JPWO2010005051A1 - Direct type backlight device and liquid crystal display device - Google Patents

Direct type backlight device and liquid crystal display device Download PDF

Info

Publication number
JPWO2010005051A1
JPWO2010005051A1 JP2010519815A JP2010519815A JPWO2010005051A1 JP WO2010005051 A1 JPWO2010005051 A1 JP WO2010005051A1 JP 2010519815 A JP2010519815 A JP 2010519815A JP 2010519815 A JP2010519815 A JP 2010519815A JP WO2010005051 A1 JPWO2010005051 A1 JP WO2010005051A1
Authority
JP
Japan
Prior art keywords
light
linear
concavo
backlight device
type backlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010519815A
Other languages
Japanese (ja)
Inventor
高橋 靖典
靖典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2010005051A1 publication Critical patent/JPWO2010005051A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

互いに略平行に配置された複数本の線状光源と、反射板と、光入射面及び光出射面を有する光拡散板とを備える直下型バックライト装置であって、光入射面及び/又は光出射面に、2種類以上の異なる凹凸構造からなる繰返し単位が配置された凹凸構造群を有し、前記繰り返し単位において、同一の凹凸構造が連続して占める範囲が350μm以下であり、前記2種類以上の凹凸構造のうちの2種の凹凸構造(a)及び(b)について、前記凹凸構造(a)が占める領域において前記光拡散板に垂直に入射した光の全光線透過率X(%)と、前記凹凸構造(b)が占める領域において前記光拡散板に垂直に入射した光の全光線透過率Y(%)とが、95≧|X−Y|≧20の関係を満たす直下型バックライト装置。A direct type backlight device comprising a plurality of linear light sources arranged substantially parallel to each other, a reflecting plate, and a light diffusing plate having a light incident surface and a light emitting surface, wherein the light incident surface and / or light The exit surface has a concavo-convex structure group in which repeating units composed of two or more different concavo-convex structures are arranged, and in the repeating unit, a range continuously occupied by the same concavo-convex structure is 350 μm or less, and the two types Of the two concavo-convex structures (a) and (b), the total light transmittance X (%) of light perpendicularly incident on the light diffusion plate in the region occupied by the concavo-convex structure (a). And a direct back that satisfies the relationship of 95 ≧ | X−Y | ≧ 20 in which the total light transmittance Y (%) of light perpendicularly incident on the light diffusion plate in the region occupied by the uneven structure (b) Light equipment.

Description

本発明は、直下型バックライト装置及び液晶表示装置に関する。   The present invention relates to a direct backlight device and a liquid crystal display device.

従来、液晶ディスプレイ用のバックライト装置の一態様として、直下型バックライト装置が用いられている。直下型バックライト装置は、通常、複数本の並列配置した冷陰極管等の光源と、光源の背面に設けられた反射板と、光出射面をなす光拡散板とを有する。直下型バックライト装置は、エッジライト型の装置に比べて、多数の光源を用いて光出射面を容易に高輝度化することができる利点を有する一方、光出射面の輝度均斉度が悪く、例えばバックライト装置の光出射面に冷陰極管の輝線が視認される程度の輝度ムラが発生する場合が多い。   Conventionally, a direct backlight device has been used as one embodiment of a backlight device for a liquid crystal display. The direct type backlight device usually includes a plurality of light sources such as cold cathode fluorescent lamps arranged in parallel, a reflection plate provided on the back surface of the light source, and a light diffusion plate forming a light emission surface. The direct-type backlight device has an advantage that the light emission surface can be easily increased in brightness using a large number of light sources compared to the edge light type device, while the luminance uniformity of the light emission surface is poor, For example, there are many cases where luminance unevenness occurs such that a bright line of a cold cathode tube is visually recognized on the light emitting surface of the backlight device.

輝度均斉度を改善する手段としては、光源の間隔を小さくすることが考えられるが、そのためには光源の数を増やさねばならず、その結果バックライト装置の製造工程が複雑になり、且つ点灯時の消費電力が増加する。輝度均斉度を改善する他の手段としては、光源と光拡散板の距離を大きくすることが考えられるが、その場合はバックライト装置が、不所望に厚くなってしまう。   As a means of improving the brightness uniformity, it is conceivable to reduce the interval between the light sources, but for this purpose, the number of light sources must be increased, resulting in a complicated manufacturing process of the backlight device and when the lamp is lit. Power consumption increases. As another means for improving the luminance uniformity, it is conceivable to increase the distance between the light source and the light diffusion plate, but in this case, the backlight device becomes undesirably thick.

さらに従来、輝度均斉度を改良するために、種々の対策がなされてきた。例えば縞模様やドット状の光量補正パターンを光拡散板に印刷し、冷陰極管の真上に放射される光束を低減する手法(特開平6−273760号公報の図6)や、波型反射板を利用して、反射板からの反射光を冷陰極管と冷陰極管の中間に相当する領域へ集束させる手法(特開2001−174813号公報)が提案されている。   Conventionally, various measures have been taken to improve the luminance uniformity. For example, a striped pattern or dot-shaped light quantity correction pattern is printed on a light diffusing plate to reduce the luminous flux emitted directly above the cold cathode tube (FIG. 6 of JP-A-6-273760), or wave reflection There has been proposed a technique (Japanese Patent Laid-Open No. 2001-174813) that uses a plate to focus the reflected light from the reflection plate to a region corresponding to the middle of the cold cathode tube and the cold cathode tube.

しかし、輝度均斉度の改良手段として、光拡散板に光量補正パターンの印刷を行うと、このパターンが光束の一部を遮断するので、冷陰極管が放射する光束の利用率が低下し、十分な輝度が得られない。また、波型反射板を用いると、装置の構成が複雑となる。   However, as a means of improving the brightness uniformity, when the light quantity correction pattern is printed on the light diffusing plate, this pattern blocks a part of the light beam, so that the utilization rate of the light beam emitted from the cold cathode tube is lowered and sufficient. High brightness cannot be obtained. In addition, when the wave reflector is used, the configuration of the apparatus becomes complicated.

また直下型バックライト装置に使用される光拡散板には、透明樹脂に光拡散剤を分散した材料が使用されることが多いが、輝度均斉度を改良させるために光拡散剤の濃度を上げると輝度が低下してしまうという問題があった。かかる輝度の低下を解決するために光拡散板表面にプリズム形状等のパターンを形成し、輝度を低下させずに表面形状による拡散効果を持たせることが提案されている(特開平5−333333号公報、特開平8−297202号公報、及び特開2000−182418号公報)。しかし光拡散板表面にプリズム状パターンを形成しただけでは、輝度均斉度の改良は十分ではない。   In addition, a light diffusing plate used in a direct type backlight device often uses a material in which a light diffusing agent is dispersed in a transparent resin, but the concentration of the light diffusing agent is increased to improve the luminance uniformity. There was a problem that the brightness would decrease. In order to solve such a decrease in luminance, it has been proposed to form a pattern such as a prism shape on the surface of the light diffusing plate so as to have a diffusion effect due to the surface shape without reducing the luminance (Japanese Patent Laid-Open No. 5-333333). JP, 8-297202, and 2000-182418). However, the luminance uniformity cannot be improved by simply forming a prismatic pattern on the surface of the light diffusing plate.

従って、本発明の目的は、線状光源の輝線が効果的に隠蔽され、輝度均斉度が高い直下型バックライト装置及び液晶表示装置を提供することにある。   Accordingly, an object of the present invention is to provide a direct type backlight device and a liquid crystal display device in which bright lines of a linear light source are effectively concealed and luminance uniformity is high.

本発明者らは、上記課題を解決するために鋭意研究を進めたところ、直下型バックライト装置中の光拡散板の形状を特定形状とすることにより、輝度ムラを低減できる(輝度均斉度を高めることができる)ことを見いだし、この知見に基づいて本発明を完成させるに至った。   As a result of diligent research to solve the above problems, the inventors of the present invention can reduce luminance unevenness by setting the shape of the light diffusing plate in the direct type backlight device to a specific shape (brightness uniformity can be reduced). Based on this finding, the present invention has been completed.

即ち、本発明によれば、下記のものが提供される:
〔1〕 互いに略平行に配置された複数本の線状光源と、
前記線状光源からの光を反射する反射板と、
前記線状光源からの直射光および前記反射板からの反射光を入射する光入射面及び前記光入射面から入射した光を拡散して出射する光出射面を有する光拡散板と、
を備える直下型バックライト装置であって、
前記光入射面及び前記光出射面の少なくとも一方は、その少なくとも一部に、2種類以上の異なる凹凸構造からなる繰返し単位が周期的に配置された凹凸構造群を有し、
各線状光源の中心を通る、前記光拡散板の法線に平行な面を基準面とし、
各線状光源の中心を通り、かつ前記基準面に対してなす角度としての極角45°以内の範囲に含まれる領域では、前記繰り返し単位において、前記基準面に対して垂直な方向に沿って同一の凹凸構造が連続して占める範囲が350μm以下であり、
前記繰り返し単位における前記2種類以上の異なる凹凸構造のうちの2種の凹凸構造(a)及び(b)について、前記凹凸構造(a)が占める領域において前記光拡散板に垂直に入射した光の全光線透過率X(%)と、前記凹凸構造(b)が占める領域において前記光拡散板に垂直に入射した光の全光線透過率Y(%)とが、95≧|X−Y|≧20の関係を満たす直下型バックライト装置。
〔2〕 前記凹凸構造が、前記線状光源の長手方向に略平行に延長する線状プリズムであり、
前記線状プリズムの、前記線状光源の長手方向に垂直な断面の形状は多角形状の凸部、平坦な部分、及びこれらの組み合わせのいずれかである前記直下型バックライト装置。
〔3〕 前記光拡散板は、主成分としての透明樹脂を含んで構成され、
前記凹凸構造(a)及び(b)が、それぞれ前記光出射面に形成される、断面三角形の線状プリズム(a)及び(b)であり、
前記線状プリズム(a)の頂角θaが下記式(1):
θa<180−2sin−1(1/n) ・・・(1a)
を満たし、前記線状プリズム(b)の頂角θbが下記式(1b):
θb≧180−2sin−1(1/n) ・・・(1b)
(式(1a)及び(1b)中、nは前記透明樹脂の屈折率を示す)
を満たす前記直下型バックライト装置。
〔4〕 前記繰り返し単位中に最も多く存在する種の凹凸構造の個数Aと、最も少なく存在する種の凹凸構造の個数Bとの比率A/Bは、10以下である前記直下型バックライト装置。
〔5〕 前記繰り返し単位中の前記2種の凹凸構造(a)及び(b)の存在比が、前記線状光源から遠ざかるにつれて、段階的に変化する前記直下型バックライト装置。
〔6〕 前記直下型バックライト装置と、この直下型バックライト装置の光出射側に配置される液晶パネルと、を備える液晶表示装置。
That is, according to the present invention, the following is provided:
[1] A plurality of linear light sources arranged substantially parallel to each other;
A reflector that reflects light from the linear light source;
A light diffusing plate having a light incident surface on which direct light from the linear light source and reflected light from the reflecting plate are incident, and a light emitting surface that diffuses and emits light incident from the light incident surface;
A direct-type backlight device comprising:
At least one of the light incident surface and the light emitting surface has a concavo-convex structure group in which repeating units composed of two or more different concavo-convex structures are periodically arranged in at least a part thereof,
A plane that passes through the center of each linear light source and is parallel to the normal of the light diffusing plate is used as a reference plane.
In a region passing through the center of each linear light source and included in a range within 45 ° of the polar angle as an angle with respect to the reference plane, the same repeat unit along the direction perpendicular to the reference plane The area occupied by the concavo-convex structure is 350 μm or less,
Of the two or more different concavo-convex structures (a) and (b) of the two or more different concavo-convex structures in the repeating unit, the light incident perpendicularly to the light diffusion plate in the region occupied by the concavo-convex structure (a) The total light transmittance X (%) and the total light transmittance Y (%) of light perpendicularly incident on the light diffusion plate in the region occupied by the uneven structure (b) are 95 ≧ | X−Y | ≧ A direct type backlight device satisfying the relationship of 20.
[2] The concavo-convex structure is a linear prism extending substantially parallel to the longitudinal direction of the linear light source,
The direct type backlight device, wherein a shape of a cross section of the linear prism perpendicular to the longitudinal direction of the linear light source is any of a polygonal convex portion, a flat portion, and a combination thereof.
[3] The light diffusion plate includes a transparent resin as a main component,
The concavo-convex structures (a) and (b) are linear prisms (a) and (b) having a triangular cross section formed on the light emitting surface, respectively.
The apex angle θa of the linear prism (a) is expressed by the following formula (1):
θa <180-2sin −1 (1 / n) (1a)
And the apex angle θb of the linear prism (b) is the following formula (1b):
θb ≧ 180−2 sin −1 (1 / n) (1b)
(In formulas (1a) and (1b), n represents the refractive index of the transparent resin)
The direct type backlight device satisfying the above.
[4] The direct-type backlight device, wherein the ratio A / B between the number A of the concavo-convex structure of the most existing species in the repeating unit and the number B of the concavo-convex structure of the least existing species is 10 or less. .
[5] The direct type backlight device in which the abundance ratio of the two types of concavo-convex structures (a) and (b) in the repeating unit changes stepwise as the distance from the linear light source increases.
[6] A liquid crystal display device comprising: the direct type backlight device; and a liquid crystal panel disposed on a light emitting side of the direct type backlight device.

本発明の直下型バックライト装置及びこれを有する本発明の液晶表示装置は、線状光源の輝線が効果的に隠蔽され、輝度均斉度を高めることができるという効果がある。   The direct type backlight device of the present invention and the liquid crystal display device of the present invention having the same have the effect that the bright line of the linear light source is effectively concealed and the luminance uniformity can be increased.

図1は、本発明の第1の実施形態にかかる直下型バックライト装置の概略を示す斜視図である。FIG. 1 is a perspective view showing an outline of a direct type backlight device according to a first embodiment of the present invention. 図2は、図1に示す装置を、線状光源102の長手方向に垂直な平面で切断した断面の概略を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing an outline of a section obtained by cutting the apparatus shown in FIG. 1 along a plane perpendicular to the longitudinal direction of the linear light source 102. 図3は、図1に示す装置の光拡散板101の一部分を、線状光源102の長手方向に垂直な平面で切断した断面の概略を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing an outline of a section obtained by cutting a part of the light diffusing plate 101 of the apparatus shown in FIG. 1 along a plane perpendicular to the longitudinal direction of the linear light source 102. 図4は、本発明の第2の実施形態に係る装置の光拡散板101の一部分の断面の概略を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a schematic cross section of a part of the light diffusing plate 101 of the apparatus according to the second embodiment of the present invention. 図5は、本願実施例3に係る装置の光拡散板の一部分の断面の概略を示す縦断面図である。FIG. 5 is a vertical cross-sectional view showing a schematic cross section of a part of the light diffusion plate of the apparatus according to Embodiment 3 of the present application. 図6は、本願実施例3に係る装置の光拡散板の他の一部分の断面の概略を示す縦断面図である。FIG. 6 is a vertical cross-sectional view showing an outline of a cross section of another part of the light diffusing plate of the apparatus according to Embodiment 3 of the present application. 図7は、本発明の第3の実施形態にかかる直下型バックライト装置における、光拡散板101と線状光源102a及び102bとの関係の概略を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing an outline of the relationship between the light diffusing plate 101 and the linear light sources 102a and 102b in the direct type backlight device according to the third embodiment of the present invention. 図8は、本発明の変形例に係る装置の光拡散板の一部分の断面の概略を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing an outline of a section of a part of a light diffusion plate of an apparatus according to a modification of the present invention. 図9は、本発明の他の変形例に係る装置の光拡散板の一部分の断面の概略を示す縦断面図である。FIG. 9 is a longitudinal sectional view showing an outline of a section of a part of a light diffusion plate of an apparatus according to another modification of the present invention.

以下に、本発明の実施形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は、本発明の第1の実施形態に係る直下型バックライト装置の概略を示す斜視図であり、図2は、図1に示す装置を、線状光源102の長手方向に垂直な平面で切断した断面の概略を示す縦断面図である。
(First embodiment)
FIG. 1 is a perspective view schematically showing a direct type backlight device according to the first embodiment of the present invention, and FIG. 2 is a plan view of the device shown in FIG. 1 perpendicular to the longitudinal direction of the linear light source 102. It is a longitudinal cross-sectional view which shows the outline of the cross section cut | disconnected by.

本実施形態の直下型バックライト装置は、互いに略平行に配置された複数本の線状光源102と、これらの線状光源102からの光を反射する反射面103Aを有する反射板103と、線状光源102からの直射光および反射板103からの反射光を入射する光入射面101A及び光入射面101Aから入射した光を拡散して出射する光出射面101Bを有する光拡散板101とを備える。図1はこれらの位置関係を示すための概略図であるため、図1において線状プリズム201a及び201bは拡大して示されているが、実際には、線状プリズム201a及び201bは、線状光源102の直径に比べて非常に小さいものとすることができる。本発明において、構成要素の配置が略平行であるとは、平行な状態に加えて、本発明の効果を損ねない範囲での誤差を含んでいてもよいことを意味する。当該誤差は、好ましくは平行な方向から±10°の範囲内、より好ましくは平行な方向から±5°の範囲内、さらに好ましくは±2°の範囲内とすることができる。   The direct type backlight device according to the present embodiment includes a plurality of linear light sources 102 arranged substantially parallel to each other, a reflective plate 103 having a reflective surface 103A that reflects light from these linear light sources 102, and a line And a light diffusing plate 101 having a light incident surface 101A for receiving direct light from the light source 102 and reflected light from the reflecting plate 103 and a light emitting surface 101B for diffusing and emitting the light incident from the light incident surface 101A. . Since FIG. 1 is a schematic diagram showing these positional relationships, the linear prisms 201a and 201b are shown enlarged in FIG. 1, but in reality, the linear prisms 201a and 201b are linear. The diameter of the light source 102 can be very small. In the present invention, the arrangement of the components being substantially parallel means that in addition to the parallel state, an error within a range not impairing the effect of the present invention may be included. The error can be preferably within a range of ± 10 ° from the parallel direction, more preferably within a range of ± 5 ° from the parallel direction, and further preferably within a range of ± 2 °.

なお、本明細書においては、別に断らない限り「上」及び「下」方向とは、直下型バックライト装置を、その光出射面が水平に上側となるよう載置した状態における「上」及び「下」方向を意味し、これらは図1〜図9の図面内における上方向及び下方向と一致する。   In the present specification, unless otherwise specified, the “up” and “down” directions mean “up” and “down” in a state where the direct-type backlight device is placed so that its light emission surface is horizontally upward. It means “down” direction, which corresponds to the upward direction and the downward direction in the drawings of FIGS.

本実施形態においては、全ての線状光源102は、線状光源102の中心から反射面103Aまでの距離111が、全ての線状光源について等しいように配置されている。なお、本実施形態では、前記線状光源102は、前記距離111が等しくなるように配置されるが、この場合、組み立て時等の誤差として±2mm以内のずれが許容される。前記のずれは1mm以内であることが好ましい。状光源102の形状の例としては、図1及び図2に示す直線状のほかに、略平行な2本の管が一つの略半円でつながれ一本になったU字状、略平行な3本の管が二つの略半円でつながれ一本になったN字状、および略平行な4本の管が三つの略半円でつながれ一本になったW字状を挙げることができる。   In the present embodiment, all the linear light sources 102 are arranged such that the distance 111 from the center of the linear light source 102 to the reflecting surface 103A is the same for all the linear light sources. In this embodiment, the linear light sources 102 are arranged so that the distances 111 are equal. In this case, a deviation within ± 2 mm is allowed as an error during assembly. The deviation is preferably within 1 mm. As an example of the shape of the light source 102, in addition to the linear shape shown in FIGS. 1 and 2, two substantially parallel tubes are connected by one approximately semicircle to form a single U-shape, approximately parallel There can be mentioned an N-shape in which three tubes are connected by two approximately semicircles, and a W-shape in which four approximately parallel tubes are connected by three approximately semicircles. .

本実施形態の直下型バックライト装置において、線状光源102としては、冷陰極管のほかに、例えば、外部電極蛍光管(EEFL)、キセノンランプ、キセノン水銀ランプ、熱陰極管、および発光ダイオード(LED)を直線状に並べたもの、LEDと導光体を組み合わせたもの等を用いることもできる。管状の線状光源102の外径は、1.0mm〜20.0mmであることが好ましい。隣り合う線状光源102の中心間の距離113は、20.0mm〜200.0mmであることが好ましい。線状光源の中心とは、線状光源の中心軸、即ち線状光源の長手方向に垂直な面で切断した線状光源の断面における中心を通り長手方向に延長する線である。ここでLEDを直線状に並べたものやLEDと導光体の組合せ、U字状の光源等の場合には、各々の直線状部を1本の線状光源として考え、直線状部の(垂直方向の)発光領域の幅を線状光源の外径とし、隣り合う直線状部の中心間距離を線状光源の中心間の距離とする。   In the direct type backlight device of the present embodiment, the linear light source 102 includes, for example, an external electrode fluorescent tube (EEFL), a xenon lamp, a xenon mercury lamp, a hot cathode tube, and a light emitting diode (in addition to a cold cathode tube). LEDs) arranged in a straight line, a combination of LEDs and a light guide, and the like can also be used. The outer diameter of the tubular linear light source 102 is preferably 1.0 mm to 20.0 mm. The distance 113 between the centers of the adjacent linear light sources 102 is preferably 20.0 mm to 200.0 mm. The center of the linear light source is a line extending in the longitudinal direction through the central axis of the linear light source, that is, the center in the cross section of the linear light source cut by a plane perpendicular to the longitudinal direction of the linear light source. Here, in the case of LEDs arranged in a straight line, a combination of an LED and a light guide, a U-shaped light source, etc., each linear part is considered as one linear light source, The width of the light emitting region (in the vertical direction) is the outer diameter of the linear light source, and the distance between the centers of adjacent linear portions is the distance between the centers of the linear light sources.

線状光源102の本数は、特に限定されない。例えば、本発明の直下型バックライト装置を32インチの液晶表示装置に用いる場合には、線状光源の数としては、例えば、12本、8本、4本、2本等の偶数本や、11本、7本、5本、3本等の奇数本とすることができる。   The number of the linear light sources 102 is not particularly limited. For example, when the direct type backlight device of the present invention is used in a 32-inch liquid crystal display device, the number of linear light sources is, for example, an even number such as 12, 8, 4, 2 or 11 It can be an odd number such as 7, 7, 5 or 3.

反射板103の材質としては、白色または銀色に着色された樹脂、および金属等を用いることができ、軽量化の観点から樹脂が好ましい。また、反射板103の色は、輝度均斉度を向上できる観点から白色であることが好ましいが、輝度と輝度均斉度を高度にバランスさせるため、白色と銀色とを混合してもよい。   As a material of the reflecting plate 103, a resin colored in white or silver, a metal, or the like can be used, and a resin is preferable from the viewpoint of weight reduction. The color of the reflector 103 is preferably white from the viewpoint of improving the luminance uniformity, but white and silver may be mixed in order to highly balance the luminance and the luminance uniformity.

光拡散板101は、入射光を拡散照射する板材である。光拡散板は、通常、線状光源よりも、反射板の反射面から遠い位置に設けられる。本実施形態では、光拡散板101は、その光入射面101Aから線状光源102の中心までの距離112が、全ての線状光源について等しいように配置され、従って光入射面101Aが反射板103の反射面103Aと略平行になるよう配置されている。なお、本実施形態では、前記線状光源102は、前記距離112が等しくなるように配置されるが、この場合、組み立て時等の誤差として±2mm以内のずれが許容される。前記のずれは1mm以内であることが好ましい。   The light diffusion plate 101 is a plate material that diffuses and irradiates incident light. The light diffusing plate is usually provided at a position farther from the reflecting surface of the reflecting plate than the linear light source. In the present embodiment, the light diffusing plate 101 is arranged such that the distance 112 from the light incident surface 101A to the center of the linear light source 102 is the same for all the linear light sources, and therefore the light incident surface 101A is the reflecting plate 103. It is arranged so as to be substantially parallel to the reflective surface 103A. In the present embodiment, the linear light sources 102 are arranged so that the distances 112 are equal. In this case, a deviation within ± 2 mm is allowed as an error during assembly. The deviation is preferably within 1 mm.

光拡散板を構成する材質としては、ガラス、混合しにくい2種以上の樹脂の混合物、透明樹脂に光拡散剤を分散させたもの、および1種類の透明樹脂等を用いることができる。これらの中で、前記材質としては、軽量であること、成形が容易であることから樹脂が好ましく、輝度向上が容易である点からは1種類の透明樹脂が好ましく、全光線透過率とヘーズの調整が容易である点からは主成分としての透明樹脂に光拡散剤を分散させたものが好ましい。   As a material constituting the light diffusing plate, glass, a mixture of two or more kinds of resins that are difficult to mix, a material in which a light diffusing agent is dispersed in a transparent resin, one kind of transparent resin, and the like can be used. Among these, as the material, a resin is preferable because it is lightweight and easy to mold, and one kind of transparent resin is preferable from the viewpoint that luminance can be easily improved. From the viewpoint of easy adjustment, it is preferable to disperse a light diffusing agent in a transparent resin as a main component.

前記透明樹脂とは、JIS K7361−1に基づいて、両面平滑な2mm厚の板で測定した全光線透過率が70%以上の樹脂のことであり、例えば、ポリエチレン、プロピレン−エチレン共重合体、ポリプロピレン、ポリスチレン、ポリメチルペンテン−1、ポリサルホン、ポリアリレート、芳香族ビニル単量体と低級アルキル基を有する(メタ)アクリル酸アルキルエステルとの共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、テレフタル酸−エチレングリコール−シクロヘキサンジメタノール共重合体、ポリカーボネート、アクリル樹脂、および脂環式構造を有する樹脂などを挙げることができる。なお、(メタ)アクリル酸とは、アクリル酸およびメタクリル酸のことである。   The transparent resin is a resin having a total light transmittance of 70% or more measured with a 2 mm-thick plate smooth on both sides based on JIS K7361-1, for example, polyethylene, propylene-ethylene copolymer, Polypropylene, polystyrene, polymethylpentene-1, polysulfone, polyarylate, copolymer of aromatic vinyl monomer and (meth) acrylic acid alkyl ester having lower alkyl group, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate Terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer, polycarbonate, acrylic resin, and resin having an alicyclic structure. In addition, (meth) acrylic acid is acrylic acid and methacrylic acid.

前記光拡散剤は、光線を拡散させる性質を有する粒子であり、無機フィラーと有機フィラーとに大別できる。無機フィラーとしては、シリカ、水酸化アルミニウム、酸化アルミニウム、酸化チタン、酸化亜鉛、硫酸バリウム、マグネシウムシリケート、およびこれらの混合物を挙げることができる。有機フィラーとしては、アクリル樹脂、ポリウレタン、ポリ塩化ビニル、ポリスチレン樹脂、ポリアクリロニトリル、ポリアミド、ポリシロキサン樹脂、メラミン樹脂、およびベンゾグアナミン樹脂等を挙げることができる。これらの中でも、有機フィラーとしては、ポリスチレン樹脂、ポリシロキサン樹脂、およびこれらの架橋物からなる微粒子が、高分散性、高耐熱性、成形時の着色(黄変)がない点で好ましく、これらの中でも、より耐熱性に優れる点でポリシロキサン樹脂の架橋物からなる微粒子がより好ましい。   The light diffusing agent is a particle having a property of diffusing light, and can be roughly classified into an inorganic filler and an organic filler. Examples of the inorganic filler include silica, aluminum hydroxide, aluminum oxide, titanium oxide, zinc oxide, barium sulfate, magnesium silicate, and a mixture thereof. Examples of the organic filler include acrylic resin, polyurethane, polyvinyl chloride, polystyrene resin, polyacrylonitrile, polyamide, polysiloxane resin, melamine resin, and benzoguanamine resin. Among these, as the organic filler, fine particles composed of polystyrene resin, polysiloxane resin, and cross-linked products thereof are preferable in terms of high dispersibility, high heat resistance, and no coloration (yellowing) during molding. Among these, fine particles made of a cross-linked product of polysiloxane resin are more preferable from the viewpoint of more excellent heat resistance.

透明樹脂に分散させる光拡散剤の割合は、光拡散板の厚みや、線状光源の間隔などに応じて適宜選択できるが、通常は、分散物の全光線透過率が60%〜98%となるように光拡散剤の含有量を調整することが好ましく、80%〜98%となるように光拡散剤の含有量を調整することがより好ましい。全光線透過率を上記好適な範囲とすることにより、輝度および輝度均斉度をより向上させることができる。   The ratio of the light diffusing agent dispersed in the transparent resin can be appropriately selected according to the thickness of the light diffusing plate, the interval between the linear light sources, and the like. Usually, the total light transmittance of the dispersion is 60% to 98%. It is preferable to adjust the content of the light diffusing agent so as to be, and it is more preferable to adjust the content of the light diffusing agent to be 80% to 98%. By setting the total light transmittance within the above preferable range, the luminance and the luminance uniformity can be further improved.

なお、全光線透過率とは、JIS K7361-1に基づいて、両面平滑な2mm厚みの板で測定した値であり、ヘーズとはJIS K7136により両面平滑な2mm厚みの板で測定した値である。   The total light transmittance is a value measured with a 2 mm-thick plate smoothed on both sides based on JIS K7361-1, and the haze is a value measured on a 2 mm-thick plate smoothed on both sides with JIS K7136. .

光拡散板101の厚みは、0.4mm〜5mmであることが好ましく、0.8mm〜4mmであることがより好ましい。光拡散板の厚みを上記好適な範囲とすることにより、自重による撓みを抑えることができるとともに、成形の容易化を図ることができる。   The thickness of the light diffusing plate 101 is preferably 0.4 mm to 5 mm, and more preferably 0.8 mm to 4 mm. By setting the thickness of the light diffusing plate within the above preferable range, it is possible to suppress bending due to its own weight and to facilitate the molding.

次に、光拡散板101の外形について説明する。
図3は、図1に示す本発明の第1の実施形態に係る装置の光拡散板101の一部分を、線状光源102の長手方向に垂直な平面で切断した断面の概略を示す縦断面図である。本実施形態において、光拡散板101の光入射面101Aは平滑な面であり、一方光拡散板101の光出射面101Bは、凹凸構造群として、線状光源102の長手方向に略平行に延長する、2種類の異なる凹凸構造である線状プリズム201a及び201bが略平行に複数並んだプリズム条列を有する。
Next, the outer shape of the light diffusing plate 101 will be described.
FIG. 3 is a longitudinal sectional view showing an outline of a section obtained by cutting a part of the light diffusing plate 101 of the apparatus according to the first embodiment of the present invention shown in FIG. 1 along a plane perpendicular to the longitudinal direction of the linear light source 102. It is. In the present embodiment, the light incident surface 101A of the light diffusing plate 101 is a smooth surface, while the light emitting surface 101B of the light diffusing plate 101 extends substantially parallel to the longitudinal direction of the linear light source 102 as an uneven structure group. The linear prisms 201a and 201b, which are two types of different concavo-convex structures, have a prism row in which a plurality of linear prisms are arranged substantially in parallel.

本発明において、凹凸構造群においては、2種類の異なる凹凸構造からなる繰返し単位が周期的に配置される。第1の実施形態においては、凹凸構造である線状プリズム201a及び201bは、図面の左右方向、即ち線状プリズムの延長方向に垂直で且つ光入射面に略平行な方向において周期的に配置される。即ち、光拡散板101の光出射面101Bは、2列の線状プリズム201aが占める範囲221aと、2列の線状プリズム201bが占める範囲221bとからなる単位220が周期的に配置された構造を有している。   In the present invention, in the concavo-convex structure group, repeating units composed of two different concavo-convex structures are periodically arranged. In the first embodiment, the linear prisms 201a and 201b having a concavo-convex structure are periodically arranged in the horizontal direction of the drawing, that is, in the direction perpendicular to the extending direction of the linear prism and substantially parallel to the light incident surface. The That is, the light exit surface 101B of the light diffusing plate 101 has a structure in which units 220 each having a range 221a occupied by two rows of linear prisms 201a and a range 221b occupied by two rows of linear prisms 201b are periodically arranged. have.

本発明においては、各線状光源の中心を通る、光拡散板の法線に平行な面を基準面とし、前記線状光源の中心を通り、かつ前記基準面に対してなす角度としての極角45度以内の範囲に含まれる領域では、前記繰り返し単位において、前記基準面に対して垂直な方向に沿って同一の凹凸構造が連続して占める範囲は350μm以下である。ここで「光拡散板の法線に平行な面を基準面とし、前記線状光源の中心を通り、かつ前記基準面に対してなす角度としての極角45度以内の範囲」とは、線状光源の中心線を通り、且つ軸(即ち光拡散板の法線に平行な方向)に対して45°の角度をなす、一対の平面で区切られる領域となる。この領域内の「同一の凹凸構造が連続して占める範囲」は、線状光源の長手方向に垂直な断面においては、光拡散板の主面に平行な方向の幅とすることができる。例えば第1の実施形態においては、範囲213a及び範囲213bがいずれも350μm以下であれば本要件を充足し、250μm以下であるとより好ましい。また、例えば、一つの繰り返し単位において、線状プリズムa及びbがそれぞれ3本ずつ含まれ、かつこれらの線状プリズムa,bがaabbabの順に並べられた態様では、一つの繰り返し単位中のaが占める範囲はプリズム3本分であるが、aが連続して占める範囲はプリズム2本分であるので、プリズム2本分の幅が、「同一の凹凸構造が連続して占める範囲」に相当する。   In the present invention, a plane that passes through the center of each linear light source and is parallel to the normal line of the light diffusing plate is used as a reference plane, and a polar angle that passes through the center of the linear light source and is formed with respect to the reference plane. In a region included in a range of 45 degrees or less, a range in which the same concavo-convex structure continuously occupies a direction perpendicular to the reference plane in the repeating unit is 350 μm or less. Here, “a range that is parallel to the normal of the light diffusing plate as a reference plane, passes through the center of the linear light source, and is an angle of 45 degrees or less with respect to the reference plane” means a line This is a region separated by a pair of planes that pass through the center line of the light source and form an angle of 45 ° with respect to the axis (that is, the direction parallel to the normal line of the light diffusing plate). The “range in which the same concavo-convex structure continuously occupies” in this region can be a width in a direction parallel to the main surface of the light diffusion plate in a cross section perpendicular to the longitudinal direction of the linear light source. For example, in the first embodiment, this requirement is satisfied if both the range 213a and the range 213b are 350 μm or less, and more preferably 250 μm or less. Also, for example, in a mode in which three linear prisms a and b are included in each repeating unit, and these linear prisms a and b are arranged in the order of aabbab, a in each repeating unit The range occupied by 3 is for 3 prisms, but the range that a continuously occupies is for 2 prisms, so the width for 2 prisms corresponds to the “range that the same uneven structure occupies continuously” To do.

本発明において、1つの凹凸構造(線状プリズム)の幅寸法(線状プリズムの場合は短手方向の寸法)は、20μm以上350μm以下であることが好ましく、40μm以上350μm以下であることがより好ましい。   In the present invention, the width dimension of one concavo-convex structure (linear prism) (the dimension in the short direction in the case of a linear prism) is preferably 20 μm or more and 350 μm or less, and more preferably 40 μm or more and 350 μm or less. preferable.

本発明の直下型バックライト装置は、この同一の凹凸構造が連続して占める範囲の要件を充足することにより、光出射面において線状光源の形状に基づく輝線が視認されない程度まで均一な光出射を実現することができる。   The direct-type backlight device of the present invention satisfies the requirements for the range that the same concavo-convex structure continuously occupies, so that the light emission is uniform to the extent that no bright line based on the shape of the linear light source is visible on the light emission surface. Can be realized.

本発明においては、前記繰り返し単位における前記2種類以上の異なる凹凸構造のうちの2の凹凸構造(a)及び(b)について、凹凸構造(a)が占める領域において光拡散板に垂直に入射した光の全光線透過率X(%)と、凹凸構造(b)が占める領域において光拡散板に垂直に入射した光の全光線透過率Y(%)とが、95≧|X−Y|≧20の関係を満たす。ここで、|X−Y|即ち全光線透過率の差は、2箇所の全光線透過率(単位;%)の差であり、例えば凹凸構造(a)が占める領域における全光線透過率が60%であり、凹凸構造(b)が占める領域における全光線透過率が80%である場合、これらの全光線透過率の差は20%(80%−60%)である。なお、全光線透過率の差|X−Y|の上限は、輝線隠蔽効果を得るために95%であり、好ましくは60%とすることができ、さらに好ましくは50%とすることができる。   In the present invention, two concavo-convex structures (a) and (b) of the two or more different concavo-convex structures in the repeating unit are perpendicularly incident on the light diffusion plate in the region occupied by the concavo-convex structure (a). The total light transmittance X (%) of light and the total light transmittance Y (%) of light perpendicularly incident on the light diffusion plate in the region occupied by the concavo-convex structure (b) are 95 ≧ | X−Y | ≧ Satisfy 20 relationships. Here, | X−Y |, that is, a difference in total light transmittance is a difference between two total light transmittances (unit:%). For example, a total light transmittance in a region occupied by the concavo-convex structure (a) is 60. %, And the total light transmittance in the region occupied by the concavo-convex structure (b) is 80%, the difference between these total light transmittances is 20% (80% -60%). Note that the upper limit of the difference | X−Y | in the total light transmittance is 95% in order to obtain the bright line concealing effect, preferably 60%, and more preferably 50%.

また、全光線透過率の測定において、凹凸構造(a),(b)が占める各領域において光拡散板に垂直に光を入射して測定するが、この場合の「光拡散板に垂直」とは、光拡散板の光入射面に垂直に(もしくは、光拡散板の厚み方向に平行な方向に)、光を入射して測定することである。また、全光線透過率の測定において、光拡散板における前記凹凸構造(a)や(b)の占める領域が狭いために測定ができない場合には、同じ凹凸構造のみが複数並んだサンプルを作製し、直下型バックライト装置として構成する場合と同様の方向から光を入射して測定することで代用できる。   Further, in the measurement of the total light transmittance, in each region occupied by the concavo-convex structure (a), (b), the light is incident perpendicularly to the light diffusing plate. In this case, “perpendicular to the light diffusing plate” Is to measure by making light incident perpendicularly to the light incident surface of the light diffusing plate (or in a direction parallel to the thickness direction of the light diffusing plate). In addition, in the measurement of the total light transmittance, when measurement is not possible because the area occupied by the uneven structure (a) or (b) in the light diffusion plate is narrow, a sample in which only the same uneven structure is arranged is prepared. Alternatively, it can be substituted by measuring the light incident from the same direction as that of the direct backlight device.

第1の実施形態においては、繰り返し単位220は、2種の凹凸構造のみ(線状プリズム201a及び201b)を有しているので、これらのうちの一方である線状プリズム201aが占める領域221aにおいて光拡散板101に垂直に入射した光の全光線透過率と、他方である線状プリズム201bが占める領域221bにおいて光拡散板101に垂直に入射した光の全光線透過率との差が20%以上95%以下であれば本要件を充足する。
第1の実施形態とは異なり繰り返し単位が3種類以上の凹凸構造を有する場合は、3通り以上の凹凸構造の対(例えば凹凸構造AとB、AとC、及びBとC、というように)が考えられるが、それらのうちのいずれか1対の凹凸構造を凹凸構造(a)及び(b)とした場合に前記全光線透過率の要件が満たされる場合、本要件を充足する。
In the first embodiment, the repeating unit 220 has only two types of concavo-convex structures (linear prisms 201a and 201b), and therefore in the region 221a occupied by one of these linear prisms 201a. The difference between the total light transmittance of light perpendicularly incident on the light diffusing plate 101 and the total light transmittance of light vertically incident on the light diffusing plate 101 in the region 221b occupied by the other linear prism 201b is 20%. If it is 95% or less, this requirement is satisfied.
Unlike the first embodiment, when the repeating unit has three or more types of concavo-convex structures, there are three or more pairs of concavo-convex structures (for example, concavo-convex structures A and B, A and C, and B and C, etc. However, this requirement is satisfied when the requirement of the total light transmittance is satisfied when any one of the concavo-convex structure is the concavo-convex structure (a) and (b).

本発明の直下型バックライト装置は、この全光線透過率の差の要件を充足することにより、光出射面における輝度均斉度を高めることができる。   The direct type backlight device of the present invention can increase the luminance uniformity on the light exit surface by satisfying the requirement of the difference in total light transmittance.

本発明の直下型バックライト装置においては、好ましくは、光拡散板は、主成分としての透明樹脂を含んで構成され、凹凸構造群の凹凸構造(a)及び(b)は、それぞれ前記光出射面に形成される、第1の実施形態の如く断面三角形、より好ましくは底角の等しい三角形、さらに好ましくは二等辺三角形の線状プリズム(a)及び(b)であり、線状プリズム(a)の頂角θaが下記式(1a):
θa<180−2sin−1(1/n) ・・・(1a)
を満たし、線状プリズム(b)の頂角θbが下記式(1b):
θb≧180−2sin−1(1/n) ・・・(1b)
(式(1a)及び(1b)中、nは透明樹脂の屈折率を示す)を満たす。
In the direct type backlight device of the present invention, preferably, the light diffusing plate is configured to include a transparent resin as a main component, and the concavo-convex structures (a) and (b) of the concavo-convex structure group are each configured to emit light. The linear prisms (a) and (b), which are formed on the surface as in the first embodiment, have a cross-sectional triangle, more preferably a triangle having the same base angle, and more preferably an isosceles triangle. ) Is represented by the following formula (1a):
θa <180-2sin −1 (1 / n) (1a)
The apex angle θb of the linear prism (b) is expressed by the following formula (1b):
θb ≧ 180−2 sin −1 (1 / n) (1b)
(In formulas (1a) and (1b), n represents the refractive index of the transparent resin).

一つの繰り返し単位中に2つのみの線状プリズムを有する場合、それらのうち頂角の小さい方の線状プリズムの頂角をθa、頂角の大きい方の線状プリズムの頂角をθbとし、これらがそれぞれ上記式(1a)及び(1b)を満たす場合、上記条件を充足する。例えば第1の実施形態においては、繰り返し単位220は、2種の凹凸構造のみ(線状プリズム201a及び201b)を有し、これらの頂角θ214a及びθ214bは、θ214a<θ214bの関係にある。したがって、θ214aを上記式(1a)のθaに代入して式(1a)が成立し、θ214bを上記式(1b)のθbに代入して式(1b)が成立すれば、上記条件を充足する。
第1の実施形態とは異なり繰り返し単位が3種類以上の線状プリズムを有する場合は、3通り以上の線状プリズムの対のうちのいずれか1対の線状プリズムを線状プリズム(a)及び(b)とした場合に前記全光線透過率の要件及び前記式(1a)及び式(1b)が満たされる場合、本要件を充足する。
頂角がかかる条件を充足することにより、光拡散板に垂直に入射した光の一部を透過させ、一部を全反射させて大きく拡散させることができ、その結果、線状光源から垂直に入射した光を良好に拡散させることができ、輝度均斉度をさらに向上させることができる。
When only two linear prisms are included in one repeating unit, the apex angle of the linear prism with the smaller apex angle is θa, and the apex angle of the linear prism with the larger apex angle is θb. When these satisfy the above formulas (1a) and (1b), the above conditions are satisfied. For example, in the first embodiment, the repeating unit 220 has only two types of concavo-convex structures (linear prisms 201a and 201b), and the apex angles θ214a and θ214b have a relationship of θ214a <θ214b. Therefore, if the equation (1a) is established by substituting θ214a into θa in the equation (1a), and the equation (1b) is established by substituting θ214b into θb in the equation (1b), the above condition is satisfied. .
Unlike the first embodiment, when the repeating unit has three or more types of linear prisms, any one of the three or more pairs of linear prisms is replaced with the linear prism (a). And when it is set as (b) and the requirement of the said total light transmittance and said Formula (1a) and Formula (1b) are satisfy | filled, this requirement is satisfied.
By satisfying the condition that the apex angle is satisfied, it is possible to transmit a part of the light vertically incident on the light diffusing plate and to totally diffuse a part of the light by totally reflecting the light. The incident light can be diffused satisfactorily, and the brightness uniformity can be further improved.

本発明の直下型バックライト装置においては、より好ましくは、繰り返し単位中の線状プリズムのうち頂角が最も小さい線状プリズムの頂角θmが、下記式(2)を満たす。
θm/2−sin−1(n×sin(3/2θm−90))<45 ・・・(2)
一つの繰り返し単位中に2つのみの線状プリズムを有する場合、それらのうち頂角の小さい方の線状プリズム頂角θaをθmとした場合に上記式(2)を満たす場合、上記条件を充足する。例えば第1の実施形態においては、θ214aを上記式(2)のθmに代入して式(2)が成立すれば、上記条件を充足する。
第1の実施形態とは異なり繰り返し単位が3種類以上の線状プリズムを有する場合は、かかる3種類以上の線状プリズムのうち頂角が最も小さい線状プリズムの頂角が上記式(2)を満たす場合、本要件を充足する。
線状プリズムの頂角が小さすぎると、光拡散板に垂直に入射し、線状プリズムの一方の面で全反射した光が、他方の面を屈折して透過し、正面方向へ出射し、その結果正面方向の輝度が増加し輝度ムラが発生する場合があるが、繰り返し単位中の線状プリズムのうち頂角が最も小さい線状プリズムの頂角が上記式(2)を満たすことにより、そのような出射を抑制することができ、輝度均斉度の高い、好ましいバックライト装置とすることができる。
In the direct type backlight device of the present invention, more preferably, the apex angle θm of the linear prism having the smallest apex angle among the linear prisms in the repeating unit satisfies the following formula (2).
θm / 2−sin −1 (n × sin (3 / 2θm−90)) <45 (2)
When only two linear prisms are included in one repeating unit, when the linear prism apex angle θa having the smaller apex angle is θm and the above formula (2) is satisfied, the above condition is satisfied. Satisfy. For example, in the first embodiment, if the equation (2) is satisfied by substituting θ214a into θm of the equation (2), the above condition is satisfied.
Unlike the first embodiment, when the repeating unit has three or more types of linear prisms, the apex angle of the linear prism having the smallest apex angle among the three or more types of linear prisms is expressed by the above formula (2). If this requirement is satisfied, this requirement is satisfied.
If the apex angle of the linear prism is too small, the light incident perpendicularly to the light diffusing plate and totally reflected by one surface of the linear prism is refracted and transmitted through the other surface, and is emitted in the front direction. As a result, the luminance in the front direction increases and luminance unevenness may occur, but when the vertex angle of the linear prism having the smallest vertex angle among the linear prisms in the repeating unit satisfies the above formula (2), Such emission can be suppressed, and a preferable backlight device with high luminance uniformity can be obtained.

(第2実施形態)
次に、本発明の第2の実施形態に係る直下型バックライト装置について説明する。第2の実施形態に係る直下型バックライト装置は、光拡散板101における線状プリズム201a及び201bの配置が異なる他は、第1の実施形態と同一の構成を有する。図4は、本発明の第2の実施形態に係る装置の光拡散板101の一部分を、線状光源102の長手方向に垂直な平面で切断した断面の概略を示す縦断面図である。
(Second Embodiment)
Next, a direct type backlight device according to a second embodiment of the present invention will be described. The direct type backlight device according to the second embodiment has the same configuration as that of the first embodiment except that the arrangement of the linear prisms 201a and 201b in the light diffusion plate 101 is different. FIG. 4 is a longitudinal sectional view showing an outline of a section obtained by cutting a part of the light diffusion plate 101 of the apparatus according to the second embodiment of the present invention along a plane perpendicular to the longitudinal direction of the linear light source 102.

図4に示す通り、本実施形態において、光拡散板101の光出射面101Bは、凹凸構造群として、第1実施形態と同様の線状プリズム201a及び201bが略平行に複数並んだプリズム条列を有しているが、繰り返し単位420は、2列の線状プリズム201aが占める範囲421a及び1列の線状プリズム201bが占める範囲421bとから構成される。これらの範囲421a及び421bの幅413a及び413bのいずれもが350μm以下であることにより、本実施形態は、本発明における同一の凹凸構造が連続して占める範囲の要件を充足する。   As shown in FIG. 4, in the present embodiment, the light exit surface 101B of the light diffusing plate 101 is a prism array in which a plurality of linear prisms 201a and 201b similar to those in the first embodiment are arranged substantially in parallel as an uneven structure group. However, the repeating unit 420 includes a range 421a occupied by two rows of linear prisms 201a and a range 421b occupied by one row of linear prisms 201b. Since both of the widths 413a and 413b of these ranges 421a and 421b are 350 μm or less, the present embodiment satisfies the requirements of the range continuously occupied by the same uneven structure in the present invention.

(第3実施形態)
本発明の直下型バックライト装置においては、上に述べた繰り返し単位の周期的な配置は、1種類の繰り返し単位が光拡散板の入射面及び/又は出射面の全面にわたって配置されていてもよいが、以下に説明する第3実施形態のように、一面内に複数種類の繰返し単位が配置されていてもよい。
図7は、本発明の第3の実施形態にかかる直下型バックライト装置における、光拡散板101と線状光源102a及び102bとの関係の概略を示す縦断面図である。本実施形態においては、隣り合う線状光源102a及び102bの中心間の距離の中間位置141から線状光源の中心までに相当する距離を、複数のゾーン(図7ではA、B、C及びDの4つのゾーン)に分け、光拡散板101の光入射面及び/又は光出射面の各ゾーンに対応する領域ごとに、異なる繰り返し単位の凹凸構造群が設けられている。
(Third embodiment)
In the direct type backlight device of the present invention, in the periodic arrangement of the repeating units described above, one type of repeating unit may be arranged over the entire entrance surface and / or exit surface of the light diffusion plate. However, as in the third embodiment described below, a plurality of types of repeating units may be arranged in one plane.
FIG. 7 is a longitudinal sectional view showing an outline of the relationship between the light diffusing plate 101 and the linear light sources 102a and 102b in the direct type backlight device according to the third embodiment of the present invention. In the present embodiment, the distance corresponding to the distance from the center 141 between the centers of the adjacent linear light sources 102a and 102b to the center of the linear light source is set to a plurality of zones (A, B, C and D in FIG. 7). In other words, each of the regions corresponding to the zones of the light incident surface and / or the light emitting surface of the light diffusing plate 101 is provided with a concavo-convex structure group of different repeating units.

ここで、各繰り返し単位中の前記2種の凹凸構造(a)及び(b)の存在比は、線状光源から遠ざかるにつれて、段階的に変化することが好ましい。例えば、ゾーンAでは線状プリズム201aの存在数と201bの存在数とが1:1の割合となる繰り返し単位で配置し、ゾーンBでは存在比が2:1の割合となる繰り返し単位で配置し、ゾーンCでは存在比が3:1となる繰り返し単位で配置し、ゾーンDでは線状プリズム201aのみを配置する、という存在比が4段階に変化する凹凸構造群を設けることができる。なお、これらのゾーンの数は、特に限定されないが、例えば2〜10段階等とすることができる。   Here, the abundance ratio of the two types of concavo-convex structures (a) and (b) in each repeating unit is preferably changed stepwise as the distance from the linear light source increases. For example, in zone A, the number of linear prisms 201a and 201b is arranged in a repeating unit with a ratio of 1: 1, and in zone B, it is arranged in a repeating unit with an abundance ratio of 2: 1. It is possible to provide a concavo-convex structure group in which the abundance ratio changes in four stages, in which the abundance ratio is 3: 1 in the zone C and only the linear prism 201a is arranged in the zone D. In addition, the number of these zones is not particularly limited, but may be 2 to 10 stages, for example.

(その他の実施形態)
上に述べた第1実施形態では、繰り返し単位が、同数の2種の凹凸構造により構成され、第2実施形態では、凹凸構造(a)と(b)の比が2:1であったが、本発明の直下型バックライト装置において、繰り返し単位における各種類の凹凸構造の個数の比はこれに限定されず、任意の比とすることができる。繰り返し単位中に最も多く存在する種の凹凸構造の数Aと最も少なく存在する種の凹凸構造の個数Bの比率A/Bは10以下であることが、輝度均斉度をより高める観点から好ましく、5以下であることがより好ましい。
(Other embodiments)
In the first embodiment described above, the repeating unit is composed of the same number of two types of uneven structures, and in the second embodiment, the ratio of the uneven structures (a) and (b) was 2: 1. In the direct type backlight device of the present invention, the ratio of the number of each type of concavo-convex structure in the repeating unit is not limited to this and can be any ratio. The ratio A / B between the number A of the concavo-convex structures of the most abundant species in the repeating unit and the number B of the concavo-convex structures of the least abundant species is preferably 10 or less from the viewpoint of further increasing the luminance uniformity. More preferably, it is 5 or less.

上に述べた第1実施形態及び第2実施形態においては、前記線状プリズムの、前記線状光源の長手方向に垂直な断面は三角形状の凸状の形状を有しているが、本発明の直下型バックライト装置における光拡散板上の線状プリズムの断面形状はこれに限定されず、三角形に加えて台形等の四角形、五角形、六角形、七角形等の各種の多角形状とすることができ、特に左右の底角が略等しい(±10°の範囲内)多角形状であることが、設計が容易である点、左右どちらから観察しても輝度にむらがなくなる点等から好ましい。具体的には例えば、図8に示す線状プリズム201cのような五角形の断面形状とすることができる。   In the first embodiment and the second embodiment described above, the cross section of the linear prism perpendicular to the longitudinal direction of the linear light source has a triangular convex shape. The cross-sectional shape of the linear prism on the light diffusing plate in the direct type backlight device is not limited to this, but may be various polygonal shapes such as a trapezoidal quadrangle, pentagon, hexagon, heptagon, etc. in addition to a triangle. In particular, it is preferable that the left and right base angles are substantially equal (within a range of ± 10 °) in a polygonal shape because it is easy to design and the luminance does not vary even when viewed from the left or right. Specifically, for example, a pentagonal cross-sectional shape such as a linear prism 201c shown in FIG.

また、本発明において、光拡散板の凹凸構造の表面を粗化して出射する方向を適度な範囲内でより多様にし、また、成形時の金型からの離型性を改善することもできる。その場合、凹凸構造表面の算術平均高さRaが0.01μm以上3μm以下であることが好ましく、0.02μm以上2μm以下であることがより好ましく、0.05μm以上1μm以下であることがさらに好ましい。Raを0.01μm以上にすることにより光の出射方向をより多様にすることができ、また、成形時の金型からの離型性を改善することができ、3μm以下にすることにより、光の出射方向を多様にしすぎないようにすることができる。このような凹凸構造の表面の粗化は、凹凸構造を有する光出射面全面に施しても良いし、一部に施しても良く、また、一つの凹凸構造の全面に施しても良いし、一部に施しても良い。   In the present invention, the surface of the light-diffusing plate with the concavo-convex structure roughened and emitted can be more diversified within an appropriate range, and the releasability from the mold during molding can be improved. In that case, the arithmetic average height Ra of the concavo-convex structure surface is preferably 0.01 μm or more and 3 μm or less, more preferably 0.02 μm or more and 2 μm or less, and further preferably 0.05 μm or more and 1 μm or less. . By making Ra 0.01 μm or more, the light emission direction can be made more diverse, and the releasability from the mold at the time of molding can be improved, and by making it 3 μm or less, It is possible to prevent the emission direction of the light from being diversified. Such roughening of the surface of the concavo-convex structure may be performed on the entire light emitting surface having the concavo-convex structure, may be performed on a part thereof, or may be performed on the entire surface of one concavo-convex structure, It may be applied to some parts.

また、繰り返し単位に含まれる複数種類の凹凸構造のうちの1種が、図9に示す平坦部201dのような平坦な構造であり、多角形状の凸部と平坦な部分との組み合わせを構成していてもよい。図9に示す場合においては、繰り返し単位920は、線状プリズム201aが占める範囲921aと、平坦部201dが占める範囲921bとから構成される。これらの範囲921a及び921bの幅913a及び913bのいずれもが350μm以下であることにより、本実施形態は、本発明における同一の凹凸構造が連続して占める範囲の要件を充足する。また、平坦部201dを、頂角180°の線状プリズムとした場合に、繰り返し単位920が、上記式(1a)、(1b)、(2)等の要件を充足することが、さらに好ましい。   Further, one of the multiple types of uneven structures included in the repeating unit is a flat structure such as the flat portion 201d shown in FIG. 9, and constitutes a combination of a polygonal convex portion and a flat portion. It may be. In the case shown in FIG. 9, the repeating unit 920 includes a range 921a occupied by the linear prism 201a and a range 921b occupied by the flat portion 201d. Since both of the widths 913a and 913b of these ranges 921a and 921b are 350 μm or less, the present embodiment satisfies the requirements of the range continuously occupied by the same uneven structure in the present invention. Further, when the flat portion 201d is a linear prism having an apex angle of 180 °, it is more preferable that the repeating unit 920 satisfies the requirements of the above formulas (1a), (1b), (2) and the like.

本発明においては、所定の繰り返し単位が周期的に配置された凹凸構造群は、上記各実施形態のように光出射面のみに形成されていてもよいが、これに限られず、光入射面のみに凹凸構造群が形成されていてもよく、光入射面及び光出射面の両方に形成されていてもよい。また、所定の繰り返し単位が周期的に配置されているのは、光入射面及び/又は光出射面の全面でなくてもよく、例えば、「各線状光源の中心を通る、光拡散板の法線に平行な面を基準面とし、前記線状光源の中心を通り、かつ前記基準面に対してなす角度としての極角45°以内の範囲に含まれる領域」以外の領域では、同一の凹凸構造が連続して占める範囲が350μmを超える繰り返し単位が配置されていてもよい。   In the present invention, the concavo-convex structure group in which predetermined repeating units are periodically arranged may be formed only on the light emitting surface as in the above embodiments, but is not limited thereto, and only the light incident surface. The concavo-convex structure group may be formed on both the light incident surface and the light emitting surface. Further, the predetermined repeating unit may be periodically arranged not on the entire surface of the light incident surface and / or the light emitting surface. For example, “a method of a light diffusing plate passing through the center of each linear light source” In a region other than a region including a plane parallel to the line as a reference plane and passing through the center of the linear light source and within an angle of 45 ° or less as an angle formed with respect to the reference plane, the same unevenness Repeating units in which the structure continuously occupies more than 350 μm may be arranged.

光拡散板の表面に凹凸構造を形成する方法は、特に制限はなく、例えば、平板状の光拡散板表面に凹凸構造を形成する方法であってもよいし、光拡散板の基材となる平板部分(本明細書では、光拡散板基部という場合がある)の形成と同時に凹凸構造を一体的に形成する方法としてもよい。   The method for forming the concavo-convex structure on the surface of the light diffusing plate is not particularly limited. For example, the method may be a method of forming the concavo-convex structure on the surface of the flat light diffusing plate, or may be a base material for the light diffusing plate. It is good also as a method of forming a concavo-convex structure integrally with formation of a flat part (it may be called a light diffusing plate base in this specification).

平板状の光拡散板表面に凹凸構造を形成する方法としては、例えば、平板状の光拡散板表面を切削加工する方法、平板状の光拡散板の上に所望の凹凸構造を有するプリズムシートなどの凹凸構造をもつシートを積層または貼り付ける方法、平板状の光拡散板表面に光硬化性樹脂又は熱硬化性樹脂を塗布し、その塗膜にロール又は押型で所望の凹凸構造を転写し、その状態で塗膜を硬化させる方法、および平板状の光拡散板表面を所望の凹凸構造を有するロール又は押型でプレスするエンボス加工法などを挙げることができる。   Examples of the method for forming the concavo-convex structure on the surface of the flat light diffusing plate include a method of cutting the surface of the flat light diffusing plate, a prism sheet having a desired concavo-convex structure on the flat light diffusing plate, etc. A method of laminating or pasting a sheet having a concavo-convex structure, applying a photocurable resin or a thermosetting resin to the surface of a flat light diffusing plate, and transferring the desired concavo-convex structure to the coating film with a roll or a die, Examples thereof include a method of curing the coating film in this state, and an embossing method in which the surface of the plate-shaped light diffusion plate is pressed with a roll or a stamp having a desired uneven structure.

また、光拡散板基部の形成と同時に凹凸構造を一体的に形成する方法としては、所望の凹凸構造を形成できるキャスティング型を用いたキャスティング法、所望の凹凸構造を形成できる金型を用いた射出成形法などを挙げることができる。射出成形法およびキャスティング法は、上述のように、光拡散板基部の形成と同時に凹凸構造を形成できるので工程が簡便である。キャスティング法は、板を成形できる型内で行うこともできるし、連続ベルト二枚の間に原料を流し込み、ベルトを動かしながら連続的に行うこともできる。射出成形法では、凹凸構造の転写率を高めるために、樹脂を注入する際の型温度を上げ冷却時に型を急冷することが好ましい。また、樹脂を注入する際に型を広げその後型を閉じる射出圧縮成形法を適用してもよい。   In addition, as a method of integrally forming the concavo-convex structure simultaneously with the formation of the light diffusion plate base, a casting method using a casting mold capable of forming a desired concavo-convex structure, and injection using a mold capable of forming a desired concavo-convex structure Examples thereof include a molding method. As described above, the injection molding method and the casting method have a simple process because the concavo-convex structure can be formed simultaneously with the formation of the light diffusion plate base. The casting method can be performed in a mold capable of forming a plate, or can be performed continuously while pouring a raw material between two continuous belts and moving the belt. In the injection molding method, in order to increase the transfer rate of the concavo-convex structure, it is preferable to raise the mold temperature at the time of injecting the resin and rapidly cool the mold during cooling. Moreover, you may apply the injection compression molding method which expands a type | mold when injecting resin and closes a type | mold after that.

本発明の液晶表示装置は、前記本発明の直下型バックライト装置を含む。具体的には、直下型バックライト装置に加えて各種の表示モードの液晶セルを有し、バックライト装置からの出射光を、液晶セルを通して表示面から出射させる態様とすることができる。本発明の液晶表示装置は、例えばツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、ハイブリッドアラインメントネマチック(HAN)モード、バーティカルアラインメント(VA)モード、マルチドメインバーティカルアラインメント(MVA)モード、インプレーンスイッチング(IPS)モード、オプティカリーコンペンセイテッドバイリフジエンス(OCB)モードなどの表示モードによるものとすることができる。   The liquid crystal display device of the present invention includes the direct type backlight device of the present invention. Specifically, in addition to the direct type backlight device, a liquid crystal cell having various display modes can be provided, and light emitted from the backlight device can be emitted from the display surface through the liquid crystal cell. The liquid crystal display device of the present invention includes, for example, a twisted nematic (TN) mode, a super twisted nematic (STN) mode, a hybrid alignment nematic (HAN) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, an in-plane It can be based on display modes such as switching (IPS) mode, optically compensated birefringence (OCB) mode.

本発明の直下型バックライト装置及び本発明の液晶表示装置は、前記実施形態に限定されず、本願特許請求の範囲内及びその均等の範囲内での変更を施すことができる。また、他の任意の構成要素をさらに含むことができる。例えば、前記各実施形態に係る直下型バックライト装置において、さらに輝度および輝度均斉度を向上させるための光学部材を適宜配置してもよい。このような光学部材としては、例えば拡散シートおよびプリズムシートを挙げることができる。これらの光学部材は、例えば、光拡散板に光出射面側に設けることができる。また、バックライト装置を構成するための筐体、通電装置等を適宜備えることができる。また、本発明の直下型バックライト装置は、液晶表示装置の画面内の明るさに応じて、光源の点灯と消灯を制御する方式にも、好適に用いることができる。   The direct type backlight device of the present invention and the liquid crystal display device of the present invention are not limited to the above-described embodiments, and can be modified within the scope of the claims of the present application and within the equivalent scope thereof. Moreover, other arbitrary components can be further included. For example, in the direct type backlight device according to each of the above embodiments, an optical member for further improving luminance and luminance uniformity may be appropriately disposed. Examples of such an optical member include a diffusion sheet and a prism sheet. These optical members can be provided on the light exit surface side of the light diffusion plate, for example. In addition, a housing for forming the backlight device, a power supply device, and the like can be appropriately provided. The direct type backlight device of the present invention can also be suitably used for a method of controlling turning on and off of the light source according to the brightness in the screen of the liquid crystal display device.

以下、実施例に基づき、本発明についてさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。以下において、成分の量比に関する「部」及び「%」は、別に断らない限り重量部及び重量%を表す。   Hereinafter, the present invention will be described in more detail based on examples. In addition, this invention is not limited to the following Example. In the following, “parts” and “%” relating to the quantity ratio of the components represent parts by weight and% by weight unless otherwise specified.

<製造例1(光拡散板用ペレットA)>
脂環式構造を有する樹脂(日本ゼオン社製、ゼオノア1060R、吸水率0.01%)99.9部、及び平均粒径2μmのポリシロキサン重合体の架橋物からなる微粒子0.1部を混合し、二軸押出機で混練してストランド状に押し出し、ペレタイザーで切断して光拡散板用ペレットAを製造した。この光拡散板用ペレットAを原料として、射出成形機(型締め力1000kN)を用いて、両面が平滑な厚み2mmで100mm×50mmの試験板を成形した。この試験板の全光線透過率とヘーズを、JIS K7361−1とJIS K7136とに基づいて、積分球方式色差濁度計を用いて測定した。試験板は、全光線透過率は94%であり、ヘーズは89%であった。
<Production Example 1 (Light Diffusion Plate Pellet A)>
99.9 parts of resin having an alicyclic structure (Zeon Corporation, ZEONOR 1060R, water absorption of 0.01%) and 0.1 part of fine particles composed of a crosslinked product of polysiloxane polymer having an average particle diameter of 2 μm are mixed. Then, the mixture was kneaded with a twin-screw extruder, extruded into a strand shape, and cut with a pelletizer to produce a light diffusion plate pellet A. Using this light diffusing plate pellet A as a raw material, a 100 mm × 50 mm test plate having a smooth thickness of 2 mm on both sides was molded using an injection molding machine (clamping force 1000 kN). The total light transmittance and haze of the test plate were measured using an integrating sphere type color difference turbidimeter based on JIS K7361-1 and JIS K7136. The test plate had a total light transmittance of 94% and a haze of 89%.

<実施例1>
図1に概略的に示す直下型バックライト装置を作成した。内寸長さ700mm、幅400mm、深さ22.8mmのアルミ製ケース(図示せず)の内面に反射シート(株式会社ツジデン製、RF188)を貼着して反射板103とし、径4mm、長さ700mmの冷陰極管(ハリソン東芝ライティング社製)102を7本、内寸長さ方向に平行に取り付けた。冷陰極管の中心間距離113は56.4mm、拡散板から冷陰極管の中心までの距離112は19.3mmとした。電極部近傍をシリコーンシーラントで固定し、インバーターを取り付けた。
<Example 1>
A direct type backlight device schematically shown in FIG. 1 was produced. A reflective sheet (manufactured by Tsujiden Co., Ltd., RF188) is attached to the inner surface of an aluminum case (not shown) having an inner length of 700 mm, a width of 400 mm, and a depth of 22.8 mm to form a reflector 103 having a diameter of 4 mm Seven 700 mm cold cathode fluorescent lamps (manufactured by Harrison Toshiba Lighting Co., Ltd.) 102 were attached in parallel to the inner dimension length direction. The distance 113 between the centers of the cold cathode tubes was 56.4 mm, and the distance 112 from the diffusion plate to the center of the cold cathode tubes was 19.3 mm. The vicinity of the electrode part was fixed with a silicone sealant, and an inverter was attached.

次に、所定形状の金型部品を射出成形機(型締め力4,410kN)に用いて、製造例1で得られた光拡散板用ペレットAを原料として、シリンダー温度280℃、金型温度85℃の条件下で光拡散板を成形した。得られた光拡散板は、長さ710mm、幅410mm、厚み2mmの長方形状の平板状であり、その一方の面には、以下に詳述する三角プリズムが略平行に複数並んだ凹凸構造の所定のパターンが形成されていた。   Next, using a mold part of a predetermined shape in an injection molding machine (clamping force 4,410 kN), using the light diffusion plate pellet A obtained in Production Example 1 as a raw material, a cylinder temperature of 280 ° C., a mold temperature A light diffusion plate was molded under the condition of 85 ° C. The obtained light diffusing plate is a rectangular flat plate having a length of 710 mm, a width of 410 mm, and a thickness of 2 mm, and on one surface thereof, has a concavo-convex structure in which a plurality of triangular prisms described in detail below are arranged substantially in parallel. A predetermined pattern was formed.

光拡散板101の光出射面101Bには、図4に示すように、頂角θ214aが85°の三角形状の断面を有する線状プリズム201aと、頂角θ214bが125°の三角形状の断面を有する線状プリズム201bとを並べて設けた。即ち、2列の線状プリズム201aと1列の201bとが並んだ凹凸構造を一つの繰り返し単位420とし、この単位420が繰り返されている構造とした。線状プリズム201a及び201bの幅211a及び211bはいずれも100μmとした。繰り返し単位420において、線状プリズム201aが連続して占める範囲の幅213aは200μmであり、線状プリズム201bが連続して占める範囲の幅213bは211bと同じく100μmであった。
線状プリズム201aが占める領域421aにおいて光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域421bにおいて光拡散板に垂直に入射した光の全光線透過率は70.5%であり、その差は34.9%であった。なお、前記全光線透過率は、同じ構造の凹凸構造が連続して並んだサンプルを作製し、JIS K7361−1に基づいて、積分球式式差濁度計を用いて、直下型バックライト装置に用いた場合と同様の配置とした際の光入射面側から光を入射して測定した。以下の実施例、比較例においても、全光線透過率は同様に測定した。
As shown in FIG. 4, the light exit surface 101B of the light diffusion plate 101 has a linear prism 201a having a triangular cross section with an apex angle θ214a of 85 ° and a triangular cross section with an apex angle θ214b of 125 °. The linear prisms 201b having them are provided side by side. In other words, the concavo-convex structure in which two rows of linear prisms 201a and one row of 201b are arranged as one repeating unit 420, and the unit 420 is repeated. The widths 211a and 211b of the linear prisms 201a and 201b are both 100 μm. In the repeating unit 420, the width 213a of the range continuously occupied by the linear prism 201a was 200 μm, and the width 213b of the range continuously occupied by the linear prism 201b was 100 μm, similar to 211b.
In the region 421a occupied by the linear prism 201a, the total light transmittance of light perpendicularly incident on the light diffusion plate is 35.6%, and in the region 421b occupied by the linear prism 201b, the light incident perpendicularly to the light diffusion plate is obtained. The total light transmittance was 70.5%, and the difference was 34.9%. The total light transmittance is obtained by preparing a sample in which concave and convex structures having the same structure are continuously arranged, and using an integrating sphere type turbidimeter based on JIS K7361-1, a direct type backlight device It was measured by making light incident from the light incident surface side when the same arrangement as that used in the above was used. Also in the following examples and comparative examples, the total light transmittance was measured in the same manner.

次に、得られた光拡散板を、他方の面(凹凸構造の無い面:光入射面)が冷陰極管側になるようにして、冷陰極管を取り付けたアルミケース上に設置した。この際、冷陰極管の中心と光拡散板の光入射面との距離は19.3mmであった。   Next, the obtained light diffusing plate was placed on an aluminum case to which the cold cathode tube was attached such that the other surface (surface having no uneven structure: light incident surface) was on the cold cathode tube side. At this time, the distance between the center of the cold cathode tube and the light incident surface of the light diffusion plate was 19.3 mm.

さらに、この光拡散板の上面(光出射面)上に光学シートとしての、拡散シート(「188GM3」、きもと社製)、プリズムシート(「BEFIII−10T」、住友スリーエム社製)、および反射偏光子(「DBEF−D」、住友スリーエム社製)と、偏光板(「HCL2−2518」、サンリッツ社製)をこの順に設置し、直下型バックライト装置を得た。   Further, a diffusion sheet (“188GM3”, manufactured by Kimoto Co., Ltd.), a prism sheet (“BEFIII-10T”, manufactured by Sumitomo 3M Co.) as an optical sheet, and reflected polarized light are provided on the upper surface (light emitting surface) of the light diffusing plate. A child (“DBEF-D”, manufactured by Sumitomo 3M) and a polarizing plate (“HCL2-2518”, manufactured by Sanlitz) were installed in this order to obtain a direct type backlight device.

次いで、得られた直下型バックライト装置について、管電流6.0mAで通電し、冷陰極管を点灯させ、二次元色分布測定装置(CA1500W、コニカミノルタ社製)を用いて、短手方向(ケースの幅方向)中心線上で等間隔に100点の正面方向の輝度を測定した。また、下記の数式Aと数式Bに従って、正面方向の輝度平均値(正面輝度)Laと輝度均斉度Luを得た。輝度均斉度は2.8%であった。
輝度平均値 La=(L1+L2)/2 (数式A)
輝度均斉度 Lu=((L1−L2)/La)×100 (数式B)
L1:複数本設置された冷陰極管真上での輝度極大値の平均
L2:極大値に挟まれた極小値の平均
なお、輝度均斉度は、輝度の均一性を示す指標であり、輝度均斉度が悪いときは、その数値は大きくなる。
Next, the obtained direct type backlight device was energized at a tube current of 6.0 mA, the cold cathode tube was turned on, and the short-side direction (CA1500W, manufactured by Konica Minolta Co., Ltd.) was used. Case width direction) The luminance in the front direction of 100 points was measured at equal intervals on the center line. Further, according to the following formulas A and B, a luminance average value (front luminance) La and luminance uniformity Lu in the front direction were obtained. The luminance uniformity was 2.8%.
Luminance average value La = (L1 + L2) / 2 (Formula A)
Luminance uniformity Lu = ((L1-L2) / La) × 100 (Formula B)
L1: Average brightness maximum value just above a plurality of cold-cathode tubes installed L2: Average minimum value sandwiched between maximum values Note that brightness uniformity is an indicator of brightness uniformity, and brightness uniformity When the degree is bad, the value increases.

さらに、光出射面を正面から観察し、冷陰極管の輝線が隠蔽されているか否かについて、下記の評価基準に基づき目視で評価した。
良:輝線が見えない
可:輝線がわずかに見える
不可:輝線が見える
結果を表1に示す。
Furthermore, the light emission surface was observed from the front, and whether or not the bright line of the cold cathode tube was concealed was visually evaluated based on the following evaluation criteria.
Good: The bright line is not visible Good: The bright line is slightly visible Not possible: The bright line is visible The results are shown in Table 1.

さらに、得られた直下型バックライト装置に、液晶テレビ(ソニー社製)から取り出した液晶パネルを載せて液晶表示装置を構成し、表示させたところ、均一な輝度で画像を表示することができた。   Furthermore, a liquid crystal display device is configured by placing a liquid crystal panel taken out from a liquid crystal television (manufactured by Sony Corporation) on the obtained direct backlight device, and when displayed, an image can be displayed with uniform brightness. It was.

<実施例2>
線状プリズム201a及び201bの幅をいずれも150μmとし、線状プリズム201aが連続する領域421aの幅413aを300μm、及び線状プリズム201bが連続する領域421bの幅413bを150μmとした他は、実施例1と同様に操作し、図3に示すような直下型バックライト装置を製造し評価した。結果を表1に示す。線状プリズム201aが占める領域421aにおいて光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域421bにおいて光拡散板に垂直に入射した光の全光線透過率は70.5%であり、その差は34.9%であった。
<Example 2>
The linear prisms 201a and 201b have a width of 150 μm, the width 413a of the region 421a where the linear prism 201a continues is 300 μm, and the width 413b of the region 421b where the linear prism 201b continues is 150 μm. By operating in the same manner as in Example 1, a direct type backlight device as shown in FIG. 3 was manufactured and evaluated. The results are shown in Table 1. In the region 421a occupied by the linear prism 201a, the total light transmittance of light perpendicularly incident on the light diffusion plate is 35.6%, and in the region 421b occupied by the linear prism 201b, the light incident perpendicularly to the light diffusion plate is obtained. The total light transmittance was 70.5%, and the difference was 34.9%.

<実施例3>
光拡散板の凹凸構造パターンを下記に詳述する通りとした他は、実施例1と同様に、直下型バックライト装置を製造した。
<Example 3>
A direct type backlight device was manufactured in the same manner as in Example 1 except that the uneven structure pattern of the light diffusion plate was as described in detail below.

本実施例で用いた光拡散板上の凹凸構造について、図7を参照して説明する。光拡散板101を取り付けた状態で、隣り合う冷陰極管(図7中では102a及び102bの中心間の距離の中間141から冷陰極管の中心までに相当する距離を、A(10mm)、B(7.2mm)、C(6mm)及びD(5mm)の4つのゾーンに分けた。光拡散板101の光出射面の各ゾーンには、図4〜図6に示すような頂角85°の三角形状の断面を有するプリズム状の線状プリズム201aと、頂角125°の三角形状の断面を有するプリズム状の線状プリズム201bとを混在させて設けた。線状プリズム201a及び201bの幅211a及び211bは、全ゾーンにおいて70μmとした。線状プリズム201a及び201bの混在の態様は、各ゾーンごとに下記の通りとした。   The uneven structure on the light diffusing plate used in this example will be described with reference to FIG. With the light diffusion plate 101 attached, adjacent cold cathode fluorescent lamps (in FIG. 7, the distance corresponding to the middle 141 between the centers of 102a and 102b and the center of the cold cathode fluorescent lamps are A (10 mm), B 4 zones (7.2 mm), C (6 mm), and D (5 mm), each zone on the light exit surface of the light diffusing plate 101 has an apex angle of 85 ° as shown in FIGS. A prismatic linear prism 201a having a triangular cross section and a prismatic linear prism 201b having a triangular cross section with an apex angle of 125 ° are provided in a mixed manner and the width of the linear prisms 201a and 201b. 211a and 211b were set to 70 μm in all zones, and the mode of mixing linear prisms 201a and 201b was as follows for each zone.

A:図5に示すように、201aと201bとを、1列ずつ交互に配置。
B:図4に示すように、2列の201aと1列の201bとが並んだ凹凸構造を一単位とし、この単位が繰り返されている構造。
C:図6に示すように、3列連続して並んだ201aと1列の201bとが並んだ凹凸構造を一単位とし、この単位が繰り返されている構造。
D:201aのみ。
A: As shown in FIG. 5, 201a and 201b are alternately arranged in a row.
B: As shown in FIG. 4, an uneven structure in which two rows 201a and one row 201b are arranged as one unit, and this unit is repeated.
C: As shown in FIG. 6, a concavo-convex structure in which three rows of 201a and one row of 201b are arranged as one unit, and this unit is repeated.
D: Only 201a.

一方、光入射面は平坦な面とした。得られた直下型バックライト装置を、実施例1と同様に評価した。結果を表1に示す。線状プリズム201aが占める領域において光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域において光拡散板に垂直に入射した光の全光線透過率は70.5%であり、その差は34.9%であった。   On the other hand, the light incident surface was a flat surface. The obtained direct type backlight device was evaluated in the same manner as in Example 1. The results are shown in Table 1. The total light transmittance of light perpendicularly incident on the light diffusion plate in the region occupied by the linear prism 201a is 35.6%, and the total light ray of light incident perpendicularly on the light diffusion plate in the region occupied by the linear prism 201b. The transmittance was 70.5%, and the difference was 34.9%.

<実施例4>
線状プリズム201bの頂角を110°、幅を100μmとし(線状プリズム201aの頂角及び幅は実施例1と同じくそれぞれ85°及び100μm)、線状プリズム201aが3列連続して並んだ部分と、線状プリズム201bが1列並んだ部分とを有する凹凸構造を一単位とし、この単位を繰り返して配置した他は、実施例1と同様にして直下型バックライト装置を製造し、評価した。結果を表2に示す。線状プリズム201aが占める領域において光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域において光拡散板に垂直に入射した光の全光線透過率は56.5%であり、その差は20.9%であった。
<Example 4>
The linear prism 201b has an apex angle of 110 ° and a width of 100 μm (the apex angle and width of the linear prism 201a are 85 ° and 100 μm, respectively, as in the first embodiment), and the linear prisms 201a are arranged in three consecutive rows. A direct-type backlight device was manufactured and evaluated in the same manner as in Example 1 except that the concavo-convex structure having the portion and the portion in which the linear prisms 201b are arranged in a row was taken as one unit, and this unit was repeated. did. The results are shown in Table 2. The total light transmittance of light perpendicularly incident on the light diffusion plate in the region occupied by the linear prism 201a is 35.6%, and the total light ray of light incident perpendicularly on the light diffusion plate in the region occupied by the linear prism 201b. The transmittance was 56.5%, and the difference was 20.9%.

<実施例5>
線状プリズム201bの頂角を140°、幅を100μmとし(線状プリズム201aの頂角及び幅は実施例1と同じくそれぞれ85°及び100μm)、これらの線状プリズム201a,201bを1列ずつ交互に配置した他は、実施例1と同様にして直下型バックライト装置を製造し、評価した。結果を表2に示す。線状プリズム201aが占める領域において光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域において光拡散板に垂直に入射した光の全光線透過率は78.5%であり、その差は50.5%であった。
<Example 5>
The apex angle of the linear prism 201b is 140 ° and the width is 100 μm (the apex angle and width of the linear prism 201a are 85 ° and 100 μm, respectively, as in the first embodiment), and these linear prisms 201a and 201b are arranged in a row. A direct type backlight device was manufactured and evaluated in the same manner as in Example 1 except that they were alternately arranged. The results are shown in Table 2. The total light transmittance of light perpendicularly incident on the light diffusion plate in the region occupied by the linear prism 201a is 35.6%, and the total light ray of light incident perpendicularly on the light diffusion plate in the region occupied by the linear prism 201b. The transmittance was 78.5%, and the difference was 50.5%.

<実施例6>
光拡散板101の光出射面101Bの形状を以下に説明する通り変更した他は、実施例1と同様にして直下型バックライト装置を製造した。光出射面101Bにおいて、線状プリズム201aの頂角及び幅は実施例1と同じくそれぞれ85°及び100μmとし、線状プリズム201bは設けず、図9に示す平坦部201dを設けた。平坦部201dの幅は100μmとし、線状プリズム201aと平坦部201dとを1列ずつ交互に配置した。
得られた直下型バックライト装置を、実施例1と同様に評価した。結果を表2に示す。線状プリズム201aが占める領域において光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域において光拡散板に垂直に入射した光の全光線透過率は88.6%であり、その差は53.0%であった。
<Example 6>
A direct type backlight device was manufactured in the same manner as in Example 1 except that the shape of the light exit surface 101B of the light diffusion plate 101 was changed as described below. On the light exit surface 101B, the apex angle and width of the linear prism 201a were set to 85 ° and 100 μm, respectively, as in Example 1, the linear prism 201b was not provided, and the flat portion 201d shown in FIG. 9 was provided. The width of the flat part 201d was 100 μm, and the linear prisms 201a and the flat parts 201d were alternately arranged in a line.
The obtained direct type backlight device was evaluated in the same manner as in Example 1. The results are shown in Table 2. The total light transmittance of light perpendicularly incident on the light diffusion plate in the region occupied by the linear prism 201a is 35.6%, and the total light ray of light incident perpendicularly on the light diffusion plate in the region occupied by the linear prism 201b. The transmittance was 88.6%, and the difference was 53.0%.

<比較例1>
線状プリズムとして、頂角100°、幅70μmの三角形状の断面を有するプリズム状の線状プリズムのみを全面に並べた形状とした他は、実施例1と同様に操作し、直下型バックライト装置を製造し評価した。結果を表3に示す。線状プリズムが占める領域において光拡散板に垂直に入射した光の全光線透過率は45.4%であった。
<Comparative Example 1>
The linear prism is operated in the same manner as in Example 1 except that only the linear prisms having a triangular cross section with an apex angle of 100 ° and a width of 70 μm are arranged on the entire surface. The device was manufactured and evaluated. The results are shown in Table 3. In the region occupied by the linear prisms, the total light transmittance of light perpendicularly incident on the light diffusion plate was 45.4%.

<比較例2>
線状プリズム201aの頂角を105°、幅を100μmとし、線状プリズム201bの頂角を120°、幅を100μmとし、これらを1列ずつ交互に配置した他は、実施例1と同様に操作し、直下型バックライト装置を製造し評価した。結果を表3に示す。線状プリズム201aが占める領域421aにおいて光拡散板に垂直に入射した光の全光線透過率は52.4%であり、線状プリズム201bが占める領域421bにおいて光拡散板に垂直に入射した光の全光線透過率は68.9%であり、その差は16.5%であった。
<Comparative example 2>
The linear prism 201a has an apex angle of 105 ° and a width of 100 μm, and the linear prism 201b has an apex angle of 120 ° and a width of 100 μm. In operation, a direct backlight device was manufactured and evaluated. The results are shown in Table 3. In the region 421a occupied by the linear prism 201a, the total light transmittance of light vertically incident on the light diffusing plate is 52.4%, and in the region 421b occupied by the linear prism 201b, the light incident perpendicularly on the light diffusing plate The total light transmittance was 68.9%, and the difference was 16.5%.

<比較例3>
線状プリズム201bの頂角を95°、幅を100μmとした他は、実施例1と同様に操作し、直下型バックライト装置を製造し評価した。結果を表3に示す。
線状プリズム201aが占める領域421aにおいて光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域421bにおいて光拡散板に垂直に入射した光の全光線透過率は40.3%であり、その差は4.7%であった。
<Comparative Example 3>
A direct type backlight device was manufactured and evaluated in the same manner as in Example 1 except that the linear prism 201b had an apex angle of 95 ° and a width of 100 μm. The results are shown in Table 3.
In the region 421a occupied by the linear prism 201a, the total light transmittance of light perpendicularly incident on the light diffusion plate is 35.6%, and in the region 421b occupied by the linear prism 201b, the light incident perpendicularly to the light diffusion plate is obtained. The total light transmittance was 40.3%, and the difference was 4.7%.

<比較例4>
線状プリズム201aの頂角を85°、幅を200μmとし、線状プリズム201bの頂角を125°、幅を200μmとし、線状プリズム201aが連続する領域421aの幅413aは400μmとし、線状プリズム201bが連続する領域421bの幅413bを200μmとした他は、実施例1と同様に操作し、直下型バックライト装置を製造し評価した。結果を表3に示す。
線状プリズム201aが占める領域421aにおいて光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域421bにおいて光拡散板に垂直に入射した光の全光線透過率は70.5%であり、その差は34.9%であった。
<Comparative example 4>
The apex angle of the linear prism 201a is 85 ° and the width is 200 μm, the apex angle of the linear prism 201b is 125 ° and the width is 200 μm, the width 413a of the region 421a where the linear prism 201a is continuous is 400 μm, A direct type backlight device was manufactured and evaluated in the same manner as in Example 1 except that the width 413b of the region 421b where the prisms 201b are continuous was set to 200 μm. The results are shown in Table 3.
In the region 421a occupied by the linear prism 201a, the total light transmittance of light perpendicularly incident on the light diffusion plate is 35.6%, and in the region 421b occupied by the linear prism 201b, the light incident perpendicularly to the light diffusion plate is obtained. The total light transmittance was 70.5%, and the difference was 34.9%.

<比較例5>
線状プリズム201a及び201bの配置を、4列連続して並んだ線状プリズム201aと2列の201bとが並んだ凹凸構造を一つの繰り返し単位とし、この単位が繰り返されている配置とした他は、実施例1と同様に操作し、直下型バックライト装置を製造し評価した。結果を表3に示す。線状プリズム201aが占める領域において光拡散板に垂直に入射した光の全光線透過率は35.6%であり、線状プリズム201bが占める領域において光拡散板に垂直に入射した光の全光線透過率は70.5%であり、その差は34.9%であった。
<Comparative Example 5>
The arrangement of the linear prisms 201a and 201b is such that the concavo-convex structure in which the linear prisms 201a arranged in four rows and the two rows 201b are arranged as one repeating unit, and this unit is repeated. Were operated in the same manner as in Example 1 to produce and evaluate a direct type backlight device. The results are shown in Table 3. The total light transmittance of light perpendicularly incident on the light diffusion plate in the region occupied by the linear prism 201a is 35.6%, and the total light ray of light incident perpendicularly on the light diffusion plate in the region occupied by the linear prism 201b. The transmittance was 70.5%, and the difference was 34.9%.

Figure 2010005051
Figure 2010005051

Figure 2010005051
Figure 2010005051

Figure 2010005051
Figure 2010005051

実施例及び比較例の結果から明らかな通り、光拡散板上に1種類のみの線状プリズムを有する比較例1、並びに2種類の線状プリズムを有するがそれらの占める領域における全光線透過率差が本発明の規定範囲外である比較例2及び3に比べて、本発明にかかる実施例1〜6の直下型バックライト装置は輝度均斉度が顕著に優れていた。また、同一の線状プリズムが連続して光出射面を占める範囲が本発明の規定範囲外である比較例4及び5に比べて、本発明にかかる実施例1〜6の直下型バックライト装置は輝線の隠蔽が非常に優れていた。   As is apparent from the results of Examples and Comparative Examples, Comparative Example 1 having only one type of linear prism on the light diffusion plate, and total light transmittance difference in the region occupied by two types of linear prisms, but occupied by them. However, compared with Comparative Examples 2 and 3, which are outside the specified range of the present invention, the direct-type backlight devices of Examples 1 to 6 according to the present invention were remarkably superior in luminance uniformity. Also, the direct type backlight devices of Examples 1 to 6 according to the present invention are compared with Comparative Examples 4 and 5 in which the range in which the same linear prism continuously occupies the light exit surface is outside the specified range of the present invention. The hiding of the bright lines was very good.

101 光拡散板
101A 光入射面
101B 光出射面
102 線状光源
103 反射板
201a、201b 線状プリズム
DESCRIPTION OF SYMBOLS 101 Light diffusing plate 101A Light incident surface 101B Light output surface 102 Linear light source 103 Reflector 201a, 201b Linear prism

Claims (6)

互いに略平行に配置された複数本の線状光源と、
前記線状光源からの光を反射する反射板と、
前記線状光源からの直射光および前記反射板からの反射光を入射する光入射面及び前記光入射面から入射した光を拡散して出射する光出射面を有する光拡散板と、
を備える直下型バックライト装置であって、
前記光入射面及び前記光出射面の少なくとも一方は、その少なくとも一部に、2種類以上の異なる凹凸構造からなる繰返し単位が周期的に配置された凹凸構造群を有し、
各線状光源の中心を通る、前記光拡散板の法線に平行な面を基準面とし、
各線状光源の中心を通り、かつ前記基準面に対してなす角度としての極角45°以内の範囲に含まれる領域では、前記繰り返し単位において、前記基準面に対して垂直な方向に沿って同一の凹凸構造が連続して占める範囲が350μm以下であり、
前記繰り返し単位における前記2種類以上の異なる凹凸構造のうちの2種の凹凸構造(a)及び(b)について、前記凹凸構造(a)が占める領域において前記光拡散板に垂直に入射した光の全光線透過率X(%)と、前記凹凸構造(b)が占める領域において前記光拡散板に垂直に入射した光の全光線透過率Y(%)とが、95≧|X−Y|≧20の関係を満たす直下型バックライト装置。
A plurality of linear light sources arranged substantially parallel to each other;
A reflector that reflects light from the linear light source;
A light diffusing plate having a light incident surface on which direct light from the linear light source and reflected light from the reflecting plate are incident, and a light emitting surface that diffuses and emits light incident from the light incident surface;
A direct-type backlight device comprising:
At least one of the light incident surface and the light emitting surface has a concavo-convex structure group in which repeating units composed of two or more different concavo-convex structures are periodically arranged in at least a part thereof,
A plane that passes through the center of each linear light source and is parallel to the normal of the light diffusing plate is used as a reference plane.
In a region passing through the center of each linear light source and included in a range within 45 ° of the polar angle as an angle with respect to the reference plane, the same repeat unit along the direction perpendicular to the reference plane The area occupied by the concavo-convex structure is 350 μm or less,
Of the two or more different concavo-convex structures (a) and (b) of the two or more different concavo-convex structures in the repeating unit, the light incident perpendicularly to the light diffusion plate in the region occupied by the concavo-convex structure (a) The total light transmittance X (%) and the total light transmittance Y (%) of light perpendicularly incident on the light diffusion plate in the region occupied by the uneven structure (b) are 95 ≧ | X−Y | ≧ A direct type backlight device satisfying the relationship of 20.
請求項1に記載の直下型バックライト装置であって、
前記凹凸構造が、前記線状光源の長手方向に略平行に延長する線状プリズムであり、
前記線状プリズムの、前記線状光源の長手方向に垂直な断面の形状は多角形状の凸部、平坦な部分、及びこれらの組み合わせのいずれかである直下型バックライト装置。
The direct type backlight device according to claim 1,
The concavo-convex structure is a linear prism extending substantially parallel to the longitudinal direction of the linear light source;
The direct type backlight device in which the shape of the cross section of the linear prism perpendicular to the longitudinal direction of the linear light source is any of a polygonal convex portion, a flat portion, and a combination thereof.
請求項1に記載の直下型バックライト装置であって、
前記光拡散板は、主成分としての透明樹脂を含んで構成され、
前記凹凸構造(a)及び(b)が、それぞれ前記光出射面に形成される、断面三角形の線状プリズム(a)及び(b)であり、
前記線状プリズム(a)の頂角θaが下記式(1):
θa<180−2sin−1(1/n) ・・・(1a)
を満たし、前記線状プリズム(b)の頂角θbが下記式(1b):
θb≧180−2sin−1(1/n) ・・・(1b)
(式(1a)及び(1b)中、nは前記透明樹脂の屈折率を示す)
を満たす直下型バックライト装置。
The direct type backlight device according to claim 1,
The light diffusion plate is configured to include a transparent resin as a main component,
The concavo-convex structures (a) and (b) are linear prisms (a) and (b) having a triangular cross section formed on the light emitting surface, respectively.
The apex angle θa of the linear prism (a) is expressed by the following formula (1):
θa <180-2sin −1 (1 / n) (1a)
And the apex angle θb of the linear prism (b) is the following formula (1b):
θb ≧ 180−2 sin −1 (1 / n) (1b)
(In formulas (1a) and (1b), n represents the refractive index of the transparent resin)
Direct type backlight device that meets the requirements.
請求項1に記載の直下型バックライト装置であって、
前記繰り返し単位中に最も多く存在する種の凹凸構造の個数Aと、最も少なく存在する種の凹凸構造の個数Bとの比率A/Bは、10以下である直下型バックライト装置。
The direct type backlight device according to claim 1,
A direct type backlight device in which the ratio A / B between the number A of the most uneven structures of the seeds present in the repeating unit and the number B of the most uneven structures of the seeds is 10 or less.
請求項1に記載の直下型バックライト装置であって、
前記繰り返し単位中の前記2種の凹凸構造(a)及び(b)の存在比が、前記線状光源から遠ざかるにつれて、段階的に変化する直下型バックライト装置。
The direct type backlight device according to claim 1,
A direct type backlight device in which the abundance ratio of the two types of concavo-convex structures (a) and (b) in the repeating unit changes stepwise as the distance from the linear light source increases.
請求項1に記載の直下型バックライト装置と、この直下型バックライト装置の光出射側に配置される液晶パネルと、を備える液晶表示装置。   A liquid crystal display device comprising: the direct type backlight device according to claim 1; and a liquid crystal panel disposed on a light emitting side of the direct type backlight device.
JP2010519815A 2008-07-10 2009-07-09 Direct type backlight device and liquid crystal display device Pending JPWO2010005051A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008180761 2008-07-10
JP2008180761 2008-07-10
PCT/JP2009/062526 WO2010005051A1 (en) 2008-07-10 2009-07-09 Direct under type backlighting device and liquid crystal display device

Publications (1)

Publication Number Publication Date
JPWO2010005051A1 true JPWO2010005051A1 (en) 2012-01-05

Family

ID=41507162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010519815A Pending JPWO2010005051A1 (en) 2008-07-10 2009-07-09 Direct type backlight device and liquid crystal display device

Country Status (2)

Country Link
JP (1) JPWO2010005051A1 (en)
WO (1) WO2010005051A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015210449B4 (en) 2015-06-08 2017-06-01 Continental Teves Ag & Co. Ohg Arrangement of a camera in the rear of a vehicle, camera, roof antenna and vehicle
KR20190104175A (en) * 2017-01-16 2019-09-06 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Small face microstructured surface
JP2022021975A (en) * 2020-07-23 2022-02-03 株式会社デンソー Head-up display device and diffuser for head-up display
JP2024075290A (en) * 2022-11-22 2024-06-03 恵和株式会社 Light diffusion sheet, backlight unit, liquid crystal display device, and information device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682635A (en) * 1992-07-07 1994-03-25 Sekisui Chem Co Ltd Surface light source device
JPH06273763A (en) * 1993-03-22 1994-09-30 Sony Corp Backlight unit
JP4135092B2 (en) * 2003-09-29 2008-08-20 ソニー株式会社 Backlight and diffusion plate manufacturing method, and liquid crystal display device
US7699503B2 (en) * 2004-03-03 2010-04-20 Kimoto Co., Ltd. Light control film and backlight unit using the same
JP5009491B2 (en) * 2004-05-11 2012-08-22 出光興産株式会社 Prism-integrated light diffusing plate for LCD backlight device
JP4350739B2 (en) * 2006-11-24 2009-10-21 住友化学株式会社 Light diffusing plate, surface light source device, and liquid crystal display device

Also Published As

Publication number Publication date
WO2010005051A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
US7726826B2 (en) Direct-type backlight device
JPWO2007032469A1 (en) Direct backlight unit
JP4552563B2 (en) Direct backlight unit
US7857475B2 (en) Direct-type backlight device
WO2010010840A1 (en) Photodiffusion plate, photodiffusion plate manufacturing method, surface illuminant device, and display device
JP2006302876A (en) Direct type backlight device
JPWO2007055115A1 (en) Direct backlight unit
US7125141B2 (en) Apparatus for homogeneously distributing lights
US20090190329A1 (en) Light diffusing plate, direct-type backlight device and liquid crystal display system
JP2007294295A (en) Direct-downward backlight device
JP2006195276A (en) Direct-type backlight
WO2010005051A1 (en) Direct under type backlighting device and liquid crystal display device
JP2010040194A (en) Direct backlight apparatus
JP2006310150A (en) Direct backlight device
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
WO2009096293A1 (en) Direct backlighting device
JP5256723B2 (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP2007298698A (en) Light diffusing plate and planar irradiation apparatus
KR20130078785A (en) Light guide plate and method for preparing the same
JP4770166B2 (en) Direct backlight unit
JP2011133556A (en) Optical sheet, backlight unit, display device, and die
JP2006155926A (en) Direct backlight device
TWI615642B (en) Optical sheet, surface light source device, and transmissive image display device
WO2009110379A1 (en) Direct backlight unit
JPWO2008123280A1 (en) Direct backlight unit