WO2013179990A1 - 静電容量型センサ、音響センサ及びマイクロフォン - Google Patents

静電容量型センサ、音響センサ及びマイクロフォン Download PDF

Info

Publication number
WO2013179990A1
WO2013179990A1 PCT/JP2013/064288 JP2013064288W WO2013179990A1 WO 2013179990 A1 WO2013179990 A1 WO 2013179990A1 JP 2013064288 W JP2013064288 W JP 2013064288W WO 2013179990 A1 WO2013179990 A1 WO 2013179990A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
acoustic
sensing unit
area
sensing
Prior art date
Application number
PCT/JP2013/064288
Other languages
English (en)
French (fr)
Inventor
雄喜 内田
隆 笠井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US14/402,246 priority Critical patent/US9380393B2/en
Priority to CN201380026165.XA priority patent/CN104350767B/zh
Priority to DE112013002734.8T priority patent/DE112013002734B4/de
Publication of WO2013179990A1 publication Critical patent/WO2013179990A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to a capacitive sensor, an acoustic sensor, and a microphone. More specifically, the present invention relates to a capacitive sensor configured by a capacitor structure including a vibrating electrode plate (diaphragm) and a fixed electrode plate. The present invention also relates to an acoustic sensor (acoustic transducer) that converts an acoustic vibration into an electrical signal and outputs the electrical signal, and a microphone using the acoustic sensor. In particular, the present invention relates to a micro-size capacitive sensor and an acoustic sensor manufactured using MEMS (Micro Electro Mechanical System) technology.
  • MEMS Micro Electro Mechanical System
  • Electret condenser microphones have been widely used so far as small microphones mounted on mobile phones and the like.
  • electret condenser microphones are vulnerable to heat, and are inferior to MEMS microphones in terms of compatibility with digitalization, miniaturization, high functionality / multifunction, and power saving. Therefore, at present, MEMS microphones are becoming popular.
  • the MEMS microphone includes an acoustic sensor (acoustic transducer) that detects acoustic vibration and converts it into an electrical signal (detection signal), a drive circuit that applies a voltage to the acoustic sensor, and amplification of the detection signal from the acoustic sensor. And a signal processing circuit that performs signal processing and outputs the signal to the outside.
  • the acoustic sensor used for the MEMS microphone is a capacitance type acoustic sensor manufactured by using MEMS technology. Further, the drive circuit and the signal processing circuit are integrally manufactured as an ASIC (Application Specific Integrated Circuit) using semiconductor manufacturing technology.
  • ASIC Application Specific Integrated Circuit
  • the maximum input sound pressure of a microphone is limited by the harmonic distortion rate (Total Harmonic Distortion). This is because if a microphone with a high sound pressure is detected, harmonic distortion is generated in the output signal, and sound quality and accuracy are impaired. Therefore, if the harmonic distortion rate can be reduced, the maximum input sound pressure can be increased to widen the detected sound pressure range (hereinafter referred to as the dynamic range) of the microphone.
  • the harmonic distortion rate Total Harmonic Distortion
  • a microphone using a plurality of acoustic sensors having different detection sensitivities has been studied as a method for realizing a microphone having a wide dynamic range.
  • An example of such a microphone is disclosed in Patent Documents 1-4.
  • Patent Documents 1 and 2 disclose a microphone in which a plurality of acoustic sensors are provided and a plurality of signals from the plurality of acoustic sensors are switched or fused according to sound pressure.
  • a microphone for example, a high-sensitivity acoustic sensor with a detectable sound pressure level (SPL) of about 30 dB-115 dB and a low-sensitivity acoustic sensor with a detectable sound pressure level of about 60 dB-140 dB are provided.
  • SPL detectable sound pressure level
  • Patent Documents 3 and 4 disclose a single chip in which a plurality of independent acoustic sensors are formed.
  • FIG. 1A shows the relationship between the harmonic distortion rate and the sound pressure in the highly sensitive acoustic sensor of Patent Document 1.
  • FIG. 1B shows the relationship between the harmonic distortion rate and the sound pressure in the low-sensitivity acoustic sensor of Patent Document 1.
  • FIG. 2 shows the relationship between the average displacement amount of the diaphragm and the sound pressure in the high-sensitivity acoustic sensor and the low-sensitivity acoustic sensor disclosed in Patent Document 1. Now, if the allowable harmonic distortion rate is 20%, the maximum detected sound pressure of the highly sensitive acoustic sensor is about 115 dB.
  • the minimum detected sound pressure is about 30 dB. Accordingly, the dynamic range of the highly sensitive acoustic sensor is about 30 dB to 115 dB as shown in FIG. 1A. Similarly, if the allowable harmonic distortion rate is 20%, the maximum detected sound pressure of the low-sensitivity acoustic sensor is about 140 dB.
  • the low-sensitivity acoustic sensor has a smaller diaphragm area than the high-sensitivity acoustic sensor, and the average displacement amount of the diaphragm is smaller than that of the high-sensitivity acoustic sensor as shown in FIG.
  • the minimum detected sound pressure of the low sensitivity acoustic sensor is larger than that of the high sensitivity acoustic sensor, and is about 60 dB.
  • the dynamic range of the low-sensitivity acoustic sensor is about 60 dB-140 dB as shown in FIG. 1B.
  • a plurality of acoustic sensors are integrally formed on one chip (substrate) even when the plurality of acoustic sensors are formed on separate chips. Even in such a case, each acoustic sensor has a capacitor structure independent of each other. Therefore, in these microphones, variation and mismatching occur in acoustic characteristics.
  • the variation in acoustic characteristics refers to a deviation in acoustic characteristics between acoustic sensors between chips.
  • the mismatching of acoustic characteristics refers to a deviation in acoustic characteristics between a plurality of acoustic sensors in the same chip.
  • the present invention has been made in view of the technical problems as described above.
  • the object of the present invention is to integrally form a plurality of sensing units having different sensitivities so that the dynamic range is wide and the sensing units are It is another object of the present invention to provide a capacitive sensor and an acoustic sensor with small mismatching and high impact resistance.
  • a first capacitive sensor includes a vibrating electrode plate formed above a substrate, a back plate formed above the substrate so as to cover the vibrating electrode plate, and the vibrating electrode
  • a capacitive sensor comprising a fixed electrode plate provided on the back plate so as to face the plate, at least one of the vibration electrode plate and the fixed electrode plate is divided into a plurality of regions, and divided Sensing units each including the vibrating electrode plate and the fixed electrode plate are formed for each of the regions, and a plurality of signals with different sensitivities are output from the plurality of sensing units, and at least some of the sensing units are sensing
  • the portion of the sensing electrode is different from the area of the vibrating electrode plate in the other sensing unit, and the part of the sensing electrode has a smaller area of the vibrating electrode plate.
  • Sensing unit, the rigidity of the back plate in the region, characterized in that is higher than the rigidity of the back plate in the other sensing unit is a large area of the vibrating electrode plate.
  • the first capacitive sensor of the present invention since at least one of the vibrating electrode plate and the fixed electrode plate is divided, a plurality of sensing units (variable capacitor structure) are provided between the vibrating electrode plate and the fixed electrode plate. Is formed. Therefore, an electric signal can be output from each of the divided sensing units, and a pressure change such as acoustic vibration can be converted into a plurality of electric signals and output.
  • a capacitance type sensor for example, by changing the area for each vibrating electrode plate of each sensing unit, the sensing area and sensitivity of each sensing unit can be varied, and signals can be switched or combined. By doing so, the detection area of the capacitive sensor can be expanded without reducing the sensitivity.
  • each sensing unit can be formed by dividing the vibrating electrode plate or the fixed electrode plate, each sensing unit is separately manufactured and compared to the conventional technology having a plurality of sensing units independent from each other. The characteristic variation between parts is reduced. As a result, it is possible to reduce the characteristic variation caused by the difference in detection sensitivity between the sensing units. In addition, since each sensing unit shares the vibration electrode plate and the fixed electrode plate, mismatching related to characteristics such as frequency characteristics and phase can be suppressed.
  • the area of the vibrating electrode plate of some sensing units is made different from the area of the vibrating electrode plate of other sensing units.
  • a capacitive impact sensor is subjected to a drop impact or the like and the vibrating electrode plate deforms and collides with the back plate, if the rigidity of the back plate is low, the back plate deforms due to the collision of the vibrating electrode plate and the back plate vibrates. The electrode plate cannot be received. Therefore, the vibration electrode plate may be greatly deformed and the vibration electrode plate may be damaged.
  • the vibration electrode plate when the vibration electrode plate is displaced by the same amount of displacement, the local deformation (bending deformation) becomes larger as the vibration electrode plate has a smaller area when viewed from the direction perpendicular to the upper surface of the substrate.
  • the rigidity of the back plate if the rigidity of the back plate is increased in a region where the area of the vibration electrode plate is small, the vibration electrode plate having a small area is deformed by a drop impact or the like. Since the back plate is not easily deformed when it collides with the back plate, the vibration electrode plate having a small area is not further deformed. As a result, it is possible to more effectively prevent the vibration electrode plate from being damaged.
  • the sensing unit may include the same area as viewed from the direction perpendicular to the top surface of the substrate.
  • a second capacitive sensor includes a vibrating electrode plate formed above a substrate, a back plate formed above the substrate so as to cover the vibrating electrode plate, and the vibrating electrode
  • a capacitive sensor comprising a fixed electrode plate provided on the back plate so as to face the plate, at least one of the vibration electrode plate and the fixed electrode plate is divided into a plurality of regions, and divided A sensing unit composed of the vibration electrode plate and the fixed electrode plate is formed for each of the regions, and a plurality of signals with different sensitivities are output from the plurality of sensing units, and the sensing unit includes the back plate and A plurality of openings are formed in the fixed electrode plate, and at least some of the sensing units have a sensing electrode area other than that of the sensing electrode.
  • the aperture ratio of the opening in the sensing part on the side where the area of the vibrating electrode plate is smaller is at least one pair of sensing parts having different areas of the vibrating electrode plate among the sensing parts. It is characterized by being smaller than the aperture ratio of the opening in the sensing part on the side having the larger area of the plate.
  • a method of adjusting the aperture ratio of the back plate a method of adjusting the hole diameter (opening area) of each opening, a method of adjusting the distribution density (number density) of each opening, the hole diameter and distribution density of each opening There is a method to adjust both.
  • the second capacitive sensor of the present invention since at least one of the vibrating electrode plate and the fixed electrode plate is divided, a plurality of sensing units (variable capacitor structure) are provided between the vibrating electrode plate and the fixed electrode plate. Is formed. Therefore, an electric signal can be output from each of the divided sensing units, and a pressure change such as acoustic vibration can be converted into a plurality of electric signals and output.
  • a capacitance type sensor for example, by changing the area for each vibrating electrode plate of each sensing unit, the sensing area and sensitivity of each sensing unit can be varied, and signals can be switched or combined. By doing so, the detection area of the capacitive sensor can be expanded without reducing the sensitivity.
  • the plurality of sensing units can be formed by dividing the vibration electrode plate or the fixed electrode plate produced at the same time, compared to the prior art having a plurality of sensing units that are produced separately and independent from each other. As a result, the variation in characteristics among the sensing units is reduced. As a result, it is possible to reduce the characteristic variation caused by the difference in detection sensitivity between the sensing units. In addition, since each sensing unit shares the vibration electrode plate and the fixed electrode plate, mismatching related to characteristics such as frequency characteristics and phase can be suppressed.
  • the area of the vibrating electrode plate of some sensing units is different from the area of the vibrating electrode plate of other sensing units, and the sensing unit on the side where the area of the vibrating electrode plate is smaller Since the aperture ratio of the back plate is smaller than the aperture ratio of the back plate in the sensing part on the side where the vibrating electrode plate is large, the rigidity of the back plate is high in the sensing part on the side where the area of the vibrating electrode plate is small. Become.
  • the rigidity of the back plate in the sensing part on the side where the vibrating electrode plate is small is low, The back plate is deformed by the collision, and the back plate cannot receive the vibrating electrode plate. Therefore, the vibration electrode plate having a small area may be greatly deformed and the vibration electrode plate may be damaged.
  • the rigidity of the back plate is increased in the sensing part on the side where the area of the vibration electrode plate is small.
  • the back plate When it deforms and collides with the back plate, the back plate is difficult to deform, so that the vibrating electrode plate is not further deformed. As a result, it is possible to more effectively prevent the vibration electrode plate from being damaged in the sensing portion on the side having the smaller area of the vibration electrode plate.
  • the areas of the vibrating electrode plates of the two sensing units are different and the area of the vibrating electrode plate is smaller.
  • the sensing unit has a relatively small aperture ratio of the back plate and the sensing unit on the side where the area of the vibrating electrode plate is large has a relatively large aperture ratio of the back plate.
  • the three sensing units typically, the three sensing units have different aperture ratios, and the smaller the area of the vibrating electrode plate, the smaller the aperture ratio of the back plate. It is a case.
  • a sensing unit having the same area of the vibrating electrode plate may be included.
  • An embodiment of the second capacitance type sensor according to the present invention is the second capacitance type sensor in which the aperture ratio of the back plate is adjusted by the hole diameter of the opening formed in the back plate. At least one of the fixed electrode plates is divided into two regions, the two sensing portions are formed, and the hole diameter of the opening in the sensing portion on the side where the area of the vibrating electrode plate is small is the area of the vibrating electrode plate It is characterized in that it is 1/2 or less of the hole diameter of the opening in the sensing part on the larger side. According to this embodiment, the vibration electrode plate can be effectively prevented from being damaged in the sensing unit on the side where the area of the vibration electrode plate is small.
  • the hole diameter of the opening in the sensing part on the side where the area of the vibrating electrode plate is small is 10 ⁇ m or less. Even if there is an opening in the fixed electrode plate that is continuous with the opening in the back plate, the electric field between the fixed electrode plate and the vibrating electrode plate spreads in the opening, so the sensing unit has no holes in the fixed electrode plate. It can be regarded as a capacitor, and the sensitivity of the capacitive sensor is improved. This is called the fringe effect. However, such a fringe effect cannot be expected when the aperture diameter is larger than 10 ⁇ m. Therefore, it is desirable that the hole diameter of the opening of the back plate in the sensing part on the side where the area of the vibrating electrode plate is small is 10 ⁇ m or less.
  • Still another embodiment of the second capacitive sensor according to the present invention is the second capacitive sensor in which the aperture ratio of the back plate is adjusted by the distribution density of the apertures opened in the back plate. At least one of the electrode plate and the fixed electrode plate is divided into two regions to form two sensing units, and the arrangement pitch of the openings in the sensing unit on the side where the area of the vibrating electrode plate is small is vibration It is more than twice the arrangement pitch of the openings in the sensing part on the side where the area of the electrode plate is large. In a capacitive sensor in which at least one of the vibrating electrode plate and the fixed electrode plate is divided into two regions and two sensing portions are formed, the rigidity of the back plate is increased by increasing the arrangement pitch of the openings.
  • the arrangement pitch of the openings opened in the back plate on the side with the larger area of the vibration electrode plate is set to the back plate on the side with the smaller area of the vibration electrode plate. It is desirable that it is at least twice the arrangement pitch of the openings formed in the openings.
  • a third capacitive sensor includes a vibrating electrode plate formed above a substrate, a back plate formed above the substrate so as to cover the vibrating electrode plate, and the vibrating electrode
  • a capacitive sensor comprising a fixed electrode plate provided on the back plate so as to face the plate, at least one of the vibration electrode plate and the fixed electrode plate is divided into a plurality of regions, and divided Sensing units each including the vibrating electrode plate and the fixed electrode plate are formed for each of the regions, and a plurality of signals with different sensitivities are output from the plurality of sensing units, and at least some of the sensing units are sensing
  • the area of the vibrating electrode plate is different from the area of the vibrating electrode plate in the other sensing units, and the area of the vibrating electrode plate in the sensing unit is different.
  • the pair of sensing parts is characterized in that the thickness of the back plate in the sensing part on the side where the vibration electrode plate is small is thicker than the thickness of the back plate in the sensing part on the side where the area
  • the third capacitive sensor of the present invention since at least one of the vibrating electrode plate and the fixed electrode plate is divided, a plurality of sensing units (variable capacitor structure) are provided between the vibrating electrode plate and the fixed electrode plate. Is formed. Therefore, an electric signal can be output from each of the divided sensing units, and a pressure change such as acoustic vibration can be converted into a plurality of electric signals and output.
  • a capacitance type sensor for example, by changing the area for each vibrating electrode plate of each sensing unit, the sensing area and sensitivity of each sensing unit can be varied, and signals can be switched or combined. By doing so, the detection area of the capacitive sensor can be expanded without reducing the sensitivity.
  • the plurality of sensing units can be formed by dividing the vibration electrode plate or the fixed electrode plate produced at the same time, compared to the prior art having a plurality of sensing units that are produced separately and independent from each other. As a result, the variation in characteristics among the sensing units is reduced. As a result, it is possible to reduce the characteristic variation caused by the difference in detection sensitivity between the sensing units. In addition, since each sensing unit shares the vibration electrode plate and the fixed electrode plate, mismatching related to characteristics such as frequency characteristics and phase can be suppressed.
  • the area of the vibrating electrode plate of some sensing units is different from the area of the vibrating electrode plate of other sensing units, and the sensing unit on the side where the area of the vibrating electrode plate is smaller Since the thickness of the back plate is larger than the thickness of the back plate in the sensing part on the side where the area of the vibration electrode plate is large, the rigidity of the back plate is increased in the sensing part on the side where the area of the vibration electrode plate is small.
  • the rigidity of the back plate in the sensing part on the side where the vibrating electrode plate is small is low, The back plate is deformed by the collision, and the back plate cannot receive the vibrating electrode plate. Therefore, the vibration electrode plate may be greatly deformed and the vibration electrode plate having a small area may be damaged.
  • the rigidity of the back plate is increased in the sensing part on the side where the area of the vibration electrode plate is small.
  • the back plate When it deforms and collides with the back plate, the back plate is difficult to deform, so that the vibrating electrode plate is not further deformed. As a result, it is possible to more effectively prevent the vibration electrode plate from being damaged in the sensing unit on the side where the area of the vibration electrode plate is small.
  • the third capacitive sensor for example, when there are two sensing units, the areas of the vibrating electrode plates of the two sensing units are different and the area of the vibrating electrode plate is smaller. This is a case where the sensing part has a relatively thick back plate and the sensing part on the side where the area of the vibrating electrode plate is large has a relatively thin back plate. Further, when there are three or more sensing units, typically, the thicknesses of the back plates in the three sensing units are different from each other, and the thickness of the back plate increases as the sensing unit has a smaller area of the vibrating electrode plate. This is the case. In the case where there are three or more sensing units, a sensing unit having the same area as the vibrating electrode plate may be included.
  • Still another embodiment of the first and second capacitive sensors according to the present invention and a third embodiment of the third capacitive sensor according to the present invention each have the vibrating electrode plate in a plurality of regions. It is divided
  • the plurality of sensing units are formed by dividing the vibrating electrode that is displaced by pressure, the independence of each sensing unit is increased.
  • the acoustic sensor according to the present invention is an acoustic sensor using the first, second, or third capacitive sensor according to the present invention, and allows acoustic vibration to pass through the back plate and the fixed electrode plate. A plurality of openings are formed, and a signal is output from the sensing unit according to a change in capacitance between the diaphragm and the fixed electrode plate sensitive to acoustic vibration. According to such an acoustic sensor, it is possible to produce a high-sensitivity and high-quality acoustic sensor having a wide dynamic range from a small volume (small sound pressure) to a large volume (large sound pressure).
  • the vibration electrode plate of the high volume sensing unit can be prevented from being damaged when the acoustic sensor is dropped, etc.
  • the impact resistance and durability of the acoustic sensor can be increased.
  • the microphone according to the present invention includes the acoustic sensor according to the present invention and a circuit unit that amplifies a signal from the acoustic sensor and outputs the amplified signal to the outside.
  • a microphone also has the same function and effect as the acoustic sensor.
  • the means for solving the above-described problems in the present invention has a feature in which the above-described constituent elements are appropriately combined, and the present invention enables many variations by combining such constituent elements. .
  • FIG. 1A is a diagram illustrating a relationship between a harmonic distortion rate and sound pressure in a highly sensitive acoustic sensor disclosed in Patent Document 1.
  • FIG. 1B is a diagram illustrating a relationship between harmonic distortion rate and sound pressure in the low-sensitivity acoustic sensor disclosed in Patent Document 1.
  • FIG. 1C is a diagram illustrating a relationship between the harmonic distortion rate and the sound pressure when the high-sensitivity acoustic sensor and the low-sensitivity acoustic sensor disclosed in Patent Document 1 are combined.
  • FIG. 2 is a diagram illustrating a relationship between the average displacement amount of the diaphragm and the sound pressure in the high-sensitivity acoustic sensor and the low-sensitivity acoustic sensor disclosed in Patent Document 1.
  • FIG. 1A is a diagram illustrating a relationship between a harmonic distortion rate and sound pressure in a highly sensitive acoustic sensor disclosed in Patent Document 1.
  • FIG. 1B is a diagram illustrating a relationship between harmonic distortion rate and sound pressure in the low-sensitivity
  • FIG. 3 is an exploded perspective view of the acoustic sensor according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the acoustic sensor according to Embodiment 1 of the present invention.
  • FIG. 5A is a plan view of the acoustic sensor according to the first embodiment of the present invention.
  • FIG. 5B is an enlarged view of a portion X in FIG. 5A.
  • FIG. 6 is a plan view showing a state in which the back plate, the protective film, and the like are removed from the acoustic sensor shown in FIG. 5A.
  • FIG. 7A is a partially cutaway plan view of a microphone in which an acoustic sensor and a signal processing circuit according to Embodiment 1 of the present invention are housed in a casing.
  • FIG. 7B is a longitudinal sectional view of the microphone.
  • FIG. 8 is a circuit diagram of the microphone according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing a state when the microphone is dropped.
  • FIG. 10 is a schematic cross-sectional view showing a state in which the microphone according to the comparative example is damaged by dropping.
  • FIG. 11 is a schematic cross-sectional view showing a state when the microphone according to Embodiment 1 of the present invention is dropped.
  • FIG. 12A is a diagram illustrating a displacement amount of the first fixed electrode plate when the diameter of each acoustic hole in the first and second acoustic sensing units is changed.
  • FIG. 12B is a diagram illustrating the displacement amount of the second fixed electrode plate when the hole diameter of each acoustic hole in the first and second acoustic sensing units is changed.
  • FIG. 13 is a diagram comparing the air pressure (air pressure resistance) at which the second diaphragm is damaged when a large air pressure is applied to the diaphragm in the comparative example and the first embodiment.
  • FIG. 14 is a diagram illustrating a distribution of displacement amounts of the back plate and the fixed electrode plate of the acoustic sensor of the comparative example.
  • FIG. 15 is a diagram illustrating a distribution of displacement amounts of the back plate and the fixed electrode plate of the acoustic sensor according to the first embodiment of the present invention.
  • FIG. 16 is a plan view showing a modification of the first embodiment of the present invention.
  • FIG. 17 is a plan view of an acoustic sensor according to Embodiment 2 of the present invention.
  • FIG. 18 is a cross-sectional view of an acoustic sensor according to Embodiment 3 of the present invention.
  • FIG. 19 is a plan view showing the structure of an acoustic sensor according to Embodiment 4 of the present invention, and shows a state in which a back plate, a protective film and the like are removed.
  • FIG. 20 is a plan view showing the structure of an acoustic sensor according to Embodiment 5 of the present invention, and shows a state in which a back plate, a protective film, and the like are removed.
  • the present invention is not limited to the following embodiments, and various design changes can be made without departing from the gist of the present invention.
  • acoustic sensor and a microphone will be described below as an example, the present invention can be applied to a capacitive sensor such as a pressure sensor in addition to the acoustic sensor.
  • FIG. 3 is an exploded perspective view of the acoustic sensor 11 according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the acoustic sensor 11.
  • FIG. 5A is a plan view of the acoustic sensor 11.
  • FIG. 5B is an enlarged view of a portion X in FIG. 5A.
  • FIG. 6 is a plan view of the acoustic sensor 11 excluding the back plate 18 and the protective film 30, and shows a state in which the diaphragm 13 and the fixed electrode plate 19 overlap with each other above the silicon substrate 12.
  • these drawings do not reflect the manufacturing process of the acoustic sensor 11 by MEMS.
  • the acoustic sensor 11 is a capacitive element manufactured using MEMS technology. As shown in FIGS. 3 and 4, this acoustic sensor 11 is provided with a diaphragm 13 on the upper surface of a silicon substrate 12 (substrate) via anchors 16 a and 16 b, and a minute air gap 20 (gap) above the diaphragm 13.
  • the canopy portion 14 is disposed via the top, and the canopy portion 14 is fixed to the upper surface of the silicon substrate 12.
  • a chamber 15 (cavity) penetrating from the front surface to the back surface is opened in the silicon substrate 12 made of single crystal silicon.
  • the wall surface is constituted by an inclined surface formed by the (111) plane of the (100) plane silicon substrate and a plane equivalent to the (111) plane, but the wall surface of the chamber 15 is a vertical plane. May be.
  • the diaphragm 13 is disposed above the silicon substrate 12 so as to cover the top of the chamber 15. As shown in FIGS. 3 and 6, the diaphragm 13 is formed in a substantially rectangular shape.
  • the diaphragm 13 is formed of a conductive polysilicon thin film, and the diaphragm 13 itself is a vibrating electrode plate.
  • the diaphragm 13 is divided into two large and small regions by a substantially linear slit 17 extending in a direction parallel to the short side. However, the diaphragm 13 is not completely divided into two by the slit 17 but is mechanically and electrically connected in the vicinity of the end of the slit 17.
  • a substantially rectangular region having a large area is referred to as a first diaphragm 13a
  • a substantially rectangular region having a smaller area than the first diaphragm 13a is referred to as a second diaphragm 13b.
  • the first diaphragm 13a is supported on the upper surface of the silicon substrate 12 by supporting the leg pieces 26 provided at the respective corners by anchors 16a and floating from the upper surface of the silicon substrate 12. As shown in FIG. 4, between adjacent anchors 16a, a narrow vent hole 22a for allowing acoustic vibrations to pass is formed between the lower surface of the outer peripheral portion of the first diaphragm 13a and the upper surface of the silicon substrate 12. .
  • the second diaphragm 13b is supported on the upper surface of the silicon substrate 12 with both short sides supported by the anchors 16b and floated from the upper surface of the silicon substrate 12.
  • a narrow vent hole 22b for allowing acoustic vibrations to pass therethrough is formed between the lower surface of the long side of the second diaphragm 13b and the upper surface of the silicon substrate 12.
  • Both the first diaphragm 13 a and the second diaphragm 13 b are at the same height from the upper surface of the silicon substrate 12. That is, the vent hole 22a and the vent hole 22b are gaps having the same height.
  • the diaphragm 13 is connected to a lead wiring 27 provided on the upper surface of the silicon substrate 12. Further, a band-shaped base portion 21 is formed on the upper surface of the silicon substrate 12 so as to surround the diaphragm 13.
  • Anchor 16a, 16b and base portion 21 is formed by SiO 2.
  • the canopy portion 14 is provided with a fixed electrode plate 19 made of polysilicon on the lower surface of a back plate 18 made of SiN.
  • the canopy portion 14 is formed in a dome shape, and has a hollow portion below it, and covers the diaphragms 13a and 13b with the hollow portion.
  • a minute air gap 20 is formed between the lower surface of the canopy portion 14 (that is, the lower surface of the fixed electrode plate 19) and the upper surfaces of the diaphragms 13a and 13b.
  • the fixed electrode plate 19 is divided into a first fixed electrode plate 19a facing the first diaphragm 13a and a second fixed electrode plate 19b facing the second diaphragm 13b.
  • the fixed electrode plates 19a and 19b are electrically connected. Are separated.
  • the first fixed electrode plate 19a has a larger area than the second fixed electrode plate 19b.
  • a lead wire 28 is drawn from the first fixed electrode plate 19a, and a lead wire 29 is drawn from the second fixed electrode plate 19b.
  • a first acoustic sensing portion 23a having a capacitor structure is formed by the first diaphragm 13a and the first fixed electrode plate 19a facing each other across the air gap 20. Further, a second acoustic sensing portion 23b having a capacitor structure is formed by the second diaphragm 13b and the second fixed electrode plate 19b facing each other with the air gap 20 interposed therebetween.
  • the gap distance of the air gap 20 in the first acoustic sensing unit 23a is equal to the gap distance of the air gap 20 in the second acoustic sensing unit 23b.
  • the dividing positions of the first and second diaphragms 13a and 13b and the dividing positions of the first and second fixed electrode plates 19a and 19b are the same in the illustrated example, but may be shifted.
  • the canopy unit 14 (that is, the back plate 18 and the first fixed electrode plate 19a) penetrates from the upper surface to the lower surface to pass acoustic vibration 24a (acoustic sound). Many holes are perforated.
  • the canopy part 14 (that is, the back plate 18 and the second fixed electrode plate 19b) penetrates from the upper surface to the lower surface so as to pass acoustic vibrations 24b (acoustic sound). Many holes are perforated.
  • the acoustic holes 24a and 24b are regularly arranged.
  • the acoustic holes 24a and 24b are arranged in a triangular shape along three directions forming an angle of 120 °, but may be arranged in a rectangular shape or a concentric shape.
  • the acoustic holes 24a and 24b are provided at the same pitch or the same distribution density (number density), but the opening area per one acoustic hole 24a of the first acoustic sensing unit 23a is the same as that of the second acoustic sensing unit 23b.
  • the opening area per one acoustic hole 24b is larger. Therefore, the rigidity of the back plate 18 in the second acoustic sensing unit 23b is larger than that in the first acoustic sensing unit 23a.
  • a minute columnar stopper 25 projects from the lower surface of the canopy unit 14.
  • the stopper 25 protrudes integrally from the lower surface of the back plate 18 and penetrates the first and second fixed electrode plates 19 a and 19 b and protrudes from the lower surface of the canopy portion 14. Since the stopper 25 is made of SiN like the back plate 18, it has an insulating property.
  • the stopper 25 is used to prevent the diaphragms 13a and 13b from being fixed to the fixed electrode plates 19a and 19b due to electrostatic force and not being separated.
  • the protective film 30 extends continuously from the outer periphery of the canopy-shaped back plate 18 over the entire circumference.
  • the protective film 30 covers the base portion 21 and the outer silicon substrate surface.
  • a common electrode pad 31, a first electrode pad 32a, a second electrode pad 32b, and a ground electrode pad 33 are provided on the upper surface of the protective film 30.
  • the other end of the lead wiring 27 connected to the diaphragm 13 is connected to the common electrode pad 31.
  • the lead wire 28 drawn from the first fixed electrode plate 19a is connected to the first electrode pad 32a, and the lead wire 29 drawn from the second fixed electrode plate 19b is connected to the second electrode pad 32b.
  • the electrode pad 33 is connected to the silicon substrate 12 and is kept at the ground potential.
  • the diaphragms 13a and 13b which are thin films, vibrate in the same phase by acoustic vibration.
  • the capacitances of the acoustic sensing units 23a and 23b change.
  • the acoustic vibration (change in sound pressure) sensed by the diaphragms 13a and 13b is caused by a change in capacitance between the diaphragms 13a and 13b and the fixed electrode plates 19a and 19b. And output as an electrical signal.
  • acoustic vibrations pass through the acoustic holes 24a and 24b and enter the air gap 20 in the canopy portion 14, and each diaphragm 13a is a thin film. , 13b is vibrated.
  • the second acoustic sensing unit 23b is a low-sensitivity acoustic sensor for a sound pressure range from medium volume to large volume.
  • the first acoustic sensing unit 23a is a highly sensitive acoustic sensor for a sound pressure range from a small volume to a medium volume. Therefore, the dynamic range of the acoustic sensor 11 can be expanded by hybridizing both the acoustic sensing units 23a and 23b and outputting a signal by a processing circuit described later.
  • the dynamic range of the first acoustic sensing unit 23a is about 30-120 dB and the dynamic range of the second acoustic sensing unit 23b is about 50-140 dB
  • the dynamic range can be increased by combining both acoustic sensing units 23a, 23b. It can be expanded to about 30-140 dB.
  • the acoustic sensor 11 is divided into a first sound sensing unit 23a from a low volume to a medium volume and a second sound sensing unit 23b from a medium volume to a large volume, the output of the first sound sensing unit 23a is set to a large volume.
  • the harmonic distortion rate may be increased in a large sound pressure range. Therefore, the sensitivity with respect to the low volume of the first acoustic sensing unit 23a can be increased.
  • the first acoustic sensing unit 23a and the second acoustic sensing unit 23b are formed on the same substrate.
  • the first acoustic sensing unit 23a and the second acoustic sensing unit 23b are divided into the first diaphragm 13a and the second diaphragm 13b obtained by dividing the diaphragm 13, and the first fixed electrode plate 19a and the second fixed electrode obtained by dividing the fixed electrode plate 19, respectively. It is comprised by the electrode plate 19b.
  • first acoustic sensing unit 23a and the second acoustic sensing unit 23b are hybridized by dividing one that originally becomes one sensing unit into two, two independent sensing units are provided on one substrate.
  • the first acoustic sensing unit 23a and the second acoustic sensing unit 23b have similar variations in detection sensitivity compared to the conventional example and the conventional example in which the sensing units are provided on different substrates. As a result, variation in detection sensitivity between the acoustic sensing units 23a and 23b can be reduced.
  • both the acoustic sensing parts 23a and 23b share the said diaphragm and a fixed electrode plate, it can suppress the mismatching regarding acoustic characteristics, such as a frequency characteristic and a phase.
  • FIG. 7A is a partially cutaway plan view of the microphone 41 incorporating the acoustic sensor 11 of the first embodiment, and shows the inside by removing the upper surface of the cover 43.
  • FIG. 7B is a longitudinal sectional view of the microphone 41.
  • the microphone 41 includes the acoustic sensor 11 and a signal processing circuit 44 (ASIC) in a package including a circuit board 42 and a cover 43.
  • the acoustic sensor 11 and the signal processing circuit 44 are mounted on the upper surface of the circuit board 42.
  • the circuit board 42 has a sound introduction hole 45 for introducing acoustic vibration into the package.
  • the acoustic sensor 11 is mounted on the upper surface of the circuit board 42 so that the lower surface opening of the chamber 15 is aligned with the sound introduction hole 45 and covers the sound introduction hole 45. Therefore, the chamber 15 of the acoustic sensor 11 is a front chamber, and the space in the package is a back chamber.
  • the electrode pads 31, 32a, 32b and 33 of the acoustic sensor 11 are connected to the pads 47 of the signal processing circuit 44 by bonding wires 46, respectively.
  • a plurality of terminals 48 for electrically connecting the microphone 41 to the outside are provided on the lower surface of the circuit board 42, and electrode portions 49 that are electrically connected to the terminals 48 are provided on the upper surface of the circuit board 42.
  • Each pad 50 of the signal processing circuit 44 mounted on the circuit board 42 is connected to the electrode portion 49 by a bonding wire 51.
  • the pad 50 of the signal processing circuit 44 has a function of supplying power to the acoustic sensor 11 and a function of outputting a capacitance change signal of the acoustic sensor 11 to the outside.
  • a cover 43 is attached to the upper surface of the circuit board 42 so as to cover the acoustic sensor 11 and the signal processing circuit 44.
  • the package has a function of an electromagnetic shield, and protects the microphone 41 from external electrical disturbances and mechanical shocks.
  • the acoustic vibration that enters the package through the sound introduction hole 45 is detected by the acoustic sensor 11, amplified and processed by the signal processing circuit 44, and then output.
  • the microphone 41 since the space in the package is used as the back chamber, the volume of the back chamber can be increased and the sensitivity of the microphone 41 can be increased.
  • a sound introduction hole 45 for introducing acoustic vibration into the package may be opened on the upper surface of the cover 43.
  • the chamber 15 of the acoustic sensor 11 is a back chamber, and the space in the package is a front chamber.
  • FIG. 8 is a circuit diagram of the MEMS microphone 41 shown in FIG. As shown in FIG. 8, the acoustic sensor 11 includes a high-sensitivity first acoustic sensing unit 23a and a low-sensitivity second acoustic sensing unit 23b whose capacitance changes due to acoustic vibration.
  • the signal processing circuit 44 includes a charge pump 52, a low sensitivity amplifier 53, a high sensitivity amplifier 54, ⁇ ( ⁇ ) type ADCs (Analog-to-Digital Converters) 55 and 56, a reference voltage generator 57, and a buffer. 58.
  • the charge pump 52 applies a high voltage HV to the first acoustic sensing unit 23a and the second acoustic sensing unit 23b, and the electric signal output from the second acoustic sensing unit 23b is amplified by the low sensitivity amplifier 53.
  • the electrical signal output from the first acoustic sensing unit 23a is amplified by the high sensitivity amplifier 54.
  • the signal amplified by the low sensitivity amplifier 53 is converted into a digital signal by the ⁇ ADC 55.
  • the signal amplified by the high sensitivity amplifier 54 is converted into a digital signal by the ⁇ ADC 56.
  • the digital signals converted in the ⁇ ADCs 55 and 56 are output to the outside as a PDM (pulse density modulation) signal through the buffer 58.
  • PDM pulse density modulation
  • the intensity of the signal output from the buffer 58 is high (that is, when the sound pressure is high)
  • the output of the ⁇ ADC 55 is kept on and the output of the ⁇ ADC 56 is turned off. . Therefore, an electrical signal of acoustic vibration having a large sound pressure detected by the second acoustic sensing unit 23 b is output from the buffer 58.
  • the intensity of the signal output from the buffer 58 is small (that is, when the sound pressure is low)
  • the output of the ⁇ ADC 56 is kept on and the output of the ⁇ ADC 55 is turned off.
  • an electrical signal of acoustic vibration with a small sound pressure detected by the first acoustic sensing unit 23 a is output from the buffer 58.
  • the first acoustic sensing unit 23a and the second acoustic sensing unit 23b are automatically switched according to the sound pressure.
  • the diaphragm may be damaged by wind pressure when dropped. According to the acoustic sensor 11 according to the first embodiment of the present invention, such damage can be prevented. The reason is as follows.
  • FIG. 9 shows a state in which the microphone 41 mounted on the device 61 is dropped toward the ground 62.
  • the device 61 has a through hole 63 corresponding to the sound introduction hole 45 of the microphone 41.
  • FIG. 10 shows a comparative acoustic sensor in which the diaphragm is pushed up in this way.
  • the acoustic sensor of the comparative example is provided with a uniform acoustic hole 24. That is, the acoustic holes 24 of the first acoustic sensing unit 23a and the acoustic holes 24 of the second acoustic sensing unit 23b are provided with the same distribution density, and the hole diameters (opening areas) of the acoustic holes 24 are also equal. Yes.
  • the average displacement amount of the second diaphragm 13b is smaller than the average displacement amount of the first acoustic sensing unit 23a.
  • the pressure applied to the diaphragms 13a and 13b is large, the first diaphragm 13a and the second diaphragm 13b that have been greatly displaced come into contact with the stopper 25 of the back plate 18, so that the displacement amounts are approximately the same.
  • the second diaphragm 13b is deformed more than the first diaphragm 13a by the smaller area, and particularly the peripheral portion of the second diaphragm 13b is greatly distorted to generate a large internal stress.
  • the rigidity of the back plate 18 in the second acoustic sensing unit 23b is the back plate 18 in the first acoustic sensing unit 23a. It is relatively small like the rigidity of.
  • the back plate 18 of the second acoustic sensing unit 23b is also bent, and the average displacement amount of the second diaphragm 13b becomes larger.
  • the second diaphragm 13b is greatly deformed and the peripheral portion and the like are easily damaged.
  • the hole diameter of the acoustic hole 24 provided in the back plate 18 may be reduced.
  • the acoustic hole 24 having the same hole diameter is provided in the entire back plate 18, if the hole diameter of the acoustic hole 24 is reduced, air molecules that cause thermal noise escape in the first acoustic sensing unit 23a. It becomes difficult. Therefore, noise due to thermal noise increases in the first acoustic sensing unit 23a, and the sensitivity of the first acoustic sensing unit 23a decreases.
  • the hole diameter of the acoustic hole 24b in the second acoustic sensing portion 23b is smaller than the hole diameter of the acoustic hole 24a in the first acoustic sensing portion 23a.
  • the rigidity of the back plate 18 in the second acoustic sensing unit 23b can be increased. Therefore, as shown in FIG. 11, even if the second diaphragm 13b is deformed and hits the back plate 18 by a drop impact, wind pressure, air compressed in the chamber 15, the back plate 18 of the second acoustic sensing unit 23b. Becomes difficult to deform. Therefore, excessive deformation and internal stress of the second diaphragm 13b can be suppressed by the back plate 18, and damage to the second diaphragm 13b can be prevented.
  • the first acoustic sensing unit 23a if the hole diameter of the acoustic hole 24a is set to a general size and the thickness of the back plate 18 is also set to a general thickness, thermal noise in the first acoustic sensing unit 23a is large. None become. Therefore, on the first acoustic sensing unit 23a side where the demand for the S / N ratio is strict, the sensitivity in the low volume range is not lowered. In addition, since the second acoustic sensing unit 23b is used in a loud volume range where an output sufficiently higher than the noise level is obtained, there is no strict requirement for the S / N ratio, and the hole diameter of the acoustic hole 24b may be reduced. . Therefore, according to the acoustic sensor 11 of the first embodiment, it is possible to prevent the second diaphragm 13b from being damaged without lowering the sensitivity on the small volume side.
  • the hole diameter of the acoustic hole 24b in the acoustic sensor 11 is preferably less than or equal to 1 ⁇ 2 of the hole diameter of the acoustic hole 24a.
  • the hole diameter of the acoustic hole 24b is desirably 4 ⁇ m or more and 10 ⁇ m or less.
  • FIG. 12A shows the first fixed electrode plate 19a when the back plate 18 and the fixed electrode plate 19 are deformed by applying a constant air pressure (air pressure assumed to be applied when dropped) to the back plate 18 and the fixed electrode plate 19.
  • the displacement amount is obtained by simulation.
  • FIG. 12B it can be seen that if the hole diameter D2 of the acoustic hole 24b is reduced from 17 ⁇ m to 6 ⁇ m, the displacement of the second fixed electrode plate 19b can be reduced by 18%, and the rigidity can be improved. Thereby, the deformation
  • 12A shows that the displacement of the first fixed electrode plate 19a can be reduced by reducing the hole diameter D2 of the acoustic hole 24b.
  • FIG. 13 shows an acoustic sensor of a comparative example in which both of the hole diameters D1 and D2 are 17 ⁇ m.
  • a gradually larger pressure is applied to the diaphragms 13a and 13b, and further pressure is applied by bringing the diaphragm 13b into contact with the stopper 25.
  • the pressure value when the diaphragm 13b is destroyed is shown.
  • gradually increasing pressure is applied to the diaphragms 13a and 13b, and the diaphragm 13b is brought into contact with the stopper 25 to further increase the pressure.
  • the pressure value when the second diaphragm 13b is destroyed by applying pressure is also shown.
  • the second diaphragm 13b breaks at 78 kPa.
  • the hole diameter of the acoustic hole 24b is reduced to 6 ⁇ m, the second diaphragm 13b The fracture strength is improved to about 95 kPa (22% improvement).
  • FIG. 14 is a view of a comparative example showing the back plate 18 and the fixed electrode plate 19 having acoustic holes 24a and 24b each having a hole diameter D1 and D2 of 17 ⁇ m.
  • the deformation amount of each part when the back plate 18 and the fixed electrode plate 19 are deformed by applying a certain pressure is represented by the difference in density between black and white. As the amount of deformation is white, the amount of deformation is large, and as it is black, the amount of deformation is small.
  • FIG. 15 is a diagram of the first embodiment showing the back plate 18 and the fixed electrode plate 19 having an acoustic hole 24a having a hole diameter D1 of 17 ⁇ m and an acoustic hole 24b having a hole diameter D2 of 6 ⁇ m.
  • the deformation amount of each part of the back plate 18 and the fixed electrode plate 19 under the same conditions as in FIG. 14 is represented by the difference in density between black and white.
  • the acoustic sensor 11 and the microphone 41 of the first embodiment have various effects in addition to preventing the diaphragm from being damaged when dropped.
  • the acoustic sensor 11 of the first embodiment has an advantage that it is easy to introduce. That is, (i) the characteristics (sensitivity, S / N ratio, etc.) of the first acoustic sensing unit 23a are not affected because it is only necessary to change the hole diameter of the acoustic hole 24b on the second acoustic sensing unit 23b side. (ii) Since it is not necessary to increase the thickness of the back plate 18, the deposition time of the back plate 18 does not increase, so that the productivity of the acoustic sensor is good. Further, it is only necessary to change the design of the mask for opening the acoustic holes 24a and 24b, and the design can be easily changed.
  • the electrode area of the second fixed electrode plate 19b is increased, so the output sensitivity of the second acoustic sensing unit 23b is improved, and (ii) the acoustic hole 24b is By reducing the hole diameter and the fringe effect, it is possible to realize the same capacitance as when using a fixed electrode plate without holes, so that the output sensitivity of the acoustic sensor 11 can be improved.
  • the acoustic sensor 11 of the first embodiment by reducing the hole diameter of the acoustic hole 24b in the second acoustic sensing unit 23b, it becomes difficult for dust and dust to enter the inside from the acoustic hole 24b. As a result, there is less risk of dust or dust adhering to the diaphragm and changing the characteristics of the acoustic sensor 11.
  • the rigidity of the back plate 18 is increased, warpage of the back plate 18 due to variation in residual stress caused by the manufacturing process of the acoustic sensor 11 is reduced, and the shape of the back plate 18 is reduced. Is stable.
  • the acoustic sensor 11 of the first embodiment since the rigidity of the back plate 18 is increased, the strength of the back plate 18 against an impact such as a drop test is improved.
  • the first diaphragm 13a collides with the back plate 18 at a large volume, a large distortion occurs in the back plate 18 in the first acoustic sensing unit 23a.
  • the first acoustic sensing unit 23a and the second acoustic sensing unit 23b interfere with each other through the back plate 18 and this large distortion is transmitted to the second acoustic sensing unit 23b, the harmonic distortion rate in the second acoustic sensing unit 23b is increased. As a result, the characteristics of the second acoustic sensing unit 23b may deteriorate.
  • the rigidity of the back plate 18 is increased, so that a large distortion generated in the first acoustic sensing unit 23a is not easily transmitted to the second acoustic sensing unit 23b. As a result, the harmonic distortion rate in the second acoustic sensing unit 23b is improved.
  • FIG. 16 is a plan view showing an acoustic sensor according to a modification of the first embodiment of the present invention, and shows a state in which the back plate 18 and the protective film 30 are removed.
  • the diaphragm 13 is completely separated into the first diaphragm 13 a and the second diaphragm 13 b by the slit 17, and the first fixed electrode plate 19 a and the second fixed electrode plate 19 b are integrated by the connecting portion 64. It may be connected.
  • FIG. 17 is a plan view showing an acoustic sensor 71 according to Embodiment 2 of the present invention.
  • the acoustic hole 24b of the second acoustic sensing unit 23b has a distribution density (number density) smaller than that of the acoustic hole 24a of the first acoustic sensing unit 23a. That is, the arrangement pitch of the acoustic holes 24b is larger than the arrangement pitch of the acoustic holes 24a.
  • the arrangement pitch of the acoustic holes 24b is preferably at least twice the arrangement pitch of the acoustic holes 24a.
  • the acoustic hole 24a of the first acoustic sensing unit 23a and the acoustic hole 24b of the second acoustic sensing unit 23b have the same hole diameter.
  • the said acoustic sensor 71 has the same structure as the acoustic sensor 11 of Embodiment 1, description is abbreviate
  • the aperture ratio of the acoustic holes 24b is small, and the rigidity of the back plate 18 in the second acoustic sensing unit 23b is high. It has become.
  • the back plate 18 is hardly deformed, and the displacement amount or deformation amount of the second diaphragm 13b is also suppressed.
  • the number of acoustic holes 24b is reduced, it is difficult for dust and dirt to enter the acoustic sensor 71 from the acoustic holes 24b.
  • the hole diameters of the acoustic holes 24a and the hole diameters of the acoustic holes 24b are equal. It may be smaller than 24a.
  • the aperture ratio of the acoustic hole 24b as a whole is smaller than the aperture ratio of the acoustic hole 24a
  • the hole diameter of the acoustic hole 24b is smaller than the hole diameter of the acoustic hole 24a
  • the distribution density of the acoustic holes 24b is acoustic holes. It may be larger than the distribution density of 24a.
  • the aperture ratio of the acoustic hole 24b as a whole is smaller than the aperture ratio of the acoustic hole 24a
  • the distribution density of the acoustic hole 24b is smaller than the distribution density of the acoustic hole 24a
  • the hole diameter of the acoustic hole 24b is acoustic. It may be larger than the hole diameter of the hole 24a.
  • FIG. 18 is a cross-sectional view showing an acoustic sensor 81 according to Embodiment 3 of the present invention.
  • the thickness of the back plate 18 in the second acoustic sensing unit 23b that is, the back plate 18b is thicker than the thickness of the back plate 18 in the first acoustic sensing unit 23a, that is, the back plate 18a.
  • the distribution density and the hole diameter of the acoustic holes 24a and the acoustic holes 24b may be the same.
  • description is abbreviate
  • the back plate 18b is thicker than the back plate 18a, the rigidity of the back plate 18b in the second acoustic sensing unit 23b is high. As a result, even if the second diaphragm 13b collides with the back plate 18b, the back plate 18b is hardly deformed, and the displacement amount or deformation amount of the second diaphragm 13b is also suppressed. As a result, it is difficult for large stress to be generated in the second diaphragm 13b, and damage to the second diaphragm 13b can be prevented.
  • FIG. 19 is a plan view showing the structure of an acoustic sensor 91 according to Embodiment 4 of the present invention, and shows a state in which a back plate, a protective film, and the like are removed.
  • the acoustic sensor 91 has three acoustic sensing units 23a, 23b, and 23c.
  • the acoustic sensing unit 23a has a capacitor structure constituted by the diaphragm 13a and the fixed electrode plate 19a.
  • the acoustic sensing unit 23c has a capacitor structure constituted by a diaphragm 13c and a fixed electrode plate 19c.
  • the acoustic sensing units 23a and 23c are high-sensitivity sensing units for a low sound pressure range.
  • the acoustic sensing unit 23b is a capacitor structure constituted by the diaphragm 13b and the fixed electrode plate 19b, and is a low-sensitivity sensing unit for a high sound pressure range.
  • a substantially rectangular diaphragm 13 is disposed above the chamber 15 of the silicon substrate 12.
  • the diaphragm 13 includes a substantially rectangular first diaphragm 13a and a third diaphragm 13c having substantially the same area by two slits 17a and 17b, and a substantially rectangular shape having a smaller area than the first and third diaphragms 13a and 13c.
  • the second diaphragm 13b is divided.
  • a part of the fixed electrode plate 19, that is, the first fixed electrode plate 19a is arranged to face the first diaphragm 13a.
  • the fixed electrode plate 19a, 19b and 19c are separated from each other, and are provided on the lower surface of the back plate 18 fixed to the upper surface of the silicon substrate 12 so as to cover the diaphragm 13.
  • a large number of acoustic holes 24a and 24c are opened in the back plate 18 and the fixed electrode plates 19a and 19c.
  • the acoustic sensing unit 23b for low sound pressure and high sound pressure has a large number of acoustic holes 24b in the back plate 18 and the fixed electrode plate 19b.
  • the acoustic hole 24b of the acoustic sensing unit 23b has a smaller aperture ratio than the acoustic holes 24a and 24c of the acoustic sensing units 23a and 23c (in FIG.
  • the diameter of the acoustic hole 24b is smaller than the hole diameter of the acoustic holes 24a and 24c). However, the pitch may be increased.)
  • the rigidity of the back plate 18 of the acoustic sensing unit 23b is higher than that of the acoustic sensing units 23a and 23c. Therefore, the impact resistance of the low-sensitivity acoustic sensing unit 23b is high.
  • FIG. 20 is a plan view showing the structure of the acoustic sensor 101 according to the fifth embodiment of the present invention, and shows a state in which a back plate, a protective film, and the like are removed.
  • the acoustic sensor 101 also includes three acoustic sensing units 23a, 23b, and 23c.
  • the acoustic sensing unit 23a is a capacitor structure constituted by the diaphragm 13a and the fixed electrode plate 19a, and is a high-sensitivity sensing unit for a low sound pressure range.
  • the acoustic sensing unit 23b is a capacitor structure constituted by the diaphragm 13b and the fixed electrode plate 19b, and is a low-sensitivity sensing unit for a high sound pressure range.
  • the acoustic sensing unit 23c is a capacitor structure constituted by the diaphragm 13c and the fixed electrode plate 19c, and is a medium sensitivity sensing unit for a medium sound pressure range.
  • a substantially rectangular diaphragm 13 is disposed above the chamber 15 of the silicon substrate 12.
  • the diaphragm 13 has a substantially rectangular first diaphragm 13a, a substantially rectangular third diaphragm 13c having a smaller area than the first diaphragm 13a, and an area larger than the third diaphragm 13c by two slits 17a and 17b.
  • a first fixed electrode plate 19a is disposed so as to face the first diaphragm 13a.
  • a second fixed electrode plate 19b is disposed to face the second diaphragm 13b.
  • the third fixed electrode plate 19c is opposed to the third diaphragm 13c.
  • the fixed electrode plates 19a, 19b and 19c are separated from each other, and are provided on the lower surface of the back plate 18 fixed to the upper surface of the silicon substrate 12 so as to cover the diaphragm 13.
  • a large number of acoustic holes 24a are opened in the back plate 18 and the fixed electrode plate 19a.
  • a plurality of acoustic holes 24b and 24c are opened in the back plate 18 and the fixed electrode plates 19b and 19c in the acoustic sensing unit 23b for low sound pressure and high sound pressure, and in the medium and medium sound pressure sound sensing unit 23c. ing.
  • the acoustic holes 24b and 24c of the acoustic sensing units 23b and 23c have a smaller aperture ratio than the acoustic hole 24a of the acoustic sensing unit 23a (in FIG.
  • the hole diameters of the acoustic holes 24b and 24c are smaller than the hole diameter of the acoustic hole 24a).
  • the back plate 18 of the acoustic sensing units 23b and 23c has a higher rigidity than that of the acoustic sensing unit 23a. Therefore, the impact resistance of the low sensitivity acoustic sensing unit 23b and the medium sensitivity acoustic sensing unit 23c is high.
  • the aperture ratio of the acoustic hole 24c may be smaller than the aperture ratio of the acoustic hole 24a and larger than the aperture ratio of the acoustic hole 24b.
  • the dynamic range can be further widened, and the impact resistance of the acoustic sensor 101 is hardly deteriorated.
  • the form of dividing the diaphragm 13 and the fixed electrode plate 19 is not limited to that in the above embodiment.
  • the fixed electrode plate 19 is divided into an outer peripheral region and an inner region thereof, and an area having a small area and a substantially annular shape located in the outer peripheral region is defined as a second fixed electrode plate 19b having a low sensitivity, and is located on the inner side
  • the region may be the first fixed electrode plate 19a having high sensitivity (see FIG. 1 of Japanese Patent Application No. 2011-002313). The same applies to the diaphragm 13.
  • the amount of displacement of each diaphragm 13a, 13b when the same sound pressure is applied is made different by making the area of the first diaphragm 13a different from the area of the second diaphragm 13b.
  • the sensitivity of the 1st acoustic sensing part 23a and the 2nd acoustic sensing part 23b is varied.
  • the film thickness of the second diaphragm 13b larger than the film thickness of the first diaphragm 13a, the displacement of the second diaphragm 13b is reduced, and the sensitivity of the second acoustic sensing unit 23b is lowered. May be.
  • the displacement of the second diaphragm 13b may be reduced by making the fixed pitch of the second diaphragm 13b smaller than the fixed pitch of the first diaphragm 13a, and the sensitivity of the second acoustic sensing unit 23b may be lowered.
  • the displacement of the first diaphragm 13a may be increased by supporting the first diaphragm 13a with a beam structure, and the sensitivity of the first acoustic sensing unit 23a may be increased.
  • the present invention can also be applied to a capacitive sensor other than an acoustic sensor such as a pressure sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)

Abstract

【解決手段】シリコン基板12の上方にダイアフラム13が配置される。基板12の上面には、ダイアフラム13を覆うようにしてバックプレート18が設けられ、その下面に固定電極板19が配置される。ダイアフラム13は、第1及び第2ダイアフラム13a、13bに分割される。同様に、固定電極板19も第1及び第2固定電極板19a、19bに分割される。第2ダイアフラム13bと第2固定電極板19bで構成された音響センシング部では、バックプレート18に孔径の小さなアコースティックホール24bが開口され、第1ダイアフラム13aと第1固定電極板19aによって構成された音響センシング部では、バックプレート18に孔径の大きなアコースティックホール24aが開口される。

Description

静電容量型センサ、音響センサ及びマイクロフォン
  本発明は、静電容量型センサ、音響センサ及びマイクロフォンに関する。具体的に言うと、本発明は、振動電極板(ダイアフラム)と固定電極板からなるコンデンサ構造によって構成された静電容量型センサに関する。また、本発明は、音響振動を電気信号に変換して出力する音響センサ(音響トランスデューサ)と、該音響センサを用いたマイクロフォンに関する。特に、本発明は、MEMS(Micro Electro Mechanical System)技術を用いて製作される微小サイズの静電容量型センサや音響センサに関するものである。
 携帯電話機などに搭載される小型のマイクロフォンとしては、これまではエレクトレット・コンデンサマイク(Electret Condenser Microphone)が広く使用されてきた。しかし、エレクトレット・コンデンサマイクは熱に弱く、また、デジタル化への対応、小型化、高機能・多機能化、省電力といった点で、MEMSマイクロフォンに劣る。そのため、現在では、MEMSマイクロフォンが普及しつつある。
 MEMSマイクロフォンは、音響振動を検出して電気信号(検出信号)に変換する音響センサ(音響トランスデューサ)と、該音響センサに電圧を印加する駆動回路と、音響センサからの検出信号に対し増幅などの信号処理を行って外部に出力する信号処理回路とを備えている。MEMSマイクロフォンに用いられる音響センサは、MEMS技術を利用して製造された静電容量型の音響センサである。また、上記駆動回路および上記信号処理回路は、半導体製造技術を利用してASIC(Application Specific Integrated Circuit)として一体に製造される。
 近時、マイクロフォンは、小さな音圧から大きな音圧までの音を高感度で検出することが求められている。一般に、マイクロフォンの最大入力音圧は、高調波歪み率(Total Harmonic Distortion)によって制限される。これは、大きな音圧の音をマイクロフォンで検出しようとすると、出力信号に高調波歪みが発生し、音質や精度を損ねてしまうためである。よって、高調波歪み率を小さくすることができれば、最大入力音圧を大きくしてマイクロフォンの検出音圧域(以下、ダイナミックレンジという。)を広くすることができる。
 しかしながら、一般的なマイクロフォンでは、音響振動の検出感度向上と高調波歪み率の低減とがトレードオフの関係にある。このため、小音量(小音圧)を検出することのできる高感度のマイクロフォンでは、大音量の音が入ってきたときに出力信号の高調波歪み率が大きくなり、そのために最大検出音圧が制限される。これは、高感度のマイクロフォンは出力信号が大きくなり、高調波歪みが発生し易いからである。反対に、出力信号の高調波歪みを低減することによって最大検出音圧を大きくしようとすると、マイクロフォンの感度が悪くなり、小音量の音を高品質で検出することが困難になる。この結果、一般的なマイクロフォンでは、小音量(小音圧)から大音量(大音圧)まで広いダイナミックレンジを持たせることが困難であった。
 このような技術的背景のもとで、広いダイナミックレンジを有するマイクロフォンを実現する方法として、検出感度の異なる複数の音響センサを利用したマイクロフォンが検討されている。このようなマイクロフォンとしては、たとえば特許文献1-4に開示されたものがある。
 特許文献1、2には、複数の音響センサを設け、複数の音響センサからの複数の信号を、音圧に応じて切り替える、或いは融合させるマイクロフォンが開示されている。このようなマイクロフォンでは、たとえば検出可能な音圧レベル(SPL)が約30dB-115dBである高感度の音響センサと、検出可能な音圧レベルが約60dB-140dBである低感度の音響センサとを切り替えて利用することにより、検出可能な音圧レベルが約30dB-140dBであるマイクロフォンを構成できる。また、特許文献3、4には、1つのチップに、独立した複数の音響センサを形成したものが開示されている。
 図1Aは、特許文献1の高感度の音響センサにおける高調波歪み率と音圧との関係を示す。図1Bは、特許文献1の低感度の音響センサにおける高調波歪み率と音圧との関係を示す。また、図2は、特許文献1の高感度の音響センサと低感度の音響センサにおけるダイアフラムの平均変位量と音圧との関係を示す。いま、許容される高調波歪み率が20%であるとすれば、高感度の音響センサの最大検出音圧は約115dBとなる。また、高感度の音響センサでは、音圧が約30dBよりも小さくなるとS/N比が劣化するので、その最小検出音圧は約30dBとなる。よって、高感度の音響センサのダイナミックレンジは、図1Aに示すように、約30dB-115dBとなる。同様に、許容される高調波歪み率が20%であるとすれば、低感度の音響センサの最大検出音圧は約140dBとなる。また、低感度の音響センサは高感度の音響センサよりもダイアフラムの面積が小さく、図2に示すようにダイアフラムの平均変位量も高感度の音響センサより小さい。よって、低感度の音響センサの最小検出音圧は、高感度の音響センサよりも大きくなり、約60dBとなる。その結果、低感度の音響センサのダイナミックレンジは、図1Bに示すように、約60dB-140dBとなる。このような高感度の音響センサと低感度の音響センサを組み合わせると、検出可能な音圧域は、図1Cに示すように、約30dB-140dBというように広くなる。
米国特許出願公開第2009/0316916号明細書 米国特許出願公開第2010/0183167号明細書 特開2008-245267号公報 米国特許出願公開第2007/0047746号明細書
 しかしながら、特許文献1-4に記載されているマイクロフォンにおいては、複数の音響センサが別々のチップに形成されている場合であっても、複数の音響センサが1つのチップ(基板)に一体に形成されている場合であっても、各音響センサは互いに独立したコンデンサ構造を有している。そのため、これらのマイクロフォンでは、音響特性にバラツキおよびミスマッチングが発生することになる。ここで、音響特性のバラツキとは、チップ間における音響センサどうしの音響特性のズレをいう。また、音響特性のミスマッチングとは、同一チップ内における複数の音響センサどうしの音響特性のズレをいう。
 具体的に言えば、各音響センサが別々のチップに形成されている場合では、作製されるダイアフラムの反りや厚みのバラツキなどのため、検出感度に関するチップ間のバラツキが発生する。その結果、音響センサ間の検出感度の差に関するチップ間のバラツキが大きくなる。また、独立した各音響センサが共通のチップに一体に形成されている場合でも、MEMS技術を用いて各音響センサのコンデンサ構造を作製する際に、ダイアフラムと固定電極との間のギャップ距離にバラツキが生じやすい。さらに、バックチャンバおよびベントホールが個別に形成されることになるので、該バックチャンバおよびベントホールによって影響を受ける周波数特性、位相などの音響特性にチップ内のミスマッチングが発生することになる。
 本発明は、上記のような技術的課題に鑑みてなされたものであって、その目的とするところは、感度の異なる複数のセンシング部を一体に形成することによってダイナミックレンジが広くてセンシング部間でのミスマッチングも小さく、しかも、耐衝撃性も高い静電容量型センサ及び音響センサを提供することにある。
 本発明に係る第1の静電容量型センサは、基板の上方に形成された振動電極板と、前記振動電極板を覆うようにして前記基板の上方に形成されたバックプレートと、前記振動電極板と対向させるようにして前記バックプレートに設けた固定電極板とを備えた静電容量型センサにおいて、前記振動電極板と前記固定電極板のうち少なくとも一方が複数領域に分割されていて、分割された各領域毎にそれぞれ前記振動電極板と前記固定電極板からなるセンシング部が形成され、複数の前記センシング部から異なる感度の複数の信号が出力され、前記センシング部のうち少なくとも一部のセンシング部は、その振動電極板の面積が他のセンシング部における振動電極板の面積と異なり、前記センシング部のうち前記振動電極板の面積が小さい一部のセンシング部は、その領域におけるバックプレートの剛性が、前記振動電極板の面積が大きい他のセンシング部におけるバックプレートの剛性よりも高くなっていることを特徴とする。
 本発明に係る第1の静電容量型センサによれば、振動電極板および固定電極板の少なくとも一方が分割されているので、振動電極板および固定電極板の間に複数のセンシング部(可変コンデンサ構造)が形成される。したがって、分割された各センシング部からそれぞれ電気信号を出力することができ、音響振動などの圧力変化を複数の電気信号に変換して出力することができる。このような静電容量型センサによれば、たとえば各センシング部の振動電極板毎に面積を異ならせることにより、各センシング部の検知域や感度を異ならせることができ、信号を切り替えたり組み合わせたりすることによって感度を低下させることなく静電容量型センサの検知域を広げることができる。
 また、上記複数のセンシング部は、振動電極板又は固定電極板を分割して形成することができるので、別々に作製されていて互いに独立した複数のセンシング部を有する従来技術に比べて、各センシング部どうしの特性バラツキが小さくなる。その結果、各センシング部どうしの検出感度の差に起因する特性バラツキを小さくすることができる。また、各センシング部は、振動電極板と固定電極板を共用しているので、周波数特性、位相などの特性に関するミスマッチングを抑えることができる。
 さらに、第1の静電容量型センサにおいては、一部のセンシング部の振動電極板の面積を他のセンシング部の振動電極板の面積と異ならせている。静電容量型センサに落下衝撃などが加わって振動電極板が変形してバックプレートに衝突したとき、バックプレートの剛性が低いと、振動電極板の衝突によってバックプレートが変形し、バックプレートが振動電極板を受け止めることができない。そのため振動電極板が大きく変形して振動電極板が破損することがある。このとき、振動電極板が同じ変位量だけ変位したとき、基板上面に垂直な方向から見た面積の小さな振動電極板ほど局所的な変形(曲げ変形)は大きなものとなる。しかし、本発明に係る静電容量型センサの場合には、振動電極板の面積が小さい領域においてバックプレートの剛性を高くしておけば、落下衝撃などによって面積の小さな振動電極板が変形してバックプレートに衝突したとき、バックプレートが変形しにくいので、面積の小さな振動電極板がそれ以上変形しなくなる。その結果、振動電極板の破損をより効果的に防止することができる。
 なお、一部のセンシング部の振動電極板の面積が他のセンシング部の振動電極板の面積と異なる場合とは、たとえばセンシング部が2つである場合には、その2つのセンシング部の基板上面に垂直な方向から見た面積が異なっている場合である。また、センシング部が3つ以上である場合には、典型的には、3つのセンシング部の基板上面に垂直な方向から見た面積がそれぞれ異なっている場合である。また、センシング部が3つ以上の場合では、基板上面に垂直な方向から見た面積が同じセンシング部を含んでいてもよい。
 本発明に係る第2の静電容量型センサは、基板の上方に形成された振動電極板と、前記振動電極板を覆うようにして前記基板の上方に形成されたバックプレートと、前記振動電極板と対向させるようにして前記バックプレートに設けた固定電極板とを備えた静電容量型センサにおいて、前記振動電極板と前記固定電極板のうち少なくとも一方が複数領域に分割されていて、分割された各領域毎にそれぞれ前記振動電極板と前記固定電極板からなるセンシング部が形成され、複数の前記センシング部から異なる感度の複数の信号が出力され、前記センシング部はそれぞれ、前記バックプレート及び前記固定電極板に複数個の開口を形成され、前記センシング部のうち少なくとも一部のセンシング部は、その振動電極板の面積が他のセンシング部における振動電極板の面積と異なり、前記センシング部のうち前記振動電極板の面積が異なる少なくとも一対のセンシング部は、振動電極板の面積が小さい側のセンシング部における前記開口の開口率が、振動電極板の面積が大きい側のセンシング部における前記開口の開口率よりも小さくなっていることを特徴とする。ここで、バックプレートの開口率を調整する方法としては、各開口の孔径(開口面積)を調整する方法、各開口の分布密度(数密度)を調整する方法、各開口の孔径と分布密度の双方を調整する方法などがある。
 本発明に係る第2の静電容量型センサによれば、振動電極板および固定電極板の少なくとも一方が分割されているので、振動電極板および固定電極板の間に複数のセンシング部(可変コンデンサ構造)が形成される。したがって、分割された各センシング部からそれぞれ電気信号を出力することができ、音響振動などの圧力変化を複数の電気信号に変換して出力することができる。このような静電容量型センサによれば、たとえば各センシング部の振動電極板毎に面積を異ならせることにより、各センシング部の検知域や感度を異ならせることができ、信号を切り替えたり組み合わせたりすることによって感度を低下させることなく静電容量型センサの検知域を広げることができる。
 また、上記複数のセンシング部は、同時に作製された振動電極板又は固定電極板を分割して形成することができるので、別々に作製されていて互いに独立した複数のセンシング部を有する従来技術に比べて、各センシング部どうしの特性バラツキが小さくなる。その結果、各センシング部どうしの検出感度の差に起因する特性バラツキを小さくすることができる。また、各センシング部は、振動電極板と固定電極板を共用しているので、周波数特性、位相などの特性に関するミスマッチングを抑えることができる。
 さらに、第2の静電容量型センサにおいては、一部のセンシング部の振動電極板の面積が他のセンシング部の振動電極板の面積と異なり、振動電極板の面積が小さい側のセンシング部におけるバックプレートの開口率が、振動電極板の面積が大きい側のセンシング部におけるバックプレートの開口率よりも小さくなっているので、振動電極板の面積が小さい側のセンシング部でバックプレートの剛性が高くなる。静電容量型センサに落下衝撃などが加わって振動電極板が変形してバックプレートに衝突したとき、振動電極板の面積が小さい側のセンシング部におけるバックプレートの剛性が低いと、振動電極板の衝突によってバックプレートが変形し、バックプレートが振動電極板を受け止めることができない。そのため面積の小さい振動電極板が大きく変形して振動電極板が破損することがある。しかし、本発明に係る第2の静電容量型センサの場合には、振動電極板の面積が小さい側のセンシング部においてバックプレートの剛性を高くしているので、落下衝撃などによって振動電極板が変形してバックプレートに衝突したとき、バックプレートが変形しにくいので、振動電極板がそれ以上変形しなくなる。その結果、振動電極板の面積の小さい側のセンシング部における振動電極板の破損をより効果的に防止することができる。
 なお、かかる第2の静電容量型センサは、たとえばセンシング部が2つである場合には、その2つのセンシング部の振動電極板の面積が異なっていて、振動電極板の面積が小さい側のセンシング部はバックプレートの開口率が比較的小さく、振動電極板の面積が大きい側のセンシング部はバックプレートの開口率が比較的大きくなっている場合である。また、センシング部が3つ以上である場合には、典型的には、3つのセンシング部の開口率がそれぞれ異なっていて、振動電極板の面積が小さいセンシング部ほどバックプレートの開口率が小さくなっている場合である。また、センシング部が3つ以上の場合では、振動電極板の面積が同じセンシング部を含んでいてもよい。
 本発明に係る第2の静電容量型センサのある実施態様は、バックプレートにあけた開口の孔径によってバックプレートの開口率を調整した第2の静電容量型センサにおいて、前記振動電極板と前記固定電極板のうち少なくとも一方が2つの領域に分割されていて2つの前記センシング部が形成され、振動電極板の面積が小さい側の前記センシング部における前記開口の孔径は、振動電極板の面積が大きい側の前記センシング部における前記開口の孔径の1/2以下であることを特徴とする。かかる実施態様によれば、振動電極板の面積が小さい側のセンシング部における振動電極板の破損を効果的に防止することができる。
 また、振動電極板の面積が小さい側の前記センシング部における前記開口の孔径は、10μm以下であることが望ましい。バックプレートの開口と連続させて固定電極板にも開口があいている場合でも、固定電極板と振動電極板との間の電界は開口内に広がるので、センシング部は固定電極板に孔のないコンデンサとみなすことができ、静電容量型センサの感度が向上する。これをフリンジ効果という。しかし、このようなフリンジ効果は、開口の孔径が10μmよりも大きくなると期待できなくなる。よって、振動電極板の面積が小さい側のセンシング部におけるバックプレートの開口の孔径は、10μm以下であることが望ましい。
 本発明に係る第2の静電容量型センサのさらに別な実施態様は、バックプレートにあけた開口の分布密度によってバックプレートの開口率を調整した第2の静電容量型センサにおいて、前記振動電極板と前記固定電極板のうち少なくとも一方が2つの領域に分割されていて2つの前記センシング部が形成され、振動電極板の面積が小さい側の前記センシング部における前記開口の配列ピッチは、振動電極板の面積が大きい側の前記センシング部における前記開口の配列ピッチの2倍以上であることを特徴とする。振動電極板と固定電極板のうち少なくとも一方が2つの領域に分割されていて2つのセンシング部が形成されている静電容量型センサにおいて、開口の配列ピッチを大きくすることによってバックプレートの剛性を高くする場合、振動電極板の破損を効果的に防止するためには、振動電極板の面積が大きい側のバックプレートにあけた開口の配列ピッチは、振動電極板の面積が小さい側のバックプレートにあけた開口の配列ピッチの2倍以上であることが望ましい。
 本発明に係る第3の静電容量型センサは、基板の上方に形成された振動電極板と、前記振動電極板を覆うようにして前記基板の上方に形成されたバックプレートと、前記振動電極板と対向させるようにして前記バックプレートに設けた固定電極板とを備えた静電容量型センサにおいて、前記振動電極板と前記固定電極板のうち少なくとも一方が複数領域に分割されていて、分割された各領域毎にそれぞれ前記振動電極板と前記固定電極板からなるセンシング部が形成され、複数の前記センシング部から異なる感度の複数の信号が出力され、前記センシング部のうち少なくとも一部のセンシング部は、その振動電極板の面積が他のセンシング部における振動電極板の面積と異なり、前記センシング部のうち前記振動電極板の面積が異なる少なくとも一対のセンシング部は、振動電極板の面積が小さい側のセンシング部におけるバックプレートの厚みが、振動電極板の面積が大きい側のセンシング部におけるバックプレートの厚みよりも厚くなっていることを特徴とする。
 本発明に係る第3の静電容量型センサによれば、振動電極板および固定電極板の少なくとも一方が分割されているので、振動電極板および固定電極板の間に複数のセンシング部(可変コンデンサ構造)が形成される。したがって、分割された各センシング部からそれぞれ電気信号を出力することができ、音響振動などの圧力変化を複数の電気信号に変換して出力することができる。このような静電容量型センサによれば、たとえば各センシング部の振動電極板毎に面積を異ならせることにより、各センシング部の検知域や感度を異ならせることができ、信号を切り替えたり組み合わせたりすることによって感度を低下させることなく静電容量型センサの検知域を広げることができる。
 また、上記複数のセンシング部は、同時に作製された振動電極板又は固定電極板を分割して形成することができるので、別々に作製されていて互いに独立した複数のセンシング部を有する従来技術に比べて、各センシング部どうしの特性バラツキが小さくなる。その結果、各センシング部どうしの検出感度の差に起因する特性バラツキを小さくすることができる。また、各センシング部は、振動電極板と固定電極板を共用しているので、周波数特性、位相などの特性に関するミスマッチングを抑えることができる。
 さらに、第3の静電容量型センサにおいては、一部のセンシング部の振動電極板の面積が他のセンシング部の振動電極板の面積と異なり、振動電極板の面積が小さい側のセンシング部におけるバックプレートの厚みが、振動電極板の面積が大きい側のセンシング部におけるバックプレートの厚みよりも厚くなっているので、振動電極板の面積が小さい側のセンシング部でバックプレートの剛性が高くなる。静電容量型センサに落下衝撃などが加わって振動電極板が変形してバックプレートに衝突したとき、振動電極板の面積が小さい側のセンシング部におけるバックプレートの剛性が低いと、振動電極板の衝突によってバックプレートが変形し、バックプレートが振動電極板を受け止めることができない。そのため振動電極板が大きく変形して面積の小さい振動電極板が破損することがある。しかし、本発明に係る第3の静電容量型センサの場合には、振動電極板の面積が小さい側のセンシング部においてバックプレートの剛性を高くしているので、落下衝撃などによって振動電極板が変形してバックプレートに衝突したとき、バックプレートが変形しにくいので、振動電極板がそれ以上変形しなくなる。その結果、振動電極板の面積が小さい側のセンシング部における振動電極板の破損をより効果的に防止することができる。
 なお、かかる第3の静電容量型センサは、たとえばセンシング部が2つである場合には、その2つのセンシング部の振動電極板の面積が異なっていて、振動電極板の面積が小さい側のセンシング部はバックプレートの厚みが比較的厚く、振動電極板の面積が大きい側のセンシング部はバックプレートの厚みが比較的薄くなっている場合である。また、センシング部が3つ以上である場合には、典型的には、3つのセンシング部におけるバックプレートの厚みがそれぞれ異なっていて、振動電極板の面積が小さいセンシング部ほどバックプレートの厚みが厚くなっている場合である。また、センシング部が3つ以上の場合では、振動電極板の面積同じセンシング部を含んでいてもよい。
 本発明に係る第1、第2の静電容量型センサのさらに別な実施態様、および本発明に係る第3の静電容量センサのある実施態様は、それぞれ、前記振動電極板が複数領域に分割されていて、分割された各領域毎にそれぞれ前記振動電極板と前記固定電極板からなるセンシング部が形成されていることを特徴とする。これらの実施形態においては、圧力で変位する振動電極を分割して複数のセンシング部を形成しているので、各センシング部の独立性が高くなる。
 本発明に係る音響センサは、本発明に係る第1、第2又は第3の静電容量型センサを利用した音響センサであって、前記バックプレート及び前記固定電極板に、音響振動を通過させるための複数個の開口を形成し、音響振動に感応した前記ダイアフラムと前記固定電極板との間の静電容量の変化により、前記センシング部から信号を出力することを特徴とする。かかる音響センサによれば、小音量(小音圧)から大音量(大音圧)までの広いダイナミックレンジ有し、かつ、高感度で高品質の音響センサを作製することができる。しかも、大音量用のセンシング部でバックプレートの剛性を高くしておくことにより、音響センサを落下させた場合などに大音量用のセンシング部の振動電極板が破損するのを防ぐことができ、音響センサの耐衝撃性や耐久性を高めることができる。
 本発明に係るマイクロフォンは、本発明に係る音響センサと、前記音響センサからの信号を増幅して外部に出力する回路部とを備えたことを特徴とする。かかるマイクロフォンも、上記音響センサと同様な作用効果を有する。
 なお、本発明における前記課題を解決するための手段は、以上説明した構成要素を適宜組み合せた特徴を有するものであり、本発明はかかる構成要素の組合せによる多くのバリエーションを可能とするものである。
図1Aは、特許文献1の高感度の音響センサにおける高調波歪み率と音圧との関係を示す図である。図1Bは、特許文献1の低感度の音響センサにおける高調波歪み率と音圧との関係を示す図である。図1Cは、特許文献1の高感度の音響センサと低感度の音響センサを組み合わせた場合における、高調波歪み率と音圧との関係を示す図である。 図2は、特許文献1の高感度の音響センサと低感度の音響センサにおけるダイアフラムの平均変位量と音圧との関係を示す図である。 図3は、本発明の実施形態1による音響センサの分解斜視図である。 図4は、本発明の実施形態1による音響センサの断面図である。 図5Aは、本発明の実施形態1による音響センサの平面図である。図5Bは、図5AのX部拡大図である。 図6は、図5Aに示した音響センサからバックプレートや保護膜などを除いた状態を示す平面図である。 図7Aは、本発明の実施形態1による音響センサと信号処理回路をケーシング内に納めたマイクロフォンの一部破断した平面図である。図7Bは、当該マイクロフォンの縦断面図である。 図8は、本発明の実施形態1によるマイクロフォンの回路図である。 図9は、マイクロフォンを落下させたときの様子を示す概略断面図である。 図10は、落下によって比較例によるマイクロフォンが破損する様子を示す概略断面図である。 図11は、本発明の実施形態1によるマイクロフォンを落下させたときの様子を示す概略断面図である。 図12Aは、第1及び第2音響センシング部における各アコースティックホールの孔径を変化させたときの、第1固定電極板の変位量を示す図である。図12Bは、第1及び第2音響センシング部における各アコースティックホールの孔径を変化させたときの、第2固定電極板の変位量を示す図である。 図13は、ダイアフラムに大きな空気圧が加わったときに第2ダイアフラムが破損する空気圧(空気耐圧)を、比較例と実施形態1とで比較して示す図である。 図14は、比較例の音響センサのバックプレート及び固定電極板の変位量の分布を示す図である。 図15は、本発明の実施形態1の音響センサのバックプレート及び固定電極板の変位量の分布を示す図である。 図16は、本発明の実施形態1の変形例を示す平面図である。 図17は、本発明の実施形態2による音響センサの平面図である。 図18は、本発明の実施形態3による音響センサの断面図である。 図19は、本発明の実施形態4による音響センサの構造を示す平面図であって、バックプレートや保護膜などを除いた状態を表わしている。 図20は、本発明の実施形態5による音響センサの構造を示す平面図であって、バックプレートや保護膜などを除いた状態を表わしている。
 11、71、81、91、101   音響センサ
 12   シリコン基板
 13   ダイアフラム
 13a   第1ダイアフラム
 13b   第2ダイアフラム
 13c   第3ダイアフラム
 17、17a、17c   スリット
 18、18a、18b   バックプレート
 19   固定電極板
 19a   第1固定電極板
 19b   第2固定電極板
 19c   第3固定電極板
 23a、23b、23c   音響センシング部
 24、24a、24b   アコースティックホール
 25   ストッパ
 41   マイクロフォン
 42   回路基板
 43   カバー
 44   信号処理回路
 45   音導入孔
 以下、添付図面を参照しながら本発明の好適な実施形態を説明する。但し、本発明は以下の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において種々設計変更することができる。特に、以下においては音響センサ及びマイクロフォンを例にとって説明するが、本発明は音響センサ以外に、圧力センサなどの静電容量型センサにも適用できるものである。
(実施形態1)
 以下、図3-6を参照して本発明の実施形態1による音響センサの構造を説明する。図3は、本発明の実施形態1による音響センサ11の分解斜視図である。図4は、音響センサ11の断面図である。図5Aは、音響センサ11の平面図である。図5Bは、図5AのX部拡大図である。図6は、バックプレート18や保護膜30などを除いた音響センサ11の平面図であって、シリコン基板12の上方でダイアフラム13と固定電極板19が重なった様子を表している。ただし、これらの図は、音響センサ11のMEMSによる製造工程を反映したものではない
 この音響センサ11は、MEMS技術を利用して作製された静電容量型素子である。図3及び図4に示すように、この音響センサ11は、シリコン基板12(基板)の上面にアンカー16a、16bを介してダイアフラム13を設け、ダイアフラム13の上方に微小なエアギャップ20(空隙)を介して天蓋部14を配し、シリコン基板12の上面に天蓋部14を固定したものである。
 単結晶シリコンからなるシリコン基板12には、表面から裏面に貫通したチャンバ15(空洞部)が開口されている。図示のチャンバ15は、(100)面シリコン基板の(111)面及び(111)面と等価な面によって形成された傾斜面で壁面が構成されているが、チャンバ15の壁面は垂直面であってもよい。
 ダイアフラム13は、チャンバ15の上方を覆うようにしてシリコン基板12の上方に配置されている。図3及び図6に示すように、ダイアフラム13は、略矩形状に形成されている。ダイアフラム13は、導電性を有するポリシリコン薄膜によって形成されていてダイアフラム13自体が振動電極板となっている。ダイアフラム13は、短辺と平行な方向に延びた略直線状のスリット17によって大小2つの領域に分割されている。ただし、ダイアフラム13はスリット17によって完全に2分割されているというのではなく、スリット17の端部付近で機械的及び電気的につながっている。以下においては、スリット17によって分割された2つの領域のうち、面積の大きな略矩形領域を第1ダイアフラム13aと呼び、第1ダイアフラム13aよりも面積の小さな略矩形領域を第2ダイアフラム13bと呼ぶ。
 第1ダイアフラム13aは、シリコン基板12の上面で、各コーナー部に設けられた脚片26をアンカー16aによって支持されており、シリコン基板12の上面から浮かせて支持されている。図4に示すように、隣接するアンカー16a間において、第1ダイアフラム13aの外周部下面とシリコン基板12の上面との間には、音響振動を通過させるための狭いベントホール22aが形成されている。
 第2ダイアフラム13bは、シリコン基板12の上面で、その両短辺をアンカー16bによって支持されており、シリコン基板12の上面から浮かせて支持されている。第2ダイアフラム13bの長辺下面とシリコン基板12の上面との間には、音響振動を通過させるための狭いベントホール22bが形成されている。
 第1ダイアフラム13aと第2ダイアフラム13bは、いずれもシリコン基板12の上面から等しい高さにある。すなわち、ベントホール22aとベントホール22bは等しい高さの隙間となっている。また、ダイアフラム13には、シリコン基板12の上面に設けられた引出配線27が接続される。さらに、シリコン基板12の上面には、ダイアフラム13を囲むようにして帯状の土台部21が形成されている。アンカー16a、16b及び土台部21は、SiOによって形成されている。
 図4に示すように、天蓋部14は、SiNからなるバックプレート18の下面にポリシリコンからなる固定電極板19を設けたものである。天蓋部14はドーム状に形成されていて、その下に空洞部分を有しており、その空洞部分でダイアフラム13a、13bを覆っている。天蓋部14の下面(すなわち、固定電極板19の下面)とダイアフラム13a、13bの上面との間には微小なエアギャップ20(空隙)が形成されている。
 固定電極板19は、第1ダイアフラム13aと対向する第1固定電極板19aと、第2ダイアフラム13bと対向する第2固定電極板19bとに分割されていて、固定電極板19a、19bどうしは電気的に分離している。第1固定電極板19aは、第2固定電極板19bよりも大きな面積を有している。第1固定電極板19aからは引出配線28が引き出されており、第2固定電極板19bからは引出配線29が引き出されている。
 エアギャップ20を挟んで対向する第1ダイアフラム13aと第1固定電極板19aによってコンデンサ構造の第1音響センシング部23aが形成されている。また、エアギャップ20を挟んで対向する第2ダイアフラム13bと第2固定電極板19bによってコンデンサ構造の第2音響センシング部23bが形成されている。第1音響センシング部23aにおけるエアギャップ20のギャップ距離と、第2音響センシング部23bにおけるエアギャップ20のギャップ距離は等しい。なお、第1及び第2ダイアフラム13a、13bの分割位置と、第1及び第2固定電極板19a、19bの分割位置は、図示例では一致しているが、ずれていても差し支えない。
 第1音響センシング部23aにおいて、天蓋部14(すなわち、バックプレート18と第1固定電極板19a)には、上面から下面に貫通するようにして、音響振動を通過させるためのアコースティックホール24a(音響孔)が多数穿孔されている。第2音響センシング部23bにおいて、天蓋部14(すなわち、バックプレート18と第2固定電極板19b)には、上面から下面に貫通するようにして、音響振動を通過させるためのアコースティックホール24b(音響孔)が多数穿孔されている。
 図5及び図6に示すように、アコースティックホール24a、24bはそれぞれ規則的に配列されている。図示例では、アコースティックホール24a、24bは、互いに120°の角度を成す3方向に沿って三角形状に配列されているが、矩形状や同心円状などに配置されていてもよい。アコースティックホール24a、24bは、同じピッチ又は同じ分布密度(数密度)で設けられているが、第1音響センシング部23aのアコースティックホール24aの1個あたりの開口面積は、第2音響センシング部23bのアコースティックホール24bの1個あたりの開口面積よりも大きくなっている。したがって、バックプレート18は、第2音響センシング部23bにおける剛性が、第1音響センシング部23aにおける剛性よりも大きくなっている。
 図4に示すように、第1音響センシング部23aでも第2音響センシング部23bでも、天蓋部14の下面には、円柱状をした微小なストッパ25(突起)が突出している。ストッパ25は、バックプレート18の下面から一体に突出しており、第1及び第2固定電極板19a、19bを貫通して天蓋部14の下面に突出している。ストッパ25はバックプレート18と同じくSiNからなるので、絶縁性を有する。このストッパ25は、静電気力によって各ダイアフラム13a、13bが各固定電極板19a、19bに固着して離れなくなるのを防ぐためのものである。
 天蓋状をしたバックプレート18の外周縁からは、全周にわたって保護膜30が連続的に延出している。保護膜30は、土台部21とその外側のシリコン基板表面を覆っている。
 保護膜30の上面には、共通電極パッド31、第1電極パッド32a、第2電極パッド32b及び接地電極パッド33が設けられている。ダイアフラム13に接続された引出配線27の他端は、共通電極パッド31に接続されている。第1固定電極板19aから引き出された引出配線28は、第1電極パッド32aに接続され、第2固定電極板19bから引き出された引出配線29は、第2電極パッド32bに接続されている。また、電極パッド33は、シリコン基板12に接続されていて、接地電位に保たれる。
 この音響センサ11にあっては、音響振動がチャンバ15(フロントチャンバ)に入ると、薄膜である各ダイアフラム13a、13bが音響振動によって同じ位相で振動する。各ダイアフラム13a、13bが振動すると、各音響センシング部23a、23bの静電容量が変化する。この結果、各音響センシング部23a、23bにおいては、ダイアフラム13a、13bが感知している音響振動(音圧の変化)がダイアフラム13a、13bと固定電極板19a、19bの間の静電容量の変化となり、電気的な信号として出力される。また、異なる使用形態、すなわちチャンバ15をバックチャンバとする使用形態の場合には、音響振動がアコースティックホール24a、24bを通過して天蓋部14内のエアギャップ20に入り、薄膜である各ダイアフラム13a、13bを振動させる。
 また、第2ダイアフラム13bの面積は第1ダイアフラム13aの面積よりも小さくなっているので、第2音響センシング部23bは中音量~大音量までの音圧域用の低感度の音響センサとなっており、第1音響センシング部23aは小音量~中音量までの音圧域用の高感度の音響センサとなっている。したがって、両音響センシング部23a、23bをハイブリッド化して後述の処理回路によって信号を出力させることにより音響センサ11のダイナミックレンジを広げることができる。たとえば、第1音響センシング部23aのダイナミックレンジを約30-120dBとし、第2音響センシング部23bのダイナミックレンジを約50-140dBとすれば、両音響センシング部23a、23bを組み合わせることでダイナミックレンジを約30-140dBに広げることができる。また、音響センサ11を小音量~中音量までの第1音響センシング部23aと中音量~大音量までの第2音響センシング部23bに分けてあれば、第1音響センシング部23aの出力を大音量では使用しないようにでき、第1音響センシング部23aは大きな音圧域で高調波歪み率が大きくなっても差し支えない。よって、第1音響センシング部23aの小音量に対する感度を高くすることができる。
 さらに、この音響センサ11では、第1音響センシング部23aと第2音響センシング部23bが同一基板上に形成されている。しかも、第1音響センシング部23aと第2音響センシング部23bが、ダイアフラム13を分割した第1ダイアフラム13a及び第2ダイアフラム13bと、固定電極板19を分割した第1固定電極板19a及び第2固定電極板19bとによって構成されている。すなわち、本来1つのセンシング部となるものを2つに分割して第1音響センシング部23aと第2音響センシング部23bをハイブリッド化しているので、1つの基板に独立した2つのセンシング部を設けた従来例や別々の基板にそれぞれセンシング部を設けた従来例に比較して、第1音響センシング部23aと第2音響センシング部23bは、検出感度に関するバラツキが類似することになる。その結果、両音響センシング部23a、23b間の検出感度バラツキを小さくできる。また、両音響センシング部23a、23bは、上記ダイアフラムと固定電極板を共用しているので、周波数特性、位相などの音響特性に関するミスマッチングを抑制することができる。
 図7Aは、実施形態1の音響センサ11を内蔵したマイクロフォン41の一部破断した平面図であって、カバー43の上面を除去して内部を表している。図7Bは、当該マイクロフォン41の縦断面図である。
 このマイクロフォン41は、回路基板42とカバー43からなるパッケージ内に音響センサ11と信号処理回路44(ASIC)を内蔵したものである。音響センサ11と信号処理回路44は、回路基板42の上面に実装されている。回路基板42には、パッケージ内に音響振動を導き入れるための音導入孔45が開口されている。音響センサ11は、チャンバ15の下面開口を音導入孔45に合わせ、音導入孔45を覆うようにして回路基板42の上面に実装されている。したがって、音響センサ11のチャンバ15がフロントチャンバとなっており、パッケージ内の空間がバックチャンバとなっている。
 音響センサ11の電極パッド31、32a、32b及び33は、それぞれボンディングワイヤ46によって信号処理回路44の各パッド47に接続されている。回路基板42の下面にはマイクロフォン41を外部と電気的接続するための端子48が複数個設けられ、回路基板42の上面には端子48と導通した各電極部49が設けられている。回路基板42に実装された信号処理回路44の各パッド50は、それぞれボンディングワイヤ51によって電極部49に接続されている。なお、信号処理回路44のパッド50は、音響センサ11へ電源を供給する機能や、音響センサ11の容量変化信号を外部へ出力する機能を有するものである。
 回路基板42の上面には、音響センサ11及び信号処理回路44を覆うようにしてカバー43が取り付けられる。パッケージは電磁シールドの機能を有しており、外部からの電気的な外乱や機械的な衝撃からマイクロフォン41を保護している。
 こうして、音導入孔45からパッケージ内に入った音響振動は、音響センサ11によって検出され、信号処理回路44によって増幅及び信号処理された後に出力される。このマイクロフォン41では、パッケージ内の空間をバックチャンバとしているので、バックチャンバの容積を大きくでき、マイクロフォン41を高感度化することができる。
 なお、このマイクロフォン41においては、パッケージ内に音響振動を導き入れるための音導入孔45をカバー43の上面に開口していてもよい。この場合には、音響センサ11のチャンバ15がバックチャンバとなり、パッケージ内の空間がフロントチャンバとなる。
 図8は、図7に示すMEMSマイクロフォン41の回路図である。図8に示すように、音響センサ11は、音響振動によって容量が変化する高感度の第1音響センシング部23aと低感度の第2音響センシング部23bを備えている。
 また、信号処理回路44は、チャージポンプ52、低感度用アンプ53、高感度用アンプ54、ΣΔ(ΔΣ)型ADC(Analog-to-Digital Converter)55、56、基準電圧発生器57、およびバッファ58を備える構成である。
 チャージポンプ52は、第1音響センシング部23a及び第2音響センシング部23bに高電圧HVを印加しており、第2音響センシング部23bから出力された電気信号は低感度用アンプ53によって増幅され、また第1音響センシング部23aから出力された電気信号は高感度用アンプ54によって増幅される。低感度用アンプ53で増幅された信号は、ΣΔ型ADC55においてデジタル信号に変換される。同様に、高感度用アンプ54で増幅された信号は、ΣΔ型ADC56においてデジタル信号に変換される。ΣΔ型ADC55、56において変換されたデジタル信号は、バッファ58を介してPDM(パルス密度変調)信号として外部に出力される。また、図示しないが、バッファ58から出力された信号の強度が大きい場合(すなわち、音圧が大きい場合)には、ΣΔ型ADC55の出力がオンに保たれ、ΣΔ型ADC56の出力がオフになる。したがって、第2音響センシング部23bで検出された音圧の大きな音響振動の電気信号がバッファ58から出力される。反対に、バッファ58から出力された信号の強度が小さい場合(すなわち、音圧が小さい場合)には、ΣΔ型ADC56の出力がオンに保たれ、ΣΔ型ADC55の出力がオフになる。したがって、第1音響センシング部23aで検出された音圧の小さな音響振動の電気信号がバッファ58から出力される。こうして、音圧に応じて第1音響センシング部23aと第2音響センシング部23bが自動的に切り替えられる。
 なお、図8の例では、ΣΔ型ADC55、56にて変換された2つのデジタル信号を混載して、1つのデータ線上に出力しているが、上記2つのデジタル信号を別々のデータ線上に出力してもよい。
 ところで、高感度用と低感度用の音響センシング部を設けた音響センサ、あるいはその音響センサを内蔵したマイクロフォンでは、落下させたときの風圧によってダイアフラムが破損する恐れがある。本発明の実施形態1による音響センサ11によれば、このような破損を防ぐことができる。この理由は次の通りである。
 図9は、機器61に実装されたマイクロフォン41を地面62に向けて落下させたときの様子を示す。機器61には、マイクロフォン41の音導入孔45に対応させて貫通孔63があいている。このようにして機器61に実装されたマイクロフォン41を白抜矢印で示す方向へ落下させると、図9に太線矢印で示すように、貫通孔63及び音導入孔45からチャンバ15内に空気が吹き込む。そのため、チャンバ15内の空気が圧縮されてチャンバ15内の圧力が高くなり、ダイアフラム13a、13bが上方へ押し上げられる。また、チャンバ15内に吹き込む空気の風圧や衝撃力によっても、ダイアフラム13a、13bが上方へ押し上げられる。
 図10は、こうしてダイアフラムが押し上げられた比較例の音響センサを表わしている。比較例の音響センサでは、実施形態1の音響センサ11と異なり、均一なアコースティックホール24が設けられている。すなわち、第1音響センシング部23aのアコースティックホール24と第2音響センシング部23bのアコースティックホール24は、同じ分布密度で設けられており、かつ、各アコースティックホール24の孔径(開口面積)も等しくなっている。第2ダイアフラム13bは第1ダイアフラム13aよりも面積が小さいので、圧力が小さい場合には、第2ダイアフラム13bの平均変位量は第1音響センシング部23aの平均変位量よりも小さい。しかし、ダイアフラム13a、13bに加わる圧力が大きい場合には、大きく変位した第1ダイアフラム13aと第2ダイアフラム13bはバックプレート18のストッパ25に当たるので、同程度の変位量になる。したがって、第2ダイアフラム13bは面積が小さい分だけ、第1ダイアフラム13aよりも変形が大きく、特に第2ダイアフラム13bの周辺部が大きく歪んで大きな内部応力が発生する。しかも、第2音響センシング部23bでも第1音響センシング部23aと同じアコースティックホール24が形成されているので、第2音響センシング部23bにおけるバックプレート18の剛性は第1音響センシング部23aにおけるバックプレート18の剛性と同じように比較的小さい。そのため、変形した第2ダイアフラム13bがバックプレート18に当たると、第2音響センシング部23bのバックプレート18も撓み、ますます第2ダイアフラム13bの平均変位量が大きくなる。この結果、比較例の音響センサでは、図10に示すように、第2ダイアフラム13bが大きく変形して周辺部などが破損しやすい。
 第2ダイアフラム13bの変形を小さくして第2ダイアフラム13bが破損しにくくするためには、バックプレート18の剛性を高くしてダイアフラム13a、13bが当たってもバックプレート18が変形しにくくすればよい。そのためには、バックプレート18に設けるアコースティックホール24の孔径を小さくすればよい。しかし、比較例では、バックプレート18の全体に同じ孔径のアコースティックホール24を設けているので、アコースティックホール24の孔径を小さくすると、第1音響センシング部23aにおいて熱雑音の原因である空気分子が逃げにくくなる。そのため、第1音響センシング部23aにおいて熱雑音によるノイズが大きくなり、第1音響センシング部23aの感度が低下する。
 また、バックプレート18の剛性を高くするためには、バックプレート18の厚みを大きくする方法も考えられる。しかし、バックプレート18の厚みを大きくした場合にも、第1音響センシング部23aにおいて熱雑音の原因である空気分子が逃げにくくなる。そのため、第1音響センシング部23aにおいて熱雑音によるノイズが大きくなり、第1音響センシング部23aの感度が低下する。
 これに対し、実施形態1の音響センサ11では、第2音響センシング部23bにおけるアコースティックホール24bの孔径が、第1音響センシング部23aにおけるアコースティックホール24aの孔径よりも小さい。その結果、第2音響センシング部23bにおけるバックプレート18の剛性を高めることができる。よって、図11に示すように、落下衝撃や風圧、チャンバ15内で圧縮された空気などによって第2ダイアフラム13bが変形してバックプレート18に当っても、第2音響センシング部23bのバックプレート18が変形しにくくなる。そのため、バックプレート18によって第2ダイアフラム13bの過度の変形や内部応力を抑制することができ、第2ダイアフラム13bの破損を防ぐことができる。
 一方、第1音響センシング部23aでは、アコースティックホール24aの孔径を一般的なサイズにしておき、バックプレート18の厚みも一般的な厚みにしておけば、第1音響センシング部23aにおける熱雑音が大きくなることがない。そのため、S/N比に対する要求の厳しい第1音響センシング部23a側では、小音量域での感度を低下させることがない。また、第2音響センシング部23bは、ノイズレベルより十分高い出力が得られる大音量域で使用されるため、S/N比に対する要求は厳しくなく、アコースティックホール24bの孔径を小さくしても差し支えない。よって、実施形態1の音響センサ11によれば、小音量側での感度を低下させることなく、第2ダイアフラム13bの破損を防ぐことが可能になる。
 また、音響センサ11における、アコースティックホール24bの孔径は、アコースティックホール24aの孔径の1/2以下であることが望ましい。特に、アコースティックホール24bの孔径は、4μm以上10μm以下であることが望ましい。
 図12Aは、バックプレート18と固定電極板19に一定の空気圧(落下時に加わると想定した空気圧)を加えてバックプレート18と固定電極板19を変形させた場合における、第1固定電極板19aの変位量をシミュレーションにより求めた結果を表している。また、図12Bは、その時の第2固定電極板19bの変位量を表している。図12A及び図12Bは、アコースティックホール24aの孔径をD1、アコースティックホール24bの孔径をD2としたとき、それぞれD1=17μm、D2=17μm(比較例)の場合と、D1=17μm、D2=6μm(実施形態1)の場合とを表している。
 図12Bによれば、アコースティックホール24bの孔径D2を17μmから6μmに小さくすれば、第2固定電極板19bの変位量を18%減らし、剛性を向上できることが分かる。これにより、落下時の空気圧による第2ダイアフラム13bの変形を抑制することができ、第2ダイアフラム13bの破損を防止できる。
また、図12Aによれば、アコースティックホール24bの孔径D2を小さくすることで、第1固定電極板19aの変位も小さくできることが分かる。
 図13は、孔径D1とD2がいずれも17μmである比較例の音響センサにおいて、ダイアフラム13a、13bに次第に大きな圧力を加えてゆき、ダイアフラム13bをストッパ25に接触させてさらに圧力を加え、第2ダイアフラム13bを破壊させたときの圧力値を示す。また、図13には、孔径D1が17μmで孔径D2が6μmである実施形態1の音響センサ11において、ダイアフラム13a、13bに次第に大きな圧力を加えてゆき、ダイアフラム13bをストッパ25に接触させてさらに圧力を加え、第2ダイアフラム13bを破壊させたときの圧力値も示す。図13によれば、アコースティックホール24bの孔径がアコースティックホール24aの孔径と同じ場合には、78kPaで第2ダイアフラム13bが破壊するが、アコースティックホール24bの孔径を6μmに小さくすれば、第2ダイアフラム13bの破壊強度が95kPaくらいまで向上する(22%の向上)。
 図14は、孔径D1とD2がいずれも17μmであるアコースティックホール24a、24bを有するバックプレート18と固定電極板19を示した比較例の図である。ここには、バックプレート18と固定電極板19に一定の圧力を加えて変形させた場合の各部の変形量を白黒の濃度の違いによって表している。変形量は白いほど変形量が大きく、黒いほど変形量が小さくなっている。
 また、図15は、孔径D1が17μmのアコースティックホール24aと孔径D2が6μmのアコースティックホール24bを有するバックプレート18と固定電極板19を示した実施形態1の図である。ここでも、図14と同一条件下におけるバックプレート18と固定電極板19の各部の変形量を白黒の濃度の違いによって表している。
 図14及び図15のシミュレーションからも、アコースティックホール24bの孔径を小さくすることによって、第2固定電極板19b(及び第1固定電極板19a)の変位量を小さくでき、剛性を向上できることが分かる。これにより、落下時の空気圧による第2ダイアフラム13bの変形を抑制し、第2ダイアフラム13bの破損を防止できる。
 また、実施形態1の音響センサ11及びマイクロフォン41は、落下時などのダイアフラムの破損を防止できる以外にも、種々の効果を有している。
 まず、実施形態1の音響センサ11は、導入が容易であるという利点がある。すなわち、(i) 第2音響センシング部23b側におけるアコースティックホール24bの孔径を変更するだけでよいので、第1音響センシング部23aの特性(感度やS/N比など)が影響を受けない。(ii) バックプレート18の膜厚を厚くする必要がないので、バックプレート18の堆積時間が長くならないので、音響センサの生産性がよい。また、アコースティックホール24a、24bを開口させるためのマスクのデザイン変更だけで済み、容易に設計変更できる。(iii) マスクデザインの変更のみで導入可能である。(iv) また、アコースティックホール24a、24bの配列ピッチを一定にすれば、犠牲層エッチングに必要な時間への変更も軽微である。その結果、従来の生産設備を用いることができ、製造プロセスも増加しないので、容易に導入できる。
 また、実施形態1の音響センサ11によれば、(i) 第2固定電極板19bの電極面積が増加するので、第2音響センシング部23bの出力感度が向上し、(ii) アコースティックホール24bの孔径を小さくすることとフリンジ効果により、孔をあけていない固定電極板を用いた場合と同じ静電容量を実現できるので、音響センサ11の出力感度を向上させることができる。
 実施形態1の音響センサ11によれば、第2音響センシング部23bにおけるアコースティックホール24bの孔径を小さくすることにより、塵やホコリがアコースティックホール24bから内部に浸入しにくくなる。その結果、塵やホコリがダイアフラムに付着して音響センサ11の特性を変化させる恐れが少なくなる。
 実施形態1の音響センサ11によれば、バックプレート18の剛性が高くなるので、音響センサ11の製造プロセスにより生じる残留応力のバラツキに起因するバックプレート18の反りが低減し、バックプレート18の形状が安定する。
 実施形態1の音響センサ11によれば、バックプレート18の剛性が高くなるので、落下試験などの衝撃に対するバックプレート18の強度が向上する。
 大音量時に第1ダイアフラム13aがバックプレート18に衝突すると、第1音響センシング部23aにおいてバックプレート18に歪みの大きな振動が生じる。バックプレート18を通じて第1音響センシング部23aと第2音響センシング部23bが干渉し、この歪みの大きな振動が第2音響センシング部23b側へ伝わると、第2音響センシング部23bにおける高調波歪み率が大きくなり、第2音響センシング部23bの特性が劣化することがある。しかし、実施形態1の音響センサ11によれば、バックプレート18の剛性が高くなるので、第1音響センシング部23aで発生した歪みの大きな振動が第2音響センシング部23bへ伝わりにくくなる。その結果、第2音響センシング部23bにおける高調波歪み率が改善される。
(実施形態1の変形例)
 図16は、本発明の実施形態1の変形例による音響センサを示す平面図であって、バックプレート18や保護膜30などを除いた状態を表わしている。この音響センサのように、ダイアフラム13は、スリット17によって第1ダイアフラム13aと第2ダイアフラム13bとに完全に分離され、第1固定電極板19aと第2固定電極板19bが連結部64によって一体につながっていてもよい。
(実施形態2)
 図17は、本発明の実施形態2による音響センサ71を示す平面図である。この音響センサ71では、第2音響センシング部23bのアコースティックホール24bは、第1音響センシング部23aのアコースティックホール24aよりも分布密度(数密度)が小さくなっている。すなわち、アコースティックホール24bの配列ピッチは、アコースティックホール24aの配列ピッチよりも大きくなっている。アコースティックホール24bの配列ピッチは、アコースティックホール24aの配列ピッチの2倍以上であることが好ましい。一方、第1音響センシング部23aのアコースティックホール24aと第2音響センシング部23bのアコースティックホール24bは同じ孔径を有している。これ以外の点については、当該音響センサ71は、実施形態1の音響センサ11と同じ構造を有しているので、説明を省略する。
 音響センサ71においては、アコースティックホール24bの分布密度がアコースティックホール24aの分布密度よりも小さくなっているので、アコースティックホール24bの開口率が小さく、第2音響センシング部23bにおけるバックプレート18の剛性が高くなっている。その結果、第2ダイアフラム13bがバックプレート18に衝突してもバックプレート18が変形しにくく、第2ダイアフラム13bの変位量ないし変形量も抑制される。その結果、第2ダイアフラム13bに大きな応力が発生しにくくなり、第2ダイアフラム13bの破損を防ぐことができる。また、アコースティックホール24bの数が少なくなるので、アコースティックホール24bから音響センサ71内に塵や埃が入り込みにくくなる。
 なお、上記音響センサ71では、アコースティックホール24aの孔径とアコースティックホール24bの孔径は等しくなっていたが、アコースティックホール24bの分布密度をアコースティックホール24aよりも小さくするとともに、アコースティックホール24bの孔径もアコースティックホール24aより小さくしてもよい。
 さらには、アコースティックホール24bの全体としての開口率がアコースティックホール24aの開口率よりも小さければ、アコースティックホール24bの孔径がアコースティックホール24aの孔径よりも小さく、かつ、アコースティックホール24bの分布密度がアコースティックホール24aの分布密度より大きくてもよい。反対に、アコースティックホール24bの全体としての開口率がアコースティックホール24aの開口率よりも小さければ、アコースティックホール24bの分布密度がアコースティックホール24aの分布密度よりも小さく、かつ、アコースティックホール24bの孔径がアコースティックホール24aの孔径より大きくてもよい。
(実施形態3)
 図18は、本発明の実施形態3による音響センサ81を示す断面図である。この音響センサ81では、第2音響センシング部23bにおけるバックプレート18、すなわちバックプレート18bの厚みが、第1音響センシング部23aにおけるバックプレート18、すなわちバックプレート18aの厚みよりも厚くなっている。アコースティックホール24aとアコースティックホール24bの分布密度や孔径は同じであってもよい。これ以外の点については、当該音響センサ71は、実施形態1の音響センサ11と同じ構造を有しているので、説明を省略する。
 音響センサ81においては、バックプレート18bの厚みがバックプレート18aの厚みよりも厚いので、第2音響センシング部23bにおけるバックプレート18bの剛性が高くなっている。その結果、第2ダイアフラム13bがバックプレート18bに衝突してもバックプレート18bが変形しにくく、第2ダイアフラム13bの変位量ないし変形量も抑制される。その結果、第2ダイアフラム13bに大きな応力が発生しにくくなり、第2ダイアフラム13bの破損を防ぐことができる。
(実施形態4)
 図19は、本発明の実施形態4による音響センサ91の構造を示す平面図であって、バックプレートや保護膜などを除いた状態を表わしている。この音響センサ91は、3つの音響センシング部23a、23b、23cを有している。音響センシング部23aは、ダイアフラム13aと固定電極板19aによって構成されたコンデンサ構造である。音響センシング部23cは、ダイアフラム13cと固定電極板19cによって構成されたコンデンサ構造である。音響センシング部23a及び23cは、小音圧域用の高感度のセンシング部である。音響センシング部23bは、ダイアフラム13bと固定電極板19bによって構成されたコンデンサ構造であって、大音圧域用の低感度のセンシング部である。
 この音響センサ91にあっては、シリコン基板12のチャンバ15の上方に略矩形状のダイアフラム13が配設されている。ダイアフラム13は、2本のスリット17a、17bによって、ほぼ同じ面積を有する略矩形状の第1ダイアフラム13a及び第3ダイアフラム13cと、第1及び第3ダイアフラム13a、13cよりも面積の小さな略矩形状をした第2ダイアフラム13bに分割されている。また、第1ダイアフラム13aに対向させて固定電極板19の一部、すなわち第1固定電極板19aが配置されている。同様に、第2ダイアフラム13bに対向させて固定電極板19の一部、すなわち第2固定電極板19bが配置されている。第3ダイアフラム13cには、固定電極板19の一部、すなわち第3固定電極板19cが対向している。固定電極板19a、19b及び19cは、互いに分離しており、ダイアフラム13を覆うようにしてシリコン基板12の上面に固定されたバックプレート18の下面に設けられている。
 高感度で小音圧用の音響センシング部23a及び23cにおいては、そのバックプレート18及び固定電極板19a、19cに多数のアコースティックホール24a及び24cが開口されている。低感度で大音圧用の音響センシング部23bには、そのバックプレート18及び固定電極板19bに多数のアコースティックホール24bが開口されている。音響センシング部23bのアコースティックホール24bは、音響センシング部23a、23cのアコースティックホール24a、24cよりも開口率が小さくなっており(図19では、アコースティックホール24bの孔径がアコースティックホール24a、24cの孔径よりも小さくなっているが、ピッチが大きくなっていてもよい。)、音響センシング部23bのバックプレート18の剛性が音響センシング部23a、23cよりも高くなっている。よって、低感度の音響センシング部23bの耐衝撃性が高くなっている。
 この音響センサ91のように、3つ(あるいは、3つ以上)の音響センシング部を設けた場合には、1つのセンサから3つ(あるいは、3つ以上)の検知信号を出力させることが可能になる。
(実施形態5)
 図20は、本発明の実施形態5による音響センサ101の構造を示す平面図であって、バックプレートや保護膜などを除いた状態を表わしている。この音響センサ101も、3つの音響センシング部23a、23b、23cを有している。音響センシング部23aは、ダイアフラム13aと固定電極板19aによって構成されたコンデンサ構造であって、小音圧域用の高感度のセンシング部である。音響センシング部23bは、ダイアフラム13bと固定電極板19bによって構成されたコンデンサ構造であって、大音圧域用の低感度のセンシング部である。音響センシング部23cは、ダイアフラム13cと固定電極板19cによって構成されたコンデンサ構造であって、中音圧域用の中感度のセンシング部である。
 この音響センサ101にあっては、シリコン基板12のチャンバ15の上方に略矩形状のダイアフラム13が配設されている。ダイアフラム13は、2本のスリット17a、17bによって、略矩形状の第1ダイアフラム13a及と、第1ダイアフラム13aよりも面積の小さな略矩形状の第3ダイアフラム13cと、第3ダイアフラム13cよりも面積の小さな略矩形状の第2ダイアフラム13bに分割されている。また、第1ダイアフラム13aに対向させて第1固定電極板19aが配置されている。同様に、第2ダイアフラム13bに対向させて第2固定電極板19bが配置されている。第3ダイアフラム13cには、第3固定電極板19cが対向している。固定電極板19a、19b及び19cは、互いに分離しており、ダイアフラム13を覆うようにしてシリコン基板12の上面に固定されたバックプレート18の下面に設けられている。
 高感度で小音圧用の音響センシング部23aにおいては、そのバックプレート18及び固定電極板19aに多数のアコースティックホール24aが開口されている。低感度で大音圧用の音響センシング部23bと、中間度で中音圧用の音響センシング部23cには、それぞれのバックプレート18と固定電極板19b、19cに多数のアコースティックホール24b、24cが開口されている。音響センシング部23b、23cのアコースティックホール24b、24cは、音響センシング部23aのアコースティックホール24aよりも開口率が小さくなっており(図20では、アコースティックホール24b、24cの孔径がアコースティックホール24aの孔径よりも小さくなっているが、ピッチが大きくなっていてもよい。)、音響センシング部23b、23cのバックプレート18の剛性が音響センシング部23aよりも高くなっている。よって、低感度の音響センシング部23bと中感度の音響センシング部23cの耐衝撃性が高くなっている。なお、アコースティックホール24cの開口率は、アコースティックホール24aの開口率よりも小さく、かつ、アコースティックホール24bの開口率よりも大きくすることも可能である。
 このような構造の音響センサ101によれば、そのダイナミックレンジをさらに広くすることが可能になり、しかも、それによって音響センサ101の耐衝撃性が悪化しにくい。
(その他)
 ダイアフラム13や固定電極板19を分割する形態は、上記実施形態のようなものに限らない。たとえば、固定電極板19を、その外周領域とその内側領域とに分割し、外周領域に位置する面積が小さくて略環状をした領域を感度の低い第2固定電極板19bとし、その内側にある領域を感度の高い第1固定電極板19aとしてもよい(特願2011-002313の図1を参照)。ダイアフラム13についても同様である。
 なお、上記各実施形態においては、第1ダイアフラム13aの面積と第2ダイアフラム13bの面積を異ならせることにより、同じ音圧が加わったときの各ダイアフラム13a、13bの変位量を異ならせ、それによって第1音響センシング部23aと第2音響センシング部23bの感度を異ならせている。これ以外にも、たとえば第2ダイアフラム13bの膜厚を第1ダイアフラム13aの膜厚よりも厚くすることによって第2ダイアフラム13bの変位を小さくし、第2音響センシング部23bの感度を低くしてあってもよい。また、第2ダイアフラム13bの固定ピッチを第1ダイアフラム13aの固定ピッチよりも小さくすることによって第2ダイアフラム13bの変位を小さくし、第2音響センシング部23bの感度を低くしてあってもよい。さらに、第1ダイアフラム13aを梁構造によって支持することで第1ダイアフラム13aの変位を大きくし、第1音響センシング部23aの感度を高くしてあってもよい。
 以上においては、音響センサ及び該音響センサを用いたマイクロフォンについて説明したが、本発明は圧力センサなどの音響センサ以外の静電容量センサについても適用することができる。

Claims (12)

  1.  基板の上方に形成された振動電極板と、
     前記振動電極板を覆うようにして前記基板の上方に形成されたバックプレートと、
     前記振動電極板と対向させるようにして前記バックプレートに設けた固定電極板とを備えた静電容量型センサにおいて、
     前記振動電極板と前記固定電極板のうち少なくとも一方が複数領域に分割されていて、分割された各領域毎にそれぞれ前記振動電極板と前記固定電極板からなるセンシング部が形成され、
     複数の前記センシング部から異なる感度の複数の信号が出力され、
     前記センシング部のうち少なくとも一部のセンシング部は、その振動電極板の面積が他のセンシング部における振動電極板の面積と異なり、
     前記センシング部のうち前記振動電極板の面積が小さい一部のセンシング部は、その領域におけるバックプレートの剛性が、前記振動電極板の面積が大きい他のセンシング部におけるバックプレートの剛性よりも高くなっていることを特徴とする静電容量型センサ。
  2.  基板の上方に形成された振動電極板と、
     前記振動電極板を覆うようにして前記基板の上方に形成されたバックプレートと、
     前記振動電極板と対向させるようにして前記バックプレートに設けた固定電極板とを備えた静電容量型センサにおいて、
     前記振動電極板と前記固定電極板のうち少なくとも一方が複数領域に分割されていて、分割された各領域毎にそれぞれ前記振動電極板と前記固定電極板からなるセンシング部が形成され、
     複数の前記センシング部から異なる感度の複数の信号が出力され、
     前記センシング部はそれぞれ、前記バックプレート及び前記固定電極板に複数個の開口を形成され、
     前記センシング部のうち少なくとも一部のセンシング部は、その振動電極板の面積が他のセンシング部における振動電極板の面積と異なり、
     前記センシング部のうち前記振動電極板の面積が異なる少なくとも一対のセンシング部は、振動電極板の面積が小さい側のセンシング部における前記開口の開口率が、振動電極板の面積が大きい側のセンシング部における前記開口の開口率よりも小さくなっていることを特徴とする静電容量型センサ。
  3.  前記バックプレートの開口率は、前記開口の孔径によって調整されていることを特徴とする、請求項2に記載の静電容量型センサ。
  4.  前記振動電極板と前記固定電極板のうち少なくとも一方が2つの領域に分割されていて2つの前記センシング部が形成され、
     振動電極板の面積が小さい側の前記センシング部における前記開口の孔径は、振動電極板の面積が大きい側の前記センシング部における前記開口の孔径の1/2以下であることを特徴とする、請求項3に記載の静電容量型センサ。
  5.  振動電極板の面積が小さい側の前記センシング部における前記開口の孔径は、10μm以下であることを特徴とする、請求項4に記載の静電容量型センサ。
  6.  前記バックプレートの開口率は、前記開口の分布密度によって調整されていることを特徴とする、請求項2に記載の静電容量型センサ。
  7.  前記振動電極板と前記固定電極板のうち少なくとも一方が2つの領域に分割されていて2つの前記センシング部が形成され、
     振動電極板の面積が小さい側の前記センシング部における前記開口の配列ピッチは、振動電極板の面積が大きい側の前記センシング部における前記開口の配列ピッチの2倍以上であることを特徴とする、請求項6に記載の静電容量型センサ。
  8.  前記バックプレートの開口率は、前記開口の孔径及び分布密度によって調整されていることを特徴とする、請求項2に記載の静電容量型センサ。
  9.  基板の上方に形成された振動電極板と、
     前記振動電極板を覆うようにして前記基板の上方に形成されたバックプレートと、
     前記振動電極板と対向させるようにして前記バックプレートに設けた固定電極板とを備えた静電容量型センサにおいて、
     前記振動電極板と前記固定電極板のうち少なくとも一方が複数領域に分割されていて、分割された各領域毎にそれぞれ前記振動電極板と前記固定電極板からなるセンシング部が形成され、
     複数の前記センシング部から異なる感度の複数の信号が出力され、
     前記センシング部のうち少なくとも一部のセンシング部は、その振動電極板の面積が他のセンシング部における振動電極板の面積と異なり、
     前記センシング部のうち前記振動電極板の面積が異なる少なくとも一対のセンシング部は、振動電極板の面積が小さい側のセンシング部におけるバックプレートの厚みが、振動電極板の面積が大きい側のセンシング部におけるバックプレートの厚みよりも厚くなっていることを特徴とする静電容量型センサ。
  10.  前記振動電極板が複数領域に分割されていて、分割された各領域毎にそれぞれ前記振動電極板と前記固定電極板からなるセンシング部が形成されていることを特徴とする請求項1、2又は9に記載の静電容量型センサ。
  11.  請求項1、2又は9に記載の静電容量型センサを利用した音響センサであって、
     前記バックプレート及び前記固定電極板に、音響振動を通過させるための複数個の開口を形成し、
     音響振動に感応した前記ダイアフラムと前記固定電極板との間の静電容量の変化により、前記センシング部から信号を出力することを特徴とする音響センサ。
  12.  請求項11に記載の音響センサと、前記音響センサからの信号を増幅して外部に出力する回路部とを備えたマイクロフォン。
PCT/JP2013/064288 2012-05-31 2013-05-22 静電容量型センサ、音響センサ及びマイクロフォン WO2013179990A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/402,246 US9380393B2 (en) 2012-05-31 2013-05-22 Capacitance sensor, acoustic sensor, and microphone
CN201380026165.XA CN104350767B (zh) 2012-05-31 2013-05-22 静电容量型传感器、音响传感器及传声器
DE112013002734.8T DE112013002734B4 (de) 2012-05-31 2013-05-22 Kapazitanzsensor, Akustiksensor, und Mikrophon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012125527A JP5252104B1 (ja) 2012-05-31 2012-05-31 静電容量型センサ、音響センサ及びマイクロフォン
JP2012-125527 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013179990A1 true WO2013179990A1 (ja) 2013-12-05

Family

ID=49041930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064288 WO2013179990A1 (ja) 2012-05-31 2013-05-22 静電容量型センサ、音響センサ及びマイクロフォン

Country Status (5)

Country Link
US (1) US9380393B2 (ja)
JP (1) JP5252104B1 (ja)
CN (1) CN104350767B (ja)
DE (1) DE112013002734B4 (ja)
WO (1) WO2013179990A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160054459A1 (en) * 2014-08-20 2016-02-25 Korea Institute Of Geoscience And Mineral Resources Apparatus for detecting infrasound
US9488541B2 (en) 2014-03-20 2016-11-08 Kabushiki Kaisha Toshiba Pressure sensor, microphone, and acoustic processing system
WO2020196863A1 (ja) * 2019-03-28 2020-10-01 住友理工株式会社 静電型トランスデューサおよび静電型トランスデューサユニット

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012215239B4 (de) * 2012-08-28 2023-12-21 Robert Bosch Gmbh Bauteil und Verfahren zum Prüfen eines solchen Bauteils
DE102013213717A1 (de) * 2013-07-12 2015-01-15 Robert Bosch Gmbh MEMS-Bauelement mit einer Mikrofonstruktur und Verfahren zu dessen Herstellung
JP6252767B2 (ja) * 2014-03-14 2017-12-27 オムロン株式会社 静電容量型トランスデューサ
US9344808B2 (en) * 2014-03-18 2016-05-17 Invensense, Inc. Differential sensing acoustic sensor
CN104113812A (zh) * 2014-08-11 2014-10-22 苏州敏芯微电子技术有限公司 电容式微硅麦克风及其制造方法
KR20160025754A (ko) * 2014-08-28 2016-03-09 삼성전기주식회사 음향변환장치
WO2016193868A1 (en) * 2015-05-29 2016-12-08 Wizedsp Ltd. A system and method of a capacitive microphone
US10470674B2 (en) 2016-03-17 2019-11-12 Intel Corporation Technologies for a fabric acoustic sensor
ITUA20163571A1 (it) * 2016-05-18 2017-11-18 St Microelectronics Srl Trasduttore acustico mems con elettrodi interdigitati e relativo procedimento di fabbricazione
US10254134B2 (en) * 2016-08-04 2019-04-09 Apple Inc. Interference-insensitive capacitive displacement sensing
GB2555139A (en) 2016-10-21 2018-04-25 Nokia Technologies Oy Detecting the presence of wind noise
KR102378675B1 (ko) 2017-10-12 2022-03-25 삼성전자 주식회사 마이크로폰, 마이크로폰을 포함하는 전자 장치 및 전자 장치의 제어 방법
JP7067891B2 (ja) * 2017-10-18 2022-05-16 Mmiセミコンダクター株式会社 トランスデューサ
JP2020036214A (ja) * 2018-08-30 2020-03-05 Tdk株式会社 Memsマイクロフォン
CN112469467B (zh) 2018-10-24 2024-08-27 科利耳有限公司 具有非均匀膜片的可植入声音传感器
US11119532B2 (en) * 2019-06-28 2021-09-14 Intel Corporation Methods and apparatus to implement microphones in thin form factor electronic devices
JP7522541B2 (ja) * 2019-07-12 2024-07-25 日清紡マイクロデバイス株式会社 圧電素子
CN113092871B (zh) * 2021-03-19 2022-02-22 北京航空航天大学 一种基于静电自激振动原理的电容测量方法
CN113596691B (zh) * 2021-07-14 2023-06-23 王丁宁 一种带有被动辐射结构的空心静电扬声器
CN113708620A (zh) * 2021-08-25 2021-11-26 慧石(上海)测控科技有限公司 电荷泵电路结构及微型电荷泵
WO2024112406A1 (en) * 2022-11-23 2024-05-30 Invensense, Inc. Electrodes for microelectromechanical system microphones

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245267A (ja) * 2007-02-26 2008-10-09 Yamaha Corp シリコンマイクロフォン
JP4924853B1 (ja) * 2011-02-23 2012-04-25 オムロン株式会社 音響センサ及びマイクロフォン

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213400A (ja) * 1986-03-13 1987-09-19 Sony Corp コンデンサ形マイクロホン
WO2007024909A1 (en) 2005-08-23 2007-03-01 Analog Devices, Inc. Multi-microphone system
WO2009143434A2 (en) 2008-05-23 2009-11-26 Analog Devices, Inc. Wide dynamic range microphone
JP4419103B1 (ja) * 2008-08-27 2010-02-24 オムロン株式会社 静電容量型振動センサ
US8233637B2 (en) 2009-01-20 2012-07-31 Nokia Corporation Multi-membrane microphone for high-amplitude audio capture
EP2325613A1 (en) 2009-11-16 2011-05-25 Farsens, S.L. Microelectromechanical sensing device
CN102065354A (zh) * 2010-04-19 2011-05-18 瑞声声学科技(深圳)有限公司 振膜和包括该振膜的硅电容麦克风
US8351625B2 (en) * 2011-02-23 2013-01-08 Omron Corporation Acoustic sensor and microphone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245267A (ja) * 2007-02-26 2008-10-09 Yamaha Corp シリコンマイクロフォン
JP4924853B1 (ja) * 2011-02-23 2012-04-25 オムロン株式会社 音響センサ及びマイクロフォン

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488541B2 (en) 2014-03-20 2016-11-08 Kabushiki Kaisha Toshiba Pressure sensor, microphone, and acoustic processing system
US20160054459A1 (en) * 2014-08-20 2016-02-25 Korea Institute Of Geoscience And Mineral Resources Apparatus for detecting infrasound
US9753162B2 (en) * 2014-08-20 2017-09-05 Korea Institute Of Geoscience And Mineral Resources Apparatus for detecting infrasound
WO2020196863A1 (ja) * 2019-03-28 2020-10-01 住友理工株式会社 静電型トランスデューサおよび静電型トランスデューサユニット
CN113647118A (zh) * 2019-03-28 2021-11-12 住友理工株式会社 静电型换能器以及静电型换能器单元
CN113647118B (zh) * 2019-03-28 2024-03-08 住友理工株式会社 静电型换能器以及静电型换能器单元
US12007520B2 (en) 2019-03-28 2024-06-11 Sumitomo Riko Company Limited Electrostatic transducer and electrostatic transducer unit

Also Published As

Publication number Publication date
DE112013002734B4 (de) 2019-06-27
US20150104048A1 (en) 2015-04-16
JP5252104B1 (ja) 2013-07-31
JP2013251774A (ja) 2013-12-12
DE112013002734T5 (de) 2015-03-19
CN104350767A (zh) 2015-02-11
CN104350767B (zh) 2017-05-17
US9380393B2 (en) 2016-06-28

Similar Documents

Publication Publication Date Title
JP5252104B1 (ja) 静電容量型センサ、音響センサ及びマイクロフォン
US10484798B2 (en) Acoustic transducer and microphone using the acoustic transducer
JP6237978B2 (ja) 静電容量型センサ、音響センサ及びマイクロフォン
JP6028479B2 (ja) 静電容量型センサ、音響センサ及びマイクロフォン
JP5928163B2 (ja) 静電容量型センサ、音響センサ及びマイクロフォン
US9374644B2 (en) Acoustic transducer and microphone
US9351062B2 (en) Microphone unit
US8861753B2 (en) Acoustic transducer, and microphone using the acoustic transducer
US20150139467A1 (en) Acoustic device and microphone package including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14402246

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130027348

Country of ref document: DE

Ref document number: 112013002734

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797490

Country of ref document: EP

Kind code of ref document: A1