JP2007103322A - Illumination device, light control member equipped with it, and image display device using it - Google Patents

Illumination device, light control member equipped with it, and image display device using it Download PDF

Info

Publication number
JP2007103322A
JP2007103322A JP2005295750A JP2005295750A JP2007103322A JP 2007103322 A JP2007103322 A JP 2007103322A JP 2005295750 A JP2005295750 A JP 2005295750A JP 2005295750 A JP2005295750 A JP 2005295750A JP 2007103322 A JP2007103322 A JP 2007103322A
Authority
JP
Japan
Prior art keywords
light
control member
incident
light source
light control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005295750A
Other languages
Japanese (ja)
Inventor
Ikuo Onishi
伊久雄 大西
Takeshi Kanda
毅 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005295750A priority Critical patent/JP2007103322A/en
Publication of JP2007103322A publication Critical patent/JP2007103322A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an illumination device and an image display device wherein it is not necessary to adjust the position of light sources, a lamp image is eliminated, and homogenization of brightness is excellent in the emitting face. <P>SOLUTION: A reflecting plate 2, the light sources 1, and a light control member 4 are arranged from the light incident side toward the light emitting side in this order. The light control member 4 is provided with the incident face and the emitting face. When the distance between an arbitrary light source X and another light source Y most adjacent thereto is D and the distance between the light source X and the light control member 4 is H, the total light transmittance of the light entering an arbitrary point on the incident face at the angle α=Tan-1ä(D/2)/H} to the normal direction of the incident face is 50% or more and 1.05-3.0 times as much as that of the light entering the point on the incident face from the normal direction. A plurality of convex parts are formed on the emitting face of the light control member 4, and the convex parts are composed of a material of which the refractive index is 1.58 or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の光源を有する照明装置及びこれを用いた画像表示装置に関するものであり、特に、大型で高輝度と輝度均一性が要求される照明看板装置、液晶ディスプレイ装置等に好適に用いられる直下方式の照明装置これが備える光制御部材及びこれを用いた画像表示装置に関するものである。   The present invention relates to an illuminating device having a plurality of light sources and an image display device using the illuminating device, and is particularly suitable for a large-sized lighting signage device, a liquid crystal display device, and the like that require high luminance and luminance uniformity. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct-type illumination device, a light control member provided in the illumination device, and an image display device using the light control member.

画像表示装置用の照明装置を例にすると、導光板の側端に配した光源の光を導光板で正面方向に誘導し、拡散シートで均一化するエッジライト方式と、照明面の裏側に光源を配し、光を拡散板で均一化する直下方式が挙げられる。
直下方式は、光源を装置の背面に備えることから厚さが厚くなる傾向があり、このため、携帯電話やモバイルパソコンなどの薄さを要求される分野では、光源を側端に備えることで有利となるエッジライト方式が主流であった。
Taking an illumination device for an image display device as an example, an edge light system in which light from a light source disposed on the side edge of the light guide plate is guided in the front direction by the light guide plate and made uniform by a diffusion sheet, and a light source on the back side of the illumination surface And a direct system in which light is made uniform with a diffuser.
The direct type has a tendency to increase the thickness because the light source is provided on the back surface of the apparatus. For this reason, it is advantageous to provide the light source at the side edge in a field where thinness is required such as a mobile phone or a mobile personal computer. The edge-light method is the mainstream.

一方で、近年、テレビやパソコンモニターなどの市場を中心にディスプレイの大型化および高輝度化の要求が高まってきた。特にディスプレイの大型化に伴い、上記エッジライト方式では、光源を配置できる周辺部の長さの表示面積に対する割合が減少して、光量が不足するため、充分な輝度を得ることができない。
そこで、面光源上に複数の輝度向上のためのフィルムを配置して、光の利用効率を向上させる方法が提案されている(例えば、特許文献1参照)。
On the other hand, in recent years, there has been an increasing demand for larger displays and higher brightness mainly in the market of televisions and personal computer monitors. In particular, with the increase in the size of the display, the edge light method reduces the ratio of the length of the peripheral portion where the light source can be arranged to the display area, and the amount of light is insufficient, so that sufficient luminance cannot be obtained.
Therefore, a method has been proposed in which a plurality of films for improving luminance are arranged on a surface light source to improve the light use efficiency (see, for example, Patent Document 1).

しかしながら、輝度向上フィルムは、コストアップに繋がること、また使用するフィルムの数が多くなることから、生産性や薄型化の観点から必ずしも有利とはいえない。また、エッジライト方式ではディスプレイの大型化に伴い導光板の重量が増加するといった問題もある。このように、エッジライト方式では、近年のディスプレイの大型化、高輝度化のといった市場の要求に応えることは困難となってきた。   However, the brightness enhancement film is not necessarily advantageous from the viewpoint of productivity and thinning because it leads to an increase in cost and the number of films to be used increases. Further, the edge light system has a problem that the weight of the light guide plate increases as the display becomes larger. As described above, in the edge light system, it has been difficult to meet market demands such as an increase in display size and brightness in recent years.

そこで、複数光源による直下方式が注目されている。この方式は、光源から放射される光の利用効率、即ち光源から放射される光束のうち発光面から放射される光束の割合が高く、かつ、光源の数を自由に増加させることができる。
すなわち、光量を自由に増加させることができるため、要求される高輝度が容易に得られ、また、大型化による輝度低下や輝度均一性の低下がない。さらに、光を正面に向ける導光板が不要となるため、軽量化を図ることができる。
また、他の照明装置として、例えば照明看板などでは、構成が単純であり、輝度向上のためのフィルムなどを用いることなく、容易に高輝度が得られることから、複数光源による直下方式が主流である。
Therefore, a direct method using a plurality of light sources is attracting attention. In this method, the utilization efficiency of light emitted from the light source, that is, the ratio of the light flux emitted from the light emitting surface to the light flux emitted from the light source is high, and the number of light sources can be increased freely.
That is, since the amount of light can be increased freely, the required high brightness can be easily obtained, and there is no reduction in brightness or brightness uniformity due to an increase in size. Furthermore, since a light guide plate that directs light to the front is not necessary, the weight can be reduced.
Also, as other lighting devices, for example, lighting signboards, etc., have a simple configuration, and high brightness can be easily obtained without using a film for improving brightness. is there.

しかしながら、直下方式では、ランプイメージの解消、薄型化、省エネルギーといった独特の課題を解決しなければならない。特に、前記ランプイメージは、エッジライト方式よりもはるかに顕著な輝度ムラとして現れる。このため、従来、エッジライト方式で用いられてきた手段、即ち、フィルム表面に拡散材を塗布した拡散フィルムなどの手段では、ランプイメージの解消が困難である。   However, the direct system has to solve unique problems such as elimination of lamp image, thinning, and energy saving. In particular, the lamp image appears as brightness unevenness much more remarkable than the edge light method. For this reason, it is difficult to eliminate the lamp image by means conventionally used in the edge light system, that is, means such as a diffusion film in which a diffusion material is applied to the film surface.

そこで、拡散材を含有した拡散板が広く用いられている。この方式では、たとえば、図17に示すように、背面側に反射板2を配置した光源1の前面側に拡散板20を設置している。そして、良好な拡散性と光利用効率を得るために、メタクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、塩化ビニル系樹脂等の基材樹脂に、無機微粒子や架橋有機微粒子を光拡散材として配合して、光拡散板を作製する方法(例えば、特許文献2参照)が検討されている。   Therefore, a diffusion plate containing a diffusion material is widely used. In this method, for example, as shown in FIG. 17, a diffusion plate 20 is installed on the front side of the light source 1 in which the reflection plate 2 is arranged on the back side. In order to obtain good diffusibility and light utilization efficiency, inorganic fine particles and cross-linked organic fine particles are blended as a light diffusing material in base resin such as methacrylic resin, polycarbonate resin, styrene resin, and vinyl chloride resin. Thus, a method for producing a light diffusing plate (for example, see Patent Document 2) has been studied.

しかし、これら拡散材を用いる方法では拡散材への光の吸収や、不要な方向への光の拡散のため光の利用効率が低下し省エネルギーの観点から好ましくない。また、光源を近接して多数配置することでランプイメージは軽減できるが、消費電力が増加する問題がある。   However, the method using these diffusing materials is not preferable from the viewpoint of energy saving because the light use efficiency decreases due to the absorption of light into the diffusing material and the diffusion of light in unnecessary directions. Moreover, although a lamp image can be reduced by arranging many light sources close to each other, there is a problem that power consumption increases.

一方、反射板に独特の形状をもたせて、ランプイメージを消去する方法も提案されている(例えば、特許文献3参照)。しかし、反射板形状と光源との位置合わせが必要であること、反射板の形状のため、薄型化が阻害される場合があること、などから好ましくない。   On the other hand, a method of erasing the lamp image by giving the reflector a unique shape has been proposed (see, for example, Patent Document 3). However, it is not preferable because it is necessary to align the shape of the reflector and the light source, and the thickness of the reflector may be hindered due to the shape of the reflector.

また、光源に対向して反射性部材を設置する方法(例えば、特許文献4参照)、光源ごとに、例えばフレネルレンズのような光線方向変換素子を配す方法など(例えば、特許文献5参照)も提案されているが、特許文献3に記載の方法と同様に、前記部材と光源との正確な位置合わせが必要であることから、生産性が劣るといった課題が生じる。   Also, a method of installing a reflective member facing the light source (for example, see Patent Document 4), a method of arranging a light beam direction conversion element such as a Fresnel lens for each light source, etc. (for example, see Patent Document 5) However, as in the method described in Patent Document 3, since accurate alignment between the member and the light source is necessary, there arises a problem that productivity is inferior.

大型照明装置においては、携帯電話やモバイルパソコンなどに比べて、薄型化についての要求は厳しくないため、光源と拡散板との距離を短くすることや、光学フィルムの枚数削減などで対応できる。   In large illuminating devices, the demand for thinning is not strict as compared with mobile phones, mobile personal computers, and the like, so it can be dealt with by shortening the distance between the light source and the diffusion plate or reducing the number of optical films.

また、省エネルギーを実現するには、光利用効率を高めることが必要である。直下方式は、前述のように光源本数を増やすことができ、高輝度を得ることが容易であるが、省エネルギーの視点からは、ランプイメージ解消のために大量の拡散材を用いるなどの、光利用効率を大きく下げる手段によることは避けなければならない。
特開平2−17号公報 特開昭54−155244号公報 特許2852424号公報 特開2000−338895号公報 特開2002−352611号公報
In order to realize energy saving, it is necessary to increase the efficiency of light utilization. The direct method can increase the number of light sources as described above, and it is easy to obtain high brightness, but from the viewpoint of energy saving, use of light such as using a large amount of diffusing material to eliminate the lamp image. You must avoid measures that greatly reduce efficiency.
Japanese Patent Laid-Open No. 2-17 JP 54-155244 A Japanese Patent No. 2852424 JP 2000-338895 A JP 2002-352611 A

そこで、本発明は、出射面における輝度が高く、且つ、光利用効率が高く、大型化に伴う部材の光学設計変更や輝度低下や輝度均一性低下がないことから大型化への対応が容易で、光源と他の部材の厳密な位置合わせをすることなくランプイメージが解消され、光源と他の部材を近づけたりフィルム構成を単純化したりするという薄型化にも対応できる、複数光源直下方式の照明装置これが備える光制御部材およびこれを用いた画像表示装置を提供することを目的とする。   Therefore, the present invention has high brightness on the exit surface, high light utilization efficiency, and there is no change in the optical design of the member, brightness reduction, and brightness uniformity reduction associated with the increase in size, so that it is easy to cope with the increase in size. The lamp image is eliminated without strict alignment between the light source and other members, and the lighting system directly below the multiple light sources can be used to reduce the thickness of the light source and other members close to each other or simplify the film configuration. An object of the present invention is to provide a light control member included in the device and an image display device using the light control member.

本発明者らは上記課題に鑑みて、以下の検討をなし本発明に至った。
複数光源直下方式の照明装置では、出射する光のエネルギーは、各光源に対向する位置では大きく、隣接する光源同士の間に対向する位置では小さい。そこで、光源に対向する位置から出光する光を、光制御部材での適度な反射によって弱めると共に、反射光を反射板で拡散光として、再び光制御部材に戻して出射させる。
In view of the above-mentioned problems, the present inventors have made the following studies and have reached the present invention.
In the illumination device of the type directly below the plurality of light sources, the energy of the emitted light is large at a position facing each light source and small at a position facing between adjacent light sources. Therefore, the light emitted from the position facing the light source is weakened by appropriate reflection at the light control member, and the reflected light is returned to the light control member again as diffused light by the reflector.

これにより、光の利用効率を大きく低下させることなく、光源に対向する位置とそれ以外の位置から出射する光のエネルギーとが等しくなり、ランプイメージが解消されること、ならびに、この目的を達成するために、光制御部材の、光源に対向する位置と隣接する2つの光源の中間点に対向する位置の全光線透過率の比を適当な範囲に制御する、という手段を見出すに至った。   As a result, the energy of the light emitted from the position opposite to the light source and the position other than the light source becomes equal without greatly reducing the light use efficiency, and the lamp image is eliminated, and this object is achieved. For this reason, the inventors have found a means for controlling the ratio of the total light transmittance of the light control member at a position facing the light source and a position facing the midpoint between the two adjacent light sources to an appropriate range.

本発明者らは更に詳細に検討し、最適な全光線透過率の比の範囲を見出した。また、この方法によって、光利用効率を下げる拡散材の使用を回避もしくは大幅に減少することができ、高い光利用効率が達成されることを見出した。
また、光源と光制御部材の位置あわせを不要とするためには、光制御部材における入射面上の任意の点で、全光線透過率について同じ性質をもつ必要がある。すなわち、入射面上の任意の点で均一な光学的性質を持つことが必要であると結論した。ここで「点」とは少なくとも視覚に影響を及ぼさない微小な領域を示す。
The inventors of the present invention studied in more detail and found an optimum range of the total light transmittance ratio. It has also been found that this method can avoid or greatly reduce the use of a diffusing material that lowers the light utilization efficiency, and achieves a high light utilization efficiency.
Further, in order to eliminate the need for alignment of the light source and the light control member, it is necessary to have the same property with respect to the total light transmittance at an arbitrary point on the incident surface of the light control member. That is, it was concluded that it is necessary to have a uniform optical property at an arbitrary point on the incident surface. Here, “point” indicates at least a minute region that does not affect the visual perception.

上記の検討結果に基づいて成された請求項1記載の発明は、規則的に配置した複数の光源と、反射板と、前記光源および前記反射板からの光が透過する際に出射方向を制御する光制御部材とを少なくとも備える直下方式の照明装置であって、光入射側から光出射側に向かって前記反射板、光源及び光制御部材がこの順に配置され、該光制御部材が主として受光する入射面と、主として出光する出射面とを備え、任意の光源Xとその最近傍にある別の光源Yとの間の距離をD、該光源Xと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、且つ、全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜3倍であり、前記光制御部材の出射面上に複数の凸部が形成され、該凸部が屈折率が1.58以上である材料から構成される照明装置を提供する。 The invention according to claim 1, which is made based on the above examination results, controls a light emitting direction when a plurality of regularly arranged light sources, a reflecting plate, and light from the light source and the reflecting plate are transmitted. A direct-type illumination device including at least a light control member, wherein the reflector, the light source, and the light control member are arranged in this order from the light incident side to the light emitting side, and the light control member mainly receives light. Provided with an incident surface and an exit surface that mainly emits light, D is a distance between an arbitrary light source X and another light source Y that is nearest to it, and H is a distance between the light source X and the light control member. In this case, the total light transmittance of light incident on an arbitrary point on the incident surface at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface is 50% or more. In addition, the total light transmittance is such that light enters the point on the incident surface from the normal direction. 1.05 times to 3 times the total light transmittance of the light, and a plurality of convex portions are formed on the exit surface of the light control member, and the convex portions have a refractive index of 1.58 or more. Provided is a lighting device made of a material.

この構成によれば、上記光制御部材の入射面の法線方向に対して所定の角度α=Tan-1{(D/2)/H}で入射した光の全光線透過率が50%以上であり、且つ、該全光線透過率が、前記法線方向から入射した光の場合の全光線透過率の1.05倍〜3倍、即ち、上記光源に対向する真上位置に入射する光の全光線透過率よりも適度に高くなる。従って、前記光制御部材から出射する光エネルギーの出射面内分布が均一化される。また、入射面上の任意の点で好ましい光学的性質が得られる。 According to this configuration, the total light transmittance of light incident at a predetermined angle α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface of the light control member is 50% or more. And the total light transmittance is 1.05 to 3 times the total light transmittance in the case of the light incident from the normal direction, that is, the light incident on the position directly above the light source. It becomes moderately higher than the total light transmittance. Therefore, the in-plane distribution of light energy emitted from the light control member is made uniform. Further, preferable optical properties can be obtained at any point on the incident surface.

また、請求項1記載の発明は、上記光制御部材の出射面上に複数の凸部が形成されているので、上記出射面上に複数の凸部が形成されているので、光制御部材に入射して出射面に向かった光は、複数の凸部により多方向に拡散して出射される。   In the first aspect of the invention, since the plurality of convex portions are formed on the emission surface of the light control member, the plurality of convex portions are formed on the emission surface. The light that is incident and travels toward the exit surface is diffused and emitted in multiple directions by a plurality of convex portions.

請求項2記載の発明は、上記光制御部材の入射面の法線方向に対し角度αで入射した光の10〜50%は、出射面の法線方向と成す角度が−15°〜+15°の範囲で出射する。
この構成によれば、角度αで入射した光の10〜50%が出射角度−15°〜+15°で出射するので、前記光制御部材の出射面において光制御部材の正面方向、即ち、入射面の法線方向から出射する成分の割合が著しく増大する。
According to a second aspect of the present invention, 10 to 50% of the light incident at an angle α with respect to the normal direction of the incident surface of the light control member has an angle of −15 ° to + 15 ° with the normal direction of the output surface. It emits in the range of.
According to this configuration, since 10 to 50% of the light incident at the angle α is emitted at the emission angle of −15 ° to + 15 °, the front direction of the light control member on the emission surface of the light control member, that is, the incidence surface. The ratio of components emitted from the normal direction is significantly increased.

請求項3の記載は前記入射面が平坦であり、前記出射面に前記凸部が形成されており、該出射面に直交し、該凸部の頂部を含む、少なくとも所定の一方向の断面の光出射部分における輪郭線が、該光拡散板の屈折率がnであるとき、該輪郭線の傾きθが0≦|Sin−1(n・sin(θ−Sin−1((1/n)・sinα)))―θ|≦(π/12)を満たし、前記出射面に対する傾きの絶対値θ2がSin−1(1/n)未満である領域Xを含み、該領域Xは前記凸部の頂部を含み、該領域Xの出射面と平行な方向成分の長さxと輪郭線全体の該出射面と平行な方向成分の長さPの割合が0.15〜0.80であることを特徴とする請求項1又は2に記載の光拡散板を提供する。 According to a third aspect of the present invention, the incident surface is flat, the projection is formed on the exit surface, is perpendicular to the exit surface, and includes a top of the projection, and has a cross section in at least one predetermined direction. When the contour line in the light emitting part has a refractive index n of the light diffusion plate, the inclination θ of the contour line is 0 ≦ | Sin −1 (n · sin (θ−Sin −1 ((1 / n) Sin α))) − θ | ≦ (π / 12) is satisfied, and the absolute value θ2 of the inclination with respect to the exit surface includes a region X that is less than Sin −1 (1 / n), and the region X is the convex portion The ratio of the length x of the directional component parallel to the exit surface of the region X and the length P of the directional component parallel to the exit surface of the entire contour line is 0.15 to 0.80. A light diffusing plate according to claim 1 or 2 is provided.

この構成によれば、出射面に凸部が形成されており、該凸部の頂部を含み出射面に直交する面で切った少なくとも所定の一方向の断面の輪郭線の傾きが前記θ未満であることで、角度αで入射した光の正面から大きく外れた不要な方向への出光を抑制し、該出射面に対する傾きθ2の絶対値がSin−1(1/n)未満の領域Xを前記輪郭線上の出射面と平行な方向成分として出射面の0.15〜0.80の割合で含み、且つ領域Xが頂部を含むことで、異なる光拡散性を示す領域となり、領域Xの割合を調整することで集光と拡散のバランスを調整でき、入射した光を好適な角度分布に出光することができる。 According to this configuration, the convex portion is formed on the emission surface, and the inclination of the contour line of the cross section in at least one predetermined direction cut by a plane that includes the top of the convex portion and is orthogonal to the emission surface is less than θ. As a result, light exiting in an unnecessary direction greatly deviating from the front of the light incident at an angle α is suppressed, and the region X in which the absolute value of the inclination θ2 with respect to the exit surface is less than Sin −1 (1 / n) As a directional component parallel to the exit surface on the contour line, it is included at a ratio of 0.15 to 0.80 of the exit surface, and the region X includes the top, so that it becomes a region showing different light diffusibility, and the ratio of the region X is By adjusting, the balance between light collection and diffusion can be adjusted, and the incident light can be emitted in a suitable angular distribution.

請求項4記載の発明は、上記光制御部材は、上記出射面に直交し、且つ、上記凸部の頂部を含む少なくとも所定の一方向に沿った断面の光出射部分における輪郭線が、延長線の交差する角度θが鋭角である2つの略直線と、該2つの略直線の各一端同士を結ぶ凸状の曲線とを含む請求項1〜3のいずれかに記載の照明装置を提供する。
この構成によれば、上記凸部の輪郭線が、鋭角θの交差方向に延びる2つの略直線と、それらの各一端同士を結ぶ凸状の曲線とを有する形状であるので、前記略直線の部分と曲線の部分とでは集光効率及び拡散効率が互いに異なる。
According to a fourth aspect of the present invention, in the light control member, the contour line in the light emission portion of the cross section along at least a predetermined direction including the top of the convex portion is perpendicular to the emission surface, The lighting device according to any one of claims 1 to 3, comprising two substantially straight lines having an acute angle θ intersecting each other, and a convex curve connecting the respective ends of the two substantially straight lines.
According to this configuration, the contour line of the convex portion has a shape having two substantially straight lines extending in the intersecting direction of the acute angle θ and a convex curve connecting the respective ends thereof. The light collection efficiency and the diffusion efficiency are different between the portion and the curved portion.

請求項5に記載の発明は、上記光源が線状光源であり、上記光制御部材の出射面上に複数の凸部が形成され、該出射面に直交し、且つ、該出射面上の前記凸部の頂部を含む前記線状光源と平行な方向で断面した光出射部分における稜線が、前記線状光源に対して平行な方向に延びる直線である請求項1〜4のいずれかに記載の照明装置を提供する。
この構成によれば、出射面に形成した稜線の直線方向が、線状光源の長手方向と平行であるので、特に線状光源の真上に進行して光制御部材に入射した光は、出射面側の凸部により一部が全反射される。
According to a fifth aspect of the present invention, the light source is a linear light source, and a plurality of convex portions are formed on the exit surface of the light control member, and are orthogonal to the exit surface, and the on the exit surface. 5. The ridge line in the light emitting portion, which is cross-sectioned in a direction parallel to the linear light source including the top of the convex portion, is a straight line extending in a direction parallel to the linear light source. A lighting device is provided.
According to this configuration, since the linear direction of the ridge line formed on the emission surface is parallel to the longitudinal direction of the linear light source, the light that travels directly above the linear light source and enters the light control member is emitted. A part is totally reflected by the convex part on the surface side.

請求項6記載の発明は、上記光源が点状光源である請求項1〜4のいずれかに記載の照明装置を提供する。
この構成によれば、複数の光源が点状光源であっても、上記した線状光源と同様に輝度が均一化する。
A sixth aspect of the present invention provides the illumination device according to any one of the first to fourth aspects, wherein the light source is a point light source.
According to this configuration, even when the plurality of light sources are point light sources, the luminance is uniform as in the case of the linear light source described above.

請求項7記載の発明は、請求項1〜6のいずれかに記載の照明装置が備える光制御部材を提供する。
この光制御部材により正面方向の出射光分布を均一化することができる。
Invention of Claim 7 provides the light control member with which the illuminating device in any one of Claims 1-6 is provided.
With this light control member, the outgoing light distribution in the front direction can be made uniform.

請求項8記載の発明は、請求1〜8のいずれか1項に記載の上記照明装置上に透過型表示素子を設けたことを特徴とする画像表示装置を提供する。   According to an eighth aspect of the present invention, there is provided an image display device characterized in that a transmissive display element is provided on the illumination device according to any one of the first to eighth aspects.

この構成によれば、照明装置上に液晶パネル等の透過型表示素子を設けたので、前記光制御部材により効率良く集光及び拡散された光線が、透過型表示素子を透過する。   According to this configuration, since the transmissive display element such as a liquid crystal panel is provided on the lighting device, the light that is efficiently condensed and diffused by the light control member is transmitted through the transmissive display element.

請求項1記載の発明は、隣接する2つの光源の中間点に対向する部分で光制御部材に入射する光の全光線透過率を、光源に対向する位置に入射する光の全光線透過率よりも適度に高くすることで、光制御部材から出射する光エネルギーの出射面内分布を均一化することができることから、ランプイメージが解消され、輝度が高く、且つ、出射面内の輝度が均一な照明装置を得ることができる。   According to the first aspect of the present invention, the total light transmittance of the light incident on the light control member at the portion facing the intermediate point between the two adjacent light sources is calculated from the total light transmittance of the light incident on the position facing the light source. Since the distribution of light energy emitted from the light control member can be made uniform in the emission surface, the lamp image is eliminated, the luminance is high, and the luminance in the emission surface is uniform. A lighting device can be obtained.

また、入射面上の任意の点で好ましい光学的性質が得られることから、光源と光制御部材との位置合わせが不要で、ディスプレイサイズや光源の本数や配置の変更にも柔軟に対応でき、生産性よく照明装置を製造することができる。更に、光利用効率を下げる拡散材の使用を回避もしくは大幅に減少することができ、高い光利用効率が達成される。   In addition, since favorable optical properties can be obtained at an arbitrary point on the incident surface, alignment between the light source and the light control member is unnecessary, and it is possible to flexibly respond to changes in the display size, number of light sources, and arrangement, A lighting device can be manufactured with high productivity. Furthermore, the use of a diffusing material that lowers the light utilization efficiency can be avoided or greatly reduced, and a high light utilization efficiency is achieved.

また、請求項1記載の発明は、出射面において光が複数の凸部により効果的に集光され、且つ、多方向に拡散して出射されるので、上記の効果に加えて、集光性能及び拡散性能が従来に比べて向上し、出射面内での輝度の均一化を更に高めることができる。   Further, in the invention according to claim 1, since the light is effectively condensed by the plurality of convex portions on the emission surface, and diffused and emitted in multiple directions, in addition to the above effect, the light collecting performance In addition, the diffusion performance is improved as compared with the conventional case, and the uniformity of the luminance within the exit surface can be further increased.

請求項2記載の発明は、前記出射面において光制御部材の正面方向から出射する光線の割合が増加するので、請求項1に記載の発明の効果に加えて、その分だけ前記正面方向の輝度が向上するという格別の効果を奏する。   According to the second aspect of the present invention, since the ratio of the light beam emitted from the front direction of the light control member on the emission surface increases, in addition to the effect of the first aspect, the luminance in the front direction is increased accordingly. Has the special effect of improving.

請求項3記載の発明は、正面から大きく外れた不要な方向への出光を抑制し、集光と拡散のバランスを調整でき、入射した光を好適な角度分布に出光することができる。   According to the third aspect of the present invention, it is possible to suppress light emission in an unnecessary direction greatly deviating from the front surface, to adjust the balance between light collection and diffusion, and to emit incident light in a suitable angular distribution.

請求項4記載の発明は、前記略直線の部分と曲線の部分とでは、光出射面に於ける集光及び拡散の程度が互いに異なるので、請求項1に記載の発明の効果に加えて、出射面における集光性能及び拡散性能が一層向上し、もって、出射面内輝度の均一化をより効果的に高めることができる。   In the invention according to claim 4, in addition to the effect of the invention according to claim 1, the degree of light collection and diffusion at the light exit surface is different between the substantially straight portion and the curved portion. Condensing performance and diffusing performance on the exit surface can be further improved, thereby making it possible to more effectively increase the uniformity of the brightness within the exit surface.

請求項5に記載の発明は、出射面に形成した稜線の直線方向が、線状光源の長手方向と平行であるので、特に線状光源の真上に進行して光制御部材に入射した光は、出射面側の凸部により一部が全反射される。   In the invention according to claim 5, since the linear direction of the ridgeline formed on the exit surface is parallel to the longitudinal direction of the linear light source, the light that has traveled directly above the linear light source and entered the light control member Is totally reflected by the convex portion on the exit surface side.

請求項6記載の発明は、複数の点状光源を用いることにより、線状光源と同等の輝度均一化を有するので、請求項1〜4のいずれかに記載の発明の効果に加えて、使用条件等に応じて点状光源の個数を決定でき、光源種類の選定の面で設計の自由度が高くなる。   Since the invention according to claim 6 has a uniform brightness equivalent to that of the linear light source by using a plurality of point light sources, in addition to the effect of the invention according to any one of claims 1 to 4, it is used. The number of point light sources can be determined according to conditions and the like, and the degree of freedom in design increases in terms of selection of the light source type.

請求項7に記載の発明は、請求項1〜6のいずれかに記載の照明装置が備える光制御部材である。光制御部材は、入射面側から該入射面に入射した光を一部は反射し、一部は透過する。この機能によって出光強度を一定にできる。   Invention of Claim 7 is a light control member with which the illuminating device in any one of Claims 1-6 is provided. The light control member partially reflects and transmits part of light incident on the incident surface from the incident surface side. This function makes it possible to make the light emission intensity constant.

請求項8に記載の発明は、光制御部材により集光及び拡散された光線が透過型表示素子を透過するので、簡単な構成でありながら、光源位置の調整が不要であり、ランプイメージを解消でき、且つ、優れた出射面内均一な明るさを有する画像表示装置を容易に得ることができる。   In the invention described in claim 8, since the light condensed and diffused by the light control member is transmitted through the transmissive display element, the light source position adjustment is not required and the lamp image is eliminated although it is a simple configuration. It is possible to easily obtain an image display device having excellent brightness even in the exit plane.

本発明は、光入射側から光出射側に向かって前記反射板、光源及び光制御部材がこの順に配置され、該光制御部材が主として受光する入射面と、主として出光する出射面とを備え、任意の光源Xとその最近傍にある別の光源Yとの間の距離をD、該光源Xと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、且つ、全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍乃至3倍であることにより、構成がシンプルで生産性が向上し、光源位置の調整が不要となり、ランプイメージを解消すると共に、出射面内における輝度均一化に優れた照明装置及び画像表示装置を安価に得るという目的を実現した。 In the present invention, the reflector, the light source, and the light control member are arranged in this order from the light incident side to the light emission side, and the light control member includes an incident surface that mainly receives light, and an emission surface that mainly emits light, When the distance between an arbitrary light source X and another light source Y nearest to it is D and the distance between the light source X and the light control member is H, the incident is made at an arbitrary point on the incident surface. The total light transmittance of light incident at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the surface is 50% or more, and the total light transmittance is 1.05 to 3 times the total light transmittance of light when light is incident on a point on the surface from the normal direction, resulting in a simple structure and improved productivity and no need to adjust the light source position In addition to eliminating the lamp image, the illumination device and the image have excellent brightness uniformity in the exit surface. I realized the objective of obtaining a Display device at low cost.

以下、本発明の一実施の形態を図1乃至図19に従って説明する。図1に示すように、光入射側から光出射側に向かって反射板2、複数の光源1、および光制御部材4がこの順序で配置され、該光制御部材4は規則的な複数の凸部9を有する。このように、反射板2と光制御部材4の間に複数の光源1を配置して成る照明装置にあっては、図2に示す様に、前記光制御部材4の入射面に相当する仮想面3へ入射した光は、各光源1の直上部分と、隣り合う光源1同士の間の部分とでは光入射エネルギーが異なる。
即ち、各光源1位置に対向する真上領域では、光源1に近いため入射エネルギーが大きい一方、複数の光源1同士の間の位置に対向する非真上領域(各光源1の斜上部分)では、光源1から離れているため入射エネルギーは小さい。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the reflector 2, the plurality of light sources 1, and the light control member 4 are arranged in this order from the light incident side to the light emission side, and the light control member 4 has a plurality of regular protrusions. Part 9. As described above, in the illumination device in which the plurality of light sources 1 are arranged between the reflector 2 and the light control member 4, as shown in FIG. 2, a virtual corresponding to the incident surface of the light control member 4. The light incident on the surface 3 has different light incident energies between a portion immediately above each light source 1 and a portion between adjacent light sources 1.
That is, in the region directly above the position of each light source 1, the incident energy is large because it is close to the light source 1. Then, since it is away from the light source 1, the incident energy is small.

また、図3に示す様に、前記仮想面3に対する入射エネルギーの角度分布図、即ち、入射角度に対する輝度の分布図では、仮想面3に対し垂直方向に入射した光線の輝度が最大値を示す。一方、図4に示す様に、仮想面3に対する出射エネルギーの角度分布図、即ち、出射角度に対する輝度の分布図では、仮想面3に対し斜め方向に入射した光線の輝度、特に、前記隣り合う光源同士の間の中央位置近傍における光線の輝度が最大値を示す。   Further, as shown in FIG. 3, in the angular distribution diagram of the incident energy with respect to the virtual surface 3, that is, the luminance distribution diagram with respect to the incident angle, the luminance of the light ray incident on the virtual surface 3 in the vertical direction shows the maximum value. . On the other hand, as shown in FIG. 4, in the angle distribution diagram of the emission energy with respect to the virtual surface 3, that is, the distribution diagram of the luminance with respect to the emission angle, the luminance of the light ray incident on the virtual surface 3 in an oblique direction, The luminance of the light beam in the vicinity of the central position between the light sources shows the maximum value.

本発明に係る照明装置においては、図5に示すように、任意の光源Xと、該光源Xに対し最近傍に位置する別の光源Yとの距離をD、該光源Xと光制御部材4との距離をHとした場合、該光制御部材4の入射面上における任意の点について、該入射面に入光した光が該光制御部材4の出射面から出光する割合であるところの全光線透過率に関しては、50%以上乃至100%の範囲であって、且つ、次のような関係を有する。   In the illuminating device according to the present invention, as shown in FIG. 5, the distance between an arbitrary light source X and another light source Y located closest to the light source X is D, and the light source X and the light control member 4. When the distance between the light control member 4 and the light control member 4 is H, the light incident on the light incident surface of the light control member 4 is emitted from the light emission surface of the light control member 4 at any point. The light transmittance is in the range of 50% to 100% and has the following relationship.

すなわち、該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で光が入射した場合の該光の全光線透過率R1は、該入射面に対して垂直方向に光が入射した場合の該光の全光線透過率R2の1.05倍〜3.00倍であることを特徴としている。また、該全光線透過率の割合R1/R2は1.05〜2.00倍であることが、光利用効率の観点からより好ましい。 That is, when light is incident at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is relative to the incident surface. The total light transmittance R2 of the light when the light is incident in the vertical direction is 1.05 to 3.00 times. The ratio R1 / R2 of the total light transmittance is more preferably 1.05 to 2.00 times from the viewpoint of light utilization efficiency.

ここで、前述の全光線透過率の測定に際し、測定対象物への平行光の光束の幅は、光制御部材の表面に凹凸形状を形成している場合において、例えば、凹凸形状の一斜面のみといった微小領域に入射する程度のものではなく、該凹凸形状の特徴を全光線透過率に反映するために、少なくとも凹凸形状部のピッチ以上の広い領域に入射する程度のものである必要がある。   Here, when measuring the total light transmittance described above, the width of the light beam of the parallel light to the measurement object is, for example, an uneven shape on the surface of the light control member. In order to reflect the feature of the uneven shape on the total light transmittance, it is necessary that the light is incident on a wide region at least larger than the pitch of the uneven portion.

図6に、平坦な入射面を有する測定対象物7へ入射角βで入射した平行光8における全光線透過率の測定方法を示す。同図に示すように、積分球5の開口部6の下側にこれを閉鎖するように測定対象物7を設置し、レーザー光もしくはレンズでコリメートした平行光8を、測定対象物7の法線方向に対しβの角度で入射させる。   FIG. 6 shows a method for measuring the total light transmittance of the parallel light 8 incident on the measuring object 7 having a flat incident surface at an incident angle β. As shown in the figure, a measuring object 7 is placed under the opening 6 of the integrating sphere 5 so as to be closed, and parallel light 8 collimated with a laser beam or a lens is used as a method of the measuring object 7. Incident at an angle β to the line direction.

而して、測定対象物7を透過した光は積分球5内で乱反射され、図示していないフォトマルチプライヤーに代表される検出器でその反射エネルギーを測定する。ここで、測定対象物7を図示のように設置して、角度βで平行光8を入射した場合の検出器の出力をV(β)、測定対象物7が設置されていない場合の検出器の出力をV0とすると、角度βにおける全光線透過率はV(β)/V0で得られる。   Thus, the light transmitted through the measuring object 7 is diffusely reflected in the integrating sphere 5, and the reflected energy is measured by a detector represented by a photomultiplier (not shown). Here, the measurement object 7 is installed as shown, and the output of the detector when the parallel light 8 is incident at an angle β is V (β), and the detector when the measurement object 7 is not installed is the detector. Is V0, the total light transmittance at an angle β is obtained as V (β) / V0.

図5に示す様に、前記角度αは、光源Xまたは光源Yから発した光が、該光源Xと光源Yとの中間点の直上位置の光制御部材4に入射した場合の光線の入射角度に相当する。全光線透過率については、光制御部材4に対し垂直方向から入射した時の光の全光線透過率R2よりも、光制御部材4に対し斜め方向から入射角α(≠0)で入射した時の光の全光線透過率R1の方が高い。このため、各光源X,Yの真上の部分と、光源Xと光源Yの間の部分において、光制御部材4の出射光エネルギーを全体として均一化することができる。
さらに、前記光制御部材4の全光線透過率は入射角度のみに依存し、光制御部材4に対する入射位置には依存しないため、複数の各光源と光制御部材4との位置調整が不要である。つまり、照明装置の組立時に、光制御部材4の面内方向における位置を厳密に設定する必要はない。従って、本発明の光制御部材4を大面積で作製した後、必要寸法に応じて任意の位置から切出したものを使用することができるため、照明装置の生産性を著しく向上させることができる。
As shown in FIG. 5, the angle α is an incident angle of a light beam when light emitted from the light source X or the light source Y is incident on the light control member 4 located immediately above the intermediate point between the light source X and the light source Y. It corresponds to. With respect to the total light transmittance, when the light is incident on the light control member 4 from an oblique direction at an incident angle α (≠ 0), rather than the total light transmittance R2 of light when the light is incident on the light control member 4 from the vertical direction. The total light transmittance R1 of the light is higher. For this reason, the emitted light energy of the light control member 4 can be made uniform as a whole in the portion directly above the light sources X and Y and the portion between the light sources X and Y.
Furthermore, since the total light transmittance of the light control member 4 depends only on the incident angle and does not depend on the incident position with respect to the light control member 4, it is not necessary to adjust the positions of the light sources and the light control member 4. . That is, it is not necessary to strictly set the position of the light control member 4 in the in-plane direction when the lighting device is assembled. Therefore, after manufacturing the light control member 4 of the present invention with a large area, it is possible to use one cut out from an arbitrary position according to the required dimensions, so that the productivity of the lighting device can be significantly improved.

以下、光制御部材4に対して光が垂直方向および斜め方向から入射した時における全光線透過率の調整の具体的手段の例について説明する。先ず、該具体的手段の第1の例としては、図1に示したように、光制御部材4の出射面に複数の凸部9を設けた態様が挙げられる。凸部9がストライプ状に形成された好適な断面形状を、図7に示す。
該凸部9の断面形状は、光制御部材4の出射面に直交し、凸部9の頂部を含む少なくとも所定の一方向に沿って断面した場合の輪郭線から成る。該輪郭線は、延長線が交差する角度θが鋭角である2つの略直線(部)10と、該2つの略直線(部)10の各一端同士を結ぶ曲線(部)11とから構成され、且つ、輪郭線の頂部が凸状の曲線11である。
ここで、前記所定の一方向とは、光源Xから光源Yへの方向に平行な方向を意味する。また、輪郭線の頂部を構成する曲線の曲率半径は、無限大、すなわち直線であってもよい。
Hereinafter, an example of specific means for adjusting the total light transmittance when light enters the light control member 4 from the vertical direction and the oblique direction will be described. First, as a first example of the specific means, a mode in which a plurality of convex portions 9 are provided on the emission surface of the light control member 4 as shown in FIG. FIG. 7 shows a preferred cross-sectional shape in which the convex portions 9 are formed in a stripe shape.
The cross-sectional shape of the convex portion 9 is composed of a contour line that is perpendicular to the emission surface of the light control member 4 and is cross-sectioned along at least one predetermined direction including the top of the convex portion 9. The contour line is composed of two substantially straight lines (parts) 10 having an acute angle θ at which the extension lines intersect, and a curve (part) 11 connecting each end of the two substantially straight lines (parts) 10. The top of the contour line is a convex curve 11.
Here, the predetermined one direction means a direction parallel to the direction from the light source X to the light source Y. Further, the radius of curvature of the curve constituting the top of the contour line may be infinite, that is, a straight line.

図18、図19に出射面に断面が略楕円形状の凸部2を形成した場合の光線の挙動を示した。凸部を略楕円形状で構成することで、凸部裾部付近の傾きの絶対値を0≦|Sin−1(n・sin(θ−Sin−1((1/n)・sinα)))―θ|≦(π/12)を満たすθ以下であるようにとっている。
図18では、法線に対して角度αで入射する斜め入射光12は凸部裾部11において屈折作用により光拡散板1から略正面方向に出射させることができる。
これは次の理由による。
凸部裾部の傾きをγ、光拡散板1への入射角度をφ1、光拡散板1の屈折率をnとすると図10に示す様に、光拡散板凸部2の一方の裾部付近から透過する光の光拡散板法線方向に対する角度φ5は下記の通り求めることができる。
φ2=Sin−1{(sinφ1)/n}
φ3=γ−φ2
φ4=Sin−1(n×sinφ3
φ5=φ4−γ
すなわち、φ5=Sin−1(n・sin(γ−Sin−1((1/n)・sinφ1)))―γ
FIGS. 18 and 19 show the behavior of light rays when the convex portion 2 having a substantially elliptical cross section is formed on the exit surface. By constructing the convex part in a substantially elliptical shape, the absolute value of the inclination near the convex part skirt is 0 ≦ | Sin −1 (n · sin (θ−Sin −1 ((1 / n) · sin α))). −θ | ≦ (π / 12) or less satisfying θ.
In FIG. 18, the oblique incident light 12 incident at an angle α with respect to the normal can be emitted from the light diffusing plate 1 in a substantially front direction by refraction at the skirt 11 of the convex portion.
This is due to the following reason.
Assuming that the slope of the convex skirt is γ, the incident angle to the light diffusing plate 1 is φ1, and the refractive index of the light diffusing plate 1 is n, as shown in FIG. The angle φ5 with respect to the normal direction of the light diffusing plate of the light transmitted from can be obtained as follows.
φ 2 = Sin −1 {(sin φ 1 ) / n}
φ 3 = γ−φ 2
φ 4 = Sin −1 (n × sin φ 3 )
φ 5 = φ 4 −γ
That is, φ 5 = Sin −1 (n · sin (γ−Sin −1 ((1 / n) · sin φ 1 ))) − γ

本発明の主旨から光線の出射方向は正面方向であることが好ましい。従って、φ1=αの場合、−15°≦φ5≦15°であることが望ましい。また−10°≦φ5≦10°であることがより望ましい。さらには−5°≦φ5≦5°となるようにγを選択することが好適である。
例えば、光源間距離Dを33mm、光源中心から光制御部材4までの最短距離Hを15mm、光制御部材4の屈折率nを1.6とすると、47°≦γ≦65°(58°≦θ≦67°)であることが望ましい。また、53°≦γ≦64°(58°≦θ≦64°)であることがより望ましい。さらには、57°≦γ≦63°(59°≦θ≦62°)となるように、γを選択することが好適である。
From the gist of the present invention, it is preferable that the light emission direction is the front direction. Therefore, when φ 1 = α, it is desirable that −15 ° ≦ φ 5 ≦ 15 °. Further, it is more desirable that −10 ° ≦ φ 5 ≦ 10 °. Furthermore, it is preferable to select γ so that −5 ° ≦ φ 5 ≦ 5 °.
For example, assuming that the distance D between the light sources is 33 mm, the shortest distance H from the light source center to the light control member 4 is 15 mm, and the refractive index n of the light control member 4 is 1.6, 47 ° ≦ γ ≦ 65 ° (58 ° ≦ It is desirable that θ ≦ 67 °. Further, it is more desirable that 53 ° ≦ γ ≦ 64 ° (58 ° ≦ θ ≦ 64 °). Furthermore, it is preferable to select γ so that 57 ° ≦ γ ≦ 63 ° (59 ° ≦ θ ≦ 62 °).

凸部頂部10は出射面に対する傾きの絶対値θ2がSin−1(1/n)未満である領域Xを持っている。このように領域Xの傾きθ2は複数の値を取る事ができる。曲線部であることで連続的にθ2が変化することで、分散方向を連続的に変化させることができ、より高い輝度均一性が得られる。また望ましくは凸部頂部の任意の点の傾きは凸部裾部11の出射面に対する傾きの絶対値以下である。これは成形の容易性、光の方向制御の容易性から望ましい。 The convex top 10 has a region X in which the absolute value θ2 of the inclination with respect to the exit surface is less than Sin −1 (1 / n). As described above, the slope θ2 of the region X can take a plurality of values. Since θ2 continuously changes due to the curved portion, the dispersion direction can be continuously changed, and higher luminance uniformity can be obtained. Desirably, the slope of an arbitrary point on the top of the convex portion is equal to or smaller than the absolute value of the slope of the convex skirt 11 with respect to the exit surface. This is desirable from the viewpoint of easy molding and easy control of light direction.

また図19に示す様に光拡散板1に垂直に入射した光14は一部が方向を分散しつつ出射すると同時に、凸部表面に入射した光の一部は反射光16として入射側に戻ることで、全光線透過率を抑えることが可能となる。これによって輝度均一性が高く、高輝度な照明装置を得ることができる。   In addition, as shown in FIG. 19, the light 14 incident perpendicularly to the light diffusing plate 1 is emitted with a part dispersed, and at the same time, a part of the light incident on the convex surface returns to the incident side as reflected light 16. As a result, the total light transmittance can be suppressed. Accordingly, it is possible to obtain a lighting device with high luminance uniformity and high luminance.

凸部9の形状としては、2つの断面略直線10と断面曲線11を有する立体形状に形成することもできる。この理由について以下に説明する。図8に示す様に、前記凸部9の立体形状を、鋭角θをなす2つの略斜面部(断面略直線10に相当)と曲面部(断面曲線11に相当)とによって構成することにより、光制御部材4の入射面4aに斜めに入射した斜め入射光12は、断面略直線10の部分において屈折作用により、光制御部材4の出射面側から略垂直方向(入射面4aの略垂直方向と同方向)に出射させることができる。   As the shape of the convex portion 9, it can be formed into a three-dimensional shape having two substantially straight lines 10 and a section curve 11. The reason for this will be described below. As shown in FIG. 8, the three-dimensional shape of the convex portion 9 is constituted by two substantially slope portions (corresponding to a substantially straight line 10) and a curved surface portion (corresponding to a sectional curve 11) forming an acute angle θ, The obliquely incident light 12 that is obliquely incident on the incident surface 4a of the light control member 4 is refracted by a refraction action at a substantially straight line 10 in the cross section from the light exit surface side of the light control member 4 (substantially perpendicular to the incident surface 4a). In the same direction).

また、図9に示す様に、光制御部材4に垂直に入射した光13は、前記凸部9の曲面部において出射方向を分散すると同時に、凸部9の表面に当たった光の一部は、全反射を起こし出射しないため、該光の全光線透過率を抑えることが可能となる。光制御部材4に垂直に入射した垂直光13の全光線透過率が小さくなることによって、輝度均一性が高く、且つ、高輝度な照明装置を容易に得ることができる。   Further, as shown in FIG. 9, the light 13 incident perpendicularly to the light control member 4 disperses the emission direction in the curved surface portion of the convex portion 9 and at the same time, a part of the light hitting the surface of the convex portion 9 is Since total reflection occurs and the light does not exit, the total light transmittance of the light can be suppressed. By reducing the total light transmittance of the vertical light 13 perpendicularly incident on the light control member 4, it is possible to easily obtain a lighting device with high luminance uniformity and high luminance.

前記光制御部材4の凸部9の投影面積Pに対する曲線部11の投影面積Aの割合A/Pについては、40〜80%であることが望ましい。例えば、図7中の面積割合A1/P1が前記面積割合A/Pに相当する。面積割合A/Pが40%未満であると、光の分散効果が小さくなり、輝度均一性が低下する。また、面積割合A/Pが80%を越えると、略直線部10の面積が減少することにより、斜め入射光12のうち正面方向へ出射する光の割合が減少するため、上記と同様に、出射面内の輝度均一性が低下する。   The ratio A / P of the projected area A of the curved portion 11 to the projected area P of the convex portion 9 of the light control member 4 is preferably 40 to 80%. For example, the area ratio A1 / P1 in FIG. 7 corresponds to the area ratio A / P. When the area ratio A / P is less than 40%, the light dispersion effect is reduced, and the luminance uniformity is lowered. Further, when the area ratio A / P exceeds 80%, the area of the substantially linear portion 10 decreases, and therefore the ratio of the light emitted in the front direction out of the oblique incident light 12 decreases. The luminance uniformity in the exit surface is reduced.

図11に、本発明で実施可能な凸部9の別の形状を示す。この場合、凸部9の谷部分に断面曲線(部)14を設けている。この断面曲線部14により光の出射方向が多方向に分散され、輝度均一性の高い照明装置を得ることができる。さらに、光制御部材4内部で様々な方向に光を伝搬させて分散効果を高めるための手段としては、光制御部材4の入射面に平行光を複数の角度に偏向させる手段を用いてもよい。具体的には、光制御部材4の入射面に、ランダムまたは周期性を有する凹凸構造を形成することが挙げられる。   FIG. 11 shows another shape of the convex portion 9 that can be implemented in the present invention. In this case, a cross-sectional curve (part) 14 is provided in the valley portion of the convex part 9. The cross-sectional curve portion 14 disperses the light emission direction in multiple directions, and an illumination device with high luminance uniformity can be obtained. Further, as means for propagating light in various directions within the light control member 4 to enhance the dispersion effect, means for deflecting parallel light at a plurality of angles on the incident surface of the light control member 4 may be used. . Specifically, it is possible to form a concavo-convex structure having random or periodicity on the incident surface of the light control member 4.

また、光源が線状光源である場合には、出射面側の複数の凸部9を平行に配列したストライプ状レンズに形成し、そのレンズの長手方向を線状光源の長手方向と平行にすることができる。これにより、光制御部材4の出射面における出射光の角度分布調整が一層容易となる。   When the light source is a linear light source, a plurality of convex portions 9 on the emission surface side are formed in a stripe lens arranged in parallel, and the longitudinal direction of the lens is made parallel to the longitudinal direction of the linear light source. be able to. Thereby, the angle distribution adjustment of the outgoing light on the outgoing surface of the light control member 4 is further facilitated.

上記出射面側に形成する凹凸17の高さまたは深さは、1μm以上かつ500μm以下が望ましい。500μmを越えると、凹凸が観察されるため品位の低下を招く。また、1μm未満であると、光の回折現象により着色が発生して品位の低下を生じる。さらに、特に液晶パネルを利用する際には、液晶の画素の配列方向と平行な方向の凹凸の平均幅が、液晶の画素ピッチの1/1.5以下であることが望ましい。平均幅が画素ピッチの1/1.5を越えると、液晶パネルの表面によりモアレ現象が発生し、液晶パネルの画質を大きく低下させる。   The height or depth of the unevenness 17 formed on the emission surface side is preferably 1 μm or more and 500 μm or less. If the thickness exceeds 500 μm, unevenness is observed, leading to deterioration in quality. On the other hand, when the thickness is less than 1 μm, coloring occurs due to the diffraction phenomenon of light, and the quality deteriorates. Further, particularly when using a liquid crystal panel, it is desirable that the average width of the irregularities in the direction parallel to the arrangement direction of the liquid crystal pixels is 1 / 1.5 or less of the pixel pitch of the liquid crystal. When the average width exceeds 1 / 1.5 of the pixel pitch, a moire phenomenon occurs on the surface of the liquid crystal panel, and the image quality of the liquid crystal panel is greatly deteriorated.

上記に示したプリズムなどの表面パターンを設ける場合は、押出し成形、射出成形、紫外線硬化型樹脂を用いた2P成形等の何れも用いることができる。成形方法は、プリズムの大きさ、必要形状、量産性を考慮して適宜用いればよく、特に限定されない。具体的には、一例として、凸部を次のように形成することができる。
凸部形状と同じ断面形状、もしくは成型時の樹脂収縮を見込んだ断面形状を有するバイトを作製する。このバイトを用いて、平面型やロール型に溝状の切込みを設けることによって雌型が形成し、さらにロール状の金型を用いて、押出し成型により光制御部材を得る。
また、ロール状の金型ではなく平面状の金型を用いる場合には、一旦樹脂に成型した後に、樹脂を電鋳することでスタンパを形成する。この切削した平面状の雌型もしくはスタンパを用いて射出成型をすることによって光制御部材を得る。さらには、この平面状の金型を用いる場合には、平面状雌型に2P樹脂を塗布した後に、基材となる透明シートをラミネートし、紫外線で2P樹脂を硬化する。その後、平面状雌型から2P樹脂を剥離することによっても光制御部材を得ることができる。
When the surface pattern such as the prism shown above is provided, any of extrusion molding, injection molding, 2P molding using an ultraviolet curable resin, and the like can be used. The molding method may be appropriately used in consideration of the size of the prism, the required shape, and mass productivity, and is not particularly limited. Specifically, as an example, the convex portion can be formed as follows.
A bite having the same cross-sectional shape as the convex shape or a cross-sectional shape allowing for resin shrinkage during molding is prepared. Using this cutting tool, a female mold is formed by providing a groove-shaped cut in a flat mold or a roll mold, and a light control member is obtained by extrusion molding using a roll mold.
In addition, when a planar mold is used instead of a roll mold, the stamper is formed by molding the resin once and then electroforming the resin. The light control member is obtained by injection molding using the cut flat female die or stamper. Furthermore, when this planar mold is used, after applying 2P resin to the planar female mold, a transparent sheet as a base material is laminated, and the 2P resin is cured with ultraviolet rays. Thereafter, the light control member can also be obtained by peeling the 2P resin from the planar female mold.

ここで、光制御部材の主面に対する凸部の谷部傾斜角度が大きい場合には、溝頂部をなす角度が小さくなりすぎる。そのため、バイトを用いたメス型の切削時に溝頂部の倒れが問題となる。さらに、押出し成型、射出成型、2P成型の樹脂成型工程において、樹脂の剥離性が低下するため、量産性の低下や型の耐久性が問題となる。これらの課題に対して、本発明においては、光制御部材の凸部を構成する樹脂の屈折率を1.58以上にする。これによって、光制御部材の主面に対する凸部の谷部のなす角度を小さくすることができ、上記のような樹脂の剥離性の低下や量産性の低下等の課題を解決することができる。   Here, when the trough inclination angle of the convex portion with respect to the main surface of the light control member is large, the angle forming the groove top portion becomes too small. Therefore, the top of the groove is a problem when cutting a female tool using a cutting tool. Furthermore, in the resin molding process of extrusion molding, injection molding, and 2P molding, the releasability of the resin is lowered, so that mass productivity and mold durability are problems. With respect to these problems, in the present invention, the refractive index of the resin constituting the convex portion of the light control member is set to 1.58 or more. As a result, the angle formed by the troughs of the convex portions with respect to the main surface of the light control member can be reduced, and the above-described problems such as a decrease in the peelability of the resin and a decrease in the mass productivity can be solved.

このような屈折率が1.58以上となる高屈折率の材料としては、例えばメタアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、メタアクリル−スチレン共重合樹脂、シクロオレフィン−アルケン共重合樹脂、ポリエステル樹脂などが挙げられる。
また本発明で必要とする1.58以上の屈折率を確保するため、種々のモノマーを選択することができる。例えばメタアクリル樹脂やメタアクリル−スチレン共重合樹脂のようなメタクリレートモノマー共重合体としてはα-ナフチルメタクリレートのような芳香族メタクリレート、p−ブロモフェニルメタクリレート、ペンタクロロフェニルメタクリレートのようなハロゲン化芳香族メタクリレートモノマーなどを好適に用いることができる。またポリスチレン樹脂やメタアクリル−スチレン共重合樹脂のようなスチレン系モノマー共重合体としては、スチレンのほかに、o-クロロスチレンのようなハロゲン化スチレン、p-メチルスチレンのようなアルキル化スチレンなどが使用できるモノマーとして挙げられる。ポリエステル樹脂としてはフルオレン基などの嵩高い官能基を有するジオールを共重合モノマーとして用いることができる。これらモノマーは単独もしくは共重合して用いることができる。
なお、本発明の照明装置上に透過型の表示素子を設けることで、表示面における輝度均一性に優れる画像表示装置を容易に得ることができる。
Examples of such a high refractive index material having a refractive index of 1.58 or more include methacrylic resin, polystyrene resin, polycarbonate resin, cycloolefin resin, methacryl-styrene copolymer resin, and cycloolefin-alkene copolymer resin. And polyester resins.
Various monomers can be selected in order to secure a refractive index of 1.58 or more required in the present invention. For example, as a methacrylate monomer copolymer such as methacrylic resin or methacryl-styrene copolymer resin, aromatic methacrylate such as α-naphthyl methacrylate, halogenated aromatic methacrylate such as p-bromophenyl methacrylate, pentachlorophenyl methacrylate, etc. A monomer etc. can be used conveniently. In addition to styrene, styrene monomer copolymers such as polystyrene resin and methacryl-styrene copolymer resin include halogenated styrene such as o-chlorostyrene and alkylated styrene such as p-methylstyrene. Are listed as monomers that can be used. As the polyester resin, a diol having a bulky functional group such as a fluorene group can be used as a copolymerization monomer. These monomers can be used alone or copolymerized.
Note that by providing a transmissive display element on the lighting device of the present invention, an image display device excellent in luminance uniformity on the display surface can be easily obtained.

実施例1.
以下に、本発明の第1の実施例について詳しく説明する。先ず、図7における2つの略直線10の延長線がなす角θ=50°、P1=260μm、A1=182μmのシリンドリカル状の溝を有する雌金型を切削加工により作製した。
次に、この雌金型を使用して屈折率1.6の紫外線硬化型樹脂により、ポリカーボネートフィルム表面上に凸形状のプリズムを成形した。さらに、このポリカーボネートフィルムのプリズムを形成していない側の面を、厚さ2mmの透明なアクリル板に貼り合わせることにより、凸形状のプリズムが形成された光制御部材を得た。
Example 1.
The first embodiment of the present invention will be described in detail below. First, a female mold having a cylindrical groove with an angle θ = 50 ° formed by the extension lines of two substantially straight lines 10 in FIG. 7, P1 = 260 μm, and A1 = 182 μm was produced by cutting.
Next, using this female mold, a convex prism was formed on the polycarbonate film surface with an ultraviolet curable resin having a refractive index of 1.6. Further, the surface of the polycarbonate film on which the prism was not formed was bonded to a transparent acrylic plate having a thickness of 2 mm to obtain a light control member on which a convex prism was formed.

次に、光制御部材と反射板の間に複数の線状光源を設置した。この場合、線状光源として複数の冷陰極管を33mm間隔で配置し、冷陰極管から15mmの位置に前記アクリル板の凸形状部をもつ側の面が出射面になるよう設置した。この場合、前記角度α=48°となるように配置した。また、冷陰極管のアクリル板とは対向する側の面に反射シートを設けた。   Next, a plurality of linear light sources were installed between the light control member and the reflecting plate. In this case, a plurality of cold-cathode tubes as linear light sources were arranged at intervals of 33 mm, and the surface having the convex portion of the acrylic plate was placed at a position 15 mm from the cold-cathode tube so as to be an emission surface. In this case, the angle α is set to 48 °. A reflective sheet was provided on the surface of the cold cathode tube facing the acrylic plate.

この状態で冷陰極管の点灯により光制御部材に光照射して、該光制御部材を観察した。その結果、ランプイメージが解消され、出射面内の輝度が均一な照明装置を得ることができた。ここで用いた光制御部材の入射面に、入射面の法線方向に対して入射角度α=48°で光を照射した場合の該光の全光線透過率R1は67%、該法線方向に光を照射した場合の該光の全光線透過率R2は48%であり、これら全光線透過率の比R1/R2は1.47であった。   In this state, the light control member was irradiated with light by turning on the cold cathode tube, and the light control member was observed. As a result, it was possible to obtain an illuminating device in which the lamp image was eliminated and the luminance within the exit surface was uniform. When the incident surface of the light control member used here is irradiated with light at an incident angle α = 48 ° with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is 67%, and the normal direction When irradiated with light, the total light transmittance R2 of the light was 48%, and the ratio R1 / R2 of these total light transmittances was 1.47.

次に、本発明の光制御部材を照明装置に使用した場合と、該光制御部材に代えて通常の微粒子含有の光拡散板を使用した場合とで、輝度均一性などを比較するための実験を行った。まず、図12(a)に示すように、前記プリズム形状部が形成されていない微粒子含有の光拡散板20に幅Bの開口部20aを形成した。次に、微粒子含有光拡散板20と反射板2の間に、線状光源である冷陰極管15を設置して点灯した。この場合、該光拡散板20の開口部20aには何も置かなかった。   Next, an experiment for comparing the brightness uniformity between the case where the light control member of the present invention is used in a lighting device and the case where a normal light diffusion plate containing fine particles is used instead of the light control member. Went. First, as shown in FIG. 12A, an opening 20a having a width B was formed in the light-diffusing plate 20 containing fine particles in which the prism-shaped portion was not formed. Next, a cold cathode tube 15, which is a linear light source, was installed between the fine particle-containing light diffusion plate 20 and the reflection plate 2 and turned on. In this case, nothing was placed in the opening 20a of the light diffusing plate 20.

冷陰極管15を点灯した状態で、前記光拡散板20の明るさを正面方向から測定した。この測定結果を図12(b)に示す。この結果から判るように、冷陰極管15の真上領域において輝度が高く、隣り合う冷陰極管15同士の間(斜め上領域)では輝度が低くなった。これにより、冷陰極管15の真上領域と斜め上領域とで、両者の輝度差が大きいため、画像表示面における輝度均一性などの品質が大きく低下した。   With the cold cathode tube 15 turned on, the brightness of the light diffusion plate 20 was measured from the front. The measurement result is shown in FIG. As can be seen from this result, the luminance was high in the region directly above the cold cathode fluorescent lamps 15, and the luminance was low between the adjacent cold cathode fluorescent tubes 15 (obliquely upper region). As a result, the brightness difference between the cold cathode fluorescent lamp 15 and the diagonally upper area is large, so the quality such as brightness uniformity on the image display surface is greatly reduced.

次に、前記ポリカーボネートフィルムが両面に貼着されたアクリル板、即ち、前記入射面プリズム部および出射面凹凸が形成された光制御部材4を開口部20aの大きさに合せて切り出し、光制御部材4を前記開口部20a内に設置した。この場合、前記光制御部材4は、前記入射面プリズム部側の表面を前記冷陰極管15に臨ませ、かつ、該冷陰極管15の長手方向に前記入射面プリズムの稜線方向を一致させた。   Next, the acrylic plate having the polycarbonate film adhered on both sides, that is, the light control member 4 on which the incident surface prism portion and the output surface unevenness are formed is cut out in accordance with the size of the opening 20a, and the light control member 4 was installed in the opening 20a. In this case, the light control member 4 has the surface on the incident surface prism portion side facing the cold cathode tube 15, and the ridge line direction of the incident surface prism coincides with the longitudinal direction of the cold cathode tube 15. .

この後、前記光制御部材4の上に拡散シートを重ね合わせた。そして、前記冷陰極管15を点灯させ、その状態で前記拡散シート面上の明るさを正面方向から測定した。この測定結果を図12(c)に示す。これから判るように、前記入射面にプリズム部が形成された前記光制御部材4を用いたときは、線状光源15のイメージが解消され、該線状光源15の真上の部分と、複数の線状光源15の間の部分とで、ほぼ均一な輝度が得られた。   Thereafter, a diffusion sheet was overlaid on the light control member 4. And the said cold-cathode tube 15 was lighted and the brightness on the said diffusion sheet surface was measured from the front direction in the state. The measurement result is shown in FIG. As can be seen from this, when the light control member 4 having a prism portion formed on the incident surface is used, the image of the linear light source 15 is eliminated, and a portion directly above the linear light source 15 and a plurality of parts A substantially uniform luminance was obtained at the portion between the linear light sources 15.

図12(c)中の光制御部材4に対応する位置範囲のB部の明るさと、微粒子含有光拡散板20に対応する位置範囲のC部の明るさを比較すると、B部の明るさがC部の明るさよりも10%ほど高い。つまり、本発明の光制御部材4を使用した場合は、従来の微粒子含有の光拡散板20を使用した場合よりも、明るい照明装置を得ることができた。   When the brightness of the portion B in the position range corresponding to the light control member 4 in FIG. 12C and the brightness of the portion C in the position range corresponding to the fine particle-containing light diffusion plate 20 are compared, the brightness of the portion B is It is about 10% higher than the brightness of part C. That is, when the light control member 4 of the present invention is used, a brighter illumination device can be obtained than when the conventional light diffusion plate 20 containing fine particles is used.

更に、微粒子含有の光拡散板20を使用して、光制御部材4による輝度と同程度の輝度を得ようとした場合には、冷陰極管15の真上で輝度が高く、複数の冷陰極管15の間で輝度が低くなる現象が見られたため、光制御部材4による輝度と同程度の輝度を得ることは困難になる。   Further, when the light diffusion plate 20 containing fine particles is used to obtain a brightness comparable to that of the light control member 4, the brightness is high directly above the cold cathode tube 15, and a plurality of cold cathodes are obtained. Since a phenomenon in which the luminance is lowered between the tubes 15 is observed, it is difficult to obtain the same luminance as the luminance by the light control member 4.

ところで、本実施例で凸部の端部の傾斜角度は65°であるが、屈折率1.55で同じ屈折作用を実現するためには凸部端部の傾斜角度は68°となる。つまり隣接する凸部斜面のなす角度は屈折率1.6の場合に50°であるのに対して、屈折率1.55では44°となる。   By the way, in this embodiment, the inclination angle of the end portion of the convex portion is 65 °, but in order to realize the same refraction action with a refractive index of 1.55, the inclination angle of the end portion of the convex portion is 68 °. In other words, the angle formed by the adjacent convex slopes is 50 ° when the refractive index is 1.6, whereas it is 44 ° when the refractive index is 1.55.

実施例2.
以下に、本発明の第2の実施例について詳しく説明する。
先ず、図7におけるP1=300μmの楕円弧状断面の溝を有する雌金型を切削加工により作製する。
該楕円は式y=0.139−8.33x2/(1+(1−38.9x2(0.5))(−0.15≦x≦0.15(mm))の形状となっている。
Example 2
The second embodiment of the present invention will be described in detail below.
First, a female die having a groove with an elliptical arc cross section of P1 = 300 μm in FIG. 7 is produced by cutting.
Ellipse formula y = 0.139-8.33x 2 /(1+(1-38.9x 2) ( 0.5)) (- has a shape of 0.15 ≦ x ≦ 0.15 (mm) ).

次に、この雌金型を使用して紫外線硬化型樹脂により、ポリカーボネートフィルム表面上に凸形状のプリズムを成形する。さらに、このポリカーボネートフィルムのプリズムを形成していない側の面を、厚さ2mmの透明なアクリル板に貼り合わせることにより、片面に凸部を備える光拡散板を得る。光拡散板の屈折率はアクリル板部分とポリカーボネート部分と紫外線硬化樹脂部分で異なるが、凸部を形成する材料が特性を決定することから、紫外線硬化樹脂の屈折率1.6を用いると、A1間の領域Xを形成する部分のP1方向成分の長さxは凸部1つあたり170μmであり、領域Xの割合を示す指標である比x/P1=0.57である。   Next, using this female mold, a convex prism is formed on the polycarbonate film surface with an ultraviolet curable resin. Further, the surface of the polycarbonate film on which the prism is not formed is bonded to a transparent acrylic plate having a thickness of 2 mm to obtain a light diffusion plate having a convex portion on one side. The refractive index of the light diffusing plate is different between the acrylic plate portion, the polycarbonate portion, and the ultraviolet curable resin portion. The length x of the component in the P1 direction of the portion forming the region X in the middle is 170 μm per convex portion, and the ratio x / P1 = 0.57, which is an index indicating the ratio of the region X.

次に、光制御部材と反射板の間に複数の線状光源を設置した。この場合、線状光源として複数の冷陰極管を25mm間隔で配置し、冷陰極管中心から15.5mmの位置に前記アクリル板の凸形状部をもつ側の面が出射面になるよう設置した。この場合、前記角度α=38°となるように配置した。また、冷陰極管のアクリル板とは対向する側の面に反射シートを設けた。   Next, a plurality of linear light sources were installed between the light control member and the reflecting plate. In this case, a plurality of cold-cathode tubes were arranged as linear light sources at intervals of 25 mm, and the surface on the side having the convex portion of the acrylic plate was placed at the position of 15.5 mm from the cold-cathode tube center. . In this case, the angle α was set to 38 °. A reflective sheet was provided on the surface of the cold cathode tube facing the acrylic plate.

この状態で冷陰極管の点灯により光拡散板に光照射して、該光拡散板を観察すると、ランプイメージが解消された照明装置を得ることができる。ここで用いる光拡散板の入射面に、入射面の法線方向に対して入射角度α=38°で光を照射する場合の該光の全光線透過率R1は67%、該法線方向に光を照射する場合の該光の全光線透過率R2は48%であり、これら全光線透過率の比R1/R2は1.4である。   In this state, by irradiating the light diffusing plate with light by turning on the cold cathode tube and observing the light diffusing plate, an illuminating device in which the lamp image is eliminated can be obtained. When the incident surface of the light diffusion plate used here is irradiated with light at an incident angle α = 38 ° with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is 67% in the normal direction. When light is irradiated, the total light transmittance R2 of the light is 48%, and the ratio R1 / R2 of these total light transmittances is 1.4.

ところで、本実施例で凸部の端部の傾斜角度は65°であるが、屈折率1.55で同じ屈折作用を実現するためには凸部端部の傾斜角度は68°となる。つまり隣接する凸部斜面のなす角度は屈折率1.6の場合に50°であるのに対して、屈折率1.55では44°となる。   By the way, in this embodiment, the inclination angle of the end portion of the convex portion is 65 °, but in order to realize the same refraction action with a refractive index of 1.55, the inclination angle of the end portion of the convex portion is 68 °. In other words, the angle formed by the adjacent convex slopes is 50 ° when the refractive index is 1.6, whereas it is 44 ° when the refractive index is 1.55.

本発明の光源としては線状光源に限定されず、複数の点光源を用いることができる。図19に、反射板2と光制御部材4の間に点光源21を設置した場合の構成例を示す。点光源21を用いても、線状光源を用いたときと同様な作用効果が期待できる。   The light source of the present invention is not limited to a linear light source, and a plurality of point light sources can be used. In FIG. 19, the structural example at the time of installing the point light source 21 between the reflecting plate 2 and the light control member 4 is shown. Even when the point light source 21 is used, the same effect as when the linear light source is used can be expected.

図14に、本発明で用いることのできる別の構成例を示す。本構成では、光制御部材4の出射面に光拡散フィルムシート(拡散板)22を重ね合わせている。この場合、光拡散フィルムシート22により、出射光の輝度角度分布を出射面内でより均一化することができるため、一層高品位な照明装置を得ることができる。
図15に、本発明で用いることのできる別の構成例を示す。本構成では、光拡散フィルムシート22の上に偏光分離フィルム23を重ね合わせている。偏光分離フィルム23が直交する直線偏光を分離する場合には、発光面上に液晶パネルを載せ、偏光分離フィルム23の透過偏光軸と液晶パネル入射面の偏光分離フィルム23の透過軸を一致させることで、より高輝度な液晶表示装置を得ることができる。
また、偏光分離フィルム23が右回りおよび左回りの円偏光を分離する場合には、偏光分離フィルム23の出射面に1/4波長板を重ね合わせ、1/4波長板透過後に直線偏光に変換し、その直線偏光方向が、液晶パネル入射面の偏光分離フィルム23の透過軸と一致する方向になればよい。
FIG. 14 shows another configuration example that can be used in the present invention. In this configuration, a light diffusion film sheet (diffusion plate) 22 is superimposed on the light exit surface of the light control member 4. In this case, the light diffusion film sheet 22 makes it possible to make the luminance angle distribution of the emitted light more uniform within the emission surface, so that a higher quality illumination device can be obtained.
FIG. 15 shows another configuration example that can be used in the present invention. In this configuration, the polarization separation film 23 is superimposed on the light diffusion film sheet 22. When the polarized light separating film 23 separates orthogonal linearly polarized light, a liquid crystal panel is placed on the light emitting surface, and the transmission polarization axis of the polarized light separating film 23 and the transmission axis of the polarized light separating film 23 on the liquid crystal panel incident surface are matched. Thus, a liquid crystal display device with higher brightness can be obtained.
When the polarization separation film 23 separates clockwise and counterclockwise circularly polarized light, a quarter wavelength plate is superimposed on the exit surface of the polarization separation film 23 and converted to linearly polarized light after passing through the quarter wavelength plate. And the linear polarization direction should just become a direction which corresponds with the transmission axis of the polarization separation film 23 of a liquid crystal panel entrance plane.

次に、液晶表示装置(画像表示装置)の概略構成例に関しては、光制御部材4の上に液晶パネルを載置することにより、該パネル表示面内において輝度が均一な液晶表示装置を得ることができる。本発明の照明装置上に透過型表示素子を用いることで、構成が簡単な画像表示装置を容易に得ることができる。透過型表示素子の代表例としては、液晶パネルが挙げられる。   Next, regarding a schematic configuration example of a liquid crystal display device (image display device), a liquid crystal panel is mounted on the light control member 4 to obtain a liquid crystal display device having uniform brightness within the panel display surface. Can do. By using a transmissive display element on the lighting device of the present invention, an image display device having a simple configuration can be easily obtained. A typical example of the transmissive display element is a liquid crystal panel.

ここで、画像表示装置とは、照明装置と表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器のことを言う。図16に、照明装置と表示素子を組み合わせて成る画像表示装置の構成例を示す。本構成では、光制御部材4の上に光拡散フィルムシート22を重ね、この上に偏光分離フィルム23を重ね合わせ、さらに、この上に液晶パネル24を重ね合わせている。この場合、偏光分離フィルム23の透過偏光軸と液晶パネル24の入射面の偏光フィルムの透過軸とを互いに一致させている。
尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
Here, the image display device refers to a display module in which a lighting device and a display element are combined, and a device having at least an image display function such as a television or a personal computer monitor using the display module. FIG. 16 shows a configuration example of an image display device in which a lighting device and a display element are combined. In this configuration, the light diffusion film sheet 22 is overlaid on the light control member 4, the polarization separation film 23 is overlaid thereon, and the liquid crystal panel 24 is overlaid thereon. In this case, the transmission polarization axis of the polarization separation film 23 and the transmission axis of the polarization film on the incident surface of the liquid crystal panel 24 are made to coincide with each other.
It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明に係る照明装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the illuminating device which concerns on this invention. 本発明に係る複数の光源上に設けた仮想面に入射する光線の入射エネルギーを模式的に説明する入射エネルギー分布図である。It is an incident energy distribution figure which illustrates typically the incident energy of the light ray which injects into the virtual surface provided on the several light source which concerns on this invention. 本発明に係る線状光源真上での光制御部材(仮想面)に入射する光線の輝度(入射エネルギー)を模式的に説明する輝度分布図である。It is a luminance distribution figure which illustrates typically the brightness | luminance (incident energy) of the light ray which injects into the light control member (virtual surface) just above the linear light source which concerns on this invention. 本発明に係る複数の線状光源間での光制御部材(仮想面)に入射する光線の輝度(出射エネルギー)を模式的に説明する輝度分布図である。It is a luminance distribution figure which illustrates typically the brightness | luminance (emitted energy) of the light ray which injects into the light control member (virtual surface) between the some linear light sources concerning this invention. 本発明に係る複数の光源間に位置する光制御部材に入射する光線の入射角度を説明する概略構成図である。It is a schematic block diagram explaining the incident angle of the light ray which injects into the light control member located between the some light sources which concerns on this invention. 本発明に係る光制御部材の全光線透過率の角度依存性を測定する装置の一例を説明する概略構成図である。It is a schematic block diagram explaining an example of the apparatus which measures the angle dependence of the total light transmittance of the light control member which concerns on this invention. 本発明に用いることのできる光制御部材の出射面における凸部の断面形状を説明する概略構成図である。It is a schematic block diagram explaining the cross-sectional shape of the convex part in the output surface of the light control member which can be used for this invention. 本発明に係る光制御部材に対し斜め方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light beam when light injects into the diagonal direction with respect to the light control member which concerns on this invention. 本発明に係る光制御部材に対し垂直方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light ray when light is incident on the light control member according to the present invention in the vertical direction. 本発明に係る光制御部材に対し出射面凸部で屈折し出射する光の光路と角度との関係を説明する概略構成図である。It is a schematic block diagram explaining the relationship between the optical path and angle of the light which is refracted | emitted and radiate | emitted by the output surface convex part with respect to the light control member which concerns on this invention. 本発明に用いることのできる光制御部材の断面形状の一例を示す説明図である。It is explanatory drawing which shows an example of the cross-sectional shape of the light control member which can be used for this invention. 本発明の別の実施例を評価した構成およびその結果を示す説明図である。It is explanatory drawing which shows the structure which evaluated another Example of this invention, and its result. 本発明に係る光源に点光源を用いた場合の構成例を示す説明図である。It is explanatory drawing which shows the structural example at the time of using a point light source for the light source which concerns on this invention. 本発明に用いることのできる照明装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the illuminating device which can be used for this invention. 本発明に用いることのできる照明装置の構成例の別の一例を示す説明図である。It is explanatory drawing which shows another example of a structural example of the illuminating device which can be used for this invention. 本発明の面照明装置に液晶パネルを載せて液晶表示装置とした構成例を示す説明図である。It is explanatory drawing which shows the structural example which carried the liquid crystal panel on the surface illumination device of this invention, and was set as the liquid crystal display device. 従来の照明装置の概略構成図である。It is a schematic block diagram of the conventional illuminating device. 本発明に係る光拡散板に対し斜め方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light ray when light inclines in the diagonal direction with respect to the light diffusing plate which concerns on this invention. 本発明に係る光拡散板に対し垂直方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light ray when light is incident on the light diffusing plate according to the present invention in the vertical direction.

符号の説明Explanation of symbols

1 光源
2 反射板
3 仮想面
4 光制御部材
5 積分球
6 開口部
7 測定対象物
8 平行光
9 凸部
10 略直線(部)
11 曲線(部)
12 斜め入射光
13 垂直入射光
15 線状光源(冷陰極管)
20 光拡散板
20a 開口部
21 点光源
22 光拡散フィルムシート(拡散板)
23 偏光分離フィルム
24 液晶パネル(透過型表示素子)
DESCRIPTION OF SYMBOLS 1 Light source 2 Reflector 3 Virtual surface 4 Light control member 5 Integrating sphere 6 Aperture 7 Measurement object 8 Parallel light 9 Convex part 10 Substantially straight line (part)
11 Curve (part)
12 oblique incident light 13 perpendicular incident light 15 linear light source (cold cathode tube)
20 light diffusion plate 20a opening 21 point light source 22 light diffusion film sheet (diffusion plate)
23 Polarized light separation film 24 Liquid crystal panel (transmission type display element)

Claims (8)

規則的に配置した複数の光源と、反射板と、前記光源及び前記反射板からの光が透過する際に出射方向を制御する光制御部材とを少なくとも備える直下方式の照明装置であって、
光入射側から光出射側に向かって前記反射板、光源及び光制御部材がこの順に配置され、該光制御部材が主として受光する入射面と、主として出光する出射面とを備え、
任意の光源Xとその最近傍にある別の光源Yとの間の距離をD、該光源Xと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、且つ、該全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜3倍であり、
前記光制御部材の出射面上に複数の凸部が形成され、該凸部が屈折率が1.58以上である材料から構成されることを特徴とする照明装置。
A direct illumination system comprising at least a plurality of regularly arranged light sources, a reflecting plate, and a light control member that controls an emission direction when light from the light source and the reflecting plate is transmitted,
The reflector, the light source, and the light control member are arranged in this order from the light incident side to the light emitting side, and includes an incident surface that the light control member mainly receives, and an emission surface that mainly emits light,
When the distance between an arbitrary light source X and another light source Y nearest to it is D and the distance between the light source X and the light control member is H, the incident is made at an arbitrary point on the incident surface. The total light transmittance of light incident at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the surface is 50% or more, and the total light transmittance is 1.05 to 3 times the total light transmittance of light when light is incident on a point on the incident surface from the normal direction;
A lighting device, wherein a plurality of convex portions are formed on an emission surface of the light control member, and the convex portions are made of a material having a refractive index of 1.58 or more.
上記光制御部材の入射面の法線方向に対し角度αで入射した光の10〜50%は、出射面の法線方向と成す角度が−15°〜+15°の範囲で出射することを特徴とする請求項1に記載の照明装置。   10 to 50% of light incident at an angle α with respect to the normal direction of the incident surface of the light control member is emitted in an angle range of −15 ° to + 15 ° with the normal direction of the output surface. The lighting device according to claim 1. 上記光制御部材の入射面が平坦であり、出射面に前記凸部が形成されており、該出射面に直交し、該凸部の頂部を含む、少なくとも所定の一方向の断面の光出射部分における輪郭線が、該光拡散板の屈折率がnであるとき、該輪郭線の傾きθが0≦|Sin−1(n・sin(θ−Sin−1((1/n)・sinα)))―θ|≦(π/12)を満たし、前記出射面に対する傾きの絶対値θ2がSin−1(1/n)未満である領域Xを含み、該領域Xは前記凸部の頂部を含み、該領域Xの出射面と平行な方向成分の長さxと輪郭線全体の該出射面と平行な方向成分の長さPの割合が0.15〜0.80であることを特徴とする請求項1又は2に記載の照明装置 The incident surface of the light control member is flat, the projection is formed on the exit surface, is orthogonal to the exit surface, and includes a top portion of the projection, and has a light exit portion having a cross section in at least one predetermined direction. When the refractive index of the light diffusing plate is n, the gradient θ of the contour is 0 ≦ | Sin −1 (n · sin (θ−Sin −1 ((1 / n) · sin α) )) −θ | ≦ (π / 12) is satisfied, and the absolute value θ2 of the inclination with respect to the exit surface includes a region X that is less than Sin −1 (1 / n), and the region X represents the top of the convex portion. And the ratio of the length x of the direction component parallel to the exit surface of the region X and the length P of the direction component parallel to the exit surface of the entire contour line is 0.15 to 0.80. The lighting device according to claim 1 or 2 上記光制御部材は、上記出射面に直交し、且つ、上記凸部の頂部を含む、少なくとも所定の一方向に沿った断面の光出射部分における輪郭線が、延長線の交差する角度θが鋭角である2つの略直線と、該2つの略直線の各一端同士を結ぶ凸状の曲線とを含むことを特徴とする請求項1〜3のいずれか1項に記載の照明装置。   The light control member has an acute angle θ at which an outline intersects an extended line of a contour line in a light emitting portion of a cross section along at least a predetermined direction that is orthogonal to the emission surface and includes the top of the convex portion. The lighting device according to claim 1, comprising: two substantially straight lines, and a convex curve that connects one end of each of the two substantially straight lines. 上記光源が線状光源であり、上記光制御部材の出射面上に複数の凸部が形成され、該出射面に直交し、且つ、該出射面上の前記凸部の頂部を含む、前記線状光源と平行な方向で断面した光出射部分における稜線が、前記線状光源に対して平行な方向に延びる直線であることを特徴とする請求項1〜4のいずれか1項に記載の照明装置。   The light source is a linear light source, a plurality of convex portions are formed on the exit surface of the light control member, the line is orthogonal to the exit surface, and includes the top of the convex portion on the exit surface. 5. The illumination according to claim 1, wherein a ridge line in a light emitting portion sectioned in a direction parallel to the linear light source is a straight line extending in a direction parallel to the linear light source. apparatus. 上記光源が点状光源であることを特徴とする請求項1〜4のいずれか1項に記載の照明装置。   The lighting device according to claim 1, wherein the light source is a point light source. 請求項1〜6のいずれか1項に記載の照明装置が備える光制御部材。   The light control member with which the illuminating device of any one of Claims 1-6 is provided. 請求1〜6のいずれか1項に記載の上記照明装置上に透過型表示素子を設けたことを特徴とする画像表示装置。   A transmissive display element is provided on the illuminating device according to claim 1.
JP2005295750A 2005-10-07 2005-10-07 Illumination device, light control member equipped with it, and image display device using it Pending JP2007103322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005295750A JP2007103322A (en) 2005-10-07 2005-10-07 Illumination device, light control member equipped with it, and image display device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295750A JP2007103322A (en) 2005-10-07 2005-10-07 Illumination device, light control member equipped with it, and image display device using it

Publications (1)

Publication Number Publication Date
JP2007103322A true JP2007103322A (en) 2007-04-19

Family

ID=38030048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295750A Pending JP2007103322A (en) 2005-10-07 2005-10-07 Illumination device, light control member equipped with it, and image display device using it

Country Status (1)

Country Link
JP (1) JP2007103322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022725A1 (en) * 2007-08-14 2009-02-19 Dai Nippon Printing Co., Ltd. Optical control sheet, surface illuminant device, and transmission type display device
WO2009148128A1 (en) * 2008-06-05 2009-12-10 株式会社クラレ Plastic sheet, and decorative illumination signboard

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022725A1 (en) * 2007-08-14 2009-02-19 Dai Nippon Printing Co., Ltd. Optical control sheet, surface illuminant device, and transmission type display device
WO2009148128A1 (en) * 2008-06-05 2009-12-10 株式会社クラレ Plastic sheet, and decorative illumination signboard
US8281510B2 (en) 2008-06-05 2012-10-09 Kuraray Co., Ltd. Plastic sheet, and decorative illumination signboard

Similar Documents

Publication Publication Date Title
KR100858851B1 (en) A lighting device, an image displaying device using the lighting device, and a light diffusing plate used in the devices
JP4425164B2 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
US7220038B2 (en) Light source device and light polarizing element
KR100951723B1 (en) Optical sheet for back light unit
JP4638752B2 (en) Light diffusion plate
JP2012164583A (en) Light guide plate, surface light source device, and transmission type display device
JP2009164101A (en) Backlight
JP2009265616A (en) Optical sheet, backlight device and display
US7864266B2 (en) Diffuser plate, backlight and display having the same
JP2009204781A (en) Lens sheet, optical sheet for display and backlight unit using the same, and display device
JP4522938B2 (en) Light control member provided in illumination device and image display device using the same
JP5217363B2 (en) Lens sheet, optical sheet for display, backlight unit using the same, and display device
JP2009053623A (en) Lens sheet, optical sheet for display, backlight unit and display apparatus using them
JP2010097034A (en) Microlens sheet and back light unit display using the same
JP2004045645A (en) Surface light source device and liquid crystal display device
JP2015191686A (en) Light guide, edge light type lighting apparatus and image display device
JP2010256869A (en) Diffusion sheet, light control unit, and light source unit
JP5434403B2 (en) Illumination unit and display device
JP2008304700A (en) Optical sheet, illumination device and display device
JP2007103322A (en) Illumination device, light control member equipped with it, and image display device using it
JP2008032967A (en) Optical sheet, back light unit using the same and display
JP2007225853A (en) Optical sheet, backlight unit using the same and display
KR20080062471A (en) Optical sheet for back light unit
JP2008071716A (en) Direct backlight device
JP2007163615A (en) Surface light emitting device, method for uniformizing luminance, and liquid crystal display device