JPWO2008123280A1 - Direct backlight unit - Google Patents

Direct backlight unit Download PDF

Info

Publication number
JPWO2008123280A1
JPWO2008123280A1 JP2009509128A JP2009509128A JPWO2008123280A1 JP WO2008123280 A1 JPWO2008123280 A1 JP WO2008123280A1 JP 2009509128 A JP2009509128 A JP 2009509128A JP 2009509128 A JP2009509128 A JP 2009509128A JP WO2008123280 A1 JPWO2008123280 A1 JP WO2008123280A1
Authority
JP
Japan
Prior art keywords
light source
linear
light
backlight device
linear light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009509128A
Other languages
Japanese (ja)
Inventor
啓介 塚田
啓介 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2008123280A1 publication Critical patent/JPWO2008123280A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Abstract

エネルギー効率が高く、且つ周期的な輝度むらの少ない直下型バックライト装置を提供する。複数本の線状光源、光拡散板等を備える直下型バックライト装置であって、前記線状光源は、外径が5mm〜30mmであり、前記光出射面および前記光入射面の少なくともいずれかには、その少なくとも一部の箇所に凹凸構造が形成され、前記線状光源の外径を前記光拡散板に垂直に投影した領域における凹凸構造と、互いに隣接する線状光源の中間位置を中心とし、かつ前記線状光源の外径と同じ幅の領域における凹凸構造とが、異なる形状であることを特徴とする直下型バックライト装置。Provided is a direct type backlight device having high energy efficiency and less periodic luminance unevenness. A direct type backlight device including a plurality of linear light sources, a light diffusion plate, and the like, wherein the linear light source has an outer diameter of 5 mm to 30 mm, and is at least one of the light emitting surface and the light incident surface Has a concavo-convex structure formed in at least a part thereof, and the concavo-convex structure in a region obtained by projecting the outer diameter of the linear light source perpendicularly to the light diffusion plate and an intermediate position between the linear light sources adjacent to each other. And a concave-convex structure in a region having the same width as the outer diameter of the linear light source has a different shape.

Description

本発明は、直下型バックライト装置に関する。   The present invention relates to a direct type backlight device.

従来、液晶表示装置用のバックライト装置としては、例えば、反射板と、略平行に配置された複数本の線状光源と、これらの線状光源からの直射光および反射板での反射光を光入射面から入射し光出射面から出射して発光面となる光拡散板とをこの順に備える直下型バックライト装置が広く用いられている。このような直下型バックライト装置の発光面では、高い輝度を容易に得られる一方、発光面上の線状光源の直上部分の輝度が高く、この直上部分から離れるにつれて輝度が低くなる傾向にあり、面上において周期的な輝度むらが生じることがある。   Conventionally, as a backlight device for a liquid crystal display device, for example, a reflecting plate, a plurality of linear light sources arranged substantially in parallel, direct light from these linear light sources and reflected light from the reflecting plate are used. A direct type backlight device that includes a light diffusing plate that is incident from a light incident surface and is emitted from a light emitting surface to be a light emitting surface in this order is widely used. On the light emitting surface of such a direct type backlight device, high luminance can be easily obtained, while the luminance of the portion directly above the linear light source on the light emitting surface is high, and the luminance tends to decrease as the distance from the portion directly above is increased. , Periodic luminance unevenness may occur on the surface.

そのため、直下型バックライト装置においては、線状光源としては、通常直径4mm以下である冷陰極管を、なるべく多く密に並行に配置することにより、周期的な輝度むらの程度を低くすることが好ましいとされている。しかしながら、冷陰極管自体のエネルギー効率が低いので、このように配置された冷陰極管が多数に及ぶと、バックライト装置のエネルギー効率が著しく下がってしまう。   Therefore, in a direct type backlight device, as a linear light source, cold cathode tubes, which are usually 4 mm or less in diameter, can be arranged in parallel as closely as possible to reduce the degree of periodic luminance unevenness. It is preferred. However, since the energy efficiency of the cold cathode fluorescent lamp itself is low, when the number of cold cathode fluorescent lamps arranged in this way reaches a large number, the energy efficiency of the backlight device is significantly lowered.

エネルギー効率を改善するための方策としては、冷陰極管より太く且つエネルギー効率の高い熱陰極管を用いることが考えられる。しかしながらその場合、冷陰極管より太い熱陰極管を、冷陰極管より間隔をあけて用いる必要があり、その結果、冷陰極管を用いた場合より周期的な輝度むらは大きくなる。   As a measure for improving the energy efficiency, it is conceivable to use a hot cathode tube that is thicker and more energy efficient than a cold cathode tube. However, in that case, it is necessary to use a hot cathode tube thicker than the cold cathode tube at a distance from the cold cathode tube, and as a result, the periodic luminance unevenness becomes larger than when the cold cathode tube is used.

冷陰極管を用いたバックライト装置の輝度むらの低減方法としては、縞模様やドット状の光量補正パターンを光拡散板に印刷し、線状光源の真上部分に照射される光量を低減し、線状光源間に照射される光量を相対的に増やす手法が開示されている(特許文献1:特開平6-273760号公報)。しかしながら、この方法では、冷陰極管に代えて熱陰極管を用いた場合における周期むらまでをも十分に改善するには至らない。   As a method for reducing the luminance unevenness of a backlight device using a cold cathode tube, a light amount correction pattern in a striped pattern or a dot shape is printed on a light diffusion plate to reduce the amount of light irradiated on the portion directly above the linear light source. A method of relatively increasing the amount of light irradiated between linear light sources is disclosed (Patent Document 1: Japanese Patent Laid-Open No. 6-273760). However, this method does not sufficiently improve even the nonuniformity in the case where a hot cathode tube is used instead of the cold cathode tube.

従って、本発明の目的は、エネルギー効率が高く、且つ周期的な輝度むらの少ない直下型バックライト装置を提供することにある。   Accordingly, an object of the present invention is to provide a direct type backlight device having high energy efficiency and less periodic luminance unevenness.

本発明者らは、上記課題を解決するために鋭意研究を進めたところ、径の太い熱陰極管のような線状光源を用いた場合であっても、光拡散板の形状を特定形状とすることにより、輝度むらを低減しうることを見いだし、この知見に基づいて本発明を完成させるに至った。   As a result of diligent research to solve the above problems, the present inventors have determined that the shape of the light diffusing plate is a specific shape even when a linear light source such as a hot cathode tube having a large diameter is used. As a result, it was found that the luminance unevenness can be reduced, and the present invention has been completed based on this finding.

即ち、本発明によれば、下記のものが提供される:
〔1〕 互いに略平行に配置された複数本の線状光源と、これらの線状光源からの光を反射する反射板と、前記線状光源からの直射光および前記反射板からの反射光を光入射面から入射し、光出射面から拡散照射する光拡散板とを備える直下型バックライト装置であって、前記線状光源は、外径が5mm〜30mmであり、前記光出射面および前記光入射面の少なくともいずれかには、その少なくとも一部の箇所に凹凸構造が形成され、前記光拡散板において、前記線状光源の外径を、前記光拡散板に垂直に投影した場合に、その投影された部分の凹凸構造と、前記光拡散板において、互いに隣接する線状光源の中間位置を中心とし、かつ前記線状光源の外径と同じ幅を有する部分の凹凸構造とが、異なる形状であることを特徴とする直下型バックライト装置。
〔2〕 前記線状光源は、熱陰極管であることを特徴とする前記直下型バックライト装置。
〔3〕 前記凹凸構造は、前記線状光源の長手方向に沿って延びる線状プリズムが略平行に複数並んだプリズム条列であり、前記線状プリズムの、前記線状光源の長手方向に垂直な断面は、曲線状又は多角形状の凸部、略平坦な部分、又はこれらの組み合わせであることを特徴とする前記直下型バックライト装置。
〔4〕 前記線状プリズムの、前記線状光源の長手方向に垂直な断面は、2種類以上の異なる形状の凸部を含み、当該2種類以上の凸部の存在比が、前記線状光源から遠ざかるにつれて、連続的又は段階的に変化することを特徴とする前記直下型バックライト装置。
〔5〕 前記線状プリズムの、前記線状光源の長手方向に垂直な断面は、前記凸部及び前記略平坦な部分の両方を含み、これらの存在比が、線状光源から遠ざかるにつれて、連続的又は段階的に変化することを特徴とする前記直下型バックライト装置。
〔6〕 前記光拡散板の光出射面側に設けられた光学シートをさらに備え、前記線状光源の長手方向に垂直な断面において、任意の線状光源をAとし、この線状光源Aに隣接する線状光源をBとし、前記線状光源Aと前記線状光源Bとの中間の位置を前記光入射面に投影した中間位置をXとし、前記線状光源Aと前記線状光源Bとの間に位置し、かつ前記中間位置Xよりも前記線状光源Aに近い側の前記光入射面上の任意の点をPとし、前記線状光源Aの中心をCとし、前記中心Cから前記点Pの方向へ入射した光の前記点Pにおける全光線透過率Tpが、前記中心Cから前記中間位置Xの方向へ入射した光の前記点Xにおける全光線透過率Txよりも小さいことを特徴とする前記直下型バックライト装置。
〔7〕 前記中心Cと前記点Pとを結ぶ線分の長さをLCPとし、前記中心Cを前記光入射面に垂直に投影した点をQとし、前記中心Cと前記点Qとを結ぶ線分の長さをLCQとし、前記中心Cから前記点Qの方向へ入射した光の前記点Qにおける全光線透過率をTqとし、0.2×(Tq・LCP/LCQ)≦Tp≦5.0×(Tq・LCP/LCQ)の関係を満たすことを特徴とする前記直下型バックライト装置。
〔8〕 前記凹凸構造が、前記光拡散板の前記光出射面の少なくとも一部及び前記光入射面の少なくとも一部の両方に形成されていることを特徴とする前記直下型バックライト装置。
〔9〕 前記凹凸構造は、前記線状光源の長手方向に沿って延びる線状プリズムが略平行に複数並んだプリズム条列であり、その少なくとも一部の、前記線状光源の長手方向に垂直な断面が、多角形状であり、前記多角形状は、前記断面における光拡散板の厚み方向に平行な軸を中心として対称であることを特徴とする前記直下型バックライト装置。
〔10〕 前記線状光源から遠ざかり、互いに隣接する前記線状光源の中間位置に向かうにつれて、前記光出射面または前記光入射面の少なくともどちらか一方の前記線状プリズムの斜面と、前記光拡散板の厚み方向に垂直な平面とがなす角が、連続的または段階的に大きくなることを特徴とする前記直下型バックライト装置。
〔11〕 前記線状光源から遠ざかり、互いに隣接する前記線状光源の中間位置に向かうにつれて、前記光出射面または前記光入射面の少なくともどちらか一方の前記線状プリズムにおいて、2種類以上の線状プリズムの混合比率が連続的または段階的に変化し、互いに隣接する前記線状光源の中間位置に向かうにつれて傾斜角の大きい線状プリズムの比率が連続的または段階的に大きくなることを特徴とする前記直下型バックライト装置。
〔12〕 前記直下型バックライト装置を備える液晶表示装置。このような液晶表示装置は、前記本発明の直下型バックライト装置を備えるため、輝度の高さに比して消費エネルギーが低く、且つ輝度むらが少ないという効果がある。
That is, according to the present invention, the following is provided:
[1] A plurality of linear light sources arranged substantially parallel to each other, a reflecting plate that reflects light from these linear light sources, direct light from the linear light source, and reflected light from the reflecting plate A direct-type backlight device including a light diffusing plate that is incident from a light incident surface and that is diffusely irradiated from a light emitting surface, wherein the linear light source has an outer diameter of 5 mm to 30 mm, and the light emitting surface and the light emitting surface In at least one of the light incident surfaces, a concavo-convex structure is formed in at least a portion thereof, and in the light diffusing plate, when the outer diameter of the linear light source is projected perpendicularly to the light diffusing plate, The uneven structure of the projected portion is different from the uneven structure of the portion having the same width as the outer diameter of the linear light source in the light diffusing plate, the center being an intermediate position between adjacent linear light sources. Directly shaped bar characterized by its shape Cuck light device.
[2] The direct type backlight device, wherein the linear light source is a hot cathode tube.
[3] The concavo-convex structure is a prism row in which a plurality of linear prisms extending along the longitudinal direction of the linear light source are arranged substantially in parallel, and the linear prism is perpendicular to the longitudinal direction of the linear light source. The straight type backlight device is characterized in that the cross section is a curved or polygonal convex portion, a substantially flat portion, or a combination thereof.
[4] A cross section of the linear prism perpendicular to the longitudinal direction of the linear light source includes two or more types of convex portions having different shapes, and the abundance ratio of the two or more types of convex portions is the linear light source. The direct-type backlight device, which changes continuously or stepwise as it moves away from the display.
[5] The cross section of the linear prism perpendicular to the longitudinal direction of the linear light source includes both the convex portion and the substantially flat portion, and the abundance ratio thereof is continuous as the distance from the linear light source increases. The direct type backlight device, which changes in a stepwise or stepwise manner.
[6] An optical sheet provided on the light exit surface side of the light diffusing plate is further provided, and an arbitrary linear light source is defined as A in a cross section perpendicular to the longitudinal direction of the linear light source. An adjacent linear light source is set as B, an intermediate position between the linear light source A and the linear light source B projected on the light incident surface is set as X, and the linear light source A and the linear light source B are set as X. And an arbitrary point on the light incident surface closer to the linear light source A than the intermediate position X is P, the center of the linear light source A is C, and the center C The total light transmittance Tp at the point P of light incident from the center C to the direction of the point P is smaller than the total light transmittance Tx at the point X of light incident from the center C toward the intermediate position X. The direct type backlight device characterized by the above.
[7] The length of the line segment connecting the center C and the point P is LCP, the point where the center C is projected perpendicularly to the light incident surface is Q, and the center C and the point Q are connected. The length of the line segment is LCQ, and the total light transmittance at the point Q of the light incident from the center C in the direction of the point Q is Tq. 0.2 × (Tq · LCP / LCQ) ≦ Tp ≦ 5 0.0 × (Tq · LCP / LCQ) satisfying the relationship, the direct type backlight device.
[8] The direct-type backlight device, wherein the concavo-convex structure is formed on both at least a part of the light emitting surface and at least a part of the light incident surface of the light diffusing plate.
[9] The concavo-convex structure is a prism row in which a plurality of linear prisms extending along the longitudinal direction of the linear light source are arranged substantially in parallel, and at least a part thereof is perpendicular to the longitudinal direction of the linear light source. The direct-type backlight device is characterized in that a simple cross section is a polygonal shape, and the polygonal shape is symmetrical about an axis parallel to the thickness direction of the light diffusion plate in the cross section.
[10] The inclined surface of the linear prism on at least one of the light emitting surface and the light incident surface, and the light diffusion as it moves away from the linear light source and toward an intermediate position between the linear light sources adjacent to each other The direct type backlight device according to claim 1, wherein an angle formed by a plane perpendicular to the thickness direction of the plate increases continuously or stepwise.
[11] Two or more types of lines in the linear prism on at least one of the light emitting surface and the light incident surface as they move away from the linear light source and move toward an intermediate position between the linear light sources adjacent to each other. The mixing ratio of the linear prisms changes continuously or stepwise, and the ratio of the linear prisms having a large inclination angle increases continuously or stepwise toward the intermediate position of the linear light sources adjacent to each other. The direct type backlight device.
[12] A liquid crystal display device comprising the direct type backlight device. Since such a liquid crystal display device includes the direct type backlight device of the present invention, there is an effect that energy consumption is lower than luminance and luminance unevenness is small.

本発明の直下型バックライト装置は、熱陰極管等の特定の直径以上の径を有する線状光源を備え、且つ特定の光拡散板の形状を有するため、エネルギー効率を高めることができ、且つ周期的な輝度むらが少ないという効果がある。   The direct type backlight device of the present invention includes a linear light source having a diameter equal to or larger than a specific diameter, such as a hot cathode tube, and has a specific light diffusing plate shape, so that energy efficiency can be improved, and There is an effect that periodic luminance unevenness is small.

図1は、本発明の直下型バックライト装置の概略を示す斜視図である。FIG. 1 is a perspective view showing an outline of a direct type backlight device of the present invention. 図2は、本発明の直下型バックライト装置の光拡散板の表面形状の例を具体的に説明する部分断面図である。FIG. 2 is a partial cross-sectional view for specifically explaining an example of the surface shape of the light diffusion plate of the direct type backlight device of the present invention. 図3は、光拡散板の凹凸構造の例を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing an example of the uneven structure of the light diffusing plate. 図4は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図5は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図6は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図7は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 7 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図8は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 8 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図9は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 9 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図10は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 10 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図11は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 11 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図12は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 12 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図13は、光拡散板の凹凸構造の別の例を示す部分断面図である。FIG. 13 is a partial cross-sectional view showing another example of the uneven structure of the light diffusing plate. 図14は、本願実施例1に係る直下型バックライト装置の概略を示す断面図である。FIG. 14 is a cross-sectional view schematically illustrating the direct type backlight device according to Embodiment 1 of the present application. 図15は、本願実施例1に係る直下型バックライト装置の光拡散板の概略を示す部分断面図である。FIG. 15 is a partial cross-sectional view illustrating an outline of the light diffusion plate of the direct type backlight device according to the first embodiment of the present application. 図16は、本願実施例1に係る直下型バックライト装置の光拡散板の凹凸構造を示す部分断面図である。FIG. 16: is a fragmentary sectional view which shows the uneven structure of the light diffusing plate of the direct type backlight apparatus based on this-application Example 1. FIG. 図17は、本願実施例2に係る直下型バックライト装置の光拡散板の概略を示す部分断面図である。FIG. 17: is a fragmentary sectional view which shows the outline of the light diffusing plate of the direct type | mold backlight apparatus which concerns on this-application Example 2. FIG. 図18は、本願実施例3に係る直下型バックライト装置の光拡散板の凹凸構造を示す部分断面図である。FIG. 18 is a partial cross-sectional view showing the uneven structure of the light diffusing plate of the direct type backlight device according to Example 3 of the present application. 図19は、本発明の直下型バックライト装置の光拡散板の光学的性質の例を具体的に説明する部分断面図である。FIG. 19 is a partial cross-sectional view for specifically explaining an example of optical properties of the light diffusion plate of the direct type backlight device of the present invention. 図20は、本願実施例3に係る直下型バックライト装置の光拡散板の概略を示す部分断面図である。FIG. 20 is a partial cross-sectional view illustrating an outline of the light diffusing plate of the direct type backlight device according to Embodiment 3 of the present application. 図21は、本願実施例6に係る直下型バックライト装置の概略を示す断面図である。FIG. 21 is a cross-sectional view schematically illustrating a direct type backlight device according to Embodiment 6 of the present application. 図22は、本願実施例6に係る直下型バックライト装置の光拡散板の概略を示す部分断面図である。FIG. 22 is a partial cross-sectional view illustrating an outline of a light diffusing plate of a direct type backlight device according to Embodiment 6 of the present application. 図23は、本願実施例6に係る直下型バックライト装置の光拡散板の凹凸構造を示す部分断面図である。FIG. 23 is a partial cross-sectional view showing the concavo-convex structure of the light diffusion plate of the direct type backlight device according to Example 6 of the present application.

以下に、本発明の実施形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態にかかる直下型バックライト装置の概略を示す斜視図である。本実施形態の直下型バックライト装置は、互いに略平行に配置された複数本の線状光源102と、これらの線状光源102からの光を反射する反射板103と、線状光源102からの直射光および反射板103からの反射光を拡散照射する光拡散板101とを備える。図1に示す実施態様はこれらの位置関係を示すための概略図であるため、図1において光拡散板はその上側の主面即ち出射面においてのみ断面鋸歯状のプリズム状の凹凸構造を有するよう図示しているが、本発明の直下型バックライト装置においては、光拡散板101の出射面及び入射面の両方において、後述する特定の構造を有する。   FIG. 1 is a perspective view showing an outline of a direct type backlight device according to an embodiment of the present invention. The direct type backlight device according to the present embodiment includes a plurality of linear light sources 102 arranged substantially parallel to each other, a reflecting plate 103 that reflects light from these linear light sources 102, and linear light sources 102. A light diffusing plate 101 that diffuses and irradiates direct light and reflected light from the reflecting plate 103. Since the embodiment shown in FIG. 1 is a schematic diagram for showing these positional relationships, in FIG. 1, the light diffusing plate has a prismatic uneven structure having a sawtooth cross section only on the upper main surface, that is, the exit surface. Although shown, the direct type backlight device of the present invention has a specific structure to be described later on both the exit surface and the entrance surface of the light diffusion plate 101.

なお、本明細書においては、別に断らない限り「上」及び「下」方向とは、直下型バックライト装置を、その光出射面が水平に上側となるよう載置した状態における「上」及び「下」方向を意味し、図1〜図19の図面における上方向及び下方向と一致する。   In the present specification, unless otherwise specified, the “up” and “down” directions mean “up” and “down” in a state where the direct-type backlight device is placed so that its light emission surface is horizontally upward. It means the “down” direction and corresponds to the upward direction and the downward direction in the drawings of FIGS.

本実施形態の直下型バックライト装置において、線状光源102は、外径が5mm〜30mmであり、好ましくは、熱陰極管である。当該構成を採用することにより、エネルギー効率の高いバックライト装置とすることができる。また、線状光源102としては、発光効率が60(Lm/W)以上であることが好ましく、長さが700mm以上であって、かつその両端を支持した場合でも撓みが2mm以上生じないことが好ましい。   In the direct type backlight device of the present embodiment, the linear light source 102 has an outer diameter of 5 mm to 30 mm, preferably a hot cathode tube. By adopting this structure, a backlight device with high energy efficiency can be obtained. Further, the linear light source 102 preferably has a luminous efficiency of 60 (Lm / W) or more, a length of 700 mm or more, and even when both ends thereof are supported, the bending does not occur by 2 mm or more. preferable.

線状光源102の形状としては、直線状に加えて、平行な2本の管が一つの略半円でつながれ一本になったU字状、平行な3本の管が二つの略半円でつながれ一本になったN字状、および平行な4本の管が三つの略半円でつながれ一本になったW字状を挙げることができる。   As the shape of the linear light source 102, in addition to a straight line shape, two parallel tubes are connected by one approximately semicircle to form a U-shape, and three parallel tubes are approximately two semicircles. N-shapes that are connected by one, and W-shapes that are formed by connecting four parallel pipes by three approximately semicircles.

隣接する線状光源102の中心間の距離は、35mm〜200mmであることが好ましく、40mm〜150mmであることがより好ましい。前記距離を上記範囲とすることにより、直下型バックライト装置の消費電力を低減できるとともに、当該装置の組み立てが容易になり、かつ発光面の輝度むらを抑えることができる。   The distance between the centers of adjacent linear light sources 102 is preferably 35 mm to 200 mm, and more preferably 40 mm to 150 mm. By setting the distance within the above range, the power consumption of the direct type backlight device can be reduced, the assembly of the device can be facilitated, and the luminance unevenness of the light emitting surface can be suppressed.

線状光源102の本数は、特に限定されない。例えば、本発明の直下型バックライト装置を32インチの液晶表示装置に用いる場合には、線状光源の数としては、例えば、12本、8本、4本、2本等の偶数本や、奇数本とすることができる。   The number of the linear light sources 102 is not particularly limited. For example, when the direct type backlight device of the present invention is used for a 32-inch liquid crystal display device, the number of linear light sources is, for example, an even number such as 12, 8, 4, 2, or an odd number. It can be a book.

反射板103の材質としては、白色または銀色に着色された樹脂、および金属等を用いることができ、軽量化の観点から樹脂が好ましい。また、反射板103の色は、輝度均斉度を向上できる観点から白色であることが好ましいが、輝度と輝度均斉度を高度にバランスさせるため、白色と銀色とを混合してもよい。   As a material of the reflecting plate 103, a resin colored in white or silver, a metal, or the like can be used, and a resin is preferable from the viewpoint of weight reduction. The color of the reflector 103 is preferably white from the viewpoint of improving the luminance uniformity, but white and silver may be mixed in order to highly balance the luminance and the luminance uniformity.

光拡散板101は、入射光を拡散照射する板材である。
光拡散板を構成する材質としては、ガラス、混合しにくい2種以上の樹脂の混合物、透明樹脂に光拡散剤を分散させたもの、および1種類の透明樹脂等を用いることができる。これらの中で、軽量であること、成形が容易であることから樹脂が好ましく、輝度向上が容易である点からは1種類の透明樹脂が好ましく、全光線透過率とヘーズの調整が容易である点からは透明樹脂に光拡散剤を分散させたものが好ましい。
The light diffusion plate 101 is a plate material that diffuses and irradiates incident light.
As a material constituting the light diffusing plate, glass, a mixture of two or more kinds of resins that are difficult to mix, a material in which a light diffusing agent is dispersed in a transparent resin, one kind of transparent resin, and the like can be used. Among these, a resin is preferable because it is lightweight and easy to mold, and one kind of transparent resin is preferable from the viewpoint that luminance can be easily improved, and adjustment of total light transmittance and haze is easy. From the viewpoint, a transparent resin in which a light diffusing agent is dispersed is preferable.

前記透明樹脂とは、JIS K7361−1に基づいて、両面平滑な2mm厚の板で測定した全光線透過率が70%以上の樹脂のことであり、例えば、ポリエチレン、プロピレン−エチレン共重合体、ポリプロピレン、ポリスチレン、芳香族ビニル単量体と低級アルキル基を有する(メタ)アクリル酸アルキルエステルとの共重合体、ポリエチレンテレフタレート、テレフタル酸−エチレングリコール−シクロヘキサンジメタノール共重合体、ポリカーボネート、アクリル樹脂、および脂環式構造を有する樹脂などを挙げることができる。なお、(メタ)アクリル酸とは、アクリル酸およびメタクリル酸のことである。   The transparent resin is a resin having a total light transmittance of 70% or more measured with a 2 mm-thick plate smooth on both sides based on JIS K7361-1, for example, polyethylene, propylene-ethylene copolymer, Polypropylene, polystyrene, copolymer of aromatic vinyl monomer and (meth) acrylic acid alkyl ester having a lower alkyl group, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer, polycarbonate, acrylic resin, And a resin having an alicyclic structure. In addition, (meth) acrylic acid is acrylic acid and methacrylic acid.

これらの中でも、透明樹脂としては、ポリカーボネート、ポリスチレン、芳香族ビニル単量体を10%以上含有する芳香族ビニル系単量体と低級アルキル基を有する(メタ)アクリル酸アルキルエステルとの共重合体、および脂環式構造を有する樹脂等の吸水率が0.25%以下である樹脂が、吸湿による変形が少ないので、反りの少ない大型の光拡散板を得ることができる点で好ましい。   Among these, as a transparent resin, a copolymer of polycarbonate, polystyrene, an aromatic vinyl monomer containing 10% or more of an aromatic vinyl monomer, and a (meth) acrylic acid alkyl ester having a lower alkyl group Further, a resin having a water absorption of 0.25% or less, such as a resin having an alicyclic structure, is preferable in that a large light diffusion plate with little warpage can be obtained because deformation due to moisture absorption is small.

脂環式構造を有する樹脂は、流動性が良好であり、大型の光拡散板を効率よく製造できる点でより好ましい。脂環式構造を有する樹脂と光拡散剤の混合物は、光拡散板に必要な高透過性と高拡散性とを兼ね備え、色度が良好なので、好適に用いることができる。   A resin having an alicyclic structure is more preferable because it has good fluidity and can efficiently produce a large light diffusion plate. A mixture of a resin having an alicyclic structure and a light diffusing agent has both high permeability and high diffusibility required for a light diffusing plate, and has good chromaticity, so that it can be suitably used.

脂環式構造を有する樹脂は、主鎖および/または側鎖に脂環式構造を有する樹脂である。機械的強度、耐熱性などの観点から、主鎖に脂環式構造を含有する樹脂が特に好ましい。脂環式構造としては、飽和環状炭化水素(シクロアルカン)構造、および不飽和環状炭化水素(シクロアルケン、シクロアルキン)構造などを挙げることができる。機械的強度、耐熱性などの観点から、シクロアルカン構造およびシクロアルケン構造が好ましく、中でもシクロアルカン構造が最も好ましい。脂環式構造を構成する炭素原子数は、通常4〜30個、好ましくは5〜20個、より好ましくは5〜15個の範囲であるときに、機械的強度、耐熱性及び光拡散板の成形性の特性が高度にバランスされ、好適である。   The resin having an alicyclic structure is a resin having an alicyclic structure in the main chain and / or side chain. From the viewpoint of mechanical strength, heat resistance, etc., a resin containing an alicyclic structure in the main chain is particularly preferred. Examples of the alicyclic structure include a saturated cyclic hydrocarbon (cycloalkane) structure and an unsaturated cyclic hydrocarbon (cycloalkene, cycloalkyne) structure. From the viewpoint of mechanical strength, heat resistance and the like, a cycloalkane structure and a cycloalkene structure are preferable, and among them, a cycloalkane structure is most preferable. When the number of carbon atoms constituting the alicyclic structure is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15, the mechanical strength, heat resistance and light diffusion plate Formability characteristics are highly balanced and suitable.

脂環式構造を有する樹脂中の脂環式構造を有する繰り返し単位の割合は、使用目的に応じて適宜選択すればよいが、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上である。脂環式構造を有する繰り返し単位の割合が過度に少ないと、耐熱性が低下し好ましくない。なお、脂環式構造を有する樹脂中における脂環式構造を有する繰り返し単位以外の繰り返し単位は、使用目的に応じて適宜選択される。   The proportion of the repeating unit having an alicyclic structure in the resin having an alicyclic structure may be appropriately selected according to the purpose of use, but is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90%. % By weight or more When the ratio of the repeating unit having an alicyclic structure is too small, the heat resistance is lowered, which is not preferable. In addition, repeating units other than the repeating unit which has an alicyclic structure in resin which has an alicyclic structure are suitably selected according to the intended purpose.

脂環式構造を有する樹脂の具体例としては、(1)ノルボルネン単量体の開環重合体及びノルボルネン単量体とこれと開環共重合可能なその他の単量体との開環共重合体、並びにこれらの水素添加物、ノルボルネン単量体の付加重合体及びノルボルネン系単量体とこれと共重合可能なその他の単量体との付加共重合体などのノルボルネン重合体;(2)単環の環状オレフィン重合体及びその水素添加物;(3)環状共役ジエン重合体及びその水素添加物;(4)ビニル脂環式炭化水素系単量体の重合体及びビニル脂環式炭化水素系単量体とこれと共重合可能なその他の単量体との共重合体、並びにこれらの水素添加物、ビニル芳香族単量体の重合体の芳香環の水素添加物及びビニル芳香族単量体とこれと共重合可能なその他の単量体との共重合体の芳香環の水素添加物などのビニル脂環式炭化水素重合体;などを挙げることができる。   Specific examples of the resin having an alicyclic structure include (1) ring-opening polymer of norbornene monomer and ring-opening copolymer of norbornene monomer and other monomers capable of ring-opening copolymerization Norbornene polymers such as hydrogenated products, addition polymers of norbornene monomers, and addition copolymers of norbornene monomers with other monomers copolymerizable therewith; (2) Monocyclic olefin polymer and hydrogenated product thereof; (3) Cyclic conjugated diene polymer and hydrogenated product thereof; (4) Polymer of vinyl alicyclic hydrocarbon monomer and vinyl alicyclic hydrocarbon Copolymers of monomers and other monomers copolymerizable therewith, as well as hydrogenated products thereof, aromatic ring hydrogenated products of vinyl aromatic monomers, and vinyl aromatic monomers. Copolymerization of the monomer with other monomers copolymerizable with it Vinyl alicyclic hydrocarbon polymers such as hydrogenated products of the body of the aromatic ring; and the like.

これらの中でも、耐熱性、機械的強度等の観点から、ノルボルネン重合体およびビニル脂環式炭化水素重合体が好ましく、ノルボルネン単量体の開環重合体水素添加物、ノルボルネン単量体とこれと開環共重合可能なその他の単量体との開環共重合体水素添加物、ビニル芳香族単量体の重合体の芳香環の水素添加物及びビニル芳香族単量体とこれと共重合可能なその他の単量体との共重合体の芳香環の水素添加物がさらに好ましい。   Among these, from the viewpoints of heat resistance, mechanical strength, and the like, norbornene polymers and vinyl alicyclic hydrocarbon polymers are preferred, and ring-opening polymer hydrogenated products of norbornene monomers, norbornene monomers, and Hydrogenation of ring-opening copolymer with other monomers capable of ring-opening copolymerization, hydrogenation of aromatic ring of polymer of vinyl aromatic monomer, and copolymerization with vinyl aromatic monomer and this More preferred are hydrogenated aromatic rings of copolymers with other possible monomers.

前記光拡散剤は、光線を拡散させる性質を有する粒子であり、無機フィラーと有機フィラーとに大別できる。無機フィラーとしては、シリカ、水酸化アルミニウム、酸化アルミニウム、酸化チタン、酸化亜鉛、硫酸バリウム、マグネシウムシリケート、およびこれらの混合物を挙げることができる。有機フィラーとしては、アクリル樹脂、ポリウレタン、ポリ塩化ビニル、ポリスチレン樹脂、ポリアクリロニトリル、ポリアミド、ポリシロキサン樹脂、メラミン樹脂、およびベンゾグアナミン樹脂等を挙げることができる。これらの中でも、有機フィラーとしては、ポリスチレン樹脂、ポリシロキサン樹脂、およびこれらの架橋物からなる微粒子が、高分散性、高耐熱性、成形時の着色(黄変)がない点で好ましく、これらの中でも、より耐熱性に優れる点でポリシロキサン樹脂の架橋物からなる微粒子がより好ましい。   The light diffusing agent is a particle having a property of diffusing light, and can be roughly classified into an inorganic filler and an organic filler. Examples of the inorganic filler include silica, aluminum hydroxide, aluminum oxide, titanium oxide, zinc oxide, barium sulfate, magnesium silicate, and a mixture thereof. Examples of the organic filler include acrylic resin, polyurethane, polyvinyl chloride, polystyrene resin, polyacrylonitrile, polyamide, polysiloxane resin, melamine resin, and benzoguanamine resin. Among these, as the organic filler, fine particles composed of polystyrene resin, polysiloxane resin, and cross-linked products thereof are preferable in terms of high dispersibility, high heat resistance, and no coloration (yellowing) during molding. Among these, fine particles made of a cross-linked product of polysiloxane resin are more preferable from the viewpoint of more excellent heat resistance.

前記光拡散剤の形状としては、例えば、球状、立方状、針状、棒状、紡錘形状、板状、鱗片状、および繊維状などを挙げることができ、これらの中でも、光の拡散方向を等方的にできる点で球状が好ましい。前記光拡散剤は、透明樹脂内に均一に分散された状態で使用される。   Examples of the shape of the light diffusing agent include a spherical shape, a cubic shape, a needle shape, a rod shape, a spindle shape, a plate shape, a scale shape, and a fiber shape. Among these, the light diffusing direction can be exemplified. Spherical shape is preferable in that it can be squarely. The light diffusing agent is used in a state of being uniformly dispersed in the transparent resin.

透明樹脂に分散させる光拡散剤の割合は、光拡散板の厚みや、線状光源の間隔などに応じて適宜選択できるが、通常は、分散物の全光線透過率が60%〜98%となるように光拡散剤の含有量を調整することが好ましく、65%〜95%となるように光拡散剤の含有量を調整することがより好ましい。全光線透過率を上記好適な範囲とすることにより、輝度および輝度均斉度をより向上させることができる。   The ratio of the light diffusing agent dispersed in the transparent resin can be appropriately selected according to the thickness of the light diffusing plate, the interval between the linear light sources, and the like. Usually, the total light transmittance of the dispersion is 60% to 98%. It is preferable to adjust the content of the light diffusing agent so as to be, and it is more preferable to adjust the content of the light diffusing agent to be 65% to 95%. By setting the total light transmittance within the above preferable range, the luminance and the luminance uniformity can be further improved.

なお、全光線透過率とは、JIS K7361-1に基づいて、両面平滑な2mm厚みの板で測定した値であり、ヘーズとはJIS K7136により両面平滑な2mm厚みの板で測定した値である。   The total light transmittance is a value measured with a 2 mm-thick plate smoothed on both sides based on JIS K7361-1, and the haze is a value measured on a 2 mm-thick plate smoothed on both sides with JIS K7136. .

光拡散板101の厚みは、0.4mm〜5mmであることが好ましく、0.8mm〜4mmであることがより好ましい。光拡散板の厚みを上記好適な範囲とすることにより、自重による撓みを抑えることができるとともに、成形の容易化を図ることができる。   The thickness of the light diffusing plate 101 is preferably 0.4 mm to 5 mm, and more preferably 0.8 mm to 4 mm. By setting the thickness of the light diffusing plate within the above preferable range, it is possible to suppress bending due to its own weight and to facilitate the molding.

次に、光拡散板101の外形について説明する。
図2は、図1の実施形態にかかる直下型バックライト装置の光拡散板101の表面形状をより具体的に説明する立面部分断面図である。説明の便宜上、図2においては、複数本の線状光源102のうち、隣接する2本の線状光源102a及び102bのみを部分的に図示する。
Next, the outer shape of the light diffusing plate 101 will be described.
FIG. 2 is an elevational partial sectional view for more specifically explaining the surface shape of the light diffusion plate 101 of the direct type backlight device according to the embodiment of FIG. For convenience of explanation, in FIG. 2, only two adjacent linear light sources 102 a and 102 b among the plurality of linear light sources 102 are partially illustrated.

光拡散板101は、前記線状光源102からの光が入射する光入射面S260と、この光入射面から入射した光を拡散照射する光出射面S250とを備え、前記光出射面および前記光入射面の少なくともいずれかの一部には凹凸構造が形成されている。   The light diffusing plate 101 includes a light incident surface S260 on which light from the linear light source 102 is incident, and a light emitting surface S250 that diffuses and irradiates light incident from the light incident surface, and includes the light emitting surface and the light. An uneven structure is formed on at least a part of the incident surface.

そして、光拡散板においては、前記線状光源の外径を、前記光拡散板に垂直に投影した場合に、その投影された部分の凹凸構造と、前記光拡散板において、互いに隣接する線状光源の中間位置を中心とし、かつ前記線状光源の外径と同じ幅を有する部分の凹凸構造とが、異なる形状である。ここで「異なる形状である」とは、光拡散板の光入射面及び光出射面のうち少なくともいずれか一方において凹凸構造の形状が異なる場合を含む。また、「異なる形状」とは、例えば、凹凸構造が複数の凸部(プリズム部)により構成され、かつ各凸部が多角形である場では、その凸部の頂角が±1度を超えるような形状をいう。また、この場合において、凹凸構造の形状が異なる態様には、複数の凸部の少なくとも1つの凸部が異なる形状である場合も含まれる。   In the light diffusing plate, when the outer diameter of the linear light source is projected perpendicularly to the light diffusing plate, the projected portion of the uneven structure and the light diffusing plate are adjacent to each other in the linear shape. The concavo-convex structure of the part having the same width as the outer diameter of the linear light source and having an intermediate position of the light source as a center has a different shape. Here, “with different shapes” includes a case where the shape of the concavo-convex structure is different on at least one of the light incident surface and the light emitting surface of the light diffusion plate. In addition, the “different shape” means, for example, that when the concavo-convex structure is composed of a plurality of convex portions (prism portions) and each convex portion is a polygon, the apex angle of the convex portion exceeds ± 1 degree. Such a shape. In this case, the aspect in which the shape of the concavo-convex structure is different includes a case in which at least one of the plurality of convex portions has a different shape.

図2に示す例では、線状光源102a及び102bの外径を光拡散板101に垂直に投影した領域R271、R281、R273及びR283における凹凸構造と、線状光源102a及び102bの中間位置241を中心とし、線状光源102と同じ幅の光拡散板上の領域R272及びR282における凹凸構造が、異なる形状である。即ち、下記条件(i)及び(ii):
(i)R272がR271及びR273と異なる凹凸構造を有している、
(ii)R282がR281及びR283と異なる凹凸構造を有している
の少なくともいずれか一方の条件を満たしており、従って「前記線状光源の外径を光拡散板に垂直に投影した領域における凹凸構造と、隣接する前記線状光源の中間位置を中心とし、線状光源の外径と同じ幅の光拡散板上の領域における凹凸構造とが、異なる」という条件を満たしている。
In the example shown in FIG. 2, the uneven structure in the regions R271, R281, R273, and R283 obtained by projecting the outer diameters of the linear light sources 102a and 102b perpendicularly to the light diffusion plate 101, and the intermediate position 241 between the linear light sources 102a and 102b. The uneven structure in the regions R272 and R282 on the light diffusion plate having the same width as that of the linear light source 102 in the center is different. That is, the following conditions (i) and (ii):
(i) R272 has an uneven structure different from R271 and R273,
(ii) R282 has a concavo-convex structure different from that of R281 and R283, and therefore satisfies the following condition: “Concavity and convexity in the region where the outer diameter of the linear light source is projected perpendicularly to the light diffusion plate” The structure and the concavo-convex structure in the region on the light diffusing plate having the same width as the outer diameter of the linear light source and the center position between the adjacent linear light sources are different.

光拡散板101の光入射面S260及び光出射面S250の、その他の領域(即ち領域R271〜R273及びR281〜R283に含まれない領域)の構造については、特に限定されないが、例えば、線状光源の外径を光拡散板に垂直に投影した領域を含む領域群における凹凸構造と、線状光源の中間位置を中心とし線状光源の外径と同じ幅の光拡散板上の領域を含む領域群における凹凸構造が、異なるものとすることができる。   The structure of other regions (that is, regions not included in the regions R271 to R273 and R281 to R283) of the light incident surface S260 and the light emitting surface S250 of the light diffusion plate 101 is not particularly limited. A region including a concavo-convex structure in a region group including a region obtained by projecting the outer diameter of the light source perpendicularly to the light diffusing plate, and a region on the light diffusing plate having the same width as the outer diameter of the linear light source, centered on the intermediate position of the linear light source The uneven structure in the group can be different.

より具体的には例えば、図2に示す通り、光入射面S260及び光出射面S250をそれぞれ、線状光源外径を光拡散板に垂直に投影した領域を含む領域群R251、R261、R253及びR263と、線状光源の中間位置を中心とし線状光源と同じ幅の光拡散板上の領域を含む領域群R252及びR262とに均等に分割し、これらの領域群間において、凹凸構造が異なるものとすることができる。   More specifically, for example, as shown in FIG. 2, each of the light incident surface S260 and the light emitting surface S250 includes a region group R251, R261, R253 including a region obtained by projecting the linear light source outer diameter perpendicularly to the light diffusion plate. R263 is equally divided into region groups R252 and R262 including the region on the light diffusion plate having the same width as the linear light source with the intermediate position of the linear light source as the center, and the uneven structure is different between these region groups Can be.

領域群R251、R261、R253及びR263と領域群R252及びR262との間において「凹凸構造が異なる」とは、具体的には例えば下記の態様が挙げられる:   Specifically, “the uneven structure is different” between the region groups R251, R261, R253, and R263 and the region groups R252 and R262 includes, for example, the following modes:

(1)R251−R252−R253:凹凸構造A−平坦面−凹凸構造A
R261−R262−R263:平坦面−平坦面−平坦面
(2)R251−R252−R253:平坦面−凹凸構造B−平坦面
R261−R262−R263:平坦面−平坦面−平坦面
(3)R251−R252−R253:凹凸構造A−凹凸構造B−凹凸構造A
R261−R262−R263:平坦面−平坦面−平坦面
(4)R251−R252−R253:平坦面−凹凸構造B−平坦面
R261−R262−R263:凹凸構造A−平坦面−凹凸構造A
(5)R251−R252−R253:凹凸構造A−凹凸構造A−凹凸構造A
R261−R262−R263:平坦面−凹凸構造B−平坦面
(6)R251−R252−R253:凹凸構造A−凹凸構造A−凹凸構造A
R261−R262−R263:凹凸構造B−平坦面−凹凸構造B
(7)R251−R252−R253:平坦面−凹凸構造B−平坦面
R261−R262−R263:凹凸構造A−凹凸構造A−凹凸構造A
(8)R251−R252−R253:凹凸構造B−平坦面−凹凸構造B
R261−R262−R263:凹凸構造A−凹凸構造A−凹凸構造A
(9)R251−R252−R253:凹凸構造B−凹凸構造C−凹凸構造B
R261−R262−R263:凹凸構造A−凹凸構造A−凹凸構造A
(10)R251−R252−R253:凹凸構造A−凹凸構造A−凹凸構造A
R261−R262−R263:凹凸構造B−凹凸構造C−凹凸構造B
(11)R251−R252−R253:凹凸構造A−平坦面−凹凸構造A
R261−R262−R263:凹凸構造B−凹凸構造C−凹凸構造B
(12)R251−R252−R253:凹凸構造A−凹凸構造D−凹凸構造A
R261−R262−R263:凹凸構造B−凹凸構造C−凹凸構造B
(13)上記(1)〜(12)のそれぞれにおいて、R251−R252−R253の構造とR261−R262−R263の構造とを入れ替えたもの
(1) R251-R252-R253: Uneven structure A-flat surface-uneven structure A
R261-R262-R263: Flat surface-Flat surface-Flat surface (2) R251-R252-R253: Flat surface-Uneven structure B-Flat surface R261-R262-R263: Flat surface-Flat surface-Flat surface (3) R251 -R252-R253: concavo-convex structure A- concavo-convex structure B- concavo-convex structure A
R261-R262-R263: Flat surface-Flat surface-Flat surface (4) R251-R252-R253: Flat surface-Uneven structure B-Flat surface R261-R262-R263: Uneven structure A-Flat surface-Uneven structure A
(5) R251-R252-R253: Uneven structure A- Uneven structure A- Uneven structure A
R261-R262-R263: Flat surface-Uneven structure B-Flat surface (6) R251-R252-R253: Uneven structure A-Uneven structure A-Uneven structure A
R261-R262-R263: Uneven structure B-flat surface-uneven structure B
(7) R251-R252-R253: Flat surface-Uneven structure B-Flat surface R261-R262-R263: Uneven structure A-Uneven structure A-Uneven structure A
(8) R251-R252-R253: Uneven structure B-flat surface-uneven structure B
R261-R262-R263: concavo-convex structure A- concavo-convex structure A- concavo-convex structure A
(9) R251-R252-R253: Uneven structure B- Uneven structure C- Uneven structure B
R261-R262-R263: concavo-convex structure A- concavo-convex structure A- concavo-convex structure A
(10) R251-R252-R253: Uneven structure A- Uneven structure A- Uneven structure A
R261-R262-R263: concavo-convex structure B- concavo-convex structure C- concavo-convex structure B
(11) R251-R252-R253: Uneven structure A-flat surface-uneven structure A
R261-R262-R263: concavo-convex structure B- concavo-convex structure C- concavo-convex structure B
(12) R251-R252-R253: Uneven structure A- Uneven structure D- Uneven structure A
R261-R262-R263: concavo-convex structure B- concavo-convex structure C- concavo-convex structure B
(13) In each of the above (1) to (12), the structure of R251-R252-R253 and the structure of R261-R262-R263 are interchanged

上記において、凹凸構造A〜凹凸構造Dは互いに異なる形状であることを示す。   In the above, the uneven structure A to the uneven structure D indicate different shapes.

光拡散板は、上記態様(1)〜(3)のように、その片面のみに凹凸構造が設けられていてもよいが、好ましくは、凹凸構造は、光拡散板の光出射面の少なくとも一部及び光入射面の少なくとも一部の両方に形成することができる。特に、光入射面においては、少なくとも、線状光源の中間位置を中心とし、線状光源と同じ幅の光拡散板入射面上の領域(図2における領域R282)に凹凸構造が設けられていることが好ましい。
光入射面側に凹凸構造を設けることにより、領域R282のようなかかる領域に線状光源からの光が入射する際のフレネル反射の低減、およびかかる領域に線状光源からの光が入射する際の線状光源の投影面積増大の防止をすることができる。これにより、線状光源間の光入射面の単位面積当たりの光入射量を向上させることができ、線状光源間の暗部を明るくすることが出来る。
一方、光出射面の少なくとも一部に凹凸構造を設けることにより、光入射面から入射した光を所望の方向に屈折し出射させることが出来、また、線状光源からの垂直入射光に対して全反射を利用してバックライト装置内に光を戻すことができ、線状光源直上の明部を暗くすることが出来る。以上のことから、より輝度むらを低減することができる。
The light diffusing plate may be provided with a concavo-convex structure only on one surface thereof as in the above aspects (1) to (3), but preferably the concavo-convex structure is at least one of the light exit surfaces of the light diffusing plate. And at least part of the light incident surface. In particular, on the light incident surface, a concavo-convex structure is provided at least in a region (region R282 in FIG. 2) on the light diffusion plate incident surface having the same width as that of the linear light source and centered on the intermediate position of the linear light source. It is preferable.
By providing a concavo-convex structure on the light incident surface side, the Fresnel reflection is reduced when light from the linear light source is incident on the region such as the region R282, and when light from the linear light source is incident on the region. It is possible to prevent an increase in the projected area of the linear light source. Thereby, the light incident amount per unit area of the light incident surface between the linear light sources can be improved, and the dark part between the linear light sources can be brightened.
On the other hand, by providing a concavo-convex structure on at least a part of the light emitting surface, light incident from the light incident surface can be refracted and emitted in a desired direction, and with respect to vertical incident light from a linear light source Light can be returned into the backlight device using total reflection, and the bright portion directly above the linear light source can be darkened. From the above, the luminance unevenness can be further reduced.

本発明において、光拡散板上の凹凸構造は、具体的には例えば、図1に示されるように、線状光源102の長手方向に略平行(平行±5°の範囲内)に延長する線状プリズムが略平行に並んでなるプリズム条列であり、線状光源102の長手方向に垂直な断面が各種の断面形状を有するものを挙げることができる。なお、線状光源102と前記線状プリズムとなす角度としては、前記平行±60°の範囲内としてもよい。   In the present invention, the concavo-convex structure on the light diffusing plate is specifically a line extending substantially parallel to the longitudinal direction of the linear light source 102 (within a range of parallel ± 5 °) as shown in FIG. And prisms in which the prisms are arranged substantially in parallel, and the cross section perpendicular to the longitudinal direction of the linear light source 102 has various cross-sectional shapes. The angle formed between the linear light source 102 and the linear prism may be within the range of the parallel ± 60 °.

当該断面構造としては、例えば曲線を含む形状の凸部、多角形状の凸部、略平坦な部分、およびこれらの組み合わせ形状を挙げることができる。前記曲線を含む形状の凸部としては、円弧、楕円弧、放物線弧、およびこれらが歪んだ曲線等の曲線を、突出する部分に含む凸部を挙げることができる。前記多角形状の凸部としては、三角形、台形等の四角形、五角形、六角形、七角形等の各種の多角形状の凸部を挙げることができ、特に左右の底角が略等しい(±10°の範囲内)多角形状であることが好ましく、特に、前記断面構造は、前記断面における光拡散板の厚み方向に平行な軸を中心として対称であることが好ましい。このような断面構造とすることにより、設計が容易である点、左右どちらから観察しても輝度にむらがなくなる点等の利点を得ることができる。また、バックライト装置の出射面を、プリズム条列が水平になる方向において直立させた場合、上下方向(即ち、図2などにおいて、図面中の右上方向から光出射面を観察した場合及び左上方向から光出射面を観察した場合)の輝度分布を対称なものとすることができる。   Examples of the cross-sectional structure include a convex portion having a curved shape, a convex portion having a polygonal shape, a substantially flat portion, and a combination shape thereof. Examples of the convex portion including the curved line include a convex portion including a curved line such as an arc, an elliptical arc, a parabolic arc, and a curved line in which these are distorted. Examples of the polygonal convex portions include various polygonal convex portions such as triangles, trapezoids and other quadrangular shapes, pentagons, hexagons, heptagons, etc. Particularly, the left and right base angles are substantially equal (± 10 °). The cross-sectional structure is preferably symmetric about an axis parallel to the thickness direction of the light diffusion plate in the cross-section. By adopting such a cross-sectional structure, it is possible to obtain advantages such as easy design and no unevenness in luminance even when viewed from the left or right. Further, when the emission surface of the backlight device is upright in the direction in which the prism rows are horizontal, the vertical direction (that is, when the light emission surface is observed from the upper right direction in the drawing in FIG. 2 and the upper left direction) (When the light exit surface is observed), the luminance distribution can be made symmetric.

より具体的な断面構造の例としては以下のものを挙げることができる。
図3に示すように、断面構造の第1の例は、多角形状の凸部が、左右の底角322及び323が略等しい三角形321であって、隣接する三角形321の底角部分が互いに接するように配置された構造である。
The following can be mentioned as an example of a more specific cross-sectional structure.
As shown in FIG. 3, in the first example of the cross-sectional structure, the polygonal convex portion is a triangle 321 having substantially equal left and right base angles 322 and 323, and the base corner portions of adjacent triangles 321 touch each other. It is the structure arranged so.

図4に示すように、断面構造の第2の例は、多角形状の凸部が、頂上に略平坦な平坦部(頂坦部)422を有する台形421であって、隣接する台形421の底角部分が互いに接するように配置された構造である。   As shown in FIG. 4, the second example of the cross-sectional structure is a trapezoid 421 in which the polygonal convex portion has a substantially flat flat portion (top carrier portion) 422 on the top, and the bottom of the adjacent trapezoid 421. It is the structure arrange | positioned so that a corner | angular part may mutually contact.

図5に示すように、断面構造の第3の例は、多角形状の凸部が左右の底角が略等しい三角形521であり、隣接する三角形521の間に略平坦な部分522が設けられた、三角形521と略平坦な部分522とが並んだ組み合わせの構造である。   As shown in FIG. 5, the third example of the cross-sectional structure is a triangle 521 in which the polygonal convex portions have substantially equal left and right base angles, and a substantially flat portion 522 is provided between adjacent triangles 521. This is a combined structure in which a triangle 521 and a substantially flat portion 522 are aligned.

図6に示すように、断面構造の第4の例は、多角形状の凸部が、台形622の頂坦部に台形622の底角より小さい底角を有する三角形621が加えられた五角形であって、隣接する台形622の底角部分が互いに接するように配置された構造である。   As shown in FIG. 6, the fourth example of the cross-sectional structure is a pentagon in which a polygonal convex portion is obtained by adding a triangle 621 having a base angle smaller than the base angle of the trapezoid 622 to the top support portion of the trapezoid 622. Thus, the base corner portions of adjacent trapezoids 622 are arranged so as to contact each other.

図7に示すように、断面構造の第5の例は、多角形状の凸部が、台形722の頂坦部に台形722の底角より広い底角を有する三角形721が加えられた五角形であって、隣接する台形722の底角部分が互いに接するように配置された構造である。   As shown in FIG. 7, the fifth example of the cross-sectional structure is a pentagon in which a polygonal convex portion is obtained by adding a triangle 721 having a base angle wider than the base angle of the trapezoid 722 to the top support portion of the trapezoid 722. Thus, the base corners of adjacent trapezoids 722 are arranged so as to contact each other.

図8に示すように、断面構造の第6の例は、曲線を含む形状の凸部が半円形821であって、隣接する半円形821同士が接するように配置された構造である。   As shown in FIG. 8, the sixth example of the cross-sectional structure is a structure in which convex portions having a curved shape are semicircular 821 and adjacent semicirculars 821 are in contact with each other.

図9に示すように、断面構造の第7の例は、曲線を含む形状の凸部が半楕円形921であって、隣接する半楕円形921同士が接するように配置された構造である。   As shown in FIG. 9, the seventh example of the cross-sectional structure is a structure in which the convex portion including the curve is a semi-elliptical shape 921 and adjacent semi-elliptical shapes 921 are in contact with each other.

図10に示すように、断面構造の第8の例は、曲線を含む形状の凸部が放物線弧1021であって、隣接する放物線弧1021同士が接するように配置された構造である。   As shown in FIG. 10, the eighth example of the cross-sectional structure is a structure in which a convex portion including a curve is a parabolic arc 1021 and adjacent parabolic arcs 1021 are in contact with each other.

図11に示すように、断面構造の第9の例は、曲線を含む形状の凸部が半円形1121と半楕円形1122とを交互に組み合わせ構造である。   As shown in FIG. 11, the ninth example of the cross-sectional structure is a structure in which convex portions having a curved shape are alternately combined with a semicircular shape 1121 and a semielliptical shape 1122.

図12に示すように、断面構造の第10の例は、曲線を含む形状の凸部が半円形1221と半楕円形1222とを含み、半円形1221と半楕円形1222とを複数個おきに組み合わせた構造である。   As shown in FIG. 12, in the tenth example of the cross-sectional structure, the convex portion including the curve includes a semicircle 1221 and a semi-elliptical 1222, and a plurality of semi-circles 1221 and semi-elliptical 1222 are provided. It is a combined structure.

図13に示すように、断面構造の第11の例は、曲線を含む形状の凸部が半円形1321と三角形1322とを交互に組み合わせた構造である。   As shown in FIG. 13, the eleventh example of the cross-sectional structure is a structure in which convex portions having a curved shape are alternately combined with a semicircle 1321 and a triangle 1322.

本発明において、前記凹凸構造の好ましい高さは、光拡散板の光入射面又は光出射面上において、様々な方向に沿って測定した中心線平均粗さRaのうちの最大値をRa(max)として、Ra(max)が1μm〜1,000μmである。
なお、本明細書において「略平坦な部分」とは、その面上に微細な凹凸があってもよい。例えば図5に示す形状においては、略平坦な部分522上には何の凹凸も示していないが、この部分に、三角形521に比べて相対的に微細な凹凸を設けてもよい。当該微細な凹凸の好ましい高さは、Ra(max)として、0.0001μm〜3μmである。また、当該微細な凹凸の高さは、前記凹凸構造のRaに対して、0.0001%〜5%の範囲とすることができる。
In the present invention, the preferable height of the concavo-convex structure is a maximum value of Ra (max) among the center line average roughness Ra measured along various directions on the light incident surface or light emitting surface of the light diffusion plate. ), Ra (max) is 1 μm to 1,000 μm.
In the present specification, the “substantially flat portion” may have fine irregularities on the surface. For example, in the shape shown in FIG. 5, no unevenness is shown on the substantially flat portion 522, but relatively fine unevenness may be provided in this portion as compared with the triangle 521. A preferable height of the fine irregularities is 0.0001 μm to 3 μm as Ra (max). Further, the height of the fine unevenness can be in the range of 0.0001% to 5% with respect to Ra of the uneven structure.

前記実施形態では、線状光源外径を光拡散板に垂直に投影した領域を含む領域群と、線状光源の中間位置を中心とし線状光源の外径と同じ幅の光拡散板上の領域を含む領域群との2つの領域群において異なる凹凸構造を設けたが、本発明の別の実施形態として、これとは異なる凹凸構造の配置を行うこともできる。例えば、前記凹凸構造の、線状光源の長手方向に垂直な断面が、2種類以上の異なる形状の凸部を含み、当該2種類以上の凸部の存在比が、前記線状光源から遠ざかるにつれて変化する態様とすることができる。より好ましくは、前記線状光源から遠ざかり、互いに隣接する前記線状光源の中間位置に向かうにつれて、前記光出射面または前記光入射面の少なくともどちらか一方の前記線状プリズムにおいて、2種類以上の線状プリズムの混合比率が連続的または段階的に変化し、互いに隣接する前記線状光源の中間位置に向かうにつれて傾斜角の大きい線状プリズムの比率が連続的または段階的に大きくなるものとすることができる。このような線状プリズムの配置とすることにより、凹凸構造の形状の変化が、線状光源から遠ざかるにつれて徐々に変化することになり、その結果、凹凸形状が急激な変化する場合に比べて輝度むらを低減することができる。   In the embodiment, a region group including a region obtained by projecting the linear light source outer diameter perpendicularly to the light diffusing plate, and a light diffusing plate having the same width as the outer diameter of the linear light source with the intermediate position of the linear light source as the center. Different concavo-convex structures are provided in the two region groups including the region group including the regions. However, as another embodiment of the present invention, arrangement of the concavo-convex structure different from this can be performed. For example, the cross section of the concavo-convex structure perpendicular to the longitudinal direction of the linear light source includes two or more types of convex portions having different shapes, and the abundance ratio of the two or more types of convex portions is further away from the linear light source. It can be set as the aspect which changes. More preferably, at least one of the linear prisms on either the light exit surface or the light entrance surface is moved away from the linear light source and toward an intermediate position between the linear light sources adjacent to each other. The mixing ratio of linear prisms changes continuously or stepwise, and the ratio of linear prisms having a large inclination angle increases continuously or stepwise toward the intermediate position of the linear light sources adjacent to each other. be able to. By adopting such a linear prism arrangement, the change in the shape of the concavo-convex structure gradually changes as it moves away from the linear light source, and as a result, the luminance is higher than when the concavo-convex shape changes abruptly. Unevenness can be reduced.

具体的には例えば、図16に示すように、上記凹凸構造としては、異なる形状の凸部1621a及び1621bとを所定の割合(図16においては1:4)で並べた状態を単位とし、この単位を繰り返し、さらに線状光源から遠ざかるにつれて、凸部1621a及び1621bの存在比を変化させた構造とすることができる。   Specifically, for example, as shown in FIG. 16, the concavo-convex structure has a unit in which convex portions 1621a and 1621b having different shapes are arranged at a predetermined ratio (1: 4 in FIG. 16). The unit is repeated, and the abundance ratio of the convex portions 1621a and 1621b can be changed as the distance from the linear light source is further increased.

当該存在比の変化は、連続的又は段階的なものとすることができる。例えば、図15に示すように、隣接する線状光源1402a及び1402bの中心間の距離の中間位置1441から線状光源の中心までに相当する距離を、複数のゾーン(図15ではA、B、C及びDの4つのゾーン)に分け、光拡散板1401の光入射面及び/又は光出射面の各ゾーンに対応する領域ごとに、前記2種類以上の凸部の存在比を所定の値に設定することができる。なお、これらのゾーンの数は、特に限定されないが、上記に限らず15〜20段階等に増やしてもよい。   The change in the abundance ratio can be continuous or stepwise. For example, as shown in FIG. 15, a distance corresponding to an intermediate position 1441 between the centers of adjacent linear light sources 1402a and 1402b and the center of the linear light source is set to a plurality of zones (in FIG. 15, A, B, C and D zones), and the abundance ratio of the two or more types of convex portions is set to a predetermined value for each region corresponding to each zone of the light incident surface and / or the light exit surface of the light diffusing plate 1401. Can be set. The number of these zones is not particularly limited, but is not limited to the above, and may be increased to 15 to 20 levels.

さらに別の凹凸構造の配置として、例えば、前記凹凸構造の、線状光源の長手方向に垂直な断面が、前記凸部及び略平坦な部分の両方を含み、これらの存在比が、線状光源から遠ざかるにつれて、連続的又は段階的に変化する態様とすることができる。   As another arrangement of the concavo-convex structure, for example, a cross section of the concavo-convex structure perpendicular to the longitudinal direction of the linear light source includes both the convex portion and the substantially flat portion, and the abundance ratio thereof is determined by the linear light source. It can be set as the aspect which changes continuously or in steps as it distances from.

具体的には例えば、図18に示すように、上記凹凸構造としては、凸部1821a及び略平坦な部分である平坦部1821bとを交互に並べた状態を単位とし、この単位を繰り返し、さらに線状光源から遠ざかるにつれて、平坦部1821bの幅1822bを連続的又は段階的に変化させた構造とすることができる。   Specifically, for example, as shown in FIG. 18, as the concavo-convex structure, the unit is a state in which convex portions 1821 a and flat portions 1821 b that are substantially flat portions are alternately arranged, and this unit is repeated, and further, As the distance from the light source increases, the width 1822b of the flat portion 1821b can be changed continuously or stepwise.

ここで、平坦部1821bの幅1822bは、図15を参照した前述の説明のように、光拡散板の光入射面及び/又は光出射面上の複数のゾーンごとに、所定の値に設定し、断続的な変化を達成することもできる。なお、これらのゾーンの数は、特に限定されないが、4ゾーンに限らず、15〜20段階等に増やしてもよい。また、例えば図19に示すように、光拡散板上における線状光源からの距離Lnに応じて、又は光拡散板の面と最寄の線状光源に対する角度θsに応じて、平坦部1821bの幅1822bを連続的に変化させ、連続的な変化を達成することもできる。   Here, the width 1822b of the flat portion 1821b is set to a predetermined value for each of a plurality of zones on the light incident surface and / or the light exit surface of the light diffusing plate, as described above with reference to FIG. Can also achieve intermittent changes. The number of these zones is not particularly limited, but is not limited to four zones, and may be increased to 15 to 20 levels. For example, as shown in FIG. 19, the flat portion 1821 b has a flat portion 1821 b according to the distance Ln from the linear light source on the light diffusion plate or according to the angle θs with respect to the surface of the light diffusion plate and the nearest linear light source. The width 1822b can be continuously changed to achieve a continuous change.

さらに別の凹凸構造の配置として、前記線状光源から遠ざかり、互いに隣接する前記線状光源の中間位置に向かうにつれて、前記光出射面または前記光入射面の少なくともどちらか一方の前記線状プリズムの斜面と、前記光拡散板の厚み方向に垂直な平面とがなす角が、連続的または段階的に大きくなるようにすることもできる。   As another arrangement of the concavo-convex structure, the linear prism of at least one of the light exit surface and the light entrance surface is moved away from the linear light source and toward an intermediate position between the linear light sources adjacent to each other. The angle formed by the inclined surface and the plane perpendicular to the thickness direction of the light diffusing plate may be increased continuously or stepwise.

具体的には例えば、前述の他の例と同様に、光拡散板の光入射面及び/又は光出射面を複数のゾーンに分け、それぞれのゾーン内において同一の構造を有する線状プリズムを配置し、線状光源から遠いゾーンほど、前記線状プリズムの斜面と、前記光拡散板の厚み方向に垂直な平面とがなす角が大きくなるよう配置することにより、当該角が段階的に大きくなる構成を得ることができる。このような構成とすることによっても、凹凸構造の形状の変化が、線状光源から遠ざかるにつれて徐々に変化することになり、その結果、凹凸形状が急激な変化する場合に比べて輝度むらを低減することができる。   Specifically, for example, as in the other examples described above, the light incident surface and / or light exit surface of the light diffusing plate is divided into a plurality of zones, and linear prisms having the same structure are arranged in each zone. However, as the zone farther from the linear light source is arranged so that the angle formed by the slope of the linear prism and the plane perpendicular to the thickness direction of the light diffusing plate increases, the angle increases stepwise. A configuration can be obtained. Even with such a configuration, the change in the shape of the concavo-convex structure gradually changes as the distance from the linear light source increases, and as a result, the luminance unevenness is reduced compared to the case where the concavo-convex shape changes suddenly. can do.

本発明の直下型バックライト装置のさらに好ましい態様として、光拡散板の光出射面側に設けられた光学シートをさらに備え、凹凸構造が、下記に詳述する所定の好ましい全光線透過率の分布を示すよう構成されたものを挙げることができる。即ち、直下型バックライト装置では、前記線状光源の長手方向に垂直な断面において、任意の線状光源をAとし、この線状光源Aに隣接する線状光源をBとし、前記線状光源Aと前記線状光源Bとの中間の位置を前記光入射面に投影した中間位置をXとし、前記線状光源Aと前記線状光源Bとの間に位置し、かつ前記中間位置Xよりも前記線状光源Aに近い側の前記光入射面上の任意の点をPとし、前記線状光源Aの中心をCとし、前記中心Cから前記点Pの方向へ入射した光の前記点Pにおける全光線透過率Tpが、前記中心Cから前記中間位置Xの方向へ入射した光の前記点Xにおける全光線透過率Txよりも小さくなることが好ましい。この際、点Pが点Xに近づくにつれて略高くなるように、前記光拡散板の表面に凹凸構造が設けられていることがより好ましい。なお、「略高くなる」には、主として連続的または段階的に高くなる場合が含まれるが、部分的にわずかに低くなる場合も含まれる。このような「略高くなる」態様は、少なくとも光入射面全体の面積の50%の範囲で満たすことが好ましい。   As a further preferred embodiment of the direct type backlight device of the present invention, the optical sheet further provided on the light emitting surface side of the light diffusing plate, and the uneven structure has a predetermined preferable total light transmittance distribution described in detail below. Can be mentioned. That is, in the direct type backlight device, in the cross section perpendicular to the longitudinal direction of the linear light source, an arbitrary linear light source is A, a linear light source adjacent to the linear light source A is B, and the linear light source An intermediate position obtained by projecting an intermediate position between A and the linear light source B onto the light incident surface is X, and is positioned between the linear light source A and the linear light source B, and from the intermediate position X. Also, an arbitrary point on the light incident surface closer to the linear light source A is P, the center of the linear light source A is C, and the point of light incident in the direction of the point P from the center C The total light transmittance Tp at P is preferably smaller than the total light transmittance Tx at the point X of light incident from the center C toward the intermediate position X. At this time, it is more preferable that an uneven structure is provided on the surface of the light diffusing plate so that the point P becomes substantially higher as it approaches the point X. Note that “substantially higher” mainly includes a case where the level increases continuously or stepwise, but also includes a case where the level becomes slightly lower. Such a “substantially higher” aspect is preferably satisfied in a range of at least 50% of the entire area of the light incident surface.

当該好ましい態様について、図19を参照して説明する。図19では、線状光源の長手方向に垂直な断面上における、上記角度の関係を示している。図19の例においては、上でいう線状光源A及び線状光源Bとして線状光源102a及び線状光源102bを図示している。線状光源102aの中心1973a(=上記点C)と線状光源102bの中心1973bとの間の距離Lの二等分線で光拡散板101に垂直な線1941と光入射面S1960との交点1974が、上記点Xに相当する。線状光源102a(線状光源A)の中心1973a(点C)から点Xへ入射した光の、前記点Xにおける全光線透過率がTxである。一方、中心1973a(点C)から、点Xより線状光源1973a(A)に近い側の光入射面上の点Pへ入射した光の点Pにおける全光線透過率がTpである。ここでTpがTxよりも小さくなることにより、前記好ましい態様となる。さらに、点PがXに近づくにつれて、Tpが略高くなることにより、前記より好ましい態様となる。このような態様とすることにより、高い輝度均斉度を達成することができる。   The preferred embodiment will be described with reference to FIG. FIG. 19 shows the relationship between the angles on a cross section perpendicular to the longitudinal direction of the linear light source. In the example of FIG. 19, the linear light source 102a and the linear light source 102b are illustrated as the linear light source A and the linear light source B mentioned above. A point of intersection between a line 1941 perpendicular to the light diffusing plate 101 and a light incident surface S1960, which is a bisector of a distance L between the center 1973a of the linear light source 102a (= the point C) and the center 1973b of the linear light source 102b. 1974 corresponds to the point X. The total light transmittance at the point X of light incident on the point X from the center 1973a (point C) of the linear light source 102a (linear light source A) is Tx. On the other hand, the total light transmittance at the point P of light incident from the center 1973a (point C) to the point P on the light incident surface closer to the linear light source 1973a (A) than the point X is Tp. Here, when Tp is smaller than Tx, the above-described preferable mode is obtained. Furthermore, as point P approaches X, Tp becomes substantially higher, which is a more preferable aspect. By setting it as such an aspect, a high brightness | luminance uniformity can be achieved.

前記光学シートは、1枚であっても複数枚であってもよい。前記光学シートとしては、光線方向変換素子としての機能を有するシートを1枚以上含むことが好ましい。光線方向変換素子としての機能を有するシートとは、入射光の入射角度と出射光の出射角度が異なるシートであり、入射光と出射光のピークとなる方向が異なればよく、出射光が入射光に対し拡散し、分布を有していてもよい。   The optical sheet may be a single sheet or a plurality of sheets. The optical sheet preferably includes one or more sheets having a function as a light direction conversion element. A sheet having a function as a light beam direction conversion element is a sheet having a different incident angle of incident light and an outgoing angle of outgoing light, and it is sufficient that the incident light and the outgoing light have different peak directions. It may diffuse and have a distribution.

他に、前記光学シートとしては、反射型偏光子を1枚以上含むことが好ましい。反射型偏光子は、光出射面側に設けることが好ましい。反射型偏光子としては、ブリュースター角による偏光成分の反射率の差を利用した反射型偏光子(例えば、特表平6-508449号公報に記載のもの);コレステリック液晶による選択反射特性を利用した反射型偏光子;具体的には、コレステリック液晶からなるフィルムと1/4波長板との積層体(例えば、特開平3-45906号公報に記載のもの);微細な金属線状パターンを施工した反射型偏光子(例えば、特開平2-308106号公報に記載のもの);少なくとも2種の高分子フィルムを積層し、屈折率異方性による反射率の異方性を利用する反射型偏光子(例えば、特表平9-506837号公報に記載のもの);高分子フィルム中に少なくとも2種の高分子で形成される海島構造を有し、屈折率異方性による反射率の異方性を利用する反射型偏光子(例えば、米国特許第5,825,543号明細書に記載のもの);高分子フィルム中に粒子が分散し、屈折率異方性による反射率の異方性を利用する反射型偏光子(例えば、特表平11-509014号公報に記載のもの);高分子フィルム中に無機粒子が分散し、サイズによる散乱能差に基づく反射率の異方性を利用する反射型偏光子(例えば、特開平9-297204号公報に記載のもの);などが使用できる。   In addition, the optical sheet preferably includes one or more reflective polarizers. The reflective polarizer is preferably provided on the light exit surface side. As the reflective polarizer, a reflective polarizer that utilizes the difference in reflectance of the polarization component depending on the Brewster angle (for example, the one described in JP-T-6-508449); selective reflection characteristics by cholesteric liquid crystal are used. Reflective polarizer; specifically, a laminate of a film made of cholesteric liquid crystal and a quarter-wave plate (for example, one described in JP-A-3-45906); a fine metal linear pattern is applied Reflective polarizers (for example, those described in JP-A-2-308106); at least two kinds of polymer films are laminated, and the reflective polarization using the anisotropy of the reflectance due to the refractive index anisotropy Child (for example, those described in Japanese Patent Publication No. 9-506837); having a sea-island structure formed of at least two kinds of polymers in a polymer film, and anisotropy of reflectance due to refractive index anisotropy Profit Reflective polarizer used (for example, those described in US Pat. No. 5,825,543); particles are dispersed in a polymer film, and anisotropy of reflectance due to refractive index anisotropy is utilized Reflective polarizer (for example, the one described in JP-A-11-509014); reflection utilizing anisotropy of reflectance based on scattering ability difference depending on size, in which inorganic particles are dispersed in a polymer film Type polarizers (for example, those described in JP-A-9-297204) can be used.

本発明の直下型バックライト装置における、さらに好ましい態様として、前記中心Cと前記点Pとを結ぶ線分の長さをLCPとし、前記中心Cを前記光入射面に垂直に投影した点をQとし、前記中心Cと前記点Qとを結ぶ線分の長さをLCQとし、前記中心Cから前記点Qの方向へ入射した光の前記点Qにおける全光線透過率をTqとし、0.2×(Tq・LCP/LCQ)≦Tp≦5.0×(Tq・LCP/LCQ)の関係を満たすことが好ましい。   In a more preferred embodiment of the direct type backlight device of the present invention, the length of the line segment connecting the center C and the point P is LCP, and the point obtained by projecting the center C perpendicularly to the light incident surface is Q LCQ is the length of the line segment connecting the center C and the point Q, Tq is the total light transmittance at the point Q of the light incident from the center C in the direction of the point Q, 0.2 It is preferable to satisfy the relationship of × (Tq · LCP / LCQ) ≦ Tp ≦ 5.0 × (Tq · LCP / LCQ).

当該さらに好ましい態様について、再び図19を参照して説明する。図19の例において、点Pと点1973a(点C)とを結ぶ線分1943の長さが、上で言う長さLCPに相当する。一方点1973a(点C)を通り光拡散板101に垂直な直線1945と光入射面S1960との交点が、上記点Qとなり、点Cから点Qの方向へ入射した光の点Qにおける全光線透過率がTqであり、CQ間の距離がLCQとなる。ここでTp、Tq、LCP及びLCQが上記関係を満たすことにより、上記好ましい態様とすることができ、さらに高い輝度均斉度を達成することができる。当該関係は、光拡散板全面において成立することが好ましいが、光拡散板全面のうち50%の面積でこの関係が成立することにより、好ましい効果を得ることができる。   The further preferable aspect will be described with reference to FIG. 19 again. In the example of FIG. 19, the length of the line segment 1943 connecting the point P and the point 1973a (point C) corresponds to the above-described length LCP. On the other hand, the intersection of the straight line 1945 passing through the point 1973a (point C) and perpendicular to the light diffusing plate 101 and the light incident surface S1960 becomes the point Q, and all rays at the point Q of the light incident in the direction from the point C to the point Q. The transmittance is Tq, and the distance between CQs is LCQ. Here, when Tp, Tq, LCP, and LCQ satisfy the above relationship, the above-described preferred embodiment can be obtained, and a higher luminance uniformity can be achieved. The relationship is preferably established over the entire surface of the light diffusing plate, but a favorable effect can be obtained when the relationship is established with an area of 50% of the entire surface of the light diffusing plate.

本発明の直下型バックライト装置は、前記実施形態に限定されず、均等の範囲内での変更を施すことができる。また、他の任意の構成要素をさらに含むことができる。例えば、前記各実施形態に係る直下型バックライト装置において、さらに輝度および輝度均斉度を向上させるための光学部材を適宜配置してもよい。このような光学部材としては、例えば拡散シートおよびプリズムシートを挙げることができる。これらの光学部材は、例えば、光拡散板に光出射面側に設けることができる。また、バックライト装置を構成するための筐体、通電装置等を適宜備えることができる。また、本発明の直下型バックライト装置は、液晶表示装置の画面内の明るさに応じて、光源の点灯と消灯を制御する方式にも、好適に用いることができる。   The direct type backlight device of the present invention is not limited to the above embodiment, and can be changed within an equivalent range. Moreover, other arbitrary components can be further included. For example, in the direct type backlight device according to each of the above embodiments, an optical member for further improving luminance and luminance uniformity may be appropriately disposed. Examples of such an optical member include a diffusion sheet and a prism sheet. These optical members can be provided on the light exit surface side of the light diffusion plate, for example. In addition, a housing for forming the backlight device, a power supply device, and the like can be provided as appropriate. The direct type backlight device of the present invention can also be suitably used for a method of controlling turning on and off of the light source according to the brightness in the screen of the liquid crystal display device.

本発明の液晶表示装置は、前記本発明の直下型バックライト装置を含む。本発明の液晶表示装置は、例えばツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、ハイブリッドアラインメントネマチック(HAN)モード、バーティカルアラインメント(VA)モード、マルチドメインバーティカルアラインメント(MVA)モード、インプレーンスイッチング(IPS)モード、オプティカリーコンペンセイテッドバイリフジエンス(OCB)モードなどの表示モードによるものとすることができる。   The liquid crystal display device of the present invention includes the direct type backlight device of the present invention. The liquid crystal display device of the present invention includes, for example, a twisted nematic (TN) mode, a super twisted nematic (STN) mode, a hybrid alignment nematic (HAN) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, an in-plane It can be based on display modes such as switching (IPS) mode, optically compensated birefringence (OCB) mode.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されない。なお、部及び%は、特に制限のない限り重量基準である。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Parts and% are based on weight unless otherwise specified.

製造例1(光拡散板用ペレットA)
透明樹脂として脂環式構造を有する樹脂(日本ゼオン社製、ゼオノア1060R、吸水率0.01%)を、二軸押出機で混練してストランド状に押し出し、ペレタイザーで切断して光拡散板用ペレットAを製造した。この光拡散板用ペレットAを原料として、射出成形機(型締め力1000kN)を用いて、両面が平滑な厚み2mmで100mm×50mmの試験板を成形した。この試験板の全光線透過率とヘーズを、JIS K7361−1とJIS K7136とに基づいて、積分球方式色差濁度計を用いて測定した。試験板は、全光線透過率は92%であり、ヘーズは0.3%であった。
Production Example 1 (Pellet A for Light Diffusing Plate)
A resin having an alicyclic structure (Zeon Corporation, ZEONOR 1060R, water absorption 0.01%) as a transparent resin is kneaded with a twin-screw extruder, extruded into a strand, cut with a pelletizer, and used for a light diffusion plate Pellets A were produced. Using this light diffusing plate pellet A as a raw material, a 100 mm × 50 mm test plate having a smooth thickness of 2 mm on both sides was molded using an injection molding machine (clamping force 1000 kN). The total light transmittance and haze of the test plate were measured using an integrating sphere type color difference turbidimeter based on JIS K7361-1 and JIS K7136. The test plate had a total light transmittance of 92% and a haze of 0.3%.

製造例2(光拡散板用ペレットB)
前記樹脂に代えて、前記樹脂99.9部、光拡散剤として平均粒径2μmのポリシロキサン重合体の架橋物からなる微粒子0.1部とを混合し、前記製造例1と同様の方法にて光拡散板用ペレットBを製造した。この光拡散板用ペレットBを原料として、前記製造例1と同様の試験板を作成し、同様の方法で全光線透過率とヘーズを測定した。試験板は、全光線透過率は94%であり、ヘーズは89%であった。
Production Example 2 (Pellet B for Light Diffusing Plate)
Instead of the resin, 99.9 parts of the resin and 0.1 part of fine particles made of a cross-linked product of a polysiloxane polymer having an average particle diameter of 2 μm as a light diffusing agent were mixed, and the same method as in Production Example 1 Thus, a light diffusion plate pellet B was produced. A test plate similar to that of Production Example 1 was prepared using the light diffusion plate pellet B as a raw material, and the total light transmittance and haze were measured by the same method. The test plate had a total light transmittance of 94% and a haze of 89%.

<実施例1>
図14に概略的に示すバックライト装置を作成した。内寸幅730mm、奥行き405mm、深さ32.5mmのアルミ製ケース(図示せず)の内面に反射シート(株式会社ツジデン製、RF188)を貼着して反射板1403とし、径15.5mm、長さ800mmの熱陰極管(株式会社エレバム社製)1402を4本、内寸幅方向に平行に取り付けた。熱陰極管の中心間距離1413は100mm、反射板から熱陰極管の中心までの距離1411は8.75mmとした。電極部近傍をシリコーンシーラントで固定し、インバーターを取り付けた。
<Example 1>
A backlight device schematically shown in FIG. 14 was produced. A reflective sheet (manufactured by Tsujiden Co., Ltd., RF188) is attached to the inner surface of an aluminum case (not shown) having an inner dimension width of 730 mm, a depth of 405 mm, and a depth of 32.5 mm to form a reflector 1403 having a diameter of 15.5 mm, Four 800 mm long hot-cathode tubes (manufactured by Elevum Co., Ltd.) 1402 were attached in parallel to the inner dimension width direction. The distance 1413 between the centers of the hot cathode tubes was 100 mm, and the distance 1411 from the reflector to the center of the hot cathode tubes was 8.75 mm. The vicinity of the electrode part was fixed with a silicone sealant, and an inverter was attached.

次に、所定形状の金型部品を射出成形機(型締め力4,410kN)に用いて、製造例1で得られた光拡散板用ペレットAを原料として、シリンダー温度280度、金型温度85度の条件下で光拡散板を成形した。得られた光拡散板は、厚み2mm、750mm×430mmの長方形状の平板状であり、その一方の面には、三角プリズムが略平行に複数並んだ凹凸構造の所定のパターンが形成されていた。当該所定のパターンについては下記で詳述する。   Next, using a mold part of a predetermined shape for an injection molding machine (clamping force 4,410 kN), using the light diffusion plate pellet A obtained in Production Example 1 as a raw material, a cylinder temperature of 280 degrees, a mold temperature A light diffusion plate was molded under the condition of 85 degrees. The obtained light diffusing plate was a rectangular flat plate having a thickness of 2 mm and 750 mm × 430 mm, and a predetermined pattern of a concavo-convex structure in which a plurality of triangular prisms were arranged substantially in parallel was formed on one surface thereof. . The predetermined pattern will be described in detail below.

次に、得られた光拡散板を、他方の面(凹凸構造の無い面:光入射面)が熱陰極管側になるようにして、熱陰極管を取り付けたアルミケース上に設置した。この際、熱陰極管の中心と光拡散板の光入射面との距離は25mmであった。   Next, the obtained light diffusing plate was placed on an aluminum case to which a hot cathode tube was attached such that the other surface (surface having no uneven structure: light incident surface) was on the hot cathode tube side. At this time, the distance between the center of the hot cathode tube and the light incident surface of the light diffusion plate was 25 mm.

本実施例で用いた光拡散板上の凹凸構造について、図15及び図16を参照して説明する。光拡散板1401を取り付けた状態で、隣接する熱陰極管(図15中では1402a及び1402b)の中心間の距離の中間1441から熱陰極管の中心までに相当する距離を、A(4mm)、B(30mm)、C(10mm)及びD(6mm)の4つのゾーンに分けた。光拡散板1401の光出射面の各ゾーンには、図16に示すような頂角60°の三角形状の断面を有するプリズム状の凸部1621aと、頂角95°の三角形状の断面を有するプリズム状の凸部1621bとを、下記に示す態様で設けた。   The uneven structure on the light diffusion plate used in this example will be described with reference to FIGS. With the light diffusing plate 1401 attached, a distance corresponding to the center 1441 from the middle 1441 between the centers of adjacent hot cathode tubes (1402a and 1402b in FIG. 15) is A (4 mm), It was divided into four zones, B (30 mm), C (10 mm) and D (6 mm). Each zone of the light exit surface of the light diffusion plate 1401 has a prism-like convex portion 1621a having a triangular cross section with an apex angle of 60 ° as shown in FIG. 16, and a triangular cross section with an apex angle of 95 °. The prism-shaped convex part 1621b was provided in the aspect shown below.

A:1621a/1621b=1/4
B:1621a/1621b=1/3
C:1621a/1621b=1/4
D:1621a/1621b=1/5
A: 1621a / 1621b = 1/4
B: 1621a / 1621b = 1/3
C: 1621a / 1621b = 1/4
D: 1621a / 1621b = 1/5

上の表記は、凹凸構造パターンの繰り返し単位における凸部1621a及び1621bの配置を示す。例えば「1621a/1621b=1/4」の場合、図16に示すとおり、頂角60°の三角形状の凸部1621aが1つと、頂角95°の三角形状の凸部1621bが4つとが並んだ凹凸構造を一単位とし、この単位が繰り返されている構造を示す。   The above notation shows the arrangement of the convex portions 1621a and 1621b in the repeating unit of the concavo-convex structure pattern. For example, in the case of “1621a / 1621b = 1/4”, as shown in FIG. 16, one triangular convex portion 1621a having an apex angle of 60 ° and four triangular convex portions 1621b having an apex angle of 95 ° are arranged. An uneven structure is a unit, and this unit is repeated.

凸部1621a及び凸部1621bの底辺1622a及び1622bはいずれも70μmとした。一方、光入射面は平坦な面とした。   The bases 1622a and 1622b of the convex portions 1621a and 1621b are both 70 μm. On the other hand, the light incident surface was a flat surface.

さらに、この光拡散板の上面(光出射面)上に光学シートとしての、拡散シート(「188GM3」、きもと社製)、プリズムシート(「BEFIII−10T」、住友スリーエム社製)、および反射偏光子(「DBEF−D」、住友スリーエム社製)と、偏光板(「HCL2−2518」、サンリッツ社製)をこの順に設置した。   Further, a diffusion sheet (“188GM3”, manufactured by Kimoto Co., Ltd.), a prism sheet (“BEFIII-10T”, manufactured by Sumitomo 3M Co.) as an optical sheet, and reflected polarized light are provided on the upper surface (light emitting surface) of the light diffusing plate. A child ("DBEF-D", manufactured by Sumitomo 3M) and a polarizing plate ("HCL2-2518", manufactured by Sanlitz) were installed in this order.

次いで、得られた直下型バックライト装置について、管電流175mAで通電し、熱陰極管を点灯させ、二次元色分布測定装置を用いて、短手方向(ケースの奥行き方向)中心線上で等間隔に100点の正面方向の輝度を測定した。中央の輝度の測定値は8462cd/m2であった。また、下記の数式1と数式2に従って、正面方向の輝度平均値(正面輝度)Laと輝度むらLuを得た。輝度むらは1.4%であった。その結果を表1に示す。

輝度平均値 La=(L1+L2)/2 (数式1)
輝度むら Lu=((L1-L2)/La)×100 (数式2)
L1:複数本設置された熱陰極管真上での輝度極大値の平均
L2:極大値に挟まれた極小値の平均
なお、輝度むらは、輝度の均一性を示す指標であり、輝度むらが悪いときは、その数値は大きくなる。
Next, the obtained direct type backlight device is energized at a tube current of 175 mA, the hot cathode tube is turned on, and a two-dimensional color distribution measuring device is used to equidistantly center the short direction (depth direction of the case) on the center line. The luminance of 100 points in the front direction was measured. The central brightness measurement was 8462 cd / m 2 . Further, according to the following formulas 1 and 2, the brightness average value (front brightness) La and brightness unevenness Lu in the front direction were obtained. The luminance unevenness was 1.4%. The results are shown in Table 1.

Luminance average value La = (L1 + L2) / 2 (Formula 1)
Luminance unevenness Lu = ((L1-L2) / La) × 100 (Formula 2)
L1: Average brightness maximum value just above a plurality of installed hot cathode tubes L2: Average minimum value sandwiched between maximum values Note that brightness unevenness is an index indicating brightness uniformity, and brightness unevenness When it is bad, the figure increases.

<実施例2>
光拡散板の凹凸構造パターンを下記に詳述する通りとした他は、実施例1と同様に、直下型バックライト装置を作成した。
<Example 2>
A direct type backlight device was produced in the same manner as in Example 1 except that the uneven structure pattern of the light diffusion plate was as described in detail below.

本実施例で用いた光拡散板上の凹凸構造について、図17及び図18を参照して説明する。光拡散板1701を取り付けた状態で、隣接する熱陰極管(図17中では1402d及び1402e)の中心間の距離の中間1441から熱陰極管の中心までに相当する距離を、A(5mm)、B(5mm)、C(5mm)、D(20mm)及びE(15mm)の5つのゾーンに分けた。光拡散板1701の光出射面の各ゾーンには、図18に示すような頂角90°の三角形状の断面を有するプリズム状の凸部1821aと、平坦な部分1821bとを交互に設けた。凸部1821aの底辺1822aは、全ゾーンにおいて70μmとした一方、平坦部1821bの幅1822bは、各ゾーンごとに下記の通りとした。   The uneven structure on the light diffusion plate used in this example will be described with reference to FIGS. 17 and 18. With the light diffusing plate 1701 attached, a distance corresponding to the center 1441 between the centers of adjacent hot cathode tubes (1402d and 1402e in FIG. 17) to the center of the hot cathode tube is A (5 mm), Divided into 5 zones: B (5 mm), C (5 mm), D (20 mm) and E (15 mm). In each zone of the light emitting surface of the light diffusing plate 1701, prism-shaped convex portions 1821a having a triangular cross section with an apex angle of 90 ° as shown in FIG. 18 and flat portions 1821b are alternately provided. The base 1822a of the convex portion 1821a was 70 μm in all zones, while the width 1822b of the flat portion 1821b was as follows for each zone.

A:46.67μm
B:35μm
C:17.5μm
D:7μm
E:0μm
A: 46.67 μm
B: 35 μm
C: 17.5 μm
D: 7 μm
E: 0 μm

一方、光入射面は平坦な面とした。得られた直下型バックライト装置を、実施例1と同様に評価した。結果を表1に示す。   On the other hand, the light incident surface was a flat surface. The obtained direct type backlight device was evaluated in the same manner as in Example 1. The results are shown in Table 1.

<実施例3>
光拡散板の凹凸構造パターンを下記に詳述する通りとした他は、実施例1と同様に、直下型バックライト装置を作成した。
<Example 3>
A direct type backlight device was produced in the same manner as in Example 1 except that the uneven structure pattern of the light diffusion plate was as described in detail below.

本実施例で用いた光拡散板上の凹凸構造について、図20等を参照して説明する。光拡散板2001を取り付けた状態で、隣接する熱陰極管(図20中では1402f及び1402g)の中心間の距離の中間1441から熱陰極管の中心までに相当する距離を、A(15mm)、B(10mm)及びC(25mm)の3つのゾーンに分けた。   The uneven structure on the light diffusion plate used in this example will be described with reference to FIG. With the light diffusing plate 2001 attached, a distance corresponding to the center 1441 from the middle 1441 between the centers of adjacent hot cathode tubes (1402f and 1402g in FIG. 20) is A (15 mm), It was divided into three zones, B (10 mm) and C (25 mm).

光拡散板2001の光出射面S2050には、その全面に、頂角100°、底辺70μmの三角形状の断面を有するプリズム状の凸部を、平坦な部分のギャップ無く(平坦な部分が存在しないように、即ち、互いに隣接する前記三角形状の底角部分同士が接するように)設けた。   The light exit surface S2050 of the light diffusing plate 2001 has prism-shaped convex portions having a triangular cross section with an apex angle of 100 ° and a base of 70 μm on the entire surface, without a flat portion gap (there is no flat portion). In other words, the triangular base corner portions adjacent to each other are in contact with each other).

一方、光拡散板2001の光入射面S2060の各ゾーンのうち、ゾーンAは平坦な面とした。ゾーンBには図18に示すような三角形状の断面を有するプリズム状の凸部と、平坦な部分とを交互に設けた。ただし、三角形状の頂角は130°、底辺は70μmとし、平坦な部分の幅は70μmとした。ゾーンCには、頂角130°、底辺70μmの三角形状の断面を有するプリズム状の凸部を、平坦な部分のギャップ無く設けた。   On the other hand, among the zones of the light incident surface S2060 of the light diffusing plate 2001, the zone A is a flat surface. In the zone B, prismatic convex portions having a triangular cross section as shown in FIG. 18 and flat portions are alternately provided. However, the apex angle of the triangle was 130 °, the base was 70 μm, and the width of the flat portion was 70 μm. In the zone C, prism-shaped convex portions having a triangular cross section having an apex angle of 130 ° and a base of 70 μm were provided without a flat portion gap.

得られた直下型バックライト装置を、実施例1と同様に評価した。結果を表1に示す。 The obtained direct type backlight device was evaluated in the same manner as in Example 1. The results are shown in Table 1.

<実施例4>
線状光源を径8.0mm、長さ800mmの熱陰極管(株式会社エレバム社製)とし、反射板から熱陰極管の中心までの距離1411は8.75mmとした他は、実施例2と同様に、直下型バックライト装置を作成した。得られた直下型バックライト装置を、実施例1と同様に評価した。結果を表1に示す。
<Example 4>
Example 2 except that the linear light source is a hot cathode tube having a diameter of 8.0 mm and a length of 800 mm (manufactured by Elevum Co., Ltd.), and the distance 1411 from the reflector to the center of the hot cathode tube is 8.75 mm. Similarly, a direct type backlight device was created. The obtained direct type backlight device was evaluated in the same manner as in Example 1. The results are shown in Table 1.

<実施例5>
線状光源を径8.0mm、長さ800mmの熱陰極管(株式会社エレバム社製)とし、反射板から熱陰極管の中心までの距離1411は5.0mmとした他は、実施例3と同様に、直下型バックライト装置を作成した。得られた直下型バックライト装置を、実施例1と同様に評価した。結果を表1に示す。
<Example 5>
The linear light source was a hot cathode tube (made by Elevum Co., Ltd.) having a diameter of 8.0 mm and a length of 800 mm, and the distance 1411 from the reflector to the center of the hot cathode tube was 5.0 mm. Similarly, a direct type backlight device was created. The obtained direct type backlight device was evaluated in the same manner as in Example 1. The results are shown in Table 1.

<比較例1>
光拡散板の凹凸構造パターンを下記のようにした以外は、実施例1と同様に、直下型バックライト装置を作成し、評価した。結果を表1に示す。
入射側に頂角130°、底辺70μmの三角形状の断面を有するプリズム状の凸部を、平坦な部分のギャップ無く設け、出射側には頂角100°、底辺70μmの三角形状の断面を有するプリズム状の凸部を、平坦な部分のギャップ無く設けた。
<Comparative Example 1>
A direct type backlight device was created and evaluated in the same manner as in Example 1 except that the uneven structure pattern of the light diffusion plate was as follows. The results are shown in Table 1.
A prism-like convex portion having a triangular cross section with an apex angle of 130 ° and a base of 70 μm is provided on the incident side without a gap in a flat portion, and a triangular cross section with an apex angle of 100 ° and a base of 70 μm is provided on the output side. The prism-shaped convex part was provided without a gap in the flat part.

<比較例2>
光拡散板の凹凸構造パターンを下記のようにした以外は、実施例1と同様に、直下型バックライト装置を作成し、評価した。結果を表1に示す。
出射側のみに頂角90°、底辺70μmの三角形状の断面を有するプリズム状の凸部を、平坦な部分のギャップ無く設けた。
<Comparative example 2>
A direct type backlight device was created and evaluated in the same manner as in Example 1 except that the uneven structure pattern of the light diffusion plate was as follows. The results are shown in Table 1.
A prism-like convex portion having a triangular cross section with an apex angle of 90 ° and a base of 70 μm was provided only on the output side without a flat portion gap.

<比較例3>
線状光源を実施例4と同様にした以外は、比較例1と同様に、直下型バックライト装置を作成し、評価した。結果を表1に示す。
<Comparative Example 3>
A direct type backlight device was created and evaluated in the same manner as in Comparative Example 1 except that the linear light source was the same as in Example 4. The results are shown in Table 1.

<比較例4>
線状光源を実施例4と同様にした以外は、比較例2と同様に、直下型バックライト装置を作成し、評価した。結果を表1に示す。
<Comparative example 4>
A direct type backlight device was prepared and evaluated in the same manner as in Comparative Example 2 except that the linear light source was the same as in Example 4. The results are shown in Table 1.

Figure 2008123280
Figure 2008123280

Figure 2008123280
Figure 2008123280

<実施例6>
図21に概略的に示すバックライト装置を作成した。内寸幅730mm、奥行き405mm、深さ25mmのアルミ製ケース(図示せず)の内面に反射シート(株式会社ツジデン製、RF188)を貼着して反射板2103とし、径15.5mm、長さ800mmの熱陰極管(株式会社エレバム社製)1402を4本、内寸幅方向に平行に取り付けた。熱陰極管の中心間距離2113は90mm、反射板から熱陰極管の中心までの距離2111は9.75mmとした。電極部近傍をシリコーンシーラントで固定し、インバーターを取り付けた。
<Example 6>
A backlight device schematically shown in FIG. 21 was produced. A reflector sheet (RF188, manufactured by Tsujiden Co., Ltd.) is attached to the inner surface of an aluminum case (not shown) having an inner dimension width of 730 mm, a depth of 405 mm, and a depth of 25 mm to form a reflector 2103 having a diameter of 15.5 mm and a length. Four 800 mm hot-cathode tubes (manufactured by Elevum Co., Ltd.) 1402 were attached in parallel to the inner dimension width direction. The distance 2113 between the centers of the hot cathode tubes was 90 mm, and the distance 2111 from the reflector plate to the center of the hot cathode tubes was 9.75 mm. The vicinity of the electrode part was fixed with a silicone sealant, and an inverter was attached.

次に、所定形状の金型部品を射出成形機(型締め力4,410kN)に用いて、製造例1で得られた光拡散板用ペレットAを原料として、シリンダー温度280度、金型温度85度の条件下で光拡散板を成形した。得られた光拡散板は、厚み2mm、750mm×430mmの長方形状の平板状であり、その一方の面には、三角プリズムが略平行に均一に複数並んだ凹凸構造の所定のパターンが形成され、他方の面には三角プリズムが所定のグラデーションで混合された所定のパターンが形成されていた。当該所定のパターンについては下記で詳述する。   Next, using a mold part of a predetermined shape for an injection molding machine (clamping force 4,410 kN), using the light diffusion plate pellet A obtained in Production Example 1 as a raw material, a cylinder temperature of 280 degrees, a mold temperature A light diffusion plate was molded under the condition of 85 degrees. The obtained light diffusing plate is a rectangular flat plate having a thickness of 2 mm and 750 mm × 430 mm, and a predetermined pattern of a concavo-convex structure in which a plurality of triangular prisms are arranged in a uniform manner in parallel is formed on one surface thereof. On the other surface, a predetermined pattern in which triangular prisms are mixed with a predetermined gradation is formed. The predetermined pattern will be described in detail below.

次に、得られた光拡散板を、前記他方の面が熱陰極管側になるようにして、熱陰極管を取り付けたアルミケース上に設置した。この際、熱陰極管の中心と光拡散板の光入射面との距離は15.25mmであった。また、反射板2003と拡散板2001の光入射面との距離(2111+2112)は25mmであった。   Next, the obtained light diffusing plate was placed on an aluminum case to which a hot cathode tube was attached such that the other surface was on the hot cathode tube side. At this time, the distance between the center of the hot cathode tube and the light incident surface of the light diffusion plate was 15.25 mm. The distance (2111 + 2112) between the reflecting plate 2003 and the light incident surface of the diffusing plate 2001 was 25 mm.

本実施例で用いた光拡散板上の凹凸構造について、図22及び図23を参照して説明する。光拡散板2101を取り付けた状態で、隣接する熱陰極管(図22中では2102a及び2102b)の中心間の距離の中間2141から熱陰極管の中心までに相当する距離を、A(20mm)、B(1.5mm)、C(1mm)、D(1.5mm)、E(6mm)、F(1.5mm)、G(1mm)、H(1.5mm)及びI(11mm)の9つのゾーンに分けた。光拡散板2101の光入射面の各ゾーンには、図23に示すような頂角170°の三角形状の断面を有するプリズム状の凸部2321aと、頂角160°の三角形状の断面を有するプリズム状の凸部2321bと、頂角150°の三角形状の断面を有するプリズム状の凸部2321cを、下記に示す態様で設けた。   The uneven structure on the light diffusion plate used in this example will be described with reference to FIGS. With the light diffusing plate 2101 attached, a distance corresponding to the center 2141 between the centers of adjacent hot cathode tubes (2102a and 2102b in FIG. 22) to the center of the hot cathode tube is A (20 mm), N of B (1.5 mm), C (1 mm), D (1.5 mm), E (6 mm), F (1.5 mm), G (1 mm), H (1.5 mm) and I (11 mm) Divided into zones. Each zone of the light incident surface of the light diffusion plate 2101 has a prism-like convex portion 2321a having a triangular cross section with an apex angle of 170 ° as shown in FIG. 23 and a triangular cross section with an apex angle of 160 °. A prism-shaped convex portion 2321b and a prism-shaped convex portion 2321c having a triangular cross section with an apex angle of 150 ° were provided in the following manner.

A:2321a/2321b/2321c=1/0/0
B:2321a/2321b/2321c=3/1/0
C:2321a/2321b/2321c=1/1/0
D:2321a/2321b/2321c=1/3/0
E:2321a/2321b/2321c=0/1/0
F:2321a/2321b/2321c=0/3/1
G:2321a/2321b/2321c=0/1/1
H:2321a/2321b/2321c=0/1/3
I:2321a/2321b/2321c=0/0/1
A: 2321a / 2321b / 2321c = 1/0/0
B: 2321a / 2321b / 2321c = 3/1/0
C: 2321a / 2321b / 2321c = 1/1/0
D: 2321a / 2321b / 2321c = 1/3/0
E: 2321a / 2321b / 2321c = 0/1/0
F: 2321a / 2321b / 2321c = 0/3/1
G: 2321a / 2321b / 2321c = 0/1/1
H: 2321a / 2321b / 2321c = 0/1/3
I: 2321a / 2321b / 2321c = 0/0/1

上の表記は、凹凸構造パターンの繰り返し単位における凸部2321a、2321b及び2321cの配置を示す。例えば「2321a/2321b/2321c=1/0/0」の場合、頂角170°の三角形状の凸部2321aのみが繰り返されている構造を示す。「2321a/2321b/2321c=3/1/0」の場合、頂角170°の三角形状の凸部2321aが3つと、頂角160°の三角形状の凸部2321bが1つとが並んだ凹凸構造を一単位とし、この単位が繰り返されている構造を示す。「2321a/2321b/2321c=0/3/1」の場合、頂角160°の三角形状の凸部2321bが3つと、頂角150°の三角形状の凸部2321cが1つとが並んだ凹凸構造を1単位とし、この単位が繰り返されている構造を示す。   The above notation shows the arrangement of the convex portions 2321a, 2321b, and 2321c in the repeating unit of the concavo-convex structure pattern. For example, in the case of “2321a / 2321b / 2321c = 1/0/0”, a structure in which only the triangular convex portion 2321a having an apex angle of 170 ° is repeated is shown. In the case of “2321a / 2321b / 2321c = 3/1/0”, a concavo-convex structure in which three triangular convex portions 2321a having an apex angle of 170 ° and one triangular convex portion 2321b having an apex angle of 160 ° are arranged side by side Represents a structure in which this unit is repeated. In the case of “2321a / 2321b / 2321c = 0/3/1”, the concavo-convex structure in which three triangular convex portions 2321b having an apex angle of 160 ° and one triangular convex portion 2321c having an apex angle of 150 ° are arranged side by side 1 represents a structure in which this unit is repeated.

凸部2321a、凸部2321b及び凸部2321cの底辺2322a、2322b及び2322cはいずれも70μmとした。   The bases 2322a, 2322b, and 2322c of the convex portion 2321a, the convex portion 2321b, and the convex portion 2321c are all 70 μm.

一方、光出射面には、図3に示すような態様で、頂角100°、底辺70μmのプリズム形状の凸部を全面に設けた。   On the other hand, a prism-shaped convex part having an apex angle of 100 ° and a base of 70 μm was provided on the entire surface of the light emitting surface in the manner shown in FIG.

さらに、この光拡散板の上面(光出射面)上に光学シートとしての、拡散シート(「188GM3」、きもと社製)、プリズムシート(「BEFIII−10T」、住友スリーエム社製)、および反射偏光子(「DBEF−D」、住友スリーエム社製)と、偏光板(「HCL2−2518」、サンリッツ社製)をこの順に設置した。   Further, a diffusion sheet (“188GM3”, manufactured by Kimoto Co., Ltd.), a prism sheet (“BEFIII-10T”, manufactured by Sumitomo 3M Co.) as an optical sheet, and reflected polarized light are provided on the upper surface (light emitting surface) of the light diffusing plate. A child ("DBEF-D", manufactured by Sumitomo 3M) and a polarizing plate ("HCL2-2518", manufactured by Sanlitz) were installed in this order.

次いで、得られた直下型バックライト装置について、管電流175mAで通電し、熱陰極管を点灯させ、二次元色分布測定装置を用いて、短手方向(ケースの奥行き方向)中心線上で等間隔に100点の正面方向の輝度を測定した。中央の輝度の測定値は8261cd/m2であった。また、上記の数式1と数式2に従って、正面方向の輝度平均値(正面輝度)Laと輝度むらLuを得た。輝度むらは1.5%であった。Next, the obtained direct type backlight device is energized at a tube current of 175 mA, the hot cathode tube is turned on, and a two-dimensional color distribution measuring device is used to equidistantly center the short direction (depth direction of the case) on the center line. The luminance of 100 points in the front direction was measured. The measured value of the central brightness was 8261 cd / m 2 . Further, according to the above formulas 1 and 2, the brightness average value (front brightness) La and brightness unevenness Lu in the front direction were obtained. The luminance unevenness was 1.5%.

<実施例7>
光拡散板のパターンを、以下に述べる通りのものに変更した他は、実施例6と同様にして、図21に概略的に示すバックライト装置を作成した。
<Example 7>
A backlight device schematically shown in FIG. 21 was produced in the same manner as in Example 6 except that the pattern of the light diffusing plate was changed to the one described below.

本実施例で用いた光拡散板上の凹凸構造について、図20を参照して説明する。光拡散板(図20では2001)を取り付けた状態で、隣接する熱陰極管(図20では1402f及び1402g)の中心間の距離の中間(図20では1441から熱陰極管の中心までに相当する距離を、A(5mm)、B(5mm)及びC(80mm)の3つのゾーンに分けた。光拡散板(図20では2001)の光出射面の各ゾーンには、頂角105°の三角形状の断面を有するプリズム状の凸部と、頂角160°の三角形状の断面を有するプリズム状の凸部とを、下記に示す態様で設けた。   The uneven structure on the light diffusion plate used in this example will be described with reference to FIG. With the light diffusing plate (2001 in FIG. 20) attached, it corresponds to the middle of the distance between the centers of adjacent hot cathode tubes (1402f and 1402g in FIG. 20) to the center of the hot cathode tube in FIG. The distance was divided into three zones: A (5 mm), B (5 mm), and C (80 mm) Each zone on the light exit surface of the light diffusing plate (2001 in FIG. 20) has a triangle with an apex angle of 105 °. The prism-shaped convex part which has a cross section of a shape, and the prism-shaped convex part which has a triangular-shaped cross section with an apex angle of 160 degrees were provided in the aspect shown below.

ゾーンAにおいては、頂角105°の三角形状の凸部1つと頂角160°の三角形状の凸部1つとが並んだ凹凸構造を一単位とし、この単位が繰り返されている構造とした。
ゾーンBにおいては、頂角105°の三角形状の凸部2つと頂角160°の三角形状の凸部1つとが並んだ凹凸構造を一単位とし、この単位が繰り返されている構造とした。
ゾーンCにおいては、頂角105°の三角形状の凸部3つと頂角160°の三角形状の凸部1つとが並んだ凹凸構造を一単位とし、この単位が繰り返されている構造とした。
In zone A, a concavo-convex structure in which one triangular convex portion having an apex angle of 105 ° and one triangular convex portion having an apex angle of 160 ° are arranged as one unit, and this unit is repeated.
In zone B, a concavo-convex structure in which two triangular convex portions having an apex angle of 105 ° and one triangular convex portion having an apex angle of 160 ° are arranged as one unit, and this unit is repeated.
In the zone C, a concavo-convex structure in which three triangular convex portions having an apex angle of 105 ° and one triangular convex portion having an apex angle of 160 ° are arranged as one unit, and this unit is repeated.

頂角105°の三角形状及び頂角160°の三角形状の底辺はいずれも70μmとした。   The bases of the triangular shape with an apex angle of 105 ° and the triangular shape with an apex angle of 160 ° were both set to 70 μm.

一方、光入射面には、図3に示すような態様で、頂角130°、底辺70μmのプリズム形状の凸部を全面に設けた。   On the other hand, on the light incident surface, prism-shaped convex portions having an apex angle of 130 ° and a base of 70 μm were provided on the entire surface in the manner shown in FIG.

次いで、得られた直下型バックライト装置について、管電流175mAで通電し、熱陰極管を点灯させ、二次元色分布測定装置を用いて、短手方向(ケースの奥行き方向)中心線上で等間隔に100点の正面方向の輝度を測定した。また、上記の数式1と数式2に従って、正面方向の輝度平均値(正面輝度)Laと輝度むらLuを得た。中央の輝度の測定値は8344cd/mであった。輝度むらは1.9%であった。Next, the obtained direct type backlight device is energized at a tube current of 175 mA, the hot cathode tube is turned on, and a two-dimensional color distribution measuring device is used to equidistantly center the short direction (depth direction of the case) on the center line. The luminance of 100 points in the front direction was measured. Further, according to the above formulas 1 and 2, the brightness average value (front brightness) La and brightness unevenness Lu in the front direction were obtained. The central brightness measurement was 8344 cd / m 2 . The luminance unevenness was 1.9%.

<比較例5>
線状光源を径3.0mm、長さ800mmの冷陰極管(ハリソン東芝ライティング社製)とし、さらに管電流4mAで通電して冷陰極管を点灯させた以外は、実施例6と同様に、直下型バックライト装置を作成し、評価した。中央の輝度の測定値は2615cd/mであった。輝度むらは5.2%であった。
<Comparative Example 5>
As in Example 6, except that the linear light source was a cold cathode tube having a diameter of 3.0 mm and a length of 800 mm (made by Harrison Toshiba Lighting Co., Ltd.), and the cold cathode tube was turned on by energizing with a tube current of 4 mA. A direct type backlight device was created and evaluated. The central brightness measurement was 2615 cd / m 2 . The luminance unevenness was 5.2%.

Figure 2008123280
Figure 2008123280

Claims (11)

互いに略平行に配置された複数本の線状光源と、これらの線状光源からの光を反射する反射板と、前記線状光源からの直射光および前記反射板からの反射光を光入射面から入射し、光出射面から拡散照射する光拡散板とを備える直下型バックライト装置であって、
前記線状光源は、外径が5mm〜30mmであり、
前記光出射面および前記光入射面の少なくともいずれかには、その少なくとも一部の箇所に凹凸構造が形成され、
前記光拡散板において、前記線状光源の外径を、前記光拡散板に垂直に投影した場合に、その投影された部分の凹凸構造と、
前記光拡散板において、互いに隣接する線状光源の中間位置を中心とし、かつ前記線状光源の外径と同じ幅を有する部分の凹凸構造とが、異なる形状であることを特徴とする直下型バックライト装置。
A plurality of linear light sources arranged substantially parallel to each other, a reflecting plate that reflects light from these linear light sources, direct light from the linear light source and reflected light from the reflecting plate as a light incident surface A direct-type backlight device comprising a light diffusing plate that is incident from and diffused from a light exit surface,
The linear light source has an outer diameter of 5 mm to 30 mm,
At least one of the light emitting surface and the light incident surface is formed with a concavo-convex structure at least at a part thereof,
In the light diffusing plate, when the outer diameter of the linear light source is projected perpendicularly to the light diffusing plate, the uneven structure of the projected portion;
In the light diffusing plate, a direct type characterized in that the concave-convex structure of the portion having the same width as the outer diameter of the linear light source has a different shape centering on an intermediate position between adjacent linear light sources Backlight device.
請求項1に記載の直下型バックライト装置において、
前記線状光源は、熱陰極管であることを特徴とする直下型バックライト装置。
In the direct type backlight device according to claim 1,
The direct-type backlight device, wherein the linear light source is a hot cathode tube.
請求項1に記載の直下型バックライト装置において、
前記凹凸構造は、前記線状光源の長手方向に沿って延びる線状プリズムが略平行に複数並んだプリズム条列であり、
前記線状プリズムの、前記線状光源の長手方向に垂直な断面は、曲線状又は多角形状の凸部、略平坦な部分、又はこれらの組み合わせであることを特徴とする直下型バックライト装置。
In the direct type backlight device according to claim 1,
The concavo-convex structure is a prism row in which a plurality of linear prisms extending along the longitudinal direction of the linear light source are arranged substantially in parallel.
A direct type backlight device characterized in that a cross section of the linear prism perpendicular to the longitudinal direction of the linear light source is a curved or polygonal convex portion, a substantially flat portion, or a combination thereof.
請求項3に記載の直下型バックライト装置において、
前記線状プリズムの、前記線状光源の長手方向に垂直な断面は、2種類以上の異なる形状の凸部を含み、当該2種類以上の凸部の存在比が、前記線状光源から遠ざかるにつれて、連続的又は段階的に変化することを特徴とする直下型バックライト装置。
In the direct type backlight device according to claim 3,
The cross section of the linear prism perpendicular to the longitudinal direction of the linear light source includes two or more types of convex portions having different shapes, and the abundance ratio of the two or more types of convex portions moves away from the linear light source. A direct-type backlight device that changes continuously or stepwise.
請求項3に記載の直下型バックライト装置において、
前記線状プリズムの、前記線状光源の長手方向に垂直な断面は、前記凸部及び前記略平坦な部分の両方を含み、これらの存在比が、線状光源から遠ざかるにつれて、連続的又は段階的に変化することを特徴とする直下型バックライト装置。
In the direct type backlight device according to claim 3,
The cross section of the linear prism perpendicular to the longitudinal direction of the linear light source includes both the convex portion and the substantially flat portion, and these abundance ratios are continuous or stepped as they move away from the linear light source. Directly-type backlight device characterized by a change.
請求項1に記載の直下型バックライト装置において、
前記光拡散板の光出射面側に設けられた光学シートをさらに備え、
前記線状光源の長手方向に垂直な断面において、
任意の線状光源をAとし、この線状光源Aに隣接する線状光源をBとし、
前記線状光源Aと前記線状光源Bとの中間の位置を前記光入射面に投影した中間位置をXとし、
前記線状光源Aと前記線状光源Bとの間に位置し、かつ前記中間位置Xよりも前記線状光源Aに近い側の前記光入射面上の任意の点をPとし、
前記線状光源Aの中心をCとし、
前記中心Cから前記点Pの方向へ入射した光の前記点Pにおける全光線透過率Tpが、前記中心Cから前記中間位置Xの方向へ入射した光の前記点Xにおける全光線透過率Txよりも小さいことを特徴とする直下型バックライト装置。
In the direct type backlight device according to claim 1,
Further comprising an optical sheet provided on the light exit surface side of the light diffusing plate,
In a cross section perpendicular to the longitudinal direction of the linear light source,
Arbitrary linear light source is A, linear light source adjacent to this linear light source A is B,
An intermediate position obtained by projecting an intermediate position between the linear light source A and the linear light source B onto the light incident surface is X,
P is an arbitrary point on the light incident surface located between the linear light source A and the linear light source B and closer to the linear light source A than the intermediate position X,
The center of the linear light source A is C,
The total light transmittance Tp at the point P of light incident in the direction of the point P from the center C is based on the total light transmittance Tx at the point X of light incident from the center C in the direction of the intermediate position X. Directly-type backlight device characterized by being small.
請求項6に記載の直下型バックライト装置において、
前記中心Cと前記点Pとを結ぶ線分の長さをLCPとし、
前記中心Cを前記光入射面に垂直に投影した点をQとし、
前記中心Cと前記点Qとを結ぶ線分の長さをLCQとし、
前記中心Cから前記点Qの方向へ入射した光の前記点Qにおける全光線透過率をTqとし、
0.2×(Tq・LCP/LCQ)≦Tp≦5.0×(Tq・LCP/LCQ)の関係を満たすことを特徴とする直下型バックライト装置。
The direct type backlight device according to claim 6,
The length of the line segment connecting the center C and the point P is LCP,
Let Q be the point at which the center C is projected perpendicularly to the light incident surface.
LCQ is the length of the line connecting the center C and the point Q,
Tq is the total light transmittance at the point Q of light incident in the direction of the point Q from the center C,
A direct-type backlight device satisfying a relationship of 0.2 × (Tq · LCP / LCQ) ≦ Tp ≦ 5.0 × (Tq · LCP / LCQ).
請求項1に記載の直下型バックライト装置において、
前記凹凸構造が、前記光拡散板の前記光出射面の少なくとも一部及び前記光入射面の少なくとも一部の両方に形成されていることを特徴とする直下型バックライト装置。
In the direct type backlight device according to claim 1,
The direct-type backlight device, wherein the concavo-convex structure is formed on both at least a part of the light emitting surface and at least a part of the light incident surface of the light diffusing plate.
請求項8に記載の直下型バックライト装置において、
前記凹凸構造は、前記線状光源の長手方向に沿って延びる線状プリズムが略平行に複数並んだプリズム条列であり、その少なくとも一部の、前記線状光源の長手方向に垂直な断面が、多角形状であり、前記多角形状は、前記断面における光拡散板の厚み方向に平行な軸を中心として対称であることを特徴とする直下型バックライト装置。
The direct type backlight device according to claim 8,
The concavo-convex structure is a prism row in which a plurality of linear prisms extending along the longitudinal direction of the linear light source are arranged substantially in parallel, and a cross section perpendicular to the longitudinal direction of the linear light source is at least a part thereof. The direct-type backlight device is a polygonal shape, and the polygonal shape is symmetric about an axis parallel to the thickness direction of the light diffusion plate in the cross section.
請求項8に記載の直下型バックライト装置において、
前記線状光源から遠ざかり、互いに隣接する前記線状光源の中間位置に向かうにつれて、
前記光出射面または前記光入射面の少なくともどちらか一方の前記線状プリズムの斜面と、前記光拡散板の厚み方向に垂直な平面とがなす角が、連続的または段階的に大きくなることを特徴とする直下型バックライト装置。
The direct type backlight device according to claim 8,
As moving away from the linear light source and toward the intermediate position of the linear light sources adjacent to each other,
An angle formed by the slope of the linear prism on at least one of the light exit surface and the light entrance surface and a plane perpendicular to the thickness direction of the light diffusion plate is increased continuously or stepwise. A direct type backlight device.
請求項8に記載の直下型バックライト装置において、
前記線状光源から遠ざかり、互いに隣接する前記線状光源の中間位置に向かうにつれて、
前記光出射面または前記光入射面の少なくともどちらか一方の前記線状プリズムにおいて、2種類以上の線状プリズムの混合比率が連続的または段階的に変化し、互いに隣接する前記線状光源の中間位置に向かうにつれて傾斜角の大きい線状プリズムの比率が連続的または段階的に大きくなることを特徴とする直下型バックライト装置。
The direct type backlight device according to claim 8,
As moving away from the linear light source and toward the intermediate position of the linear light sources adjacent to each other,
In the linear prism on at least one of the light exit surface and the light entrance surface, the mixing ratio of two or more types of linear prisms changes continuously or stepwise, so that they are intermediate between the adjacent linear light sources. A direct type backlight device characterized in that the ratio of linear prisms having a large inclination angle increases continuously or stepwise as it goes to a position.
JP2009509128A 2007-03-30 2008-03-26 Direct backlight unit Pending JPWO2008123280A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007094143 2007-03-30
JP2007094143 2007-03-30
JP2007147346 2007-06-01
JP2007147346 2007-06-01
PCT/JP2008/055667 WO2008123280A1 (en) 2007-03-30 2008-03-26 Direct-lighting backlight apparatus

Publications (1)

Publication Number Publication Date
JPWO2008123280A1 true JPWO2008123280A1 (en) 2010-07-15

Family

ID=39830768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009509128A Pending JPWO2008123280A1 (en) 2007-03-30 2008-03-26 Direct backlight unit

Country Status (4)

Country Link
JP (1) JPWO2008123280A1 (en)
KR (1) KR20090125753A (en)
TW (1) TW200848879A (en)
WO (1) WO2008123280A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053265A (en) * 2009-08-31 2011-03-17 Hitachi Chem Co Ltd Diffraction type condensing film and surface light source device
CN111435204A (en) * 2019-06-28 2020-07-21 宁波激智科技股份有限公司 Quadrangular frustum pyramid brightness enhancement film and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214035A (en) * 1997-01-30 1998-08-11 Canon Inc Back light device and liquid crystal display device using the same
JP3929599B2 (en) * 1998-05-21 2007-06-13 三菱レイヨン株式会社 Prism sheet and surface light source element
JP2000231103A (en) * 1999-02-09 2000-08-22 Mitsubishi Rayon Co Ltd Lens sheet and back light and liquid crystal display device using the same
JP2003022701A (en) * 2001-07-09 2003-01-24 Furukawa Electric Co Ltd:The Light box
JP4873683B2 (en) * 2005-04-19 2012-02-08 チェイル インダストリーズ インコーポレイテッド Surface light source device
JP2007003852A (en) * 2005-06-24 2007-01-11 Sony Corp Diffusion sheet, method for manufacturing diffusion sheet, backlight device and liquid crystal display device

Also Published As

Publication number Publication date
WO2008123280A1 (en) 2008-10-16
KR20090125753A (en) 2009-12-07
TW200848879A (en) 2008-12-16

Similar Documents

Publication Publication Date Title
US7726826B2 (en) Direct-type backlight device
JP4552563B2 (en) Direct backlight unit
JPWO2007032469A1 (en) Direct backlight unit
JPWO2007049618A1 (en) Light diffusion plate and direct type backlight device
US7857475B2 (en) Direct-type backlight device
JPWO2007055115A1 (en) Direct backlight unit
JP2006302876A (en) Direct type backlight device
US20090190329A1 (en) Light diffusing plate, direct-type backlight device and liquid crystal display system
JP2007294295A (en) Direct-downward backlight device
JP2006195276A (en) Direct-type backlight
JP2010040194A (en) Direct backlight apparatus
JP2006310150A (en) Direct backlight device
JP2007163810A (en) Light diffusion plate and direct backlight device
JP2007095386A (en) Direct backlight device
JP2008091114A (en) Direct backlight device and display device
WO2009096293A1 (en) Direct backlighting device
JP4604767B2 (en) Direct backlight unit
JPWO2008123280A1 (en) Direct backlight unit
JP2007298698A (en) Light diffusing plate and planar irradiation apparatus
JP4770166B2 (en) Direct backlight unit
WO2010005051A1 (en) Direct under type backlighting device and liquid crystal display device
JP2008071716A (en) Direct backlight device
JP2009140712A (en) Direct backlight device
WO2009110379A1 (en) Direct backlight unit
JP2006155926A (en) Direct backlight device