WO2010010840A1 - Photodiffusion plate, photodiffusion plate manufacturing method, surface illuminant device, and display device - Google Patents

Photodiffusion plate, photodiffusion plate manufacturing method, surface illuminant device, and display device Download PDF

Info

Publication number
WO2010010840A1
WO2010010840A1 PCT/JP2009/062891 JP2009062891W WO2010010840A1 WO 2010010840 A1 WO2010010840 A1 WO 2010010840A1 JP 2009062891 W JP2009062891 W JP 2009062891W WO 2010010840 A1 WO2010010840 A1 WO 2010010840A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diffusing plate
light diffusing
rough
light source
Prior art date
Application number
PCT/JP2009/062891
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 塚田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2010521686A priority Critical patent/JPWO2010010840A1/en
Publication of WO2010010840A1 publication Critical patent/WO2010010840A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • the present invention relates to a light diffusing plate, a manufacturing method thereof, and a surface light source device and a display device including the light diffusing plate.
  • a backlight device such as a direct-type backlight device having a reflector, a plurality of light sources, and a light diffusing plate may be used.
  • a direct type backlight device a cross-sectional polygon extending parallel to the longitudinal direction of the light source is provided on the surface of the light diffusing plate for the purpose of making the luminance uniform on the exit surface of the light diffusing plate (increasing the luminance uniformity). It has been practiced to provide a prism array in which a plurality of linear prisms are arranged (Japanese Patent Laid-Open No. 2006-066074).
  • Such a light diffusing plate can be obtained, for example, by forming a concavo-convex structure corresponding to the prism row on the cavity surface of a mold part and performing injection molding using the mold part.
  • a light diffusing plate having such a linear prism is molded by injection molding, depending on the resin used, the molded light diffusing plate is attached to a mold part, making it difficult to release the light diffusing plate. There was a case. For this reason, the molding operation is not always efficient.
  • the surface of the mold has a ten-point average roughness. It is disclosed that the rough surface has a thickness Rz of 0.2 to 3.0 ⁇ m.
  • the above problem is not limited to the light diffusion plate for a direct backlight device used in a display device such as a liquid crystal display device, but also a light diffusion plate for a lighting device, a direct light backlight used for an advertisement or a signboard. The same applies to the light diffusion plate for the light device.
  • An object of the present invention is to provide a light diffusing plate that can provide a surface light source device and a display device having high luminance and high luminance uniformity and can be efficiently manufactured, and a method for manufacturing the same.
  • a further object of the present invention is to provide a surface light source device and a display device that have high luminance and luminance uniformity and can be efficiently manufactured.
  • the present invention includes the following.
  • a light diffusing plate comprising a light incident surface on which light is incident and a light emitting surface that is formed on a surface opposite to the light incident surface and diffuses and emits light incident from the light incident surface.
  • At least one of the light incident surface and the light emitting surface has an uneven region having a plurality of repeating units, Each of the plurality of repeating units has one or more concavo-convex structures having two or more faces, Two or more of all the surfaces included in the repeating unit are rough surfaces, In each of the uneven regions, the ratio of the area of the rough surface to the area of the surface of the entire region where the repeating unit is formed is 50% or less,
  • a light diffusing plate in which at least one of a plurality of surfaces facing each other with respect to an arbitrary rough surface in the repeating unit is a rough surface.
  • the light diffusion plate wherein the concavo-convex structure is a linear prism having a polygonal cross section.
  • the light diffusing plate wherein the uneven structure is a polygonal pyramid or an inverted shape thereof.
  • the light diffusing plate wherein a difference in maximum center line average roughness of the facing rough surfaces is within 1.0 ⁇ m.
  • a method for producing the light diffusing plate, Manufacturing comprising: cutting a mold material using a cutting tool to prepare a mold including a surface corresponding to the uneven region; and molding a resin material using the mold Method.
  • the cutting tool that cuts the surface corresponding to the rough surface is a cutting tool including single crystal diamond or single crystal boron nitride, and the mold The manufacturing method according to claim 1, wherein the cutting surface is a cutting tool processed prior to cutting of the material.
  • a surface light source device comprising a light source and the light diffusing plate or the light diffusing plate manufactured by the manufacturing method.
  • a display device comprising an object to be illuminated and the surface light source device.
  • the light diffusion plate of the present invention has a concavo-convex structure that can increase luminance and luminance uniformity and is easy to release, the surface light source device and display device of the present invention provided with the light diffusion plate have luminance and luminance uniformity. High and efficient production. Moreover, in the manufacturing method of the light diffusing plate of this invention, the said light diffusing plate of this invention can be manufactured efficiently. Further, since the rough surfaces are in a relationship facing each other, there is an effect that the luminance unevenness due to the observation direction can be reduced.
  • FIG. 1 is a perspective view schematically showing a light diffusing plate and a surface light source device according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view showing a light emission surface of the light diffusion plate shown in FIG.
  • FIG. 3 is an enlarged perspective view showing a part of the light diffusing plate shown in FIG.
  • FIG. 4 is a longitudinal sectional view in which a part of the light diffusing plate shown in FIG. 3 is further cut by a plane along the line 3a.
  • FIG. 5 is a partial plan view schematically showing the main surface of the light diffusing plate shown in FIG.
  • FIG. 6 is a partial plan view showing an outline of the main surface of the light diffusing plate in Comparative Example 3.
  • FIG. 1 is a perspective view schematically showing a light diffusing plate and a surface light source device according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view showing a light emission surface of the light diffusion plate shown in FIG.
  • FIG. 3 is an enlarged perspective view showing
  • FIG. 7 is a partial plan view showing an outline of the main surface of the light diffusing plate in Comparative Example 1.
  • FIG. 8 is a schematic view showing an example of the edge tip of the rough surface forming tool.
  • FIG. 9 is an enlarged view showing the cutting portion 813 of the cutting tool shown in FIG.
  • FIG. 10 is a perspective view schematically showing a surface light source device according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the surface light source device shown in FIG. 10 cut along a cross section perpendicular to the longitudinal direction of the linear light source 1011.
  • FIG. 12 is a plan view schematically showing the arrangement of point light sources in the surface light source device shown in FIG. 13 is an enlarged perspective view showing a part of the light diffusion plate shown in FIG.
  • FIG. 14 is a plan view of the concavo-convex structure shown in FIG. 13 observed from above.
  • FIG. 15 is an enlarged perspective view showing the light emitting surface of the light diffusing plate shown in FIG.
  • FIG. 1 is a perspective view schematically showing a surface light source device 100 including a light diffusing plate 101 according to the first embodiment of the present invention.
  • the surface light source device of the present invention includes a light source, a reflecting plate that reflects light from the light source, direct light from the light source and reflected light from the reflecting plate from a light incident surface, and diffuses from the light emitting surface. And a light diffusing plate to be irradiated.
  • a light diffusing plate to be irradiated.
  • the surface light source device 100 includes a reflecting plate 121, a point light source 111 provided on the reflecting surface 121 ⁇ / b> A of the reflecting plate 121, and an upper portion of the reflecting plate 121 and the point light source 111. And a light diffusing plate 101 that is spaced apart on the side.
  • the “up” and “down” directions mean “up” and “down” in a state where the surface light source device is placed so that its light emission surface is horizontally upward. ”Direction, which corresponds to the upward and downward directions in the drawings of FIGS. 1 and 10.
  • a resin colored in white or silver, a metal, or the like can be used, and a resin is preferable from the viewpoint of weight reduction.
  • the color of the reflector is preferably white from the viewpoint of improving the luminance uniformity, but white and silver may be mixed in order to highly balance the luminance and the luminance uniformity.
  • the light source used in the present invention may be a point light source shown in FIG. 1 or a linear light source shown in other embodiments described later.
  • a light source such as an LED can be used.
  • Some LEDs emit various colors such as white, red (R), green (G), and blue (B).
  • the color balance is adjusted such that (1) only white LEDs are used as point light sources, (2) RGB three primary colors are combined, and (3) RGB three primary colors are combined with an intermediate color or white. It can be appropriately selected and used in consideration.
  • (A) at least one red LED, green LED and blue LED are arranged close to each other, and each color is mixed to emit white light.
  • a combination of LEDs arranged close to each other is regarded as one point light source.
  • the arrangement of the point light sources on the reflecting plate is such that the reflecting surface 121A on the reflecting plate 121 is arranged in a direction along the longitudinal direction and the short direction of the light emitting surface of the surface light source device 100. It can be arranged.
  • the intervals 113W and 113L of the point light sources can be set to 10 to 200 mm.
  • the material constituting the light diffusing plate glass, a mixture of two or more kinds of resins that are difficult to mix, a material in which a light diffusing agent is dispersed in a transparent resin, and one kind of transparent resin are used.
  • a resin is preferable because it is lightweight and easy to mold, and one kind of transparent resin is preferable from the viewpoint that luminance can be easily improved, and adjustment of total light transmittance and haze is easy.
  • a transparent resin in which a light diffusing agent is dispersed is preferable.
  • the transparent resin is a resin having a total light transmittance of 70% or more measured with a 2 mm-thick plate smooth on both sides based on JIS K7361-1, for example, polyethylene, propylene-ethylene copolymer, Polypropylene, polystyrene, polymethylpentene-1, copolymer of aromatic vinyl monomer and (meth) acrylic acid alkyl ester having lower alkyl group, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, terephthalic acid-ethylene Examples include glycol-cyclohexanedimethanol copolymer, polycarbonate, acrylic resin, and resin having an alicyclic structure.
  • (meth) acrylic acid is acrylic acid and methacrylic acid.
  • the light diffusing agent is a particle having a property of diffusing light, and can be roughly classified into an inorganic filler and an organic filler.
  • the inorganic filler include silica, aluminum hydroxide, aluminum oxide, titanium oxide, zinc oxide, barium sulfate, magnesium silicate, and a mixture thereof.
  • the organic filler include acrylic resin, polyurethane, polyvinyl chloride, polystyrene resin, polyacrylonitrile, polyamide, polysiloxane resin, melamine resin, and benzoguanamine resin.
  • fine particles composed of polystyrene resin, polysiloxane resin, and cross-linked products thereof are preferable in terms of high dispersibility, high heat resistance, and no coloration (yellowing) during molding.
  • fine particles made of a cross-linked product of polysiloxane resin are more preferable from the viewpoint of more excellent heat resistance.
  • the proportion of the light diffusing agent dispersed in the transparent resin can be appropriately selected according to the thickness of the light diffusing plate, the interval between the linear light sources, and the like.
  • the total light transmittance of the dispersion is 60% to 98%. It is preferable to adjust the content of the light diffusing agent so as to be, and it is more preferable to adjust the content of the light diffusing agent to be 65% to 95%. By setting the total light transmittance within the above preferable range, the luminance and the luminance uniformity can be further improved.
  • the total light transmittance is a value measured with a 2 mm-thick plate smooth on both sides based on JIS K7361-1
  • the haze is a value measured on a 2 mm-thick plate smooth on both sides with JIS K7136.
  • the light diffusing plate is formed on a light incident surface on which light is incident and a surface opposite to the light incident surface, and diffuses and emits light incident from the light incident surface; And at least one of the light incident surface and the light emitting surface has an uneven region having a plurality of repeating units, and each of the plurality of repeating units has an uneven structure having two or more surfaces. 1 or more.
  • the concavo-convex structure means a concave structure and / or a convex structure unless otherwise specified.
  • the relative position of the rough surface described later when the relative position of the rough surface described later is different in the repeating unit, it does not correspond to the repeating unit, and its outer shape including the relative position of the rough surface is the same. If equal, it corresponds to a repeating unit.
  • the light diffusing plate 101 in the first embodiment shown in FIG. 1 has a plate-like structure having a light incident surface and a light emitting surface as main surfaces, and has an uneven region on the entire surface of the light emitting surface.
  • the concavo-convex region may be provided on the entire surface of the light incident surface or the light output surface, but is provided in a part of the region such as 50% or more of the effective area (the area where light is actually emitted). May be.
  • FIG. 2 is an enlarged plan view showing a light emitting surface of the light diffusion plate 101 shown in FIG.
  • the concavo-convex structures 311 are arranged on the light emitting surface of the light diffusing plate 101 without any gaps.
  • the concavo-convex structure 311 is a concave structure in which the quadrangular pyramid is inverted (the shape of the contour of the dent defined is a quadrangular pyramid shape with an apex downward (inverted pyramid shape)).
  • the base extends in the direction of a line 211 and a line 212 orthogonal thereto, and the line 212 forms an angle ⁇ 2 with the edge 212 of the light diffusing plate.
  • a preferable range of ⁇ 2 is 5 to 45 °, more preferably 5 °. -40 °, more preferably 10-40 °.
  • the angle ⁇ 2 between the arrangement direction of the point light sources and the line 212 is set to the above angle, the region surrounded by the four point light sources that becomes the darkest when there is no uneven structure can be brightened.
  • the brightness uniformity of the surface can be further increased.
  • each of the concavo-convex structures 311 is a concave structure having four surfaces 311A to 311D and having a shape in which a regular square pyramid is inverted.
  • the bases of the regular square pyramids are aligned in the direction along the lines 211 and 212, and the apex 311P of the regular square pyramid is located at the bottom of the concave structure.
  • the length 311S of one side of the square at the bottom of the regular square pyramid is usually 30 to 500 ⁇ m, preferably 35 to 300 ⁇ m, more preferably 40 to 200 ⁇ m.
  • the length of one side 311S is smaller than the above numerical range, for example, when the concave and convex structure of the mold is transferred to form the concave and convex structure of the present invention, the concave and convex structure is difficult to transfer, or the luminance uniformity decreases due to the diffraction phenomenon.
  • the apex angle ⁇ 311 of the regular quadrangular pyramid is usually 40 to 170 °, preferably 50 to 165 °, more preferably 60 to 160 °.
  • the apex angle ⁇ 311 is smaller than the above numerical range, for example, when the concave / convex structure of the present invention is formed by transferring the concave / convex structure of the mold, it is difficult to transfer the concave / convex structure, so that the shape cannot be formed as designed. If the apex angle ⁇ 311 is larger than the above numerical range, light perpendicularly incident on the light diffusion plate is likely to be transmitted, and as a result, the linear light source Since the portion directly above the screen becomes bright, there may be a problem that the luminance uniformity decreases. For this reason, there exists an advantage which can improve a brightness
  • the rough surface may have a maximum value Ra (max) of centerline average roughness Ra measured in various directions parallel to the rough surface that is greater than or equal to a predetermined value.
  • the rough surface can be a surface having Ra (max) of 0.05 ⁇ m or more and less than 3.0 ⁇ m, preferably 0.10 ⁇ m or more and less than 2.0 ⁇ m.
  • the rough surface having such roughness can be formed by providing fine irregularities such as dots or streaks on a smooth surface. Such fine irregularities may be evenly provided on the entire rough surface, but may not be evenly provided on the entire rough surface, and have fine irregularities on one surface.
  • the part and the smooth part may be mixed.
  • a rough surface provided with periodically fine irregularities based on the cutting shape of a cutting tool having a periodic notch on the edge such as a rough surface in Example 7 described later.
  • the surface other than the rough surface can be a smooth surface
  • the smooth surface can be a surface having a Ra (max) of less than 0.05 ⁇ m.
  • the centerline average roughness Ra can be obtained based on JIS B0601.
  • region is 50% or less.
  • the ratio of the surface processed as a rough surface to the entire uneven area on the light emitting surface is 50% or less.
  • the ratio of the rough surface to the entire uneven area on the light incident surface is 50% or less, and the unevenness on the light exit surface. This requirement is satisfied when the ratio of the rough surface to the entire region is 50% or less.
  • the present invention by having the rough surface at such a specific ratio, the luminance uniformity is increased, the variation of the luminance uniformity due to the difference in the observation direction is reduced, and the releasability when manufacturing the light diffusion plate Can be improved.
  • the rough surface on the light diffusing plate may have a form having anisotropy in the roughness.
  • Ra (max) and the minimum value Ra (min) of the center line average roughness are Ra (max)> Ra (min), preferably Ra (max)> 2 ⁇ Ra (min), More preferably, the relationship Ra (max)> 3 ⁇ Ra (min) may be satisfied.
  • the direction in which the roughness of the rough surface is maximized may be a direction that intersects the main surface of the light diffusion plate.
  • At least one of the plurality of surfaces facing each other with respect to an arbitrary rough surface in the repeating unit is also a rough surface.
  • the “faced relationship” between the surface (i) having the concavo-convex structure and the other surface (ii) means that any of the following requirements (a) to (c) is satisfied:
  • a line (iii) parallel to both the surface (i) and the main surface of the light diffusing plate is also parallel to the surface (ii).
  • B) There is a portion where the surface (i) and the surface (ii) overlap when viewed from the direction of the line (iv) parallel to the main surface of the light diffusion plate and orthogonal to the line (iii).
  • FIG. 15 illustrates the concave structures 311-1, 311-2, and 311-3, which are provided as three concave-convex structures on the main surface of the light emitting surface and have a shape in which regular square pyramids are inverted.
  • a line 211-2 which is the base of the surface 311A-2 is a line parallel to both the light emitting surface and the surface 311A-2. Therefore, the surfaces 311A-1, 311C-1, 311C-2, 311A-3, and 311C-3 each having a base parallel to the line 211-2 satisfy the requirement (A) with respect to the surface 311A-2. It is a surface to fill.
  • the direction of the line parallel to the light emitting surface and perpendicular to the line 211-2 is the left-right direction in FIG. Since the square weights 311-1 to 311-3 are all regular square weights, the surfaces 311A-1, 311C-1, 311C-2, 311A-3, and 311C-3 are all viewed from the left-right direction in FIG. Since they overlap with the surface 311A-2 when viewed, they both satisfy the requirement (b) with respect to the surface 311A-2. In the requirement (b), the ratio of the overlapping portion to the entire surface (i) is preferably 5 to 100%. From the requirement (b), for example, the surfaces 311B-1 and 311D-1 can be opposed surfaces, but the surfaces 311B-1 and 311D-2 cannot be opposed surfaces.
  • the direction in which the surface 311A-2 is inclined with respect to the light emitting surface is the same as the surface 311A-1 and the surface 311A-3, and is opposite to the surface 311C-1, the surface 311C-2, and the surface 311C-3.
  • the direction of the direction. Accordingly, the surface 311C-1, the surface 311C-2, and the surface 311C-3 satisfy the requirement (c) with respect to the surface 311A-2, while the surface 311A-1 and the surface 311A-3 become the surface 311A-2. On the other hand, it does not meet requirement (c).
  • the concave structures 311-1, 311-2 and 311-3 constitute one repeating unit, for example, one or more of 311A-1, 311A-2 and 311A-3, 311C-
  • one or more of 1, 311C-2 and 311C-3 is a rough surface
  • at least one of the plurality of surfaces facing the rough surface in the repeat unit is also a rough surface.
  • the surfaces 311C-1 and 311A-3 may be spaced apart from each other in the repeating unit. However, it is more preferable that the facing rough surfaces are arranged in contact with each other. It is preferable because it is easy to manufacture with a rough surface forming tool. For example, an arrangement in which the surfaces 311C-1 and 311A-2 that are in contact with the side 211-2 are rough surfaces facing each other is preferable.
  • the maximum centerline average roughness of surface (i) (the maximum of the centerline average roughness of surface (i) with the line parallel to surface (i) as the centerline) And the maximum center line average roughness of the surface (ii) facing the surface (i) is preferably within 1.0 ⁇ m, more preferably within 0.5 ⁇ m, and 0.3 ⁇ m More preferably, it is within.
  • the angle formed by the surface (i) and the main surface of the light diffusing plate is ⁇ (i) ° (where 0 ⁇ (i) ⁇ 90), and the angle formed by the surface (ii) and the main surface of the light diffusing plate.
  • the difference between ⁇ (i) and ⁇ (ii) is preferably smaller.
  • ⁇ 60 ° is preferable
  • the fact that the plane and the line are parallel may include, for example, an error of ⁇ 10 °.
  • FIG. 5 shows an example of the rough surface arrangement in which the rough surface having a repeating unit and the surface opposite to the rough surface are rough surfaces in the uneven region.
  • FIG. 5 is a partial plan view schematically showing the main surface of the light diffusing plate. This surface is composed of four surfaces 311A to 311D, and has a concavo-convex structure having a shape in which a regular square pyramid is inverted, The concavo-convex structure is arranged without a gap to form the concavo-convex region.
  • region is comprised by the repetition of the repeating unit 311R which consists of two uneven structures.
  • the surface 311C having a certain concavo-convex structure and the opposing surface in the adjacent concavo-convex structure are rough surfaces. Since two surfaces out of eight surfaces having the same area in one repeating unit are rough surfaces, the ratio of the rough surface in the uneven region is 25%.
  • the rough surface of the concavo-convex region is arranged so that a surface along a part of the lines 211-1 to 211-9 constituting the bottom of the surface of the concavo-convex structure is a rough surface. This is particularly preferable because a stamper for manufacturing a light diffusing plate can be easily formed using a smooth surface and rough surface forming tool, which will be described later.
  • the height (depth) of the concavo-convex structure in the concavo-convex area is not particularly limited, but the maximum center line average roughness with a plane parallel to the main surface of the light diffusing plate as the center line is within a range of 1 to 1000 ⁇ m.
  • the thickness is preferably 3 to 200 ⁇ m.
  • the thickness of the light diffusing plate is preferably 0.4 mm to 5 mm, and more preferably 0.8 mm to 4 mm. By setting the thickness of the light diffusing plate within the above preferable range, it is possible to suppress bending due to its own weight and to facilitate the molding.
  • the manufacture of the light diffusing plate includes a step of cutting a mold material using a cutting tool to prepare a mold including a surface corresponding to the uneven area, and a resin material using the mold. It can be manufactured by a method including a molding step.
  • the mold material for molding the portion of the surface corresponding to the uneven area in the mold can be a mold itself and / or a stamper disposed on the main surface of the mold.
  • the surface portion corresponding to the concavo-convex region is preferably formed on a stamper.
  • a nickel-phosphorous electroless plating layer having a thickness of, for example, about 100 ⁇ m is applied to the entire surface of a metal rectangular plate.
  • a fine machining tool provided with a cutting tool having a triangular cutting portion whose apex angle is a predetermined angle (the same angle as the apex angle ⁇ 311 of the concave structure shown in FIG. 4) on the surface of the plating layer.
  • a machine for example, nanogruber AMG71P, manufactured by Fujikoshi Co., Ltd.
  • FIG. 8 is a schematic view showing an example of the edge tip of the rough surface forming tool.
  • a processing portion 813 is periodically provided in a part of each of the edges 801 and 802 of the cutting portion of the rough surface forming bit 800.
  • FIG. 9 is an enlarged view of such a processing portion 813.
  • the processed portion 813 is provided with a plurality of cutout portions having an apex angle ⁇ 823 and having a length indicated by an arrow 823A.
  • the shape of the notch is a shape that usually does not cause an undercut portion so that the mold release is not hindered when the molded product is released from the stamper.
  • Such a notch can be formed using a high energy beam processing apparatus such as a focused ion beam (FIB) apparatus (for example, manufactured by Hitachi High-Technology Corporation).
  • a high energy beam processing apparatus such as a focused ion beam (FIB) apparatus (for example, manufactured by Hitachi High-Technology Corporation).
  • FIB focused ion beam
  • the smooth surface forming tool may be processed into the above-described embodiment. Since fine processing can be performed particularly efficiently, it is particularly preferable to use a tool obtained by processing a bite containing single crystal diamond or single crystal boron nitride.
  • a tool having at least one of sintered diamond, sintered boron nitride, cemented carbide, steel added with a rare earth metal, and ceramics can be used as the material for forming the rough surface.
  • the cemented carbide an alloy obtained by sintering metal carbide powder can be used.
  • rare earth metals that can be added to the steel include cobalt, vanadium, and molybdenum.
  • a bit made of sintered diamond, sintered boron nitride, or sintered metal can be used as a rough surface forming bit without being processed, and may be processed with a high energy beam as described above.
  • the light diffusing plate of the present invention can be obtained by molding a resin material using the stamper obtained as described above.
  • the molding method is not particularly limited as long as it is a molding method using the stamper, and a molding method such as injection molding or extrusion molding can be adopted. In particular, injection molding is preferable because the molding can be performed efficiently.
  • the light diffusing plate is formed by injection molding using the resin. Obtainable.
  • FIG. 13 is an enlarged view of one of the concavo-convex structure in which the regular square pyramid formed on the light emitting surface of the light diffusion plate 101 of the first embodiment shown in FIG. 14 is a perspective view
  • FIG. 14 is a plan view of the concavo-convex structure shown in FIG. 13 observed from above.
  • 311A of the surfaces 311A to 311D is a rough surface
  • the cutting is performed by moving the rough surface forming tool parallel to the stamper surface, thereby performing streaking on the surface 311A.
  • These fine irregularities are provided in a direction parallel to the main surface of the light diffusion plate in the surface 311A, which is indicated by an arrow A1401.
  • the direction in which Ra is maximum is the A1402 direction orthogonal to the arrow A1401.
  • the surface 311A is a surface that is non-parallel to the main surface of the light diffusing plate, and among the lines in the surface 311A, the line parallel to the main surface of the light diffusing plate is only the line in the A1401 direction.
  • the direction is a direction intersecting with the main surface of the light diffusion plate.
  • Such a direction in which the roughness of the rough surface is the maximum is a direction intersecting with the main surface, which is preferable because it is easy to mold and the brightness uniformity can be in a desired state.
  • FIG. 10 is a perspective view schematically showing a surface light source device 1000 including a light diffusing plate 1001 according to the second embodiment of the present invention.
  • FIG. 11 shows the surface light source device 1000 shown in FIG. It is sectional drawing cut
  • FIG. 10 is a perspective view schematically showing a surface light source device 1000 including a light diffusing plate 1001 according to the second embodiment of the present invention.
  • FIG. 11 shows the surface light source device 1000 shown in FIG. It is sectional drawing cut
  • the surface light source device 1000 includes a plurality of linear light sources 1011 arranged in parallel, a reflective plate 1021 that reflects light from the linear light source 1011, and diffuses and emits light incident from the linear light source 1011 and the reflective plate 1021.
  • a cathode tube such as a cold cathode tube and a hot cathode tube, an external electrode fluorescent tube (EEFL), a xenon lamp, a xenon mercury lamp, and a light emitting diode (LED) are linearly arranged.
  • EEFL external electrode fluorescent tube
  • a xenon lamp a xenon mercury lamp
  • LED light emitting diode
  • a combination of an LED and a light guide can be used.
  • a straight tube is used as the linear light source, but a substantially U-shaped tube in which two substantially parallel tubes are connected by a single linear or semicircular tube, An approximately N-shaped tube in which three parallel tubes are connected by two linear or semicircular tubes, and an approximately N-shaped tube in which approximately four parallel tubes are connected by three linear or semicircular tubes A W-shaped tube can be listed. Further, as the reflector, the same one as in the first embodiment described above can be used.
  • the light diffusing plate 1001 in the second embodiment has a light incident surface 1001A and a light emitting surface 1001B, and the light incident surface 1001A is a smooth surface, while the light emitting surface 1001B is uneven.
  • it has a convex linear prism 1311 having a triangular cross section and two surfaces each.
  • a plurality of linear prisms 1311 are arranged in parallel to form an uneven region on the entire surface of the light emitting surface 1001B.
  • the linear prism 1311 extends in a direction parallel to the longitudinal direction of the linear light source 1011 so that the bright line based on the shape of the linear prism is concealed when observed from the light exit surface, and the luminance uniformity is improved. It is configured to
  • two surfaces of one of the three linear prisms 1311 have a rough surface
  • the three linear prisms can be used as one repeating unit.
  • the two surfaces of one linear prism satisfy the requirements (A) to (C), and thus are opposed surfaces.
  • a method of manufacturing a light diffusing plate having a prism array composed of a plurality of linear prisms such as the light diffusing plate 1001 is prepared by using a stamper having a shape corresponding to the light emitting surface 1001B.
  • the light diffusing plate can be manufactured in the same manner as in the first embodiment described above.
  • the direction of digging the groove is changed to two directions orthogonal to each other, and in addition, It can be prepared by cutting using a smooth surface forming bit and a rough surface forming bit according to the number of linear prisms having a desired rough surface.
  • the concavo-convex structure provided on the light diffusing plate is other than the concave structure of the structure in which the regular square pyramid illustrated in the first embodiment is inverted and the convex structure of the linear prism illustrated in the second embodiment.
  • the repeating unit may have a plurality of differently shaped uneven structures. More specifically, the repeating unit may be composed of a plurality of types of quadrangular pyramidal concavo-convex structures having different apex angles, or may be composed of a plurality of types of prismatic concavo-convex structures having different apex angles. Good.
  • the concavo-convex structure may be a truncated pyramid shape obtained by cutting and flattening the top of a pyramid, or a linear prism having a cross section other than a triangle such as a pentagon or a heptagon.
  • the direction in which the Ra of the rough surface is maximized is not necessarily limited to the arrow A1402 (FIG. 13) direction shown in the first embodiment, and the maximum centerline average roughness direction may be set to any other direction depending on the manufacturing method. It can be a direction.
  • the direction in which the Ra of the rough surface is maximized can be set to a direction other than the arrow A1402.
  • fine uneven lines are provided in the cutting direction of the cutting tool, and the direction in which the Ra of the rough surface is minimum is parallel to the main surface of the light diffusion plate, and the direction in which the maximum is the maximum It is preferable that the direction is perpendicular to the rough surface.
  • the concavo-convex structure group in which predetermined repeating units are periodically arranged may be formed only on the light emitting surface as in the above embodiments, but is not limited thereto, and only the light incident surface.
  • the concavo-convex structure group may be formed on both the light incident surface and the light emitting surface.
  • the predetermined repeating unit may be periodically arranged on a part of the light incident surface and / or the light emitting surface instead of the entire surface.
  • inventions include backlights such as liquid crystal display devices, illumination devices for illuminating indoor and outdoor environments, and backlight devices such as advertisements and signboards.
  • the display device of the present invention includes an object to be illuminated and the surface light source device of the present invention. Specifically, in addition to the surface light source device, a liquid crystal display device having liquid crystal cells of various display modes as an object to be illuminated and emitting light emitted from the surface light source device from the display surface through the liquid crystal cell. Can do.
  • the display device of the present invention includes, for example, twisted nematic (TN) mode, super twisted nematic (STN) mode, hybrid alignment nematic (HAN) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, in-plane switching.
  • a liquid crystal display device with a display mode such as an (IPS) mode or an optically compensated birefringence (OCB) mode can be obtained.
  • the display device of the present invention includes a translucent plate-like member on which characters, colors, figures, and the like are drawn, which can be used as an object to be illuminated, such as an advertisement or a signboard. it can.
  • the light diffusing plate, the manufacturing method thereof, the surface light source device, and the display device of the present invention are not limited to the above-described embodiments, and can be modified within the scope of the claims of the present application and within the equivalent scope thereof.
  • other arbitrary components can be further included.
  • an optical member for further improving luminance and luminance uniformity may be appropriately arranged. Examples of such an optical member include a diffusion sheet and a prism sheet. These optical members can be provided on the light exit surface side of the light diffusion plate, for example.
  • a housing for forming the surface light source device, a power supply device, and the like can be provided as appropriate.
  • the surface light source device of the present invention can be suitably used for a method of controlling turning on and off of the light source according to the brightness in the screen of the display device.
  • Example 1 A surface light source device 100 having a light diffusing plate 101 having a square pyramid inverted concavo-convex shape schematically shown in FIG. 1 was manufactured and evaluated.
  • Nickel-phosphorous electroless plating with a thickness of 100 ⁇ m was applied to the entire surface of a rectangular plate made of stainless steel SUS430 having dimensions of 170 mm ⁇ 170 mm and a thickness of 2 mm.
  • a single crystal diamond tool (trade name “New Divide”, manufactured by Allied Materials) is used for the smooth surface forming tool, and a sintered diamond tool (product name “PCD”, manufactured by Allied Material) is used for the tool for forming the rough surface.
  • PCD sintered diamond tool
  • the cross section isosceles with a width of 70 ⁇ m, a height of 35 ⁇ m, a pitch of 70 ⁇ m, and an apex angle of 90 ° along the direction that makes an angle of 30 ° and 120 ° with the short side of the plate relative to the nickel-phosphorous electroless plating surface
  • a plurality of triangular linear portions were cut to form a concavo-convex structure in which quadrangular pyramidal projections were arranged without gaps, and a stamper was obtained.
  • a part of the four slopes of the quadrangular pyramid-shaped protrusions was formed with a rough surface forming tool to make a rough surface.
  • this light diffusion plate pellet as a raw material, an injection molding machine (clamping force 1000 kN) was used to mold a 100 mm ⁇ 50 mm test plate with a smooth thickness of 2 mm on both sides.
  • the total light transmittance and haze of this test plate were measured using an integrating sphere type color difference turbidimeter based on JIS K7361-1 and JIS K7136.
  • the test plate had a total light transmittance of 92% and a haze of 93%.
  • the obtained light diffusing plate 101 has a rectangular shape with a thickness of 2 mm and 150 mm ⁇ 150 mm to which the uneven structure of the stamper is transferred, and one surface thereof has an inverted quadrangular pyramid shape shown in FIGS.
  • a concave-convex structure was formed in which the concave structures were arranged without gaps.
  • the base directions 211 and 212 of the quadrangular weight are orthogonal to each other, and the angle ⁇ 2 formed by the base direction 212 and the side 213 of the light diffusion plate 101 is 30 °.
  • the apex angle ⁇ 311 of the depression of the square pyramid was 90 °, the bottom surface was square, and the length of the base 311 was 70 ⁇ m.
  • Each of the quadrangular pyramid-shaped depressions has four inclined surfaces 311A to 311D, and a part of them has a rough surface corresponding to the rough surface of the stamper formed by the rough surface forming tool.
  • the arrangement of the rough surface will be described with reference to FIG.
  • the surface of the stamper corresponding to the surface along a part of the lines 211-1, 211-2, 211-3,. was formed with a rough surface forming tool, so that the rough surface appeared periodically.
  • FIG. 5 shows an example in which every other rough surface is formed, in this embodiment, the rough surface is formed in one of 25, and as a result, the ratio of the rough surface in the uneven region is as follows. 2%.
  • the rough surface on the slope of the quadrangular pyramid-shaped depression is formed by traces of the movement of the cutting tool in the direction of arrow A1401 parallel to the bottom side 211 of the quadrangular pyramid, as shown in FIGS.
  • the centerline average roughness Ra is maximized, and in the direction of the arrow A1401, the centerline average roughness Ra is minimized.
  • Table 1 shows the results of measuring the maximum center line average roughness Ra (max) and the minimum center line average roughness Ra (min) on a rough surface using NewView 600 manufactured by ZYGO.
  • a reflective sheet (RF188, manufactured by Tsujiden Co., Ltd.) is attached to the inner surface of a milky white plastic case having an inner dimension of 150 mm, a short side of 150 mm, and a depth of 20 mm to form a reflector.
  • LED 36 high-brightness chip LEDs “1306L” manufactured by Stanley
  • the LED spacings 113W and 113L were 25 mm.
  • a wiring for energization was connected to each LED.
  • the light diffusing plate obtained in (1-3) was placed so that the surface having the concavo-convex structure was opposite to the light source (light emitting surface side), and placed on the plastic case.
  • the distance between the reflector on the bottom of the case and the light incident surface of the light diffusing plate was 20 mm.
  • a diffusion sheet (“188GM3”, manufactured by Kimoto) a prism sheet (“BEFIII”, manufactured by Sumitomo 3M), and a diffusion sheet (“188GM3”, manufactured by Kimoto) are installed in this order on the light diffusion plate. did.
  • the prism array direction of the prism sheet was parallel to the LED array direction.
  • the luminance of 100 points in the front direction is measured at equal intervals on a line that is equidistant (75 mm) from both short sides, and the luminance average value La and luminance unevenness Lu are calculated according to the following equations 1 and 2. Obtained.
  • the luminance average value was 3240 cd / m 2 and the luminance unevenness was 0.4%.
  • the light emission surface of the surface light source device was observed from a plurality of directions inclined from the front direction.
  • a plurality of directions of 45 ° polar angles angles relative to the normal direction of the light exit surface
  • Example 2 A surface light source device was manufactured in the same manner as in Example 1, except that the arrangement of the rough surface on the light exit surface of the light diffusing plate was changed as described below.
  • the rough surface is arranged such that the surface along one of 25 lines out of the one-way lines 211-1, 211-2, 211-3,.
  • every other rough surface was formed, and as a result, the ratio of the rough surface in the uneven region was 25%.
  • the obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 3 A surface light source device 1000 having a light diffusing plate 1001 having a concavo-convex shape of a linear prism schematically shown in FIGS. 10 and 11 was manufactured and evaluated.
  • Nickel-phosphorous electroless plating with a thickness of 100 ⁇ m was applied to the entire surface of a rectangular plate made of stainless steel SUS430 having a long side of 720 mm ⁇ a short side of 420 mm and a thickness of 2 mm.
  • a tool for forming a smooth surface trade name “New Divide”, manufactured by Allied Materials
  • a tool for forming a rough surface trade name “PCD”, manufactured by Allied Materials
  • a plurality of linear parts having an isosceles triangular section with a width of 70 ⁇ m, a height of 29.4 ⁇ m, a pitch of 70 ⁇ m, and an apex angle of 100 ° are cut to obtain a linear prism.
  • a concavo-convex structure having a shape arranged without gaps was formed to obtain a stamper.
  • a part of the surface of the linear prism was formed with a rough surface forming tool to obtain a rough surface.
  • a 100 mm ⁇ 50 mm test plate having a smooth thickness of 2 mm on both sides was formed using an injection molding machine (clamping force 1000 kN).
  • the total light transmittance and haze of this test plate were measured using an integrating sphere type color difference turbidimeter based on JIS K7361-1 and JIS K7136.
  • the test plate had a total light transmittance of 86% and a haze of 99%.
  • (3-3: Molding of light diffusion plate) A mold was prepared, and the stamper obtained in (3-1) was attached to one mold constituting the mold, and the cavity surface of the other mold was a smooth surface. Using an injection molding machine having such a mold (clamping force 4,410 kN), the conditions for a cylinder temperature of 280 ° C. and a mold temperature of 85 ° C. using the light diffusion plate pellet obtained in (3-2) as a raw material A light diffusion plate was formed below. In the molding of 100 shots, the number of times the light diffusing plate was attached to the stamper was measured to evaluate the releasability. The result was 0 times.
  • the obtained light diffusing plate 1001 has a rectangular shape with a thickness of 2 mm, a long side of 700 mm and a short side of 400 mm, to which the concavo-convex structure of the stamper is transferred, and one surface thereof is along a direction parallel to the long side.
  • a concavo-convex structure having a shape in which linear prisms having an isosceles triangular shape with a width of 70 ⁇ m, a height of 29.4 ⁇ m, a pitch of 70 ⁇ m, and an apex angle of 100 ° are arranged without gaps was formed.
  • the surface on the stamper corresponding to a part of the linear prisms was formed with a rough surface forming tool so that the rough surface appeared periodically.
  • a rough surface was formed on one of the 50 linear prisms. As a result, the ratio of the rough surface in the uneven region was 2%.
  • the rough surface on the inclined surface of the linear prism is formed by traces of the movement of the cutting tool parallel to the extending direction of the linear prism. Therefore, the center line average roughness Ra is maximized in the direction orthogonal to the linear prism. In the direction parallel to the extending direction, the center line average roughness Ra was minimized.
  • a reflective sheet (manufactured by Tsujiden Co., Ltd., RF188) was attached to the inner surface of a milky white plastic case having an inner length of 700 mm, a short side of 400 mm, and a depth of 20 mm to obtain a reflector.
  • 10 cold cathode fluorescent lamps having a diameter of 3.0 mm and a length of 32 inches (81.3 cm), the longitudinal direction is parallel to the long side direction of the case, and the distance 1131 (FIG. 11) between the tube center line and the case bottom is 5 mm. It was fixed in the case.
  • the distance 1141 between the centers of adjacent cold-cathode tubes was 40 mm.
  • Each cold cathode tube was connected to a wiring for energization.
  • the light diffusing plate obtained in (3-3) was placed so that the surface having the concavo-convex structure was opposite to the light source (light emitting surface side), and placed on the plastic case.
  • the distance 1132 between the reflecting plate on the bottom of the case and the light incident surface of the light diffusing plate was 20 mm.
  • a diffusion sheet (“188GM3”, manufactured by Kimoto), a prism sheet (“BEFIII”, manufactured by Sumitomo 3M), and a diffusion sheet (“188GM3”, manufactured by Kimoto) are installed in this order on the light diffusion plate. did.
  • the prism array direction of the prism sheet was parallel to the cold cathode tube array direction.
  • a current of a tube current of 5 mA is applied to each of the obtained cold-cathode tubes of the surface light source to light it, and from both short sides on the light emission surface using a two-dimensional color distribution measuring device.
  • the luminance in the front direction at 100 points was measured at equal intervals on a line at the equidistant (350 mm) position, and the luminance average value La and luminance unevenness Lu were obtained according to Equation 1 and Equation 2 above.
  • the luminance average value was 6250 cd / m 2 and the luminance unevenness was 0.7%.
  • the light emission surface of the surface light source device was observed from a plurality of directions inclined from the front direction.
  • a plurality of directions of 45 ° polar angles angles relative to the normal direction of the light exit surface
  • Example 4 A surface light source device was manufactured in the same manner as in Example 3 except that the arrangement of the rough surface on the light exit surface of the light diffusing plate was changed as described below.
  • a rough surface was formed on one of the 50 linear prisms, but in this example, a rough surface was formed on one of the three, and as a result, the ratio of the rough surface in the uneven region. was 33%.
  • the obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 1.
  • Example 5 A surface light source device was manufactured in the same manner as in Example 3 except that the procedure was changed as follows.
  • the obtained light diffusing plate has a rectangular shape with a thickness of 2 mm, a long side of 700 mm and a short side of 400 mm, to which the concavo-convex structure of the stamper is transferred, and the light emitting surface side has a surface parallel to the long side.
  • a concavo-convex structure having a shape in which linear prisms having an isosceles triangular section with a width of 70 ⁇ m, a pitch of 70 ⁇ m, and an apex angle of 110 ° are arranged without gaps.
  • the surface of the stamper corresponding to a part of the linear prisms is formed with a rough surface forming tool so that the rough surface appears periodically. A rough surface was formed on one of the 50 linear prisms.
  • the ratio of the rough surface in the uneven region was 2%.
  • a concavo-convex structure in which linear prisms having an isosceles triangular shape with a width of 70 ⁇ m, a pitch of 70 ⁇ m, and an apex angle of 140 ° are arranged without gaps along a direction parallel to the long side. was formed.
  • the surfaces of the linear prisms on the light incident surface side were all smooth surfaces.
  • the rough surface on the inclined surface of the linear prism is formed by traces of the movement of the cutting tool parallel to the extending direction of the linear prism. Therefore, the center line average roughness Ra is maximized in the direction orthogonal to the linear prism. In the direction parallel to the extending direction, the center line average roughness Ra was minimized.
  • the case was changed to a depth of 9 mm.
  • the cold cathode tube was changed to 3.4 mm in diameter, the number was changed to 14, the distance between the tube center line and the case bottom was 2.5 mm, and the distance between the centers of adjacent cold cathode tubes was 28 mm. .
  • the distance between the reflector on the bottom of the case and the light incident surface of the light diffusing plate was 9 mm.
  • the obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 1.
  • Example 6 The roughness of the rough surface is the same as in Example 1 except that “PCBN” (trade name, manufactured by Nagoya Diamond Co., Ltd.) is used instead of “PCD” manufactured by Allied Materials as the rough surface forming tool.
  • PCBN trade name, manufactured by Nagoya Diamond Co., Ltd.
  • PCD manufactured by Allied Materials
  • Example 7 Example 1 except that instead of “PCD” manufactured by Allied Materials, the cutting part of “New Debite” was subjected to the processing shown in FIGS. 8 and 9 as the rough surface forming tool. The same surface light source device as that of Example 1 was manufactured except that the roughness of the rough surface was different.
  • a processing portion 813 was periodically provided on a part of each of the edges 801 and 802 of the cutting portion of the cutting tool 800.
  • the length 821 of the non-machined part 811 from the tip 800P to the first machined part was 4.6 ⁇ m, and four machined parts 813 were provided in the subsequent area of 36.5 ⁇ m (arrow 822).
  • the length 823 of the processed part 813 was 4.0 ⁇ m, and the length 824 of the non-processed part 814 between the processed parts 813 was also 4.0 ⁇ m.
  • two notches were formed in the processed portion 823.
  • the notch width 823A was 2.0 ⁇ m and the notch apex angle ⁇ 823 was 90 °. Formation of such a notch was performed using a focused ion beam (FIB) apparatus (manufactured by Hitachi High-Technology Corporation).
  • FIB focused ion beam
  • the obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 8> The same rough surface forming tool as that used for forming a smooth surface (trade name “New Debite”, manufactured by Allied Materials) is used. When forming the rough surface of the stamper, the tool is moved up and down (perpendicular to the main surface of the stamper). The surface is the same as that of Example 1 except that the cutting surface is roughened by performing cutting while oscillating 0.4 ⁇ m in the direction), except that the rough surface is operated in the same manner as in Example 1. A light source device was manufactured.
  • the rough surface on the slope of the quadrangular pyramid-shaped depression has the maximum centerline average roughness Ra in the direction of arrow A1401, which is the direction parallel to the base 211 of the quadrangular pyramid shown in FIGS. 13 and 14, and the arrow A1402 In this direction, the center line average roughness Ra was minimized.
  • Table 1 shows the results of measuring the maximum center line average roughness Ra (max) and the minimum center line average roughness Ra (min) on a rough surface using NewView 600 manufactured by ZYGO.
  • Example 1 A surface light source device was manufactured in the same manner as in Example 1, except that the arrangement of the rough surface on the light exit surface of the light diffusing plate was changed as described below.
  • the rough surface is arranged in one of 25 lines out of the unidirectional lines 211-1, 211-2, 211-3,... Corresponding to the base of the quadrangular pyramid as shown in FIG.
  • 311A and 311D out of the four surfaces 311A to 311D of the quadrangular pyramid-shaped depressions are made rough as shown in FIG.
  • the ratio of the rough surface in the uneven region was 50%.
  • a notch was provided only on one side of the cutting part of “New Divite” manufactured by Allied Materials as a cutting tool. That is, in the bite shown in FIG. 8, a notch is provided only at the edge 801, and the edge 802 is left in a smooth state. By cutting with this, the above light diffusion plate is formed. A stamper was produced.
  • the obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 2 A surface light source device was manufactured in the same manner as in Example 1 except that the light exit surface of the light diffusion plate was not provided with a rough surface and the concavo-convex structure was entirely composed of a smooth surface.
  • the obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 3 A surface light source device was manufactured in the same manner as in Example 1 except that the arrangement of the rough surface of the light exit surface of the light diffusing plate was changed as described below.
  • the rough surface is arranged along one of 25 lines in one-way lines 211-1, 211-2, 211-3,... Corresponding to the base of the quadrangular pyramid.
  • the surface along one of the two lines is a rough surface, and as a result, the ratio of the rough surface to the uneven region is 75%.
  • the obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 4 A surface light source device was manufactured in the same manner as in Example 1 except that the rough surface of the light exit surface of the light diffusing plate was arranged in the entire uneven region and the ratio of the rough surface in the uneven region was 100%. .
  • the obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 5 A surface light source device was manufactured in the same manner as in Example 3 except that the light exit surface of the light diffusion plate was not provided with a rough surface and the concavo-convex structure was entirely composed of a smooth surface. The obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 2.
  • Example 6 A surface light source device was manufactured in the same manner as in Example 3 except that the arrangement of the rough surface of the light exit surface of the light diffusing plate was changed as described below. In Example 3, a rough surface was formed on one of the 50 linear prisms, but in this comparative example, a rough surface was formed on two of the three, and as a result, the ratio of the rough surface in the uneven region. was 67%. The obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 2.
  • Example 7 A surface light source device was manufactured in the same manner as in Example 3 except that the rough surface of the light exit surface of the light diffusing plate was arranged in the entire uneven region and the ratio of the rough surface in the uneven region was 100%. .
  • the obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 2.
  • Tables 1 and 2 show the results of Examples 1 to 8 and Comparative Examples 1 to 7.
  • Ra (max) of a surface formed as a smooth surface instead of a rough surface among the surfaces of the concavo-convex structure was 30 nm or less.
  • the surface light source devices of the examples in which the rough surface of the light diffusing plate is within the specified range of the present invention are arranged so that the rough surfaces do not face each other.
  • Comparative Example 1 the difference in luminance unevenness depending on the observation direction is small, the releasability is remarkably superior to Comparative Examples 2 and 5 that do not have a rough surface, and the ratio of the rough surface is that of the present invention.
  • Comparative Examples 3, 4, 6 and 7 which are outside the specified range the luminance unevenness was very small.

Abstract

Provided is a photodiffusion plate comprising a light incident surface, on which a light is incident, and a light-emitting surface formed on the surface opposite to the light incident surface for diffusing and emitting the light incident on the light incident surface, wherein at least one of the light incident surface and the light-emitting surface includes recess-projection regions having a plurality of repetition units, wherein each of the repetition units includes at least one recess-projection structure having at least two surfaces, wherein at least two of the surfaces in the repetition units are rough, wherein the ratio of the rough surfaces to the surface of the entire region having the repetition units in each of the recess-projection regions is 50 % or less, and wherein at least one of the surfaces facing a rough surface in the repetition units is also rough.  Further provided are a surface illuminant device and a display device having the photodiffusion plate.

Description

光拡散板、光拡散板の製造方法、面光源装置、及び表示装置Light diffusing plate, light diffusing plate manufacturing method, surface light source device, and display device
 本発明は、光拡散板、その製造方法、並びにかかる光拡散板を備えた面光源装置及び表示装置に関する。 The present invention relates to a light diffusing plate, a manufacturing method thereof, and a surface light source device and a display device including the light diffusing plate.
 液晶表示装置等の表示装置においては、反射板と、複数の光源と、光拡散板とを有する、直下型バックライト装置等のバックライト装置が用いられる場合がある。このような直下型バックライト装置では、光拡散板の出射面での輝度を均一化する(輝度均斉度を高める)目的で、光拡散板の表面に、光源の長手方向と平行に延びる断面多角形状の線状プリズムが複数並んだプリズム条列を設けることが実施されている(特開平2006-066074号公報)。このような光拡散板は、例えば、金型部品のキャビティ面に前記プリズム条列に対応する凹凸構造を形成し、この金型部品を用いて射出成形することにより得ることができる。しかしながら、このような線状プリズムを有する光拡散板を射出成形により成形すると、用いる樹脂によっては金型部品に、成形された光拡散板が貼り付いて、光拡散板の離型が困難になる場合があった。このため、必ずしも成形作業が効率的ではなかった。 In a display device such as a liquid crystal display device, a backlight device such as a direct-type backlight device having a reflector, a plurality of light sources, and a light diffusing plate may be used. In such a direct type backlight device, a cross-sectional polygon extending parallel to the longitudinal direction of the light source is provided on the surface of the light diffusing plate for the purpose of making the luminance uniform on the exit surface of the light diffusing plate (increasing the luminance uniformity). It has been practiced to provide a prism array in which a plurality of linear prisms are arranged (Japanese Patent Laid-Open No. 2006-066074). Such a light diffusing plate can be obtained, for example, by forming a concavo-convex structure corresponding to the prism row on the cavity surface of a mold part and performing injection molding using the mold part. However, when a light diffusing plate having such a linear prism is molded by injection molding, depending on the resin used, the molded light diffusing plate is attached to a mold part, making it difficult to release the light diffusing plate. There was a case. For this reason, the molding operation is not always efficient.
 一方、特開平2001-287227号公報には、射出成形用の金型において、該金型と成形品との密着による成形品の離型性を改善すべく、金型の表面を十点平均粗さRzが0.2~3.0μmの粗面とすることが開示されている。 On the other hand, in Japanese Patent Application Laid-Open No. 2001-287227, in order to improve the releasability of a molded product due to the close contact between the mold and the molded product, the surface of the mold has a ten-point average roughness. It is disclosed that the rough surface has a thickness Rz of 0.2 to 3.0 μm.
 光拡散板の射出成形を効率的に実施するために、前記特開平2001-287227号公報に示す技術を利用して、プリズム条列に対応する凹凸構造の表面を粗面化することが考えられる。しかしながら、この技術を単に適用しただけでは、成形品の離型性を向上できるものの、輝度均斉度等の光学性能を十分に発揮できない場合があった。このため、十分な光学性能を有し、かつ離型性に優れた金型部品の開発が望まれている。
 なお、上記の問題は、液晶表示装置等の表示装置に用いられる直下型バックライト装置用の光拡散板に限らず、照明装置用の光拡散板や、広告や看板等に用いられる直下型バックライト装置用の光拡散板においても同様であった。
In order to efficiently perform the injection molding of the light diffusing plate, it is conceivable to roughen the surface of the concavo-convex structure corresponding to the prism row by using the technique disclosed in Japanese Patent Application Laid-Open No. 2001-287227. . However, simply applying this technique can improve the mold releasability of the molded product, but there are cases where the optical performance such as luminance uniformity cannot be sufficiently exhibited. For this reason, development of mold parts having sufficient optical performance and excellent releasability is desired.
The above problem is not limited to the light diffusion plate for a direct backlight device used in a display device such as a liquid crystal display device, but also a light diffusion plate for a lighting device, a direct light backlight used for an advertisement or a signboard. The same applies to the light diffusion plate for the light device.
 本発明の目的は、輝度及び輝度均斉度が高い面光源装置及び表示装置を与えることができ、且つ効率的に製造することができる光拡散板及びその製造方法を提供することにある。 An object of the present invention is to provide a light diffusing plate that can provide a surface light source device and a display device having high luminance and high luminance uniformity and can be efficiently manufactured, and a method for manufacturing the same.
 本発明のさらなる目的は、輝度及び輝度均斉度が高く、効率的に製造できる面光源装置及び表示装置を提供することにある。 A further object of the present invention is to provide a surface light source device and a display device that have high luminance and luminance uniformity and can be efficiently manufactured.
 本発明者は本課題を解決するために鋭意検討した結果、光拡散板の凹凸構造を特定のものとすることにより上記課題を解決しうることを見出し、本発明を完成するに至った。
 かくして本発明は、以下のものを含む。
As a result of intensive studies to solve this problem, the present inventor has found that the above problem can be solved by making the uneven structure of the light diffusion plate specific, and has completed the present invention.
Thus, the present invention includes the following.
〔1〕 光を入射する光入射面と、この光入射面とは反対側の面に形成され、前記光入射面から入射した光を拡散して出射する光出射面とを備える光拡散板であって、
 前記光入射面及び前記光出射面の少なくとも一方の面は、複数個の繰り返し単位を有する凹凸領域を有し、
 前記複数個の繰り返し単位の各々は、2以上の面を有する凹凸構造を1以上有し、
 前記繰り返し単位に含まれるすべての面のうちの2面以上が粗面であり、
 前記凹凸領域の各々において、前記繰り返し単位が形成された領域全体の前記面の面積に対する、前記粗面の面積の割合が50%以下であり、
 前記繰り返し単位における任意の粗面に対して、対向する関係にある複数の面のうちの少なくとも1面が粗面である光拡散板。
〔2〕 前記凹凸構造は、断面多角形状の線状プリズムであることを特徴とする前記光拡散板。
〔3〕 前記凹凸構造は、多角錐体、又はその反転形状であることを特徴とする前記光拡散板。
〔4〕 対向した前記粗面の最大中心線平均粗さの差が、1.0μm以内であることを特徴とする前記光拡散板。
〔5〕 前記光拡散板の製造方法であって、
 バイトを用いて金型材料を切削加工して、前記凹凸領域に対応する面を含む金型を調製する工程、及び
 前記金型を用いて樹脂材料を成形する工程
 を含むことを特徴とする製造方法。
〔6〕 前記金型における前記凹凸領域に対応する面のうち、前記粗面に対応する面を切削加工する前記バイトが、単結晶ダイヤモンドまたは単結晶窒化ホウ素を含むバイトであって、前記金型材料の切削加工に先立ちその切削面が加工されたバイトであることを特徴とする前記製造方法。
〔7〕 光源と、前記光拡散板、または前記製造方法により製造された光拡散板とを備えることを特徴とする面光源装置。
〔8〕 被照明体と、前記面光源装置とを備える表示装置。
[1] A light diffusing plate comprising a light incident surface on which light is incident and a light emitting surface that is formed on a surface opposite to the light incident surface and diffuses and emits light incident from the light incident surface. There,
At least one of the light incident surface and the light emitting surface has an uneven region having a plurality of repeating units,
Each of the plurality of repeating units has one or more concavo-convex structures having two or more faces,
Two or more of all the surfaces included in the repeating unit are rough surfaces,
In each of the uneven regions, the ratio of the area of the rough surface to the area of the surface of the entire region where the repeating unit is formed is 50% or less,
A light diffusing plate in which at least one of a plurality of surfaces facing each other with respect to an arbitrary rough surface in the repeating unit is a rough surface.
[2] The light diffusion plate, wherein the concavo-convex structure is a linear prism having a polygonal cross section.
[3] The light diffusing plate, wherein the uneven structure is a polygonal pyramid or an inverted shape thereof.
[4] The light diffusing plate, wherein a difference in maximum center line average roughness of the facing rough surfaces is within 1.0 μm.
[5] A method for producing the light diffusing plate,
Manufacturing comprising: cutting a mold material using a cutting tool to prepare a mold including a surface corresponding to the uneven region; and molding a resin material using the mold Method.
[6] Of the surface corresponding to the uneven region in the mold, the cutting tool that cuts the surface corresponding to the rough surface is a cutting tool including single crystal diamond or single crystal boron nitride, and the mold The manufacturing method according to claim 1, wherein the cutting surface is a cutting tool processed prior to cutting of the material.
[7] A surface light source device comprising a light source and the light diffusing plate or the light diffusing plate manufactured by the manufacturing method.
[8] A display device comprising an object to be illuminated and the surface light source device.
 本発明の光拡散板は、輝度及び輝度均斉度を高めることができ、且つ離型容易な凹凸構造を有するため、これを備える本発明の面光源装置及び表示装置は、輝度及び輝度均斉度が高く、効率的に製造できる。また、本発明の光拡散板の製造方法では、前記本発明の光拡散板を効率的に製造することができる。また、粗面が互いに対向する関係にあることにより、観察方向による輝度むらを小さくできるという効果がある。 Since the light diffusion plate of the present invention has a concavo-convex structure that can increase luminance and luminance uniformity and is easy to release, the surface light source device and display device of the present invention provided with the light diffusion plate have luminance and luminance uniformity. High and efficient production. Moreover, in the manufacturing method of the light diffusing plate of this invention, the said light diffusing plate of this invention can be manufactured efficiently. Further, since the rough surfaces are in a relationship facing each other, there is an effect that the luminance unevenness due to the observation direction can be reduced.
図1は、本発明の一実施形態に係る光拡散板及び面光源装置を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing a light diffusing plate and a surface light source device according to an embodiment of the present invention. 図2は、図1に示す光拡散板の光出射面を拡大して示す平面図である。FIG. 2 is an enlarged plan view showing a light emission surface of the light diffusion plate shown in FIG. 図3は、図1に示す光拡散板の一部を拡大して示す斜視図である。FIG. 3 is an enlarged perspective view showing a part of the light diffusing plate shown in FIG. 図4は、図3に示す光拡散板の一部をさらに線3aに沿った面で切断した縦断面図である。FIG. 4 is a longitudinal sectional view in which a part of the light diffusing plate shown in FIG. 3 is further cut by a plane along the line 3a. 図5は、図1に示す光拡散板の主面の概略を示す部分平面図である。FIG. 5 is a partial plan view schematically showing the main surface of the light diffusing plate shown in FIG. 図6は、比較例3における光拡散板の主面の概略を示す部分平面図である。FIG. 6 is a partial plan view showing an outline of the main surface of the light diffusing plate in Comparative Example 3. 図7は、比較例1における光拡散板の主面の概略を示す部分平面図である。FIG. 7 is a partial plan view showing an outline of the main surface of the light diffusing plate in Comparative Example 1. 図8は、粗面形成用バイトのエッジ先端の一例を示す概略図である。FIG. 8 is a schematic view showing an example of the edge tip of the rough surface forming tool. 図9は、図8に示すバイトの加工部813を拡大して示す拡大図である。FIG. 9 is an enlarged view showing the cutting portion 813 of the cutting tool shown in FIG. 図10は、本発明の別の一実施形態に係る面光源装置を概略的に示す斜視図である。FIG. 10 is a perspective view schematically showing a surface light source device according to another embodiment of the present invention. 図11は、図10に示す面光源装置を、線状光源1011の長手方向に垂直な断面で切断した断面図である。FIG. 11 is a cross-sectional view of the surface light source device shown in FIG. 10 cut along a cross section perpendicular to the longitudinal direction of the linear light source 1011. 図12は、図1に示す面光源装置における点状光源の配置を概略的に示す平面図である。FIG. 12 is a plan view schematically showing the arrangement of point light sources in the surface light source device shown in FIG. 図13は、図1に示す光拡散板の一部を拡大して示す斜視図である。13 is an enlarged perspective view showing a part of the light diffusion plate shown in FIG. 図14は、図13に示す凹凸構造を上面から観察した平面図である。FIG. 14 is a plan view of the concavo-convex structure shown in FIG. 13 observed from above. 図15は、図1に示す光拡散板の光出射面を拡大して示す斜視図である。FIG. 15 is an enlarged perspective view showing the light emitting surface of the light diffusing plate shown in FIG.
 以下において、本発明を、図面を参照して詳細に説明する。
 (光拡散板及び面光源装置:第1実施形態)
 図1は、本発明の第1の実施形態に係る、光拡散板101を備える面光源装置100を概略的に示す斜視図である。
 本発明の面光源装置は、光源と、前記光源からの光を反射する反射板と、前記光源からの直射光および前記反射板からの反射光を光入射面から入射し、光出射面から拡散照射する光拡散板とを有するものとしうる。図1に示す第1実施形態においては、面光源装置100は、反射板121と、反射板121の反射面121A上に設けられた点状光源111と、反射板121及び点状光源111の上部側に離間して設けられた光拡散板101とを有している。
In the following, the present invention will be described in detail with reference to the drawings.
(Light Diffusing Plate and Surface Light Source Device: First Embodiment)
FIG. 1 is a perspective view schematically showing a surface light source device 100 including a light diffusing plate 101 according to the first embodiment of the present invention.
The surface light source device of the present invention includes a light source, a reflecting plate that reflects light from the light source, direct light from the light source and reflected light from the reflecting plate from a light incident surface, and diffuses from the light emitting surface. And a light diffusing plate to be irradiated. In the first embodiment shown in FIG. 1, the surface light source device 100 includes a reflecting plate 121, a point light source 111 provided on the reflecting surface 121 </ b> A of the reflecting plate 121, and an upper portion of the reflecting plate 121 and the point light source 111. And a light diffusing plate 101 that is spaced apart on the side.
 なお、本明細書においては、別に断らない限り「上」及び「下」方向とは、面光源装置を、その光出射面が水平に上側となるよう載置した状態における「上」及び「下」方向を意味し、これらは図1及び図10の図面内における上方向及び下方向と一致する。 In this specification, unless otherwise specified, the “up” and “down” directions mean “up” and “down” in a state where the surface light source device is placed so that its light emission surface is horizontally upward. ”Direction, which corresponds to the upward and downward directions in the drawings of FIGS. 1 and 10.
 (反射板)
 反射板の材質としては、白色または銀色に着色された樹脂、および金属等を用いることができ、軽量化の観点から樹脂が好ましい。また、反射板の色は、輝度均斉度を向上できる観点から白色であることが好ましいが、輝度と輝度均斉度を高度にバランスさせるため、白色と銀色とを混合してもよい。
(a reflector)
As a material of the reflector, a resin colored in white or silver, a metal, or the like can be used, and a resin is preferable from the viewpoint of weight reduction. The color of the reflector is preferably white from the viewpoint of improving the luminance uniformity, but white and silver may be mixed in order to highly balance the luminance and the luminance uniformity.
 (光源)
 本発明に用いる光源は、図1に示す点状光源、又は後述する他の実施形態において示される線状光源としうる。かかる点状光源としては、LED等の光源を用いうる。LEDは、白色、赤色(R)、緑色(G)、青色(B)などの様々な色を発光するものがある。本実施形態では、点状光源として(1)白色LEDのみを使用したもの、(2)RGB三原色を組み合わせたもの、および(3)RGB三原色に中間色又は白色を組み合わせたものなどを、色バランスを顧慮して適宜選択して用いることができる。前記RGB三原色を組み合わせたもの((2)および(3))には、(A)赤色LEDと緑色LEDと青色LEDとを少なくとも1つずつ近接配置して、各色を混合させて白色を発光させるもの、および(B)赤色LEDと緑色LEDと青色LEDとを適宜配置したものがある。なお、(A)の場合は近接配置したLEDの組み合わせを一つの点状光源とみなす。反射板上における点状光源の配置は、図12に示すように、反射板121上の反射面121Aにおいて、面光源装置100の光出射面の長手方向及び短手方向に沿った方向に列をなした配置としうる。この場合の点状光源の間隔113W及び113Lは、10~200mmとしうる。
(light source)
The light source used in the present invention may be a point light source shown in FIG. 1 or a linear light source shown in other embodiments described later. As such a point light source, a light source such as an LED can be used. Some LEDs emit various colors such as white, red (R), green (G), and blue (B). In this embodiment, the color balance is adjusted such that (1) only white LEDs are used as point light sources, (2) RGB three primary colors are combined, and (3) RGB three primary colors are combined with an intermediate color or white. It can be appropriately selected and used in consideration. In the combination of the three primary colors of RGB ((2) and (3)), (A) at least one red LED, green LED and blue LED are arranged close to each other, and each color is mixed to emit white light. And (B) a red LED, a green LED, and a blue LED appropriately disposed. In the case of (A), a combination of LEDs arranged close to each other is regarded as one point light source. As shown in FIG. 12, the arrangement of the point light sources on the reflecting plate is such that the reflecting surface 121A on the reflecting plate 121 is arranged in a direction along the longitudinal direction and the short direction of the light emitting surface of the surface light source device 100. It can be arranged. In this case, the intervals 113W and 113L of the point light sources can be set to 10 to 200 mm.
 (光拡散板:材質)
 本発明において、光拡散板を構成する材質としては、ガラス、混合しにくい2種以上の樹脂の混合物、透明樹脂に光拡散剤を分散させたもの、および1種類の透明樹脂等を用いることができる。これらの中で、軽量であること、成形が容易であることから樹脂が好ましく、輝度向上が容易である点からは1種類の透明樹脂が好ましく、全光線透過率とヘーズの調整が容易である点からは透明樹脂に光拡散剤を分散させたものが好ましい。
(Light diffusion plate: material)
In the present invention, as the material constituting the light diffusing plate, glass, a mixture of two or more kinds of resins that are difficult to mix, a material in which a light diffusing agent is dispersed in a transparent resin, and one kind of transparent resin are used. it can. Among these, a resin is preferable because it is lightweight and easy to mold, and one kind of transparent resin is preferable from the viewpoint that luminance can be easily improved, and adjustment of total light transmittance and haze is easy. From the viewpoint, a transparent resin in which a light diffusing agent is dispersed is preferable.
 前記透明樹脂とは、JIS K7361-1に基づいて、両面平滑な2mm厚の板で測定した全光線透過率が70%以上の樹脂のことであり、例えば、ポリエチレン、プロピレン-エチレン共重合体、ポリプロピレン、ポリスチレン、ポリメチルペンテン-1、芳香族ビニル単量体と低級アルキル基を有する(メタ)アクリル酸アルキルエステルとの共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、テレフタル酸-エチレングリコール-シクロヘキサンジメタノール共重合体、ポリカーボネート、アクリル樹脂、および脂環式構造を有する樹脂などを挙げることができる。なお、(メタ)アクリル酸とは、アクリル酸およびメタクリル酸のことである。 The transparent resin is a resin having a total light transmittance of 70% or more measured with a 2 mm-thick plate smooth on both sides based on JIS K7361-1, for example, polyethylene, propylene-ethylene copolymer, Polypropylene, polystyrene, polymethylpentene-1, copolymer of aromatic vinyl monomer and (meth) acrylic acid alkyl ester having lower alkyl group, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, terephthalic acid-ethylene Examples include glycol-cyclohexanedimethanol copolymer, polycarbonate, acrylic resin, and resin having an alicyclic structure. In addition, (meth) acrylic acid is acrylic acid and methacrylic acid.
 前記光拡散剤は、光線を拡散させる性質を有する粒子であり、無機フィラーと有機フィラーとに大別できる。無機フィラーとしては、シリカ、水酸化アルミニウム、酸化アルミニウム、酸化チタン、酸化亜鉛、硫酸バリウム、マグネシウムシリケート、およびこれらの混合物を挙げることができる。有機フィラーとしては、アクリル樹脂、ポリウレタン、ポリ塩化ビニル、ポリスチレン樹脂、ポリアクリロニトリル、ポリアミド、ポリシロキサン樹脂、メラミン樹脂、およびベンゾグアナミン樹脂等を挙げることができる。これらの中でも、有機フィラーとしては、ポリスチレン樹脂、ポリシロキサン樹脂、およびこれらの架橋物からなる微粒子が、高分散性、高耐熱性、成形時の着色(黄変)がない点で好ましく、これらの中でも、より耐熱性に優れる点でポリシロキサン樹脂の架橋物からなる微粒子がより好ましい。 The light diffusing agent is a particle having a property of diffusing light, and can be roughly classified into an inorganic filler and an organic filler. Examples of the inorganic filler include silica, aluminum hydroxide, aluminum oxide, titanium oxide, zinc oxide, barium sulfate, magnesium silicate, and a mixture thereof. Examples of the organic filler include acrylic resin, polyurethane, polyvinyl chloride, polystyrene resin, polyacrylonitrile, polyamide, polysiloxane resin, melamine resin, and benzoguanamine resin. Among these, as the organic filler, fine particles composed of polystyrene resin, polysiloxane resin, and cross-linked products thereof are preferable in terms of high dispersibility, high heat resistance, and no coloration (yellowing) during molding. Among these, fine particles made of a cross-linked product of polysiloxane resin are more preferable from the viewpoint of more excellent heat resistance.
 透明樹脂に分散させる光拡散剤の割合は、光拡散板の厚みや、線状光源の間隔などに応じて適宜選択できるが、通常は、分散物の全光線透過率が60%~98%となるように光拡散剤の含有量を調整することが好ましく、65%~95%となるように光拡散剤の含有量を調整することがより好ましい。全光線透過率を上記好適な範囲とすることにより、輝度および輝度均斉度をより向上させることができる。 The proportion of the light diffusing agent dispersed in the transparent resin can be appropriately selected according to the thickness of the light diffusing plate, the interval between the linear light sources, and the like. Usually, the total light transmittance of the dispersion is 60% to 98%. It is preferable to adjust the content of the light diffusing agent so as to be, and it is more preferable to adjust the content of the light diffusing agent to be 65% to 95%. By setting the total light transmittance within the above preferable range, the luminance and the luminance uniformity can be further improved.
 なお、全光線透過率とは、JIS K7361-1に基づいて、両面平滑な2mm厚みの板で測定した値であり、ヘーズとはJIS K7136により両面平滑な2mm厚みの板で測定した値である。 The total light transmittance is a value measured with a 2 mm-thick plate smooth on both sides based on JIS K7361-1, and the haze is a value measured on a 2 mm-thick plate smooth on both sides with JIS K7136. .
 (光拡散板:外形)
 本発明において、光拡散板は、光を入射する光入射面と、この光入射面とは反対側の面に形成され、前記光入射面から入射した光を拡散して出射する光出射面とを備え、前記光入射面及び前記光出射面の少なくとも一方の面は、複数個の繰り返し単位を有する凹凸領域を有し、前記複数個の繰り返し単位の各々は、2以上の面を有する凹凸構造を1以上有する。なお本発明において、凹凸構造とは、別に断らない限り凹構造及び/又は凸構造をいう。
 ここで、本発明において、例えば、当該繰り返し単位内において、後述する粗面の相対的位置が異なる場合には繰り返し単位には該当せず、前記粗面の相対的位置も含めて、その外形が等しい場合には、繰り返し単位に該当することとする。
(Light diffusion plate: outline)
In the present invention, the light diffusing plate is formed on a light incident surface on which light is incident and a surface opposite to the light incident surface, and diffuses and emits light incident from the light incident surface; And at least one of the light incident surface and the light emitting surface has an uneven region having a plurality of repeating units, and each of the plurality of repeating units has an uneven structure having two or more surfaces. 1 or more. In the present invention, the concavo-convex structure means a concave structure and / or a convex structure unless otherwise specified.
Here, in the present invention, for example, when the relative position of the rough surface described later is different in the repeating unit, it does not correspond to the repeating unit, and its outer shape including the relative position of the rough surface is the same. If equal, it corresponds to a repeating unit.
 図1に示す第1実施形態における光拡散板101は、光入射面及び光出射面を主面として有する平板状の構造を有し、その光出射面の全面に、凹凸領域を有している。本発明において、凹凸領域は光入射面又は光出射面の全面に設けられていてもよいが、その有効面積(実際に光を出射する面積)の50%以上といった一部の領域に設けられていてもよい。 The light diffusing plate 101 in the first embodiment shown in FIG. 1 has a plate-like structure having a light incident surface and a light emitting surface as main surfaces, and has an uneven region on the entire surface of the light emitting surface. . In the present invention, the concavo-convex region may be provided on the entire surface of the light incident surface or the light output surface, but is provided in a part of the region such as 50% or more of the effective area (the area where light is actually emitted). May be.
 光拡散板101の光出射面の凹凸構造を、図2を参照してより詳細に説明する。図2は、図1に示した光拡散板101の光出射面を拡大して示す平面図である。図2に示す通り、光拡散板101の光出射面には、凹凸構造311が隙間無く並べられている。 The uneven structure on the light exit surface of the light diffusion plate 101 will be described in more detail with reference to FIG. FIG. 2 is an enlarged plan view showing a light emitting surface of the light diffusion plate 101 shown in FIG. As shown in FIG. 2, the concavo-convex structures 311 are arranged on the light emitting surface of the light diffusing plate 101 without any gaps.
 凹凸構造311は、四角錘体が反転した形状の凹構造(画成される凹みの輪郭の形状が、頂角が下向きの四角錐状(逆ピラミッド状)となる)であり、四角錐体の底辺は、線211及びそれに直交する線212の方向に延長し、線212は光拡散板の縁212と角度θ2をなしている。図1に示す通り、点状光源111が面光源装置の光出射面の長手方向及び短手方向に沿って配列されている場合において、θ2の好ましい範囲は、5~45°、より好ましくは5~40°、さらに好ましくは10~40°である。点状光源の配列方向と線212との角度θ2を上記角度とすることにより、凹凸構造が無い場合に最も暗くなる、4つの点状光源で囲まれた領域を明るくすることができるため、発光面の輝度均斉度をさらに高めることができる。 The concavo-convex structure 311 is a concave structure in which the quadrangular pyramid is inverted (the shape of the contour of the dent defined is a quadrangular pyramid shape with an apex downward (inverted pyramid shape)). The base extends in the direction of a line 211 and a line 212 orthogonal thereto, and the line 212 forms an angle θ2 with the edge 212 of the light diffusing plate. As shown in FIG. 1, when the point light sources 111 are arranged along the longitudinal direction and the short direction of the light emitting surface of the surface light source device, a preferable range of θ2 is 5 to 45 °, more preferably 5 °. -40 °, more preferably 10-40 °. By setting the angle θ2 between the arrangement direction of the point light sources and the line 212 to the above angle, the region surrounded by the four point light sources that becomes the darkest when there is no uneven structure can be brightened. The brightness uniformity of the surface can be further increased.
 凹凸構造311の構造を、図3及び図4を参照してさらに詳細に説明する。図3は、図2の光拡散板101を、凹凸構造311の5個×5個分の区域を切り取った部分101Rを拡大して示した斜視図であり、図4は、部分101Rをさらに線3aに沿った面で切断した縦断面図である。図3及び図4に示す通り、凹凸構造311のそれぞれは、面311A~311Dの4つの面を有する、正四角錘が反転した形状の凹構造である。正四角錘の底辺は、線211及び212に沿った方向に整列し、正四角錘の頂点311Pは凹構造の底に位置する。正四角錘の底面の正方形の一辺の長さ311Sは、通常30~500μm、好ましくは35~300μm、より好ましくは40~200μmである。一辺の長さ311Sが上記数値範囲より小さい場合には、例えば金型の凹凸を転写させて本発明の凹凸構造を形成する際に凹凸構造が転写しにくかったり、回折現象によって輝度均斉度が低下する等の問題が生じ得、また、一辺の長さ311Sが上記数値範囲よりも大きい場合には、凹凸構造が視認できるため、それに対応した輝度むらが生じ、表示される画像が正常に見えないという問題が生じ得る。このため、正四角錐の一辺の長さ311Sを上記数値範囲を満たす構成とすることにより、上記問題を生じることなく、輝度均斉度を向上できる利点がある。また、正四角錘の頂角θ311は、通常40~170°、好ましくは50~165°、より好ましくは60~160°である。頂角θ311が上記数値範囲より小さい場合には、例えば金型の凹凸を転写させて本発明の凹凸構造を形成する際に凹凸構造が転写しにくくなることにより、設計通りの形状に形成できないことから輝度均斉度が低下する問題が生じ得、また、頂角θ311が上記数値範囲より大きい場合には、光源から光拡散板に垂直に入射した光が透過しやすくなり、その結果、線状光源の直上が明るくなることから、輝度均斉度が低下するという問題が生じ得る。このため、正四角錐の頂角θ311を上記数値範囲を満たす構成とすることにより、輝度均斉度を向上できる利点がある。 The structure of the concavo-convex structure 311 will be described in more detail with reference to FIGS. 3 is an enlarged perspective view of the light diffusing plate 101 of FIG. 2, in which a portion 101R obtained by cutting out a 5 × 5 area of the concavo-convex structure 311 is illustrated, and FIG. 4 further illustrates the portion 101R. It is the longitudinal cross-sectional view cut | disconnected by the surface along 3a. As shown in FIGS. 3 and 4, each of the concavo-convex structures 311 is a concave structure having four surfaces 311A to 311D and having a shape in which a regular square pyramid is inverted. The bases of the regular square pyramids are aligned in the direction along the lines 211 and 212, and the apex 311P of the regular square pyramid is located at the bottom of the concave structure. The length 311S of one side of the square at the bottom of the regular square pyramid is usually 30 to 500 μm, preferably 35 to 300 μm, more preferably 40 to 200 μm. When the length of one side 311S is smaller than the above numerical range, for example, when the concave and convex structure of the mold is transferred to form the concave and convex structure of the present invention, the concave and convex structure is difficult to transfer, or the luminance uniformity decreases due to the diffraction phenomenon. In addition, when the length 311S of one side is larger than the above numerical range, the uneven structure can be visually recognized, resulting in uneven brightness, and the displayed image does not look normal. The problem can arise. For this reason, by setting the length 311S of one side of the regular quadrangular pyramid to satisfy the above numerical range, there is an advantage that the luminance uniformity can be improved without causing the above problem. The apex angle θ311 of the regular quadrangular pyramid is usually 40 to 170 °, preferably 50 to 165 °, more preferably 60 to 160 °. When the apex angle θ311 is smaller than the above numerical range, for example, when the concave / convex structure of the present invention is formed by transferring the concave / convex structure of the mold, it is difficult to transfer the concave / convex structure, so that the shape cannot be formed as designed. If the apex angle θ311 is larger than the above numerical range, light perpendicularly incident on the light diffusion plate is likely to be transmitted, and as a result, the linear light source Since the portion directly above the screen becomes bright, there may be a problem that the luminance uniformity decreases. For this reason, there exists an advantage which can improve a brightness | luminance uniformity by setting the vertex angle (theta) 311 of a regular quadrangular pyramid to satisfy | fill the said numerical range.
 本発明においては、前記繰り返し単位に含まれるすべての面のうちの2面以上が粗面である。粗面は、粗面に平行な様々な方向で測定した中心線平均粗さRaのうちの最大値Ra(max)が所定以上のものとしうる。具体的には、粗面は、Ra(max)が0.05μm以上3.0μm未満、好ましくは0.10μm以上2.0μm未満の面としうる。
 そのような粗さを有する粗面は、具体的には、平滑な面上に、点状または筋状の微細な凹凸を設けることにより形成しうる。かかる微細な凹凸は、粗面の全面に均等に設けられていてもよいが、粗面の全面に均等に設けられていなくてもよく、一枚の面上に微細な凹凸を有している部分と平滑な部分が混在していてもよい。具体的には例えば、後述する実施例7における粗面のように、エッジ上に周期的な切欠きを有するバイトの切削加工形状に基づいた、周期的に微細な凹凸が設けられた粗面であってもよい。
 一方、粗面以外の面は、平滑面とすることができ、ここで平滑面はRa(max)が0.05μm未満の面とすることができる。
 なお、中心線平均粗さRaは、JIS B0601に基づいて求めることができる。
 このような微細な粗さを有する粗面を設けることにより、成形時の離型性を高めつつ、且つ可視光の散乱を所望の範囲とすることができる。
In the present invention, two or more of all the surfaces included in the repeating unit are rough surfaces. The rough surface may have a maximum value Ra (max) of centerline average roughness Ra measured in various directions parallel to the rough surface that is greater than or equal to a predetermined value. Specifically, the rough surface can be a surface having Ra (max) of 0.05 μm or more and less than 3.0 μm, preferably 0.10 μm or more and less than 2.0 μm.
Specifically, the rough surface having such roughness can be formed by providing fine irregularities such as dots or streaks on a smooth surface. Such fine irregularities may be evenly provided on the entire rough surface, but may not be evenly provided on the entire rough surface, and have fine irregularities on one surface. The part and the smooth part may be mixed. Specifically, for example, a rough surface provided with periodically fine irregularities based on the cutting shape of a cutting tool having a periodic notch on the edge, such as a rough surface in Example 7 described later. There may be.
On the other hand, the surface other than the rough surface can be a smooth surface, and the smooth surface can be a surface having a Ra (max) of less than 0.05 μm.
The centerline average roughness Ra can be obtained based on JIS B0601.
By providing a rough surface having such a fine roughness, it is possible to increase the releasability at the time of molding and to scatter visible light within a desired range.
 さらに本発明においては、凹凸領域の各々における、前記繰り返し単位が形成された領域全体の前記面の面積に対する、粗面の面積の割合が50%以下である。例えば光出射面に凹凸領域が設けられている場合においては、光出射面上の凹凸領域全体に対する、粗面として加工された面の割合が50%以下であるときに、この要件を満たす。
 また例えば光入射面と光出射面の両方に凹凸領域が設けられている場合においては、光入射面上の凹凸領域全体に対する粗面の割合が50%以下であり、且つ光出射面上の凹凸領域全体に対する粗面の割合が50%以下であるときに、この要件を満たす。
 本発明においては、かかる特定の割合での粗面を有することにより、輝度均斉度を高め、観察方向の違いによる輝度均斉度のばらつきを低減し、且つ光拡散板を製造するときの離型性を向上させることができる。
Furthermore, in this invention, the ratio of the area of a rough surface with respect to the area of the said surface of the whole area | region in which the said repeating unit was formed in each uneven | corrugated area | region is 50% or less. For example, in the case where an uneven area is provided on the light emitting surface, this requirement is satisfied when the ratio of the surface processed as a rough surface to the entire uneven area on the light emitting surface is 50% or less.
For example, in the case where uneven areas are provided on both the light incident surface and the light exit surface, the ratio of the rough surface to the entire uneven area on the light incident surface is 50% or less, and the unevenness on the light exit surface. This requirement is satisfied when the ratio of the rough surface to the entire region is 50% or less.
In the present invention, by having the rough surface at such a specific ratio, the luminance uniformity is increased, the variation of the luminance uniformity due to the difference in the observation direction is reduced, and the releasability when manufacturing the light diffusion plate Can be improved.
 本発明において、光拡散板上の粗面は、その粗さに異方性がある形態としうる。具体的には、Ra(max)と、中心線平均粗さの最小値Ra(min)とが、Ra(max)>Ra(min)、好ましくはRa(max)>2×Ra(min)、より好ましくはRa(max)>3×Ra(min)の関係を有するものとしうる。
 さらに、粗面の粗さが最大となる方向が、光拡散板の主面と交差する方向である形態とすることができる。このような形態とすることにより、輝度均斉度を高めることができ、且つ光拡散板や金型部品の製造を容易なものとすることができる。このような形態の具体例は、光拡散板の製造方法と併せて後に詳述する。
In the present invention, the rough surface on the light diffusing plate may have a form having anisotropy in the roughness. Specifically, Ra (max) and the minimum value Ra (min) of the center line average roughness are Ra (max)> Ra (min), preferably Ra (max)> 2 × Ra (min), More preferably, the relationship Ra (max)> 3 × Ra (min) may be satisfied.
Further, the direction in which the roughness of the rough surface is maximized may be a direction that intersects the main surface of the light diffusion plate. By setting it as such a form, a brightness | luminance uniformity can be raised and manufacture of a light diffusing plate and a mold component can be made easy. The specific example of such a form is explained in full detail later together with the manufacturing method of a light diffusing plate.
 さらに、本発明においては、繰り返し単位における任意の粗面に対して、対向する関係にある複数の面のうち少なくとも1面も粗面である。本発明において、凹凸構造のある面(i)と他の面(ii)が「対向する関係」とは、下記要件(イ)~(ハ)のいずれも充足することをいう:
 (イ)面(i)及び光拡散板の主面のいずれにも平行な線(iii)が、面(ii)とも平行である。
 (ロ)光拡散板の主面と平行でかつ線(iii)に直交する線(iv)の方向から見て、面(i)と面(ii)とが重なる部分が存在する。
 (ハ)光拡散板の主面を基準として、面(i)の傾く方向と面(ii)の傾く方向とが逆向きである。
Furthermore, in the present invention, at least one of the plurality of surfaces facing each other with respect to an arbitrary rough surface in the repeating unit is also a rough surface. In the present invention, the “faced relationship” between the surface (i) having the concavo-convex structure and the other surface (ii) means that any of the following requirements (a) to (c) is satisfied:
(A) A line (iii) parallel to both the surface (i) and the main surface of the light diffusing plate is also parallel to the surface (ii).
(B) There is a portion where the surface (i) and the surface (ii) overlap when viewed from the direction of the line (iv) parallel to the main surface of the light diffusion plate and orthogonal to the line (iii).
(C) With respect to the main surface of the light diffusing plate, the direction in which the surface (i) is inclined and the direction in which the surface (ii) is inclined are opposite to each other.
 当該要件(イ)~(ハ)を、図15に示す凹凸構造を例にとり説明する。図15は、光出射面の主面に3つの凹凸構造として設けられた、正四角錘が反転した形状の凹構造311-1、311-2及び311-3を図示している。 The requirements (a) to (c) will be described using the uneven structure shown in FIG. 15 as an example. FIG. 15 illustrates the concave structures 311-1, 311-2, and 311-3, which are provided as three concave-convex structures on the main surface of the light emitting surface and have a shape in which regular square pyramids are inverted.
 まず、これらの凹構造はいずれも、光出射面の主面に設けられたものであるため、これらの底辺(211-1~211-4等)はいずれも主面と平行である。面311A-2の底辺である線211-2は、光出射面及び面311A-2のいずれにも平行な線である。そこで、当該線211-2と平行な底辺を持つ面311A-1、311C-1、311C-2、311A-3及び311C-3はいずれも、面311A-2に対して、要件(イ)を満たす面である。 First, since these concave structures are all provided on the main surface of the light emitting surface, their bases (211-1 to 211-4, etc.) are all parallel to the main surface. A line 211-2 which is the base of the surface 311A-2 is a line parallel to both the light emitting surface and the surface 311A-2. Therefore, the surfaces 311A-1, 311C-1, 311C-2, 311A-3, and 311C-3 each having a base parallel to the line 211-2 satisfy the requirement (A) with respect to the surface 311A-2. It is a surface to fill.
 さらに、光出射面と平行でかつ線211-2に直交する線の方向は、図15の左右方向となる。四角錘311-1~311-3はいずれも正四角錘であることから、面311A-1、311C-1、311C-2、311A-3及び311C-3はいずれも、図15の左右方向から見て面311A-2と重なるので、これらはいずれも、面311A-2に対して、要件(ロ)を満たす。要件(ロ)において、面(i)全面に対する、当該重なる部分の割合は、5~100%であることが好ましい。当該要件(ロ)から、例えば面311B-1と311D-1とは対向する面となりうるが、面311B-1と311D-2とは対向する面とはなりえない。 Furthermore, the direction of the line parallel to the light emitting surface and perpendicular to the line 211-2 is the left-right direction in FIG. Since the square weights 311-1 to 311-3 are all regular square weights, the surfaces 311A-1, 311C-1, 311C-2, 311A-3, and 311C-3 are all viewed from the left-right direction in FIG. Since they overlap with the surface 311A-2 when viewed, they both satisfy the requirement (b) with respect to the surface 311A-2. In the requirement (b), the ratio of the overlapping portion to the entire surface (i) is preferably 5 to 100%. From the requirement (b), for example, the surfaces 311B-1 and 311D-1 can be opposed surfaces, but the surfaces 311B-1 and 311D-2 cannot be opposed surfaces.
 さらに、光出射面を基準として、面311A-2の傾く方向は、面311A-1及び面311A-3と同じ方向であり、面311C-1、面311C-2及び面311C-3とは逆向きの方向である。したがって、面311C-1、面311C-2及び面311C-3は、面311A-2に対して、要件(ハ)を満たし、一方面311A-1及び面311A-3は、面311A-2に対して、要件(ハ)を満たさない。 Further, the direction in which the surface 311A-2 is inclined with respect to the light emitting surface is the same as the surface 311A-1 and the surface 311A-3, and is opposite to the surface 311C-1, the surface 311C-2, and the surface 311C-3. The direction of the direction. Accordingly, the surface 311C-1, the surface 311C-2, and the surface 311C-3 satisfy the requirement (c) with respect to the surface 311A-2, while the surface 311A-1 and the surface 311A-3 become the surface 311A-2. On the other hand, it does not meet requirement (c).
 以上より、凹構造311-1、311-2及び311-3が一つの繰り返し単位を構成している場合において、例えば311A-1、311A-2及び311A-3のうちの1以上と、311C-1、311C-2及び311C-3のうちの1以上とが粗面である場合、当該繰り返し単位において、ある粗面に対し対向した複数の面のうち少なくとも1面も粗面であることになる。 From the above, when the concave structures 311-1, 311-2 and 311-3 constitute one repeating unit, for example, one or more of 311A-1, 311A-2 and 311A-3, 311C- When one or more of 1, 311C-2 and 311C-3 is a rough surface, at least one of the plurality of surfaces facing the rough surface in the repeat unit is also a rough surface. .
 繰り返し単位内における対向する粗面の配置は、例えば面311C-1と311A-3というように離隔して配置されていてもよいが、対向する粗面が辺を接した状態で配置されたほうが、粗面形成用バイトでの製造が容易なため好ましい。例えば、辺211-2で接している面311C-1及び311A-2が対向する粗面であるような配置が好ましい。 For example, the surfaces 311C-1 and 311A-3 may be spaced apart from each other in the repeating unit. However, it is more preferable that the facing rough surfaces are arranged in contact with each other. It is preferable because it is easy to manufacture with a rough surface forming tool. For example, an arrangement in which the surfaces 311C-1 and 311A-2 that are in contact with the side 211-2 are rough surfaces facing each other is preferable.
 要件(ハ)に関連して、面(i)の最大中心線平均粗さ(面(i)に平行な線を中心線とした、面(i)の中心線平均粗さのうちの最大のもの)と、面(i)に対向した面(ii)の最大中心線平均粗さとの差は、1.0μm以内であることが好ましく、0.5μm以内であることがより好ましく、0.3μm以内であることがさらに好ましい。最大中心線平均粗さの差をこのような範囲内とすることにより、観察方向による輝度ムラの違いを低減でき、且つ光拡散板の製造における離型性を向上することができる。 In relation to requirement (c), the maximum centerline average roughness of surface (i) (the maximum of the centerline average roughness of surface (i) with the line parallel to surface (i) as the centerline) And the maximum center line average roughness of the surface (ii) facing the surface (i) is preferably within 1.0 μm, more preferably within 0.5 μm, and 0.3 μm More preferably, it is within. By setting the difference of the maximum center line average roughness within such a range, the difference in luminance unevenness depending on the observation direction can be reduced, and the releasability in manufacturing the light diffusion plate can be improved.
 また、面(i)と光拡散板の主面とがなす角をθ(i)°(ただし0<θ(i)<90)、面(ii)と光拡散板の主面とがなす角をθ(ii)°(ただし0<θ(ii)<90)とすると、θ(i)とθ(ii)との差は小さい方が好ましく、具体的には|θ(i)-θ(ii)|≦60°であることが好ましく、|θ(i)-θ(ii)|≦50°であることがより好ましく、|θ(i)-θ(ii)|≦40°であることがさらに好ましい。 Further, the angle formed by the surface (i) and the main surface of the light diffusing plate is θ (i) ° (where 0 <θ (i) <90), and the angle formed by the surface (ii) and the main surface of the light diffusing plate. Is θ (ii) ° (where 0 <θ (ii) <90), the difference between θ (i) and θ (ii) is preferably smaller. Specifically, | θ (i) −θ ( ii) | ≦ 60 ° is preferable, | θ (i) −θ (ii) | ≦ 50 ° is more preferable, and | θ (i) −θ (ii) | ≦ 40 ° is satisfied. Is more preferable.
 なお、本発明における光拡散板の形状の規定において、面及び線が平行であるとは、例えば±10°の誤差を含んでいてもよい。 In the definition of the shape of the light diffusion plate in the present invention, the fact that the plane and the line are parallel may include, for example, an error of ± 10 °.
 凹凸領域において、繰り返し単位のある粗面及びそれに対向した面が粗面であるような粗面の配置の例を、図5に示す。図5は、光拡散板の主面の概略を示す部分平面図であり、この面は、311A~311Dの4つの面から構成され、正四角錘が反転した形状を有する凹凸構造を有し、この凹凸構造が隙間無く並べられて凹凸領域を形成している。この凹凸領域は、2つの凹凸構造からなる繰り返し単位311Rの繰り返しにより構成されている。この繰り返し単位においては、ある凹凸構造の面311Cと、隣接する凹凸構造における対向する面とが粗面である。1つの繰り返し単位において同じ面積の8つの面のうち2つの面が粗面であることから、凹凸領域における粗面の割合は25%となる。 FIG. 5 shows an example of the rough surface arrangement in which the rough surface having a repeating unit and the surface opposite to the rough surface are rough surfaces in the uneven region. FIG. 5 is a partial plan view schematically showing the main surface of the light diffusing plate. This surface is composed of four surfaces 311A to 311D, and has a concavo-convex structure having a shape in which a regular square pyramid is inverted, The concavo-convex structure is arranged without a gap to form the concavo-convex region. This uneven | corrugated area | region is comprised by the repetition of the repeating unit 311R which consists of two uneven structures. In this repeating unit, the surface 311C having a certain concavo-convex structure and the opposing surface in the adjacent concavo-convex structure are rough surfaces. Since two surfaces out of eight surfaces having the same area in one repeating unit are rough surfaces, the ratio of the rough surface in the uneven region is 25%.
 凹凸領域の粗面の配置を、図5に示すように、凹凸構造の面の底辺を構成する線211-1~211-9のうちの一部の線に沿った面を粗面とする配置とすると、後述する平滑面及び粗面形成用バイトによる光拡散板製造用スタンパーの形成を容易に行なうことができるため、特に好ましい。 As shown in FIG. 5, the rough surface of the concavo-convex region is arranged so that a surface along a part of the lines 211-1 to 211-9 constituting the bottom of the surface of the concavo-convex structure is a rough surface. This is particularly preferable because a stamper for manufacturing a light diffusing plate can be easily formed using a smooth surface and rough surface forming tool, which will be described later.
 凹凸領域の凹凸構造の高さ(深さ)は、特に限定されないが、光拡散板の主面に平行な面を中心線とした最大中心線平均粗さが1~1000μmの範囲内であることが好ましく、3~200μmであることがより好ましい。 The height (depth) of the concavo-convex structure in the concavo-convex area is not particularly limited, but the maximum center line average roughness with a plane parallel to the main surface of the light diffusing plate as the center line is within a range of 1 to 1000 μm. The thickness is preferably 3 to 200 μm.
 光拡散板の厚みは、0.4mm~5mmであることが好ましく、0.8mm~4mmであることがより好ましい。光拡散板の厚みを上記好適な範囲とすることにより、自重による撓みを抑えることができるとともに、成形の容易化を図ることができる。 The thickness of the light diffusing plate is preferably 0.4 mm to 5 mm, and more preferably 0.8 mm to 4 mm. By setting the thickness of the light diffusing plate within the above preferable range, it is possible to suppress bending due to its own weight and to facilitate the molding.
 (光拡散板の製造方法)
 本発明において、光拡散板の製造は、バイトを用いて金型材料を切削加工して、前記凹凸領域に対応する面を含む金型を調製する工程、及び前記金型を用いて樹脂材料を成形する工程を含む方法により製造することができる。
(Method for manufacturing light diffusion plate)
In the present invention, the manufacture of the light diffusing plate includes a step of cutting a mold material using a cutting tool to prepare a mold including a surface corresponding to the uneven area, and a resin material using the mold. It can be manufactured by a method including a molding step.
 (光拡散板の製造方法:金型調製工程)
 金型を調製する工程において、金型中の前記凹凸領域に対応する面の部分を成形するための金型材料は、金型そのもの、及び/又は金型の主面に配置されるスタンパーとしうる。加工の容易さ、及び金型の使用により型の微細な凹凸構造が損なわれた際の交換の容易さ等の観点から、凹凸領域に対応する面の部分はスタンパー上に成形することが好ましい。
(Manufacturing method of light diffusion plate: mold preparation process)
In the step of preparing the mold, the mold material for molding the portion of the surface corresponding to the uneven area in the mold can be a mold itself and / or a stamper disposed on the main surface of the mold. . From the viewpoint of ease of processing and the ease of replacement when the fine concavo-convex structure of the mold is damaged due to the use of a mold, the surface portion corresponding to the concavo-convex region is preferably formed on a stamper.
 図1~図5に示す、本願の第1の実施形態の光拡散板の、四角錘が反転した形状が並んだ凹凸構造を得るためのスタンパーの成形を例に取り説明する。 A description will be given by taking as an example the formation of a stamper for obtaining a concavo-convex structure in which the shapes of the inverted square pyramids of the light diffusion plate of the first embodiment of the present application shown in FIGS. 1 to 5 are arranged.
 まず、金属製の矩形板材の全面に、例えば約100μm厚のニッケル-リン無電解めっき層を施す。次いで、このめっき層の表面に、頂角が所定角度(図4に示す凹構造の頂角θ311と同一の角度となる)である三角形状の切削部を有するバイトを備えた微細加工用の工作機械(例えば、ナノグルーバ AMG71P、不二越社製)を用いて、スタンパー面に平行で且つ図2で示す光拡散板上の線211に対応する方向に、所定ピッチで切削加工することにより、断面三角形状の溝を複数形成する。さらに、図2で示す線212に対応する方向に、所定ピッチで切削加工することにより断面三角形状の溝を直交する2方向に掘り、その結果図3及び図4に示す凹凸構造の反転した形状に相当する、四角錘が隙間無く並んだ構造を得ることができる。
 ここで、図5に示す光拡散板上の線211-1、211-3、211-5、211-7、211-9、・・・に沿った面に対応する溝の加工において、切削面を粗面とする粗面形成用バイトを用いて切削を行い、一方その他の部分の溝の加工において、切削面を平滑面とする平滑面形成用バイトを用いて切削を行なうことにより、図5に示す光拡散板上の粗面の配置に対応するスタンパーを得ることができる。平滑面形成用バイトとしては単結晶ダイヤモンドバイト、単結晶窒化ホウ素バイトが好適に使用できる。
First, a nickel-phosphorous electroless plating layer having a thickness of, for example, about 100 μm is applied to the entire surface of a metal rectangular plate. Next, a fine machining tool provided with a cutting tool having a triangular cutting portion whose apex angle is a predetermined angle (the same angle as the apex angle θ311 of the concave structure shown in FIG. 4) on the surface of the plating layer. Using a machine (for example, nanogruber AMG71P, manufactured by Fujikoshi Co., Ltd.), by cutting at a predetermined pitch in a direction parallel to the stamper surface and corresponding to the line 211 on the light diffusion plate shown in FIG. A plurality of grooves are formed. Further, by cutting at a predetermined pitch in a direction corresponding to the line 212 shown in FIG. 2, a groove having a triangular cross section is dug in two directions orthogonal to each other, and as a result, the concavo-convex structure shown in FIGS. 3 and 4 is inverted. It is possible to obtain a structure in which the square pyramids are arranged without gaps.
Here, in the machining of the grooves corresponding to the surfaces along the lines 211-1, 211-3, 211-5, 211-7, 211-9,... On the light diffusion plate shown in FIG. 5 by cutting using a rough surface forming tool with a rough surface, while cutting with a smooth surface forming tool with the cutting surface as a smooth surface in the machining of the grooves in other parts. A stamper corresponding to the arrangement of the rough surface on the light diffusing plate shown in FIG. As the smooth surface forming tool, a single crystal diamond tool or a single crystal boron nitride tool can be preferably used.
 粗面形成用バイトの例を、図8及び図9を参照して説明する。図8は、粗面形成用バイトのエッジ先端の一例を示す概略図である。図8において、粗面形成用バイト800の切削部のエッジ801及び802のそれぞれの一部には、加工部813が周期的に設けられている。図9は、かかる加工部813の拡大図である。図9に示す通り、加工部813には、頂角θ823を有し、矢印823Aで示される長さを有する切り欠き部が複数設けられている。かかる切り欠き部の形状は、スタンパーから成形品を離型する際に、離型に支障が生じないように、通常アンダーカット部分が生じない形状とされる。このような切り欠きの形成は、集束イオンビーム(Focused Ion Beam:FIB)装置(例えば日立ハイテクノロジー社製)等の高エネルギー線加工装置を用いて行なうことができる。このような加工部を有することにより、粗面形成用バイト800により切削加工されたスタンパー表面には、切り欠き部の形状に基づく筋状の微細な凹凸が形成され、その結果当該表面が粗面となる。また、前記平滑面形成用バイトは、上に述べた態様に加工したものを用いうる。微細な加工を特に効率的に行なうことができるため、特に、単結晶ダイヤモンドまたは単結晶窒化ホウ素を含むバイトを加工したものを用いることが好ましい。 An example of a rough surface forming tool will be described with reference to FIGS. FIG. 8 is a schematic view showing an example of the edge tip of the rough surface forming tool. In FIG. 8, a processing portion 813 is periodically provided in a part of each of the edges 801 and 802 of the cutting portion of the rough surface forming bit 800. FIG. 9 is an enlarged view of such a processing portion 813. As shown in FIG. 9, the processed portion 813 is provided with a plurality of cutout portions having an apex angle θ823 and having a length indicated by an arrow 823A. The shape of the notch is a shape that usually does not cause an undercut portion so that the mold release is not hindered when the molded product is released from the stamper. Such a notch can be formed using a high energy beam processing apparatus such as a focused ion beam (FIB) apparatus (for example, manufactured by Hitachi High-Technology Corporation). By having such a machined portion, fine streaky irregularities based on the shape of the notch are formed on the stamper surface cut by the rough surface forming tool 800, and as a result, the surface is roughened. It becomes. The smooth surface forming tool may be processed into the above-described embodiment. Since fine processing can be performed particularly efficiently, it is particularly preferable to use a tool obtained by processing a bite containing single crystal diamond or single crystal boron nitride.
 前記粗面形成用バイトとしては、切削面の材料として、焼結ダイヤモンド、焼結窒化ホウ素、超硬合金、鋼に希土類金属を添加したもの、セラミックスのうち、少なくとも1つを有するバイトを用いうる。超硬合金としては、金属炭化物の粉末を焼結してなる合金を用いることができる。また、鋼に添加しうる希土類金属としては、コバルト、バナジウム、モリブデンなどを挙げることができる。焼結ダイヤモンド、焼結窒化ホウ素、焼結金属からなるバイトは、加工せずに粗面形成用バイトとすることが可能であり、前述のような高エネルギー線による加工を施してもよい。 As the rough surface forming tool, a tool having at least one of sintered diamond, sintered boron nitride, cemented carbide, steel added with a rare earth metal, and ceramics can be used as the material for forming the rough surface. . As the cemented carbide, an alloy obtained by sintering metal carbide powder can be used. Examples of rare earth metals that can be added to the steel include cobalt, vanadium, and molybdenum. A bit made of sintered diamond, sintered boron nitride, or sintered metal can be used as a rough surface forming bit without being processed, and may be processed with a high energy beam as described above.
 (光拡散板の製造方法:樹脂材料の成形)
 続いて、上記の通りにして得たスタンパーを用い、樹脂材料を成形することにより、本発明の光拡散板を得ることができる。成形方法は、前記スタンパーを用いる成形方法であれば特に限定されず、射出成形、押し出し成形等の成形方法を採用しうるが、特に射出成形が、効率的に成形を行なうことができるため好ましい。
(Manufacturing method of light diffusion plate: molding of resin material)
Subsequently, the light diffusing plate of the present invention can be obtained by molding a resin material using the stamper obtained as described above. The molding method is not particularly limited as long as it is a molding method using the stamper, and a molding method such as injection molding or extrusion molding can be adopted. In particular, injection molding is preferable because the molding can be performed efficiently.
 具体的には、上記の通りに得たスタンパーを、形成した凹凸構造が射出成形用金型のキャビティ面となるように配置して、前記樹脂を用いて射出成形することにより、光拡散板を得ることができる。 Specifically, by arranging the stamper obtained as described above so that the formed concavo-convex structure becomes the cavity surface of the injection mold, the light diffusing plate is formed by injection molding using the resin. Obtainable.
 (得られた成形体の粗面)
 上で述べた光拡散板の製造方法により得られた光拡散板上の粗面においては、その粗さに異方性が生じる。即ち、粗面形成用バイトの切り欠き部の形状に基づく筋状の微細な凹凸が形成されたスタンパーを用いて成形を行なって光拡散板を得たため、光拡散板の粗面においては、その中心線平均粗さRaが、バイトの切削方向において最小となり、バイトの切削方向に垂直な方向において最大となる。
(Rough surface of the obtained molded product)
In the rough surface on the light diffusing plate obtained by the method for manufacturing a light diffusing plate described above, anisotropy occurs in the roughness. That is, since the light diffusing plate was obtained by molding using a stamper in which streaky fine irregularities based on the shape of the notch portion of the rough surface forming bit were formed, the rough surface of the light diffusing plate had its The center line average roughness Ra is minimum in the cutting direction of the cutting tool and is maximum in a direction perpendicular to the cutting direction of the cutting tool.
 これを図13及び図14を参照して説明する。図13は、図3と同様に、図1に示す第1実施形態の光拡散板101の光出射面に形成された正四角錘が反転した形状の凹凸構造の一つを拡大して示した斜視図であり、図14は、図13に示す凹凸構造を上面から観察した平面図である。ここで面311A~311Dのうち311Aを粗面とした場合、上で述べたように、粗面形成用バイトをスタンパー面に平行に動かして切削加工を行なったことにより、面311A上の筋状の微細な凹凸は、矢印A1401で示される、面311A内における光拡散板の主面と平行な方向に設けられることになる。その結果、Raが最大となる方向は矢印A1401に直交するA1402方向となる。面311Aは光拡散板の主面とは非平行な面であり、面311A中の線のうち光拡散板の主面と平行な線はA1401方向の線のみであるので、Raが最大となる方向は光拡散板の主面と交差する方向となる。このような、粗面の粗さが最大となる方向が主面と交差する方向である場合、成形が容易であり且つ輝度均斉度を所望の状態とすることができるため好ましい。 This will be described with reference to FIG. 13 and FIG. FIG. 13 is an enlarged view of one of the concavo-convex structure in which the regular square pyramid formed on the light emitting surface of the light diffusion plate 101 of the first embodiment shown in FIG. 14 is a perspective view, and FIG. 14 is a plan view of the concavo-convex structure shown in FIG. 13 observed from above. Here, in the case where 311A of the surfaces 311A to 311D is a rough surface, as described above, the cutting is performed by moving the rough surface forming tool parallel to the stamper surface, thereby performing streaking on the surface 311A. These fine irregularities are provided in a direction parallel to the main surface of the light diffusion plate in the surface 311A, which is indicated by an arrow A1401. As a result, the direction in which Ra is maximum is the A1402 direction orthogonal to the arrow A1401. The surface 311A is a surface that is non-parallel to the main surface of the light diffusing plate, and among the lines in the surface 311A, the line parallel to the main surface of the light diffusing plate is only the line in the A1401 direction. The direction is a direction intersecting with the main surface of the light diffusion plate. Such a direction in which the roughness of the rough surface is the maximum is a direction intersecting with the main surface, which is preferable because it is easy to mold and the brightness uniformity can be in a desired state.
 (第2実施形態)
 本発明の第2の実施形態を、図10及び図11を参照して説明する。図10は、本発明の第2の実施形態に係る、光拡散板1001を備える面光源装置1000を概略的に示す斜視図であり、図11は、図10に示す面光源装置1000を、線状光源1011の長手方向に垂直な平面で切断した断面図である。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a perspective view schematically showing a surface light source device 1000 including a light diffusing plate 1001 according to the second embodiment of the present invention. FIG. 11 shows the surface light source device 1000 shown in FIG. It is sectional drawing cut | disconnected by the plane perpendicular | vertical to the longitudinal direction of the light source 1011. FIG.
 面光源装置1000は、並列配置された複数の線状光源1011と、線状光源1011からの光を反射する反射板1021と、線状光源1011および反射板1021から入射した光を拡散して出射する光拡散板1001とを備える。本発明に用いる線状光源としては、冷陰極管及び熱陰極管等の陰極管、外部電極蛍光管(EEFL)、キセノンランプ、キセノン水銀ランプ、および発光ダイオード(LED)を直線状に並べたもの、LEDと導光体を組み合わせたもの等を用いることができる。また、本実施形態には、線状光源として直管状のものを用いたが、略平行な2本の管を1つの直線状または半円状の管で接続した略U字状の管、略平行な3本の管を2つの直線状または半円状の管で接続した略N字状の管、および略平行な4本の管を3つの直線状または半円状の管で接続した略W字状の管などを挙ることができる。また、反射板としては、上に述べた第1実施形態におけるものと同様のものを用いることができる。 The surface light source device 1000 includes a plurality of linear light sources 1011 arranged in parallel, a reflective plate 1021 that reflects light from the linear light source 1011, and diffuses and emits light incident from the linear light source 1011 and the reflective plate 1021. A light diffusing plate 1001 to be used. As the linear light source used in the present invention, a cathode tube such as a cold cathode tube and a hot cathode tube, an external electrode fluorescent tube (EEFL), a xenon lamp, a xenon mercury lamp, and a light emitting diode (LED) are linearly arranged. A combination of an LED and a light guide can be used. In this embodiment, a straight tube is used as the linear light source, but a substantially U-shaped tube in which two substantially parallel tubes are connected by a single linear or semicircular tube, An approximately N-shaped tube in which three parallel tubes are connected by two linear or semicircular tubes, and an approximately N-shaped tube in which approximately four parallel tubes are connected by three linear or semicircular tubes A W-shaped tube can be listed. Further, as the reflector, the same one as in the first embodiment described above can be used.
 図11に示す通り、この第2実施形態における光拡散板1001は、光入射面1001A及び光出射面1001Bを有し、光入射面1001Aは平滑な面であり、一方光出射面1001Bは、凹凸構造として、断面三角形状で各々2つの面を有する凸状の線状プリズム1311を有している。線状プリズム1311は複数平行に並び、光出射面1001Bの全面に凹凸領域を構成している。線状プリズム1311は、線状光源1011の長手方向と平行な方向に延長し、それにより、線状プリズムの形状に基づく輝線が、光出射面から観察した際に隠蔽され、輝度均斉度が向上するよう構成されている。 As shown in FIG. 11, the light diffusing plate 1001 in the second embodiment has a light incident surface 1001A and a light emitting surface 1001B, and the light incident surface 1001A is a smooth surface, while the light emitting surface 1001B is uneven. As a structure, it has a convex linear prism 1311 having a triangular cross section and two surfaces each. A plurality of linear prisms 1311 are arranged in parallel to form an uneven region on the entire surface of the light emitting surface 1001B. The linear prism 1311 extends in a direction parallel to the longitudinal direction of the linear light source 1011 so that the bright line based on the shape of the linear prism is concealed when observed from the light exit surface, and the luminance uniformity is improved. It is configured to
 ここで、複数の線状プリズム1311の、例えば3本のうち1本が有する2つの面を粗面とし、かかる3本の線状プリズムを1つの繰り返し単位とすることができる。かかる繰り返し単位においては、2つの面を有する凹凸構造である線状プリズムが3つ存在し、6枚の面のうち2つの面が粗面であり、粗面の割合は33.3%となる。そして、1本の線状プリズムの2つの面は、互いに、前記要件(イ)~(ハ)を充足するので、対向する面となる。 Here, for example, two surfaces of one of the three linear prisms 1311 have a rough surface, and the three linear prisms can be used as one repeating unit. In such a repeating unit, there are three linear prisms having a concavo-convex structure having two surfaces, two of the six surfaces are rough surfaces, and the ratio of the rough surfaces is 33.3%. . Further, the two surfaces of one linear prism satisfy the requirements (A) to (C), and thus are opposed surfaces.
 光拡散板1001のような複数の線状プリズムからなるプリズム条列を有する光拡散板を製造する方法は、例えば、スタンパーとして光出射面1001Bに対応する形状のものを調製し、これを用いて上に述べた第1実施形態の光拡散板の製造方法と同様に製造することができる。そのようなスタンパーは、上に述べた第1実施形態の光拡散板の製造に用いたスタンパーの調製において溝を掘る方向を直交する2方向としたのを1方向のみに変更し、併せて、所望の粗面を有する線状プリズムの数に合わせて平滑面形成用バイト及び粗面形成用バイトを使用して切削を行なうことにより、調製することができる。 For example, a method of manufacturing a light diffusing plate having a prism array composed of a plurality of linear prisms such as the light diffusing plate 1001 is prepared by using a stamper having a shape corresponding to the light emitting surface 1001B. The light diffusing plate can be manufactured in the same manner as in the first embodiment described above. In such a stamper, in the preparation of the stamper used in the manufacture of the light diffusing plate of the first embodiment described above, the direction of digging the groove is changed to two directions orthogonal to each other, and in addition, It can be prepared by cutting using a smooth surface forming bit and a rough surface forming bit according to the number of linear prisms having a desired rough surface.
 (その他の実施形態)
 本発明において、光拡散板に設けられる凹凸構造は、上記第1実施形態に例示された正四角錘が反転した構造の凹構造及び第2実施形態に例示された線状プリズムの凸構造以外にも、種々の形態のものとしうる。
(Other embodiments)
In the present invention, the concavo-convex structure provided on the light diffusing plate is other than the concave structure of the structure in which the regular square pyramid illustrated in the first embodiment is inverted and the convex structure of the linear prism illustrated in the second embodiment. Can be of various forms.
 例えば、繰り返し単位は、複数種類の異なる形状の凹凸構造を有していてもよい。より具体的には、繰り返し単位は、頂角の異なる複数種類の四角錘状の凹凸構造からなっていてもよく、又は頂角の異なる複数種類の断面三角形のプリズムの凹凸構造からなっていてもよい。凹凸構造は、他に、角錐の頂部を切り取り平らにした角錐台形状、又は五角形若しくは七角形等の三角形以外の断面を有する線状プリズムであってもよい。 For example, the repeating unit may have a plurality of differently shaped uneven structures. More specifically, the repeating unit may be composed of a plurality of types of quadrangular pyramidal concavo-convex structures having different apex angles, or may be composed of a plurality of types of prismatic concavo-convex structures having different apex angles. Good. In addition, the concavo-convex structure may be a truncated pyramid shape obtained by cutting and flattening the top of a pyramid, or a linear prism having a cross section other than a triangle such as a pentagon or a heptagon.
 また、粗面のRaが最大となる方向は、必ずしも第1実施形態に示した矢印A1402(図13)方向に限られず、製造方法によって、最大中心線平均粗さ方向を、それ以外の任意の方向としうる。例えば、後述する実施例8において行なわれるように、バイトを振動させながらスタンパーの切削を行なうことにより、粗面のRaが最大となる方向を、矢印A1402以外の方向とすることができる。ただし、効率的な製造という観点からは、バイトの切削方向に微細な凹凸の筋を設け、粗面のRaが最小となる方向が光拡散板の主面と平行になり、最大となる方向が粗面の面内においてそれに直交する方向となることが好ましい。 Further, the direction in which the Ra of the rough surface is maximized is not necessarily limited to the arrow A1402 (FIG. 13) direction shown in the first embodiment, and the maximum centerline average roughness direction may be set to any other direction depending on the manufacturing method. It can be a direction. For example, as in Example 8 described later, by cutting the stamper while vibrating the cutting tool, the direction in which the Ra of the rough surface is maximized can be set to a direction other than the arrow A1402. However, from the viewpoint of efficient manufacturing, fine uneven lines are provided in the cutting direction of the cutting tool, and the direction in which the Ra of the rough surface is minimum is parallel to the main surface of the light diffusion plate, and the direction in which the maximum is the maximum It is preferable that the direction is perpendicular to the rough surface.
 本発明においては、所定の繰り返し単位が周期的に配置された凹凸構造群は、上記各実施形態のように光出射面のみに形成されていてもよいが、これに限られず、光入射面のみに凹凸構造群が形成されていてもよく、光入射面及び光出射面の両方に形成されていてもよい。また、所定の繰り返し単位が周期的に配置されているのは、光入射面及び/又は光出射面の全面ではなく一部であってもよい。 In the present invention, the concavo-convex structure group in which predetermined repeating units are periodically arranged may be formed only on the light emitting surface as in the above embodiments, but is not limited thereto, and only the light incident surface. The concavo-convex structure group may be formed on both the light incident surface and the light emitting surface. Further, the predetermined repeating unit may be periodically arranged on a part of the light incident surface and / or the light emitting surface instead of the entire surface.
 本発明の面光源装置の用途としては、液晶表示装置等のバックライト、屋内外の環境を照明するための照明装置、広告、看板類などのバックライト装置等が挙げられる。 Applications of the surface light source device of the present invention include backlights such as liquid crystal display devices, illumination devices for illuminating indoor and outdoor environments, and backlight devices such as advertisements and signboards.
 (表示装置)
 本発明の表示装置は、被照明体と、前記本発明の面光源装置とを備える。具体的には、面光源装置に加えて、被照明体として各種の表示モードの液晶セルを有し、面光源装置からの出射光を、液晶セルを通して表示面から出射させる液晶表示装置とすることができる。本発明の表示装置は、例えばツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、ハイブリッドアラインメントネマチック(HAN)モード、バーティカルアラインメント(VA)モード、マルチドメインバーティカルアラインメント(MVA)モード、インプレーンスイッチング(IPS)モード、オプティカリーコンペンセイテッドバイリフジエンス(OCB)モードなどの表示モードによる液晶表示装置とすることができる。
(Display device)
The display device of the present invention includes an object to be illuminated and the surface light source device of the present invention. Specifically, in addition to the surface light source device, a liquid crystal display device having liquid crystal cells of various display modes as an object to be illuminated and emitting light emitted from the surface light source device from the display surface through the liquid crystal cell. Can do. The display device of the present invention includes, for example, twisted nematic (TN) mode, super twisted nematic (STN) mode, hybrid alignment nematic (HAN) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, in-plane switching. A liquid crystal display device with a display mode such as an (IPS) mode or an optically compensated birefringence (OCB) mode can be obtained.
 上記液晶セルの他に、本発明の表示装置は、被照明体として、広告、看板類等として用いうる、文字、色彩、図形等が描画された透光性の板状の部材を備えることができる。 In addition to the liquid crystal cell, the display device of the present invention includes a translucent plate-like member on which characters, colors, figures, and the like are drawn, which can be used as an object to be illuminated, such as an advertisement or a signboard. it can.
 本発明の光拡散板、その製造方法、面光源装置及び表示装置は、前記実施形態に限定されず、本願特許請求の範囲内及びその均等の範囲内での変更を施すことができる。また、他の任意の構成要素をさらに含むことができる。例えば、前記各実施形態に係る面光源装置において、さらに輝度および輝度均斉度を向上させるための光学部材を適宜配置してもよい。このような光学部材としては、例えば拡散シートおよびプリズムシートを挙げることができる。これらの光学部材は、例えば、光拡散板に光出射面側に設けることができる。また、面光源装置を構成するための筐体、通電装置等を適宜備えることができる。また、本発明の面光源装置は、表示装置の画面内の明るさに応じて、光源の点灯と消灯を制御する方式にも、好適に用いることができる。 The light diffusing plate, the manufacturing method thereof, the surface light source device, and the display device of the present invention are not limited to the above-described embodiments, and can be modified within the scope of the claims of the present application and within the equivalent scope thereof. Moreover, other arbitrary components can be further included. For example, in the surface light source device according to each of the embodiments, an optical member for further improving luminance and luminance uniformity may be appropriately arranged. Examples of such an optical member include a diffusion sheet and a prism sheet. These optical members can be provided on the light exit surface side of the light diffusion plate, for example. In addition, a housing for forming the surface light source device, a power supply device, and the like can be provided as appropriate. In addition, the surface light source device of the present invention can be suitably used for a method of controlling turning on and off of the light source according to the brightness in the screen of the display device.
 以下、実施例に基づき、本発明についてさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。以下において、成分の量比に関する「部」及び「%」は、別に断らない限り重量部基準である。 Hereinafter, the present invention will be described in more detail based on examples. In addition, this invention is not limited to the following Example. In the following, “parts” and “%” relating to the amount ratio of components are based on parts by weight unless otherwise specified.
 <実施例1>
 図1に概略的に示される、四角錘反転凹凸形状を有する光拡散板101を有する面光源装置100を製造し、評価した。
<Example 1>
A surface light source device 100 having a light diffusing plate 101 having a square pyramid inverted concavo-convex shape schematically shown in FIG. 1 was manufactured and evaluated.
 (1-1:スタンパーの調製)
 寸法170mm×170mm、厚さ2mmのステンレス鋼SUS430製の矩形板材の全面に、厚さ100μmのニッケル-リン無電解メッキを施した。次いで、平滑面形成用バイトに単結晶ダイヤモンドバイト(商品名「ニューディバイド」、アライドマテリアル社製)及び粗面形成用バイトに焼結ダイヤモンドバイト(商品名「PCD」、アライドマテリアル社製)を用いて、ニッケル-リン無電解メッキ面に対して、板材の短辺と30°及び120°の角度をなす方向に沿って、幅70μm、高さ35μm、ピッチ70μm、頂角90°の断面二等辺三角形状の直交する線状部を複数切削加工して、四角錘状の突起が隙間無く並べられた形状の凹凸構造を形成し、スタンパーを得た。四角錘状の突起の4つの斜面のうちの一部の面を粗面形成用バイトで形成することにより、粗面とした。
(1-1: Preparation of stamper)
Nickel-phosphorous electroless plating with a thickness of 100 μm was applied to the entire surface of a rectangular plate made of stainless steel SUS430 having dimensions of 170 mm × 170 mm and a thickness of 2 mm. Next, a single crystal diamond tool (trade name “New Divide”, manufactured by Allied Materials) is used for the smooth surface forming tool, and a sintered diamond tool (product name “PCD”, manufactured by Allied Material) is used for the tool for forming the rough surface. The cross section isosceles with a width of 70 μm, a height of 35 μm, a pitch of 70 μm, and an apex angle of 90 ° along the direction that makes an angle of 30 ° and 120 ° with the short side of the plate relative to the nickel-phosphorous electroless plating surface A plurality of triangular linear portions were cut to form a concavo-convex structure in which quadrangular pyramidal projections were arranged without gaps, and a stamper was obtained. A part of the four slopes of the quadrangular pyramid-shaped protrusions was formed with a rough surface forming tool to make a rough surface.
 (1-2:光拡散板用ペレットの調製)
 透明樹脂である脂環式構造を有する樹脂(日本ゼオン社製、ゼオノア1060R、吸水率0.01%)99.85部と、光拡散剤として平均粒径2μmのポリシロキサン重合体の架橋物からなる微粒子0.15部とを混合し、二軸押出機で混練してストランド状に押し出し、ペレタイザーで切断して光拡散板用ペレットを製造した。この光拡散板用ペレットを原料として、射出成形機(型締め力1000kN)を用いて、両面が平滑な厚み2mmで100mm×50mmの試験板を成形した。この試験板の全光線透過率とヘーズを、JIS K7361-1とJIS K7136に基づいて、積分球方式色差濁度計を用いて測定した。試験板は、全光線透過率は92%であり、ヘーズは93%であった。
(1-2: Preparation of light diffusion plate pellets)
99.85 parts of a resin having an alicyclic structure (Zeon Corporation, ZEONOR 1060R, water absorption 0.01%), which is a transparent resin, and a crosslinked product of a polysiloxane polymer having an average particle diameter of 2 μm as a light diffusing agent Then, 0.15 part of the resulting fine particles were mixed, kneaded with a twin-screw extruder, extruded into a strand, and cut with a pelletizer to produce a light diffusion plate pellet. Using this light diffusion plate pellet as a raw material, an injection molding machine (clamping force 1000 kN) was used to mold a 100 mm × 50 mm test plate with a smooth thickness of 2 mm on both sides. The total light transmittance and haze of this test plate were measured using an integrating sphere type color difference turbidimeter based on JIS K7361-1 and JIS K7136. The test plate had a total light transmittance of 92% and a haze of 93%.
 (1-3:光拡散板の成形)
 金型を準備し、この金型を構成する一方の型に、(1-1)で得たスタンパーを取り付け、他方の金型のキャビティ面は平滑面とした。このような金型を有する射出成形機(型締め力4,410kN)を用いて、(1-2)で得た光拡散板用ペレットを原料としてシリンダー温度280℃、金型温度85℃の条件下で光拡散板を成形した。100ショットの成形において、スタンパーに光拡散板が貼りついた回数を計測し、離型性を評価した。結果は0回であった。
(1-3: Molding of light diffusion plate)
A mold was prepared, and the stamper obtained in (1-1) was attached to one mold constituting the mold, and the cavity surface of the other mold was a smooth surface. Using an injection molding machine having such a mold (clamping force 4,410 kN), the conditions for a cylinder temperature of 280 ° C. and a mold temperature of 85 ° C. using the light diffusion plate pellet obtained in (1-2) as a raw material A light diffusion plate was formed below. In the molding of 100 shots, the number of times the light diffusing plate was adhered to the stamper was measured to evaluate the mold release property. The result was 0 times.
 得られた光拡散板101は、スタンパーの凹凸構造が転写された、厚み2mm、150mm×150mmの長方形状であり、その一方の面には図2~図4に示される、逆四角錘状の凹構造が隙間無く配置された凹凸構造が形成されていた。四角錘の底辺方向211及び212は直交しており、底辺方向212と光拡散板101の辺213とがなす角θ2は30°であった。四角錘の窪みの頂角θ311は90°であり、底面は正方形であり、底辺311の長さは70μmであった。 The obtained light diffusing plate 101 has a rectangular shape with a thickness of 2 mm and 150 mm × 150 mm to which the uneven structure of the stamper is transferred, and one surface thereof has an inverted quadrangular pyramid shape shown in FIGS. A concave-convex structure was formed in which the concave structures were arranged without gaps. The base directions 211 and 212 of the quadrangular weight are orthogonal to each other, and the angle θ2 formed by the base direction 212 and the side 213 of the light diffusion plate 101 is 30 °. The apex angle θ311 of the depression of the square pyramid was 90 °, the bottom surface was square, and the length of the base 311 was 70 μm.
 四角錘状の窪みのそれぞれは、4つの斜面311A~311Dを有し、それらのうちの一部は、粗面形成用バイトで形成されたスタンパーの粗面に対応した粗面となった。
 粗面の配置を、図5を参照して説明する。図5に示したように、四角錘の底辺に対応する一方向の線211-1、211-2、211-3・・・のうち、一部の線に沿った面に対応するスタンパーの面を、粗面形成用バイトで形成することにより、周期的に粗面が現れる配置とした。図5では1本おきに粗面が形成された例を図示しているが、本実施例では、25本のうち1本に粗面を形成し、その結果凹凸領域において粗面が占める割合は2%となった。
Each of the quadrangular pyramid-shaped depressions has four inclined surfaces 311A to 311D, and a part of them has a rough surface corresponding to the rough surface of the stamper formed by the rough surface forming tool.
The arrangement of the rough surface will be described with reference to FIG. As shown in FIG. 5, the surface of the stamper corresponding to the surface along a part of the lines 211-1, 211-2, 211-3,. Was formed with a rough surface forming tool, so that the rough surface appeared periodically. Although FIG. 5 shows an example in which every other rough surface is formed, in this embodiment, the rough surface is formed in one of 25, and as a result, the ratio of the rough surface in the uneven region is as follows. 2%.
 四角錘状の窪みの斜面における粗面は、図13及び図14において示される、四角錘の底辺211に平行な矢印A1401方向のバイトの移動の痕跡により形成されているので、それに直交する方向である矢印A1402の方向において、中心線平均粗さRaが最大となり、矢印A1401の方向において、中心線平均粗さRaは最小となった。粗面における最大中心線平均粗さRa(max)及び最小中心線平均粗さRa(min)を、ZYGO社製NewView600を用いて測定した結果を表1に示す。 The rough surface on the slope of the quadrangular pyramid-shaped depression is formed by traces of the movement of the cutting tool in the direction of arrow A1401 parallel to the bottom side 211 of the quadrangular pyramid, as shown in FIGS. In the direction of an arrow A1402, the centerline average roughness Ra is maximized, and in the direction of the arrow A1401, the centerline average roughness Ra is minimized. Table 1 shows the results of measuring the maximum center line average roughness Ra (max) and the minimum center line average roughness Ra (min) on a rough surface using NewView 600 manufactured by ZYGO.
 (1-4:面光源装置の製造及び評価)
 内寸長辺150mm、短辺150mm、深さ20mmの乳白色プラスチック製ケースの内面に反射シート(株式会社ツジデン製、RF188)を貼着して反射板とし、反射板上に、光源として、LED(スタンレー社製高輝度チップLED「1306L」)36個を、図12に示す配置で配置した。LEDの間隔113W及び113Lは25mmとした。それぞれのLEDには、通電のための配線を接続した。
(1-4: Manufacturing and evaluation of surface light source device)
A reflective sheet (RF188, manufactured by Tsujiden Co., Ltd.) is attached to the inner surface of a milky white plastic case having an inner dimension of 150 mm, a short side of 150 mm, and a depth of 20 mm to form a reflector. On the reflector, LED ( 36 high-brightness chip LEDs “1306L” manufactured by Stanley) were arranged in the arrangement shown in FIG. The LED spacings 113W and 113L were 25 mm. A wiring for energization was connected to each LED.
 次に、(1-3)で得られた光拡散板を、凹凸構造を有する面が光源の反対側(光出射面側)になるように配置し、プラスチックケース上に設置した。ケース底面の反射板と光拡散板の光入射面との距離は20mmとなった。さらに、この光拡散板の上に、拡散シート(「188GM3」、きもと社製)、プリズムシート(「BEFIII」、住友スリーエム社製)、拡散シート(「188GM3」、きもと社製)をこの順に設置した。プリズムシートのプリズムの配列方向は、LEDの配列方向と平行とした。このようにして、図1に概略的に示すような、複数の光源111と、反射板121と、光拡散板101とを有する面光源装置100を作製した。 Next, the light diffusing plate obtained in (1-3) was placed so that the surface having the concavo-convex structure was opposite to the light source (light emitting surface side), and placed on the plastic case. The distance between the reflector on the bottom of the case and the light incident surface of the light diffusing plate was 20 mm. Furthermore, a diffusion sheet (“188GM3”, manufactured by Kimoto), a prism sheet (“BEFIII”, manufactured by Sumitomo 3M), and a diffusion sheet (“188GM3”, manufactured by Kimoto) are installed in this order on the light diffusion plate. did. The prism array direction of the prism sheet was parallel to the LED array direction. Thus, a surface light source device 100 having a plurality of light sources 111, a reflecting plate 121, and a light diffusing plate 101 as schematically shown in FIG.
 次に、得られた面光源のLEDのそれぞれに対して(R/G/B)=20/20/20mAの電流を印加して点灯させ、二次元色分布測定装置を用いて、光出射面上の、両方の短辺から等距離(75mm)の位置である線上で等間隔に100点の正面方向の輝度を測定し、下記の数式1と数式2に従って輝度平均値Laと輝度ムラLuを得た。このとき、輝度平均値は3240cd/mで、輝度ムラは0.4%であった。
 輝度平均値 La=(L1+L2)/2      (数式1)
 輝度ムラ Lu=((L1-L2)/La)×100  (数式2)
   L1:複数本または複数個設置された冷陰極管またはLED真上での輝度極大値の平均
   L2:極大値に挟まれた極小値の平均
 なお、輝度ムラは、輝度の均一性を示す指標であり、輝度ムラが悪いときは、その数値は大きくなる。
Next, a current of (R / G / B) = 20/20/20 mA is applied to each of the obtained surface light source LEDs to light them, and the light emission surface is measured using a two-dimensional color distribution measuring device. The luminance of 100 points in the front direction is measured at equal intervals on a line that is equidistant (75 mm) from both short sides, and the luminance average value La and luminance unevenness Lu are calculated according to the following equations 1 and 2. Obtained. At this time, the luminance average value was 3240 cd / m 2 and the luminance unevenness was 0.4%.
Luminance average value La = (L1 + L2) / 2 (Formula 1)
Luminance unevenness Lu = ((L1-L2) / La) × 100 (Formula 2)
L1: Average of maximum brightness values directly above a plurality of or a plurality of cold-cathode tubes or LEDs L2: Average of minimum values sandwiched between maximum values Note that brightness unevenness is an indicator of brightness uniformity. If the brightness unevenness is bad, the numerical value becomes large.
 さらに、面光源装置の光出射面を、正面方向から傾いた複数の方向から観察した。極角(光出射面法線方向に対する角度)45°の複数の方向から観察した結果、観察方向による輝度ムラの違いは観察されなかった。 Furthermore, the light emission surface of the surface light source device was observed from a plurality of directions inclined from the front direction. As a result of observation from a plurality of directions of 45 ° polar angles (angles relative to the normal direction of the light exit surface), no difference in luminance unevenness depending on the observation direction was observed.
 <実施例2>
 光拡散板の光出射面上の粗面の配置を、以下に説明する通りに変更した他は、実施例1と同様に操作し、面光源装置を製造した。
 実施例1では、粗面の配置を、四角錘の底辺に対応する一方向の線211-1、211-2、211-3・・・のうち、25本のうち1本に沿った面を粗面としたが、本実施例では図5に示す通り、1本おきに粗面を形成し、その結果凹凸領域において粗面が占める割合を25%とした。
 得られた面光源装置を、実施例1と同様に評価した、結果を表1に示す。
<Example 2>
A surface light source device was manufactured in the same manner as in Example 1, except that the arrangement of the rough surface on the light exit surface of the light diffusing plate was changed as described below.
In the first embodiment, the rough surface is arranged such that the surface along one of 25 lines out of the one-way lines 211-1, 211-2, 211-3,. In this example, as shown in FIG. 5, every other rough surface was formed, and as a result, the ratio of the rough surface in the uneven region was 25%.
The obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
 <実施例3>
 図10及び図11に概略的に示される、線状プリズムの凹凸形状を有する光拡散板1001を有する面光源装置1000を製造し、評価した。
<Example 3>
A surface light source device 1000 having a light diffusing plate 1001 having a concavo-convex shape of a linear prism schematically shown in FIGS. 10 and 11 was manufactured and evaluated.
 (3-1:スタンパーの調製)
 長辺720mm×短辺420mm、厚さ2mmのステンレス鋼SUS430製の矩形板材の全面に、厚さ100μmのニッケル-リン無電解メッキを施した。次いで、平滑面形成用バイト(商品名「ニューディバイド」、アライドマテリアル社製)及び粗面形成用バイト(商品名「PCD」、アライドマテリアル社製)を用いて、ニッケル-リン無電解メッキ面に対して、長辺と平行な方向に沿って、幅70μm、高さ29.4μm、ピッチ70μm、頂角100°の断面二等辺三角形状の線状部を複数切削加工して、線状プリズムが隙間無く並べられた形状の凹凸構造を形成し、スタンパーを得た。線状プリズムのうちの一部の面を粗面形成用バイトで形成することにより、粗面とした。
(3-1: Preparation of stamper)
Nickel-phosphorous electroless plating with a thickness of 100 μm was applied to the entire surface of a rectangular plate made of stainless steel SUS430 having a long side of 720 mm × a short side of 420 mm and a thickness of 2 mm. Next, using a tool for forming a smooth surface (trade name “New Divide”, manufactured by Allied Materials) and a tool for forming a rough surface (trade name “PCD”, manufactured by Allied Materials), the nickel-phosphorous electroless plating surface was applied. On the other hand, along the direction parallel to the long side, a plurality of linear parts having an isosceles triangular section with a width of 70 μm, a height of 29.4 μm, a pitch of 70 μm, and an apex angle of 100 ° are cut to obtain a linear prism. A concavo-convex structure having a shape arranged without gaps was formed to obtain a stamper. A part of the surface of the linear prism was formed with a rough surface forming tool to obtain a rough surface.
 (3-2:光拡散板用ペレットの調製)
 透明樹脂である脂環式構造を有する樹脂(日本ゼオン社製、ゼオノア1060R、吸水率0.01%)99.7部と、光拡散剤として平均粒径2μmのポリシロキサン重合体の架橋物からなる微粒子0.3部とを混合し、二軸押出機で混練してストランド状に押し出し、ペレタイザーで切断して光拡散板用ペレットを製造した。この光拡散板用ペレットを原料として、射出成形機(型締め力1000kN)を用いて、両面が平滑な厚み2mmで100mm×50mmの試験板を成形した。この試験板の全光線透過率とヘーズを、JIS K7361-1とJIS K7136に基づいて、積分球方式色差濁度計を用いて測定した。試験板は、全光線透過率は86%であり、ヘーズは99%であった。
(3-2: Preparation of light diffusion plate pellets)
99.7 parts of a resin having an alicyclic structure (Zeon Corporation, ZEONOR 1060R, water absorption 0.01%), which is a transparent resin, and a crosslinked product of a polysiloxane polymer having an average particle diameter of 2 μm as a light diffusing agent The resulting fine particles (0.3 parts) were mixed, kneaded with a twin-screw extruder, extruded into a strand shape, and cut with a pelletizer to produce a light diffusion plate pellet. Using this light diffusion plate pellet as a raw material, a 100 mm × 50 mm test plate having a smooth thickness of 2 mm on both sides was formed using an injection molding machine (clamping force 1000 kN). The total light transmittance and haze of this test plate were measured using an integrating sphere type color difference turbidimeter based on JIS K7361-1 and JIS K7136. The test plate had a total light transmittance of 86% and a haze of 99%.
 (3-3:光拡散板の成形)
 金型を準備し、この金型を構成する一方の型に、(3-1)で得たスタンパーを取り付け、他方の金型のキャビティ面は平滑面とした。このような金型を有する射出成形機(型締め力4,410kN)を用いて、(3-2)で得た光拡散板用ペレットを原料としてシリンダー温度280℃、金型温度85℃の条件下で光拡散板を成形した。100ショットの成形において、スタンパーに光拡散板が貼りついた回数を計測し、離型性を評価した。結果は0回であった。
(3-3: Molding of light diffusion plate)
A mold was prepared, and the stamper obtained in (3-1) was attached to one mold constituting the mold, and the cavity surface of the other mold was a smooth surface. Using an injection molding machine having such a mold (clamping force 4,410 kN), the conditions for a cylinder temperature of 280 ° C. and a mold temperature of 85 ° C. using the light diffusion plate pellet obtained in (3-2) as a raw material A light diffusion plate was formed below. In the molding of 100 shots, the number of times the light diffusing plate was attached to the stamper was measured to evaluate the releasability. The result was 0 times.
 得られた光拡散板1001は、スタンパーの凹凸構造が転写された、厚み2mm、長辺700mm×短辺400mmの長方形状であり、その一方の面には、長辺と平行な方向に沿って、幅70μm、高さ29.4μm、ピッチ70μm、頂角100°の断面二等辺三角形状の線状プリズムが隙間無く並べられた形状の凹凸構造が形成されていた。一部の線状プリズムに対応するスタンパー上の面を、粗面形成用バイトで形成することにより、周期的に粗面が現れる配置とした。50本の線状プリズムのうち1本に粗面を形成し、その結果凹凸領域において粗面が占める割合は2%となった。 The obtained light diffusing plate 1001 has a rectangular shape with a thickness of 2 mm, a long side of 700 mm and a short side of 400 mm, to which the concavo-convex structure of the stamper is transferred, and one surface thereof is along a direction parallel to the long side. A concavo-convex structure having a shape in which linear prisms having an isosceles triangular shape with a width of 70 μm, a height of 29.4 μm, a pitch of 70 μm, and an apex angle of 100 ° are arranged without gaps was formed. The surface on the stamper corresponding to a part of the linear prisms was formed with a rough surface forming tool so that the rough surface appeared periodically. A rough surface was formed on one of the 50 linear prisms. As a result, the ratio of the rough surface in the uneven region was 2%.
 線状プリズムの斜面における粗面は、線状プリズムの延長方向に平行なバイトの移動の痕跡により形成されているので、それに直交する方向において、中心線平均粗さRaが最大となり、線状プリズムの延長方向に平行な方向において、中心線平均粗さRaは最小となった。 The rough surface on the inclined surface of the linear prism is formed by traces of the movement of the cutting tool parallel to the extending direction of the linear prism. Therefore, the center line average roughness Ra is maximized in the direction orthogonal to the linear prism. In the direction parallel to the extending direction, the center line average roughness Ra was minimized.
 (3-4:面光源装置の製造及び評価)
 内寸長辺700mm、短辺400mm、深さ20mmの乳白色プラスチック製ケースの内面に反射シート(株式会社ツジデン製、RF188)を貼着して反射板とした。直径3.0mm、長さ32インチ(81.3cm)の冷陰極管10本を、長手方向がケース長辺方向と平行となり、管中心線とケース底との距離1131(図11)が5mmとなるよう、ケース内に固定した。隣接する冷陰極管の中心間距離1141は40mmとした。それぞれの冷陰極管には、通電のための配線を接続した。
(3-4: Manufacturing and evaluation of surface light source device)
A reflective sheet (manufactured by Tsujiden Co., Ltd., RF188) was attached to the inner surface of a milky white plastic case having an inner length of 700 mm, a short side of 400 mm, and a depth of 20 mm to obtain a reflector. 10 cold cathode fluorescent lamps having a diameter of 3.0 mm and a length of 32 inches (81.3 cm), the longitudinal direction is parallel to the long side direction of the case, and the distance 1131 (FIG. 11) between the tube center line and the case bottom is 5 mm. It was fixed in the case. The distance 1141 between the centers of adjacent cold-cathode tubes was 40 mm. Each cold cathode tube was connected to a wiring for energization.
 次に、(3-3)で得られた光拡散板を、凹凸構造を有する面が光源の反対側(光出射面側)になるように配置し、プラスチックケース上に設置した。ケース底面の反射板と光拡散板の光入射面との距離1132は20mmとなった。さらに、この光拡散板の上に、拡散シート(「188GM3」、きもと社製)、プリズムシート(「BEFIII」、住友スリーエム社製)、拡散シート(「188GM3」、きもと社製)をこの順に設置した。プリズムシートのプリズムの配列方向は、冷陰極管の配列方向と平行とした。このようにして、図10に概略的に示すような、複数の線状光源1011と、反射板1021と、光拡散板1001とを有する面光源装置1000を作製した。 Next, the light diffusing plate obtained in (3-3) was placed so that the surface having the concavo-convex structure was opposite to the light source (light emitting surface side), and placed on the plastic case. The distance 1132 between the reflecting plate on the bottom of the case and the light incident surface of the light diffusing plate was 20 mm. Furthermore, a diffusion sheet (“188GM3”, manufactured by Kimoto), a prism sheet (“BEFIII”, manufactured by Sumitomo 3M), and a diffusion sheet (“188GM3”, manufactured by Kimoto) are installed in this order on the light diffusion plate. did. The prism array direction of the prism sheet was parallel to the cold cathode tube array direction. Thus, a surface light source device 1000 having a plurality of linear light sources 1011, a reflecting plate 1021, and a light diffusing plate 1001 as schematically shown in FIG. 10 was produced.
 次に、得られた面光源の冷陰極管のそれぞれに対して管電流5mAの電流を印加して点灯させ、二次元色分布測定装置を用いて、光出射面上の、両方の短辺から等距離(350mm)の位置である線上で等間隔に100点の正面方向の輝度を測定し、上記数式1と数式2に従って輝度平均値Laと輝度ムラLuを得た。このとき、輝度平均値は6250cd/mで、輝度ムラは0.7%であった。 Next, a current of a tube current of 5 mA is applied to each of the obtained cold-cathode tubes of the surface light source to light it, and from both short sides on the light emission surface using a two-dimensional color distribution measuring device. The luminance in the front direction at 100 points was measured at equal intervals on a line at the equidistant (350 mm) position, and the luminance average value La and luminance unevenness Lu were obtained according to Equation 1 and Equation 2 above. At this time, the luminance average value was 6250 cd / m 2 and the luminance unevenness was 0.7%.
 さらに、面光源装置の光出射面を、正面方向から傾いた複数の方向から観察した。極角(光出射面法線方向に対する角度)45°の複数の方向から観察した結果、観察方向による輝度ムラの違いは観察されなかった。 Furthermore, the light emission surface of the surface light source device was observed from a plurality of directions inclined from the front direction. As a result of observation from a plurality of directions of 45 ° polar angles (angles relative to the normal direction of the light exit surface), no difference in luminance unevenness depending on the observation direction was observed.
 <実施例4>
 光拡散板の光出射面上の粗面の配置を、以下に説明する通りに変更した他は、実施例3と同様に操作し、面光源装置を製造した。
 実施例3では、50本の線状プリズムのうち1本に粗面を形成したが、本実施例では3本のうち1本に粗面を形成し、その結果凹凸領域において粗面が占める割合を33%とした。
 得られた面光源装置を、実施例3と同様に評価した、結果を表1に示す。
<Example 4>
A surface light source device was manufactured in the same manner as in Example 3 except that the arrangement of the rough surface on the light exit surface of the light diffusing plate was changed as described below.
In Example 3, a rough surface was formed on one of the 50 linear prisms, but in this example, a rough surface was formed on one of the three, and as a result, the ratio of the rough surface in the uneven region. Was 33%.
The obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 1.
 <実施例5>
 手順を下記の通り変更した他は、実施例3と同様に操作し、面光源装置を製造した。
<Example 5>
A surface light source device was manufactured in the same manner as in Example 3 except that the procedure was changed as follows.
 (3-1)において、スタンパーの凹凸構造を変更し、さらに、別途光入射面側の凹凸構造用のスタンパーも作製した。
 (3-2)において、樹脂と微粒子の割合を、それぞれ99.9部及び0.10部に変更した。試験板の全光線透過率は94%であり、ヘーズは89%であった。
 (3-3)において、金型の光入射面側の面にもスタンパーを取り付けて成形を行なった。得られた光拡散板は、スタンパーの凹凸構造が転写された、厚み2mm、長辺700mm×短辺400mmの長方形状であり、その光出射面側の面には、長辺と平行な方向に沿って、幅70μm、ピッチ70μm、頂角110°の断面二等辺三角形状の線状プリズムが隙間無く並べられた形状の凹凸構造が形成されていた。一部の線状プリズムに対応するスタンパーの面を、粗面形成用バイトで形成することにより、周期的に粗面が現れる配置とした。50本の線状プリズムのうち1本に粗面を形成し、その結果凹凸領域において粗面が占める割合は2%となった。一方光入射面側の面には、長辺と平行な方向に沿って、幅70μm、ピッチ70μm、頂角140°の断面二等辺三角形状の線状プリズムが隙間無く並べられた形状の凹凸構造が形成されていた。光入射面側の線状プリズムの面は、全て平滑面とした。
In (3-1), the concavo-convex structure of the stamper was changed, and a stamper for the concavo-convex structure on the light incident surface side was separately produced.
In (3-2), the ratio of resin and fine particles was changed to 99.9 parts and 0.10 parts, respectively. The total light transmittance of the test plate was 94%, and the haze was 89%.
In (3-3), a stamper was also attached to the surface on the light incident surface side of the mold to perform molding. The obtained light diffusing plate has a rectangular shape with a thickness of 2 mm, a long side of 700 mm and a short side of 400 mm, to which the concavo-convex structure of the stamper is transferred, and the light emitting surface side has a surface parallel to the long side. A concavo-convex structure having a shape in which linear prisms having an isosceles triangular section with a width of 70 μm, a pitch of 70 μm, and an apex angle of 110 ° are arranged without gaps. The surface of the stamper corresponding to a part of the linear prisms is formed with a rough surface forming tool so that the rough surface appears periodically. A rough surface was formed on one of the 50 linear prisms. As a result, the ratio of the rough surface in the uneven region was 2%. On the other hand, on the light incident surface side, a concavo-convex structure in which linear prisms having an isosceles triangular shape with a width of 70 μm, a pitch of 70 μm, and an apex angle of 140 ° are arranged without gaps along a direction parallel to the long side. Was formed. The surfaces of the linear prisms on the light incident surface side were all smooth surfaces.
 線状プリズムの斜面における粗面は、線状プリズムの延長方向に平行なバイトの移動の痕跡により形成されているので、それに直交する方向において、中心線平均粗さRaが最大となり、線状プリズムの延長方向に平行な方向において、中心線平均粗さRaは最小となった。 The rough surface on the inclined surface of the linear prism is formed by traces of the movement of the cutting tool parallel to the extending direction of the linear prism. Therefore, the center line average roughness Ra is maximized in the direction orthogonal to the linear prism. In the direction parallel to the extending direction, the center line average roughness Ra was minimized.
 (3-4)において、ケースは、深さ9mmのものに変更した。冷陰極管は直径3.4mmのものに変更し、本数を14本に変更し、管中心線とケース底との距離は2.5mmとし、隣接する冷陰極管の中心間距離は28mmとした。ケース底面の反射板と光拡散板の光入射面との距離は9mmとなった。 In (3-4), the case was changed to a depth of 9 mm. The cold cathode tube was changed to 3.4 mm in diameter, the number was changed to 14, the distance between the tube center line and the case bottom was 2.5 mm, and the distance between the centers of adjacent cold cathode tubes was 28 mm. . The distance between the reflector on the bottom of the case and the light incident surface of the light diffusing plate was 9 mm.
 得られた面光源装置を、実施例3と同様に評価した、結果を表1に示す。 The obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 1.
 <実施例6>
 粗面形成用バイトとして、アライドマテリアル社製「PCD」に代えて「PCBN」(商品名、名古屋ダイヤモンド社製)を用いた他は、実施例1と同様に操作し、粗面の粗さが異なる以外は実施例1のものと同一の面光源装置を製造した。
 得られた面光源装置を、実施例1と同様に評価した、結果を表1に示す。
<Example 6>
The roughness of the rough surface is the same as in Example 1 except that “PCBN” (trade name, manufactured by Nagoya Diamond Co., Ltd.) is used instead of “PCD” manufactured by Allied Materials as the rough surface forming tool. A surface light source device identical to that of Example 1 was manufactured except for the difference.
The obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
 <実施例7>
 粗面形成用バイトとして、アライドマテリアル社製「PCD」そのものに代えて、「ニューディバイト」の切削部に、図8及び図9に示す加工を施したものを用いた他は、実施例1と同様に操作し、粗面の粗さが異なる以外は実施例1のものと同一の面光源装置を製造した。
<Example 7>
Example 1 except that instead of “PCD” manufactured by Allied Materials, the cutting part of “New Debite” was subjected to the processing shown in FIGS. 8 and 9 as the rough surface forming tool. The same surface light source device as that of Example 1 was manufactured except that the roughness of the rough surface was different.
 図8に示す通り、バイト800の切削部のエッジ801及び802のそれぞれの一部に、加工部813を周期的に設けた。先端800Pから最初の加工部までの無加工部811の長さ821は4.6μmとし、その後の長さ36.5μm(矢印822)の領域に、加工部813を4箇所設けた。加工部813の長さ823は4.0μmとし、加工部813の間の無加工部814の長さ824も4.0μmとした。図9に示す通り、加工部823中には、2つの切り欠きを形成した。切り欠きの幅823Aは2.0μm、切り欠きの頂角θ823は90°とした。このような切り欠きの形成は、集束イオンビーム(Focused Ion Beam:FIB)装置(日立ハイテクノロジー社製)を用いて行なった。 As shown in FIG. 8, a processing portion 813 was periodically provided on a part of each of the edges 801 and 802 of the cutting portion of the cutting tool 800. The length 821 of the non-machined part 811 from the tip 800P to the first machined part was 4.6 μm, and four machined parts 813 were provided in the subsequent area of 36.5 μm (arrow 822). The length 823 of the processed part 813 was 4.0 μm, and the length 824 of the non-processed part 814 between the processed parts 813 was also 4.0 μm. As shown in FIG. 9, two notches were formed in the processed portion 823. The notch width 823A was 2.0 μm and the notch apex angle θ 823 was 90 °. Formation of such a notch was performed using a focused ion beam (FIB) apparatus (manufactured by Hitachi High-Technology Corporation).
 得られた面光源装置を、実施例1と同様に評価した、結果を表1に示す。 The obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
 <実施例8>
 粗面形成用バイトとして、平滑面形成用バイトと同じもの(商品名「ニューディバイト」、アライドマテリアル社製)を用い、スタンパーの粗面形成に際して、バイトを上下(スタンパの主面に垂直な方向)に0.4μm振動させながら切削を行なうことにより切削面を粗面化した他は、実施例1と同様に操作し、粗面の態様が異なる以外は実施例1のものと同一の面光源装置を製造した。
<Example 8>
The same rough surface forming tool as that used for forming a smooth surface (trade name “New Debite”, manufactured by Allied Materials) is used. When forming the rough surface of the stamper, the tool is moved up and down (perpendicular to the main surface of the stamper). The surface is the same as that of Example 1 except that the cutting surface is roughened by performing cutting while oscillating 0.4 μm in the direction), except that the rough surface is operated in the same manner as in Example 1. A light source device was manufactured.
 四角錘状の窪みの斜面における粗面は、図13及び図14において示される、四角錘の底辺211に平行な方向である矢印A1401の方向において、中心線平均粗さRaが最大となり、矢印A1402の方向において、中心線平均粗さRaは最小となった。粗面における最大中心線平均粗さRa(max)及び最小中心線平均粗さRa(min)を、ZYGO社製NewView600を用いて測定した結果を表1に示す。 The rough surface on the slope of the quadrangular pyramid-shaped depression has the maximum centerline average roughness Ra in the direction of arrow A1401, which is the direction parallel to the base 211 of the quadrangular pyramid shown in FIGS. 13 and 14, and the arrow A1402 In this direction, the center line average roughness Ra was minimized. Table 1 shows the results of measuring the maximum center line average roughness Ra (max) and the minimum center line average roughness Ra (min) on a rough surface using NewView 600 manufactured by ZYGO.
 さらに、得られた面光源装置を、実施例1と同様に評価した、結果を表1に示す。 Further, the obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
 <比較例1>
 光拡散板の光出射面上の粗面の配置を、以下に説明する通りに変更した他は、実施例1と同様に操作し、面光源装置を製造した。
 実施例1では、粗面の配置を、図5に示す通り四角錘の底辺に対応する一方向の線211-1、211-2、211-3・・・のうち、25本のうち1本に沿った面を粗面としたが、本比較例では図7に示す通り、凹凸領域の全体にわたり、四角錘状の窪みの4つの面311A~Dのうち311A及び311Dを粗面とし、他の面を平滑面とし、その結果凹凸領域において粗面が占める割合を50%とした。
 このような光拡散板を得るために、本比較例では、バイトとして、アライドマテリアル社製「ニューディバイト」の切削部の片側だけに、切り欠きを設けた。即ち、図8に示されるバイトにおいて、エッジ801のみに切り欠きを設け、エッジ802は平滑なままとした状態のバイトを作成し、これで切削を行なうことにより、上記の光拡散板を成形しうるスタンパーを作製した。
<Comparative Example 1>
A surface light source device was manufactured in the same manner as in Example 1, except that the arrangement of the rough surface on the light exit surface of the light diffusing plate was changed as described below.
In the first embodiment, the rough surface is arranged in one of 25 lines out of the unidirectional lines 211-1, 211-2, 211-3,... Corresponding to the base of the quadrangular pyramid as shown in FIG. In this comparative example, as shown in FIG. 7, 311A and 311D out of the four surfaces 311A to 311D of the quadrangular pyramid-shaped depressions are made rough as shown in FIG. As a result, the ratio of the rough surface in the uneven region was 50%.
In order to obtain such a light diffusing plate, in this comparative example, a notch was provided only on one side of the cutting part of “New Divite” manufactured by Allied Materials as a cutting tool. That is, in the bite shown in FIG. 8, a notch is provided only at the edge 801, and the edge 802 is left in a smooth state. By cutting with this, the above light diffusion plate is formed. A stamper was produced.
 得られた面光源装置を、実施例1と同様に評価した、結果を表2に示す。 The obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
 <比較例2>
 光拡散板の光出射面に粗面を設けず、凹凸構造を全て平滑な面から構成した他は、実施例1と同様に操作し、面光源装置を製造した。
 得られた面光源装置を、実施例1と同様に評価した、結果を表2に示す。
<Comparative example 2>
A surface light source device was manufactured in the same manner as in Example 1 except that the light exit surface of the light diffusion plate was not provided with a rough surface and the concavo-convex structure was entirely composed of a smooth surface.
The obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
 <比較例3>
 光拡散板の光出射面の粗面の配置を、以下に説明する通りに変更した他は、実施例1と同様に操作し、面光源装置を製造した。
 実施例1では、粗面の配置を、図5に示す通り四角錘の底辺に対応する一方向の線211-1、211-2、211-3・・・において25本のうち1本に沿った面を粗面としたが、本実施例では図6に示す通り、一方向の線211-1、211-2、211-3・・・においては全ての線に沿った面を粗面とし、これらの線と直交する線212-1、212-2、212-3・・・においては2本のうち1本に沿った面を粗面とし、その結果凹凸領域において粗面が占める割合を75%とした。
 得られた面光源装置を、実施例1と同様に評価した、結果を表2に示す。
<Comparative Example 3>
A surface light source device was manufactured in the same manner as in Example 1 except that the arrangement of the rough surface of the light exit surface of the light diffusing plate was changed as described below.
In the first embodiment, as shown in FIG. 5, the rough surface is arranged along one of 25 lines in one-way lines 211-1, 211-2, 211-3,... Corresponding to the base of the quadrangular pyramid. In this embodiment, as shown in FIG. 6, the surfaces along all the lines in the one-way lines 211-1, 211-2, 211-3,. In the lines 212-1, 212-2, 212-3,... Orthogonal to these lines, the surface along one of the two lines is a rough surface, and as a result, the ratio of the rough surface to the uneven region is 75%.
The obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
 <比較例4>
 光拡散板の光出射面の粗面の配置を、凹凸領域全域とし、凹凸領域において粗面が占める割合を100%とした他は、実施例1と同様に操作し、面光源装置を製造した。
 得られた面光源装置を、実施例1と同様に評価した、結果を表2に示す。
<Comparative example 4>
A surface light source device was manufactured in the same manner as in Example 1 except that the rough surface of the light exit surface of the light diffusing plate was arranged in the entire uneven region and the ratio of the rough surface in the uneven region was 100%. .
The obtained surface light source device was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
 <比較例5>
 光拡散板の光出射面に粗面を設けず、凹凸構造を全て平滑な面から構成した他は、実施例3と同様に操作し、面光源装置を製造した。
 得られた面光源装置を、実施例3と同様に評価した、結果を表2に示す。
<Comparative Example 5>
A surface light source device was manufactured in the same manner as in Example 3 except that the light exit surface of the light diffusion plate was not provided with a rough surface and the concavo-convex structure was entirely composed of a smooth surface.
The obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 2.
 <比較例6>
 光拡散板の光出射面の粗面の配置を、以下に説明する通りに変更した他は、実施例3と同様に操作し、面光源装置を製造した。
 実施例3では、50本の線状プリズムのうち1本に粗面を形成したが、本比較例では3本のうち2本に粗面を形成し、その結果凹凸領域において粗面が占める割合を67%とした。
 得られた面光源装置を、実施例3と同様に評価した、結果を表2に示す。
<Comparative Example 6>
A surface light source device was manufactured in the same manner as in Example 3 except that the arrangement of the rough surface of the light exit surface of the light diffusing plate was changed as described below.
In Example 3, a rough surface was formed on one of the 50 linear prisms, but in this comparative example, a rough surface was formed on two of the three, and as a result, the ratio of the rough surface in the uneven region. Was 67%.
The obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 2.
 <比較例7>
 光拡散板の光出射面の粗面の配置を、凹凸領域全域とし、凹凸領域において粗面が占める割合を100%とした他は、実施例3と同様に操作し、面光源装置を製造した。
 得られた面光源装置を、実施例3と同様に評価した、結果を表2に示す。
<Comparative Example 7>
A surface light source device was manufactured in the same manner as in Example 3 except that the rough surface of the light exit surface of the light diffusing plate was arranged in the entire uneven region and the ratio of the rough surface in the uneven region was 100%. .
The obtained surface light source device was evaluated in the same manner as in Example 3, and the results are shown in Table 2.
 実施例1~8と比較例1~7の結果を表1及び表2に示す。なお、全ての実施例及び比較例において、凹凸構造の面のうち粗面ではなく平滑面として形成された面のRa(max)は30nm以下であった。 Tables 1 and 2 show the results of Examples 1 to 8 and Comparative Examples 1 to 7. In all the examples and comparative examples, Ra (max) of a surface formed as a smooth surface instead of a rough surface among the surfaces of the concavo-convex structure was 30 nm or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果から明らかな通り、光拡散板の粗面の態様が本発明の規定の範囲内である実施例の面光源装置は、粗面が対向していない配置になっている比較例1に比べて、観察方向による輝度ムラの相違が小さく、粗面を有していない比較例2及び5に比べて離型性が飛躍的に優れ、且つ粗面の比率が本発明の規定の範囲外である比較例3、4、6及び7に比べて、輝度ムラが非常に小さかった。 As is apparent from the results of Tables 1 and 2, the surface light source devices of the examples in which the rough surface of the light diffusing plate is within the specified range of the present invention are arranged so that the rough surfaces do not face each other. Compared to Comparative Example 1, the difference in luminance unevenness depending on the observation direction is small, the releasability is remarkably superior to Comparative Examples 2 and 5 that do not have a rough surface, and the ratio of the rough surface is that of the present invention. Compared with Comparative Examples 3, 4, 6 and 7 which are outside the specified range, the luminance unevenness was very small.
 100、1000 面光源装置
 101、1001 光拡散板
 111、1011 光源
 121、1021 反射板
 311 凹凸構造
 311A~311D 面
 311P 凹凸構造頂点
 800 バイト
 801、802 エッジ
 813 加工部
 1311 線状プリズム
100, 1000 Surface light source device 101, 1001 Light diffusing plate 111, 1011 Light source 121, 1021 Reflecting plate 311 Concavity and convexity 311A to 311D Surface 311P Concavity and convexity vertex 800 bytes 801, 802 Edge 813 Processing portion 1311 Linear prism

Claims (8)

  1.  光を入射する光入射面と、この光入射面とは反対側の面に形成され、前記光入射面から入射した光を拡散して出射する光出射面とを備える光拡散板であって、
     前記光入射面及び前記光出射面の少なくとも一方の面は、複数個の繰り返し単位を有する凹凸領域を有し、
     前記複数個の繰り返し単位の各々は、2以上の面を有する凹凸構造を1以上有し、
     前記繰り返し単位に含まれるすべての面のうちの2面以上が粗面であり、
     前記凹凸領域の各々において、前記繰り返し単位が形成された領域全体の前記面の面積に対する、前記粗面の面積の割合が50%以下であり、
     前記繰り返し単位における任意の粗面に対して、対向する関係にある複数の面のうちの少なくとも1面が粗面である光拡散板。
    A light diffusing plate comprising a light incident surface on which light is incident and a light exit surface that is formed on a surface opposite to the light incident surface and diffuses and emits light incident from the light incident surface;
    At least one of the light incident surface and the light emitting surface has an uneven region having a plurality of repeating units,
    Each of the plurality of repeating units has one or more concavo-convex structures having two or more faces,
    Two or more of all the surfaces included in the repeating unit are rough surfaces,
    In each of the uneven regions, the ratio of the area of the rough surface to the area of the surface of the entire region where the repeating unit is formed is 50% or less,
    A light diffusing plate in which at least one of a plurality of surfaces facing each other with respect to an arbitrary rough surface in the repeating unit is a rough surface.
  2.  請求項1に記載の光拡散板であって、
     前記凹凸構造は、断面多角形状の線状プリズムであることを特徴とする光拡散板。
    The light diffusing plate according to claim 1,
    The light diffusing plate is characterized in that the uneven structure is a linear prism having a polygonal cross section.
  3.  請求項1に記載の光拡散板であって、
     前記凹凸構造は、多角錐体、又はその反転形状であることを特徴とする光拡散板。
    The light diffusing plate according to claim 1,
    The light diffusing plate is characterized in that the uneven structure is a polygonal pyramid or its inverted shape.
  4.  請求項1に記載の光拡散板であって、
     対向した前記粗面の最大中心線平均粗さの差が、1.0μm以内であることを特徴とする光拡散板。
    The light diffusing plate according to claim 1,
    The difference in maximum center line average roughness of the facing rough surfaces is within 1.0 μm.
  5.  請求項1に記載の光拡散板の製造方法であって、
     バイトを用いて金型材料を切削加工して、前記凹凸領域に対応する面を含む金型を調製する工程、及び
     前記金型を用いて樹脂材料を成形する工程
     を含むことを特徴とする製造方法。
    It is a manufacturing method of the light diffusing plate according to claim 1,
    Manufacturing comprising: cutting a mold material using a cutting tool to prepare a mold including a surface corresponding to the uneven region; and molding a resin material using the mold Method.
  6.  請求項5に記載の光拡散板の製造方法であって、
     前記金型における前記凹凸領域に対応する面のうち、前記粗面に対応する面を切削加工する前記バイトが、単結晶ダイヤモンドまたは単結晶窒化ホウ素を含むバイトであって、前記金型材料の切削加工に先立ちその切削面が加工されたバイトであることを特徴とする製造方法。
    It is a manufacturing method of the light diffusing plate according to claim 5,
    Of the surfaces corresponding to the concavo-convex region in the mold, the cutting tool that cuts the surface corresponding to the rough surface is a cutting tool including single crystal diamond or single crystal boron nitride, and cutting of the mold material A manufacturing method characterized in that a cutting surface of the cutting surface is processed prior to processing.
  7.  光源と、請求項1に記載の光拡散板とを備えることを特徴とする面光源装置。 A surface light source device comprising a light source and the light diffusing plate according to claim 1.
  8.  被照明体と、請求項7に記載の面光源装置とを備える表示装置。 A display device comprising an object to be illuminated and the surface light source device according to claim 7.
PCT/JP2009/062891 2008-07-22 2009-07-16 Photodiffusion plate, photodiffusion plate manufacturing method, surface illuminant device, and display device WO2010010840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010521686A JPWO2010010840A1 (en) 2008-07-22 2009-07-16 Light diffusing plate, light diffusing plate manufacturing method, surface light source device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-188794 2008-07-22
JP2008188794 2008-07-22

Publications (1)

Publication Number Publication Date
WO2010010840A1 true WO2010010840A1 (en) 2010-01-28

Family

ID=41570305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062891 WO2010010840A1 (en) 2008-07-22 2009-07-16 Photodiffusion plate, photodiffusion plate manufacturing method, surface illuminant device, and display device

Country Status (2)

Country Link
JP (1) JPWO2010010840A1 (en)
WO (1) WO2010010840A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195220A (en) * 2011-03-17 2012-10-11 Enplas Corp Surface light source device
JP2017223937A (en) * 2016-06-14 2017-12-21 恵和株式会社 Prism sheet for backlight unit and backlight unit for liquid crystal display device
JP2022122244A (en) * 2021-02-09 2022-08-22 暘旭光電股▲分▼有限公司 Backlight module of optical film having inclined structure
WO2022250006A1 (en) * 2021-05-26 2022-12-01 恵和株式会社 Light diffusion sheet, backlight unit, liquid crystal display device and information device
JP2022183047A (en) * 2021-05-26 2022-12-08 恵和株式会社 Light diffusion sheet, backlight unit, liquid crystal display device, and information device
WO2023282055A1 (en) * 2021-07-06 2023-01-12 恵和株式会社 Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit
WO2023282054A1 (en) * 2021-07-06 2023-01-12 恵和株式会社 Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit
EP4120010A1 (en) * 2018-11-16 2023-01-18 Keiwa Inc. Optical sheet, backlight unit, liquid crystal display apparatus and information device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193809A (en) * 1998-10-23 2000-07-14 Matsushita Electric Works Ltd Light distribution control panel and apparatus using it
JP2007072367A (en) * 2005-09-09 2007-03-22 Enplas Corp Prism sheet, surface light source and display device
WO2007077737A1 (en) * 2005-12-28 2007-07-12 Zeon Corporation Mold part and molded flat-plate product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193809A (en) * 1998-10-23 2000-07-14 Matsushita Electric Works Ltd Light distribution control panel and apparatus using it
JP2007072367A (en) * 2005-09-09 2007-03-22 Enplas Corp Prism sheet, surface light source and display device
WO2007077737A1 (en) * 2005-12-28 2007-07-12 Zeon Corporation Mold part and molded flat-plate product

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195220A (en) * 2011-03-17 2012-10-11 Enplas Corp Surface light source device
JP2017223937A (en) * 2016-06-14 2017-12-21 恵和株式会社 Prism sheet for backlight unit and backlight unit for liquid crystal display device
EP4120010A1 (en) * 2018-11-16 2023-01-18 Keiwa Inc. Optical sheet, backlight unit, liquid crystal display apparatus and information device
US11886075B2 (en) 2018-11-16 2024-01-30 Keiwa Incorporated Optical sheet, backlight unit, liquid crystal display device, and information device
JP7348940B2 (en) 2021-02-09 2023-09-21 暘旭光電股▲分▼有限公司 Optical film backlight module with tilted structure
JP2022122244A (en) * 2021-02-09 2022-08-22 暘旭光電股▲分▼有限公司 Backlight module of optical film having inclined structure
WO2022250006A1 (en) * 2021-05-26 2022-12-01 恵和株式会社 Light diffusion sheet, backlight unit, liquid crystal display device and information device
JP2022183047A (en) * 2021-05-26 2022-12-08 恵和株式会社 Light diffusion sheet, backlight unit, liquid crystal display device, and information device
JP7436560B2 (en) 2021-05-26 2024-02-21 恵和株式会社 Light diffusion sheets, backlight units, liquid crystal display devices and information equipment
WO2023282054A1 (en) * 2021-07-06 2023-01-12 恵和株式会社 Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit
JP2023008355A (en) * 2021-07-06 2023-01-19 恵和株式会社 Optical sheet laminate, backlight unit, liquid crystal display device, information device, and method of manufacturing backlight unit
JP2023008354A (en) * 2021-07-06 2023-01-19 恵和株式会社 Optical sheet laminate, backlight unit, liquid crystal display device, information device, and method of manufacturing backlight unit
WO2023282055A1 (en) * 2021-07-06 2023-01-12 恵和株式会社 Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit

Also Published As

Publication number Publication date
JPWO2010010840A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
KR101234975B1 (en) Light diffusing plate used for point light sources, and direct-lighting point-light-source backlight device
US7887208B2 (en) Direct type back-light device
WO2010010840A1 (en) Photodiffusion plate, photodiffusion plate manufacturing method, surface illuminant device, and display device
US7802895B2 (en) Direct-type backlight device
JP2010117707A (en) Light diffusion plate and direct point-like light source backlight device
US7857475B2 (en) Direct-type backlight device
JPWO2007049618A1 (en) Light diffusion plate and direct type backlight device
JPWO2007055115A1 (en) Direct backlight unit
JP5330457B2 (en) Surface light source device and liquid crystal display device
JP2007294295A (en) Direct-downward backlight device
JPWO2008050763A1 (en) Direct backlight unit
JP2009168961A (en) Light diffusing plate, direct backlight device, and liquid crystal display
JP2007163810A (en) Light diffusion plate and direct backlight device
JP2006310150A (en) Direct backlight device
JP2008091114A (en) Direct backlight device and display device
WO2009096293A1 (en) Direct backlighting device
JP2007298698A (en) Light diffusing plate and planar irradiation apparatus
WO2010005051A1 (en) Direct under type backlighting device and liquid crystal display device
JP5791386B2 (en) Direct type point light source backlight device
JP2007192950A (en) Light diffusing plate and direct type back light device
JPWO2008123280A1 (en) Direct backlight unit
JPWO2009110379A1 (en) Direct backlight unit
JP2008091113A (en) Direct backlight device
JP2007220487A (en) Direct-type backlight device
JP2007206092A (en) Reflector and face irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521686

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800354

Country of ref document: EP

Kind code of ref document: A1