WO2013179493A1 - 画像投影装置、ヘッドアップディスプレイ、制御方法及び光学素子 - Google Patents

画像投影装置、ヘッドアップディスプレイ、制御方法及び光学素子 Download PDF

Info

Publication number
WO2013179493A1
WO2013179493A1 PCT/JP2012/064321 JP2012064321W WO2013179493A1 WO 2013179493 A1 WO2013179493 A1 WO 2013179493A1 JP 2012064321 W JP2012064321 W JP 2012064321W WO 2013179493 A1 WO2013179493 A1 WO 2013179493A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
range
image
region
Prior art date
Application number
PCT/JP2012/064321
Other languages
English (en)
French (fr)
Inventor
加園 修
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/064321 priority Critical patent/WO2013179493A1/ja
Publication of WO2013179493A1 publication Critical patent/WO2013179493A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems

Definitions

  • the present invention relates to a technique for adjusting a projection position.
  • Patent Document 1 discloses a liquid crystal projector that splits light from a light source into a plurality of liquid crystal panels, guides the light that has passed through the plurality of liquid crystal panels, and projects the light onto a screen.
  • Patent Document 2 discloses a technique related to the present invention.
  • the light source, the image projection device, the first region in which an image is drawn by the light emitted from the light source, and the second region provided outside the first region are provided.
  • the projection range recognition means for recognizing the range in which the light constituting the image should be projected in the projectable range of the light source at the position of the optical element, and the range to be projected recognized by the projection range recognition means
  • second light source control means for projecting light constituting the image onto the light source.
  • an image having a light source, a first region for drawing an image by light emitted from the light source, and an optical element having a second region provided outside the first region.
  • a first region for drawing an image by light emitted from a light source and a second region provided outside the first region are projected, and light constituting the image is projected.
  • the invention according to claim 14 has a first area in which an image is drawn by light emitted from a light source, and a second area provided outside the first area, and projects light constituting the image.
  • FIG. 1 shows a schematic configuration of a head-up display. It is a schematic block diagram of a light source. It is a front view of EPE (Exit Pupil Expander). The example of sectional drawing of EPE is shown. The positional relationship between the projectable range and the target projection range is shown. It is a figure for demonstrating the process of a batch irradiation detection method. It is a time chart which shows the time change of the scanning position of a light source, and a detected light quantity. The transition of the projection position of the pattern light when recognizing the position of the retroreflective portion in the main scanning direction is shown. The transition of the projection position of the pattern light in the case of recognizing the position of the retroreflecting unit in the sub-scanning direction is shown. The structure of EPE which concerns on the modification 1 is shown. The structure of EPE which concerns on the modification 2 is shown. The irradiation range in the recognition process of the intermediate image target projection range after the second time is shown.
  • EPE Exit Pupil
  • the image projection device includes a light source, a first region for drawing an image by light emitted from the light source, and a second region provided outside the first region.
  • An optical element a first light source control unit that causes the light source to emit light to the second region; a light detection unit that detects the light applied to a predetermined portion of the second region; and an output of the light detection unit
  • the projection range recognition means for recognizing the range in which the light constituting the image should be projected in the projectable range of the light source at the position of the optical element, and the range to be projected recognized by the projection range recognition means
  • second light source control means for projecting light constituting the image onto the light source.
  • the image projection apparatus includes an optical element, a first light source control unit, a light detection unit, a projection range recognition unit, and a second light source control unit.
  • the optical element has a first region in which an image is drawn by light emitted from the light source, and a second region provided outside the first region.
  • the first light source control means causes the light source to emit light (measurement light) to the second region.
  • the light detection means detects light applied to a predetermined portion of the second region.
  • the projection range recognition unit recognizes a range in which light constituting the image in the projectable range of the light source at the position of the optical element is to be projected based on the output of the light detection unit.
  • the second light source control unit causes the light source to emit light that constitutes an image so that the range to be projected recognized by the projection range recognition unit is irradiated.
  • the image projection device can project the light constituting the image to an appropriate range within the first region of the optical element even when the positional deviation between the light source and the optical element has occurred. it can.
  • the projection range recognition means recognizes the range to be projected with respect to the projectable range by recognizing the position of the predetermined portion in the projectable range.
  • the image projection apparatus should preferably project in the projectable range by grasping in advance the positional relationship between the above-described predetermined portion of the second region and the range to be projected in the first region. The range can be recognized.
  • the first light source control unit causes the light source to scan within the projectable range
  • the projection range recognition unit includes a position of a scanning line received by the light detection unit and The position of the predetermined portion in the projectable range is recognized based on the light reception timing of the light detection means on the scanning line.
  • the image projection apparatus can preferably recognize the range to be projected in the projectable range.
  • the first light source control means changes the projection position of the pattern light in a range including the predetermined portion
  • the projection range recognition means has the light for each pattern light. Based on the output of the detection means, the position of the predetermined portion in the projectable range is recognized. Also according to this aspect, the image projection apparatus can preferably recognize the range to be projected in the projectable range.
  • the first light source control unit makes a transition in a main scanning direction with a rectangular pattern light having a sub-scanning direction as a longitudinal direction in a range including the predetermined portion.
  • the projection range recognition means By causing the projection range recognition means to recognize the position of the predetermined portion in the main scanning direction and shifting the rectangular pattern light having the main scanning direction as the longitudinal direction in the sub scanning direction, the position of the predetermined portion in the sub scanning direction is determined.
  • the projection range recognition means recognizes the projection range.
  • the image projecting apparatus can appropriately recognize the position of the predetermined portion in the projectable range in the main scanning direction and the sub-scanning direction, and can recognize the range to be projected in the projectable range.
  • a retroreflecting portion is formed in the predetermined portion of the second region, and the light detecting means detects light reflected by the retroreflecting portion.
  • the image projection apparatus can accurately detect whether or not the predetermined portion of the second region is irradiated with light by the light detection unit, and can recognize the range to be projected in the projectable range.
  • the light detection means is a light detector installed in the predetermined portion of the second region. Also according to this aspect, the light detection unit can detect the light applied to the predetermined portion of the second region of the optical element.
  • the first region is formed by a microlens array in which a plurality of microlenses are arranged.
  • a shape capable of retroreflecting is formed in the predetermined portion of the second region, and the microlens array and the shape are integrally formed.
  • the light detection means detects noise of light of the light source generated by reflected light of light irradiated on the predetermined portion. Also according to this aspect, the light detection unit can preferably detect the light applied to the predetermined portion of the second region of the optical element.
  • a head-up display includes the above-described image projection device, and causes the image drawn on the optical element to be viewed as a virtual image from the position of the user's eyes. Since the head-up display includes the above-described image projection device, the image projection device has an appropriate range within the first region of the optical element even when the positional deviation between the light source and the optical element occurs. Moreover, the light which comprises an image can be irradiated, and an observer can visually recognize an image with high visibility.
  • the image includes: a first region that draws an image by light emitted from the light source; and an optical element that includes a second region provided outside the first region.
  • a control method executed by the projection apparatus the first light source control step for causing the light source to emit light to the second region, and the light detection step for detecting the light applied to a predetermined portion of the second region, Based on the output of the light detection step, a projection range recognition step for recognizing a range in which light constituting the image in the projectable range of the light source at the position of the optical element is to be projected, and the projection range recognition step include And a second light source control step of projecting light constituting the image onto the light source in the recognized range to be projected.
  • the image projecting device allows the light constituting the image to fall within an appropriate range within the first region of the optical element even if the light source and the optical element are misaligned. , And an observer can visually recognize an image with high visibility.
  • the optical element can reflect the light irradiated to the predetermined part of the 2nd field, and can make a light source recognize the suitable projection range of the light which constitutes an image.
  • the optical element can detect the light irradiated to the predetermined part of the 2nd field, and can make a light source recognize the suitable projection range of the light which constitutes an image.
  • FIG. 1 is a schematic configuration diagram of a head-up display according to the present embodiment.
  • the head-up display according to the present embodiment is mounted on a vehicle and includes a light source 1, an EPE 12 that is an intermediate image generating optical element, a combiner 13, and a photodetector 14.
  • the light source 1 emits, toward the EPE 12, a laser beam that constitutes an intermediate image indicating information to be visually recognized by an observer.
  • the light source 1 is also light (also referred to as “measurement light”) for measuring a range in which the intermediate image generation light is to be projected onto the EPE 12 in addition to light constituting the intermediate image (also referred to as “intermediate image generation light”). ).
  • the light source 1 recognizes the position of the EPE 12 based on the output of the light detector 14 and determines the range of the EPE 12 on which the intermediate image generation light is to be projected (also referred to as “intermediate image target projection range Tag”).
  • a specific configuration example of the light source 1 will be described in the [Configuration of Light Source] section.
  • the EPE 12 is a transmissive optical element that generates an intermediate image, and has a microlens array in which a plurality of microlenses are arranged.
  • the specific configuration of the EPE 12 will be described in the [EPE Configuration] section.
  • the EPE 12 is an example of the “optical element” in the present invention.
  • the combiner 13 is a half mirror that projects the light constituting the intermediate image generated by the EPE 12 and reflects the projected light to the driver's eye point “Pe”, thereby allowing the observer to visually recognize the virtual image.
  • the photodetector 14 detects the measurement light reflected by the EPE 12 and transmits a detection signal corresponding to the detected light amount to the light source 1.
  • the photodetector 14 functions as the “photodetection means” in the present invention.
  • FIG. 2 is a configuration diagram showing a part of the light source 1.
  • the light source 1 includes an image signal input unit 2, a video ASIC 3, a frame memory 4, a ROM 5, a RAM 6, a laser driver ASIC 7, a MEMS control unit 8, a laser light source unit 9, And a MEMS mirror 10.
  • the image signal input unit 2 receives an image signal input from the outside and outputs it to the video ASIC 3.
  • the video ASIC 3 is a block that controls the laser driver ASIC 7 and the MEMS control unit 8 based on the image signal input from the image signal input unit 2 and the scanning position information “Sc” input from the MEMS mirror 10, and the ASIC (Application) It is configured as Specific Integrated Circuit).
  • the video ASIC 3 includes a synchronization / image separation unit 31, a bit data conversion unit 32, a light emission pattern conversion unit 33, and a timing controller 34.
  • the synchronization / image separation unit 31 separates the image data displayed on the screen as the image display unit and the synchronization signal from the image signal input from the image signal input unit 2 and writes the image data to the frame memory 4.
  • the bit data conversion unit 32 reads the image data written in the frame memory 4 and converts it into bit data.
  • the light emission pattern conversion unit 33 converts the bit data converted by the bit data conversion unit 32 into a signal representing the light emission pattern of each laser.
  • the timing controller 34 controls the operation timing of the synchronization / image separation unit 31 and the bit data conversion unit 32.
  • the timing controller 34 also controls the operation timing of the MEMS control unit 8 described later.
  • the image data separated by the synchronization / image separation unit 31 is written.
  • the ROM 5 stores a control program and data for operating the video ASIC 3. Various data are sequentially read from and written into the RAM 6 as a work memory when the video ASIC 3 operates.
  • the laser driver ASIC 7 is a block that generates a signal for driving a laser diode provided in a laser light source unit 9 described later, and is configured as an ASIC.
  • the laser driver ASIC 7 includes a red laser driving circuit 71, a blue laser driving circuit 72, and a green laser driving circuit 73.
  • the red laser driving circuit 71 drives the red laser LD1 based on the signal output from the light emission pattern conversion unit 33.
  • the blue laser drive circuit 72 drives the blue laser LD2 based on the signal output from the light emission pattern conversion unit 33.
  • the green laser drive circuit 73 drives the green laser LD3 based on the signal output from the light emission pattern conversion unit 33.
  • the MEMS control unit 8 controls the MEMS mirror 10 based on a signal output from the timing controller 34.
  • the MEMS control unit 8 includes a servo circuit 81 and a driver circuit 82.
  • the servo circuit 81 controls the operation of the MEMS mirror 10 based on a signal from the timing controller.
  • the driver circuit 82 amplifies the control signal of the MEMS mirror 10 output from the servo circuit 81 to a predetermined level and outputs the amplified signal.
  • the laser light source unit 9 emits laser light to the MEMS mirror 10 based on the drive signal output from the laser driver ASIC 7.
  • the MEMS mirror 10 as a scanning unit reflects the laser beam emitted from the laser light source unit 9 toward the EPE 12. By doing so, the MEMS mirror 10 forms an image to be displayed on the EPE 12. Further, the MEMS mirror 10 moves so as to scan on the EPE 12 under the control of the MEMS control unit 8 in order to display an image input to the image signal input unit 2, and scan position information (for example, at that time) Information such as the angle of the mirror) is output to the video ASIC 3.
  • the light source 1 reflects the light emitted from the EPE 12 as described above by the combiner 13, and causes the image corresponding to the reflected light to be visually recognized as a virtual image Iv from the driver's eye point Pe.
  • the laser light source unit 9 includes a case 91, a wavelength selective element 92, a collimator lens 93, a red laser LD 1, a blue laser LD 2, a green laser LD 3, and a monitor light receiving element (simply called “light receiving element”). 50).
  • the case 91 is formed in a substantially box shape with resin or the like.
  • the case 91 is provided with a hole penetrating into the case 91 and a CAN attachment portion 91a having a concave cross section, and a surface perpendicular to the CAN attachment portion 91a. A hole penetrating inward is formed, and a collimator mounting portion 91b having a concave cross section is formed.
  • the wavelength-selective element 92 as a synthesis element is configured by, for example, a trichromatic prism, and is provided with a reflective surface 92a and a reflective surface 92b.
  • the reflection surface 92a transmits the laser light emitted from the red laser LD1 toward the collimator lens 93, and reflects the laser light emitted from the blue laser LD2 toward the collimator lens 93.
  • the reflecting surface 92b transmits most of the laser light emitted from the red laser LD1 and the blue laser LD2 toward the collimator lens 93 and reflects a part thereof toward the light receiving element 50.
  • the reflection surface 92 b reflects most of the laser light emitted from the green laser LD 3 toward the collimator lens 93 and transmits part of the laser light toward the light receiving element 50. In this way, the emitted light from each laser is superimposed and incident on the collimator lens 93 and the light receiving element 50.
  • the wavelength selective element 92 is provided in the vicinity of the collimator mounting portion 91b in the case 91.
  • the collimator lens 93 emits the laser beam incident from the wavelength selective element 92 to the MEMS mirror 10 as parallel light.
  • the collimator lens 93 is fixed to the collimator mounting portion 91b of the case 91 with a UV adhesive or the like. That is, the collimator lens 93 is provided after the synthesis element.
  • the red laser LD1 as a laser light source emits red laser light.
  • the red laser LD1 is fixed at a position that is coaxial with the wavelength selective element 92 and the collimator lens 93 in the case 91 while the semiconductor laser light source is in the chip state or the chip is mounted on a submount or the like. ing.
  • Blue laser LD2 as a laser light source emits blue laser light.
  • the blue laser LD2 is fixed at a position where the emitted laser light can be reflected toward the collimator lens 93 by the reflecting surface 92a while the semiconductor laser light source is in the chip state or the chip is mounted on the submount or the like. ing.
  • the positions of the red laser LD1 and the blue laser LD2 may be switched.
  • the green laser LD3 as a laser light source is attached to the CAN package or attached to the frame package, and emits green laser light.
  • the green laser LD 3 has a semiconductor laser light source chip B that generates green laser light in a CAN package, and is fixed to a CAN mounting portion 91 a of the case 91.
  • the light receiving element 50 receives a part of the laser light emitted from each laser light source.
  • the light receiving element 50 is a photoelectric conversion element such as a photodetector, and supplies a detection signal “Sd”, which is an electrical signal corresponding to the amount of incident laser light, to the laser driver ASIC 7.
  • Sd a detection signal
  • the laser driver ASIC 7 adjusts the power of the red laser LD1, the blue laser LD2, and the green laser LD3 according to the detection signal Sd.
  • the laser driver ASIC 7 operates only the red laser driving circuit 71, supplies a driving current to the red laser LD1, and emits red laser light from the red laser LD1. A part of the red laser light is received by the light receiving element 50, and a detection signal Sd corresponding to the amount of light is fed back to the laser driver ASIC7.
  • the laser driver ASIC 7 adjusts the drive current supplied from the red laser drive circuit 71 to the red laser LD1 so that the light amount indicated by the detection signal Sd is an appropriate light amount. In this way, power adjustment is performed.
  • the power adjustment of the blue laser LD2 and the power adjustment of the green laser LD3 are similarly performed.
  • the video ASIC 3, the laser driver ASIC 7, the MEMS control unit 8, and the like function as “first light source control means”, “projection range recognition means”, and “second light source control means” in the present invention.
  • FIG. 3 shows a front view of the EPE 12 observed from the rear side of the light source 1.
  • the EPE 12 has a lens array portion 21 and an outer frame portion 22.
  • the lens array unit 21 is a region in which a plurality of microlenses are regularly arranged on one surface, and draws an intermediate image by the light emitted from the light source 1.
  • the lens array unit 21 diffuses light at a diffusion angle corresponding to the curvature of the arranged microlenses.
  • the curvature of the microlenses arranged in the lens array unit 21 is designed in advance according to the required diffusion angle.
  • the lens array unit 21 is an example of the “first region” in the present invention.
  • the outer frame part 22 is an area provided outside the lens array part 21, and has retroreflective parts R1 to R4 at four corners.
  • the retroreflective portions R1 to R4 retroreflect incident light. That is, the retroreflective portions R1 to R4 reflect incident light in the incident direction.
  • each of the retroreflective portions R1 to R4 is arranged such that a rectangle whose apex is the position of the retroreflective portions R1 to R4 includes the entire lens array unit 21.
  • the sides of the intermediate image target projection range Atag and the quadrangle formed by the retroreflective portions R1 to R4 are parallel to each other. Thereby, the light source 1 can estimate the position of the intermediate image target projection range Tag from the positions of the retroreflective portions R1 to R4.
  • the outer frame portion 22 is an example of the “second region” in the present invention.
  • FIG. 4A shows an example of a cross-sectional view of the EPE 12 when the cut surface BC shown in FIG. 3 is observed from the direction of the arrow 29.
  • the retroreflective portion R1 has a shape of a corner cube that reflects the light emitted from the light source 1 in the incident direction.
  • the retroreflective portion R ⁇ b> 1 is provided on the front surface of the EPE 12 facing the light source 1 together with each microlens of the lens array portion 21.
  • FIG. 4B shows an example of a cross-sectional view of the EPE 12 having a structure different from that shown in FIG.
  • the retroreflective portion R1 is formed on the back surface of the EPE 12. Even in this case, the retroreflective portion R1 retroreflects the incident light transmitted through the EPE 12.
  • the retroreflective portions R1 to R4 are formed on any one surface of the EPE 12.
  • the formation surface of the microlens in the lens array unit 21 may be formed on the back surface of the EPE 12, or may have a two-layer structure.
  • the microlens and the retroreflective portions R1 to R4 are preferably formed by integrally forming a resin that becomes the EPE12, thereby forming the EPE12. It may be molded on top. By doing in this way, EPE12 in which a micro lens and retroreflective part R1 thru / or R4 were formed suitably can be manufactured, without increasing a manufacturing process.
  • FIG. 5 shows the positional relationship between the projectable range “Amax” indicating the maximum range that the light source 1 can emit on the surface where the EPE 12 exists, and the intermediate image target projection range Atag.
  • the projectable range Amax is set to a range including the entire EPE 12.
  • the intermediate image target projection range Atag is set to a rectangular region excluding the outer edge portion of the lens array unit 21 in the projectable range Amax.
  • the intermediate image target projection range Atag is an area where a high-quality intermediate image can be generated, and an outer edge portion where the scanning speed of the laser beam by the light source 1 is slowed out of the entire area of the lens array unit 21. Indicates the excluded area.
  • the light source 1 stores in advance the positional relationship between the intermediate image target projection range Atag and the retroreflective portions R1 to R4.
  • the light source 1 first projects measurement light onto a predetermined range of the EPE 12 before projecting the intermediate image generation light onto the EPE 12.
  • the light source 1 recognizes the positions of the retroreflective portions R1 to R4 in the projectable range Amax based on the output of the photodetector 14 that detects the reflected light of the measurement light.
  • the light source 1 recognizes the positions of the retroreflective portions R1 to R4 in the projectable range Amax by either the collective irradiation detection method or the sequential detection method described below.
  • the light source 1 recognizes the position of the intermediate image target projection range Atag from the recognized positions of the retroreflective portions R1 to R4 based on the positional relationship between the retroreflective portions R1 to R4 and the intermediate image target projection range Tag. To do. Then, the light source 1 projects the intermediate image generation light to the recognized intermediate image target projection range Tag.
  • the batch irradiation method First, the batch irradiation method will be described.
  • the light source 1 scans within the projectable range Amax, and based on the position of the scanning line received by the light detector 14 and the light receiving timing of the light detector 14 in the scanning line, the retroreflective portions R1 to R1. Recognize the position of R4.
  • FIG. 6 is a diagram for explaining processing of the batch irradiation detection method.
  • detection projection ranges “Ar1” to “Ar4” indicate ranges in which the light source 1 projects measurement light.
  • the detection projection ranges Ar1 to Ar4 are respectively set at the four corner positions of the projectable range Amax and set to the maximum range in which the retroreflective portions R1 to R4 may exist.
  • the light source 1 sequentially scans the scanning lines in the projectable range Amax, and emits light in the detection projection ranges Ar1 to Ar4.
  • the scanning line group “Lns1” which is a set of a plurality of scanning lines
  • the light emitted from the light source 1 enters the retroreflecting portion R2, and the photodetector 14 reflects the light reflected from the retroreflecting portion R2. Is detected.
  • the scanning line group “Lns2” is scanned, the light emitted from the light source 1 is incident on the retroreflective portion R1, and the photodetector 14 detects the reflected light from the retroreflective portion R1.
  • the scanning line group “Lns3” when the scanning line group “Lns3” is scanned, the light emitted from the light source 1 enters the retroreflecting part R4, and the photodetector 14 detects the reflected light from the retroreflecting part R4. Further, when the scanning line group “Lns4” is scanned, the light emitted from the light source 1 enters the retroreflector R3, and the photodetector 14 detects the reflected light from the retroreflector R3.
  • the light source 1 recognizes the positions of the retroreflective portions R1 to R4 in the projectable range Amax based on the light reception timing of the photodetector 14 for each of the scanning line groups Lns1 to Lns4. This will be specifically described with reference to FIG.
  • FIG. 7 is a time chart showing temporal changes in the scanning position of the light source 1 and the light amount detected by the light detector 14 (also referred to as “detected light amount”).
  • FIG. 7A shows temporal changes in the scanning position and the detected light amount during scanning of the scanning line group Lns1 composed of a plurality of scanning lines
  • FIG. 7B shows the scanning line group Lns2.
  • the time change of the scanning position at the time of scanning and a detected light quantity is shown.
  • FIG. 7C shows temporal changes in the scanning position and detected light amount during scanning of the scanning line group Lns3
  • FIG. 7D shows the scanning position and detected light amount time during scanning of the scanning line group Lns4. Showing change.
  • FIGS. 1 shows temporal changes in the scanning position and the detected light amount during scanning of the scanning line group Lns1 composed of a plurality of scanning lines
  • FIG. 7B shows the scanning line group Lns2.
  • the time change of the scanning position at the time of scanning and a detected light quantity
  • graphs “Gh1” to “Gh4” indicate transitions of scanning positions in the sub-scanning direction (that is, the horizontal direction), and graphs “Gv1” to “Gv4” The transition of the scanning position in the scanning direction (that is, the vertical direction) is shown.
  • the scanning position has the center position of the projectable range Amax as the origin, the direction in which the retroreflecting parts R1 and R3 exist from the center position is the left direction, the opposite direction is the right direction, the retroreflecting part R1, The direction in which R2 exists is the upward direction, and the opposite direction is the downward direction.
  • the photodetector 14 detects the reflected light from the retroreflecting unit R2 every time the light source 1 switches and scans the scanning lines on the scanning line group Lns1.
  • the light source 1 scans the scanning lines of the scanning line group Lns2 from the left end to the right end, as shown in FIG.
  • the photodetector 14 is The reflected light from the retroreflective portion R1 is detected.
  • the light detector 14 detects the reflected light from the retroreflective portion R1 each time the light source 1 switches and scans the scanning lines on the scanning line group Lns2.
  • the photodetector 14 The reflected light from the retroreflective portion R4 is detected.
  • the light detector 14 detects the reflected light from the retroreflecting unit R4 each time the light source 1 switches and scans the scanning lines on the scanning line group Lns3. Then, when the scanning lines of the scanning line group Lns4 are scanned from the left end to the right end, as shown in FIG. 7D, at the operating point “P4” existing on the graph Gv4, the photodetector 14 recursively reflects. The reflected light from the part R3 is detected. Similarly, the light detector 14 detects the reflected light from the retroreflective portion R3 every time the light source 1 switches and scans the scanning lines on the scanning line group Lns4.
  • the light source 1 determines the time difference between the light receiving timing of the photodetector 14 indicated by the operating point P1 and the light receiving timing of the photodetector 14 indicated by the operating point P2 (that is, the width of the arrow 71 in FIG. 7B). ) To recognize the longitudinal width (also referred to as “left-right width Wh”) of the rectangle formed by the retroreflective portions R1 to R4. In other words, the above-described time difference is calculated when the scanning position of the scanning line group Lns1 is scanned from the left end, when the scanning position reaches the retroreflective portion R2, and when the scanning line of the scanning line group Lns2 is scanned from the left end. This corresponds to the difference from the timing at which the scanning position arrives at the retroreflective portion R1. The light source 1 recognizes the left-right width Wh by multiplying the above-described time difference by the scanning speed.
  • the light source 1 projects the projectable range Amax based on the distance in the main scanning direction between the scanning position indicated by the operating point P1 and the scanning position indicated by the operating point P2 (that is, the width indicated by the arrow 72 in FIG. 7B).
  • the inclination of the rectangle formed by the retroreflective portions R1 to R4 with respect to the longitudinal direction (that is, the sub-scanning direction) (also referred to as “left-right inclination Th”) is recognized.
  • the light source 1 stores in advance a map or the like of the distance between both scanning positions in the main scanning direction and the left-right inclination Th, and calculates the left-right inclination Th by referring to the map or the like.
  • the light source 1 is based on the distance between the scanning position indicated by the operating point P1 and the scanning position indicated by the operating point P3 in the main scanning direction, and the width in the lateral direction of the rectangle formed by the retroreflective portions R1 to R4 ("up and Width Wv ”).
  • the light source 1 stores in advance a map or the like indicating the correspondence between the distance between both scanning positions in the main scanning direction and the vertical width Wv, and determines the vertical width Wv with reference to the map or the like. To do.
  • the light source 1 has a time difference between the light receiving timing of the photodetector 14 indicated by the operating point P2 and the light receiving timing of the photodetector 14 indicated by the operating point P4 (that is, the width indicated by the arrow 74 in FIG. 7D). Based on the above, the inclination in the short direction of the rectangle formed by the retroreflective portions R1 to R4 with respect to the short direction of the projectable range Amax (also referred to as “vertical inclination Tv”) is recognized. For example, the light source 1 stores in advance a map or the like of the time difference and the vertical tilt Tv, and calculates the vertical tilt Tv by referring to the map or the like.
  • the light source 1 recognizes the relative position of the intermediate image target projection range Atag with respect to the projectable range Amax based on the calculated left-right width Wh, left-right tilt Th, vertical width Wv, and vertical tilt Tv.
  • the light source 1 recognizes the size of the intermediate image target projection range Tag, that is, the horizontal width and vertical width, based on the horizontal width Wh and the vertical width Wv.
  • the light source 1 recognizes, for example, a value obtained by multiplying the left-right width Wh by a predetermined ratio as the left-right width of the intermediate image target projection range Atag.
  • the predetermined ratio is the ratio of the width in the longitudinal direction of the intermediate image target projection range Tag to the width in the longitudinal direction of the rectangle formed by the retroreflective portions R1 to R4, and is measured in advance based on experiments or the like.
  • the light source 1 recognizes, for example, a value obtained by multiplying the vertical width Wv by a predetermined ratio as the vertical width of the intermediate image target projection range Atag.
  • the predetermined ratio is a ratio of the width in the short direction of the intermediate image target projection range Tag to the width in the short direction of the rectangle formed by the retroreflective portions R1 to R4, and is measured in advance based on experiments or the like.
  • the light source 1 recognizes the left-right inclination and the up-and-down inclination of the intermediate image target projection range Atag with respect to the projectable range Amax based on the left-right inclination Th and the up-and-down inclination Tv.
  • the light source 1 uses the intermediate image target projection. It is determined that the longitudinal direction of the range Tag is tilted by the left-right tilt Th with respect to the longitudinal direction of the projectable range Amax.
  • the light source 1 determines that the short direction of the intermediate image target projection range Atag is inclined by the vertical inclination Tv with respect to the short direction of the projectable range Amax.
  • the light source 1 projects the intermediate image generation light onto the intermediate image target projection range Atag recognized by the above processing. Thereby, the light source 1 can project the intermediate image generation light to a desired range of the EPE 12, and the viewer can visually recognize an image with high visibility.
  • the sequential detection method the light source 1 sequentially projects a plurality of pattern lights having a predetermined shape within the detection projection ranges Ar1 to Ar4 shown in FIG. 6, and each of the pattern lights detected by the photodetector 14 is reflected.
  • the positions of the retroreflective portions R1 to R4 with respect to the projectable range Amax are recognized on the basis of the projection position of the first projection.
  • the light source 1 sequentially shifts the rectangular pattern light “Ph” whose longitudinal direction is the sub-scanning direction from the upper end position to the lower end position of the detection projection range Ar1 shown in FIG. Project.
  • the light source 1 determines whether or not the light detector 14 has detected the reflected light of the pattern light Ph every time the pattern light Ph is projected.
  • the light source 1 recognizes the position of the retroreflective portion R1 in the main scanning direction. Specifically, the light source 1 recognizes the distance from the upper end of the projectable range Amax to the retroreflective portion R1 based on the number of scanning lines shifted from the projection position of the pattern light Ph in FIG. . Then, the light source 1 ends the projection of the pattern light Ph when the projection position of the pattern light Ph reaches the lower end position of the detection projection range Ar1 shown in FIG.
  • the width in the longitudinal direction of the pattern light Ph is set to the same width as the width of the detection projection area Ar1 in the same direction, for example.
  • the light source 1 can project the pattern light Ph on the retroreflection part R1 reliably.
  • the width of the pattern light Ph in the short direction is set to the width of the retroreflective portion R1 in the same direction.
  • the light source 1 also applies the rectangular pattern light Ph having the sub-scanning direction as the longitudinal direction from the upper end position to the lower end position of the detection projection range Ar2 in the same manner as the detection projection range Ar1. , And sequentially project by shifting one scanning line.
  • the light source 1 determines whether or not the light detector 14 has detected the reflected light of the pattern light Ph every time the pattern light Ph is projected. Thereby, the light source 1 recognizes the distance from the upper end of the projectable range Amax to the retroreflective portion R2.
  • the light source 1 scans the detection projection ranges Ar3 and Ar4 with a rectangular pattern light Ph having a longitudinal direction in the sub-scanning direction, one scanning line at a time from the lower end position to the upper end position of the detection projection ranges Ar3 and Ar4. Project in order by shifting.
  • the light source 1 determines whether or not the light detector 14 has detected the reflected light of the pattern light Ph every time the pattern light Ph is projected. Thereby, the light source 1 recognizes the distance from the lower end of the projectable range Amax to the retroreflective portions R3 and R4.
  • FIGS. 9A to 9C show transition of the pattern light projection position when recognizing the position of the retroreflective portion R1 in the sub-scanning direction.
  • the light source 1 sequentially projects rectangular pattern light “Pv” with the main scanning direction as a longitudinal direction, shifted one dot at a time from the left end position to the right end position of the detection projection range Ar1 shown in FIG. 9A. To do.
  • the light source 1 determines whether or not the light detector 14 has detected light each time the pattern light Pv is projected.
  • the light source 1 recognizes the position of the retroreflective portion R1 in the sub-scanning direction. Specifically, the light source 1 recognizes the distance from the left end of the projectable range Amax to the retroreflective portion R1 based on the number of dots shifted from the projection position of the pattern light Pv in FIG. Then, the light source 1 ends the projection of the pattern light Pv when the projection position of the pattern light Pv reaches the right end position of the detection projection range Ar1 shown in FIG. 9C.
  • the width of the pattern light Pv in the longitudinal direction is set to the same width as the width of the detection projection area Ar1 in the same direction, for example.
  • the light source 1 can irradiate pattern light Pv reliably to retroreflection part R1.
  • the width of the pattern light Pv in the short direction is set to the width of the retroreflective portion R1 in the same direction. By doing in this way, the light source 1 can recognize the position where the detection light quantity which the photodetector 14 shows becomes the maximum as a position where retroreflection part R1 exists.
  • the light source 1 also applies the rectangular pattern light Pv having the main scanning direction as the longitudinal direction from the left end position to the right end position of the detection projection range Ar3 in the same manner as the detection projection range Ar1. , And sequentially project by shifting one scanning line.
  • the light source 1 determines whether or not the light detector 14 has detected the reflected light of the pattern light Pv each time the pattern light Pv is projected. Thereby, the light source 1 recognizes the distance from the left end of the projectable range Amax to the retroreflective portion R3. Further, the light source 1 scans the detection projection ranges Ar2 and Ar4 with a rectangular pattern light Pv whose longitudinal direction is the main scanning direction, one scanning line at a time from the right end position to the left end position of the detection projection ranges Ar2 and Ar4.
  • the light source 1 determines whether or not the light detector 14 has detected the reflected light of the pattern light Pv each time the pattern light Pv is projected. Thereby, the light source 1 recognizes the distance from the right end of the projectable range Amax to the retroreflective portions R2 and R4.
  • the light source 1 can recognize the positions of the retroreflective portions R1 to R4 in the projectable range Amax by the sequential detection method. And the light source 1 calculates the left-right width Wh, the left-right inclination Th, the up-down width Wv, and the up-down inclination Tv, for example based on the recognized position of each retroreflection part R1 thru
  • the light source 1 can project the intermediate image generation light to a desired range of the EPE 12, and the viewer can visually recognize an image with high visibility.
  • the positions of the retroreflective portions R1 to R4 can be reliably recognized even when the photodetector 14 is not relatively wide band, as compared with the batch irradiation detection method. it can.
  • the outer frame part 22 is provided with retroreflective parts R1 to R4, and the photodetector 14 detects the measurement light reflected by the retroreflective parts R1 to R4.
  • the configuration to which the present invention is applicable is not limited to this.
  • the photodetector 14 may be installed in the outer frame portion 22 and directly receive the measurement light emitted from the light source 1.
  • FIG. 10 shows a configuration of the EPE 12A according to the first modification.
  • the outer frame portion 22A of the EPE 12A is provided with photodetectors 41 to 44 instead of the retroreflecting portions R1 to R4. Then, the photodetectors 41 to 44 transmit a detection signal indicating the detected light amount to the light source 1.
  • the light source 1 executes the collective irradiation detection method or the sequential detection method, thereby reducing the horizontal width, vertical width, horizontal tilt, and vertical tilt of the rectangle formed by the photodetectors 41 to 44 in the projectable range Amax. calculate. Then, as in the embodiment, the light source 1 recognizes the intermediate image target projection range Tag from these horizontal width, vertical width, horizontal tilt, and vertical tilt, and outputs intermediate image generation light to the recognized intermediate image target projection range Tag. Project. As described above, also according to the present modification, the light source 1 can preferably project the intermediate image generation light to a desired range of the EPE 12A, and allow the viewer to visually recognize an image with high visibility.
  • FIG. 11 shows a configuration of the EPE 12B according to the second modification. As shown in FIG. 11, the outer frame portion 22B of the EPE 12B is provided with a retroreflective portion “R” having a square frame shape.
  • the light source 1 emits the measurement light based on the collective irradiation detection method or the sequential detection method described in the embodiment, and recursively in the projectable range Amax based on the detection signal of the photodetector 14.
  • the relative position of the reflective part R is recognized.
  • the light source 1 determines the detection projection ranges Ar1 to Ar4 including the corners of the four corners of the retroreflective portion R, and irradiates the measurement light within the detection projection ranges Ar1 to Ar4. Then, the relative positions of the corners of the four corners of the retroreflective portion R in the projectable range Amax are recognized.
  • the light source 1 calculates, from the positions of the corners of the four corners of the retroreflective portion R, the horizontal width, vertical width, horizontal tilt, and vertical tilt of the rectangle that forms the outer edge of the retroreflective portion R in the projectable range Amax. .
  • the light source 1 recognizes the position of the intermediate image target projection range Atag in the projectable range Amax.
  • the light source 1 can preferably irradiate the intermediate image target projection range Atag with the intermediate image generation light.
  • the light source 1 After recognizing the intermediate image target projection range Atag, the light source 1 executes recognition processing of the intermediate image target projection range Atag at predetermined time intervals while emitting intermediate image generation light to the recognized intermediate image target projection range Tag. Also good. Thereby, the light source 1 suitably corrects the deviation of the projection range to the EPE 12 due to the environmental change such as the temperature change while allowing the user to visually recognize the desired virtual image.
  • FIG. 12 shows the detection projection ranges “Ar1x” to “Ar4x” in the recognition process of the intermediate image target projection range Tag according to this modification.
  • the light source 1 uses a detection projection range Ar1x as a range that can vary due to the maximum deviation of the temporal change with reference to the positions of the retroreflective portions R1 to R4 recognized in the previous recognition process of the intermediate image target projection range Tag.
  • the detection projection ranges Ar1x to Ar4x in the second and subsequent intermediate image target projection range Atag recognition processing are the detection projections when the intermediate image target projection range Atag recognition processing is performed for the first time. It is smaller than the range Ar1 to Ar4 (see FIG. 6 etc.).
  • the detection projection ranges Ar1x to Ar4x are set to a range that does not overlap the lens array unit 21.
  • the light source 1 emits the measurement light in a range where the measurement light does not irradiate the lens array unit 21, and thus is suitable even while the user is visually recognizing the virtual image based on the intermediate image. Moreover, the deviation of the irradiation range to the EPE 12 can be suitably corrected.
  • the batch irradiation detection method is shorter in the position of the intermediate image target projection range Atag than the sequential detection method.
  • the recognition process is completed.
  • the sequential detection method has an advantage that it has less unnecessary projection light (stray light) and less influence on the visibility than the batch irradiation detection method.
  • the light source 1 determines whether or not the retroreflecting portions R1 to R4 are irradiated with the measurement light by detecting laser noise generated by the reflected light of the measurement light. May be. Specifically, in this case, the light source 1 detects laser noise caused by the reflected light of the measurement light based on the detection signal Sd of the light receiving element 50 (see FIG. 2) that functions as an output monitor capable of detecting noise. Then, it is determined whether or not the retroreflective portions R1 to R4 are irradiated with the measurement light. Even in this aspect, the light source 1 can suitably recognize the intermediate image target projection range Atag to be irradiated with the intermediate image generation light by preferably executing the batch irradiation method or the sequential irradiation method.
  • the structure of the retroreflective portions R1 to R4 is not limited to the structure having the shape of the corner cube shown in FIG.
  • the retroreflective portions R1 to R4 may be those in which the retroreflective sheet is attached to the outer frame portion 22, and the outer frame portion 22 is coated with a retroreflective paint. It may be.
  • the present invention can be used for a display device using a laser light source such as a head-up display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

画像投影装置は、光学素子と、第1光源制御手段と、光検出手段と、投射範囲認識手段と、第2光源制御手段とを有する。光学素子は、光源の出射光により画像を描画する第1領域と、第1領域の外側に設けられた第2領域とを有する。第1光源制御手段は、光源に第2領域へ光を出射させる。光検出手段は、第2領域の所定部分に照射された光を検出する。投射範囲認識手段は、光検出手段の出力に基づき、光学素子の位置での光源の投射可能範囲における画像を構成する光を投射すべき範囲を認識する。第2光源制御手段は、投射範囲認識手段が認識した投射すべき範囲に照射されるように、画像を構成する光を光源に出射させる。

Description

画像投影装置、ヘッドアップディスプレイ、制御方法及び光学素子
 本発明は、投影位置を調整する技術に関する。
 従来から、スクリーンとプロジェクタから構成される画像投影装置において、スクリーンがプロジェクタと正対していない場合に生ずる画像の歪みを補正する技術が知られている。例えば、特許文献1には、光源からの光を複数枚の液晶パネルに分割して導き、複数枚の液晶パネルを通過した光を再び合成してスクリーンに投影する液晶プロジェクタにおいて、複数枚の液晶パネルの位置合せを行うためのコンバーゼンス調整方法が開示されている。その他、本発明に関連する技術が特許文献2に開示されている。
特開平11-153807号公報 特許第3996617号公報
 ヘッドアップディスプレイなどに用いられる光源ユニットにおいて、中間像生成用の光学素子の所定範囲に光を出射することで中間像を生成する際、中間像生成用の光学素子と光源との位置ずれを考慮して、光の出射範囲を定める必要がある。そこで、本発明は、光学素子と光源とに位置ずれが生じていた場合であっても、光学素子の適切な範囲に光を投射することが可能な画像投影装置を提供することを主な目的とする。
 請求項1に記載の発明では、光源と、画像投影装置であって、前記光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有する光学素子と、前記光源に前記第2領域へ光を出射させる第1光源制御手段と、前記第2領域の所定部分に照射された前記光を検出する光検出手段と、前記光検出手段の出力に基づき、前記光学素子の位置での前記光源の投射可能範囲における前記画像を構成する光を投射すべき範囲を認識する投射範囲認識手段と、前記投射範囲認識手段が認識した前記投射すべき範囲に、前記画像を構成する光を前記光源に投射させる第2光源制御手段と、を有することを特徴とする。
 請求項12に記載の発明では、光源と、前記光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有する光学素子と、を有する画像投影装置が実行する制御方法であって、前記光源に前記第2領域へ光を出射させる第1光源制御工程と、前記第2領域の所定部分に照射された前記光を検出する光検出工程と、前記光検出工程の出力に基づき、前記光学素子の位置での前記光源の投射可能範囲における前記画像を構成する光を投射すべき範囲を認識する投射範囲認識工程と、前記投射範囲認識工程が認識した前記投射すべき範囲に、前記画像を構成する光を前記光源に投射させる第2光源制御工程と、を有することを特徴とする。
 請求項13に記載の発明では、光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有し、前記画像を構成する光を投射すべき範囲を前記光源が認識するための光が前記第2領域に照射される光学素子であって、前記第2領域の所定部分において、再帰性反射部を有することを特徴とする。
 請求項14に記載の発明では、光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有し、前記画像を構成する光を投射すべき範囲を前記光源が認識するための光が前記第2領域に照射される光学素子であって、前記第2領域の複数の箇所に光検出器を有することを特徴とする。
ヘッドアップディスプレイの概略構成を示す。 光源の概略構成図である。 EPE(Exit Pupil Expander)の正面図である。 EPEの断面図の例を示す。 投射可能範囲と、目標投射範囲との位置関係を示す。 一括照射検出方法の処理を説明するための図である。 光源の走査位置と検出光量との時間変化を示すタイムチャートである。 再帰性反射部の主走査方向における位置を認識する場合のパターン光の投影位置の遷移を示す。 再帰性反射部の副走査方向における位置を認識する場合のパターン光の投影位置の遷移を示す。 変形例1に係るEPEの構成を示す。 変形例2に係るEPEの構成を示す。 2回目以降の中間像目標投射範囲の認識処理における照射範囲を示す。
 本発明の1つの好適な実施形態では、画像投影装置は、光源と、前記光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有する光学素子と、前記光源に前記第2領域へ光を出射させる第1光源制御手段と、前記第2領域の所定部分に照射された前記光を検出する光検出手段と、前記光検出手段の出力に基づき、前記光学素子の位置での前記光源の投射可能範囲における前記画像を構成する光を投射すべき範囲を認識する投射範囲認識手段と、前記投射範囲認識手段が認識した前記投射すべき範囲に、前記画像を構成する光を前記光源に投射させる第2光源制御手段と、を有する。
 上記の画像投影装置は、光学素子と、第1光源制御手段と、光検出手段と、投射範囲認識手段と、第2光源制御手段とを有する。光学素子は、光源の出射光により画像を描画する第1領域と、第1領域の外側に設けられた第2領域とを有する。第1光源制御手段は、光源に第2領域へ光(計測光)を出射させる。光検出手段は、第2領域の所定部分に照射された光を検出する。投射範囲認識手段は、光検出手段の出力に基づき、光学素子の位置での光源の投射可能範囲における画像を構成する光を投射すべき範囲を認識する。第2光源制御手段は、投射範囲認識手段が認識した投射すべき範囲に照射されるように、画像を構成する光を光源に出射させる。この構成により、画像投影装置は、光源と光学素子との位置ずれが生じていた場合であっても、光学素子の第1領域内の適切な範囲に、画像を構成する光を投射することができる。
 上記画像投影装置の一態様では、前記投射範囲認識手段は、前記投射可能範囲における前記所定部分の位置を認識することで、前記投射可能範囲に対する前記投射すべき範囲を認識する。この態様により、画像投影装置は、第2領域の上述の所定部分と、第1領域における投射すべき範囲との位置関係を予め把握しておくことで、好適に、投射可能範囲における投射すべき範囲を認識することができる。
 上記画像投影装置の他の一態様では、前記第1光源制御手段は、前記投射可能範囲内を前記光源に走査させ、前記投射範囲認識手段は、前記光検出手段が受光した走査線の位置及び当該走査線における前記光検出手段の受光のタイミングに基づき、前記投射可能範囲における前記所定部分の位置を認識する。この態様により、画像投影装置は、好適に、投射可能範囲における投射すべき範囲を認識することができる。
 上記画像投影装置の他の一態様では、前記第1光源制御手段は、前記所定部分を含む範囲において、パターン光の投射位置を遷移させ、前記投射範囲認識手段は、前記パターン光ごとの前記光検出手段の出力に基づき、前記投射可能範囲における前記所定部分の位置を認識する。この態様によっても、画像投影装置は、好適に、投射可能範囲における投射すべき範囲を認識することができる。
 上記画像投影装置の他の一態様では、前記第1光源制御手段は、前記所定部分を含む範囲において、副走査方向を長手方向とする矩形のパターン光を主走査方向において遷移させることで、前記所定部分の主走査方向における位置を前記投射範囲認識手段に認識させ、主走査方向を長手方向とする矩形のパターン光を副走査方向において遷移させることで、前記所定部分の副走査方向における位置を前記投射範囲認識手段に認識させる。この態様により、画像投影装置は、投射可能範囲における上述の所定部分の主走査方向及び副走査方向における位置を好適に認識し、投射可能範囲における投射すべき範囲を認識することができる。
 上記画像投影装置の他の一態様では、前記第2領域の前記所定部分には、再帰性反射部が形成され、前記光検出手段は、前記再帰性反射部により反射された光を検出する。この態様により、画像投影装置は、第2領域の所定部分に光が照射されたか否かを光検出手段により的確に検出し、投射可能範囲における投射すべき範囲を認識することができる。
 上記画像投影装置の他の一態様では、前記光検出手段は、前記第2領域の前記所定部分に設置される光検出器である。この態様によっても、光検出手段は、光学素子の第2領域の所定部分に照射された光を検出することができる。
 上記画像投影装置の他の一態様では、前記第1領域は、複数のマイクロレンズが配列されたマイクロレンズアレイにより形成されている。好適には、前記第2領域の前記所定部分には、再帰性反射可能な形状が形成され、前記マイクロレンズアレイと、前記形状とは、一体成形される。この構成により、製造工数を増やすことなく、好適に、光学素子上にマイクロレンズと再帰性反射構造とを形成することができる。
 上記画像投影装置の他の一態様では、前記光検出手段は、前記所定部分に照射された光の反射光により発生した前記光源の光のノイズを検出する。この態様によっても、光検出手段は、光学素子の第2領域の所定部分に照射された光を好適に検出することができる。
 本発明の他の好適な実施形態では、ヘッドアップディスプレイは、上記の画像投影装置を備え、前記光学素子上に描画された前記画像をユーザの目の位置から虚像として視認させる。ヘッドアップディスプレイは、上記記載の画像投影装置を備えることで、画像投影装置は、光源と光学素子との位置ずれが生じていた場合であっても、光学素子の第1領域内の適切な範囲に、画像を構成する光を照射させ、視認性が高い画像を観察者に視認させることができる。
 本発明のさらに別の好適な実施形態では、前記光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有する光学素子と、を有する画像投影装置が実行する制御方法であって、前記光源に前記第2領域へ光を出射させる第1光源制御工程と、前記第2領域の所定部分に照射された前記光を検出する光検出工程と、前記光検出工程の出力に基づき、前記光学素子の位置での前記光源の投射可能範囲における前記画像を構成する光を投射すべき範囲を認識する投射範囲認識工程と、前記投射範囲認識工程が認識した前記投射すべき範囲に、前記画像を構成する光を前記光源に投射させる第2光源制御工程と、を有することを特徴とする。画像投影装置は、この制御方法を実行することで、光源と光学素子との位置ずれが生じていた場合であっても、光学素子の第1領域内の適切な範囲に、画像を構成する光を照射させ、視認性が高い画像を観察者に視認させることができる。
 本発明のさらに別の好適な実施形態では、光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有し、前記画像を構成する光を投射すべき範囲を前記光源が認識するための光が前記第2領域に照射される光学素子であって、前記第2領域の所定部分において、再帰性反射部を有する。この態様により、光学素子は、第2領域の所定部分に照射された光を反射することができ、画像を構成する光の適切な投射範囲を光源に認識させることができる。
 本発明のさらに別の好適な実施形態では、光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有し、前記画像を構成する光を投射すべき範囲を前記光源が認識するための光が前記第2領域に照射される光学素子であって、前記第2領域の複数の箇所に光検出器を有する。この態様により、光学素子は、第2領域の所定部分に照射された光を検出することができ、画像を構成する光の適切な投射範囲を光源に認識させることができる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 [ヘッドアップディスプレイの構成]
 図1は、本実施例に係るヘッドアップディスプレイの概略構成図である。図1に示すように、本実施例に係るヘッドアップディスプレイは、車両に搭載され、光源1と、中間像生成用光学素子であるEPE12と、コンバイナ13と、光検出器14とを備える。
 光源1は、観察者に視認させる情報を示す中間像を構成するレーザ光をEPE12に向けて出射する。光源1は、中間像を構成する光(「中間像生成光」とも呼ぶ。)の他に、EPE12に中間像生成光を投射すべき範囲を計測するための光(「計測光」とも呼ぶ。)を出射する。そして、光源1は、光検出器14の出力に基づき、EPE12の位置を認識し、中間像生成光を投影すべきEPE12の範囲(「中間像目標投射範囲Atag」とも呼ぶ。)を決定する。光源1の具体的な構成例については、[光源の構成]のセクションで説明する。
 EPE12は、中間像を生成する透過型の光学素子であり、複数のマイクロレンズが配列されたマイクロレンズアレイを有する。EPE12の具体的な構成については、[EPEの構成]のセクションで説明する。EPE12は、本発明における「光学素子」の一例である。
 コンバイナ13は、EPE12で生成された中間像を構成する光が投影されると共に、その投影光を運転者のアイポイント「Pe」へ反射することで虚像を観察者に視認させるハーフミラーである。
 光検出器14は、EPE12で反射された計測光を検出し、検出した光量に相当する検出信号を光源1に送信する。そして、光検出器14は、本発明における「光検出手段」として機能する。
 [光源の構成]
 図2は、光源1の一部を示す構成図である。図2に示すように、光源1は、画像信号入力部2と、ビデオASIC3と、フレームメモリ4と、ROM5と、RAM6と、レーザドライバASIC7と、MEMS制御部8と、レーザ光源部9と、MEMSミラー10と、を備える。
 画像信号入力部2は、外部から入力される画像信号を受信してビデオASIC3に出力する。
 ビデオASIC3は、画像信号入力部2から入力される画像信号及びMEMSミラー10から入力される走査位置情報「Sc」に基づいてレーザドライバASIC7やMEMS制御部8を制御するブロックであり、ASIC(Application Specific Integrated Circuit)として構成されている。ビデオASIC3は、同期/画像分離部31と、ビットデータ変換部32と、発光パターン変換部33と、タイミングコントローラ34と、を備える。
 同期/画像分離部31は、画像信号入力部2から入力された画像信号から、画像表示部であるスクリーンに表示される画像データと同期信号とを分離し、画像データをフレームメモリ4へ書き込む。
 ビットデータ変換部32は、フレームメモリ4に書き込まれた画像データを読み出してビットデータに変換する。
 発光パターン変換部33は、ビットデータ変換部32で変換されたビットデータを、各レーザの発光パターンを表す信号に変換する。
 タイミングコントローラ34は、同期/画像分離部31、ビットデータ変換部32の動作タイミングを制御する。また、タイミングコントローラ34は、後述するMEMS制御部8の動作タイミングも制御する。
 フレームメモリ4には、同期/画像分離部31により分離された画像データが書き込まれる。ROM5は、ビデオASIC3が動作するための制御プログラムやデータなどを記憶している。RAM6には、ビデオASIC3が動作する際のワークメモリとして、各種データが逐次読み書きされる。
 レーザドライバASIC7は、後述するレーザ光源部9に設けられるレーザダイオードを駆動する信号を生成するブロックであり、ASICとして構成されている。レーザドライバASIC7は、赤色レーザ駆動回路71と、青色レーザ駆動回路72と、緑色レーザ駆動回路73と、を備える。
 赤色レーザ駆動回路71は、発光パターン変換部33が出力する信号に基づき、赤色レーザLD1を駆動する。青色レーザ駆動回路72は、発光パターン変換部33が出力する信号に基づき、青色レーザLD2を駆動する。緑色レーザ駆動回路73は、発光パターン変換部33が出力する信号に基づき、緑色レーザLD3を駆動する。
 MEMS制御部8は、タイミングコントローラ34が出力する信号に基づきMEMSミラー10を制御する。MEMS制御部8は、サーボ回路81と、ドライバ回路82と、を備える。
 サーボ回路81は、タイミングコントローラからの信号に基づき、MEMSミラー10の動作を制御する。
 ドライバ回路82は、サーボ回路81が出力するMEMSミラー10の制御信号を所定レベルに増幅して出力する。
 レーザ光源部9は、レーザドライバASIC7から出力される駆動信号に基づいて、レーザ光をMEMSミラー10へ出射する。
 走査手段としてのMEMSミラー10は、レーザ光源部9から出射されたレーザ光をEPE12に向けて反射する。こうすることで、MEMSミラー10は、EPE12上に表示すべき画像を形成する。また、MEMSミラー10は、画像信号入力部2に入力された画像を表示するためにMEMS制御部8の制御によりEPE12上を走査(スキャン)するように移動し、その際の走査位置情報(例えばミラーの角度などの情報)をビデオASIC3へ出力する。
 光源1は、上記のようなEPE12から出射された光をコンバイナ13で反射させ、その反射光に対応する画像を、運転者のアイポイントPeから虚像Ivとして視認させる。
 次に、レーザ光源部9の詳細な構成を説明する。レーザ光源部9は、ケース91と、波長選択性素子92と、コリメータレンズ93と、赤色レーザLD1と、青色レーザLD2と、緑色レーザLD3と、モニタ用受光素子(単に「受光素子」とも呼ぶ。)50とを備える。
 ケース91は、樹脂などにより略箱状に形成される。ケース91には、緑色レーザLD3を取り付けるために、ケース91内へ貫通する孔が設けられているとともに断面が凹状のCAN取付部91aと、CAN取付部91aと直交する面に設けられ、ケース91内へ貫通する孔が設けられているとともに断面が凹状のコリメータ取付部91bと、が形成されている。
 合成素子としての波長選択性素子92は、例えばトリクロイックプリズムにより構成され、反射面92aと反射面92bが設けられている。反射面92aは、赤色レーザLD1から出射されたレーザ光をコリメータレンズ93へ向かって透過させ、青色レーザLD2から出射されたレーザ光をコリメータレンズ93へ向かって反射させる。反射面92bは、赤色レーザLD1および青色レーザLD2から出射されたレーザ光の大部分をコリメータレンズ93へ向かって透過させ、その一部を受光素子50へ向かって反射させる。また、反射面92bは、緑色レーザLD3から出射されたレーザ光の大部分をコリメータレンズ93へ向かって反射させ、その一部を受光素子50へ向かって透過させる。こうして、各レーザからの出射光が重ね合わされて、コリメータレンズ93および受光素子50に入射される。なお、波長選択性素子92は、ケース91内のコリメータ取付部91bの近傍に設けられている。
 コリメータレンズ93は、波長選択性素子92から入射したレーザ光を平行光にしてMEMSミラー10へ出射する。コリメータレンズ93は、ケース91のコリメータ取付部91bに、UV系接着剤などで固定される。即ち、合成素子の後段にコリメータレンズ93が設けられている。
 レーザ光源としての赤色レーザLD1は、赤色のレーザ光を出射する。赤色レーザLD1は、半導体レーザ光源がチップ状態のまま、又は、チップがサブマウントなどに載置された状態で、ケース91内の波長選択性素子92及びコリメータレンズ93と同軸となる位置に固定されている。
 レーザ光源としての青色レーザLD2は、青色のレーザ光を出射する。青色レーザLD2は、半導体レーザ光源がチップ状態のまま、又は、チップがサブマウントなどに載置された状態で、出射したレーザ光が反射面92aによってコリメータレンズ93へ向かって反射できる位置に固定されている。この赤色レーザLD1と青色レーザLD2の位置は入れ替わってもよい。
 レーザ光源としての緑色レーザLD3は、CANパッケージに取り付けられた状態又はフレームパッケージに取り付けられた状態であり、緑色のレーザ光を出射する。緑色レーザLD3は、CANパッケージ内に緑色のレーザ光を発生する半導体レーザ光源チップBが取り付けられており、ケース91のCAN取付部91aに固定されている。
 受光素子50は、各レーザ光源から出射されたレーザ光の一部を受光する。受光素子50は、フォトディテクタなどの光電変換素子であり、入射したレーザ光の光量に応じた電気信号である検出信号「Sd」をレーザドライバASIC7へ供給する。実際には、パワー調整時には、赤色レーザ光、青色レーザ光及び緑色レーザ光のうちの1つが順に受光素子50へ入射され、受光素子50は、そのレーザ光の光量に対応する検出信号Sdを出力する。レーザドライバASIC7は、検出信号Sdに応じて、赤色レーザLD1、青色レーザLD2及び緑色レーザLD3のパワー調整を行う。
 例えば、赤色レーザLD1のパワー調整を行う場合、レーザドライバASIC7は赤色レーザ駆動回路71のみを動作させ、赤色レーザLD1へ駆動電流を供給して赤色レーザLD1から赤色レーザ光を出射させる。この赤色レーザ光の一部は受光素子50により受光され、その光量に応じた検出信号SdがレーザドライバASIC7へフィードバックされる。レーザドライバASIC7は、検出信号Sdが示す光量が適正な光量となるように、赤色レーザ駆動回路71から赤色レーザLD1へ供給される駆動電流を調整する。こうして、パワー調整がなされる。青色レーザLD2のパワー調整及び緑色レーザLD3のパワー調整も同様に行われる。
 そして、ビデオASIC3、レーザドライバASIC7及びMEMS制御部8などは、本発明における「第1光源制御手段」、「投射範囲認識手段」、及び「第2光源制御手段」として機能する。
 [EPEの構成]
 次に、EPE12の具体的な構成について、図3を参照して具体的に説明する。図3は、光源1の後方から観察したEPE12の正面図を示す。図3に示すように、EPE12は、レンズアレイ部21と、外枠部22とを有する。
 レンズアレイ部21は、複数のマイクロレンズが片側の面に規則的に配列形成された領域であり、光源1の出射光により中間像を描画する。レンズアレイ部21は、配列されたマイクロレンズの曲率などに応じた拡散角にて光を拡散させる。レンズアレイ部21において配列されたマイクロレンズの曲率などは、必要な拡散角に応じて予め設計される。レンズアレイ部21は、本発明における「第1領域」の一例である。
 外枠部22は、レンズアレイ部21の外側に設けられた領域であり、四隅に再帰性反射部R1乃至R4を有する。再帰性反射部R1乃至R4は、入射した光を再帰性反射する。即ち、再帰性反射部R1乃至R4は、入射した光を、入射した方向へ反射させる。ここで、各再帰性反射部R1乃至R4は、当該再帰性反射部R1乃至R4の位置を頂点とする長方形がレンズアレイ部21の全体を包含するように配置される。また、ここでは、一例として、中間像目標投射範囲Atagと、再帰性反射部R1乃至R4が形成する四角形との長手方向及び短手方向の辺がそれぞれ平行であるものとする。これにより、光源1は、再帰性反射部R1乃至R4の位置から中間像目標投射範囲Atagの位置を推定することができる。外枠部22は、本発明における「第2領域」の一例である。
 図4(a)は、図3に示す切断面BCを矢印29の方向から観察した場合のEPE12の断面図の例を示す。図4(a)に示すように、再帰性反射部R1は、光源1から出射された光を入射した方向へ反射させるコーナーキューブの形状を有する。そして、再帰性反射部R1は、レンズアレイ部21の各マイクロレンズと共に、光源1と対向するEPE12の正面に設けられている。
 図4(b)は、図4(a)と異なる構造を有するEPE12の断面図の例を示す。図4(b)の場合、再帰性反射部R1は、EPE12の裏面に形成される。この場合であっても、再帰性反射部R1は、EPE12を透過した入射光を、再帰性反射させる。このように、再帰性反射部R1乃至R4は、EPE12のいずれか一方の面に形成される。なお、レンズアレイ部21におけるマイクロレンズの形成面は、EPE12の裏面に形成されていてもよく、二層構造になっていてもよい。
 そして、図4(a)、(b)のいずれの構成であっても、好適には、マイクロレンズと、再帰性反射部R1乃至R4とは、EPE12となる樹脂を一体成形することにより、EPE12上に成形されるとよい。このようにすることで、製造工程を増やすことなく、好適に、マイクロレンズと再帰性反射部R1乃至R4が形成されたEPE12を製造することができる。
 [中間像目標投射範囲の認識方法]
 次に、中間像目標投射範囲Atagの認識方法について具体的に説明する。
 図5は、EPE12が存在する面上において光源1が出射可能な最大範囲を示す投射可能範囲「Amax」と、中間像目標投射範囲Atagとの位置関係を示す。
 図5に示すように、投射可能範囲Amaxは、EPE12の全体を含む範囲に設定される。また、中間像目標投射範囲Atagは、投射可能範囲Amaxのうち、レンズアレイ部21の外縁部分を除く矩形領域に設定されている。具体的には、中間像目標投射範囲Atagは、高画質の中間像を生成可能なエリアであって、レンズアレイ部21の全エリアのうち光源1によるレーザ光の走査速度が遅くなる外縁部分を除いたエリアを示す。そして、光源1は、中間像目標投射範囲Atagと、再帰性反射部R1乃至R4との位置関係を予め記憶する。
 この場合、光源1は、まず、中間像生成光をEPE12に投射する前に、計測光をEPE12の所定範囲に投射する。そして、光源1は、計測光の反射光を検出する光検出器14の出力に基づき、投射可能範囲Amaxにおける再帰性反射部R1乃至R4の位置を認識する。具体的には、光源1は、以下に述べる一括照射検出方法または順次検出方法のいずれかの方法により、投射可能範囲Amaxにおける再帰性反射部R1乃至R4の位置を認識する。そして、光源1は、再帰性反射部R1乃至R4と、中間像目標投射範囲Atagとの位置関係に基づき、認識した再帰性反射部R1乃至R4の位置から中間像目標投射範囲Atagの位置を認識する。そして、光源1は、認識した中間像目標投射範囲Atagに中間像生成光を投射する。
 以下、一括照射検出方法及び順次検出方法について、それぞれ具体的に説明する。
 (1)一括照射検出方法
 まず、一括照射方法について説明する。一括照射方法では、光源1は、投射可能範囲Amax内を走査し、光検出器14が受光した走査線の位置及び当該走査線における光検出器14の受光タイミングに基づき、再帰性反射部R1乃至R4の位置を認識する。
 図6は、一括照射検出方法の処理を説明するための図である。図6において、検出用投射範囲「Ar1」乃至「Ar4」は、光源1が計測光を投射する範囲を示す。検出用投射範囲Ar1乃至Ar4は、それぞれ、投射可能範囲Amaxの四隅の位置に設けられ、かつ、再帰性反射部R1乃至R4が存在する可能性がある最大範囲に設定される。
 図6に示すように、光源1は、投射可能範囲Amax内の各走査線を順に走査し、検出用投射範囲Ar1乃至Ar4において光を出射する。その結果、複数の走査線の集合である走査線群「Lns1」の走査時に、光源1の出射光が再帰性反射部R2に入射し、光検出器14が再帰性反射部R2からの反射光を検出する。同様に、走査線群「Lns2」の走査時に、光源1の出射光が再帰性反射部R1に入射し、光検出器14が再帰性反射部R1からの反射光を検出する。また、走査線群「Lns3」の走査時に、光源1の出射光が再帰性反射部R4に入射し、光検出器14が再帰性反射部R4からの反射光を検出する。さらに、走査線群「Lns4」の走査時に、光源1の出射光が再帰性反射部R3に入射し、光検出器14が再帰性反射部R3からの反射光を検出する。
 そして、光源1は、走査線群Lns1乃至Lns4ごとの光検出器14の受光タイミングに基づき、投射可能範囲Amaxにおける再帰性反射部R1乃至R4の位置を認識する。これについて、図7を参照して具体的に説明する。
 図7は、光源1の走査位置と光検出器14が検出する光量(「検出光量」とも呼ぶ。)との時間変化を示すタイムチャートである。具体的に、図7(a)は、複数の走査線により構成される走査線群Lns1の走査時における走査位置及び検出光量の時間変化を示し、図7(b)は、走査線群Lns2の走査時における走査位置及び検出光量の時間変化を示す。また、図7(c)は、走査線群Lns3の走査時における走査位置及び検出光量の時間変化を示し、図7(d)は、走査線群Lns4の走査時における走査位置及び検出光量の時間変化を示す。また、図7(a)乃至(b)において、グラフ「Gh1」乃至「Gh4」は、副走査方向(即ち横方向)における走査位置の遷移を示し、グラフ「Gv1」乃至「Gv4」は、主走査方向(即ち縦方向)における走査位置の遷移を示す。また、走査位置は、投射可能範囲Amaxの中心位置を原点とし、当該中心位置よりも再帰性反射部R1、R3が存在する方向を左方向、その逆方向を右方向、再帰性反射部R1、R2が存在する方向を上方向、その逆方向を下方向とする。
 まず、光源1が左端から右端にかけて走査線群Lns1の走査線を走査した際、図7(a)に示すように、グラフGv1上に存在する動作点「P1」において、光検出器14は、再帰性反射部R2からの反射光を検出する。同様に、光検出器14は、光源1が走査線群Lns1上の走査線を切り替えて走査するたびに、再帰性反射部R2からの反射光を検出する。次に、光源1が左端から右端にかけて走査線群Lns2の走査線を走査した際、図7(b)に示すように、グラフGv2上に存在する動作点「P2」において、光検出器14は、再帰性反射部R1からの反射光を検出する。同様に、光検出器14は、光源1が走査線群Lns2上の走査線を切り替えて走査するたびに、再帰性反射部R1からの反射光を検出する。次に、光源1が左端から右端にかけて走査線群Lns3の走査線を走査した際、図7(c)に示すように、グラフGv3上に存在する動作点「P3」において、光検出器14は、再帰性反射部R4からの反射光を検出する。同様に、光検出器14は、光源1が走査線群Lns3上の走査線を切り替えて走査するたびに、再帰性反射部R4からの反射光を検出する。そして、左端から右端にかけて走査線群Lns4の走査線を走査した際、図7(d)に示すように、グラフGv4上に存在する動作点「P4」において、光検出器14は、再帰性反射部R3からの反射光を検出する。同様に、光検出器14は、光源1が走査線群Lns4上の走査線を切り替えて走査するたびに、再帰性反射部R3からの反射光を検出する。
 この場合、まず、光源1は、動作点P1が示す光検出器14の受光タイミングと動作点P2が示す光検出器14の受光タイミングとの時間差(即ち、図7(b)の矢印71の幅)に基づき、再帰性反射部R1乃至R4が形成する長方形の長手方向の幅(「左右幅Wh」とも呼ぶ。)を認識する。上述の時間差は、言い換えると、走査線群Lns1の走査線を左端から走査した際に再帰性反射部R2に走査位置が到達するタイミングと、走査線群Lns2の走査線を左端から走査した際に再帰性反射部R1に走査位置が到達するタイミングとの差に相当する。そして、光源1は、上述の時間差に走査速度を乗じることで、左右幅Whを認識する。
 さらに、光源1は、動作点P1が示す走査位置と動作点P2が示す走査位置との主走査方向における距離(即ち、図7(b)の矢印72が示す幅)に基づき、投射可能範囲Amaxの長手方向(即ち副走査方向)に対する再帰性反射部R1乃至R4が形成する長方形の長手方向の傾き(「左右傾きTh」とも呼ぶ。)を認識する。例えば、光源1は、主走査方向における両走査位置の距離と、左右傾きThとのマップ等を予め記憶しておき、当該マップ等を参照し、左右傾きThを算出する。
 また、光源1は動作点P1が示す走査位置と動作点P3が示す走査位置との主走査方向における距離に基づき、再帰性反射部R1乃至R4が形成する長方形の短手方向の幅(「上下幅Wv」とも呼ぶ。)を認識する。例えば、光源1は、上述の主走査方向における両走査位置の距離と、上下幅Wvとの対応関係を示すマップ等を予め記憶しておき、当該マップ等を参照して、上下幅Wvを決定する。
 さらに、光源1は、動作点P2が示す光検出器14の受光タイミングと、動作点P4が示す光検出器14の受光タイミングとの時間差(即ち、図7(d)の矢印74が示す幅)に基づき、投射可能範囲Amaxの短手方向に対する再帰性反射部R1乃至R4が形成する長方形の短手方向の傾き(「上下傾きTv」とも呼ぶ。)を認識する。例えば、光源1は、上記時間差と、上下傾きTvとのマップ等を予め記憶しておき、当該マップ等を参照し、上下傾きTvを算出する。
 そして、光源1は、算出した左右幅Wh、左右傾きTh、上下幅Wv及び上下傾きTvに基づき、投射可能範囲Amaxに対する中間像目標投射範囲Atagの相対的な位置を認識する。
 具体的には、光源1は、左右幅Wh及び上下幅Wvに基づき、中間像目標投射範囲Atagの大きさ、即ち、左右幅及び上下幅を認識する。この場合、光源1は、例えば、左右幅Whに対し、所定比率を乗じた値を、中間像目標投射範囲Atagの左右幅として認識する。ここで、所定比率は、再帰性反射部R1乃至R4が形成する長方形の長手方向の幅に対する中間像目標投射範囲Atagの長手方向の幅の比であり、予め実験等に基づき予め計測される。同様に、光源1は、例えば、上下幅Wvに対し、所定比率を乗じた値を、中間像目標投射範囲Atagの上下幅として認識する。ここで、所定比率は、再帰性反射部R1乃至R4が形成する長方形の短手方向の幅に対する中間像目標投射範囲Atagの短手方向の幅の比であり、予め実験等に基づき予め計測される。
 さらに、光源1は、左右傾きTh及び上下傾きTvに基づき、投射可能範囲Amaxに対する中間像目標投射範囲Atagの左右傾き及び上下傾きを認識する。ここで、中間像目標投射範囲Atagと再帰性反射部R1乃至R4が形成する長方形とは、短手方向の辺及び長手方向の辺がそれぞれ平行であることから、光源1は、中間像目標投射範囲Atagの長手方向が投射可能範囲Amaxの長手方向に対して左右傾きThだけ傾いていると判断する。同様に、光源1は、中間像目標投射範囲Atagの短手方向が投射可能範囲Amaxの短手方向に対して上下傾きTvだけ傾いていると判断する。
 次に、光源1は、以上の処理により認識した中間像目標投射範囲Atagに中間像生成光を投射する。これにより、光源1は、EPE12の所望の範囲に中間像生成光を投射することができ、視認性の高い画像を観察者に視認させることができる。
 (2)順次検出方法
 次に、順次検出方法について説明する。順次検出方法では、光源1は、図6に示す検出用投射範囲Ar1乃至Ar4内において、所定の形状を有する複数のパターン光を順次投影し、光検出器14が反射光を検出した各パターン光の投射位置に基づき、投射可能範囲Amaxに対する再帰性反射部R1乃至R4の位置を認識する。以下、図8及び図9を参照して、順次検出方法の具体例を説明する。
 図8(a)乃至(c)は、再帰性反射部R1の主走査方向における位置を認識する場合のパターン光の投影位置の遷移を示す。なお、ここでは、一例として、検出用投射範囲Ar1に対してパターン光を投射する場合について説明する。
 まず、光源1は、副走査方向を長手方向とする長方形のパターン光「Ph」を、図8(a)に示す検出用投射範囲Ar1の上端位置から下端位置まで、一走査線ずつずらして順に投影する。そして、光源1は、パターン光Phを投影する毎に、光検出器14がパターン光Phの反射光を検出したか否かを判定する。
 そして、図8(b)に示すように、パターン光Phが再帰性反射部R1と重なる位置に遷移した場合、パターン光Phが再帰性反射部R1により反射され、光検出器14は、当該反射光を検出する。これにより、光源1は、再帰性反射部R1の主走査方向における位置を認識する。具体的には、光源1は、図8(a)のパターン光Phの投射位置から遷移させた走査線の数に基づき、投射可能範囲Amaxの上端から再帰性反射部R1までの距離を認識する。そして、光源1は、パターン光Phの投射位置が図8(c)に示す検出用投射範囲Ar1の下端位置に達した場合に、パターン光Phの投射を終了する。
 ここで、パターン光Phの長手方向の幅は、例えば同方向における検出用投射範囲Ar1の幅と同一幅に設定される。このようにすることで、光源1は、確実にパターン光Phを再帰性反射部R1に投射させることができる。また、好適には、パターン光Phの短手方向の幅は、同方向における再帰性反射部R1の幅に設定される。このようにすることで、光源1は、光検出器14の検出光量が最大となる位置を、再帰性反射部R1が存在する位置として認識することができる。
 そして、光源1は、検出用投射範囲Ar2についても、検出用投射範囲Ar1と同様に、副走査方向を長手方向とする長方形のパターン光Phを、検出用投射範囲Ar2の上端位置から下端位置まで、一走査線ずつずらして順に投射する。そして、光源1は、パターン光Phを投影する毎に、光検出器14がパターン光Phの反射光を検出したか否かを判定する。これにより、光源1は、投射可能範囲Amaxの上端から再帰性反射部R2までの距離を認識する。さらに、光源1は、検出用投射範囲Ar3、Ar4に対し、副走査方向を長手方向とする長方形のパターン光Phを、検出用投射範囲Ar3、Ar4の下端位置から上端位置まで、一走査線ずつずらして順に投影する。そして、光源1は、パターン光Phを投影する毎に、光検出器14がパターン光Phの反射光を検出したか否かを判定する。これにより、光源1は、投射可能範囲Amaxの下端から再帰性反射部R3、R4までの距離を認識する。
 図9(a)乃至(c)は、再帰性反射部R1の副走査方向における位置を認識する場合のパターン光の投影位置の遷移を示す。
 まず、光源1は、主走査方向を長手方向とする長方形のパターン光「Pv」を、図9(a)に示す検出用投射範囲Ar1の左端位置から右端位置まで、一ドットずつずらして順に投射する。そして、光源1は、パターン光Pvを投影する毎に、光検出器14が光を検出したか否かを判定する。
 そして、図9(b)に示すように、パターン光Pvが再帰性反射部R1と重なる位置に遷移した場合、パターン光Pvが再帰性反射部R1により反射され、光検出器14は、当該反射光を検出する。これにより、光源1は、再帰性反射部R1の副走査方向における位置を認識する。具体的には、光源1は、図9(a)のパターン光Pvの投射位置から遷移させたドットの数に基づき、投射可能範囲Amaxの左端から再帰性反射部R1までの距離を認識する。そして、光源1は、パターン光Pvの投射位置が図9(c)に示す検出用投射範囲Ar1の右端位置に達した場合に、パターン光Pvの投射を終了する。
 ここで、パターン光Pvの長手方向の幅は、例えば同方向における検出用投射範囲Ar1の幅と同一幅に設定される。このようにすることで、光源1は、確実にパターン光Pvを再帰性反射部R1に照射させることができる。また、パターン光Pvの短手方向の幅は、同方向における再帰性反射部R1の幅に設定される。このようにすることで、光源1は、光検出器14が示す検出光量が最大となる位置を、再帰性反射部R1が存在する位置として認識することができる。
 そして、光源1は、検出用投射範囲Ar3についても、検出用投射範囲Ar1と同様に、主走査方向を長手方向とする長方形のパターン光Pvを、検出用投射範囲Ar3の左端位置から右端位置まで、一走査線ずつずらして順に投射する。そして、光源1は、パターン光Pvを投影する毎に、光検出器14がパターン光Pvの反射光を検出したか否かを判定する。これにより、光源1は、投射可能範囲Amaxの左端から再帰性反射部R3までの距離を認識する。さらに、光源1は、検出用投射範囲Ar2、Ar4に対し、主走査方向を長手方向とする長方形のパターン光Pvを、検出用投射範囲Ar2、Ar4の右端位置から左端位置まで、一走査線ずつずらして順に投影する。そして、光源1は、パターン光Pvを投影する毎に、光検出器14がパターン光Pvの反射光を検出したか否かを判定する。これにより、光源1は、投射可能範囲Amaxの右端から再帰性反射部R2、R4までの距離を認識する。
 以上のように、光源1は、順次検出方法により、各再帰性反射部R1乃至R4の投射可能範囲Amaxにおける位置を認識することができる。そして、光源1は、例えば、認識した各再帰性反射部R1乃至R4の位置に基づき、左右幅Wh、左右傾きTh、上下幅Wv及び上下傾きTvを算出することで、一括照射検出方法と同様に、中間像目標投射範囲Atagを認識する。そして、光源1は、認識した中間像目標投射範囲Atagに中間像生成光を投射する。これにより、光源1は、EPE12の所望の範囲に中間像生成光を投射することができ、視認性の高い画像を観察者に視認させることができる。また、順次検出方法によれば、一括照射検出方法と比較して、光検出器14が比較的広帯域でない場合であっても、各再帰性反射部R1乃至R4の位置を確実に認識することができる。
 [変形例]
 次に、本発明に好適な変形例について説明する。以下に示す変形例は、組み合わせて上述の実施例に適用されてもよい。
 (変形例1)
 外枠部22には、再帰性反射部R1乃至R4が設けられ、光検出器14は、再帰性反射部R1乃至R4で反射された計測光を検出した。しかし、本発明が適用可能な構成は、これに限定されない。これに代えて、光検出器14は、外枠部22に設置され、光源1から出射される計測光を直接受光してもよい。
 図10は、変形例1に係るEPE12Aの構成を示す。図10に示すように、EPE12Aの外枠部22Aには、再帰性反射部R1乃至R4に代えて、光検出器41乃至44が設けられている。そして、光検出器41乃至44は、検出した光量を示す検出信号を光源1へ送信する。
 この構成では、光源1は、一括照射検出方法又は順次検出方法を実行することで、投射可能範囲Amaxにおける光検出器41乃至44が形成する長方形の左右幅、上下幅、左右傾き、上下傾きを算出する。そして、光源1は、実施例と同様、これらの左右幅、上下幅、左右傾き、上下傾きから、中間像目標投射範囲Atagを認識し、認識した中間像目標投射範囲Atagに中間像生成光を投射する。このように、本変形例によっても、好適に、光源1は、EPE12Aの所望の範囲に中間像生成光を投射することができ、視認性の高い画像を観察者に視認させることができる。
 (変形例2)
 図3における再帰性反射部R1乃至R4の態様は一例であり、本発明が適用可能な再帰性反射部の態様は、これに限定されない。図11は、変形例2に係るEPE12Bの構成を示す。図11に示すように、EPE12Bの外枠部22Bには、四角枠の形状を有する再帰性反射部「R」が設けられている。
 そして、この場合であっても、光源1は、実施例で述べた一括照射検出方法又は順次検出方法に基づき計測光を出射し、光検出器14の検出信号に基づき、投射可能範囲Amaxにおける再帰性反射部Rの相対位置を認識する。例えば、この場合、光源1は、再帰性反射部Rの四隅の角部分を含むような検出用投射範囲Ar1乃至Ar4を定め、当該検出用投射範囲Ar1乃至Ar4内において計測光を照射させることで、投射可能範囲Amaxにおける再帰性反射部Rの四隅の角部分の相対位置を認識する。そして、光源1は、再帰性反射部Rの四隅の角部分の位置から、投射可能範囲Amaxにおける再帰性反射部Rの外縁をなす長方形の左右幅、上下幅、左右傾き、上下傾きを算出する。これにより、実施例と同様、光源1は、投射可能範囲Amaxにおける中間像目標投射範囲Atagの位置を認識する。このように、本変形例であっても、光源1は、好適に、中間像目標投射範囲Atagに中間像生成光を照射させることができる。
 (変形例3)
 中間像目標投射範囲Atagの認識後、光源1は、認識した中間像目標投射範囲Atagへ中間像生成光を出射しつつ、所定時間間隔ごとに中間像目標投射範囲Atagの認識処理を実行してもよい。これにより、光源1は、ユーザに所望の虚像を視認させつつ、温度変化等の環境変化に起因したEPE12への投射範囲のずれを好適に修正する。
 図12は、本変形例による中間像目標投射範囲Atagの認識処理における検出用投射範囲「Ar1x」乃至「Ar4x」を示す。この場合、光源1は、前回の中間像目標投射範囲Atagの認識処理において認識した再帰性反射部R1乃至R4の位置を基準として経時変化の最大ずれにより変動し得る範囲を、検出用投射範囲Ar1x乃至Ar4xに定める。その結果、図12に示すように、2回目以降の中間像目標投射範囲Atagの認識処理における検出用投射範囲Ar1x乃至Ar4xは、中間像目標投射範囲Atagの認識処理を初めて行う際の検出用投射範囲Ar1乃至Ar4(図6等参照)よりも小さい。具体的には、検出用投射範囲Ar1x乃至Ar4xは、レンズアレイ部21と重ならない範囲に定められている。
 このように、本変形例では、光源1は、計測光がレンズアレイ部21に照射しない範囲で計測光を出射するため、ユーザに中間像による虚像を視認させている間であっても、好適に、EPE12への照射範囲のずれを好適に修正することができる。
 なお、中間像生成光を出射しつつ、中間像目標投射範囲Atagの位置の認識処理を行う場合、一括照射検出方法は、順次検出方法に比べて、短時間で中間像目標投射範囲Atagの位置の認識処理が完了するという利点を有する。一方、順次検出方法は、一括照射検出方法に比べて、不要な投射光(迷光)が少なく視認性への影響が少ないという利点を有する。
 (変形例4)
 光検出器14からの検出信号に代えて、光源1は、計測光の反射光により発生するレーザノイズを検出することで、再帰性反射部R1乃至R4が計測光に照射されたか否かを判定してもよい。具体的には、この場合、光源1は、ノイズを検出可能な出力モニタとして機能する受光素子50(図2参照)の検出信号Sdに基づき、計測光の反射光に起因したレーザノイズを検出し、再帰性反射部R1乃至R4が計測光により照射されたか否かを判定する。この態様であっても、好適に、光源1は、一括照射方法又は順次照射方法を好適に実行し、中間像生成光を照射すべき中間像目標投射範囲Atagを好適に認識することができる。
 (変形例5)
 再帰性反射部R1乃至R4の構造は、図4に示すコーナーキューブの形状を有する構造に限定されない。これに代えて、再帰性反射部R1乃至R4は、外枠部22に再帰性反射シート貼り付けられたものであってもよく、外枠部22に再帰性反射性の塗料が塗られたものであってもよい。
 本発明は、ヘッドアップディスプレイなどのレーザ光源を利用した表示装置に利用することができる。
 1 光源
 3 ビデオASIC
 7 レーザドライバASIC
 8 MEMS制御部
 9 レーザ光源部
 12 EPE
 13 コンバイナ
 14 光検出器

Claims (14)

  1.  光源と、
     前記光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有する光学素子と、
     前記光源に前記第2領域へ光を出射させる第1光源制御手段と、
     前記第2領域の所定部分に照射された前記光を検出する光検出手段と、
     前記光検出手段の出力に基づき、前記光学素子の位置での前記光源の投射可能範囲における前記画像を構成する光を投射すべき範囲を認識する投射範囲認識手段と、
     前記投射範囲認識手段が認識した前記投射すべき範囲に、前記画像を構成する光を前記光源に投射させる第2光源制御手段と、
    を有することを特徴とする画像投影装置。
  2.  前記投射範囲認識手段は、前記投射可能範囲における前記所定部分の位置を認識することで、前記投射可能範囲における前記投射すべき範囲を認識することを特徴とする請求項1に記載の画像投影装置。
  3.  前記第1光源制御手段は、前記投射可能範囲内を前記光源に走査させ、
     前記投射範囲認識手段は、前記光検出手段が受光した走査線の位置及び当該走査線における前記光検出手段の受光のタイミングに基づき、前記投射可能範囲における前記所定部分の位置を認識することを特徴とする請求項2に記載の画像投影装置。
  4.  前記第1光源制御手段は、前記所定部分を含む範囲において、パターン光の投射位置を遷移させ、
     前記投射範囲認識手段は、前記パターン光ごとの前記光検出手段の出力に基づき、前記投射可能範囲における前記所定部分の位置を認識することを特徴とする請求項2に記載の画像投影装置。
  5.   前記第1光源制御手段は、前記所定部分を含む範囲において、
     副走査方向を長手方向とする矩形のパターン光を主走査方向において遷移させることで、前記所定部分の主走査方向における位置を前記投射範囲認識手段に認識させ、
     主走査方向を長手方向とする矩形のパターン光を副走査方向において遷移させることで、前記所定部分の副走査方向における位置を前記投射範囲認識手段に認識させる
    ことを特徴とする請求項4に記載の画像投影装置。
  6.  前記第2領域の前記所定部分には、再帰性反射部が形成され、
     前記光検出手段は、前記再帰性反射部により反射された光を検出することを特徴とする請求項1乃至5のいずれか一項に記載の画像投影装置。
  7.  前記光検出手段は、前記第2領域の前記所定部分に設置される光検出器であることを特徴とする請求項1乃至5のいずれか一項に記載の画像投影装置。
  8.  前記第1領域は、複数のマイクロレンズが配列されたマイクロレンズアレイにより形成されていることを特徴とする請求項1乃至7のいずれか一項に記載の画像投影装置。
  9.  前記第2領域の前記所定部分には、再帰性反射可能な形状が形成され、
     前記マイクロレンズアレイと、前記形状とは、一体成形されることを特徴とする請求項8に記載の画像投影装置。
  10.  前記光検出手段は、前記所定部分に照射された光の反射光により発生した前記光源の光のノイズを検出することを特徴とする請求項1乃至9のいずれか一項に記載の画像投影装置。
  11.  請求項1乃至10のいずれか一項に記載の画像投影装置を備え、前記光学素子上に描画された前記画像をユーザの目の位置から虚像として視認させることを特徴とするヘッドアップディスプレイ。
  12.  光源と、
     前記光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有する光学素子と、を有する画像投影装置が実行する制御方法であって、
     前記光源に前記第2領域へ光を出射させる第1光源制御工程と、
     前記第2領域の所定部分に照射された前記光を検出する光検出工程と、
     前記光検出工程の出力に基づき、前記光学素子の位置での前記光源の投射可能範囲における前記画像を構成する光を投射すべき範囲を認識する投射範囲認識工程と、
     前記投射範囲認識工程が認識した前記投射すべき範囲に、前記画像を構成する光を前記光源に投射させる第2光源制御工程と、
    を有することを特徴とする制御方法。
  13.  光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有し、
     前記画像を構成する光を投射すべき範囲を前記光源が認識するための光が前記第2領域に照射される光学素子であって、
     前記第2領域の所定部分において、再帰性反射部を有することを特徴とする光学素子。
  14.  光源の出射光により画像を描画する第1領域と、前記第1領域の外側に設けられた第2領域とを有し、
     前記画像を構成する光を投射すべき範囲を前記光源が認識するための光が前記第2領域に照射される光学素子であって、
     前記第2領域の複数の箇所に光検出器を有することを特徴とする光学素子。
PCT/JP2012/064321 2012-06-01 2012-06-01 画像投影装置、ヘッドアップディスプレイ、制御方法及び光学素子 WO2013179493A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064321 WO2013179493A1 (ja) 2012-06-01 2012-06-01 画像投影装置、ヘッドアップディスプレイ、制御方法及び光学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064321 WO2013179493A1 (ja) 2012-06-01 2012-06-01 画像投影装置、ヘッドアップディスプレイ、制御方法及び光学素子

Publications (1)

Publication Number Publication Date
WO2013179493A1 true WO2013179493A1 (ja) 2013-12-05

Family

ID=49672741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064321 WO2013179493A1 (ja) 2012-06-01 2012-06-01 画像投影装置、ヘッドアップディスプレイ、制御方法及び光学素子

Country Status (1)

Country Link
WO (1) WO2013179493A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3267236A1 (en) * 2016-07-04 2018-01-10 Ricoh Company, Ltd. Optical scanner, projector, and heads-up display
EP3267237A1 (en) * 2016-07-06 2018-01-10 Ricoh Company, Ltd. Optical scanning device, projection device, and display device
JP2018157562A (ja) * 2017-03-15 2018-10-04 株式会社リコー 画像表示装置
WO2019011615A1 (de) * 2017-07-12 2019-01-17 Robert Bosch Gmbh Verfahren zur kalibrierung einer projektionsvorrichtung für eine datenbrille sowie projektionsvorrichtung für eine datenbrille zur durchführung eines verfahrens.
JP2021081568A (ja) * 2019-11-19 2021-05-27 株式会社リコー 光学素子、表示装置、表示システムおよび移動体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131151A (ja) * 2001-07-11 2003-05-08 Canon Inc 光偏向装置、それを用いた画像形成装置およびその駆動方法
JP2011530209A (ja) * 2008-07-30 2011-12-15 マイクロビジョン,インク. 走査された光線のオーバーレイ投影
JP4954346B1 (ja) * 2011-12-21 2012-06-13 パイオニア株式会社 ヘッドアップディスプレイ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131151A (ja) * 2001-07-11 2003-05-08 Canon Inc 光偏向装置、それを用いた画像形成装置およびその駆動方法
JP2011530209A (ja) * 2008-07-30 2011-12-15 マイクロビジョン,インク. 走査された光線のオーバーレイ投影
JP4954346B1 (ja) * 2011-12-21 2012-06-13 パイオニア株式会社 ヘッドアップディスプレイ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3267236A1 (en) * 2016-07-04 2018-01-10 Ricoh Company, Ltd. Optical scanner, projector, and heads-up display
JP2018005007A (ja) * 2016-07-04 2018-01-11 株式会社リコー 光走査装置、プロジェクタ装置およびヘッドアップディスプレイ装置
EP3267237A1 (en) * 2016-07-06 2018-01-10 Ricoh Company, Ltd. Optical scanning device, projection device, and display device
JP2018005078A (ja) * 2016-07-06 2018-01-11 株式会社リコー 光走査装置、投影装置及び表示装置
US10587849B2 (en) 2016-07-06 2020-03-10 Ricoh Company, Ltd. Optical scanning device, projection device, and display device
JP2018157562A (ja) * 2017-03-15 2018-10-04 株式会社リコー 画像表示装置
JP7024521B2 (ja) 2017-03-15 2022-02-24 株式会社リコー 画像表示装置
WO2019011615A1 (de) * 2017-07-12 2019-01-17 Robert Bosch Gmbh Verfahren zur kalibrierung einer projektionsvorrichtung für eine datenbrille sowie projektionsvorrichtung für eine datenbrille zur durchführung eines verfahrens.
CN110832380A (zh) * 2017-07-12 2020-02-21 罗伯特·博世有限公司 用于校准数据眼镜的投影装置的方法以及用于执行方法的数据眼镜的投影装置
CN110832380B (zh) * 2017-07-12 2021-11-30 罗伯特·博世有限公司 用于校准数据眼镜的投影装置的方法以及用于执行方法的数据眼镜的投影装置
US11487126B2 (en) 2017-07-12 2022-11-01 Robert Bosch Gmbh Method for calibrating a projection device for a head-mounted display, and projection device for a head-mounted display for carrying out the method
JP2021081568A (ja) * 2019-11-19 2021-05-27 株式会社リコー 光学素子、表示装置、表示システムおよび移動体

Similar Documents

Publication Publication Date Title
JP4769912B1 (ja) 光学素子、ヘッドアップディスプレイ及び光学素子の製造方法
JP6903875B2 (ja) 光走査装置、プロジェクタ装置およびヘッドアップディスプレイ装置
WO2013179493A1 (ja) 画像投影装置、ヘッドアップディスプレイ、制御方法及び光学素子
US8540373B2 (en) Retinal scanning display
JP5925389B2 (ja) 画像投影装置
WO2013005278A1 (ja) 表示装置
WO2013024539A1 (ja) 虚像表示装置
JP4809507B1 (ja) レーザ光源ユニット及び画像表示装置
JP2017067944A (ja) 表示画像作成装置および画像表示装置
JP6455802B2 (ja) 画像表示装置、物体装置、透過スクリーン及びスクリーン
JP2009014791A (ja) 光走査装置及び画像表示装置及び網膜走査型画像表示装置
EP2787731A2 (en) Image projection device and input object detection method
JP2017021131A (ja) 光走査装置、画像表示装置、物体装置及び光走査方法
EP3705927A1 (en) Optical scanner, display system, and mobile body
WO2014045340A1 (ja) 光学素子、光源ユニット及びヘッドアップディスプレイ
US11187899B2 (en) Light source device, optical scanner, display system, and mobile object
WO2013046329A1 (ja) 光軸ずれ補正装置、制御方法、及びヘッドアップディスプレイ
WO2013179494A1 (ja) 投影装置、ヘッドアップディスプレイ、制御方法、プログラム及び記憶媒体
JP5666003B2 (ja) 光源ユニット、及び光源ユニットの製造方法
JP6737370B2 (ja) 投影装置
US20150159832A1 (en) Light source unit and projector
JPWO2012108032A1 (ja) 画像表示装置、及び光軸ずれ検出方法
JP2019164204A (ja) 光源装置、表示装置、表示システムおよび移動体
US20140300583A1 (en) Input device and input method
EP3709068B1 (en) Optical scanner, display system, and mobile object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP