WO2013062030A1 - Optical sheet, surface light source device, and transmissive image display device - Google Patents

Optical sheet, surface light source device, and transmissive image display device Download PDF

Info

Publication number
WO2013062030A1
WO2013062030A1 PCT/JP2012/077547 JP2012077547W WO2013062030A1 WO 2013062030 A1 WO2013062030 A1 WO 2013062030A1 JP 2012077547 W JP2012077547 W JP 2012077547W WO 2013062030 A1 WO2013062030 A1 WO 2013062030A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
optical sheet
light
image display
incident
Prior art date
Application number
PCT/JP2012/077547
Other languages
French (fr)
Japanese (ja)
Inventor
尚規 奥
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201280052320.0A priority Critical patent/CN103890482A/en
Priority to KR1020147011019A priority patent/KR20140091685A/en
Publication of WO2013062030A1 publication Critical patent/WO2013062030A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission

Definitions

  • the present invention includes an optical sheet capable of emitting light incident from a plurality of discretely arranged point light sources in a planar shape, a surface light source device including the optical sheet, and the surface light source device.
  • the present invention relates to a transmissive image display device.
  • a direct type image display device which is an example of a transmissive image display device
  • a device in which a light source is disposed on the back side of a transmissive image display unit is widely used.
  • the transmissive image display unit include a liquid crystal display panel in which linear polarizing plates are arranged on both surfaces of a liquid crystal cell.
  • the light source a plurality of linear light sources such as a straight tube type cold cathode ray tube are arranged and used in parallel with each other.
  • a light control plate which is a single light diffusion plate, is disposed between the light source and the transmissive image display unit.
  • the light control plate has a function of changing the direction of light incident from the light source side and emitting the light from the opposite transmissive image display unit side.
  • transmissive image display devices have been made thinner, surface light source devices in which light sources are arranged on the end side have been developed, and a light guide plate for spreading light emitted from the end portions over the entire screen has been developed in the past. It is starting to be used in place of the light diffusing plate.
  • light emitting diodes LEDs are increasingly used as light sources that do not contain mercury (Hg) and have low power consumption.
  • the light guide plate is mainly made of highly light transmissive resin. And it is calculated
  • an edge light type planar light source that effectively utilizes the light of the LED light source and has uniform brightness
  • it is a plate member made of a translucent member, and an irregular reflection portion is formed on the lower surface.
  • a thing provided with the light guide plate whose upper surface is a light-emitting surface is known (for example, refer to patent documents 2).
  • an edge light type light guide plate one having an uneven shape that disperses light from an LED light source in a plate thickness direction is formed on an incident surface (see, for example, Patent Document 3).
  • the light from the point light source cannot be made sufficiently uniform, especially between adjacent light sources near the end of the light control plate, There was a problem that an area with insufficient brightness occurred.
  • the present invention provides an optical sheet that can sufficiently uniformly disperse light from a point light source, and can reduce an area where brightness is insufficient, and a surface provided with the optical sheet.
  • An object of the present invention is to provide a light source device and a transmissive image display device.
  • the area where the brightness is insufficient may be enlarged.
  • the translucent resin is heated and expanded by the heat generated by the point light source, and as a result, the positional relationship between the point light source and the optical sheet may be shifted, and the area where the brightness is insufficient may be enlarged. . Therefore, there is a demand to suppress the expansion of the area where the brightness is insufficient even when the positional deviation between the point light source and the optical sheet occurs.
  • the light incident on the optical sheet is spread by the lens effect, there is a possibility that the light cannot be spread when the focus of the incident light on the lens is deviated. There is also a need to improve this.
  • the present invention is an optical sheet formed of a translucent resin, and is formed in a side surface serving as an incident surface on which light emitted from a point light source is incident, and in a direction intersecting the side surface.
  • a plurality of light emitting surfaces that extend in the thickness direction of the optical sheet and are arranged side by side in the longitudinal direction of the light incident surface.
  • a convex portion is formed, and the arrangement interval P in the longitudinal direction of the convex portion satisfies the following expression (1).
  • P ⁇ 0.34W (1) W is the length in the longitudinal direction of the incident surface of the light emitting region existing on the side of the point light source facing the incident surface of the sheet
  • the light from the point light source arranged to face the side surface of the optical sheet is incident from the side surface of the optical sheet, and is formed into a planar shape from the emission surface formed in the direction intersecting the side surface. Light is emitted. Moreover, the light incident from the side surface serving as the incident surface of the optical sheet is spread to a wider range in the longitudinal direction of the incident surface of the optical sheet by the convex portion. Thereby, the area
  • the structure by which all the side surfaces of an optical sheet may become an incident surface may be sufficient, and the structure by which only one side surface among several side surfaces becomes an incident surface may be sufficient.
  • the convex portion is formed so that the arrangement interval P satisfies the formula (1), even if the optical sheet is displaced in the longitudinal direction of the incident surface, the optical sheet is The influence of the position shift can be suppressed, and the expansion of the area where the brightness is insufficient can be suppressed.
  • the convex portion has a prism shape having an apex angle of 50 ° to 150 °.
  • the light incident from the incident surface is suitably diffused in the longitudinal direction of the incident surface.
  • the present invention also includes the optical sheet, and a plurality of point light sources that are opposed to the side surface that is the incident surface of the optical sheet and are discretely arranged in the longitudinal direction of the incident surface. It is the surface light source device characterized by the above.
  • the optical sheet since the optical sheet is provided, the light from the point light source arranged to face the side surface of the optical sheet enters from the side surface of the optical sheet and is formed in a direction intersecting with the side surface. Planar light is emitted from the exit surface. Moreover, the light incident from the side surface serving as the incident surface of the optical sheet is spread to a wider range in the longitudinal direction of the incident surface of the optical sheet by the convex portion. Thereby, the area
  • the convex portion of the optical sheet is formed so that the arrangement interval P satisfies the formula (1), even if the optical sheet is misaligned in the longitudinal direction of the incident surface, the surface The light source device can suppress the expansion of the region where the brightness is insufficient by suppressing the influence of the positional deviation between the point light source and the optical sheet.
  • an LED light source that exhibits the maximum luminous intensity in the normal direction of the point light source and has a half-value width of the luminous intensity distribution of 40 ° to 80 ° is preferable.
  • the present invention provides the above-described surface light source device and a transmission type that is disposed to face the emission surface of the surface light source device, and that displays an image by receiving light emitted from the surface light source device.
  • a transmissive image display device comprising an image display unit.
  • the surface light source device since the surface light source device is provided, the light from the point light source arranged to face the side surface of the optical sheet enters from the side surface of the optical sheet and intersects with the side surface. Planar light is emitted from the formed emission surface. Moreover, the light incident from the side surface serving as the incident surface of the optical sheet is spread to a wider range in the longitudinal direction of the incident surface of the optical sheet by the convex portion. Thereby, the area
  • the structure by which all the side surfaces of an optical sheet may become an incident surface may be sufficient, and the structure by which only one side surface among several side surfaces becomes an incident surface may be sufficient.
  • the light from the point light source can be sufficiently uniformly dispersed to form planar light, and transmission is performed by the uniformly dispersed planar light.
  • the mold image display unit can be illuminated.
  • the type image display device can suppress the influence of the positional deviation between the point light source and the optical sheet, and can suppress the expansion of the region where the brightness is insufficient.
  • the light from the point light source incident from the side surface serving as the incident surface can be sufficiently uniformly dispersed in the longitudinal direction of the side surface serving as the incident surface.
  • the surface light source device and the transmissive image display device of the present invention can also exhibit the same effect.
  • the optical sheet, the surface light source device, and the transmissive image display device of the present invention can enlarge an area where the brightness is insufficient even when the positional deviation between the point light source and the optical sheet occurs. Can be suppressed.
  • FIG. 1 It is sectional drawing which shows typically the structure of one Embodiment of the transmissive image display apparatus which concerns on this invention. It is an enlarged plan view which shows the edge part of the light-guide plate in FIG. It is an enlarged view which shows the edge part and LED light source of the light-guide plate in FIG. It is a graph which shows an example of the light emission distribution of a LED light source. It is a top view which shows the edge part and LED light source of the light-guide plate which concern on other embodiment. It is a top view which shows the positional relationship of a prism shape, LED light source, and a luminance value measurement point. It is a figure which shows a brightness
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention.
  • FIG. 1 shows the transmissive image display device 1 in an exploded manner.
  • the transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 disposed on the back side of the transmissive image display unit 10 in FIG.
  • the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a Z direction (plate thickness direction), which is two directions orthogonal to the Z direction and orthogonal to each other. These two directions are referred to as the X direction and the Y direction.
  • the transmissive image display unit 10 examples include a liquid crystal display panel in which linearly polarizing plates 12 and 12 are arranged on both surfaces of a liquid crystal cell 11.
  • the transmissive image display device 1 is a liquid crystal display device (for example, a liquid crystal television).
  • the liquid crystal cell 11 and the polarizing plates 12 and 12 those used in the transmissive image display device 1 such as a conventional liquid crystal display device can be used.
  • the liquid crystal cell 11 include known liquid crystal cells such as TFT type and STN type.
  • the transmissive image display unit 10 is disposed so as to face the emission surface 31 of the surface light source device 20 and displays an image upon receiving irradiation of light emitted from the surface light source device 20.
  • the surface light source device 20 includes a light guide plate (optical sheet) 30 and an LED light source (point light source) 22 disposed to face the side surface 33 of the light guide plate 30.
  • the LED light source 22 functions as a point light source of the surface light source device 20 and is disposed so as to face the side surfaces 33, 33 extending in the X direction of the light guide plate 30, as shown in FIG.
  • the plurality of LED light sources 22 are discretely arranged along the longitudinal direction (X direction) of the side surface 33.
  • the arrangement interval L of the LED light sources 22 is normally 5 mm to 150 mm.
  • the length W in the X direction of the issue region of the LED light source 22 is about 3.5 mm.
  • the LED light source 22 package is indicated by a one-dot chain line, and the light emitting region 22L of the LED light source 22 is indicated by a solid line.
  • the width W (length in the X direction) of the light emitting region 22L is smaller than the package width PW (length of the outer shape in the X direction) of the LED light source 22.
  • the light emitting area refers to a light emitting area.
  • the light emitting region 22 ⁇ / b> L of the LED light source 22 is arranged so that the center N in the width direction coincides with the bottom 36 of the recess between the convex portions 35, 35 of the light guide plate 30.
  • the center N in the width direction of the light guide plate 30 may not coincide with the bottom 36 of the recess between the convex portions 35, 35.
  • FIG. 3 is an enlarged view showing an end portion of the light guide plate and the LED light source in FIG.
  • FIG. 3A shows a case viewed from the Z direction.
  • FIG. 3A shows a gap G between the LED light source 22 and the convex portion 35 of the light guide plate 30 in the Z direction.
  • the gap G between the LED light source 22 and the light guide plate 30 is a distance between the tip of the convex portion 35 and the surface of the LED light source 22 on the light guide plate 30 side of the light emitting region 22L.
  • FIG. 3B shows the LED light source 22 from the Y direction (light guide plate 30 side).
  • the height of the package of the LED light source 22 (the length of the outer shape in the Z direction) is PH
  • the height of the light emitting region 22L (the length in the Z direction) is H.
  • Table 1 shows an example of the size of the width W of the light emitting region 22L, the height H of the light emitting region 22L, the width PW of the package, and the height PH of the package of the LED light source 22.
  • unit 1 is an LED light source manufactured by Nichia Corporation.
  • the unit 2 is an LED light source mounted on a Panasonic television.
  • the 7020 package, the 5030 package, and the 4215 package of the units 3, 4, and 5 are generic names based on the external size. Examples of manufacturers that manufacture LED light sources include SamsungLED, LGInnotek, SeolSemiconductor, Lumens, ToyotaGosei, ChiMei, Lighting, Everlight, Lite-on, and the like.
  • the width W of the light emitting region 22L of the LED light source 22 is 1.0 to 10.0 mm, preferably 2.0 to 7.0 mm.
  • the height H of the light emitting region 22L of the LED light source 22 is 0.5 to 5.0 mm, preferably 1.0 to 3.0 mm.
  • the height H of the light emitting region 22L is preferably equal to or less than the thickness t of the light guide plate 30.
  • the position of the LED light source 22 in the Z direction is preferably arranged so that the center of the light guide plate 30 in the Z direction coincides with the center of the light emitting region 22L in the Z direction.
  • the gap G between the LED light source 22 and the light guide plate 30 is 0.0 to 7.0 mm, preferably 0.5 to 3.0 mm.
  • the LED light source 22 those having various light emission distributions can be used. However, the light intensity in the normal direction (Y direction) of the LED light source 22 is maximum, and the half width of the light intensity distribution is 40 ° or more and 80 °. What has the light emission distribution which is below is suitable.
  • Specific examples of the LED light source type include a Lambertian type, a shell type, and a side emission type.
  • FIG. 4 is a graph showing an example of the light emission distribution of the LED light source.
  • the half width is about 60 °.
  • the light guide plate 30 has a rectangular shape when viewed from the plate thickness direction Z.
  • the size of the planar view shape of the light guide plate 30 is selected so as to match the target screen size of the transmissive image display device 10, but is usually 250 mm ⁇ 440 mm or more, preferably 1020 mm ⁇ 1800 mm or less.
  • the planar view shape of the light guide plate 30 is not limited to a rectangle, but may be a square, but in the following, it will be described as a rectangle unless otherwise specified.
  • the light guide plate 30 has a plate shape made of a translucent resin that transmits light.
  • the light guide plate 30 may be a sheet or a film.
  • the light guide plate 30 includes a pair of main surfaces (31, 32) facing in the Z direction (plate thickness direction), a pair of side surfaces 33, 33 facing in the Y direction, and a pair of side surfaces (not shown) facing in the X direction. ) And.
  • One main surface (31) of the pair of main surfaces facing in the Z direction functions as an emission surface 31 that emits planar light.
  • the emission surface 31 is disposed on the transmissive image display unit 10 side, and the other main surface (back surface 32) is disposed on the opposite side to the transmissive image display unit 10.
  • a reflection sheet (reflecting plate) that reflects light is applied at a position facing the back surface 32.
  • a plurality of convex portions 35 that are convex outward in the Y direction are formed on the side surface 33.
  • the convex portions 35 extend in the thickness direction (Z direction) of the sheet, and a plurality of the convex portions 35 are arranged side by side in the longitudinal direction (X direction) of the side surface 33.
  • the plurality of convex portions 35 are arranged in parallel.
  • the cross-sectional shape along the XY plane of the plurality of convex portions 35 is substantially uniform.
  • the arrangement interval P in the X direction (longitudinal direction of the incident surface) of the convex portions 35 satisfies the following expression (1).
  • P ⁇ 0.3W (1) W is the length of the light emitting area of the point light source 22 in the X direction.
  • the plurality of convex portions 35 are arranged at intervals P of 0.07 mm or more and 1.0 mm or less in the X direction.
  • the arrangement interval P of the convex portions 35 is, for example, 0.4 mm.
  • the convex portion 35 has a prism shape as shown in FIG.
  • the angle (vertical angle) ⁇ of the apex of the prism shape is preferably 50 ° or more and 150 ° or less, and more preferably 110 ° or more and 140 ° or less.
  • the apex angle ⁇ of the prism shape is 90 °, for example.
  • the plurality of prism shapes have a function of diffusing light from the LED light source 22 in the longitudinal direction (X direction) of the side surface 33.
  • FIG. 5 shows a side surface 33 of the light guide plate 30 in which a flat surface 37 is formed between the convex portions 35 and 35.
  • the arrangement interval P of the convex portions 35 is such that the width w a in the X direction of the convex portions 35 and the width w in the X direction of the flat surface 37 are shown in FIG. It is the sum with b .
  • the light guide plate 30 is made of a translucent resin.
  • the translucent resin is a resin that transmits light.
  • the refractive index of the translucent resin is usually 1.49 to 1.59.
  • methacrylic resin is mainly exemplified.
  • Examples of the methacrylic resin include monomers having methyl methacrylate as a main component. Specifically, a polymer obtained by polymerizing a monomer containing 50% by mass or more of methyl methacrylate may be used, or Polymethyl metal methyl obtained by polymerizing methyl methacrylate alone may be used, or a copolymer of 50% by mass or more of methyl methacrylate and 50% by mass or less of a monomer copolymerizable therewith may be used.
  • Examples of monomers copolymerizable with methyl methacrylate include, for example, ethyl methacrylate, propyl methacrylate, butyl methacrylate, benzyl methacrylate, 2-ethylhexyl acrylate, cyclohexyl methacrylate, bornyl methacrylate, adamantyl methacrylate, Methacrylic acid esters such as cyclopentanedienyl methacrylate; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, bornyl acrylate, adamantyl acrylate Acrylates such as cyclopentadienyl acrylate; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, maleic anhydride,
  • translucent resin is not limited to the said thing.
  • resins other than those described above may be used, and examples thereof include styrene resins, polyethylene resins, polypropylene resins, cyclic olefin polymer resins, acrylonitrile-butadiene-styrene resins, polyethylene terephthalate resins, and polycarbonate resins. .
  • additives such as a light diffusing agent, an ultraviolet absorber, a heat stabilizer, and a photopolymerization stabilizer may be added to the light guide plate.
  • Light guide plate forming method Examples of the method for forming the light guide plate 30 include extrusion molding, cast molding, and injection molding.
  • the thickness t of the light guide plate is not particularly limited, but is preferably 0.3 mm to 10.0 mm, more preferably 1.5 mm to 8.0 mm, and particularly preferably 2.0 mm to 4.0 mm.
  • a hot press molding method As a method for forming the convex portion 35 (uneven shape), a hot press molding method can be applied.
  • the convex part 35 can be formed on the side surface 33 of the light guide plate 30 by performing hot press molding using the opposite mold having a shape paired with the convex part 35 as a plate.
  • an injection molding method may be applied as a method of manufacturing the light guide plate 30 having the convex portion 35.
  • the inner wall of the injection mold is provided with an opposite mold having a shape paired with the convex portion 35.
  • a lens film having the convex portion 35 provided on the surface thereof is prepared, and the surface opposite to the convex portion 35 is bonded to the side surface of the light guide plate 30. It is also suitable to do.
  • convex portion 35 examples include a lenticular lens shape, a trapezoidal shape, and a rectangular shape in addition to the prism shape described above.
  • a light guide plate 30 According to such a light guide plate 30 according to this embodiment, light from the plurality of LED light sources 22 arranged to face the side surface 33 of the light guide plate 30 enters from the side surface 33 and is orthogonal to the side surface 33 ( Planar light is emitted from the exit surface 31 that intersects.
  • the light incident from the side surface 33 of the light guide plate 30 is refracted by the convex portion 35 and spread in the X direction. Thereby, the area
  • the surface light source device 20 and the transmissive image display device 1 including the same according to the present embodiment light from the plurality of LED light sources 22 is incident from the side surface 33, and the emission surface 31 is orthogonal to the side surface 33. From this, planar light is emitted.
  • the light incident from the side surface 33 of the light guide plate 30 is refracted by the convex portion 35 and spread in the X direction. Thereby, the area
  • the convex portion 35 is formed so that the arrangement interval P satisfies the formula (1), P ⁇ 0.34W (1), and thus the longitudinal direction of the side surface 33 In this case, even if the light guide plate 30 is misaligned, the influence of the misalignment can be suppressed and the enlargement of the region where the brightness is insufficient can be suppressed.
  • the plurality of convex portions 35 are arranged between the LED light sources 22 adjacent to each other in the longitudinal direction of the side surface 33, so that the space between the LED light source 22 and the light guide plate 30. Even when the positional relationship changes, it is possible to suppress the influence of the positional deviation and to suppress the expansion of the area where the brightness is insufficient. According to the surface light source device 20, it is possible to stably realize an effect of reducing an area where brightness is insufficient.
  • optical sheet according to the example of the present invention and the optical sheet according to the comparative example were prepared, and an evaluation test was performed on these.
  • an optical sheet 30 (optical sheet A) was prepared using Sumipec E011 (trade name, manufactured by Sumitomo Chemical Co., Ltd., PMMA) as a translucent resin.
  • the optical sheet 30 has a thickness of 2 mm, and has a rectangular shape in plan view with a length (short side) of 40 mm and a width (long side) of 100 mm.
  • a plurality of convex portions 35 extending in the thickness direction (Z direction) are arranged on the side surface 33 on the long side of the optical sheet 30.
  • the plurality of convex portions 35 were arranged side by side in the longitudinal direction (X direction) of the side surface (incident surface) 33.
  • the apex angle ⁇ of the convex portion 35 (prism shape) was set to 55 ° and 90 °, respectively.
  • the arrangement interval P of the convex portions 35 (prism shape) was 0.2 mm, 0.4 mm, 0.7 mm, and 1.0 mm, respectively.
  • the arrangement interval P of the convex portions 35 was 2.0 mm and 8.5 mm, respectively.
  • the convex portion 35 was formed by cutting the incident surface 33 (end surface on the long side) of the optical sheet using a diamond tool for forming the convex portion 35.
  • an evaluation unit 1 and an evaluation unit 2 were prepared for the optical sheets 10 of Examples 1 to 7 and Comparative Examples 1 to 3.
  • a white tape (TRUSCO TRT-50 double-sided tape) was adhered to the entire back surface 32 of the optical sheet 10.
  • LED light sources 22 120 ° Lambertian type; NSSW 123B
  • the LED light source 22 is arranged at the center in the thickness direction (Z direction) of the optical sheet 30. And after arrange
  • the evaluation unit 1 was installed on the reflector.
  • the central LED light source 22 (22 ⁇ / b> A) of the five LED light sources 22 has convex portions 35, 35 whose normal N is adjacent to the optical sheet 10 in the longitudinal direction of the incident surface 33. It arrange
  • the evaluation unit 2 among the LED light sources 22 preliminarily installed in the liquid crystal television (TH-19D2, manufactured by Panasonic), black tape is attached to the LED light sources 22 other than the central five light sources, and the light from the LED light source 22 is obtained. Was prevented from leaking outside.
  • the optical sheet 30 was installed on the reflector.
  • the central LED light source 22 (22A) of the five LED light sources 22 has convex portions 35, 35 whose normal line N is adjacent to the optical sheet A in the longitudinal direction of the incident surface 33. It arrange
  • the power cable originally provided in the liquid crystal television was connected to a 100V outlet, and the LED light source was turned on.
  • a luminance meter was installed so that the entire exit surface 31 of the optical sheet 30 was reflected.
  • the luminance meter was arranged to face the emission surface 31, and the distance from the emission surface 31 to the tip of the luminance meter camera was 460 mm.
  • FIG. 6 is a plan view showing the positional relationship among the prism shape (convex portion 35), the LED light source 22, and the luminance value measurement point Q.
  • FIG. 6 measurement points Q for measuring luminance were provided at equal intervals, and measurement positions were set using XY coordinates.
  • the long side direction of the optical sheet A was the X direction, and the short side direction was the Y direction.
  • 50 measurement points Q are provided in the range of 30 mm in the X direction near the light source, and 50 measurement points Q are provided in the range of 20 mm in the Y direction. As a result, a total of 2500 measurement points Q are provided. Provided.
  • 50 measurement points Q are provided in the range of 34 mm in the X direction near the light source, and 50 measurement points Q are provided in the range of 20 mm in the Y direction. As a result, a total of 2500 measurement points Q are provided. Provided. And the luminance value in each measurement point Q was measured. The evaluation units 1 and 2 were installed, and the luminance value was collected immediately after the LED light source 22 was turned on.
  • evaluation unit 1 With respect to the collected luminance values, for evaluation unit 1, 30 points in the 18 mm range in the vicinity of the light source, 20 points in the 8 mm range in the Y direction, about 600 points in total, and for evaluation unit 2, in the vicinity of the light source Contour graphs are created for a total of 640 points, 32 points in the range of 22 mm in the X direction and 20 points in the range of 8 mm in the Y direction, and whether the luminance profiles in the vicinity of each LED light source 22 are equal, Judgment of the quality of the luminance profile was evaluated by a sensory test. Evaluation of pass / fail judgment is shown in Table 2. Evaluation by a sensory test is evaluation by visual observation.
  • FIG. 7 and 8 are diagrams showing luminance profiles of the optical sheet of Example 2.
  • FIG. 7 shows a case where the optical sheet is arranged at the reference position
  • FIG. 8 shows a case where the optical sheet is shifted by 1.0 mm from the reference position. 7 and 8, it can be seen that the luminance change is small even when a deviation occurs.
  • FIG. 9 and 10 are diagrams showing luminance profiles of the optical sheet of Comparative Example 2.
  • FIG. 9 shows the case where the optical sheet is arranged at the reference position
  • FIG. 10 shows the optical sheet from the reference position. The case where 1.0 mm has shifted
  • the point light sources may be arranged along one side surface extending in the long side direction of the optical sheet, or may be arranged along one side surface extending in the short side direction. Further, the point light sources may be arranged along two side surfaces extending in the long side direction of the optical sheet, or may be arranged along two side surfaces extending in the short side direction. In addition, it is preferable that the point light source is arrange
  • the longitudinal direction of the side surface serving as the incident surface is the Y direction in the side surface 35 facing the X direction, and the X direction in the side surface facing the Y direction.
  • the convex portions are preferably arranged at equal intervals with a pitch P of 0.03 mm to 10.0 mm in the longitudinal direction of the incident surface, but may be arranged with other pitches P. That is, the convex part should just be arrange
  • the apex angle of the prism shape which is the convex portion is preferably 50 ° to 150 °, but may be other angles. Further, the convex portion may have a shape other than the prism shape.
  • the LED light source 22 may be a white LED. Further, a plurality of LEDs may be arranged at one place to constitute one light source unit. For example, as one light source unit, LEDs of three different colors of red, green, and blue may be arranged close to each other and arranged side by side. And the light source unit which has several LED is arrange
  • SYMBOLS 1 Transmission type image display apparatus, 10 ... Transmission type image display part, 20 ... Surface light source device, 22 ... LED light source (point light source), 30 ... Light guide plate (optical sheet), 31 ... Output surface, 32 ... Back surface, 33: side surface (incident surface), 35: convex portion (prism shape).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

An optical sheet (30) formed by a translucent resin is provided with: a side surface (33) which serves as an entry surface where light transmitted from point-like light sources (22) enters; and an exit surface (31), which is formed in a direction that intersects with the side surface (33), from which planar light exits. Convex sections (35), which extend in the thickness direction of the sheet, are positioned side-by-side on the side surface (33) in the longitudinal direction (Y) of the side surface (33). If the length, in the longitudinal direction of the side surface (33), of a light-emitting region of a point-like light source is denoted as W, the positioning interval (P), in the longitudinal direction of the side surface (33), of the convex sections (35) is set to 0.34W.

Description

光学シート、面光源装置及び透過型画像表示装置Optical sheet, surface light source device, and transmissive image display device
 本発明は、離散的に配置された複数の点状光源から入射した光を、面状に出射可能な、光学シートと、該光学シートを備えた面光源装置と、該面光源装置を備えた透過型画像表示装置と、に関するものである。 The present invention includes an optical sheet capable of emitting light incident from a plurality of discretely arranged point light sources in a planar shape, a surface light source device including the optical sheet, and the surface light source device. The present invention relates to a transmissive image display device.
 透過型画像表示装置の一例である直下型画像表示装置としては、透過型画像表示部の背面側に光源が配置されたものが、広く用いられている。透過型画像表示部としては、例えば、液晶セルの両面に直線偏光板が配置された液晶表示パネルが、挙げられる。光源としては、直管型の冷陰極線管などのような線状光源が、複数本、互いに平行に配置されて、用いられている。 As a direct type image display device which is an example of a transmissive image display device, a device in which a light source is disposed on the back side of a transmissive image display unit is widely used. Examples of the transmissive image display unit include a liquid crystal display panel in which linear polarizing plates are arranged on both surfaces of a liquid crystal cell. As the light source, a plurality of linear light sources such as a straight tube type cold cathode ray tube are arranged and used in parallel with each other.
 そのような直下型画像表示装置においては、光源からの光を均一に分散させて透過型画像表示部を均一に照明できることが、望ましい。そのために、光源と透過型画像表示部との間には、一枚の光拡散板である光制御板が、配置されている。該光制御板は、光源側から入射する光を、その向きを変えて反対側の透過型画像表示部側から出射させる、という機能を有している。(例えば特許文献1参照)。 In such a direct-type image display device, it is desirable that the light from the light source can be uniformly dispersed to uniformly illuminate the transmissive image display unit. Therefore, a light control plate, which is a single light diffusion plate, is disposed between the light source and the transmissive image display unit. The light control plate has a function of changing the direction of light incident from the light source side and emitting the light from the opposite transmissive image display unit side. (For example, refer to Patent Document 1).
 近年、透過型画像表示装置の薄型化が進み、光源が端部側に配置された面光源装置が、開発され、端部から照射された光を画面全体に広げるための導光板が、従来の光拡散板に代わって、使用され始めている。また、環境対策として水銀(Hg)を含まず且つ消費電力が低い、光源として、発光ダイオード(LED)の使用が増加している。 In recent years, transmissive image display devices have been made thinner, surface light source devices in which light sources are arranged on the end side have been developed, and a light guide plate for spreading light emitted from the end portions over the entire screen has been developed in the past. It is starting to be used in place of the light diffusing plate. In addition, as an environmental measure, light emitting diodes (LEDs) are increasingly used as light sources that do not contain mercury (Hg) and have low power consumption.
 導光板には、主に光透過性の高い樹脂が用いられている。そして、導光板には、導光板の端部に配置されたLEDの光を、導光板内の反射及び散乱効果により、画面全体に均一に広げることが、求められている。 The light guide plate is mainly made of highly light transmissive resin. And it is calculated | required by the light-guide plate that the light of LED arrange | positioned at the edge part of a light-guide plate is spread uniformly on the whole screen by the reflection and scattering effect in a light-guide plate.
 また、LED光源の光を有効に活用し且つ輝度が均一である、エッジライト方式の面状光源としては、透光性部材からなる板状部材であり、下面に乱反射部が形成されており、上面が出光面である、導光板を、備えたものが、知られている(例えば特許文献2参照)。また、エッジライトタイプの導光板としては、LED光源からの光を板厚方向に分散させる凹凸形状が、入射面に形成されているものが、知られている(例えば特許文献3参照)。 In addition, as an edge light type planar light source that effectively utilizes the light of the LED light source and has uniform brightness, it is a plate member made of a translucent member, and an irregular reflection portion is formed on the lower surface. A thing provided with the light guide plate whose upper surface is a light-emitting surface is known (for example, refer to patent documents 2). Further, as an edge light type light guide plate, one having an uneven shape that disperses light from an LED light source in a plate thickness direction is formed on an incident surface (see, for example, Patent Document 3).
特開平7-198913号公報JP-A-7-198913 特開2001-342263号公報JP 2001-342263 A 特開2008-10291号公報JP 2008-10291 A
 しかし、従来の面光源装置に使用される光制御板では、点状光源からの光を十分に均一なものとすることができず、特に光制御板の端部近傍の隣接する光源間において、明るさが不足する領域が生じる、という問題があった。 However, in the light control plate used in the conventional surface light source device, the light from the point light source cannot be made sufficiently uniform, especially between adjacent light sources near the end of the light control plate, There was a problem that an area with insufficient brightness occurred.
 そこで、本発明は、点状光源からの光を十分に均一に分散でき、明るさが不足する領域を減少させることができる、光学シートを、提供すること、及び、該光学シートを備えた面光源装置及び透過型画像表示装置を、提供すること、を目的とする。 Therefore, the present invention provides an optical sheet that can sufficiently uniformly disperse light from a point light source, and can reduce an area where brightness is insufficient, and a surface provided with the optical sheet. An object of the present invention is to provide a light source device and a transmissive image display device.
 また、点状光源と光学シートとの位置関係がずれた場合には、明るさが不足する領域が拡大することがある。例えば、点状光源の発熱によって透光性樹脂が加熱されて膨張し、その結果、点状光源と光学シートとの位置関係にずれが生じて、明るさが不足する領域が拡大するおそれがある。そこで、点状光源と光学シートとの間の位置ずれが生じた場合でも、明るさが不足する領域の拡大を抑制することが、求められている。また、光学シートに入射した光はレンズ効果で広げられるので、レンズに対する入射光の焦点がずれた場合には、光を広げられなくなるおそれがある。これを改善することも求められている。 Also, when the positional relationship between the point light source and the optical sheet is deviated, the area where the brightness is insufficient may be enlarged. For example, the translucent resin is heated and expanded by the heat generated by the point light source, and as a result, the positional relationship between the point light source and the optical sheet may be shifted, and the area where the brightness is insufficient may be enlarged. . Therefore, there is a demand to suppress the expansion of the area where the brightness is insufficient even when the positional deviation between the point light source and the optical sheet occurs. In addition, since the light incident on the optical sheet is spread by the lens effect, there is a possibility that the light cannot be spread when the focus of the incident light on the lens is deviated. There is also a need to improve this.
 本発明は、透光性樹脂で形成された光学シートであって、点状光源から出射された光が入射する入射面となる側面と、前記側面と交差する方向に形成されており、面状の光を出射する、出射面と、を備えており、前記入射面となる側面には、光学シートの厚み方向に延在し、且つ、前記入射面の長手方向に並べて配置された、複数の凸状部が、形成されており、前記凸状部の前記長手方向における配置間隔Pが、次式(1)を満たしていることを特徴とする光学シートである。
 P≦0.34W…(1)
(ただし、Wは、前記点状光源の、前記シートの入射面と面する側に存在する発光領域の、前記入射面の長手方向の長さである)
The present invention is an optical sheet formed of a translucent resin, and is formed in a side surface serving as an incident surface on which light emitted from a point light source is incident, and in a direction intersecting the side surface. A plurality of light emitting surfaces that extend in the thickness direction of the optical sheet and are arranged side by side in the longitudinal direction of the light incident surface. A convex portion is formed, and the arrangement interval P in the longitudinal direction of the convex portion satisfies the following expression (1).
P ≦ 0.34W (1)
(W is the length in the longitudinal direction of the incident surface of the light emitting region existing on the side of the point light source facing the incident surface of the sheet)
 前記構成によれば、光学シートの側面に対向して配置された点状光源からの光が、光学シートの側面から入射し、この側面と交差する方向に形成された出射面から、面状の光が出射する。また、光学シートの入射面となる側面から入射する光は、凸状部によって、光学シートの入射面の長手方向の、より広い範囲に、広げられる。これにより、正面視において、光学シートの入射面側の端部(側面近傍)の明るさが不足する領域を、縮小することができる。なお、光学シートの全ての側面が入射面となる構成でもよく、複数の側面のうちの1つの側面のみが入射面となる構成でもよい。 According to the above configuration, the light from the point light source arranged to face the side surface of the optical sheet is incident from the side surface of the optical sheet, and is formed into a planar shape from the emission surface formed in the direction intersecting the side surface. Light is emitted. Moreover, the light incident from the side surface serving as the incident surface of the optical sheet is spread to a wider range in the longitudinal direction of the incident surface of the optical sheet by the convex portion. Thereby, the area | region where the brightness of the edge part (side surface side vicinity) of the entrance plane side of an optical sheet is insufficient in front view can be reduced. In addition, the structure by which all the side surfaces of an optical sheet may become an incident surface may be sufficient, and the structure by which only one side surface among several side surfaces becomes an incident surface may be sufficient.
 また、凸状部が、配置間隔Pが式(1)を満たすように、形成されているので、入射面の長手方向において光学シートの位置ずれが生じた場合であっても、光学シートは、位置ずれの影響を抑えて、明るさが不足する領域の拡大を、抑制することができる。 Further, since the convex portion is formed so that the arrangement interval P satisfies the formula (1), even if the optical sheet is displaced in the longitudinal direction of the incident surface, the optical sheet is The influence of the position shift can be suppressed, and the expansion of the area where the brightness is insufficient can be suppressed.
 ここで、凸状部は、50°以上150°以下の頂角を有するプリズム形状であることが好適である。これにより、入射面から入射する光は、入射面の長手方向に好適に拡散する。 Here, it is preferable that the convex portion has a prism shape having an apex angle of 50 ° to 150 °. Thereby, the light incident from the incident surface is suitably diffused in the longitudinal direction of the incident surface.
 また、本発明は、前記の光学シートと、前記光学シートの入射面となる側面に対向し、且つ、前記入射面の長手方向に離散的に配置された、複数の点状光源と、を備えていることを特徴とする面光源装置である。 The present invention also includes the optical sheet, and a plurality of point light sources that are opposed to the side surface that is the incident surface of the optical sheet and are discretely arranged in the longitudinal direction of the incident surface. It is the surface light source device characterized by the above.
 前記構成によれば、前記光学シートを備えているので、光学シートの側面に対向して配置された点状光源からの光は、光学シートの側面から入射し、この側面と交差する方向に形成された出射面から、面状の光が出射する。また、光学シートの入射面となる側面から入射する光は、凸状部によって、光学シートの入射面の長手方向の、より広い範囲に、広げられる。これにより、正面視において、光学シートの入射面側の端部(側面近傍)の明るさが不足する領域を、縮小することができる。なお、光学シートの全ての側面が入射面となる構成でもよく、複数の側面のうちの1つの側面のみが入射面となる構成でもよい。 According to the above configuration, since the optical sheet is provided, the light from the point light source arranged to face the side surface of the optical sheet enters from the side surface of the optical sheet and is formed in a direction intersecting with the side surface. Planar light is emitted from the exit surface. Moreover, the light incident from the side surface serving as the incident surface of the optical sheet is spread to a wider range in the longitudinal direction of the incident surface of the optical sheet by the convex portion. Thereby, the area | region where the brightness of the edge part (side surface side vicinity) of the entrance plane side of an optical sheet is insufficient in front view can be reduced. In addition, the structure by which all the side surfaces of an optical sheet may become an incident surface may be sufficient, and the structure by which only one side surface among several side surfaces becomes an incident surface may be sufficient.
 また、光学シートの凸状部が、配置間隔Pが式(1)を満たすように、形成されているので、入射面の長手方向において光学シートの位置ずれが生じた場合であっても、面光源装置は、点状光源と光学シートとの間の位置ずれの影響を抑えて、明るさが不足する領域の拡大を、抑制することができる。 Further, since the convex portion of the optical sheet is formed so that the arrangement interval P satisfies the formula (1), even if the optical sheet is misaligned in the longitudinal direction of the incident surface, the surface The light source device can suppress the expansion of the region where the brightness is insufficient by suppressing the influence of the positional deviation between the point light source and the optical sheet.
 また、点状光源としては、当該点状光源の法線方向において最大光度を示し、且つ、光度分布の半値幅が40°以上80°以下である、LED光源が、好ましい。 Further, as the point light source, an LED light source that exhibits the maximum luminous intensity in the normal direction of the point light source and has a half-value width of the luminous intensity distribution of 40 ° to 80 ° is preferable.
 また、本発明は、前記の面光源装置と、前記面光源装置の出射面に対向して配置され、且つ、前記面光源装置から出射された光の照射を受けて画像を表示する、透過型画像表示部と、を備えていることを特徴とする透過型画像表示装置である。 Further, the present invention provides the above-described surface light source device and a transmission type that is disposed to face the emission surface of the surface light source device, and that displays an image by receiving light emitted from the surface light source device. And a transmissive image display device comprising an image display unit.
 前記構成によれば、前記面光源装置を備えているので、光学シートの側面に対向して配置された点状光源からの光は、光学シートの側面から入射し、この側面と交差する方向に形成された出射面から、面状の光が出射する。また、光学シートの入射面となる側面から入射する光は、凸状部によって、光学シートの入射面の長手方向の、より広い範囲に、広げられる。これにより、正面視において、光学シートの入射面側の端部(側面近傍)の明るさが不足する領域を、縮小することができる。なお、光学シートの全ての側面が入射面となる構成でもよく、複数の側面のうちの1つの側面のみが入射面となる構成でもよい。このような透過型画像表示装置によれば、点状光源からの光を、十分に均一に分散させて面状の光とすることができ、その均一に分散された面状の光によって、透過型画像表示部を照明することができる。 According to the above configuration, since the surface light source device is provided, the light from the point light source arranged to face the side surface of the optical sheet enters from the side surface of the optical sheet and intersects with the side surface. Planar light is emitted from the formed emission surface. Moreover, the light incident from the side surface serving as the incident surface of the optical sheet is spread to a wider range in the longitudinal direction of the incident surface of the optical sheet by the convex portion. Thereby, the area | region where the brightness of the edge part (side surface side vicinity) of the entrance plane side of an optical sheet is insufficient in front view can be reduced. In addition, the structure by which all the side surfaces of an optical sheet may become an incident surface may be sufficient, and the structure by which only one side surface among several side surfaces becomes an incident surface may be sufficient. According to such a transmissive image display device, the light from the point light source can be sufficiently uniformly dispersed to form planar light, and transmission is performed by the uniformly dispersed planar light. The mold image display unit can be illuminated.
 また、光学シートの凸状部が、配置間隔Pが式(1)を満たすように、形成されているので、入射面の長手方向において光学シートの位置ずれが生じた場合であっても、透過型画像表示装置は、点状光源と光学シートとの間の位置ずれの影響を抑えて、明るさが不足する領域の拡大を、抑制することができる。 Further, since the convex portion of the optical sheet is formed so that the arrangement interval P satisfies the formula (1), even if the optical sheet is displaced in the longitudinal direction of the incident surface, the optical sheet is transmitted. The type image display device can suppress the influence of the positional deviation between the point light source and the optical sheet, and can suppress the expansion of the region where the brightness is insufficient.
 本発明の光学シートによれば、入射面となる側面から入射した点状光源からの光を、入射面となる側面の長手方向に、十分に均一に分散させることができる。本発明の面光源装置及び透過型画像表示装置も、同様の効果を発揮できる。 According to the optical sheet of the present invention, the light from the point light source incident from the side surface serving as the incident surface can be sufficiently uniformly dispersed in the longitudinal direction of the side surface serving as the incident surface. The surface light source device and the transmissive image display device of the present invention can also exhibit the same effect.
 また、本発明の光学シート、面光源装置、及び透過型画像表示装置は、点状光源と光学シートとの間の位置ずれが生じた場合であっても、明るさが不足する領域の拡大を、抑制することができる。 In addition, the optical sheet, the surface light source device, and the transmissive image display device of the present invention can enlarge an area where the brightness is insufficient even when the positional deviation between the point light source and the optical sheet occurs. Can be suppressed.
本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of one Embodiment of the transmissive image display apparatus which concerns on this invention. 図1中の導光板の端部を示す拡大平面図である。It is an enlarged plan view which shows the edge part of the light-guide plate in FIG. 図2中の導光板の端部及びLED光源を示す拡大図である。It is an enlarged view which shows the edge part and LED light source of the light-guide plate in FIG. LED光源の出光分布の一例を示すグラフである。It is a graph which shows an example of the light emission distribution of a LED light source. 他の実施形態に係る導光板の端部及びLED光源を示す平面図である。It is a top view which shows the edge part and LED light source of the light-guide plate which concern on other embodiment. プリズム形状とLED光源と輝度値測定点との位置関係を示す平面図である。It is a top view which shows the positional relationship of a prism shape, LED light source, and a luminance value measurement point. 実施例2の光学シートが基準位置にある場合の輝度プロファイルを示す図である。It is a figure which shows a brightness | luminance profile when the optical sheet of Example 2 exists in a reference position. 実施例2の光学シートが基準位置から1.0mmずれている場合の輝度プロファイルを示す図である。It is a figure which shows the brightness | luminance profile when the optical sheet of Example 2 has shifted | deviated 1.0 mm from the reference position. 比較例2の光学シートが基準位置にある場合の輝度プロファイルを示す図である。It is a figure which shows a luminance profile in case the optical sheet of the comparative example 2 exists in a reference position. 比較例2の光学シートが基準位置から1.0mmずれている場合の輝度プロファイルを示す図である。It is a figure which shows the brightness | luminance profile in case the optical sheet of the comparative example 2 has shifted | deviated 1.0 mm from the reference position.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、同一要素又は相当要素には同一符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element or an equivalent element, and the overlapping description is abbreviate | omitted. The dimensional ratios in the drawings do not necessarily match those described.
 図1は、本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。図1は、透過型画像表示装置1を分解して示している。 FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention. FIG. 1 shows the transmissive image display device 1 in an exploded manner.
(透過型画像表示装置)
 透過型画像表示装置1は、透過型画像表示部10と、図1において透過型画像表示部10の背面側に配置された面光源装置20と、を備えている。以下の説明では、図1に示すように、面光源装置20及び透過型画像表示部10の配列方向を、Z方向(板厚方向)と称し、Z方向に直交する2方向であって互いに直交する2方向を、X方向及びY方向と称す。
(Transparent image display device)
The transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 disposed on the back side of the transmissive image display unit 10 in FIG. In the following description, as shown in FIG. 1, the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a Z direction (plate thickness direction), which is two directions orthogonal to the Z direction and orthogonal to each other. These two directions are referred to as the X direction and the Y direction.
 透過型画像表示部10としては、例えば、液晶セル11の両面に直線偏光板12,12が配置された液晶表示パネルが、挙げられる。この場合、透過型画像表示装置1は、液晶表示装置(例えば液晶テレビ)である。液晶セル11及び偏光板12,12としては、従来の液晶表示装置等の透過型画像表示装置1で用いられているものを、用いることができる。液晶セル11としては、TFT型、STN型等の公知の液晶セルが、例示される。透過型画像表示部10は、面光源装置20の出射面31に対向して配置され、面光源装置20から出射された光の照射を受けて、画像を表示する。 Examples of the transmissive image display unit 10 include a liquid crystal display panel in which linearly polarizing plates 12 and 12 are arranged on both surfaces of a liquid crystal cell 11. In this case, the transmissive image display device 1 is a liquid crystal display device (for example, a liquid crystal television). As the liquid crystal cell 11 and the polarizing plates 12 and 12, those used in the transmissive image display device 1 such as a conventional liquid crystal display device can be used. Examples of the liquid crystal cell 11 include known liquid crystal cells such as TFT type and STN type. The transmissive image display unit 10 is disposed so as to face the emission surface 31 of the surface light source device 20 and displays an image upon receiving irradiation of light emitted from the surface light source device 20.
(面光源装置)
 面光源装置20は、導光板(光学シート)30と、導光板30の側面33に対向して配置されたLED光源(点状光源)22と、を備えている。
(Surface light source device)
The surface light source device 20 includes a light guide plate (optical sheet) 30 and an LED light source (point light source) 22 disposed to face the side surface 33 of the light guide plate 30.
(光源)
 LED光源22は、面光源装置20の点状光源として機能し、図2に示すように、導光板30のX方向に延在する側面33,33に対向して配置されている。複数のLED光源22は、側面33の長手方向(X方向)に沿って、離散的に配置されている。LED光源22の配置間隔Lは、通常5mm~150mmである。例えば、LED光源22の発行領域のX方向における長さWは、3.5mm程度である。
(light source)
The LED light source 22 functions as a point light source of the surface light source device 20 and is disposed so as to face the side surfaces 33, 33 extending in the X direction of the light guide plate 30, as shown in FIG. The plurality of LED light sources 22 are discretely arranged along the longitudinal direction (X direction) of the side surface 33. The arrangement interval L of the LED light sources 22 is normally 5 mm to 150 mm. For example, the length W in the X direction of the issue region of the LED light source 22 is about 3.5 mm.
 図2では、LED光源22パッケージを一点鎖線で示し、LED光源22の発光領域22Lを実線で示している。発光領域22Lの幅W(X方向の長さ)は、LED光源22のパッケージの幅PW(X方向の外形の長さ)より小さい。発光領域とは、発光している領域をいう。図2では、LED光源22の発光領域22Lの幅方向の中心Nが、導光板30の凸状部35,35間の凹みの底36に一致するように、配置されているが、発光領域22Lの幅方向の中心Nは、導光板30の凸状部35,35間の凹みの底36に一致していなくてもよい。 In FIG. 2, the LED light source 22 package is indicated by a one-dot chain line, and the light emitting region 22L of the LED light source 22 is indicated by a solid line. The width W (length in the X direction) of the light emitting region 22L is smaller than the package width PW (length of the outer shape in the X direction) of the LED light source 22. The light emitting area refers to a light emitting area. In FIG. 2, the light emitting region 22 </ b> L of the LED light source 22 is arranged so that the center N in the width direction coincides with the bottom 36 of the recess between the convex portions 35, 35 of the light guide plate 30. The center N in the width direction of the light guide plate 30 may not coincide with the bottom 36 of the recess between the convex portions 35, 35.
 図3は、図2中の導光板の端部及びLED光源を示す拡大図である。図3(a)は、Z方向から見た場合を示している。図3(a)は、Z方向におけるLED光源22と導光板30の凸状部35とのギャップGを示している。LED光源22と導光板30とのギャップGは、凸状部35の先端と、LED光源22の発光領域22Lの導光板30側の面と、の間の距離である。 FIG. 3 is an enlarged view showing an end portion of the light guide plate and the LED light source in FIG. FIG. 3A shows a case viewed from the Z direction. FIG. 3A shows a gap G between the LED light source 22 and the convex portion 35 of the light guide plate 30 in the Z direction. The gap G between the LED light source 22 and the light guide plate 30 is a distance between the tip of the convex portion 35 and the surface of the LED light source 22 on the light guide plate 30 side of the light emitting region 22L.
 図3(b)は、LED光源22をY方向(導光板30側)から示している。図3(b)では、LED光源22のパッケージの高さ(Z方向の外形の長さ)をPHとし、発光領域22Lの高さ(Z方向の長さ)をHとしている。 FIG. 3B shows the LED light source 22 from the Y direction (light guide plate 30 side). In FIG. 3B, the height of the package of the LED light source 22 (the length of the outer shape in the Z direction) is PH, and the height of the light emitting region 22L (the length in the Z direction) is H.
 LED光源22の一例について、その寸法を表1に示す。表1では、LED光源22の発光領域22Lの幅W、発光領域22Lの高さH、パッケージの幅PW、及びパッケージの高さPHの、サイズの一例が、示されている。
Figure JPOXMLDOC01-appb-T000001
The dimensions of an example of the LED light source 22 are shown in Table 1. Table 1 shows an example of the size of the width W of the light emitting region 22L, the height H of the light emitting region 22L, the width PW of the package, and the height PH of the package of the LED light source 22.
Figure JPOXMLDOC01-appb-T000001
 表1において、ユニット1は、日亜化学工業製のLED光源である。ユニット2は、パナソニック製のテレビに搭載されていたLED光源である。ユニット3,4,5の、7020パッケージ、5030パッケージ、及び4215パッケージは、外形サイズに基づく総称である。LED光源を製造するメーカーとしては、例えば、SamsungLED、LGInnotek、SeoulSemiconductor、Lumens、ToyotaGosei、ChiMei、Lighting、Everlight、Lite-onなどが、挙げられる。 In Table 1, unit 1 is an LED light source manufactured by Nichia Corporation. The unit 2 is an LED light source mounted on a Panasonic television. The 7020 package, the 5030 package, and the 4215 package of the units 3, 4, and 5 are generic names based on the external size. Examples of manufacturers that manufacture LED light sources include SamsungLED, LGInnotek, SeolSemiconductor, Lumens, ToyotaGosei, ChiMei, Lighting, Everlight, Lite-on, and the like.
 LED光源22の発光領域22Lの幅Wは、1.0~10.0mmであり、好ましくは2.0~7.0mmである。LED光源22の発光領域22Lの高さHは、0.5~5.0mmであり、好ましくは1.0~3.0mmである。発光領域22Lの高さHは、導光板30の厚みt以下であることが好ましい。Z方向におけるLED光源22の位置は、導光板30のZ方向の中心と発光領域22LのZ方向の中心とが一致するように、配置されていることが、好ましい。 The width W of the light emitting region 22L of the LED light source 22 is 1.0 to 10.0 mm, preferably 2.0 to 7.0 mm. The height H of the light emitting region 22L of the LED light source 22 is 0.5 to 5.0 mm, preferably 1.0 to 3.0 mm. The height H of the light emitting region 22L is preferably equal to or less than the thickness t of the light guide plate 30. The position of the LED light source 22 in the Z direction is preferably arranged so that the center of the light guide plate 30 in the Z direction coincides with the center of the light emitting region 22L in the Z direction.
 LED光源22と導光板30とのギャップGは、0.0~7.0mmであり、好ましくは0.5~3.0mmである。 The gap G between the LED light source 22 and the light guide plate 30 is 0.0 to 7.0 mm, preferably 0.5 to 3.0 mm.
 LED光源22としては、様々な出光分布を有するものが使用可能であるが、LED光源22の法線方向(Y方向)の光度が最大であり、且つ、光度分布の半値幅が40°以上80°以下である、出光分布を、有するものが、好適である。また、LED光源のタイプとしては、具体的に、ランバーシアン型、砲弾型、サイドエミッション型などが、挙げられる。 As the LED light source 22, those having various light emission distributions can be used. However, the light intensity in the normal direction (Y direction) of the LED light source 22 is maximum, and the half width of the light intensity distribution is 40 ° or more and 80 °. What has the light emission distribution which is below is suitable. Specific examples of the LED light source type include a Lambertian type, a shell type, and a side emission type.
 図4は、LED光源の出光分布の一例を示すグラフである。図4は、LED光源の法線方向(出射角度φ=0°)の出射光強度を1.0(基準)として、出射角度φと出射光強度との関係を示している。図4に示す出光分布を有するLED光源では、半値幅が60°程度となっている。なお、その他の出光分布を有するLED光源を、用いてもよい。 FIG. 4 is a graph showing an example of the light emission distribution of the LED light source. FIG. 4 shows the relationship between the emission angle φ and the emission light intensity, assuming that the emission light intensity in the normal direction of the LED light source (emission angle φ = 0 °) is 1.0 (reference). In the LED light source having the light emission distribution shown in FIG. 4, the half width is about 60 °. In addition, you may use the LED light source which has another light emission distribution.
(導光板)
 導光板30は、板厚方向Zから見て、長方形を有している。導光板30の平面視形状のサイズは、目的とする透過型画像表示装置10の画面サイズに適合するように、選択されるが、通常250mm×440mm以上、好ましくは1020mm×1800mm以下である。導光板30の平面視形状は、長方形に限らず、正方形でもよいが、以下では、特に断らない限り、長方形として説明する。
(Light guide plate)
The light guide plate 30 has a rectangular shape when viewed from the plate thickness direction Z. The size of the planar view shape of the light guide plate 30 is selected so as to match the target screen size of the transmissive image display device 10, but is usually 250 mm × 440 mm or more, preferably 1020 mm × 1800 mm or less. The planar view shape of the light guide plate 30 is not limited to a rectangle, but may be a square, but in the following, it will be described as a rectangle unless otherwise specified.
 導光板30は、光を透過させる透光性樹脂で形成された、板状を、有している。なお、導光板30は、シート状でもよく、フィルム状でもよい。 The light guide plate 30 has a plate shape made of a translucent resin that transmits light. The light guide plate 30 may be a sheet or a film.
 導光板30は、Z方向(板厚方向)に対向する一対の主面(31,32)と、Y方向に対向する一対の側面33,33と、X方向に対向する一対の側面(不図示)と、を備えている。 The light guide plate 30 includes a pair of main surfaces (31, 32) facing in the Z direction (plate thickness direction), a pair of side surfaces 33, 33 facing in the Y direction, and a pair of side surfaces (not shown) facing in the X direction. ) And.
 Z方向に対向する一対の主面のうちの一方の主面(31)は、面状の光を出射する出射面31として機能する。出射面31は、透過型画像表示部10側に配置され、他方の主面(背面32)は、透過型画像表示部10とは反対側に配置される。また、背面32に対面する位置には、光を反射させる反射シート(反射板)が、施工されている。 One main surface (31) of the pair of main surfaces facing in the Z direction functions as an emission surface 31 that emits planar light. The emission surface 31 is disposed on the transmissive image display unit 10 side, and the other main surface (back surface 32) is disposed on the opposite side to the transmissive image display unit 10. In addition, a reflection sheet (reflecting plate) that reflects light is applied at a position facing the back surface 32.
(凸状部)
 ここで、側面33には、Y方向の外側へ凸である、複数の凸状部35が、形成されている。凸状部35は、シートの厚み方向(Z方向)に延在しており、複数の凸状部35は、側面33の長手方向(X方向)に、複数並べて、配置されている。複数の凸状部35同士は、並列している。複数の凸状部35の、XY面に沿う断面形状は、ほぼ均一である。凸状部35のX方向(入射面の長手方向)における配置間隔Pは、次式(1)を満たしている。
 P≦0.3W…(1)
 (ただし、Wは、点状光源22の発光領域のX方向の長さである。)
(Convex part)
Here, a plurality of convex portions 35 that are convex outward in the Y direction are formed on the side surface 33. The convex portions 35 extend in the thickness direction (Z direction) of the sheet, and a plurality of the convex portions 35 are arranged side by side in the longitudinal direction (X direction) of the side surface 33. The plurality of convex portions 35 are arranged in parallel. The cross-sectional shape along the XY plane of the plurality of convex portions 35 is substantially uniform. The arrangement interval P in the X direction (longitudinal direction of the incident surface) of the convex portions 35 satisfies the following expression (1).
P ≦ 0.3W (1)
(W is the length of the light emitting area of the point light source 22 in the X direction.)
 複数の凸状部35は、X方向に、0.07mm以上1.0mm以下の間隔Pで、配置されていることが、好ましい。本実施形態では、凸状部35の配置間隔P(凹部の底同士の間隔)は、例えば0.4mmである。 It is preferable that the plurality of convex portions 35 are arranged at intervals P of 0.07 mm or more and 1.0 mm or less in the X direction. In the present embodiment, the arrangement interval P of the convex portions 35 (interval between the bottoms of the concave portions) is, for example, 0.4 mm.
 また、凸状部35は、図2に示すように、プリズム形状であることが好ましい。プリズム形状の頂点の角度(頂角)θは、50°以上150°以下が好ましく、110°以上140°以下がより好ましい。本実施形態では、プリズム形状の頂角θは、例えば90°である。複数のプリズム形状は、LED光源22からの光を側面33の長手方向(X方向)に拡散させる機能を、有する。 Further, it is preferable that the convex portion 35 has a prism shape as shown in FIG. The angle (vertical angle) θ of the apex of the prism shape is preferably 50 ° or more and 150 ° or less, and more preferably 110 ° or more and 140 ° or less. In the present embodiment, the apex angle θ of the prism shape is 90 °, for example. The plurality of prism shapes have a function of diffusing light from the LED light source 22 in the longitudinal direction (X direction) of the side surface 33.
 凸状部35,35間に平坦面が形成されている導光板30でもよい。図5は、凸状部35,35間に平坦面37が形成されている導光板30の、側面33を、示している。このような平坦面37を有する場合には、凸状部35の配置間隔Pは、図5に示すように、凸状部35のX方向の幅wと平坦面37のX方向の幅wとの和とする。 The light guide plate 30 in which a flat surface is formed between the convex portions 35 and 35 may be used. FIG. 5 shows a side surface 33 of the light guide plate 30 in which a flat surface 37 is formed between the convex portions 35 and 35. When such a flat surface 37 is provided, the arrangement interval P of the convex portions 35 is such that the width w a in the X direction of the convex portions 35 and the width w in the X direction of the flat surface 37 are shown in FIG. It is the sum with b .
(導光板の構成材料)
 導光板30は、透光性樹脂で形成されている。透光性樹脂は、光を透過させる樹脂である。透光性樹脂の屈折率は、通常、1.49~1.59である。導光板30に使用される透光性樹脂としては、メタクリル樹脂が主として挙げられる。
(Construction material of light guide plate)
The light guide plate 30 is made of a translucent resin. The translucent resin is a resin that transmits light. The refractive index of the translucent resin is usually 1.49 to 1.59. As the translucent resin used for the light guide plate 30, methacrylic resin is mainly exemplified.
 メタクリル樹脂としては、メタクリル酸メチルを主成分とする単量体が挙げられ、具体的には、メタクリル酸メチルを50質量%以上含む単量体を重合させて得られる重合体でもよく、又は、メタクリル酸メチルを単独で重合させて得られるポリメタル酸メチルでもよく、又は、メタクリル酸メチル50質量%以上及びこれと共重合可能な単量体50質量%以下との共重合体でもよい。 Examples of the methacrylic resin include monomers having methyl methacrylate as a main component. Specifically, a polymer obtained by polymerizing a monomer containing 50% by mass or more of methyl methacrylate may be used, or Polymethyl metal methyl obtained by polymerizing methyl methacrylate alone may be used, or a copolymer of 50% by mass or more of methyl methacrylate and 50% by mass or less of a monomer copolymerizable therewith may be used.
 メタクリル酸メチルと共重合可能な単量体としては、例えば、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ベンジル、アクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ボルニル、メタクリル酸アダマンチル、メタクリル酸シクロペンタンジエニルなどのメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸ボルニル、アクリル酸アダマンチル、アクリル酸シクロペンタジエニルなどのアクリル酸エステル類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸などの不飽和カルボン酸及びその酸無水物;アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシポロピル、アクリル酸2-ヒドロキシプロピル、アクリル酸、アクリル酸モノグリセロール、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸モノグリセロールなどのヒドロキシル基含有単量体;アクリルアミド、メタクルアミド、アクリロニトリル、メタクリロニトリル、ジアセトンアクリルアミド、メタクリル酸ジメチルアミノエチルなどの窒素含有単量体;アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルなどエポキシ基含有単量体;スチレン、α-メチルスチレンなどのスチレン系単量体などが、挙げられる。 Examples of monomers copolymerizable with methyl methacrylate include, for example, ethyl methacrylate, propyl methacrylate, butyl methacrylate, benzyl methacrylate, 2-ethylhexyl acrylate, cyclohexyl methacrylate, bornyl methacrylate, adamantyl methacrylate, Methacrylic acid esters such as cyclopentanedienyl methacrylate; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, bornyl acrylate, adamantyl acrylate Acrylates such as cyclopentadienyl acrylate; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride And its anhydride: 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, acrylic acid, monoglycerol acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, methacryl Hydroxyl group-containing monomers such as acid monoglycerol; nitrogen-containing monomers such as acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, diacetone acrylamide, dimethylaminoethyl methacrylate; allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate And epoxy group-containing monomers; and styrene monomers such as styrene and α-methylstyrene.
 なお、透光性樹脂は、前記のものに限定されない。透光性樹脂としては、前記以外の樹脂でもよく、例えば、スチレン系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、環状オレフィン重合体樹脂、アクリロニトリル-ブタジエン-スチレン樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂などが、挙げられる。 In addition, translucent resin is not limited to the said thing. As the translucent resin, resins other than those described above may be used, and examples thereof include styrene resins, polyethylene resins, polypropylene resins, cyclic olefin polymer resins, acrylonitrile-butadiene-styrene resins, polyethylene terephthalate resins, and polycarbonate resins. .
 導光板を液晶表示装置に適用するにあたり、導光板には、光拡散剤、紫外線吸収剤、熱安定剤、光重合安定剤などの添加剤を、添加してもよい。 In applying the light guide plate to a liquid crystal display device, additives such as a light diffusing agent, an ultraviolet absorber, a heat stabilizer, and a photopolymerization stabilizer may be added to the light guide plate.
(導光板の成形方法)
 導光板30の成形方法としては、押出成形、キャスト成形、又は射出成形が、挙げられる。導光板の厚さtは、特に限定されるものではないが、0.3mm~10.0mmが好ましく、1.5mm~8.0mmが更に好ましく、2.0mm~4.0mmが特に好ましい。
(Light guide plate forming method)
Examples of the method for forming the light guide plate 30 include extrusion molding, cast molding, and injection molding. The thickness t of the light guide plate is not particularly limited, but is preferably 0.3 mm to 10.0 mm, more preferably 1.5 mm to 8.0 mm, and particularly preferably 2.0 mm to 4.0 mm.
(凸状部の形成方法)
 凸状部35(凹凸形状)の形成方法としては、熱プレス成形法を適用できる。凸状部35と対となる形状が施された反対型を、版として、熱プレス成形を行うことにより、導光板30の側面33に凸状部35を形成できる。
(Formation method of convex part)
As a method for forming the convex portion 35 (uneven shape), a hot press molding method can be applied. The convex part 35 can be formed on the side surface 33 of the light guide plate 30 by performing hot press molding using the opposite mold having a shape paired with the convex part 35 as a plate.
 また、凸状部35を有する導光板30の製造方法としては、射出成形法を適用してもよい。射出成形法の場合には、射出成形型の内壁に、凸状部35と対となる形状の反対型が施されていることが、好適である。また、凸状部35の形成方法としては、凸状部35がその表面に施されたレンズフィルムを、用意し、その凸状部35とは反対側の面を、導光板30の側面へ接着することも、好適である。 Further, as a method of manufacturing the light guide plate 30 having the convex portion 35, an injection molding method may be applied. In the case of the injection molding method, it is preferable that the inner wall of the injection mold is provided with an opposite mold having a shape paired with the convex portion 35. Further, as a method of forming the convex portion 35, a lens film having the convex portion 35 provided on the surface thereof is prepared, and the surface opposite to the convex portion 35 is bonded to the side surface of the light guide plate 30. It is also suitable to do.
 凸状部35(凹凸形状)としては、前記のプリズム形状の他、レンチキュラーレンズ形状、台形形状、矩形形状などが、挙げられる。 Examples of the convex portion 35 (concave / convex shape) include a lenticular lens shape, a trapezoidal shape, and a rectangular shape in addition to the prism shape described above.
 このような本実施形態に係る導光板30によれば、導光板30の側面33に対向して配置された複数のLED光源22からの光が、側面33から入射し、この側面33と直交(交差)する出射面31から、面状の光が出射する。そして、導光板30の側面33から入射する光は、凸状部35によって屈折し、X方向に広げられる。これにより、導光板30の端部(側面33近傍)において明るさが不足する領域を、縮小することができる。 According to such a light guide plate 30 according to this embodiment, light from the plurality of LED light sources 22 arranged to face the side surface 33 of the light guide plate 30 enters from the side surface 33 and is orthogonal to the side surface 33 ( Planar light is emitted from the exit surface 31 that intersects. The light incident from the side surface 33 of the light guide plate 30 is refracted by the convex portion 35 and spread in the X direction. Thereby, the area | region where brightness is insufficient in the edge part (side surface 33 vicinity) of the light-guide plate 30 can be reduced.
 また、本実施形態に係る面光源装置20及びこれを備えた透過型画像表示装置1によれば、複数のLED光源22からの光が側面33から入射し、この側面33と直交する出射面31から、面状の光が出射する。そして、導光板30の側面33から入射する光は、凸状部35によって屈折し、X方向に広げられる。これにより、導光板30の端部(側面33近傍)において明るさが不足する領域を、縮小することができる。そのため、導光板30の端部において明るさが不足する領域を、表示画面から見えないように隠蔽するための額縁部分を、小さくすることができる。それ故、透過型画像表示装置1の表示画面の周縁部である額縁部分のデザインの自由度を、高めることができる。 Further, according to the surface light source device 20 and the transmissive image display device 1 including the same according to the present embodiment, light from the plurality of LED light sources 22 is incident from the side surface 33, and the emission surface 31 is orthogonal to the side surface 33. From this, planar light is emitted. The light incident from the side surface 33 of the light guide plate 30 is refracted by the convex portion 35 and spread in the X direction. Thereby, the area | region where brightness is insufficient in the edge part (side surface 33 vicinity) of the light-guide plate 30 can be reduced. Therefore, the frame part for concealing the region where the brightness is insufficient at the end of the light guide plate 30 so as not to be seen from the display screen can be reduced. Therefore, the degree of freedom in designing the frame portion that is the peripheral portion of the display screen of the transmissive image display device 1 can be increased.
 また、本実施形態の導光板30は、配置間隔Pが式(1)、P≦0.34W…(1)を満たすように、凸状部35が形成されているので、側面33の長手方向において導光板30の位置ずれが生じた場合にあっても、位置ずれの影響を抑えて明るさが不足する領域の拡大を抑制することができる。 In the light guide plate 30 of the present embodiment, the convex portion 35 is formed so that the arrangement interval P satisfies the formula (1), P ≦ 0.34W (1), and thus the longitudinal direction of the side surface 33 In this case, even if the light guide plate 30 is misaligned, the influence of the misalignment can be suppressed and the enlargement of the region where the brightness is insufficient can be suppressed.
 本実施形態に係る面光源装置20によれば、側面33の長手方向に隣接するLED光源22間に複数の凸状部35が配置されているので、LED光源22と導光板30との間の位置関係が変化した場合であっても、位置ずれの影響を抑えて、明るさが不足する領域の拡大を、抑制することができる。面光源装置20によれば、明るさが不足する領域を、縮小する効果を、安定して実現できる。 According to the surface light source device 20 according to the present embodiment, the plurality of convex portions 35 are arranged between the LED light sources 22 adjacent to each other in the longitudinal direction of the side surface 33, so that the space between the LED light source 22 and the light guide plate 30. Even when the positional relationship changes, it is possible to suppress the influence of the positional deviation and to suppress the expansion of the area where the brightness is insufficient. According to the surface light source device 20, it is possible to stably realize an effect of reducing an area where brightness is insufficient.
 以下、本発明の光学シートの一実施例について説明する。 Hereinafter, an example of the optical sheet of the present invention will be described.
 本発明の実施例に係る光学シートと、比較例に係る光学シートとを、作成し、これらについて、評価試験を実施した。実施例1~7及び比較例1~3では、透光性樹脂としてスミペックE011(商品名、住友化学製、PMMA)を使用して、光学シート30(光学シートA)を作成した。光学シート30は、厚さ2mmであり、縦(短辺)40mm及び横(長辺)100mmの平面視矩形を有している。 The optical sheet according to the example of the present invention and the optical sheet according to the comparative example were prepared, and an evaluation test was performed on these. In Examples 1 to 7 and Comparative Examples 1 to 3, an optical sheet 30 (optical sheet A) was prepared using Sumipec E011 (trade name, manufactured by Sumitomo Chemical Co., Ltd., PMMA) as a translucent resin. The optical sheet 30 has a thickness of 2 mm, and has a rectangular shape in plan view with a length (short side) of 40 mm and a width (long side) of 100 mm.
 光学シート30の長辺側の側面33に、厚み方向(Z方向)に延在する複数の凸状部35を、配置した。複数の凸状部35は、側面(入射面)33の長手方向(X方向)に並べて、配置した。実施例1~7においては、それぞれ、凸状部35(プリズム形状)の頂角θを、55°及び90°とした。実施例1~7においては、それぞれ、凸状部35(プリズム形状)の配置間隔Pを、0.2mm、0.4mm、0.7mm、及び1.0mmとした。比較例1~3においては、それぞれ、凸状部35の配置間隔Pを、2.0mm及び8.5mmとした。凸状部35は、凸状部35を形成するためのダイヤモンドバイトを用いて、光学シートの入射面33(長辺側の端面)を切削加工することによって、形成した。 A plurality of convex portions 35 extending in the thickness direction (Z direction) are arranged on the side surface 33 on the long side of the optical sheet 30. The plurality of convex portions 35 were arranged side by side in the longitudinal direction (X direction) of the side surface (incident surface) 33. In Examples 1 to 7, the apex angle θ of the convex portion 35 (prism shape) was set to 55 ° and 90 °, respectively. In Examples 1 to 7, the arrangement interval P of the convex portions 35 (prism shape) was 0.2 mm, 0.4 mm, 0.7 mm, and 1.0 mm, respectively. In Comparative Examples 1 to 3, the arrangement interval P of the convex portions 35 was 2.0 mm and 8.5 mm, respectively. The convex portion 35 was formed by cutting the incident surface 33 (end surface on the long side) of the optical sheet using a diamond tool for forming the convex portion 35.
 次に、実施例1~7及び比較例1~3の、光学シート10について、評価ユニット1及び評価ユニット2を作成した。なお、光学シート10の背面32の全面には、白色テープ(TRUSCO製TRT-50両面テープ)を密着させた。 Next, an evaluation unit 1 and an evaluation unit 2 were prepared for the optical sheets 10 of Examples 1 to 7 and Comparative Examples 1 to 3. A white tape (TRUSCO TRT-50 double-sided tape) was adhered to the entire back surface 32 of the optical sheet 10.
 評価ユニット1においては、5個のLED光源22(120°ランバーシアン型;NSSW123B)を、光学シート30の長辺方向に、7.5mm間隔(L)で配置した。評価ユニット1においては、LED光源22を、光学シート30の厚さ方向(Z方向)の中央に、配置した。そして、LED光源22を所定の位置に配置した後に、基盤へ配線した。 In the evaluation unit 1, five LED light sources 22 (120 ° Lambertian type; NSSW 123B) were arranged in the long side direction of the optical sheet 30 at an interval of 7.5 mm (L). In the evaluation unit 1, the LED light source 22 is arranged at the center in the thickness direction (Z direction) of the optical sheet 30. And after arrange | positioning the LED light source 22 in a predetermined position, it wired to the base | substrate.
 次に、液晶テレビ(TH-19D2、パナソニック製)を準備し、液晶パネルと各種光学シートとを取り除いた後、反射板に評価ユニット1を設置した。このとき、5個のLED光源22のうちの中央のLED光源22(22A)を、その法線Nが、光学シート10に対して、入射面33の長手方向に隣接する凸状部35,35間の凹みの底36に対応するように、配置した。そして、LED光源22に、電圧18V及び電流60mAを印加して、LED光源22を点灯させた。 Next, after preparing a liquid crystal television (TH-19D2, manufactured by Panasonic) and removing the liquid crystal panel and various optical sheets, the evaluation unit 1 was installed on the reflector. At this time, the central LED light source 22 (22 </ b> A) of the five LED light sources 22 has convex portions 35, 35 whose normal N is adjacent to the optical sheet 10 in the longitudinal direction of the incident surface 33. It arrange | positioned so that it might respond | correspond to the bottom 36 of an indentation in between. And the voltage 18V and the electric current 60mA were applied to the LED light source 22, and the LED light source 22 was turned on.
 評価ユニット2では、液晶テレビ(TH-19D2、パナソニック製)に予め設置されているLED光源22のうち、中央の5個以外のLED光源22に、黒色テープを貼り付けて、LED光源22の光が外部に漏れないようにした。 In the evaluation unit 2, among the LED light sources 22 preliminarily installed in the liquid crystal television (TH-19D2, manufactured by Panasonic), black tape is attached to the LED light sources 22 other than the central five light sources, and the light from the LED light source 22 is obtained. Was prevented from leaking outside.
 次に、前記液晶テレビ(TH-19D2、パナソニック製)に搭載されている液晶パネルと各種光学シートとを取り除いた後、反射板に光学シート30を設置した。このとき、5個のLED光源22のうちの中央のLED光源22(22A)を、その法線Nが、光学シートAに対して、入射面33の長手方向に隣接する凸状部35,35間の凹みの底36に対応するように、配置した。そして、液晶テレビに元々備えられている電源ケーブルを、100Vコンセントに接続して、LED光源を点灯させた。 Next, after removing the liquid crystal panel and various optical sheets mounted on the liquid crystal television (TH-19D2, manufactured by Panasonic), the optical sheet 30 was installed on the reflector. At this time, the central LED light source 22 (22A) of the five LED light sources 22 has convex portions 35, 35 whose normal line N is adjacent to the optical sheet A in the longitudinal direction of the incident surface 33. It arrange | positioned so that it might respond | correspond to the bottom 36 of an indentation in between. Then, the power cable originally provided in the liquid crystal television was connected to a 100V outlet, and the LED light source was turned on.
 そして、光学シート30の出射面31全体が映り込むように、輝度計を設置した。輝度計は、出射面31に対向して配置され、出射面31から輝度計のカメラの先端までの距離は、460mmとした。 Then, a luminance meter was installed so that the entire exit surface 31 of the optical sheet 30 was reflected. The luminance meter was arranged to face the emission surface 31, and the distance from the emission surface 31 to the tip of the luminance meter camera was 460 mm.
 図6は、プリズム形状(凸状部35)とLED光源22と輝度値測定点Qとの位置関係を示す平面図である。図6に示すように、輝度を測定する測定点Qを、等間隔で設け、XY座標を用いて測定位置を設定した。光学シートAの長辺方向をX方向とし、短辺方向をY方向とした。評価ユニット1については、光源近傍のX方向30mmの範囲で50点の測定点Qを設け、Y方向20mmの範囲で50点の測定点Qを設け、その結果、合計2500点の測定点Qを設けた。評価ユニット2については、光源近傍のX方向34mmの範囲で50点の測定点Qを設け、Y方向20mmの範囲で50点の測定点Qを設け、その結果、合計2500点の測定点Qを設けた。そして、各測定点Qにおける輝度値を測定した。評価ユニット1,2を設置して、LED光源22の点灯直後に、輝度値を採取した。 FIG. 6 is a plan view showing the positional relationship among the prism shape (convex portion 35), the LED light source 22, and the luminance value measurement point Q. FIG. As shown in FIG. 6, measurement points Q for measuring luminance were provided at equal intervals, and measurement positions were set using XY coordinates. The long side direction of the optical sheet A was the X direction, and the short side direction was the Y direction. For the evaluation unit 1, 50 measurement points Q are provided in the range of 30 mm in the X direction near the light source, and 50 measurement points Q are provided in the range of 20 mm in the Y direction. As a result, a total of 2500 measurement points Q are provided. Provided. For the evaluation unit 2, 50 measurement points Q are provided in the range of 34 mm in the X direction near the light source, and 50 measurement points Q are provided in the range of 20 mm in the Y direction. As a result, a total of 2500 measurement points Q are provided. Provided. And the luminance value in each measurement point Q was measured. The evaluation units 1 and 2 were installed, and the luminance value was collected immediately after the LED light source 22 was turned on.
 この際、5個のLED光源22のうちの中央に位置するLED光源22(22A)を、その法線Nが、凹凸形状の凹み36に対応するように、配置した場合(基準位置、ずれ量0.0mm)と、光学シート30を前記基準位置よりX方向へ0.5mm及び1.0mm移動させた場合と、において、それぞれのLED光源22の点灯直後に、輝度値を採取した。 At this time, when the LED light source 22 (22A) located at the center of the five LED light sources 22 is arranged so that the normal line N thereof corresponds to the concave-convex recess 36 (reference position, deviation amount). 0.0 mm), and when the optical sheet 30 was moved 0.5 mm and 1.0 mm in the X direction from the reference position, luminance values were collected immediately after the LED light sources 22 were turned on.
 採取された輝度値について、合計2500点の輝度値の平均値を算出し、その結果を表2に示す。 The average value of 2500 luminance values in total was calculated for the collected luminance values, and the results are shown in Table 2.
 採取された輝度値について、評価ユニット1については、光源近傍のX方向に18mmの範囲で30点、Y方向に8mmの範囲で20点、合計600点について、また評価ユニット2については、光源近傍のX方向に22mmの範囲で32点、Y方向に8mmの範囲で20点、合計640点について等高線のグラフを作成し、各LED光源22近傍領域での輝度プロファイルが同等であるかどうかで、輝度プロファイルの良否判定を官能試験にて評価した。良否判定の評価を表2に示す。官能試験による評価とは、目視による評価である。 With respect to the collected luminance values, for evaluation unit 1, 30 points in the 18 mm range in the vicinity of the light source, 20 points in the 8 mm range in the Y direction, about 600 points in total, and for evaluation unit 2, in the vicinity of the light source Contour graphs are created for a total of 640 points, 32 points in the range of 22 mm in the X direction and 20 points in the range of 8 mm in the Y direction, and whether the luminance profiles in the vicinity of each LED light source 22 are equal, Judgment of the quality of the luminance profile was evaluated by a sensory test. Evaluation of pass / fail judgment is shown in Table 2. Evaluation by a sensory test is evaluation by visual observation.
 官能試験による評価として、各LED光源22の近傍領域における輝度プロファイルの分布が同一である場合には、「○:良」の判定を行い、評価に用いた5個のLEDのうちのどれか一つでも輝度プロファイルに違いが見られた場合には、「×:否」の判定を行った。
Figure JPOXMLDOC01-appb-T000002
As the evaluation by the sensory test, when the distribution of the luminance profile in the vicinity region of each LED light source 22 is the same, the determination of “◯: good” is performed, and one of the five LEDs used for the evaluation is When there was any difference in the luminance profile, “x: no” was determined.
Figure JPOXMLDOC01-appb-T000002
 図7及び図8は、実施例2の光学シートの輝度プロファイルを示す図である。図7は、光学シートが基準位置に配置されている場合を示し、図8は、光学シートが基準位置から1.0mmずれている場合を示している。図7及び図8によれば、ずれが生じた場合でも輝度変化が小さいことが分かる。 7 and 8 are diagrams showing luminance profiles of the optical sheet of Example 2. FIG. FIG. 7 shows a case where the optical sheet is arranged at the reference position, and FIG. 8 shows a case where the optical sheet is shifted by 1.0 mm from the reference position. 7 and 8, it can be seen that the luminance change is small even when a deviation occurs.
 図9及び図10は、比較例2の光学シートの輝度プロファイルを示す図であり、図9は、光学シートが基準位置に配置されている場合を示し、図10は、光学シートが基準位置から1.0mmずれている場合を示している。図9及び図10によれば、ずれの前後において輝度変化が大きいことが分かる。 9 and 10 are diagrams showing luminance profiles of the optical sheet of Comparative Example 2. FIG. 9 shows the case where the optical sheet is arranged at the reference position, and FIG. 10 shows the optical sheet from the reference position. The case where 1.0 mm has shifted | deviated is shown. 9 and 10, it can be seen that the luminance change is large before and after the shift.
 以上、本発明をその実施形態に基づいて具体的に説明したが、本発明は、前記実施形態に限定されるものではない。例えば、点状光源は、光学シートの長辺方向に延在する1つの側面に沿って配列されてもよく、短辺方向に延在する1つの側面に沿って配列されてもよい。また、点状光源は、光学シートの長辺方向に延在する2つ側面に沿って配列されてもよく、短辺方向に延在する2つの側面に沿って配列されてもよい。なお、点状光源は、隣接する凸状部間に形成された凹部に対応する位置に、配置されていることが、好ましい。 Although the present invention has been specifically described above based on the embodiment, the present invention is not limited to the embodiment. For example, the point light sources may be arranged along one side surface extending in the long side direction of the optical sheet, or may be arranged along one side surface extending in the short side direction. Further, the point light sources may be arranged along two side surfaces extending in the long side direction of the optical sheet, or may be arranged along two side surfaces extending in the short side direction. In addition, it is preferable that the point light source is arrange | positioned in the position corresponding to the recessed part formed between adjacent convex-shaped parts.
 なお、入射面となる側面の長手方向とは、X方向に対向する側面35においては、Y方向であり、Y方向に対向する側面においては、X方向である。 In addition, the longitudinal direction of the side surface serving as the incident surface is the Y direction in the side surface 35 facing the X direction, and the X direction in the side surface facing the Y direction.
 また、凸状部は、入射面の長手方向に、0.03mm~10.0mmのピッチPで、等間隔で、配置されていることが好ましいが、その他のピッチPで配置されてもよい。すなわち、凸状部は、式(1)を満たすように、配置されていればよい。 Further, the convex portions are preferably arranged at equal intervals with a pitch P of 0.03 mm to 10.0 mm in the longitudinal direction of the incident surface, but may be arranged with other pitches P. That is, the convex part should just be arrange | positioned so that Formula (1) may be satisfy | filled.
 また、凸状部であるプリズム形状の頂角は、50°~150°であることが好ましいが、その他の角度でもよい。また、凸状部は、プリズム形状以外の形状を有してもよい。 Further, the apex angle of the prism shape which is the convex portion is preferably 50 ° to 150 °, but may be other angles. Further, the convex portion may have a shape other than the prism shape.
 LED光源22は、白色LEDでもよい。また、複数のLEDを、一つの箇所に配置して、一つの光源単位を構成してもよい。例えば、一つの光源単位としては、赤色、緑色、青色の、異なる三色のLEDが、近接され且つ並べられて、配置されてもよい。そして、複数のLEDを有する光源単位が、上述した配置方向に従って、離散的に配置される。このような場合には、異なるLED同士は、できるだけ近づけられて、配置されるのが、好ましい。このようにLED光源が複数設けられている場合には、複数のLED光源を1ユニットと考え、この1ユニットの発光領域の端から端までが、Wに相当する。 The LED light source 22 may be a white LED. Further, a plurality of LEDs may be arranged at one place to constitute one light source unit. For example, as one light source unit, LEDs of three different colors of red, green, and blue may be arranged close to each other and arranged side by side. And the light source unit which has several LED is arrange | positioned discretely according to the arrangement | positioning direction mentioned above. In such a case, it is preferable that different LEDs are arranged as close to each other as possible. When a plurality of LED light sources are provided in this way, the plurality of LED light sources are considered as one unit, and the end to end of the light emission region of this one unit corresponds to W.
 1…透過型画像表示装置、10…透過型画像表示部、20…面光源装置、22…LED光源(点状光源)、30…導光板(光学シート)、31…出射面、32…背面、33…側面(入射面)、35…凸状部(プリズム形状)。 DESCRIPTION OF SYMBOLS 1 ... Transmission type image display apparatus, 10 ... Transmission type image display part, 20 ... Surface light source device, 22 ... LED light source (point light source), 30 ... Light guide plate (optical sheet), 31 ... Output surface, 32 ... Back surface, 33: side surface (incident surface), 35: convex portion (prism shape).

Claims (5)

  1.  透光性樹脂で形成された光学シートであって、
     点状光源から出射された光が入射する入射面となる側面と、
     前記側面と交差する方向に形成されており、面状の光を出射する、出射面と、を備えており、
     前記入射面となる側面には、光学シートの厚み方向に延在し、且つ、前記入射面の長手方向に並べて配置された、複数の凸状部が、形成されており、
     前記凸状部の前記長手方向における配置間隔Pが、次式(1)を満たしていることを特徴とする光学シート。
     P≦0.34W…(1)
    (ただし、Wは、前記点状光源の、前記シートの入射面と面する側に存在する発光領域の、前記入射面の長手方向の長さである)
    An optical sheet formed of a translucent resin,
    A side surface serving as an incident surface on which light emitted from the point light source is incident;
    It is formed in a direction intersecting with the side surface, and emits planar light.
    A plurality of convex portions extending in the thickness direction of the optical sheet and arranged in the longitudinal direction of the incident surface are formed on the side surface serving as the incident surface,
    The optical sheet, wherein an arrangement interval P in the longitudinal direction of the convex portions satisfies the following formula (1).
    P ≦ 0.34W (1)
    (W is the length in the longitudinal direction of the incident surface of the light emitting region existing on the side of the point light source facing the incident surface of the sheet)
  2.  前記凸状部は、50°以上150°以下の頂角を有するプリズム形状である、請求項1記載の光学シート。 The optical sheet according to claim 1, wherein the convex portion has a prism shape having an apex angle of 50 ° or more and 150 ° or less.
  3.  請求項1又は2に記載の光学シートと、
     前記光学シートの入射面となる側面に対向し、且つ、前記入射面の長手方向に離散的に配置された、複数の点状光源と、を備えていることを特徴とする面光源装置。
    The optical sheet according to claim 1 or 2,
    A surface light source device comprising: a plurality of point light sources that are opposed to a side surface serving as an incident surface of the optical sheet and are discretely arranged in a longitudinal direction of the incident surface.
  4.  前記点状光源は、その法線方向で最大光度を示し、且つ、光度分布の半値幅が40°以上80°以下である、LED光源である、請求項3記載の面光源装置。 The surface light source device according to claim 3, wherein the point light source is an LED light source that exhibits a maximum luminous intensity in the normal direction and has a half-value width of a luminous intensity distribution of 40 ° or more and 80 ° or less.
  5.  請求項3又は4に記載の面光源装置と、
     前記面光源装置の出射面に対向して配置され、且つ、前記面光源装置から出射された光の照射を受けて画像を表示する、透過型画像表示部と、を備えていることを特徴とする透過型画像表示装置。
    A surface light source device according to claim 3 or 4,
    A transmission-type image display unit that is disposed to face the emission surface of the surface light source device, and that displays an image upon irradiation with light emitted from the surface light source device. A transmissive image display device.
PCT/JP2012/077547 2011-10-27 2012-10-25 Optical sheet, surface light source device, and transmissive image display device WO2013062030A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280052320.0A CN103890482A (en) 2011-10-27 2012-10-25 Optical sheet, surface light source device, and transmissive image display device
KR1020147011019A KR20140091685A (en) 2011-10-27 2012-10-25 Optical sheet, surface light source device, and transmissive image display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-236429 2011-10-27
JP2011236429 2011-10-27
JP2012-156782 2012-07-12
JP2012156782A JP2013110094A (en) 2011-10-27 2012-07-12 Optical sheet, surface light source device, and transmission type image display device

Publications (1)

Publication Number Publication Date
WO2013062030A1 true WO2013062030A1 (en) 2013-05-02

Family

ID=48167856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077547 WO2013062030A1 (en) 2011-10-27 2012-10-25 Optical sheet, surface light source device, and transmissive image display device

Country Status (5)

Country Link
JP (1) JP2013110094A (en)
KR (1) KR20140091685A (en)
CN (1) CN103890482A (en)
TW (1) TWI615642B (en)
WO (1) WO2013062030A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822224A (en) * 2022-05-06 2022-07-29 广州华星光电半导体显示技术有限公司 Display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017204A1 (en) * 2009-08-03 2011-02-10 Qualcomm Mems Technologies, Inc. Microstructures for light guide illumination
JP2011141964A (en) * 2010-01-05 2011-07-21 Nittoh Kogaku Kk Optical element and light emitting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653326B2 (en) * 2001-03-05 2011-03-16 オリンパス株式会社 Lighting equipment
JP2008060086A (en) * 2002-03-05 2008-03-13 Seiko Epson Corp Illumination device, liquid crystal device, and electronic equipment
TWI364600B (en) * 2004-04-12 2012-05-21 Kuraray Co An illumination device an image display device using the illumination device and a light diffusing board used by the devices
JP2005353406A (en) * 2004-06-10 2005-12-22 Toyota Industries Corp Light guide plate
JP2006049192A (en) * 2004-08-06 2006-02-16 Futaba:Kk Surface light source device
US7347610B2 (en) * 2005-01-26 2008-03-25 Radiant Opto-Electronics Corporation Light guide plate having light diffusing entities on light entering side
JP4868331B2 (en) * 2005-02-18 2012-02-01 ミネベア株式会社 Surface lighting device
JP2007115451A (en) * 2005-10-18 2007-05-10 Omron Corp Planar light source device
TWI346813B (en) * 2006-10-14 2011-08-11 Au Optronics Corp Diffuser plate and backlight module using the same
CN101196597A (en) * 2006-12-08 2008-06-11 鸿富锦精密工业(深圳)有限公司 Light conducting plate and back light module unit
JP2009168961A (en) * 2008-01-15 2009-07-30 Nippon Zeon Co Ltd Light diffusing plate, direct backlight device, and liquid crystal display
EP2239492A1 (en) * 2008-02-07 2010-10-13 Sony Corporation Light guide plate, surface illumination device, liquid crystal display device, and manufacturing method for the light guide plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017204A1 (en) * 2009-08-03 2011-02-10 Qualcomm Mems Technologies, Inc. Microstructures for light guide illumination
JP2011141964A (en) * 2010-01-05 2011-07-21 Nittoh Kogaku Kk Optical element and light emitting device

Also Published As

Publication number Publication date
JP2013110094A (en) 2013-06-06
CN103890482A (en) 2014-06-25
TW201323950A (en) 2013-06-16
KR20140091685A (en) 2014-07-22
TWI615642B (en) 2018-02-21

Similar Documents

Publication Publication Date Title
US8287172B2 (en) Planar illumination device
US8408777B2 (en) Planar illumination device
TW201124760A (en) Light guide plate, light guide plate manufacturing method, surface light source device, and liquid crystal display device
TW201142387A (en) Light-guide panel, planar light-source device, and display device
JP2012164583A (en) Light guide plate, surface light source device, and transmission type display device
JP2010114073A (en) Light guide plate, backlight assembly having the same, and display
US9453958B2 (en) Light guide plate and illumination apparatus
WO2012039432A1 (en) Optical sheet, area light source device, and transmission image display device
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP2009176437A (en) Light source unit, backlight unit, and display
JP5458754B2 (en) Light control sheet, backlight unit, display device, and light control sheet manufacturing method
JP2010250987A (en) Light uniforming element, optical sheet, backlight unit and display device
WO2013062030A1 (en) Optical sheet, surface light source device, and transmissive image display device
JP2011146238A (en) Light guide plate, backlight unit, and display device
JP2007298698A (en) Light diffusing plate and planar irradiation apparatus
JP2008304700A (en) Optical sheet, illumination device and display device
KR20100006501A (en) High diffusion and condensing lens sheet and backlight assembly using the same
JPWO2010005051A1 (en) Direct type backlight device and liquid crystal display device
JP2013044799A (en) Transmission type image display device
JP2007103322A (en) Illumination device, light control member equipped with it, and image display device using it
JP5282500B2 (en) Optical element and backlight unit and display device using the same
JP2008305590A (en) Surface light source device and transmission type display device
JP2023088507A (en) Surface light source device and transmission type display device
JP2015069706A (en) Light guide plate, lighting unit with light guide plate and display device
JP2014146468A (en) Light guide plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147011019

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842881

Country of ref document: EP

Kind code of ref document: A1