WO2013179882A1 - 輸送機械用フラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置 - Google Patents

輸送機械用フラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置 Download PDF

Info

Publication number
WO2013179882A1
WO2013179882A1 PCT/JP2013/063314 JP2013063314W WO2013179882A1 WO 2013179882 A1 WO2013179882 A1 WO 2013179882A1 JP 2013063314 W JP2013063314 W JP 2013063314W WO 2013179882 A1 WO2013179882 A1 WO 2013179882A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover glass
flat panel
panel display
display device
crack
Prior art date
Application number
PCT/JP2013/063314
Other languages
English (en)
French (fr)
Inventor
博之 大川
山中 一彦
文 中川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014518373A priority Critical patent/JPWO2013179882A1/ja
Publication of WO2013179882A1 publication Critical patent/WO2013179882A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/161Indexing scheme relating to constructional details of the monitor
    • G06F2200/1612Flat panel monitor

Definitions

  • the present invention relates to a cover glass for a flat panel display device mounted on a transport machine such as an automobile, a ship, and an aircraft, and a flat panel display device for a transport machine.
  • a flat panel display device may be provided in a transport machine such as an automobile, a ship, and an aircraft.
  • a car navigation system is mounted on an automobile.
  • a destination, a route, and the like can be input by directly touching a panel with a touch sensor function.
  • the panel with touch sensor function When mounting a panel with touch sensor function for in-vehicle use on the dashboard, the panel with touch sensor function is made of a material that is resistant to cracking (generally glass) from the viewpoint of passenger protection in the event of an accident. It is required to be.
  • a panel with a touch sensor function In recent years, products in which a panel with a touch sensor function is electrically opened and closed are also known.
  • This electric open / close touch panel with touch sensor function is configured to be housed in a housing section in the dashboard in conjunction with an ignition operation or by remote control operation, or to come out on the dashboard from the housing section. .
  • the conventional cover glass has formed a compressive stress layer on the surface by chemically strengthening the glass plate, and has improved the scratch resistance of the cover glass. Therefore, it is also conceivable to attach chemically tempered glass as described in Patent Document 1 as a cover glass on the front surface of a vehicle-mounted panel with a touch sensor function.
  • the cover glass described in Patent Document 1 having a compressive stress layer formed on the surface has resistance to scratching and impact destruction.
  • a slow crack that breaks the glass at a relatively low speed may occur at the starting point (hereinafter, such a method of cracking the glass is referred to as a slow crack crack).
  • this slow crack is generally a phenomenon in which there are few broken pieces, and most typically, one crack extends from the starting point of breakage and the cover glass is broken into two.
  • an object of the present invention is to provide a cover glass for a flat panel display device for a transport machine that is resistant to slow cracking in addition to impact fracture, and a flat panel display device for a transport machine.
  • this slow crack crack is a significant problem in the cover glass of a flat panel display device for a transport machine when investigating and researching the slow crack crack, leading to the present invention.
  • the slow crack crack occurred in the cover glass for the tablet PC when the tablet PC with the touch sensor was dropped.
  • Tablet PCs are thinner than those of flat panel display devices for transport machinery, and tablet PCs are often carried around and used in a different manner from flat panel display devices for transport machinery.
  • the cover glass for use was excluded from the scope of the present invention.
  • the mechanism of the slow crack crack will be described based on the slow crack crack generated in the cover glass for tablet PC.
  • a cover glass for a flat panel display device for a transport machine having a compressive stress layer having an outermost surface compressive stress of 500 MPa or more and a depth of 15 ⁇ m or more, The plate thickness is 0.8 mm or more, The cover glass is placed on a base made of granite, and the upper surface of the cover glass is in contact with the rubbing surface of a P30 (JIS R6252, 2006) sandpaper.
  • a cover glass for a flat panel display device for a transport machine wherein the average falling ball height at the time of breaking is higher than 17 cm in a sandpaper falling ball test in which a sphere is dropped from above.
  • the cover glass for a flat panel display device for a transport machine according to (1) wherein the plate thickness is 3.0 mm or less.
  • a flat panel display device for a transport machine comprising the cover glass of the flat panel display device for a transport machine according to (1) or (2).
  • a cover glass for a flat panel display device for a transport machine having a compressive stress layer having an outermost surface compressive stress of 500 MPa or more and a depth of 15 ⁇ m or more, The plate thickness is 0.8 mm or more,
  • K IC unit: Pa ⁇ m 1/2
  • its tensile stress is ⁇ TS (unit: MPa)
  • the plate thickness is t
  • a cover glass of a flat panel display device for transport machinery wherein ⁇ is larger than 490.
  • (94.9 ⁇ K IC ⁇ TS ) ⁇ (2.92 ⁇ t 3 ⁇ 25.49 ⁇ t 2 + 77.23 ⁇ t ⁇ 16.03)
  • a flat panel display device for a transport machine comprising the cover glass of the flat panel display device for a transport machine according to (4) or (5).
  • the compressive stress of the outermost surface of the cover glass is 500 MPa or more, and the depth of the compressive stress layer is 15 ⁇ m or more. Therefore, it has high resistance to impact destruction. Moreover, since the plate thickness of the cover glass is 0.8 mm or more and the average falling ball height at the time of breaking in the sandpaper falling ball test is higher than 17 cm, or ⁇ obtained from the above formula (I) is 490 Pa or more, High resistance to slow cracking. Therefore, the cover glass of the flat panel display device for a transport machine according to the present invention can sufficiently suppress the slow crack crack generated due to the inherent reason for the flat panel display device for a transport machine in addition to the impact fracture. .
  • (A) is a figure which shows the photograph of the tablet PC with a touch sensor function in which the slow crack crack generate
  • (b) is a figure which shows the enlarged photograph which looked at the destruction origin from the upper direction
  • (c) is a figure which shows a destruction origin side It is a figure which shows the photograph seen from. It is a figure which shows the torn surface of FIG.4 (c) typically. It is a figure which shows the photograph which looked at the fracture start point of the cover glass in which the non-slow crack crack occurred from the side. It is a figure which shows the torn surface of FIG. 6 typically. It is a figure which shows the photograph of the cover glass in which the spider crack generate
  • FIG. 9 It is a schematic diagram of the reproduction method of a slow crack crack. It is a figure which shows typically the mechanism by which the crack of the chemically strengthened glass generate
  • a chemically strengthened glass is placed on a base made of granite, and the upper surface of the chemically strengthened glass is brought into contact with the rubbing surface of P30 sandpaper. It is a figure which shows the photograph of the cover glass which dropped the spherical body from 17 cm in height, and the slow crack crack generate
  • (A) is a figure which shows the enlarged photograph of the sandpaper of P30
  • (b) is a figure which shows the enlarged photograph of asphalt concrete
  • (c) is the angle distribution of the sandpaper tip of P30, and the tip of sand. It is a graph which shows angle distribution. It is a graph which shows the relationship between the plate
  • 6 is a table showing the characteristics of Examples 1 to 10 and Comparative Examples 1 to 3, the average breaking height in a sandpaper falling ball test, and ⁇ . 6 is a graph showing the relationship between the average breaking height and ⁇ in the sandpaper falling ball test in Examples 1 to 10 and Comparative Examples 1 to 3.
  • FIG. 1 is a perspective view of a dashboard of an automobile on which a flat panel display device used in a car navigation system is mounted.
  • a flat panel display device 100 shown in FIG. 1 is an automatic opening / closing type display device mounted on a dashboard 101 in the center in the vehicle width direction, and is stored in the dashboard in conjunction with an ignition operation or by a remote control operation. It is comprised so that it may be stored in a part and it may come out on a dashboard from a storage part.
  • a panel with a touch sensor function (not shown) is arranged in a rectangular frame 102 for a destination, a route, and the like, and a touch sensor function is provided in front of the panel with a touch sensor function (inside the vehicle interior).
  • a cover glass 103 is disposed so as to cover the attached panel. The occupant can input a destination, a route, and the like by touching the panel with the touch sensor function via the cover glass 103.
  • FIG. 2 is a schematic diagram showing a situation in which a slow crack crack occurs in the cover glass when the tablet PC with a touch sensor function falls
  • FIG. 3 is a diagram schematically showing a mechanism in which the slow crack crack occurs
  • FIG. 4A is a view showing a photograph of a tablet PC with a touch sensor function in which a slow crack is generated
  • FIG. 4B is a view showing an enlarged photograph of the destruction start point as viewed from above
  • the tablet PC with a touch sensor function is provided with a substantially rectangular frame so as to surround the image display unit, and a cover glass is supported on the frame. As shown in FIG. 2, the tablet PC 1 with a touch sensor function falls on the ground (asphalt / concrete, etc.) and the cover glass 2 faces downward, and is placed on the sand 5 etc. on the pebbles 4 in the asphalt / concrete 3
  • compressive stress acts on the fracture starting point O
  • tensile stress acts on the image display portion side of the cover glass (FIG. 3A).
  • a tensile stress acts on the fracture starting point O, the crack C is elongated, and the cover glass 2 is broken (FIG. 3B).
  • the crack of the cover glass 2 at this time is caused by a scratch deeper than the depth of the compressive stress layer, as is apparent from the fracture surface of FIG. 4 (a) and 4 (b), one crack extends from the fracture starting point and the cover glass is broken into two.
  • a mirror with a smooth mirror radius is seen around the fracture starting point deeper than the depth of the compressive stress layer. .
  • FIG. 5 is a diagram schematically showing the fracture surface of FIG.
  • the fracture surface reflects factors such as the process of destruction, that is, the origin of the destruction, the direction of the destruction, whether the destruction progressed slowly or rapidly.
  • the mirror surface with a large mirror radius means that the fracture progressed due to a small stress. It means that it grew at a much slower rate. Therefore, according to the fracture surface of FIG.4 (c), after a starting point deeper than the depth of a compressive-stress layer was formed in the cover glass, it turns out that a crack grew slowly and destruction progressed with the small stress.
  • a cover glass that has been cracked by such slow cracking has several to several tens of pieces. Typically, it is 2 to 20 pieces, and an example in which one crack extends from the fracture starting point shown in FIGS. 4 (a) and 4 (b) and the cover glass is broken into two is a symbol of slow crack cracking. Example.
  • Whether or not it is a slow crack crack is determined more microscopically as follows. First, it cannot be said that it is a slow crack unless it can understand the starting point of fracture. In addition, when a crack that penetrates the compressive stress layer, that is, a crack deeper than the compressive stress layer depth (so-called DOL), is observed near the fracture starting point, it is a slow crack crack. Further, when the mirror surface radius is long, the fracture surface section is mirror surface, and no mist or hackles are observed, it is a slow crack crack.
  • DOL compressive stress layer depth
  • FIG. 6 is a view showing a photograph of the starting point of the cover glass due to non-slow crack cracking as viewed from the side
  • FIG. 7 is a view schematically showing the fracture surface of FIG.
  • the cover glass becomes a plurality (20 or more) of glass pieces by a plurality of cracks extending in a spider's web (hereinafter, such a crack is referred to as a spider). Also called a crack.)
  • a spider also called a crack.
  • the present inventors have found a sandpaper falling ball test described below as a method for reproducing this slow crack crack. Then, the threshold value is obtained from the sandpaper falling ball test, and the cover glass of the flat panel display device for a transport machine that is resistant to slow cracking is obtained by using a chemically strengthened glass equal to or higher than the threshold value as a cover glass of the flat panel display device for a transport machine. Made it possible to provide.
  • the sandpaper falling ball test includes a chemically strengthened glass 10 having a compressive stress layer formed on the surface thereof on a base 11, and includes an abrasive having a size larger than the depth of the compressive stress layer.
  • the chemically strengthened glass 10 is brought into contact with the rubbing surface 12a of the sandpaper 12, and a sphere 13 such as an iron ball is dropped from above.
  • the sandpaper 12 is preferably disposed above the chemically strengthened glass 10, the upper surface 10 a of the chemically strengthened glass 10 is in contact with the rubbing surface 12 a of the sandpaper 12, and the sphere 13 is the rubbing surface of the sandpaper 12. It falls on the surface 12b opposite to 12a.
  • the base 11 is preferably formed from a hard stone such as granite.
  • the stress escape field can be eliminated in the same manner as the cover glass region supported by the frame that is likely to generate scratches that are the starting points of fracture.
  • the material of the base 11 can be changed according to the purpose such as the elastic modulus and the deflection, and can be appropriately selected from a straight material, glass, a frame in which the center is hollowed out, and the like.
  • the sandpaper in the present invention is not limited to abrasive paper (sandpaper, JIS R6252: 2006), and includes a material in which an abrasive is coated with an adhesive or a material equivalent thereto, such as an abrasive cloth (JIS R6251: 2006). ), Water resistant abrasive paper (JIS R6253: 2006) and the like.
  • the sandpaper 12 has P12 to P2500 according to the grain size of the abrasive contained (JIS R6252, 2006).
  • the abrasive is typically alumina or silicon carbide. Assuming that the particle size of the sand contained in the asphalt concrete is 0.06 mm to 1 mm, the particle size of the abrasive contained in the sandpaper 12 generally corresponds to P30 to P600.
  • the depth of the compressive stress layer is 30 ⁇ m
  • P320 (d 3 ) are used as sandpaper containing an abrasive larger than the depth of the compressive stress layer. : 66.8 ⁇ m
  • P600 (d 3 : 43.0 ⁇ m) and the like are selected.
  • the material and weight of the sphere 13 can be changed according to the purpose, but typically a stainless steel ball of 4 to 150 g made of stainless steel is used.
  • the chemically strengthened glass 10 is deeper than the compressive stress layer on the upper surface 10a side by the abrasive contained in the sandpaper 12.
  • a fracture starting point O is generated.
  • a compressive stress acts on the fracture starting point O, and a tensile stress acts around it (FIG. 10A).
  • a tensile stress acts on the fracture starting point O, the crack C is elongated, and the cover glass is broken (FIG. 10B). That is, although there is a difference between the upper surface and the lower surface of the fracture starting surface, the crack is generated by the same mechanism as the slow crack crack described in FIGS. 3 (a) and 3 (b).
  • FIG. 11A shows a state where the chemically tempered glass 10 is placed on a base made of granite, and the upper surface of the chemically tempered glass 10 is brought into contact with the rubbing surface of the sandpaper 12 of P30.
  • FIG. 11B is a view showing a photograph of a cover glass in which a slow crack crack is generated by dropping a sphere 13 made of stainless steel from a height of 17 cm, and FIG. 11B is a side view of the fracture starting point of FIG. FIG.
  • Chemically tempered glass has one crack extending and the cover glass is broken into two, and FIG. 11 (b) shows the same fracture surface as FIG. 4 (c), which is the same mechanism as slow crack cracking. It can be seen that cracking has occurred.
  • FIG. 12 (a) is an enlarged photograph of P30 sandpaper
  • FIG. 12 (b) is an enlarged photograph of asphalt concrete (collected in Yokohama)
  • FIG. 12 (c) is the tip of P30 sandpaper. It is a graph which shows angle distribution of this, and angle distribution of the front-end
  • FIG. 12 (c) shows 144 sandpapers and 149 sands, respectively, and shows the tip angle of the sandpaper or sand on the horizontal axis and the frequency on the vertical axis.
  • P30 sandpaper was selected because of the closeness of the shape of alumina as an abrasive contained in P30 sandpaper and the shape of pebbles contained in asphalt concrete.
  • the cover glass of the flat panel display device for a transport machine has the cover glass placed on a base made of granite, and the upper surface of the cover glass is brought into contact with the rubbing surface of the sandpaper of P30 (JIS R6252, 2006).
  • a sandpaper falling ball test in which a sphere made of ⁇ 3 / 8 inch, 4 g stainless steel is dropped from above in the state, it is a glass having an average falling ball height at the time of breaking higher than 17 cm.
  • the reason why the average falling ball height at the time of breakage is higher than 17 cm will be described in Examples described later.
  • the cover glass of the flat panel display device for transport machinery of the present invention has a depth of the compressive stress layer of 15 ⁇ m or more when chemically strengthened in order to enhance the resistance to scratching and impact destruction. It is preferably 20 ⁇ m or more, and more preferably 30 ⁇ m or more.
  • the compressive stress of the outermost surface of chemically strengthened glass is 500 MPa or more, preferably 600 MPa or more, and more preferably 700 MPa or more.
  • Chemical strengthening is performed by, for example, immersing in potassium nitrate (KNO 3 ) molten salt at 435 ° C. for 4 hours, but by changing the temperature, immersion time, molten salt, etc. of potassium nitrate (KNO 3 ) molten salt, It is possible to adjust the way chemical strengthening is entered.
  • the chemically strengthened glass has a plate thickness of 0.8 mm or more, more preferably 1.0 mm or more and 3.0 mm or less, and further preferably 1.2 mm or more and 2.5 mm or less.
  • FIG. 13 shows five types (0.5 mm, 0.8 mm, 1.0 mm, 2.0 mm, and 3.00 mm) with different plate thicknesses that were chemically strengthened so that the tensile stress inside the chemically strengthened glass was 45 MPa.
  • a glass having the following composition is used as the chemically strengthened glass.
  • the K 2 O containing 0-10% Until 10% not essential K 2 O is a, and an object may include a range that does not impair the present invention, in the meaning of Yes (hereinafter the same).
  • the composition expressed in mol% is SiO 2 50-74%, Al 2 O 3 1-10%, Na 2 O 6-14%, K 2 O 3-11%, MgO 2 -15%, CaO 0-6% and ZrO 2 0-5%, the total content of SiO 2 and Al 2 O 3 is 75% or less, the total content of Na 2 O and K 2 O Is 12 to 25%, and the total content of MgO and CaO is 7 to 15%.
  • the composition expressed in mol% is SiO 2 68-80%, Al 2 O 3 4-10%, Na 2 O 5-15%, K 2 O 0-1%, MgO 4 to 15% and a ZrO 2 0 - 1% glass containing.
  • composition expressed in mol% is SiO 2 67-75%, Al 2 O 3 0-4%, Na 2 O 7-15%, K 2 O 1-9%, MgO 6 -14% and ZrO 2 0-1.5%, the total content of SiO 2 and Al 2 O 3 is 71-75%, the total content of Na 2 O and K 2 O is 12-20 %, And when it contains CaO, its content is less than 1%.
  • a tilt test was performed using a tablet PC with a sensor function that is relatively resistant to slow crack cracking among tablet PCs with a sensor function currently available on the market.
  • the support of the tablet PC with a sensor function supported vertically was removed on a sanded desk, and the presence or absence of the occurrence of a slow crack crack when the cover glass fell was visually observed.
  • slow crack cracking did not occur in the commercially available cover glass for tablet PC with sensor function.
  • the same glass material G as the cover glass mounted on the tablet PC with the sensor function, the glass having the same plate thickness and the same fracture toughness (K IC ), and substantially the same compressive stress ( ⁇ CS ) and compressive stress layer depth (DOL) was chemically strengthened to obtain a sandpaper falling ball test.
  • this glass As Comparative Example 1, the glass material, plate thickness, compressive stress ( ⁇ CS ), compressive stress layer depth (DOL), tensile stress ( ⁇ TS ), and fracture toughness (K IC ) were averaged in the sandpaper falling ball test.
  • FIG. 14 shows the breaking height (sandpaper falling ball height).
  • the compressive stress value ( ⁇ CS ) and the depth of the compressive stress layer (DOL) were measured using a glass surface stress meter (FSM-6000LE) manufactured by Orihara Seisakusho.
  • the tensile stress ( ⁇ TS ) was calculated by a theoretical formula using the photoelastic constant of the glass by measuring the refractive index of the compressive stress layer by passing light through the compressive stress layer of the chemically strengthened glass.
  • the glass material G has the following composition. SiO 2 : 66.7 mol% Al 2 O 3 : 10.8 mol% NaO: 13.2 mol% KO: 2.4 mol% MgO: 6.2 mol% CaO: 0.6 mol%
  • the glass material A has the following composition. SiO 2 : 72.5 mol% Al 2 O 3 : 6.2 mol% Na 2 O: 12.8 mol% MgO: 8.5 mol%
  • the glass material B has the following composition. SiO 2 : 64 mol% Al 2 O 3 : 14 mol% B 2 O 3 : 7 mol% Na 2 O: 14 mol% K 2 O: 1 mol%
  • the glass material C has the following composition. SiO 2 : 68 mol% Al 2 O 3 : 10 mol% Na 2 O: 14 mol% MgO: 8 mol%
  • the glass material D has the following composition. SiO 2 : 64 mol% Al 2 O 3 : 8 mol% Na 2 O: 12.5 mol% K 2 O: 4 mol% MgO: 11 mol% ZrO 2 : 0.5 mol%
  • the sandpaper falling ball test 15 sheets of chemically strengthened glass cut to size: 50 mm ⁇ 50 mm were prepared, and the 15 sheets of glass were sequentially placed on a base made of granite, and the sandpaper of P30 (JIS R6252, 2006) was used. With the upper surface of the glass in contact with the rubbing surface, a sphere of ⁇ 3 / 8 inch, 4 g of stainless steel was dropped from above, and a simple average of the falling ball height at the time of breaking was calculated as the average breaking height. As a result, in the glass of Comparative Example 1, the average breaking height in the sandpaper falling ball test was 17 cm. From this, if the average breaking height in the sandpaper falling ball test is higher than 17 cm, it can be determined that the film has a higher resistance to slow cracking than the commercially available cover glass for tablet PC with sensor function.
  • FIG. 14 shows the glass material, plate thickness, compressive stress ( ⁇ CS ), compressive stress layer depth (DOL), tensile stress ( ⁇ TS ), and fracture toughness (K IC ) together with the average fracture height in the sandpaper falling ball test. It was.
  • the characteristic of slow cracking is that the scratch progresses slowly starting from a scratch exceeding the depth (DOL) of the compressive stress layer, in other words, starting from a scratch generated in the tensile stress layer. Therefore, the present inventors have made an extensive study by assuming that there is some relationship between the average fracture height in the sandpaper falling ball test showing the resistance to slow crack cracking and the tensile stress ( ⁇ TS ) of the tensile stress layer.
  • the ⁇ expressed by the following formula (I) using the tensile stress ( ⁇ TS ) of the tensile stress layer and the fracture toughness (K IC ) of the chemically strengthened glass, and the average fracture height in the sandpaper falling ball test It was found that there is a proportional relationship with.
  • FIG. 15 is a graph showing the relationship between the average breaking height in the sandpaper falling ball test and ⁇ represented by the formula (I) in Examples 1 to 12 and Comparative Examples 1 to 3.
  • the vertical axis is the average breaking height in the sandpaper falling ball test
  • the horizontal axis is ⁇ expressed by the formula (I).
  • ⁇ represented by the formula (I) increases, and a proportional relationship is established between the two.
  • ⁇ represented by the formula (I) is larger than 490, the average breaking height in the sandpaper falling ball test is higher than 17 cm, and the same slow resistance as that of the cover glass for tablet PCs with a sensor function currently available on the market. It can be judged that it has cracking performance.
  • ⁇ represented by the formula (I) is increased for a glass having a composition having a large fracture toughness (K IC ), and chemical strengthening is performed so that the tensile stress ( ⁇ TS ) of the tensile stress layer is decreased. Even things get bigger. In other words, in order to suppress the occurrence of slow cracking, it is not sufficient to merely chemically strengthen glass having a large fracture toughness (K IC ), and it is necessary to appropriately reduce the tensile stress ( ⁇ TS ) of the tensile stress layer. I understand that there is.
  • the lower limit thereof is preferably 600 or more, more preferably 750 or more, and even more preferably 1000 or more.
  • the upper limit is preferably 5000 or less, more preferably 4000 or less, and even more preferably 3000 or less.
  • the compressive stress of the outermost surface of the cover glass is 500 MPa or more, and the compressive stress layer Since the depth is 15 ⁇ m or more, the resistance to impact destruction is high.
  • the plate thickness of the cover glass is 0.8 mm or more, and the average falling ball height at the time of breaking in the sandpaper falling ball test is higher than 17 cm, or ⁇ obtained from the above formula (I) is larger than 490, so it is slow. High resistance to cracking. Therefore, the cover glass of the flat panel display device for a transport machine according to the present invention can sufficiently suppress the slow crack crack generated due to the inherent reason for the flat panel display device for a transport machine in addition to the impact fracture. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 最表面の圧縮応力が500MPa以上、且つ、深さが15μm以上である圧縮応力層を有する、輸送機械用フラットパネルディスプレイ装置のカバーガラスであって、板厚が0.8mm以上であって、カバーガラスを花崗岩からなる基台上に配置し、P30(JIS R6252、2006)のサンドペーパーの擦り面にカバーガラスの上面を接触させた状態で、Φ3/8インチ、4gのステンレス鋼からなる球体を上方から落下させるサンドペーパー落球試験において、破壊時の平均落球高さが17cmより高い。

Description

輸送機械用フラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置
 本発明は、自動車、船舶、航空機等の輸送機械に搭載されるフラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置に関する。
 近年、自動車、船舶、航空機等の輸送機械には、フラットパネルディスプレイ装置が備え付けられていることがある。例えば、自動車には、カーナビゲーションシステムが搭載されており、このカーナビゲーションシステムでは、目的地、ルート等をタッチセンサ機能付パネルに直接触れることで、入力できるようになっている。
 車載用のタッチセンサ機能付パネルをダッシュボード上に搭載する場合、事故が発生した際等の乗員保護の観点から、タッチセンサ機能付パネルは割れに強い材質(一般的にはガラス)から構成されることが求められている。また、近年、タッチセンサ機能付パネルが電動で開閉するような製品も知られている。この電動開閉式のタッチセンサ機能付パネルは、イグニッション操作と連動して又はリモコン操作によりダッシュボード内の収納部に収納されたり、収納部からダッシュボード上に出てきたりするように構成されている。
 一方で、PDP(Plasma Display Panel)、LCD(Liquid Crystal Display)、携帯電話、携帯情報端末(PDA)、デスクトップPC、ラップトップPC、タッチセンサ機能付タブレットPC等のフラットパネルディスプレイ装置において、ディスプレイの保護ならびに美観を高めるために、薄い板状のカバーガラスをディスプレイの前面に配置することが行なわれている(例えば、特許文献1)。
 従来のカバーガラスは、ガラス板を化学強化することで表面に圧縮応力層を形成し、カバーガラスの加傷性を高めていた。従って、特許文献1に記載したような化学強化ガラスを、車載用のタッチセンサ機能付パネルの前面にカバーガラスとして取り付けることも考えられる。
米国特許公開2011/0165393号公報
 しかしながら、表面に圧縮応力層が形成された特許文献1に記載のカバーガラスは、加傷性及び衝撃破壊について耐性を有しているが、圧縮応力層を突き抜ける傷が発生した場合、この傷を起点にガラスが比較的遅い速度で割れるスロークラックが生じることがある(以下、このようなガラスの割れ方をスロークラック割れと呼ぶ。)。なお、このスロークラック割れは、一般的に割れ破片が少なく、最も典型的には破壊起点から一本のクラックが延びてカバーガラスが2つに割れる現象である。
 このようなスロークラック割れは従来問題にされていなかったものであり、通常の衝撃破壊に対する耐性に加えて、自動車、船舶、航空機等の輸送機械に搭載されるフラットパネルディスプレイ装置においては、このスロークラック割れも起こりにくくすることが求められている。
 そこで、本発明は、衝撃破壊に加えてスロークラック割れにも強い輸送機械用フラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置を提供することを目的とする。
 本発明者らは、スロークラック割れについて調査、研究を進める上で、このスロークラック割れが、輸送機械用フラットパネルディスプレイ装置のカバーガラスにおいて顕著な問題であることを見出し、本発明に至った。なお、スロークラック割れは、輸送機械用フラットパネルディスプレイ装置のカバーガラスの他、タッチセンサ付タブレットPCを落下させたときにタブレットPC用のカバーガラスにおいても発生することが分かったが、タブレットPC用のカバーガラスが輸送機械用フラットパネルディスプレイ装置のカバーガラスに比べて薄いこと、タブレットPCは持ち歩いて使用されることが多く、輸送機械用フラットパネルディスプレイ装置とは使用態様が異なることから、タブレットPC用カバーガラスは本発明の対象外とした。ただし、以下の説明では、タブレットPC用カバーガラスで発生したスロークラック割れに基づいて、スロークラック割れのメカニズムについて説明する。
 スロークラック割れが輸送機械用フラットパネルディスプレイ装置のカバーガラスに顕著な問題であることは以下の理由による。
 輸送機械用フラットパネルディスプレイ装置のカバーガラスでは、内部の気温変動による熱応力が発生する。従って、カバーガラスの表面に存在していた潜傷が、熱応力の影響で圧縮応力層を突き抜けるまで進展してスロークラック割れを引き起こすおそれがある。
 また、電動開閉式のフラットパネルディスプレイ装置では、収納状態にする際に、砂のような先端が尖った硬い異物に触れると、圧縮応力層を突き抜ける傷を起点にスロークラック割れが生じることが想定される。
 また、特に大型の輸送機械では、突発的に大きな揺れや振動が発生することがある。従って、カバーガラスの表面に存在していた傷の先端に、突発的に発生した大きな揺れや振動の影響で引っ張り応力が発生して、傷が進展して、スロークラック割れを引き起こすおそれがある。それゆえ輸送機械用フラットパネルディスプレイ装置のカバーガラスでは、表面圧縮応力層を突き抜ける傷が生じやすく、スロークラック割れが発生しやすいことが分かった。
 本発明は、以下の態様を提供するものである。
(1) 最表面の圧縮応力が500MPa以上、且つ、深さが15μm以上である圧縮応力層を有する、輸送機械用フラットパネルディスプレイ装置のカバーガラスであって、
 板厚が0.8mm以上であって、
 前記カバーガラスを花崗岩からなる基台上に配置し、P30(JIS R6252、2006)のサンドペーパーの擦り面に前記カバーガラスの上面を接触させた状態で、Φ3/8インチ、4gのステンレス鋼からなる球体を上方から落下させるサンドペーパー落球試験において、破壊時の平均落球高さが17cmより高い、輸送機械用フラットパネルディスプレイ装置のカバーガラス。
(2) 板厚が3.0mm以下である、(1)に記載の輸送機械用フラットパネルディスプレイ装置のカバーガラス。
(3) (1)又は(2)に記載の輸送機械用フラットパネルディスプレイ装置のカバーガラスを備える輸送機械用フラットパネルディスプレイ装置。
(4) 最表面の圧縮応力が500MPa以上、且つ、深さが15μm以上である圧縮応力層を有する、輸送機械用フラットパネルディスプレイ装置のカバーガラスであって、
 板厚が0.8mm以上であって、
 化学強化後のガラスの破壊靱性をKIC(単位:Pa・m1/2)、その引張応力をσTS(単位:MPa)、板厚をtとしたとき、下記(I)式から求められるΔが490より大きい、輸送機械用フラットパネルディスプレイ装置のカバーガラス。
 Δ=(94.9×KIC-σTS)×(2.92×t-25.49×t+77.23×t-16.03)   (I)
(5) 板厚が3.0mm以下である、(4)に記載の輸送機械用フラットパネルディスプレイ装置のカバーガラス。
(6) (4)又は(5)に記載の輸送機械用フラットパネルディスプレイ装置のカバーガラスを備える輸送機械用フラットパネルディスプレイ装置。
 本発明の輸送機械用フラットパネルディスプレイ装置のカバーガラス及び輸送機械用フラットパネルディスプレイ装置によれば、カバーガラスの最表面の圧縮応力が500MPa以上、且つ、圧縮応力層の深さが15μm以上であるので、衝撃破壊に対する耐性が高い。
 また、カバーガラスの板厚が0.8mm以上であり、サンドペーパー落球試験において破壊時の平均落球高さが17cmより高い、又は、上記(I)式から求められるΔが490Pa以上であるので、スロークラック割れに対する耐性も高い。従って、本発明の輸送機械用フラットパネルディスプレイ装置のカバーガラスは、衝撃破壊に加えて、上記した輸送機械用フラットパネルディスプレイ装置に固有の理由で発生するスロークラック割れについても十分抑制することができる。
輸送機械用フラットパネルディスプレイ装置が搭載された自動車のダッシュボードの斜視図である。 タッチセンサ機能付タブレットPCが落下した際にカバーガラスにスロークラック割れが発生する状況を示す模式図である。 スロークラック割れが発生するメカニズムを模式的に示す図であり、(a)は破壊起点を示す図であり、(b)はクラックを示す図である。 (a)はスロークラック割れが発生したタッチセンサ機能付タブレットPCの写真を示す図であり、(b)は破壊起点を上方から見た拡大写真を示す図、(c)は破壊起点を側方から見た写真を示す図である。 図4(c)の破断面を模式的に示す図である。 非スロークラック割れが発生したカバーガラスの破壊起点を側方から見た写真を示す図である。 図6の破断面を模式的に示す図である。 スパイダー割れが発生したカバーガラスの写真を示す図である。 スロークラック割れの再現方法の模式図である。 図9のスロークラック割れの再現方法における化学強化ガラスの割れが発生するメカニズムを模式的に示す図であり、(a)は破壊起点を示す図であり、(b)はクラックを示す図である。 (a)は、化学強化ガラスを花崗岩からなる基台上に配置し、P30のサンドペーパーの擦り面に化学強化ガラスの上面を接触させた状態で、Φ3/8インチ、4gのステンレス鋼性の球体を高さ17cmから落下させてスロークラック割れが発生したカバーガラスの写真を示す図であり、(b)は破壊起点を側方から見た写真を示す図である。 (a)はP30のサンドペーパーの拡大写真を示す図であり、(b)はアスファルト・コンクリートの拡大写真を示す図であり、(c)はP30のサンドペーパー先端の角度分布と砂の先端の角度分布を示すグラフである。 化学強化ガラスの板厚と破壊時の落球高さとの関係を示すグラフである。 実施例1~10と比較例1~3の特性と、サンドペーパー落球試験における平均破壊高さと、Δとを示す表である。 実施例1~10及び比較例1~3における、サンドペーパー落球試験における平均破壊高さとΔとの関係を示したグラフである。
 先ず、本発明のカバーガラスが用いられる輸送機械用フラットパネルディスプレイ装置について説明する。以下の説明では、輸送機械用フラットパネルディスプレイ装置として、カーナビゲーションシステムに用いられるフラットパネルディスプレイ装置を例に説明する。
 図1は、カーナビゲーションシステムに用いられるフラットパネルディスプレイ装置が搭載された自動車のダッシュボードの斜視図である。
 図1に示すフラットパネルディスプレイ装置100は、車幅方向中央部のダッシュボード101上に搭載された自動開閉式のディスプレイ装置であって、イグニッション操作と連動して又はリモコン操作によりダッシュボード内の収納部に収納されたり、収納部からダッシュボード上に出てきたりするように構成されている。
 フラットパネルディスプレイ装置100は、矩形状のフレーム102内に目的地、ルート等をタッチセンサ機能付パネル(不図示)が配置され、さらにタッチセンサ機能付パネルの前方(車室内側)にタッチセンサ機能付パネルを覆うようにカバーガラス103が配置されている。乗員は、カバーガラス103を介してタッチセンサ機能付パネルに触れることで、目的地、ルート等を入力できるようになっている。
 続いて、輸送機械用フラットパネルディスプレイ装置のカバーガラスで発生するスロークラック割れのメカニズムについて、タッチセンサ機能付タブレットPCのカバーガラスで発生したスロークラック割れに基づいて説明する。
 図2はタッチセンサ機能付タブレットPCが落下した際にカバーガラスにスロークラック割れが発生する状況を示す模式図であり、図3はスロークラック割れが発生するメカニズムを模式的に示す図であり、図4(a)はスロークラック割れが発生したタッチセンサ機能付タブレットPCの写真を示す図であり、(b)は破壊起点を上方から見た拡大写真を示す図、(c)は破壊起点を側方から見た写真を示す図である。
 タッチセンサ機能付タブレットPCは、画像表示部を囲うように略矩形状のフレームが設けられ、カバーガラスがフレーム上に支持されている。図2に示すように、タッチセンサ機能付タブレットPC1が地面(アスファルト・コンクリートなど)に落下して、カバーガラス2が下を向いた状態でアスファルト・コンクリート3中の小石4上の砂5等に接触すると、破壊起点Oに圧縮応力が作用しカバーガラスの画像表示部側に引張応力が作用する(図3(a))。続いて、破壊起点Oには引張応力が作用しクラックCが伸びて、カバーガラス2が割れる(図3(b))。
 このときのカバーガラス2の割れは、図4(c)の破断面から明らかなように、圧縮応力層の深さより深い傷が破壊起点となっている。図4(a)及び(b)では、破壊起点から一本のクラックが延びてカバーガラスが2つに割れている。この図4(c)に示す破断面をさらに観察すると、圧縮応力層の深さより深い破壊起点の回りには、鏡のように滑らかな鏡面半径(mirror radius)の長い鏡面(mirror)が見られる。
 図5は、図4(c)の破断面を模式的に示す図である。破断面には、破壊の過程、すなわち、破壊起点、破壊の進行方向、破壊が緩やかに進んだか、急速に進んだかなどの要因が反映される。このスロークラック割れの破断面解析によれば、鏡面半径の長い鏡面(ミラー面)は小さな応力により破壊が進行したことを意味しており、このような滑らかな破断面は、クラックがゆっくり音速に比べてずっと遅い速度で成長したことを意味している。従って、図4(c)の破断面によれば、カバーガラスには、圧縮応力層の深さより深い起点が形成された後、クラックがゆっくり成長し、小さな応力で破壊が進行したことが分かる。このようなスロークラック割れにより割れたカバーガラスは、割れ破片が数ピース~(場合によっては)数十ピースになる。典型的には、2ピースから20ピースであり、図4(a)及び(b)に示す破壊起点から一本のクラックが延びてカバーガラスが2つに割れた例は、スロークラック割れの象徴的な例である。
 スロークラック割れであるか否かは、よりミクロには次のようにして判別される。まず、破壊起点がわかるようなものでなければスロークラック割れとはいえない。また、その破壊起点付近を観察して圧縮応力層を突き抜けるような傷すなわち圧縮応力層深さ(いわゆるDOL)よりも深い傷が破壊起点であることが確認された場合はスロークラック割れである。また、鏡面半径が長く、破面断面が鏡面でありミストやハックルが認められない場合はスロークラック割れである。
 次に、スロークラック割れとの対比のため、スロークラック割れではないカバーガラスの割れ方(以下、非スロークラック割れとも呼ぶ。)について説明する。非スロークラック割れとして、ヌープ圧子をガラス表面に押し込んで生じたカバーガラスの割れについて説明する。図6は、非スロークラック割れによるカバーガラスの破壊起点を側方から見た写真を示す図であり、図7は図6の破断面を模式的に示す図である。
 この非スロークラック割れの破断面を観察すると、圧縮応力層内に破壊起点が形成され、回りに鏡のように滑らかな鏡面半径の短い鏡面が見られ、さらに鏡面の回りには、ミスト面(mist)が存在する。この非スロークラック割れの破断面解析によれば、鏡面半径の短い鏡面は大きな応力により破壊が進行したことを意味し、ミスト面は、クラックが急速に成長したことを意味している。従って、図6の破断面によれば、カバーガラスには、圧縮応力層の深さより浅い破壊起点が形成された後、大きな応力で破壊が進行しクラックが急速に成長したことが分かる。非スロークラック割れが生じると、カバーガラスは図8に示すように、蜘蛛の巣状に延びた複数のクラックにより複数(20枚以上)のガラス片となる(以下、このような割れ方をスパイダー割れとも呼ぶ。)。このように、スロークラック割れと非スロークラック割れとは、全く異なるモードで破壊が生じていることが分かる。
 非スロークラック割れについては、破壊起点が圧縮応力層内に発生するため、これを防ぐためには表面圧縮応力を大きくすることや圧縮応力層を深くすることが効果的である。しかし、スロークラック割れについては、破壊起点が圧縮応力層を超えた領域、即ち引張応力層に発生するため(傷の深さは典型的には数十~数百マイクロメートルで、化学強化による圧縮応力層が数~数十マイクロメートル)、スロークラック割れの発生しやすい輸送機械用フラットパネルディスプレイ装置のカバーガラスにおいては、スロークラック割れにも強い機械特性を有する化学強化ガラスを選択する必要がある。
 そこで、本発明者らは、このスロークラック割れを再現するための方法として、以下に説明するサンドペーパー落球試験を見出した。そして、そのサンドペーパー落球試験から、閾値を求め、閾値以上の化学強化ガラスを輸送機械用フラットパネルディスプレイ装置のカバーガラスとすることで、スロークラック割れに強い輸送機械用フラットパネルディスプレイ装置のカバーガラスを提供することを可能とした。
 サンドペーパー落球試験は、図9に示すように、表面に圧縮応力層が形成された化学強化ガラス10を基台11上に配置し、圧縮応力層の深さ以上の大きさの研磨材を含むサンドペーパー12の擦り面12aに化学強化ガラス10を接触させ、鉄球等の球体13を上方から落下させるものである。このとき、サンドペーパー12は、好ましくは化学強化ガラス10の上方に配置され、化学強化ガラス10の上面10aがサンドペーパー12の擦り面12aと接触しており、球体13がサンドペーパー12の擦り面12aとは反対側の面12bに落下する。
 基台11としては、花崗岩のような硬い石から形成されることが好ましい。これにより、破壊起点となる傷が発生しやすいフレームに支持されたカバーガラスの領域と同じように、応力の逃げ場を排除することができる。ただし、基台11の材質は弾性率やたわみを目的にあわせて変更することができ、ストレート材、ガラス、中央がくりぬかれたフレーム等、適宜選択することができる。
 本発明におけるサンドペーパーは研磨紙(紙やすり、JIS R6252:2006)に限られず基材に研磨材が接着剤によって塗装されたもの、あるいはそれに相当するものを含み、たとえば研磨布(JIS R6251:2006)、耐水研磨紙(JIS R6253:2006)などを含む。
 サンドペーパー12には、含まれる研磨材の粒度に応じてP12~P2500番が存在する(JIS R6252、2006)。研磨材は、典型的には、アルミナ、炭化ケイ素である。アスファルト・コンクリートに含まれる砂の粒径を0.06mm~1mmと想定すると、サンドペーパー12に含まれる研磨材の粒度としてP30~P600が概ねこれと対応する。
 例えば圧縮応力層の深さを30μmと想定すると、圧縮応力層の深さよりも大きい研磨材を含むサンドペーパーとしては、P30(D:710μm)、P100(D:180μm)、P320(d:66.8μm)、P600(d:43.0μm)などのサンドペーパーが選択される。
 球体13の材質や重量は目的にあわせて変更可能であるが、典型的には、ステンレス鋼製の4~150gのステンレス球が用いられる。
 このように基台11上に配置された化学強化ガラス10に、球体13を落下させることで、化学強化ガラス10にはサンドペーパー12に含まれる研磨材により、上面10a側の圧縮応力層より深いところに破壊起点Oが発生する。
 このとき、破壊起点Oに圧縮応力が作用しその周りに引張応力が作用する(図10(a))。続いて、破壊起点Oには引張応力が作用しクラックCが伸びて、カバーガラスが割れる(図10(b))。即ち、破壊起点の面が上面と下面の違いはあるが、図3(a)及び(b)で説明したスロークラック割れと同じメカニズムで割れが発生する。
 図11(a)は、化学強化ガラス10を花崗岩からなる基台上に配置し、P30のサンドペーパー12の擦り面に化学強化ガラス10の上面を接触させた状態で、Φ3/8インチ、4gのステンレス鋼からなる球体13を高さ17cmから落下させてスロークラック割れが発生したカバーガラスの写真を示す図であり、図11(b)は図11(a)の破壊起点を側方から見た写真を示す図である。
 化学強化ガラスは、一本のクラックが延びてカバーガラスが2つに割れており、また図11(b)は図4(c)と同様の破断面を示しており、スロークラック割れと同じメカニズムで割れが発生していることが分かる。
 図12(a)はP30のサンドペーパーの拡大写真であり、図12(b)は、アスファルト・コンクリート(横浜にて採取)の拡大写真であり、図12(c)は、P30のサンドペーパー先端の角度分布と砂の先端の角度分布を示すグラフである。図12(c)は、それぞれサンドペーパーを144箇所、砂を149箇所観測し、サンドペーパー又は砂の先端角度を横軸に、頻度を縦軸に示したものである。本発明では、P30のサンドペーパーに含まれる研磨材としてのアルミナと、アスファルト・コンクリートに含まれる小石等の形状の近似性から、P30のサンドペーパーが選択された。
 本発明の輸送機械用フラットパネルディスプレイ装置のカバーガラスは、カバーガラスを花崗岩からなる基台上に配置し、P30(JIS R6252、2006)のサンドペーパーの擦り面にカバーガラスの上面を接触させた状態で、Φ3/8インチ、4gのステンレス鋼からなる球体を上方から落下させるサンドペーパー落球試験において、破壊時の平均落球高さが17cmより高いガラスである。なお、サンドペーパー落球試験において、破壊時の平均落球高さが17cmより高いこととした理由は、後述の実施例で説明する。
 また、本発明の輸送機械用フラットパネルディスプレイ装置のカバーガラスは、加傷性及び衝撃破壊に対する耐性を高めるために、化学強化を行った際の圧縮応力層の深さが、15μm以上であり、20μm以上であることが好ましく、30μm以上であることがより好ましい。また、化学強化ガラスの最表面の圧縮応力は、500MPa以上であり、600MPa以上が好ましく、700MPa以上がより好ましい。化学強化は、例えば、435℃の硝酸カリウム(KNO)溶融塩に4時間浸漬させることで行われるが、硝酸カリウム(KNO)溶融塩の温度や、浸漬時間、溶融塩等を変更させることで、化学強化の入り方を調整することができる。
 化学強化ガラスは、板厚が0.8mm以上、より好ましくは1.0mm以上3.0mm以下、さらに好ましくは1.2mm以上2.5mm以下である。
 図13は、化学強化ガラス内部の引張応力を45MPaとなるように化学強化を行った、板厚の異なる5種類(0.5mm、0.8mm、1.0mm、2.0mm、3.00mm)の化学強化ガラスの落球試験の割れ高さを示すグラフであり、化学強化ガラスを花崗岩からなる基台上に配置し、Φ3/8インチ、4gのステンレス鋼からなる球体を上方から落下させ、破壊時の落球高さ(以下、落球高さとも呼ぶ。)をシミュレーションしたグラフである。
 図13からは、0.8mm未満では板厚が厚くなるに従い落球高さが急激に高くなり、0.8mm以上3.0mm以下では板厚が厚くなるに従い落球高さが僅かに高くなり、3.0mmを超えると、板厚が厚くなってもほとんど落球高さが変わらなくなる傾向が見られた。
 これは、化学強化ガラスが球体との衝突時に僅かに弾性変形することによるクッション効果で、落球の衝撃エネルギーが緩和されるためと考えられ、0.8mm以上3.0mm以下で大きなクッション効果を発揮するものと考えられる。なお、本シミュレーションは、サンドペーパー落球試験とは異なる通常の落球試験であるが、衝撃破壊と同様に、スロークラック割れについても同様の作用効果を奏するものと考えられる。
 また、化学強化ガラスは、例えば以下の組成のガラスが使用される。
(i)モル%で表示した組成で、SiOを50~80%、Alを2~25%、LiOを0~10%、NaOを0~18%、KOを0~10%、MgOを0~15%、CaOを0~5%およびZrOを0~5%を含むガラス。ここで、例えば「KOを0~10%含む」とはKOは必須ではないが10%までの範囲で、かつ、本発明の目的を損なわない範囲で含んでもよい、の意である(以下、同様)。
(ii)モル%で表示した組成が、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~11%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が7~15%であるガラス。
(iii)モル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%およびZrOを0~1%含有するガラス。
(iv)モル%で表示した組成が、SiOを67~75%、Alを0~4%、NaOを7~15%、KOを1~9%、MgOを6~14%およびZrOを0~1.5%含有し、SiOおよびAlの含有量の合計が71~75%、NaOおよびKOの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス。
 以下、本発明の実施例について説明する。
 先ず、現在、市販されているセンサ機能付タブレットPCのうち、比較的スロークラック割れに強いセンサ機能付タブレットPCを用いて傾倒試験を行った。傾倒試験は、砂をまいた机の上で、垂直に支持したセンサ機能付タブレットPCの支持をはずし、カバーガラスが倒れた際のスロークラック割れの発生の有無を目視で観察した。その結果、市販されているセンサ機能付タブレットPC用のカバーガラスでは、スロークラック割れが発生しなかった。
 続いて、そのセンサ機能付タブレットPCに搭載されたカバーガラスと同じ硝材Gで、同じ板厚及び同じ破壊靱性(KIC)のガラスを、ほぼ同じ圧縮応力(σCS)、圧縮応力層深さ(DOL)となるように化学強化を行い、サンドペーパー落球試験を行った。このガラスを比較例1とし、硝材、板厚、圧縮応力(σCS)、圧縮応力層深さ(DOL)、引張応力(σTS)、破壊靱性(KIC)を、サンドペーパー落球試験における平均破壊高さ(サンドペーパー落球高さ)とともに図14に示した。
 圧縮応力値(σCS)及び圧縮応力層の深さ(DOL)は、折原製作所製ガラス表面応力計(FSM-6000LE)を用いて測定した。また、引張応力(σTS)は、化学強化ガラスの圧縮応力層に光を通すことで圧縮応力層の屈折率を計測し、ガラスの光弾性定数を用いて、理論式にて算出した。
 硝材Gは、以下の組成を有するものである。
SiO: 66.7mol%
Al:10.8mol%
NaO:  13.2mol%
KO:   2.4mol%
MgO:  6.2mol%
CaO:  0.6mol%
 硝材Aは、以下の組成を有するものである。
SiO: 72.5mol%
Al:6.2mol%
NaO: 12.8mol%
MgO:  8.5mol%
 硝材Bは、以下の組成を有するものである。
SiO: 64mol%
Al:14mol%
: 7mol%
NaO: 14mol%
O:  1mol%
 硝材Cは、以下の組成を有するものである。
SiO: 68mol%
Al:10mol%
NaO: 14mol%
MgO:  8mol%
 硝材Dは、以下の組成を有するものである。
SiO: 64mol%
Al:8mol%
NaO: 12.5mol%
O:  4mol%
MgO:  11mol%
ZrO: 0.5mol%
 サンドペーパー落球試験は、サイズ:50mm×50mmに切断した化学強化ガラスを15枚用意し、15枚のガラスを順次花崗岩からなる基台上に配置し、P30(JIS R6252、2006)のサンドペーパーの擦り面にガラスの上面を接触させた状態で、Φ3/8インチ、4gのステンレス鋼からなる球体を上方から落下させ、破壊時の落球高さの単純平均を算出して平均破壊高さとした。その結果、比較例1のガラスでは、サンドペーパー落球試験における平均破壊高さは、17cmであった。このことから、サンドペーパー落球試験における平均破壊高さが17cmより高ければ、現在市販されているセンサ機能付タブレットPC用カバーガラスより高い耐スロークラック割れ性能を有していると判断できる。
 続いて、板厚を0.6mmとした同じ組成のガラス(比較例2)を用いて、化学強化後、サンドペーパー落球試験を行ったところ、サンドペーパー落球試験における平均破壊高さは、14cmであった。従って、このガラス組成と化学強化条件では、板厚を0.6mmとした場合、耐スロークラック割れ性能が不十分であり、薄型化するとスロークラック割れが発生する頻度が上がる可能性があることが分かった。
 続いて、硝材A~Dのガラスを化学強化し、実施例1~12及び比較例3のガラスをそれぞれ15枚作製した。硝材、板厚、圧縮応力(σCS)、圧縮応力層深さ(DOL)、引張応力(σTS)、破壊靱性(KIC)を、サンドペーパー落球試験における平均破壊高さとともに図14に示した。
 その結果、実施例1~12では、いずれもサンドペーパー落球試験における平均破壊高さが17cmより高くなり、現在市販されているセンサ機能付タブレットPC用カバーガラスよりも高い耐スロークラック割れ性能を有していることが分かった。これに対し、比較例3のガラスは、サンドペーパー落球試験における平均破壊高さが15cmであり、スロークラック割れが発生する頻度が上がる可能性があることが分かった。
 従って、この測定結果から、硝材に関わらず、板厚を0.8mm以上とし、且つ、サンドペーパー落球試験における平均破壊高さが17cmより高いガラスを輸送機械用フラットパネルディスプレイ装置のカバーガラスとして選択することで、現在市販されているセンサ機能付タブレットPC用カバーガラスより高い耐スロークラック割れ性能を発揮できることが分かった。
 スロークラック割れの特徴は、圧縮応力層の深さ(DOL)を超えた傷を起点に、言い換えると引張応力層中に発生した傷を起点にゆっくり傷が進展することである。そこで、本発明者らは、耐スロークラック割れ性能を示すサンドペーパー落球試験における平均破壊高さと、引張応力層の引張応力(σTS)とは、何らかの関係があるとの仮説を立てて鋭意検討する中で、引張応力層の引張応力(σTS)と化学強化したガラスの破壊靱性(KIC)とを用いて下記(I)式で表されるΔと、サンドペーパー落球試験における平均破壊高さとの間には、比例関係があることを見出した。
 Δ=(94.9×KIC-σTS)×(2.92×t-25.49×t+77.23×t-16.03)   (I)
 なお、(I)式中、(2.92×t-25.49×t+77.23×t-16.03)は、図13の落球試験の結果をフィッティングして得られた板厚をtとした場合の板厚による落球高さの影響の項である。
 図15は、実施例1~12及び比較例1~3における、サンドペーパー落球試験における平均破壊高さと(I)式で表されるΔとの関係を示したグラフである。縦軸がサンドペーパー落球試験における平均破壊高さであり、横軸が(I)式で表されるΔである。図15によると、サンドペーパー落球試験における平均破壊高さが高くなると、(I)式で表されるΔも大きくなり、両者の間に比例関係が成立することが分かる。
 また、図14のグラフに戻って、サンドペーパー落球試験における平均破壊高さと(I)式で表されるΔとの値を見比べると、(I)式で表されるΔが490より大きければ、必ずサンドペーパー落球試験における平均破壊高さが17cmより高くなることが分かる。
 従って、(I)式で表されるΔが490より大きければ、サンドペーパー落球試験における平均破壊高さが17cmより高くなり、現在市販されているセンサ機能付タブレットPC用カバーガラスと同等の耐スロークラック割れ性能を有していると判断できる。
 また、(I)式で表されるΔは、破壊靱性(KIC)が大きい組成のガラスであれば大きくなるともに、引張応力層の引張応力(σTS)が小さくなるように化学強化を行うことでも大きくなる。言い換えると、スロークラック割れの発生を抑制するには、単に破壊靱性(KIC)が大きなガラスを化学強化するだけでは十分ではなく、引張応力層の引張応力(σTS)を適切に小さくする必要があることが分かる。
 (I)式で表されるΔは、その値が大きいほど、スロークラック割れが抑制できるので、その下限は、600以上が好ましく、750以上がより好ましく、1000以上がさらに好ましい。一方、その値が大きくなりすぎると、化学強化が十分でなくなり曲げ強度や落球強度が低下する恐れがあるので、上限は、5000以下が好ましく、4000以下がより好ましく、3000以下がさらに好ましい。
 以上説明したように、本実施形態の輸送機械用フラットパネルディスプレイ装置のカバーガラス及び輸送機械用フラットパネルディスプレイ装置によれば、カバーガラスの最表面の圧縮応力が500MPa以上、且つ、圧縮応力層の深さが15μm以上であるので、衝撃破壊に対する耐性が高い。
 また、カバーガラスの板厚が0.8mm以上であり、サンドペーパー落球試験において破壊時の平均落球高さが17cmより高い、又は、上記(I)式から求められるΔが490より大きいので、スロークラック割れに対する耐性も高い。従って、本発明の輸送機械用フラットパネルディスプレイ装置のカバーガラスは、衝撃破壊に加えて、上記した輸送機械用フラットパネルディスプレイ装置に固有の理由で発生するスロークラック割れについても十分抑制することができる。
 なお、本発明は上述した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。
 本出願は、2012年5月28日出願の日本特許出願2012-121239に基づくものであり、その内容はここに参照として取り込まれる。
100 フラットパネルディスプレイ装置
103 カバーガラス
10  化学強化ガラス
10a 上面
11  基台
12  サンドペーパー
12a 擦り面
13  球体
O  破壊起点
C  クラック

Claims (6)

  1.  最表面の圧縮応力が500MPa以上、且つ、深さが15μm以上である圧縮応力層を有する、輸送機械用フラットパネルディスプレイ装置のカバーガラスであって、
     板厚が0.8mm以上であって、
     前記カバーガラスを花崗岩からなる基台上に配置し、P30(JIS R6252、2006)のサンドペーパーの擦り面に前記カバーガラスの上面を接触させた状態で、Φ3/8インチ、4gのステンレス鋼からなる球体を上方から落下させるサンドペーパー落球試験において、破壊時の平均落球高さが17cmより高い、輸送機械用フラットパネルディスプレイ装置のカバーガラス。
  2.  板厚が3.0mm以下である、請求項1に記載の輸送機械用フラットパネルディスプレイ装置のカバーガラス。
  3.  請求項1又は2に記載の輸送機械用フラットパネルディスプレイ装置のカバーガラスを備える輸送機械用フラットパネルディスプレイ装置。
  4.  最表面の圧縮応力が500MPa以上、且つ、深さが15μm以上である圧縮応力層を有する、輸送機械用フラットパネルディスプレイ装置のカバーガラスであって、
     板厚が0.8mm以上であって、
     化学強化後のガラスの破壊靱性をKIC(単位:Pa・m1/2)、その引張応力をσTS(単位:MPa)、板厚をtとしたとき、下記(I)式から求められるΔが490より大きい、輸送機械用フラットパネルディスプレイ装置のカバーガラス。
     Δ=(94.9×KIC-σTS)×(2.92×t-25.49×t+77.23×t-16.03)   (I)
  5.  板厚が3.0mm以下である、請求項4に記載の輸送機械用フラットパネルディスプレイ装置のカバーガラス。
  6.  請求項4又は5に記載の輸送機械用フラットパネルディスプレイ装置のカバーガラスを備える輸送機械用フラットパネルディスプレイ装置。
PCT/JP2013/063314 2012-05-28 2013-05-13 輸送機械用フラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置 WO2013179882A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518373A JPWO2013179882A1 (ja) 2012-05-28 2013-05-13 輸送機械用フラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012121239 2012-05-28
JP2012-121239 2012-05-28

Publications (1)

Publication Number Publication Date
WO2013179882A1 true WO2013179882A1 (ja) 2013-12-05

Family

ID=49673085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063314 WO2013179882A1 (ja) 2012-05-28 2013-05-13 輸送機械用フラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置

Country Status (2)

Country Link
JP (1) JPWO2013179882A1 (ja)
WO (1) WO2013179882A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027812A1 (ja) * 2014-08-22 2016-02-25 旭硝子株式会社 車載表示装置
WO2016194916A1 (ja) * 2015-06-05 2016-12-08 旭硝子株式会社 車載表示装置
WO2017065286A1 (ja) * 2015-10-16 2017-04-20 旭硝子株式会社 ガラス樹脂積層体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247732A (ja) * 2007-03-02 2008-10-16 Nippon Electric Glass Co Ltd 強化板ガラスとその製造方法
JP2009057271A (ja) * 2007-08-03 2009-03-19 Nippon Electric Glass Co Ltd 強化ガラス基板及びその製造方法
JP2011510903A (ja) * 2008-02-08 2011-04-07 コーニング インコーポレイテッド 損傷耐性の化学強化された保護カバーガラス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247732A (ja) * 2007-03-02 2008-10-16 Nippon Electric Glass Co Ltd 強化板ガラスとその製造方法
JP2009057271A (ja) * 2007-08-03 2009-03-19 Nippon Electric Glass Co Ltd 強化ガラス基板及びその製造方法
JP2011510903A (ja) * 2008-02-08 2011-04-07 コーニング インコーポレイテッド 損傷耐性の化学強化された保護カバーガラス

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019054A (ja) * 2014-08-22 2019-02-07 Agc株式会社 車載表示装置
TWI722605B (zh) * 2014-08-22 2021-03-21 日商Agc股份有限公司 車載顯示裝置
TWI678341B (zh) * 2014-08-22 2019-12-01 日商Agc股份有限公司 車載顯示裝置
CN106604902A (zh) * 2014-08-22 2017-04-26 旭硝子株式会社 车载显示装置
JPWO2016027812A1 (ja) * 2014-08-22 2017-06-08 旭硝子株式会社 車載表示装置
WO2016027812A1 (ja) * 2014-08-22 2016-02-25 旭硝子株式会社 車載表示装置
CN110264874A (zh) * 2014-08-22 2019-09-20 Agc株式会社 车载显示装置
CN106604902B (zh) * 2014-08-22 2019-08-06 Agc株式会社 车载显示装置
JPWO2016194916A1 (ja) * 2015-06-05 2018-04-05 旭硝子株式会社 車載表示装置
JP2018169616A (ja) * 2015-06-05 2018-11-01 Agc株式会社 車載表示装置
US10450218B2 (en) 2015-06-05 2019-10-22 AGC Inc. Vehicle mounted display device
CN110588347A (zh) * 2015-06-05 2019-12-20 Agc株式会社 车载显示装置
TWI680057B (zh) * 2015-06-05 2019-12-21 日商Agc股份有限公司 車用顯示裝置
DE112016002507B4 (de) 2015-06-05 2020-07-23 AGC Inc. Fahrzeugseitig befestigte Anzeigevorrichtung
WO2016194916A1 (ja) * 2015-06-05 2016-12-08 旭硝子株式会社 車載表示装置
US11332403B2 (en) 2015-06-05 2022-05-17 AGC Inc. Vehicle mounted display device
CN110588347B (zh) * 2015-06-05 2022-12-30 Agc株式会社 车载显示装置
JPWO2017065286A1 (ja) * 2015-10-16 2018-09-06 Agc株式会社 ガラス樹脂積層体
CN108349795A (zh) * 2015-10-16 2018-07-31 旭硝子株式会社 玻璃树脂层叠体
WO2017065286A1 (ja) * 2015-10-16 2017-04-20 旭硝子株式会社 ガラス樹脂積層体
CN108349795B (zh) * 2015-10-16 2020-12-29 Agc株式会社 玻璃树脂层叠体

Also Published As

Publication number Publication date
JPWO2013179882A1 (ja) 2016-01-18

Similar Documents

Publication Publication Date Title
TWI666190B (zh) 包含包括兩個區域的應力輪廓之基於玻璃的製品及其製作方法
JP7229205B2 (ja) 改良された破壊性能を示すガラス物品
JP6839192B2 (ja) 金属酸化物濃度勾配を含むフュージョン成形可能なガラス系物品
EP3157882B1 (en) Strengthened glass with ultra-deep depth of compression
KR101935076B1 (ko) 화학 강화 유리의 충격 시험 방법, 화학 강화 유리의 깨짐 재현 방법 및 화학 강화 유리의 제조 방법
US9517968B2 (en) Strengthened glass with deep depth of compression
US9656906B2 (en) Glass for chemical tempering and chemically tempered glass
JP6123675B2 (ja) カバーガラス
US8925389B2 (en) Method for measuring strength of chemically strengthened glass, method for reproducing cracking of chemically strengthened glass, and method for producing chemically strengthened glass
WO2013179882A1 (ja) 輸送機械用フラットパネルディスプレイ装置のカバーガラス、及び輸送機械用フラットパネルディスプレイ装置
US20220153629A1 (en) Sheet-like chemically toughened or chemically toughenable glass article and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797225

Country of ref document: EP

Kind code of ref document: A1