WO2013179810A1 - Device for controlling battery pack, power source device, and method for controlling battery pack - Google Patents

Device for controlling battery pack, power source device, and method for controlling battery pack Download PDF

Info

Publication number
WO2013179810A1
WO2013179810A1 PCT/JP2013/061710 JP2013061710W WO2013179810A1 WO 2013179810 A1 WO2013179810 A1 WO 2013179810A1 JP 2013061710 W JP2013061710 W JP 2013061710W WO 2013179810 A1 WO2013179810 A1 WO 2013179810A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
secondary battery
capacity
voltage
characteristic
Prior art date
Application number
PCT/JP2013/061710
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 本蔵
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013179810A1 publication Critical patent/WO2013179810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an assembled battery control device, a power supply device, and an assembled battery control method.
  • a battery pack composed of a secondary battery such as a lithium ion battery connected in series or in parallel is mounted on a vehicle such as a hybrid car as a power source for obtaining high output or high capacity. It is expected to be applied to applications such as power supplies for electric power storage and power supplies for smart houses.
  • a battery constructed by combining two types of secondary batteries having different characteristics from each other is known. In such an assembled battery, it is possible to give the assembled battery characteristics different from those of an assembled battery constructed with only a single type of secondary battery.
  • the unit price of the secondary battery is high at present, the reuse of the secondary battery is also being considered.
  • a utilization technique such as forming an assembled battery by combining single cells whose life as a vehicle traveling battery has been completed, and using it as a power storage power source at home.
  • Such an assembled battery may be composed of a plurality of battery types having different battery characteristics due to different deterioration states and specifications.
  • a battery group A in which a plurality of secondary batteries are connected in series and a battery group B in which a plurality of secondary batteries are connected in parallel are connected in series.
  • a method for detecting the charge / discharge state of the battery group A from the voltage B is described.
  • Patent Document 1 is effective for detecting the charge / discharge state of a battery having a small voltage change rate. For this reason, since a plurality of secondary batteries are used as the battery group B, the price of the assembled battery as a whole increases. . In addition, there is a problem that the deterioration state of the battery group A cannot be detected.
  • the present invention has been made in view of such problems, and in an assembled battery configured by combining a plurality of secondary batteries having different characteristics, the deterioration state is determined for each battery group having the same characteristics by a simple method. It is an object of the present invention to provide means for extending the life of an assembled battery by means or control based on a determination result.
  • a chargeable / dischargeable first secondary battery having a first characteristic and a chargeable / dischargeable second secondary battery having a second characteristic different from the first characteristic are connected in series or in parallel.
  • a storage unit configured to store a first characteristic, the number of first secondary batteries, the second characteristic, and the number of second secondary batteries included in the assembled battery
  • a voltmeter that detects the voltage of the battery pack, and a voltage change rate as a voltage difference with respect to the battery battery capacity difference or a capacity change rate as a battery battery voltage difference based on the output of the voltmeter.
  • a control unit that performs voltage change rate or capacity change rate, the first characteristic and the number of first secondary batteries, the second characteristic and the number of second secondary batteries, The deterioration rate of the first secondary battery and the deterioration rate of the second secondary battery based on Control of the assembled battery to be constant.
  • the storage unit holds the deterioration rate of the first secondary battery, the deterioration rate of the second secondary battery, and the determination date / time determined at two or more different dates / times.
  • the remaining life of the first secondary battery and the remaining life of the second secondary battery are determined based on the deterioration rate of the secondary battery, the deterioration rate of the second secondary battery, and the determination date and time.
  • a control apparatus for an assembled battery that outputs a detection signal when the remaining life of one secondary battery and the remaining life of a second secondary battery are smaller than a predetermined value.
  • control unit performs overcharge regions or overdischarges of the first secondary battery and the second secondary battery based on the deterioration rate of the first secondary battery and the deterioration rate of the second secondary battery.
  • a control device that determines a voltage region or a capacity region of an assembled battery corresponding to the region, and outputs a detection signal when the voltage or the capacity of the assembled battery is included in the voltage region or the capacity region.
  • control unit performs overcharge regions or overdischarges of the first secondary battery and the second secondary battery based on the deterioration rate of the first secondary battery and the deterioration rate of the second secondary battery.
  • a voltage range or a capacity region of the assembled battery corresponding to the region is determined, and when the voltage or the capacity of the assembled battery is included in the voltage region or the capacity region, the first secondary battery and the second secondary battery are Control device that outputs detection signals individually.
  • a control part is a switch based on a detection signal. And controlling the voltage of the first secondary battery and the second secondary battery so that both the first secondary battery and the second secondary battery are not included in the overcharge region or the overdischarge region.
  • a control device that equalizes the voltage of the secondary battery.
  • the first secondary battery and the second secondary battery flow through the switch connecting the positive electrodes and the negative electrodes of the second secondary battery, and the first secondary battery and the second secondary battery disposed in the vicinity of the switch.
  • An ammeter that detects current, and the control unit controls opening and closing of the switch.
  • the control unit controls opening and closing of the switch based on the detection signal, and the current value of the first secondary battery or the first
  • a power supply device having the above control device and an assembled battery.
  • a chargeable / dischargeable first secondary battery having a first characteristic and a chargeable / dischargeable second secondary battery having a second characteristic different from the first characteristic are connected in series or in parallel.
  • the assembled battery control method is configured to store the first characteristic, the number of first secondary batteries, the second characteristic, and the number of second secondary batteries included in the assembled battery by the storage unit.
  • a step of detecting the voltage of the assembled battery with a voltmeter, and a voltage change rate as a voltage difference with respect to the capacity difference of the assembled battery or a capacity with respect to the voltage difference of the assembled battery based on the output of the voltmeter by the control unit In the step of detecting the capacity change rate as a difference, and in the control unit, the voltage change rate or the capacity change rate, the first characteristic and the number of first secondary batteries, the second characteristic and the second secondary Degradation of the first secondary battery based on the number of batteries And the control method of an assembled battery and determining a deterioration rate of the second secondary battery, a.
  • FIG. 1 shows an example of an embodiment of a power supply device provided with a control device for an assembled battery according to the present invention.
  • a lithium ion secondary battery will be described as a secondary battery, but the present invention is not limited to this.
  • the control device 1100 includes an ammeter 10, a voltmeter 11, a control unit 100, a memory 110, and an output unit 120.
  • the assembled battery 1000 of this embodiment includes a battery group AA in which N batteries A (first secondary batteries), which are secondary batteries having a first characteristic, are connected in series, and two batteries having a second characteristic.
  • a battery group BB in which M batteries B (secondary secondary batteries) which are secondary batteries are connected in series is connected in series. Battery A and battery B have different characteristics.
  • An ammeter 10 that detects current flowing through the assembled battery 1000 is connected in series with the assembled battery 1000.
  • a voltmeter 11 for detecting the voltage of the assembled battery 1000 is connected in parallel with the assembled battery 1000.
  • battery A includes an active material that does not change phase due to charging / discharging of the lithium ion secondary battery
  • battery B includes an active material that changes phase due to charging / discharging of the lithium ion secondary battery.
  • a control unit 100 Based on the outputs of the voltmeter 11 and the ammeter 10, a control unit 100 is provided that calculates the voltage change rate (VvsdQ / dV) with respect to the capacity change of the assembled battery 1000 or the capacity change rate (QvsdV / dQ) with respect to the voltage change Yes.
  • a memory 110 storage unit
  • the control unit 100 determines the deterioration rate of each battery type constituting the assembled battery 1000, and the output unit 120 determines the result. Is output to an external circuit, an external device, or the like.
  • the relationship between the capacity QA of the battery A and the voltage change rate V′A at the time of configuring the assembled battery 1000 is measured in advance.
  • n data groups (QA1, V′A1), (QA2, V′A2), ... (QAn, V′An) are held in the memory 110.
  • the relationship between the capacity QB of the battery B and the voltage change rate V′B at the time when the assembled battery 1000 is configured is measured in advance.
  • m data groups QB1, V′B1), (QB2, V ′ B2), ..., (QBm, V'Bm
  • the number of data groups n and m is at least 2 or more, preferably 20 or more, and more preferably 50 or more.
  • the memory 110 holds the deterioration rates of the battery group AA and the battery group BB.
  • the definition of the deterioration rate can be arbitrarily determined, but here, the ratio between the full charge capacity W0 of the battery when the assembled battery 1000 is configured and the full charge capacity W of the battery when a certain time has elapsed.
  • the deterioration rate R is defined by (W / W0).
  • FIG. 2 is a schematic diagram showing the principle of determining the deterioration state of the battery. For simplicity, a case where one battery A and one battery B are connected in series is shown. A solid line, a broken line, and a dotted line indicate the relationship between the capacity of the assembled battery 1000, the battery A, and the battery B and the voltage change rate, respectively.
  • the capacity of the battery A is 0.60 Ah
  • the capacity of the battery B is 0.69 Ah.
  • the deterioration rates RA and RB of the battery A and the battery B are 1 respectively.
  • the capacity QAB of the assembled battery 1000 can be expressed as in (Equation 1) below.
  • V′AB V′A / RA + V′B / RB (Formula 2)
  • the deterioration rate is calculated from the relationship between the capacity QAB of the assembled battery 1000 and the voltage change rate V′AB.
  • RA and RB and capacity deviations ⁇ A and ⁇ B can be obtained.
  • the capacity can be adjusted for each battery group.
  • the capacity (and voltage) of the battery A alone increases, so that the battery pack capacity, the capacity of the battery A, and the capacity of the battery B Deviation occurs.
  • capacity deviations ⁇ A and ⁇ B as parameters representing this deviation, the capacity can be adjusted for each battery group.
  • FIG. 3 shows an example of a flowchart for obtaining the deterioration rates RA and RB and the capacity deviations ⁇ A and ⁇ B from the relationship between the capacity QAB of the assembled battery 1000 and the voltage change rate V′AB.
  • step 1 data groups (QAB1, V'AB1), (QAB2, V'AB2), ..., (QAB1, V'AB1) showing the relationship between the capacity QAB of the assembled battery 1000 and the voltage change rate V'AB. Is read. At this time, calculation is possible if the number l of data groups is twice or more the number of battery groups, here 4 or more, but 20 or more is desirable for accurate calculation, and 50 or more is more desirable. After reading the data group into the memory 110 in step 1, the process proceeds to step 2.
  • step 2 the battery A data groups (QA1, V′A1), (QA2, V′A2),..., (QAn, V′An) and the battery B data groups (QB1, V ′) held in the memory 110 are stored.
  • 'B1), (QB2, V'B2), ..., (QBm, V'Bm) are read.
  • n is the number of batteries A in the battery group AA
  • m is the number of batteries B in the battery group BB. Note that the order of step 1 and step 2 may be interchanged.
  • step 3 the deterioration rates RA and RB of the batteries A and B and the values of capacity deviations ⁇ A and ⁇ B are set.
  • the initial set value the value of the deterioration rate and the capacity shift at the most recent measurement time held in the memory 110 is desirable. However, any value can be used when such a value does not exist.
  • step 4 the capacity of the assembled battery 1000 is calculated based on (Equation 1) and (Equation 2) using the deterioration rate values and capacity deviation values of the batteries A and B, and the data groups of the batteries A and B.
  • a data group indicating the relationship between QAB and voltage change rate V′AB is formed.
  • the capacity in this data group may be arbitrarily determined, but for example, the capacity in the data group read in step 1 can be used.
  • the data group in this case is (QAB1, V'ABc1), (QAB2, V'ABc2), ..., (QAB1, V'ABcl), where V'ABc is the calculated voltage change rate of the assembled battery 1000. .
  • step 5 the degree of coincidence between the data group of the assembled battery 1000 read in step 1 and the data group of the assembled battery 1000 configured in step 4 is confirmed.
  • the confirmation method can be arbitrarily determined. For example, in both data groups, the square of the difference in voltage change rate corresponding to the same capacity QABi (V′ABi ⁇ V′ABci) 2 is taken, and this is expressed as 1 to 1 If the value R 2 obtained by summing up i is less than or equal to a certain value, a method that both data have a sufficient degree of coincidence, and that the value of R 2 does not decrease even if the parameter value is changed. And the method of changing the parameter value by a fixed number of trials and selecting the condition with the smallest R 2 among them. If it is determined that the degree of coincidence is not sufficient, the process returns to step 4 to set the values of the deterioration rates RA and RB and the capacity deviations ⁇ A and ⁇ B again.
  • the resetting method can be arbitrarily determined.
  • step 6 the deterioration rates RA and RB are output to the output unit 120. *
  • the deterioration rate for each type of secondary battery can be determined by a simple method without providing a voltmeter or ammeter for determining the deterioration rate in each battery group.
  • the memory of the control device stores the combination of the measurement date / time t, the deterioration rate R, and the capacity deviation ⁇ in addition to the stored data every time the control unit measures the deterioration rate of the battery group.
  • the data group (t1, RA1, RB1, ⁇ A1, ⁇ B1), (t2, RA2, RB2, ⁇ A2, ⁇ B2), ..., (tn, RAn, RBn, ⁇ An, ⁇ Bn) ).
  • the estimation method may be arbitrarily determined. For example, there are the following methods.
  • FIG. 4 shows the capacity change of the battery A and the battery B in the battery A and the battery B actually manufactured.
  • the capacity of each battery was calculated by multiplying the capacities QAn and QBm at the time of construction of the assembled battery by the deterioration rates RA and RB.
  • a detection signal indicating that the remaining life of each battery is smaller than a predetermined value is output to the output unit. For example, when the predetermined remaining life is 100 days, a detection signal for warning the remaining life of the battery B is output to an external circuit, an external device, or the like via the output unit.
  • the charge / discharge curve of the battery group constituting the assembled battery 3000 is calculated from the charge / discharge curve indicating the relationship between the capacity of the assembled battery 3000 and the voltage change rate, and the result is Based on this, the charge / discharge states of the battery group AA and the battery group BB can be controlled.
  • a configuration for this purpose is shown in FIG.
  • the positive electrodes of the battery group AA and the battery group BB are connected via the switch 1. Further, the negative electrodes of the battery group AA and the battery group BB are connected to each other via the switch 2 and an ammeter 30A arranged in the vicinity of the switch 2.
  • the ammeter 30 ⁇ / b> A may be disposed in the vicinity of the switch 1.
  • 30A of ammeters detect the electric current when forming a circuit only with battery group AA and battery group BB, ie, when equalizing a voltage by connecting the positive electrodes and negative electrodes of battery group AA and battery group BB. In this case, the current flowing out (flowing in) from the battery group AA is equal to the current flowing (flowing out) into the battery group BB.
  • Switch 3 is disposed between the negative electrode of battery group AA and the positive electrode of battery group BB.
  • the switch 1, the switch 2, and the switch 3 are opened and closed according to instructions from the control unit 300. Normally, switch 1 and switch 2 are open and switch 3 is closed.
  • the output of the ammeter 30B is sent to the control unit 300.
  • a voltmeter 31 that detects the voltage of the assembled battery 3000 is connected in parallel with the assembled battery 3000.
  • a memory 310 is disposed in the vicinity of the control unit 300, and the memory 310 holds the number and characteristics of each of the battery types that the assembled battery 3000 constitutes.
  • the control unit 300 determines the deterioration rate of each battery type constituting the assembled battery 3000 based on the information held in the memory 310 and the voltage change rate or the capacity change rate of the assembled battery 3000, and the output unit 320 determines the result. Is output to an external circuit, an external device, or the like.
  • the detection signals are individually output to the battery group AA and the battery group BB. Accordingly, overcharge / overdischarge can be prevented by stopping the use of the battery immediately upon receiving the detection signal. Also, only the battery group BB can be charged / discharged by outputting a detection signal, closing the switch 1 and opening the switch 2 and switch 3. If only one battery group is overcharged or overdischarged and the voltage can be leveled with the other battery group, switch 1 and switch 2 are closed and switch 3 is opened.
  • the voltages of the battery group AA and the battery group BB can be leveled so that both the battery group AA and the battery group BB are not included in the overcharge region or the overdischarge region.
  • leveling the voltages of the battery group AA and the battery group BB it is necessary to detect the current flowing through the individual battery groups. In that case, an ammeter is not attached to each battery group, but an ammeter 30A is attached to the part of the switch 1 or the switch 2 to equalize the voltages of the battery group AA and the battery group BB. Can be detected and sent to the controller 300 to stop at a desired capacity (cut off the current value).
  • the discharge curves of the battery group AA and the battery group BB can be calculated as follows.
  • the deterioration rates RA and RB and capacity deviations ⁇ A and ⁇ B obtained by the procedure of FIG. 3 and n data groups (QA1, V′A1), (QA2, V′A2) of the battery A held in the memory, ..., (QAn, V'An) and m data groups (QB1, V'B1), (QB2, V'B2), ..., (QBm, V'Bm) of battery B, New data group (RA ⁇ QA1 + ⁇ A, V′A1 / RA), (RA ⁇ QA2 + ⁇ A, V′A2 / RA),..., (RA ⁇ QAn + ⁇ A, V′An / RA) and a new data group for battery B (RB ⁇ QB1 + ⁇ B, V′B1 / RB), (RB ⁇ QB2 + ⁇ B, V′B2 / RB),
  • FIG. 6 shows discharge curves of the assembled battery, battery A, and battery B when the capacity of battery A is 0.55 Ah and the capacity of battery B is 0.59 Ah.
  • the voltage region or capacity region of the assembled battery corresponding to the overcharge region or overdischarge region of battery A and battery B is determined by the control unit. Yes.
  • the controller 300 stops the discharge.
  • the output of the voltmeter 31 falls below a predetermined voltage (the sum of the lower limit voltages of the battery group AA and the battery group BB) or the discharge amount calculated from the output of the ammeter 30B is the remaining capacity (this embodiment) In the example, the discharge is stopped when exceeding 0.04 Ah). This prevents overdischarge of the entire assembled battery.
  • the capacity deviations ⁇ A and ⁇ B are arbitrarily adjusted, and the discharge curves of the battery group A and the battery group B are combined to reconstruct the discharge curve of the assembled battery 3000. can do.
  • Control unit 110 30,A, 30B Ammeter 11, 31 Voltmeter 100, 300 Control unit 110, 310 Memory 120, 320 Output unit 1000, 3000 Assembly battery 1100 Control device

Abstract

Provided is a means for determining, by a simple method, a degradation state for each cell group having the same characteristics in order to appropriately control a battery pack configured by combining a plurality of secondary cells having different characteristics. A device for controlling a battery pack configured by connecting chargeable/dischargeable first secondary cells having a first characteristic and chargeable/dischargeable second secondary cells having a second characteristic, wherein the device for controlling a battery pack is provided with: a memory unit for storing the first characteristic and the number of first secondary cells, and the second characteristic and the number of second secondary cells; and a voltmeter for detecting the voltage of the battery pack; a control unit for sensing a voltage variation rate or capacitance variation rate on the basis of the output of the voltmeter; and the degradation rate of the first secondary cells and the degradation rate of the second secondary cells are determined in the control unit on the basis of the voltage variation rate and the capacitance variation rate, the first characteristic and the number of first secondary cells, and the second characteristic and the number of second secondary cells.

Description

組電池の制御装置、電源装置、組電池の制御方法Battery pack control device, power supply device, battery pack control method
 本発明は、組電池の制御装置、電源装置、組電池の制御方法に関する。 The present invention relates to an assembled battery control device, a power supply device, and an assembled battery control method.
 リチウムイオン電池などの二次電池を単電池とし、該単電池を複数個直列または並列に接続して構成される組電池は高出力または高容量が得られる電源として、ハイブリッドカー等の車両の搭載用電源やスマートハウスの蓄電用電源などの用途に適用されると期待されている。組電池の一形態として、相互に特性の異なる二種類の二次電池を組み合わせて構築されたものが知られている。このような組電池では、単一種類の二次電池のみで構築された組電池とは異なる特性を当該組電池に付与することができる。 A battery pack composed of a secondary battery such as a lithium ion battery connected in series or in parallel is mounted on a vehicle such as a hybrid car as a power source for obtaining high output or high capacity. It is expected to be applied to applications such as power supplies for electric power storage and power supplies for smart houses. As one form of the assembled battery, a battery constructed by combining two types of secondary batteries having different characteristics from each other is known. In such an assembled battery, it is possible to give the assembled battery characteristics different from those of an assembled battery constructed with only a single type of secondary battery.
 また、現在は二次電池の単価が高いことから、二次電池の再利用も検討されている。例えば、車両走行用電池としての寿命を終えた単電池を組み合わせて組電池を形成し、家庭の蓄電用電源として利用するなどの利用手法である。このような組電池は、劣化状態や仕様が異なるために、電池特性が異なる複数の電池種から構成されることが考えられる。 Also, since the unit price of the secondary battery is high at present, the reuse of the secondary battery is also being considered. For example, there is a utilization technique such as forming an assembled battery by combining single cells whose life as a vehicle traveling battery has been completed, and using it as a power storage power source at home. Such an assembled battery may be composed of a plurality of battery types having different battery characteristics due to different deterioration states and specifications.
 この場合、組電池の制御方法が適切でなければ、特定の電池種の劣化が他の電池種よりも早く進行し、組電池の寿命が短くなる。このため、組電池を適切に制御するために、単電池ごともしくは同一の電池特性を持つ電池群ごとに電池電圧と容量を測定することが望ましい。しかし、電圧測定回路や電流測定回路を多数取り付けると、組電池の価格が高くなる問題がある。 In this case, if the control method of the assembled battery is not appropriate, the deterioration of a specific battery type proceeds faster than other battery types, and the life of the assembled battery is shortened. For this reason, in order to appropriately control the assembled battery, it is desirable to measure the battery voltage and capacity for each cell or for each battery group having the same battery characteristics. However, when a large number of voltage measuring circuits and current measuring circuits are attached, there is a problem that the price of the assembled battery increases.
 組電池の状態を判定する方法として、例えば特許文献1には、複数の二次電池を直列接続した電池群Aと複数の二次電池を並列接続した電池群Bを直列接続し、前記電池群Bの電圧から前記電池群Aの充放電状態を検知する方法が記載されている。 As a method for determining the state of the assembled battery, for example, in Patent Document 1, a battery group A in which a plurality of secondary batteries are connected in series and a battery group B in which a plurality of secondary batteries are connected in parallel are connected in series. A method for detecting the charge / discharge state of the battery group A from the voltage B is described.
特開2011-086530号公報JP 2011-086530 A
 上記特許文献1は電圧変化率の小さい電池の充放電状態を検知するために有効であるが、そのために電池群Bとして複数の二次電池を使用するため、組電池全体としての価格が高くなる。また、電池群Aの劣化状態を検出できないという課題がある。 The above-mentioned Patent Document 1 is effective for detecting the charge / discharge state of a battery having a small voltage change rate. For this reason, since a plurality of secondary batteries are used as the battery group B, the price of the assembled battery as a whole increases. . In addition, there is a problem that the deterioration state of the battery group A cannot be detected.
 本発明はかかる課題に鑑みてなされたものであり、異なる特性を有する二次電池を複数組み合わせて構成される組電池において、同一の特性を有する電池群ごとに劣化状態を簡便な方法で判定する手段、または、判定結果に基づいた制御によって組電池を長寿命化する手段を提供することを目的とするものである。 The present invention has been made in view of such problems, and in an assembled battery configured by combining a plurality of secondary batteries having different characteristics, the deterioration state is determined for each battery group having the same characteristics by a simple method. It is an object of the present invention to provide means for extending the life of an assembled battery by means or control based on a determination result.
 上記課題を解決するための特徴は、例えば以下の通りである。 
 第1の特性を有する充放電可能な第1の二次電池と、第1の特性とは異なる第2の特性を有する充放電可能な第2の二次電池と、を直列または並列に接続して構成される組電池の制御装置であって、組電池に含まれる第1の特性および第1の二次電池の本数と第2の特性および第2の二次電池の本数を記憶する記憶部と、組電池の電圧を検出する電圧計と、電圧計の出力に基づいて、組電池の容量差分に対する電圧差分としての電圧変化率または組電池の電圧差分に対する容量差分としての容量変化率を検知する制御部と、を備え、制御部において、電圧変化率または容量変化率と、第1の特性および第1の二次電池の本数と、第2の特性および第2の二次電池の本数と、に基づいて第1の二次電池の劣化率および第2の二次電池の劣化率を決定する組電池の制御装置。
Features for solving the above problems are as follows, for example.
A chargeable / dischargeable first secondary battery having a first characteristic and a chargeable / dischargeable second secondary battery having a second characteristic different from the first characteristic are connected in series or in parallel. A storage unit configured to store a first characteristic, the number of first secondary batteries, the second characteristic, and the number of second secondary batteries included in the assembled battery And a voltmeter that detects the voltage of the battery pack, and a voltage change rate as a voltage difference with respect to the battery battery capacity difference or a capacity change rate as a battery battery voltage difference based on the output of the voltmeter. A control unit that performs voltage change rate or capacity change rate, the first characteristic and the number of first secondary batteries, the second characteristic and the number of second secondary batteries, The deterioration rate of the first secondary battery and the deterioration rate of the second secondary battery based on Control of the assembled battery to be constant.
 上記において、記憶部は、2つ以上の異なる日時において決定された第1の二次電池の劣化率と第2の二次電池の劣化率および決定日時を保持し、制御部は、第1の二次電池の劣化率と、第2の二次電池の劣化率と、決定日時と、に基づいて第1の二次電池の余寿命および第2の二次電池の余寿命を決定し、第1の二次電池の余寿命および第2の二次電池の余寿命が所定の値より小さい場合、検知信号を出力する組電池の制御装置。 In the above, the storage unit holds the deterioration rate of the first secondary battery, the deterioration rate of the second secondary battery, and the determination date / time determined at two or more different dates / times. The remaining life of the first secondary battery and the remaining life of the second secondary battery are determined based on the deterioration rate of the secondary battery, the deterioration rate of the second secondary battery, and the determination date and time. A control apparatus for an assembled battery that outputs a detection signal when the remaining life of one secondary battery and the remaining life of a second secondary battery are smaller than a predetermined value.
 上記において、制御部は、第1の二次電池の劣化率および第2の二次電池の劣化率を基に、第1の二次電池および第2の二次電池の過充電領域または過放電領域に対応する組電池の電圧領域または容量領域を決定し、組電池の電圧または容量が電圧領域または容量領域に含まれる場合には、検知信号を出力する制御装置。 In the above, the control unit performs overcharge regions or overdischarges of the first secondary battery and the second secondary battery based on the deterioration rate of the first secondary battery and the deterioration rate of the second secondary battery. A control device that determines a voltage region or a capacity region of an assembled battery corresponding to the region, and outputs a detection signal when the voltage or the capacity of the assembled battery is included in the voltage region or the capacity region.
 上記において、制御部は、第1の二次電池の劣化率および第2の二次電池の劣化率を基に、第1の二次電池および第2の二次電池の過充電領域または過放電領域に対応する組電池の電圧領域または容量領域を決定し、組電池の電圧または容量が電圧領域または容量領域に含まれる場合には、第1の二次電池および第2の二次電池に対して個別に検知信号を出力する制御装置。 In the above, the control unit performs overcharge regions or overdischarges of the first secondary battery and the second secondary battery based on the deterioration rate of the first secondary battery and the deterioration rate of the second secondary battery. A voltage range or a capacity region of the assembled battery corresponding to the region is determined, and when the voltage or the capacity of the assembled battery is included in the voltage region or the capacity region, the first secondary battery and the second secondary battery are Control device that outputs detection signals individually.
 上記において、第1の二次電池と第2の二次電池の正極同士および負極同士を接続したスイッチを有し、制御部によってスイッチの開閉が制御され、制御部は、検知信号に基づいてスイッチの開閉を制御して、第1の二次電池および第2の二次電池の両方が過充電領域または過放電領域に含まれないように、第1の二次電池の電圧および第2の二次電池の電圧を平準化する制御装置。 In the above, it has a switch which connected the positive electrodes of the 1st secondary battery and the 2nd secondary battery, and the negative electrodes, the opening and closing of a switch is controlled by the control part, and a control part is a switch based on a detection signal. And controlling the voltage of the first secondary battery and the second secondary battery so that both the first secondary battery and the second secondary battery are not included in the overcharge region or the overdischarge region. A control device that equalizes the voltage of the secondary battery.
 上記において、第1の二次電池と第2の二次電池の正極同士および負極同士を接続したスイッチと、スイッチの近傍に配置された第1の二次電池および第2の二次電池に流れる電流を検出する電流計と、を有し、制御部によってスイッチの開閉が制御され、制御部は、検知信号に基づいてスイッチの開閉を制御して、第1の二次電池の電流値または第2の二次電池の電流値を遮断する制御装置。 In the above, the first secondary battery and the second secondary battery flow through the switch connecting the positive electrodes and the negative electrodes of the second secondary battery, and the first secondary battery and the second secondary battery disposed in the vicinity of the switch. An ammeter that detects current, and the control unit controls opening and closing of the switch. The control unit controls opening and closing of the switch based on the detection signal, and the current value of the first secondary battery or the first The control apparatus which interrupts | blocks the electric current value of 2 secondary batteries.
 上記の制御装置と、組電池を有する電源装置。 A power supply device having the above control device and an assembled battery.
 第1の特性を有する充放電可能な第1の二次電池と、第1の特性とは異なる第2の特性を有する充放電可能な第2の二次電池と、を直列または並列に接続して構成される組電池の制御方法であって、記憶部によって組電池に含まれる第1の特性および第1の二次電池の本数と第2の特性および第2の二次電池の本数を記憶する工程と、電圧計によって組電池の電圧を検出する工程と、制御部によって、電圧計の出力に基づいて、組電池の容量差分に対する電圧差分としての電圧変化率または組電池の電圧差分に対する容量差分としての容量変化率を検知する工程と、制御部において、電圧変化率または容量変化率と、第1の特性および第1の二次電池の本数と、第2の特性および第2の二次電池の本数と、に基づいて第1の二次電池の劣化率および第2の二次電池の劣化率を決定する工程と、を含む組電池の制御方法。 A chargeable / dischargeable first secondary battery having a first characteristic and a chargeable / dischargeable second secondary battery having a second characteristic different from the first characteristic are connected in series or in parallel. The assembled battery control method is configured to store the first characteristic, the number of first secondary batteries, the second characteristic, and the number of second secondary batteries included in the assembled battery by the storage unit. A step of detecting the voltage of the assembled battery with a voltmeter, and a voltage change rate as a voltage difference with respect to the capacity difference of the assembled battery or a capacity with respect to the voltage difference of the assembled battery based on the output of the voltmeter by the control unit In the step of detecting the capacity change rate as a difference, and in the control unit, the voltage change rate or the capacity change rate, the first characteristic and the number of first secondary batteries, the second characteristic and the second secondary Degradation of the first secondary battery based on the number of batteries And the control method of an assembled battery and determining a deterioration rate of the second secondary battery, a.
 本発明によって、組電池が異なる特性を有する二種類以上の二次電池から構成されている場合に、同一の特性を有する電池群ごとに劣化状態を簡便な方法で判定する手段、または、判定結果に基づいた制御によって組電池を長寿命化する手段を提供することができる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, when the assembled battery is composed of two or more types of secondary batteries having different characteristics, means for determining a deterioration state for each battery group having the same characteristics by a simple method, or a determination result Thus, it is possible to provide means for extending the life of the assembled battery by the control based on the above. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明に関わる実施の形態の一例。An example of embodiment concerning this invention. 電池の劣化状態を決定する原理を示す模式図。The schematic diagram which shows the principle which determines the deterioration state of a battery. 組電池の劣化率および容量ずれを求めるフローチャート。The flowchart which calculates | requires the deterioration rate and capacity | capacitance deviation of an assembled battery. 組電池における、各電池群の容量変化の一例。An example of the capacity | capacitance change of each battery group in an assembled battery. 本発明に関わる実施の形態の一例。An example of embodiment concerning this invention. 劣化した組電池の放電曲線の一例。An example of the discharge curve of the assembled battery which deteriorated.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 図1は、本発明に関わる組電池の制御装置を備えた電源装置における実施の形態の一例を示したものである。以下では二次電池としてリチウムイオン二次電池について説明するが、これに限られない。 FIG. 1 shows an example of an embodiment of a power supply device provided with a control device for an assembled battery according to the present invention. Hereinafter, a lithium ion secondary battery will be described as a secondary battery, but the present invention is not limited to this.
 制御装置1100は、電流計10、電圧計11、制御部100、メモリ110、出力部120で構成されている。この実施の形態の組電池1000は、第1の特性を有する二次電池である電池A(第1の二次電池)をN本直列に接続した電池群AAと、第2の特性を有する二次電池である電池B(第2の二次電池)をM本直列に接続した電池群BBを直列に接続して構成されている。電池Aと電池Bでは、特性が異なっている。組電池1000と流れる電流を検出する電流計10が組電池1000と直列に接続されている。組電池1000の電圧を検出する電圧計11が組電池1000と並列に接続されている。特性が異なるとは、例えば、2つの電池を比較したときに、横軸にSOC、縦軸に電圧をとったときの充放電曲線が重ならない複数種の電池をいうが、これに限られない。図2からわかるように、電池Aではリチウムイオン二次電池の充放電により相変化しない活物質が含まれており、電池Bではリチウムイオン二次電池の充放電により相変化する活物質が含まれている。 The control device 1100 includes an ammeter 10, a voltmeter 11, a control unit 100, a memory 110, and an output unit 120. The assembled battery 1000 of this embodiment includes a battery group AA in which N batteries A (first secondary batteries), which are secondary batteries having a first characteristic, are connected in series, and two batteries having a second characteristic. A battery group BB in which M batteries B (secondary secondary batteries) which are secondary batteries are connected in series is connected in series. Battery A and battery B have different characteristics. An ammeter 10 that detects current flowing through the assembled battery 1000 is connected in series with the assembled battery 1000. A voltmeter 11 for detecting the voltage of the assembled battery 1000 is connected in parallel with the assembled battery 1000. For example, when two batteries are compared, a plurality of types of batteries whose charge / discharge curves do not overlap when the horizontal axis indicates SOC and the vertical axis indicates voltage are not limited thereto. . As can be seen from FIG. 2, battery A includes an active material that does not change phase due to charging / discharging of the lithium ion secondary battery, and battery B includes an active material that changes phase due to charging / discharging of the lithium ion secondary battery. ing.
 電圧計11と電流計10の出力を基に、組電池1000の容量変化に対する電圧変化率(VvsdQ/dV)または電圧変化に対する容量変化率(QvsdV/dQ)を計算する制御部100が配置されている。制御部100の近傍にメモリ110(記憶部)が配置されており、メモリ110は組電池1000の構成する電池種のそれぞれの本数と特性を保持している。制御部100はメモリ110に保持された情報と、組電池1000の電圧変化率または容量変化率に基づいて、組電池1000を構成する電池種のそれぞれの劣化率を決定し、出力部120によって結果を外部回路、外部装置などに出力する。 Based on the outputs of the voltmeter 11 and the ammeter 10, a control unit 100 is provided that calculates the voltage change rate (VvsdQ / dV) with respect to the capacity change of the assembled battery 1000 or the capacity change rate (QvsdV / dQ) with respect to the voltage change Yes. A memory 110 (storage unit) is disposed in the vicinity of the control unit 100, and the memory 110 holds the number and characteristics of each of the battery types constituting the assembled battery 1000. Based on the information held in the memory 110 and the voltage change rate or capacity change rate of the assembled battery 1000, the control unit 100 determines the deterioration rate of each battery type constituting the assembled battery 1000, and the output unit 120 determines the result. Is output to an external circuit, an external device, or the like.
 組電池1000を構成した時点での電池Aの容量QAと電圧変化率V′Aの関係は予め測定され、例えばn個のデータ群(QA1、V′A1)、(QA2、V′A2)、…、(QAn、V′An)としてメモリ110に保持されている。同様に、組電池1000を構成した時点での電池Bの容量QBと電圧変化率V′Bの関係は予め測定され、例えばm個のデータ群(QB1、V′B1)、(QB2、V′B2)、…、(QBm、V′Bm)としてメモリ110に保持されている。このときデータ群の数n、mは最低でも2以上であり、20以上が望ましく、50以上がより望ましい。 The relationship between the capacity QA of the battery A and the voltage change rate V′A at the time of configuring the assembled battery 1000 is measured in advance. For example, n data groups (QA1, V′A1), (QA2, V′A2), ... (QAn, V′An) are held in the memory 110. Similarly, the relationship between the capacity QB of the battery B and the voltage change rate V′B at the time when the assembled battery 1000 is configured is measured in advance. For example, m data groups (QB1, V′B1), (QB2, V ′ B2), ..., (QBm, V'Bm) are held in the memory 110. At this time, the number of data groups n and m is at least 2 or more, preferably 20 or more, and more preferably 50 or more.
 メモリ110は電池群AAと電池群BBのそれぞれの劣化率を保持している。劣化率の定義は任意に定めることができるが、ここでは、組電池1000を構成した時点での電池の満充電容量W0と、ある時間が経過した時点での電池の満充電容量Wとの比(W/W0)で劣化率Rを定義する。また、メモリ110は電池群AA、BBの劣化率を測定する度に、測定日時と劣化率の組み合わせを保存データに追加して保持することが望ましい。 The memory 110 holds the deterioration rates of the battery group AA and the battery group BB. The definition of the deterioration rate can be arbitrarily determined, but here, the ratio between the full charge capacity W0 of the battery when the assembled battery 1000 is configured and the full charge capacity W of the battery when a certain time has elapsed. The deterioration rate R is defined by (W / W0). Moreover, it is desirable that the memory 110 adds and holds the combination of the measurement date and time and the deterioration rate to the stored data every time the deterioration rates of the battery groups AA and BB are measured.
 図2は、電池の劣化状態を決定する原理を示す模式図である。簡単のために1本の電池Aと1本の電池Bを直列に接続した場合を示している。実線、破線、点線は、組電池1000、電池A、電池Bの容量と電圧変化率の関係をそれぞれ示している。電池Aの容量は0.60Ah、電池Bの容量は0.69Ahである。組電池1000を構成した時点では、電池Aと電池Bの劣化率RAおよびRBはそれぞれ1である。このとき、組電池1000の容量QABは、容量ずれを示す定数をΔA、ΔBとしてQAB=QA+ΔA=QB+ΔBと表すことができる。また、組電池1000の容量QABにおける電圧変化率V′ABは、電池Aと電池Bの電圧変化率を用いてV′AB=V′A+V′Bと表すことができる。一方、電池Aと電池Bの劣化率がそれぞれRA、RBである場合には、組電池1000の容量QABは、下記の(式1)のように表すことができる。容量ずれを考慮しない場合は、(式1)でΔA=ΔB=0として、容量ずれを無視して劣化率を求めることができる。 FIG. 2 is a schematic diagram showing the principle of determining the deterioration state of the battery. For simplicity, a case where one battery A and one battery B are connected in series is shown. A solid line, a broken line, and a dotted line indicate the relationship between the capacity of the assembled battery 1000, the battery A, and the battery B and the voltage change rate, respectively. The capacity of the battery A is 0.60 Ah, and the capacity of the battery B is 0.69 Ah. When the assembled battery 1000 is configured, the deterioration rates RA and RB of the battery A and the battery B are 1 respectively. At this time, the capacity QAB of the assembled battery 1000 can be expressed as QAB = QA + ΔA = QB + ΔB, where ΔA and ΔB are constants indicating capacity deviation. Further, the voltage change rate V′AB in the capacity QAB of the assembled battery 1000 can be expressed as V′AB = V′A + V′B using the voltage change rates of the battery A and the battery B. On the other hand, when the deterioration rates of the battery A and the battery B are RA and RB, respectively, the capacity QAB of the assembled battery 1000 can be expressed as in (Equation 1) below. When the capacity deviation is not taken into consideration, ΔA = ΔB = 0 in (Equation 1), and the deterioration rate can be obtained ignoring the capacity deviation.
〔式1〕
  QAB=RA×QA+ΔA=RB×QB+ΔB   (式1)
 また、組電池1000の容量QABにおける電圧変化率V′ABは、下記の(式2)のように表すことができる。
[Formula 1]
QAB = RA × QA + ΔA = RB × QB + ΔB (Formula 1)
Further, the voltage change rate V′AB in the capacity QAB of the assembled battery 1000 can be expressed as the following (Formula 2).
〔式2〕
  V′AB=V′A/RA+V′B/RB      (式2)
 以上の表現式を用いて、組電池1000の構成時点での電池Aと電池Bの容量と電圧変化率の関係に基づき、組電池1000の容量QABと電圧変化率V′ABの関係から劣化率RA、RBおよび容量ずれΔA、ΔBを求めることができる。容量ずれΔA、ΔBを考慮することで、電池群ごとに容量調節ができるようになる。例えば、電池Bの劣化を抑制するために電池Aだけを充電する場合、電池Aだけの容量(と電圧)が増えるため、組電池としての容量、電池Aの容量、電池Bの容量との間にずれが生じる。このずれを表すパラメータとして容量ずれΔA、ΔBを導入することで、電池群ごとに容量調節ができるようになる。
[Formula 2]
V′AB = V′A / RA + V′B / RB (Formula 2)
Using the above expression, based on the relationship between the capacity and voltage change rate of the batteries A and B when the assembled battery 1000 is configured, the deterioration rate is calculated from the relationship between the capacity QAB of the assembled battery 1000 and the voltage change rate V′AB. RA and RB and capacity deviations ΔA and ΔB can be obtained. By considering the capacity deviations ΔA and ΔB, the capacity can be adjusted for each battery group. For example, when only the battery A is charged in order to suppress the deterioration of the battery B, the capacity (and voltage) of the battery A alone increases, so that the battery pack capacity, the capacity of the battery A, and the capacity of the battery B Deviation occurs. By introducing capacity deviations ΔA and ΔB as parameters representing this deviation, the capacity can be adjusted for each battery group.
 図3は、組電池1000の容量QABと電圧変化率V′ABの関係から劣化率RA、RBおよび容量ずれΔA、ΔBを求めるためのフローチャートの一例を示す。 FIG. 3 shows an example of a flowchart for obtaining the deterioration rates RA and RB and the capacity deviations ΔA and ΔB from the relationship between the capacity QAB of the assembled battery 1000 and the voltage change rate V′AB.
 まず、ステップ1では組電池1000の容量QABと電圧変化率V′ABとの関係を示すデータ群(QAB1、V′AB1)、(QAB2、V′AB2)、…、(QABl、V′ABl)を読み込む。このとき、データ群の数lは電池群の数の2倍以上、ここでは4以上であれば計算が可能であるが、正確な計算のためには20以上が望ましく、50以上がより望ましい。ステップ1でデータ群をメモリ110に読み込んだ後、ステップ2に進む。 First, in step 1, data groups (QAB1, V'AB1), (QAB2, V'AB2), ..., (QAB1, V'AB1) showing the relationship between the capacity QAB of the assembled battery 1000 and the voltage change rate V'AB. Is read. At this time, calculation is possible if the number l of data groups is twice or more the number of battery groups, here 4 or more, but 20 or more is desirable for accurate calculation, and 50 or more is more desirable. After reading the data group into the memory 110 in step 1, the process proceeds to step 2.
 ステップ2ではメモリ110に保持されていた電池Aのデータ群(QA1、V′A1)、(QA2、V′A2)、…、(QAn、V′An)と電池Bのデータ群(QB1、V′B1)、(QB2、V′B2)、…、(QBm、V′Bm)を読み込む。nは電池群AAにおける電池Aの本数、mは電池群BBにおける電池Bの本数である。なお、ステップ1とステップ2の順序は入れ替わっても構わない。 In step 2, the battery A data groups (QA1, V′A1), (QA2, V′A2),..., (QAn, V′An) and the battery B data groups (QB1, V ′) held in the memory 110 are stored. 'B1), (QB2, V'B2), ..., (QBm, V'Bm) are read. n is the number of batteries A in the battery group AA, and m is the number of batteries B in the battery group BB. Note that the order of step 1 and step 2 may be interchanged.
 ステップ3では、電池Aと電池Bの劣化率RA、RBおよび容量ずれΔA、ΔBの値を設定する。初回の設定値としては、メモリ110に保持されている直近の測定時点における劣化率および容量ずれの値が望ましい。ただし、このような値が存在しない場合には任意の値を用いることができる。 In step 3, the deterioration rates RA and RB of the batteries A and B and the values of capacity deviations ΔA and ΔB are set. As the initial set value, the value of the deterioration rate and the capacity shift at the most recent measurement time held in the memory 110 is desirable. However, any value can be used when such a value does not exist.
 ステップ4では、電池Aと電池Bの劣化率の値および容量ずれの値と、電池A、電池Bのデータ群を用いて、(式1)と(式2)に基づいて組電池1000の容量QABと電圧変化率V′ABとの関係を示すデータ群を構成する。このデータ群における容量は任意に定めてよいが、例えばステップ1で読み込んだデータ群における容量を用いることができる。この場合のデータ群は、計算された組電池1000の電圧変化率をV′ABcとして、(QAB1、V′ABc1)、(QAB2、V′ABc2)、…、(QABl、V′ABcl)である。 In step 4, the capacity of the assembled battery 1000 is calculated based on (Equation 1) and (Equation 2) using the deterioration rate values and capacity deviation values of the batteries A and B, and the data groups of the batteries A and B. A data group indicating the relationship between QAB and voltage change rate V′AB is formed. The capacity in this data group may be arbitrarily determined, but for example, the capacity in the data group read in step 1 can be used. The data group in this case is (QAB1, V'ABc1), (QAB2, V'ABc2), ..., (QAB1, V'ABcl), where V'ABc is the calculated voltage change rate of the assembled battery 1000. .
 ステップ5では、ステップ1で読み込んだ組電池1000のデータ群とステップ4で構成した組電池1000のデータ群の一致度を確認する。確認の方法は任意に定めることができるが、例えば、両データ群において、同じ容量QABiに対応する電圧変化率の差の二乗 (V′ABi-V′ABci)2をとり、これを1からlまでのiについて和をとった値R2が一定値以下であれば両データが十分な一致度を持っているとする方法、パラメータの値を変えてもR2の値が小さくならないことを条件とする方法、一定の試行回数だけパラメータの値を変えその中で最もR2の小さな条件を選ぶ方法などがある。また、一致度が十分でないと判断した場合には、ステップ4に戻って、再度劣化率RA、RBおよび容量ずれΔA、ΔBの値を設定する。再設定の方法は任意に定めることができる。 In step 5, the degree of coincidence between the data group of the assembled battery 1000 read in step 1 and the data group of the assembled battery 1000 configured in step 4 is confirmed. The confirmation method can be arbitrarily determined. For example, in both data groups, the square of the difference in voltage change rate corresponding to the same capacity QABi (V′ABi−V′ABci) 2 is taken, and this is expressed as 1 to 1 If the value R 2 obtained by summing up i is less than or equal to a certain value, a method that both data have a sufficient degree of coincidence, and that the value of R 2 does not decrease even if the parameter value is changed. And the method of changing the parameter value by a fixed number of trials and selecting the condition with the smallest R 2 among them. If it is determined that the degree of coincidence is not sufficient, the process returns to step 4 to set the values of the deterioration rates RA and RB and the capacity deviations ΔA and ΔB again. The resetting method can be arbitrarily determined.
 ステップ6では、劣化率RAとRBの値を出力部120に出力する。  In step 6, the deterioration rates RA and RB are output to the output unit 120. *
 以上のステップを経ることにより、個々の電池群に劣化率を判定するための電圧計または電流計を設けずに、簡便な方法で二次電池の種類ごとの劣化率を判定できる。 Through the above steps, the deterioration rate for each type of secondary battery can be determined by a simple method without providing a voltmeter or ammeter for determining the deterioration rate in each battery group.
 本発明の一実施形態における制御装置のメモリは、制御部が電池群の劣化率を測定する度に、測定日時tと劣化率Rと容量ずれΔの組み合わせを保存データに追加して保持することができる。例えば、実施例1に記載の組電池において、データ群(t1、RA1、RB1、ΔA1、ΔB1)、(t2、RA2、RB2、ΔA2、ΔB2)、…、(tn、RAn、RBn、ΔAn、ΔBn)を保持する。このデータ群によって、組電池を構成する電池群ごとに残存寿命を推定することができる。推定方法は任意に定めてよいが、例えば以下のような方法がある。 The memory of the control device according to an embodiment of the present invention stores the combination of the measurement date / time t, the deterioration rate R, and the capacity deviation Δ in addition to the stored data every time the control unit measures the deterioration rate of the battery group. Can do. For example, in the assembled battery described in the first embodiment, the data group (t1, RA1, RB1, ΔA1, ΔB1), (t2, RA2, RB2, ΔA2, ΔB2), ..., (tn, RAn, RBn, ΔAn, ΔBn) ). With this data group, the remaining life can be estimated for each battery group constituting the assembled battery. The estimation method may be arbitrarily determined. For example, there are the following methods.
 図4は、実際に作製した電池Aと電池Bの組電池における、電池Aと電池Bの容量変化である。それぞれの電池の容量は組電池の構成時点での容量QAn、QBmに劣化率RA、RBを乗じて計算した。それぞれの電池の容量減少は使用日数の平方根にほぼ比例した。したがって、容量と使用日数の平方根の関係を直線に回帰し、使用日数を外挿することによって、それぞれの電池の余寿命が予測できる。例えば、それぞれの電池の容量が0.5Ah以下になったときを寿命と定める場合には、図4より、電池Aの余寿命は(152-82)=161日、電池Bの余寿命は(122-82)=80日である。各電池の余寿命が所定の値より小さい場合、各電池の余寿命が所定の値より小さくなった旨の検知信号が出力部に出力される。例えば、所定の余寿命を100日とした場合、電池Bの余寿命を警告する検知信号を出力部を介して外部回路、外部装置などに出力する。 FIG. 4 shows the capacity change of the battery A and the battery B in the battery A and the battery B actually manufactured. The capacity of each battery was calculated by multiplying the capacities QAn and QBm at the time of construction of the assembled battery by the deterioration rates RA and RB. The decrease in capacity of each battery was almost proportional to the square root of the days used. Therefore, the remaining life of each battery can be predicted by regressing the relationship between the capacity and the square root of the number of days used in a straight line and extrapolating the number of days used. For example, when it is determined that the life of each battery is 0.5 Ah or less, the remaining life of battery A is (15 2 −8 2 ) = 161 days, and the remaining life of battery B from FIG. (12 2 −8 2 ) = 80 days. When the remaining life of each battery is smaller than a predetermined value, a detection signal indicating that the remaining life of each battery is smaller than a predetermined value is output to the output unit. For example, when the predetermined remaining life is 100 days, a detection signal for warning the remaining life of the battery B is output to an external circuit, an external device, or the like via the output unit.
 本発明の一実施形態における制御装置によれば、組電池3000の容量と電圧変化率の関係を示す充放電曲線から、組電池3000を構成する電池群の充放電曲線を計算し、その結果に基づき電池群AA、電池群BBの充放電状態を制御することができる。そのための構成を図5に示す。 According to the control device in one embodiment of the present invention, the charge / discharge curve of the battery group constituting the assembled battery 3000 is calculated from the charge / discharge curve indicating the relationship between the capacity of the assembled battery 3000 and the voltage change rate, and the result is Based on this, the charge / discharge states of the battery group AA and the battery group BB can be controlled. A configuration for this purpose is shown in FIG.
 スイッチ1を介して電池群AAと電池群BBの正極同士が接続されている。また、スイッチ2とスイッチ2の近傍に配置された電流計30Aを介して電池群AAと電池群BBの負極同士が接続されている。電流計30Aはスイッチ1の近傍に配置してもよい。電流計30Aは、電池群AAと電池群BBだけで回路を形成する際、すなわち電池群AAと電池群BBの正極同士・負極同士を繋いで電圧を平準化する際、の電流を検出する。この場合、電池群AAから流れ出す(流れ込む)電流と電池群BBに流れ込む(流れ出す)電流は等しくなる。 The positive electrodes of the battery group AA and the battery group BB are connected via the switch 1. Further, the negative electrodes of the battery group AA and the battery group BB are connected to each other via the switch 2 and an ammeter 30A arranged in the vicinity of the switch 2. The ammeter 30 </ b> A may be disposed in the vicinity of the switch 1. 30A of ammeters detect the electric current when forming a circuit only with battery group AA and battery group BB, ie, when equalizing a voltage by connecting the positive electrodes and negative electrodes of battery group AA and battery group BB. In this case, the current flowing out (flowing in) from the battery group AA is equal to the current flowing (flowing out) into the battery group BB.
 電池群AAの負極と、電池群BBの正極の間にスイッチ3が配置されている。スイッチ1、スイッチ2、スイッチ3は制御部300からの指示によって開閉される。通常はスイッチ1とスイッチ2は開、スイッチ3は閉である。電流計30Bの出力は制御部300に送られる。組電池3000の電圧を検出する電圧計31が組電池3000と並列に接続されている。実施例1と同様に、制御部300の近傍にメモリ310が配置されており、メモリ310は組電池3000の構成する電池種のそれぞれの本数と特性を保持している。制御部300はメモリ310に保持された情報と、組電池3000の電圧変化率または容量変化率に基づいて、組電池3000を構成する電池種のそれぞれの劣化率を決定し、出力部320によって結果を外部回路、外部装置などに出力する。 Switch 3 is disposed between the negative electrode of battery group AA and the positive electrode of battery group BB. The switch 1, the switch 2, and the switch 3 are opened and closed according to instructions from the control unit 300. Normally, switch 1 and switch 2 are open and switch 3 is closed. The output of the ammeter 30B is sent to the control unit 300. A voltmeter 31 that detects the voltage of the assembled battery 3000 is connected in parallel with the assembled battery 3000. Similar to the first embodiment, a memory 310 is disposed in the vicinity of the control unit 300, and the memory 310 holds the number and characteristics of each of the battery types that the assembled battery 3000 constitutes. The control unit 300 determines the deterioration rate of each battery type constituting the assembled battery 3000 based on the information held in the memory 310 and the voltage change rate or the capacity change rate of the assembled battery 3000, and the output unit 320 determines the result. Is output to an external circuit, an external device, or the like.
 このような構成によれば、例えば電池群AAだけが過充電・過放電に陥る場合には、電池群AAおよび電池群BBに対して個別に検知信号を出力する。これにより、検知信号を受けて、すぐ電池の使用を止めることにより、過充電・過放電を防止できる。また、検知信号を出力して、スイッチ1を閉とし、スイッチ2とスイッチ3を開とすることによって電池群BBだけを充電・放電することができる。また、一方の電池群だけが過充電・過放電に陥り、かつ他方の電池群との間で電圧を平準化することが可能であれば、スイッチ1とスイッチ2を閉とし、スイッチ3を開とすることによって、電池群AAおよび電池群BBの両方が過充電領域または過放電領域に含まれないように、電池群AAと電池群BBの電圧を平準化することもできる。電池群AAと電池群BBの電圧を平準化する場合、個々の電池群に流れる電流を検出する必要がある。その場合、個々の電池群に電流計をつけるのではなく、スイッチ1またはスイッチ2の部分に電流計30Aをつけることで、電池群AAと電池群BBの電圧を平準化するときに両者の間に流れた電流を検知して制御部300におくり、所望の容量で止める(電流値を遮断する)ことができる。 According to such a configuration, for example, when only the battery group AA is overcharged or overdischarged, the detection signals are individually output to the battery group AA and the battery group BB. Accordingly, overcharge / overdischarge can be prevented by stopping the use of the battery immediately upon receiving the detection signal. Also, only the battery group BB can be charged / discharged by outputting a detection signal, closing the switch 1 and opening the switch 2 and switch 3. If only one battery group is overcharged or overdischarged and the voltage can be leveled with the other battery group, switch 1 and switch 2 are closed and switch 3 is opened. Thus, the voltages of the battery group AA and the battery group BB can be leveled so that both the battery group AA and the battery group BB are not included in the overcharge region or the overdischarge region. When leveling the voltages of the battery group AA and the battery group BB, it is necessary to detect the current flowing through the individual battery groups. In that case, an ammeter is not attached to each battery group, but an ammeter 30A is attached to the part of the switch 1 or the switch 2 to equalize the voltages of the battery group AA and the battery group BB. Can be detected and sent to the controller 300 to stop at a desired capacity (cut off the current value).
 電池群AAと電池群BBの放電曲線は、次のように計算できる。図3の手順で求めた劣化率RA、RBおよび容量ずれΔA、ΔBと、メモリに保持されている電池Aのn個のデータ群(QA1、V′A1)、(QA2、V′A2)、…、(QAn、V′An)と電池Bのm個のデータ群(QB1、V′B1)、(QB2、V′B2)、…、(QBm、V′Bm)を用いて、電池Aの新しいデータ群(RA×QA1+ΔA、V′A1/RA)、(RA×QA2+ΔA、V′A2/RA)、…、(RA×QAn+ΔA、V′An/RA)および電池Bの新しいデータ群(RB×QB1+ΔB、V′B1/RB)、(RB×QB2+ΔB、V′B2/RB)、…、(RB×QBn+ΔB、V′Bn/RB)を構成し、組電池3000を構成する電池群の充放電曲線を計算することができる。図6は電池Aの容量が0.55Ah、電池Bの容量が0.59Ahとなったときの組電池、電池A、電池Bの放電曲線を示す。このときRA=0.55/0.60=0.917、RB=0.59/0.69=0.855、ΔA=ΔB=0である。図6では、電池Aの劣化率および電池Bの劣化率を基に、電池Aおよび電池Bの過充電領域または過放電領域に対応する組電池の電圧領域または容量領域が制御部によって決定されている。 The discharge curves of the battery group AA and the battery group BB can be calculated as follows. The deterioration rates RA and RB and capacity deviations ΔA and ΔB obtained by the procedure of FIG. 3 and n data groups (QA1, V′A1), (QA2, V′A2) of the battery A held in the memory, ..., (QAn, V'An) and m data groups (QB1, V'B1), (QB2, V'B2), ..., (QBm, V'Bm) of battery B, New data group (RA × QA1 + ΔA, V′A1 / RA), (RA × QA2 + ΔA, V′A2 / RA),..., (RA × QAn + ΔA, V′An / RA) and a new data group for battery B (RB × QB1 + ΔB, V′B1 / RB), (RB × QB2 + ΔB, V′B2 / RB),... (RB × QBn + ΔB, V′Bn / RB), and the charge / discharge curve of the battery group constituting the assembled battery 3000 Can be calculated. FIG. 6 shows discharge curves of the assembled battery, battery A, and battery B when the capacity of battery A is 0.55 Ah and the capacity of battery B is 0.59 Ah. At this time, RA = 0.55 / 0.60 = 0.919, RB = 0.59 / 0.69 = 0.855, and ΔA = ΔB = 0. In FIG. 6, based on the deterioration rate of battery A and the deterioration rate of battery B, the voltage region or capacity region of the assembled battery corresponding to the overcharge region or overdischarge region of battery A and battery B is determined by the control unit. Yes.
 例えば、一方の電池群、つまり、電池Aまたは電池Bの個別の過放電を防ぐ手順を説明する。例えば、図6に示した組電池を0.55Ah以上放電すると、電池Aが過放電状態に陥る。そこで、放電容量が0.55Ahに到達した時点で、スイッチ1を閉、スイッチ2を開、スイッチ3を開とすることによって、電池Aを過放電することなく、電池Bの残存容量0.04Ahを利用することができる。このとき、電池群AA、BBの間に容量ずれが生じるので、ΔBに-0.04Ahを加えることが望ましい。同様の手順で一方の電池群の過充電も防止できる。 For example, a procedure for preventing individual overdischarge of one battery group, that is, battery A or battery B will be described. For example, when the assembled battery shown in FIG. 6 is discharged by 0.55 Ah or more, the battery A falls into an overdischarged state. Therefore, when the discharge capacity reaches 0.55 Ah, the remaining capacity of the battery B is 0.04 Ah without overdischarge of the battery A by closing the switch 1, opening the switch 2, and opening the switch 3. Can be used. At this time, since a capacity shift occurs between the battery groups AA and BB, it is desirable to add −0.04 Ah to ΔB. The overcharge of one battery group can be prevented by the same procedure.
 次に、組電池全体の過放電を防ぐ手順を説明する。電池群AAと電池群BBの両方が同時に過放電になる場合には、片方の電池群のみを放電したり、片方の電池群で他方の電池群を充電したりすることができない。この場合には制御部300によって放電を停止する。制御部300は、電圧計31の出力が所定の電圧(電池群AAと電池群BBそれぞれの下限電圧の和)を下回るとき、または電流計30Bの出力から計算した放電量が残存容量(本実施例では0.04Ah)を上回るときに放電を停止する。これにより組電池全体の過放電を防ぐ。 Next, the procedure for preventing overdischarge of the entire assembled battery will be described. When both the battery group AA and the battery group BB are simultaneously overdischarged, it is impossible to discharge only one battery group or charge the other battery group with one battery group. In this case, the controller 300 stops the discharge. When the output of the voltmeter 31 falls below a predetermined voltage (the sum of the lower limit voltages of the battery group AA and the battery group BB) or the discharge amount calculated from the output of the ammeter 30B is the remaining capacity (this embodiment) In the example, the discharge is stopped when exceeding 0.04 Ah). This prevents overdischarge of the entire assembled battery.
 以上のように、スイッチ1~3を操作することによって、容量ずれΔA、ΔBの値を任意に調節し、電池群Aと電池群Bの放電曲線を組み合わせて組電池3000の放電曲線を再構成することができる。 As described above, by operating the switches 1 to 3, the capacity deviations ΔA and ΔB are arbitrarily adjusted, and the discharge curves of the battery group A and the battery group B are combined to reconstruct the discharge curve of the assembled battery 3000. can do.
10、30A、30B 電流計
11、31 電圧計
100、300 制御部
110、310 メモリ
120、320 出力部
1000、3000 組電池
1100 制御装置
10, 30A, 30B Ammeter 11, 31 Voltmeter 100, 300 Control unit 110, 310 Memory 120, 320 Output unit 1000, 3000 Assembly battery 1100 Control device

Claims (8)

  1.  第1の特性を有する充放電可能な第1の二次電池と、
     前記第1の特性とは異なる第2の特性を有する充放電可能な第2の二次電池と、を直列または並列に接続して構成される組電池の制御装置であって、
     前記組電池に含まれる前記第1の特性および前記第1の二次電池の本数と前記第2の特性および前記第2の二次電池の本数を記憶する記憶部と、
     前記組電池の電圧を検出する電圧計と、
     前記電圧計の出力に基づいて、前記組電池の容量差分に対する電圧差分としての電圧変化率または前記組電池の電圧差分に対する容量差分としての容量変化率を検知する制御部と、を備え、
     前記制御部において、前記電圧変化率または前記容量変化率と、前記第1の特性および前記第1の二次電池の本数と、前記第2の特性および前記第2の二次電池の本数と、に基づいて前記第1の二次電池の劣化率および前記第2の二次電池の劣化率を決定する組電池の制御装置。
    A first chargeable / dischargeable secondary battery having a first characteristic;
    A control device for an assembled battery configured by connecting a second chargeable / dischargeable secondary battery having a second characteristic different from the first characteristic, in series or in parallel,
    A storage unit for storing the first characteristic and the number of the first secondary batteries and the second characteristic and the number of the second secondary batteries included in the assembled battery;
    A voltmeter for detecting the voltage of the battery pack;
    A controller that detects a voltage change rate as a voltage difference with respect to a capacity difference of the assembled battery based on an output of the voltmeter or a capacity change rate as a capacity difference with respect to the voltage difference of the assembled battery;
    In the control unit, the voltage change rate or the capacity change rate, the number of the first characteristic and the first secondary battery, the number of the second characteristic and the second secondary battery, The battery pack control apparatus determines the deterioration rate of the first secondary battery and the deterioration rate of the second secondary battery based on the above.
  2.  請求項1において、
     前記記憶部は、2つ以上の異なる日時において決定された前記第1の二次電池の劣化率と前記第2の二次電池の劣化率および決定日時を保持し、
     前記制御部は、前記第1の二次電池の劣化率と、前記第2の二次電池の劣化率と、前記決定日時と、に基づいて前記第1の二次電池の余寿命および前記第2の二次電池の余寿命を決定し、
     前記第1の二次電池の余寿命および前記第2の二次電池の余寿命が所定の値より小さい場合、検知信号を出力する組電池の制御装置。
    In claim 1,
    The storage unit holds the deterioration rate of the first secondary battery, the deterioration rate of the second secondary battery, and the determination date determined at two or more different dates and times,
    The control unit determines the remaining life of the first secondary battery and the first life based on the deterioration rate of the first secondary battery, the deterioration rate of the second secondary battery, and the determination date and time. 2 determines the remaining life of the secondary battery,
    An assembled battery control device that outputs a detection signal when the remaining life of the first secondary battery and the remaining life of the second secondary battery are smaller than a predetermined value.
  3.  請求項1または2において、
     前記制御部は、前記第1の二次電池の劣化率および前記第2の二次電池の劣化率を基に、前記第1の二次電池および前記第2の二次電池の過充電領域または過放電領域に対応する前記組電池の電圧領域または容量領域を決定し、
     前記組電池の電圧または容量が前記電圧領域または前記容量領域に含まれる場合には、検知信号を出力する制御装置。
    In claim 1 or 2,
    The control unit is configured to determine an overcharge region of the first secondary battery and the second secondary battery based on a deterioration rate of the first secondary battery and a deterioration rate of the second secondary battery. Determining the voltage region or capacity region of the battery pack corresponding to the overdischarge region;
    A control device that outputs a detection signal when the voltage or capacity of the assembled battery is included in the voltage area or the capacity area.
  4.  請求項1乃至3のいずれかにおいて、
     前記制御部は、前記第1の二次電池の劣化率および前記第2の二次電池の劣化率を基に、前記第1の二次電池および前記第2の二次電池の過充電領域または過放電領域に対応する前記組電池の電圧領域または容量領域を決定し、
     前記組電池の電圧または容量が前記電圧領域または前記容量領域に含まれる場合には、前記第1の二次電池および前記第2の二次電池に対して個別に検知信号を出力する制御装置。
    In any one of Claims 1 thru | or 3,
    The control unit is configured to determine an overcharge region of the first secondary battery and the second secondary battery based on a deterioration rate of the first secondary battery and a deterioration rate of the second secondary battery. Determining the voltage region or capacity region of the battery pack corresponding to the overdischarge region;
    A control device that individually outputs a detection signal to the first secondary battery and the second secondary battery when the voltage or the capacity of the assembled battery is included in the voltage region or the capacity region.
  5.  請求項4において、
     前記第1の二次電池と前記第2の二次電池の正極同士および負極同士を接続したスイッチを有し、
     前記制御部によって前記スイッチの開閉が制御され、
     前記制御部は、前記検知信号に基づいて前記スイッチの開閉を制御して、前記第1の二次電池および前記第2の二次電池の両方が前記過充電領域または前記過放電領域に含まれないように、前記第1の二次電池の電圧および前記第2の二次電池の電圧を平準化する制御装置。
    In claim 4,
    Having a switch connecting positive electrodes and negative electrodes of the first secondary battery and the second secondary battery,
    Opening and closing of the switch is controlled by the control unit,
    The control unit controls opening and closing of the switch based on the detection signal, and both the first secondary battery and the second secondary battery are included in the overcharge region or the overdischarge region. A control device for leveling the voltage of the first secondary battery and the voltage of the second secondary battery so as not to be present.
  6.  請求項4において、
     前記第1の二次電池と前記第2の二次電池の正極同士および負極同士を接続したスイッチと、
     前記スイッチの近傍に配置された前記第1の二次電池および前記第2の二次電池に流れる電流を検出する電流計と、を有し、
     前記制御部によって前記スイッチの開閉が制御され、
     前記制御部は、前記検知信号に基づいて前記スイッチの開閉を制御して、前記第1の二次電池の電流値または前記第2の二次電池の電流値を遮断する制御装置。
    In claim 4,
    A switch connecting positive electrodes and negative electrodes of the first secondary battery and the second secondary battery;
    An ammeter for detecting a current flowing in the first secondary battery and the second secondary battery disposed in the vicinity of the switch;
    Opening and closing of the switch is controlled by the control unit,
    The control unit controls the opening and closing of the switch based on the detection signal to cut off the current value of the first secondary battery or the current value of the second secondary battery.
  7.  請求項1乃至6のいずれかの制御装置と、前記組電池を有する電源装置。 A control device according to any one of claims 1 to 6 and a power supply device having the assembled battery.
  8.  第1の特性を有する充放電可能な第1の二次電池と、
     前記第1の特性とは異なる第2の特性を有する充放電可能な第2の二次電池と、を直列または並列に接続して構成される組電池の制御方法であって、
     記憶部によって前記組電池に含まれる前記第1の特性および前記第1の二次電池の本数と前記第2の特性および前記第2の二次電池の本数を記憶する工程と、
     電圧計によって前記組電池の電圧を検出する工程と、
     制御部によって、前記電圧計の出力に基づいて、前記組電池の容量差分に対する電圧差分としての電圧変化率または前記組電池の電圧差分に対する容量差分としての容量変化率を検知する工程と、
     前記制御部において、前記電圧変化率または前記容量変化率と、前記第1の特性および前記第1の二次電池の本数と、前記第2の特性および前記第2の二次電池の本数と、に基づいて前記第1の二次電池の劣化率および前記第2の二次電池の劣化率を決定する工程と、を含む組電池の制御方法。
    A first chargeable / dischargeable secondary battery having a first characteristic;
    A control method for an assembled battery configured by connecting in series or in parallel a second chargeable / dischargeable secondary battery having a second characteristic different from the first characteristic,
    Storing the first characteristic and the number of the first secondary batteries and the second characteristic and the number of the second secondary batteries included in the assembled battery by a storage unit;
    Detecting the voltage of the assembled battery with a voltmeter;
    Detecting a voltage change rate as a voltage difference with respect to a capacity difference of the assembled battery or a capacity change rate as a capacity difference with respect to the voltage difference of the assembled battery based on an output of the voltmeter by the control unit;
    In the control unit, the voltage change rate or the capacity change rate, the number of the first characteristic and the first secondary battery, the number of the second characteristic and the second secondary battery, And a step of determining a deterioration rate of the first secondary battery and a deterioration rate of the second secondary battery based on the above.
PCT/JP2013/061710 2012-05-29 2013-04-22 Device for controlling battery pack, power source device, and method for controlling battery pack WO2013179810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012121478A JP5919093B2 (en) 2012-05-29 2012-05-29 Battery pack control device, power supply device, battery pack control method
JP2012-121478 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013179810A1 true WO2013179810A1 (en) 2013-12-05

Family

ID=49673017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061710 WO2013179810A1 (en) 2012-05-29 2013-04-22 Device for controlling battery pack, power source device, and method for controlling battery pack

Country Status (2)

Country Link
JP (1) JP5919093B2 (en)
WO (1) WO2013179810A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221735A1 (en) * 2016-06-22 2017-12-28 株式会社 村田製作所 Battery pack circuit, capacity coefficient detection method, and capacity coefficient detection program
CN110224422A (en) * 2019-06-19 2019-09-10 合肥阳光新能源科技有限公司 Method for balancing powers, Energy Management System and the coordination management system of energy-storage system
CN114207456A (en) * 2019-12-11 2022-03-18 株式会社Lg新能源 Apparatus and method for diagnosing degree of deterioration of battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268638B1 (en) * 2014-10-13 2021-06-23 현대모비스 주식회사 System and method for judging battery's replacement time
JP6971873B2 (en) * 2018-02-06 2021-11-24 株式会社東芝 Radiation measurement system, radiation measurement device, radiation monitoring system and radiation monitoring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260346A (en) * 2007-04-10 2008-10-30 Nissan Motor Co Ltd Power source system for hybrid electric vehicle, and its control device
WO2011045853A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Battery control device and motor drive system
JP2012054019A (en) * 2010-08-31 2012-03-15 Calsonic Kansei Corp Battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083757B2 (en) * 2005-04-15 2008-04-30 株式会社Nttファシリティーズ Deterioration determination apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260346A (en) * 2007-04-10 2008-10-30 Nissan Motor Co Ltd Power source system for hybrid electric vehicle, and its control device
WO2011045853A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Battery control device and motor drive system
JP2012054019A (en) * 2010-08-31 2012-03-15 Calsonic Kansei Corp Battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221735A1 (en) * 2016-06-22 2017-12-28 株式会社 村田製作所 Battery pack circuit, capacity coefficient detection method, and capacity coefficient detection program
CN109313235A (en) * 2016-06-22 2019-02-05 株式会社村田制作所 Group battery circuit, capacity coefficient detection method and capacity coefficient detect program
US10845419B2 (en) 2016-06-22 2020-11-24 Murata Manufacturing Co., Ltd. Assembled battery circuit, capacitance coefficient detection method, and capacitance coefficient detection program
CN110224422A (en) * 2019-06-19 2019-09-10 合肥阳光新能源科技有限公司 Method for balancing powers, Energy Management System and the coordination management system of energy-storage system
CN114207456A (en) * 2019-12-11 2022-03-18 株式会社Lg新能源 Apparatus and method for diagnosing degree of deterioration of battery
US11821960B2 (en) 2019-12-11 2023-11-21 Lg Energy Solution, Ltd. Apparatus and method for diagnosing degree of degradation of battery
CN114207456B (en) * 2019-12-11 2024-04-12 株式会社Lg新能源 Apparatus and method for diagnosing degree of degradation of battery

Also Published As

Publication number Publication date
JP2013246109A (en) 2013-12-09
JP5919093B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
KR102009734B1 (en) Estimation of the state of deterioration of an electric battery
US10483779B2 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
Vezzini Lithium-ion battery management
EP3002597B1 (en) Battery control device
CN106329632B (en) Charge-discharge system, deterioration diagnosis method and the capacity difference calculation method of charge storage element
JP6084225B2 (en) Battery control device, secondary battery system
JP6316690B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
EP2963432A1 (en) Device for assessing extent of degradation in secondary cell
JP5621818B2 (en) Power storage system and equalization method
EP3410558A1 (en) Battery control device
WO2016009757A1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP5919093B2 (en) Battery pack control device, power supply device, battery pack control method
US20130311119A1 (en) Method of detecting battery full-charge capacity
KR101825617B1 (en) Apparatus and method for changing using-band of battery
WO2016129212A1 (en) Cell status estimation device and power supply device
JP7067549B2 (en) Power storage element management device and power storage element management method
CN102565716A (en) Apparatus for calculating residual capacity of secondary battery
WO2015056068A1 (en) Electric storage system
JP2015040832A (en) Power storage system and method of estimating full charge capacity of power storage device
CN105899395B (en) Energy in assessment motor vehicle battery
JP6648709B2 (en) Battery module controller
US20130134943A1 (en) Method for balancing the voltages of electrochemical cells connected in several parallel branches
JP3371588B2 (en) Remaining battery capacity display
CN110476073A (en) Charge capacity estimation device, power storage module, electric power storage amount estimation method and computer program
KR20160029054A (en) Apparatus and method for changing using-band of battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796251

Country of ref document: EP

Kind code of ref document: A1