
WO2012039432A1 (en) Optical sheet, area light source device, and transmission image display device
WO2009104793A1 (en) Light guide body, backlight system and portable terminal
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP5792031B2 (en) Light guide plate, surface light source device, and transmissive image display device
WO2013161678A1 (en) Illumination device and display device
US20190391450A1 (en) Planar lighting device
JP2008298839A (en) Optical sheet, back light unit using the same, and display device
JP6298986B2 (en) Lighting device
WO2013062030A1 (en) Optical sheet, surface light source device, and transmissive image display device
JP2013044799A (en) Transmission type image display device
JP5984363B2 (en) Light guide plate, surface light source device, and transmissive image display device
JP2017208287A (en) Surface light source device and transmission type display device
JP2009158468A (en) Backlight
JP5792032B2 (en) Light guide plate, surface light source device, and transmissive image display device
TW201221858A (en) Surface light source element and lighting device including the same
JP2013206595A (en) Light guide plate and lighting device as well as display device using light guide plate
JP2013229210A (en) Light guide plate
TWI274944B (en) Light guide plate and backlight module using the same
JP5282500B2 (en) Optical element and backlight unit and display device using the same
JP2012104374A (en) Optical sheet, surface light source device, and transmission type image display device