WO2013179485A1 - Organic el panel and method for manufacturing same - Google Patents

Organic el panel and method for manufacturing same Download PDF

Info

Publication number
WO2013179485A1
WO2013179485A1 PCT/JP2012/064291 JP2012064291W WO2013179485A1 WO 2013179485 A1 WO2013179485 A1 WO 2013179485A1 JP 2012064291 W JP2012064291 W JP 2012064291W WO 2013179485 A1 WO2013179485 A1 WO 2013179485A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
inorganic insulating
organic
electrode
film
Prior art date
Application number
PCT/JP2012/064291
Other languages
French (fr)
Japanese (ja)
Inventor
大田 悟
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/064291 priority Critical patent/WO2013179485A1/en
Publication of WO2013179485A1 publication Critical patent/WO2013179485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to an organic EL (Electro Luminescence) panel and a manufacturing method thereof.
  • An organic EL light emitting panel including at least one organic EL element as a light emitting source is well known.
  • a light emitting device using an organic EL light emitting panel has a feature that there is no restriction in shape due to surface light emission, and such a feature cannot be obtained by other light emitting devices such as an LED (light emitting diode) light emitting device. Further development for the practical use of is expected.
  • an organic functional layer including a light emitting layer When manufacturing an organic EL panel, it is necessary to form an organic functional layer including a light emitting layer on a substrate.
  • a coating process such as an inkjet method
  • a light emitting region In order to reliably apply an organic material ink to the pixel region), a light emitting region is defined by a partition (bank).
  • a partition wall In the prior art, an organic material that can be formed using a photolithography technique is generally used as the partition wall.
  • the partition wall Since the partition wall is thicker than the other members constituting the organic EL light-emitting panel, if an organic material is used for the partition wall, it is outgassed from the partition wall when heated in the drying process after the ink application during the production of the organic functional layer. May occur and may adhere to the organic functional layer and cause deterioration of the organic EL panel.
  • the partition wall is composed of an inorganic insulating film, a metal thin film, and then a monomolecular liquid-repellent thiol self-assembled film from the substrate side. A partition wall structure that does not generate outgas because it is not used has been proposed.
  • the partition structure disclosed in Patent Document 1 is a metal thin film having conductivity under the liquid repellent thiol self-assembled film, and a cathode that is a metal electrode on the liquid repellent thiol self-assembled film. positioned. Since the monomolecular film is thin, conduction may occur between the metal electrode and the metal thin film.
  • the distance between the edge of the metal thin film and the edge of the inorganic insulating film is 0.5 ⁇ m or more. It has been done.
  • the problem to be solved by the present invention includes the above-mentioned drawbacks as an example, an organic EL panel capable of sufficiently securing an aperture ratio and extending the life without using an organic material for the partition, and its It is an object of the present invention to provide a manufacturing method.
  • An organic EL panel includes a substrate, a first electrode formed on the substrate, a plurality of auxiliary electrodes juxtaposed at a distance from each other on the first electrode, A plurality of partition walls that individually cover the auxiliary electrode on the first electrode to define at least one light emitting region, an organic functional layer formed in the light emitting region, and a second layer in contact with the organic functional layer
  • the partition includes a first inorganic insulating film that covers the auxiliary electrode, one main surface in contact with the first inorganic insulating film, and a second main surface that is in contact with the first inorganic insulating film.
  • an insulating layer including two inorganic insulating films, and a liquid-repellent self-assembled film covering the second inorganic insulating film.
  • a method for manufacturing an organic EL panel comprising: forming a first electrode on a substrate; and placing a plurality of first electrodes on the first electrode at a distance from each other.
  • a transparent electrode 12 is formed on a glass substrate 11 as a first electrode.
  • the transparent electrode 12 is made of, for example, a 100 nm thick ITO film or IZO film formed by sputtering.
  • a plurality of auxiliary electrodes 13 are formed on the transparent electrode 12.
  • the auxiliary electrode 13 is a longitudinal member formed on the transparent electrode 12 and is juxtaposed at intervals. Al is used as the material of the auxiliary electrode 13, and the thickness thereof is, for example, 100 nm.
  • a partition wall 14 is formed on each auxiliary electrode 13 so as to individually cover the auxiliary electrode 13.
  • the partition wall 14 includes a first inorganic insulating film 15, a metal thin film 16, a second inorganic insulating film 17, and a liquid repellent self-assembled film 18.
  • the first inorganic insulating film 15, the metal thin film 16, and the second inorganic insulating film 17 are laminated on the auxiliary electrode 13 in that order.
  • the metal thin film 16 and the second inorganic insulating film 17 constitute an insulating layer in which one main surface is in contact with the first inorganic insulating film 15 and the second main surface includes the second inorganic insulating film 17.
  • the liquid repellent self-assembled film 18 is formed so as to cover the surface of the second inorganic insulating film 17. Between the partition walls 14 is a light emitting region, and an organic functional layer 31 is formed as described later.
  • FIG. 2A shows a state in which a film of the transparent electrode 12 is formed on the glass substrate 11 and a plurality of auxiliary electrodes 13 are formed on the transparent electrode 12.
  • a transparent film is deposited and formed on a glass substrate 11 by sputtering using ITO as a material, and then a photoresist is applied on the ITO film by photolithography, and exposure and development are performed to transfer a mask pattern to the resist. Further, the ITO film other than the portion to be left as the anode by etching is removed. Then, when the resist is removed on the glass substrate 11, the remaining ITO film is obtained as the transparent electrode 12.
  • a film is deposited and formed on the transparent electrode 12 by sputtering using Al as a material. After that, a resist is applied onto the Al film by photolithography, and exposure and development are sequentially performed to transfer the mask pattern to the resist. Further, the Al film other than the portion to be left as a bus line is removed by etching. Then, when the resist is removed on the glass substrate 11, the remaining Al film is obtained as the auxiliary electrode 13 as shown in FIG.
  • the auxiliary electrode 13 has conductivity and is a power supply line to the transparent electrode 12.
  • an inorganic insulating film 21, a metal thin film 22, and an inorganic insulating film 23 are laminated on the transparent electrode 12 in this order by sputtering.
  • the inorganic insulating film 21, the metal thin film 22, and the inorganic insulating film 23 are portions formed to finally obtain the first inorganic insulating film 15, the metal thin film 16, and the second inorganic insulating film 17. is there.
  • an inorganic material such as SiO 2 , Si 3 N 4 , Al 2 O 3 , Ta 2 O 5 or the like that can ensure sufficient insulation is used.
  • the thickness of the inorganic insulating film 21 is, for example, 150 nm. Since the metal thin film 22 is not electrically connected to a conductive member such as metal, it does not affect the driving of the organic EL panel. Therefore, the material is not particularly limited, but a metal having chemical resistance such as Au is preferable. The thickness of the metal thin film 22 is, for example, 50 nm.
  • the inorganic insulating film 23 is finally the second inorganic insulating film 17 described above, and the liquid-repellent self-assembled film 18 is formed on the surface thereof. For example, SiO 2 , Al 2 O 3 , Ta 2 O A metal oxide such as 5 is desirable. The thickness of the inorganic insulating film 23 is 700 nm, for example.
  • a positive resist 24 is applied to the entire upper surface of the inorganic insulating film 23 as shown in FIG. Then, exposure and development are sequentially performed in order to transfer the mask pattern to the resist 24 by photolithography technology, and only the resist 24 at the position corresponding to the partition wall 14 is left as shown in FIG. .
  • the inorganic insulating film 23 is etched using, for example, buffered hydrofluoric acid (first etching step), and the inorganic insulating film 23 is covered with a resist 24 as shown in FIG. It is removed leaving only the broken part. Then, as shown in FIG. 2 (f), the resist 24 is removed, and as a result, the exposed inorganic insulating film 23 is obtained as the second inorganic insulating film 17.
  • the surface of the second inorganic insulating film 17 is cleaned by UV ozone treatment.
  • a liquid repellent treatment is performed by applying a self-organizing material to the surface of the second inorganic insulating film 17.
  • a self-organizing material a functional group that is chemically adsorbed on the surface of the inorganic insulating film 17 and further makes the surface liquid-repellent is selected.
  • those having fluorine and alkyl chains in addition to alkoxysilane, halogenated silane, or silazane are desirable.
  • materials such as perfluorinated octadecyltrichlorosilane, octadecyltrichlorosilane, and hexamethyldisilazane can be used.
  • a liquid repellent self-assembled film 18 is formed on the surface of the second inorganic insulating film 17. Since there is a metal thin film 22 to which the liquid repellent treatment does not act during the liquid repellent treatment, only the surface of the second inorganic insulating film 17 is subjected to the liquid repellent treatment. Not.
  • the metal thin film 22 is subjected to an etching process.
  • This etching process is performed using the second inorganic insulating film 17 as a resist, and the metal thin film 22 is removed leaving only the portion covered with the second inorganic insulating film 17, as shown in FIG. 2 (h). Is done. The remaining metal thin film 22 becomes the metal thin film 16.
  • AURUM-302 registered trademark manufactured by Kanto Chemical Co., Inc. is used as an etching solution.
  • the inorganic insulating film 21 is subjected to an etching process using, for example, buffered hydrofluoric acid (second etching step).
  • second etching step the inorganic insulating film 17 treated with the self-organizing material 18 and the metal thin film 16 are substituted for the resist, and the inorganic insulating film 21 is formed of a metal thin film as shown in FIG. Only the portion covered with 16 is removed. The remaining inorganic insulating film 21 becomes the first inorganic insulating film 15 and the formation of the partition 14 is completed.
  • any of wet etching using an etching solution and dry etching such as RIE (reactive ion etching) may be used.
  • an organic functional layer 31 is formed on the transparent electrode 12 in the light emitting region between the partition walls 14.
  • a hole injection layer / hole transport layer and a light emitting layer are laminated in order from the transparent electrode 12 side by an inkjet method.
  • a mixture of a polythiophene derivative such as polyethylenedioxythiophene (PEDOT) and polystyrenesulfonic acid (PSS) can be used.
  • PEDOT polyethylenedioxythiophene
  • PSS polystyrenesulfonic acid
  • the light emitting layer for example, polyfluorene derivatives, polyphenylene derivatives, polyvinyl carbazole, or the like can be used as a host material, and coumarin 6, quinacridone, rubrene, or the like can be used as a dopant.
  • an electron injection layer such as a LiF layer or an electron transport layer may be provided on the light emitting layer (between the light emitting layer and a metal electrode 32 described later), for example, by vapor deposition in order to increase the electron injection efficiency. .
  • this organic functional layer 31 is an example, and the present invention is not limited to this, and the manufacturing method of the organic functional layer 31 is not limited.
  • a metal electrode 32 is formed as a second electrode by vapor deposition so as to cover the partition wall 14 and the organic functional layer 31.
  • the metal electrode 32 functions as a cathode and is made of, for example, Al.
  • the liquid repellent self-assembled film 18 covers the surface of the second inorganic insulating film 17, and the inorganic insulating film 17 is compared with the liquid repellent self-assembled film 18. And has a sufficient insulating property. Therefore, since the insulation state between the cathode 32 and the metal thin film 16 is sufficient, there is no fear of abnormal light emission or crosstalk. Therefore, unlike the prior art disclosed in Patent Document 1, the edge of the metal thin film It is not necessary to provide a gap between the edges of the inorganic insulating film, and the aperture ratio can be sufficiently secured, so that an excessive driving current does not flow and the life as an organic EL panel can be extended.
  • the metal thin film 16 of the embodiment is independent of the wiring to the anode 12 and the cathode 32 of the organic EL panel, does not have a role to conduct electricity, and is not necessary.
  • the partition wall when the partition wall is made of a lyophilic material, the edge of each film of the organic functional layer becomes thick, and light emission becomes darker than near the center.
  • the partition wall when the partition wall is made of a liquid repellent material, the edge of the film becomes thin and the portion becomes brighter than the vicinity of the center. Therefore, the conventional organic EL panel may cause uneven light emission due to the meniscus.
  • the metal thin film 22 covers the upper surface of the first inorganic insulating film 23 when the surface of the second inorganic insulating film 17 is subjected to the liquid repellent treatment.
  • the lower part of the organic EL panel than the metal thin film 22, that is, the first inorganic insulating film 23 and the transparent electrode 12 are not subjected to the liquid repellent treatment during the manufacture. Therefore, since only the surface of the second inorganic insulating film 17 which is the upper part of the partition wall 14 is subjected to the liquid repellent treatment, ink overflow and meniscus can be reduced when forming the organic functional layer by the ink jet method. As a result, a good organic EL film having no emission unevenness can be obtained.
  • the materials of the first inorganic insulating film 15 and the second inorganic insulating film 17 may be the same or different.
  • the metal thin film 16 is provided.
  • the second inorganic insulating film 17 may be formed directly on the first inorganic insulating film 15.
  • Si 3 N 4 can be used as the material of the first inorganic insulating film 15, and SiO 2 can be used as the material of the second inorganic insulating film 17. Only SiO 2 can be used without damaging the Si 3 N 4.
  • the first inorganic insulating film 15 can also be produced by anodizing the auxiliary electrode 13.
  • the metal thin film 16 can also be produced by plating.
  • the partition wall includes the first inorganic insulating film that covers the first electrode, one main surface in contact with the first inorganic insulating film, and the other main surface. And an insulating layer including the second inorganic insulating film and a liquid repellent self-assembled film covering the second inorganic insulating film, and an organic material is not used for the partition wall, so that outgas is generated from the partition wall. Therefore, deterioration of the organic EL panel due to outgassing can be suppressed.
  • the liquid repellent self-assembled film covers the surface of the second inorganic insulating film on the upper part of the partition wall, when the ink of the organic material of each layer of the organic functional layer is applied, the light emitting area adjacent to the ink Overflow can be prevented and an organic functional layer with less meniscus can be formed. Furthermore, since the partition wall has sufficient insulating properties, it is not necessary to provide a gap between the edge of the metal thin film and the edge of the inorganic insulating film as in the prior art, ensuring a sufficient aperture ratio and extending the life. Can be achieved.
  • the organic EL panel of the present invention can be used for a light source of an organic EL lighting device or an organic EL display.

Abstract

Disclosed is an organic EL panel that is provided with: a first electrode formed on a substrate; a plurality of auxiliary electrodes, which are disposed parallel to each other at intervals on the first electrode; a plurality of barrier ribs, which separately cover the auxiliary electrodes on the first electrode, and which define at least one light emitting region; an organic functional layer formed in the light emitting region; and a second electrode in contact with the organic functional layer. The barrier ribs include: a first inorganic insulating film that covers the auxiliary electrodes; an insulating layer wherein one main surface is in contact with the first inorganic insulating film and the other main surface includes a second inorganic insulating film ; and a liquid repellent self-organized film, which covers the second inorganic insulating film. Also disclosed is a method for manufacturing the organic EL panel.

Description

有機ELパネル及びその製造方法Organic EL panel and manufacturing method thereof
 本発明は、有機EL(Electro Luminescence)パネル及びその製造方法に関する。 The present invention relates to an organic EL (Electro Luminescence) panel and a manufacturing method thereof.
 発光源として少なくとも1つの有機EL素子を含む有機EL発光パネルが周知である。有機EL発光パネルを用いた発光装置には、面発光で形状に制約がないという特徴があり、そのような特徴はLED(発光ダイオード)発光装置等の他の発光装置では得られないので、今後の実用化に向けた更なる開発が期待されている。 An organic EL light emitting panel including at least one organic EL element as a light emitting source is well known. A light emitting device using an organic EL light emitting panel has a feature that there is no restriction in shape due to surface light emission, and such a feature cannot be obtained by other light emitting devices such as an LED (light emitting diode) light emitting device. Further development for the practical use of is expected.
 有機ELパネルを製造する際には、基板上において発光層を含む有機機能層を成膜する必要があり、この有機機能層の各層をインクジェット法といった塗布プロセスで形成する場合には、発光領域(画素領域)に有機材料のインクを確実に塗布するために、隔壁(バンク)で発光領域を定めることが行われる。従来技術においては、隔壁として、一般的に、フォトリソグラフィ技術を用いて形成することが可能な有機材料が用いられている。 When manufacturing an organic EL panel, it is necessary to form an organic functional layer including a light emitting layer on a substrate. When each layer of the organic functional layer is formed by a coating process such as an inkjet method, a light emitting region ( In order to reliably apply an organic material ink to the pixel region), a light emitting region is defined by a partition (bank). In the prior art, an organic material that can be formed using a photolithography technique is generally used as the partition wall.
特開2005-116313号公報JP 2005-116313 A
 隔壁は有機EL発光パネルを構成する他の部材より層厚があるために隔壁に有機材料を用いると、有機機能層の製造の際にインクの塗布後の乾燥工程で加熱したときに隔壁からアウトガスが発生してそれが有機機能層に付着して有機ELパネルの劣化の原因となる可能性がある。これに対処するために、特許文献1においては、隔壁は、基板側から、無機絶縁膜、金属薄膜、次いで、単分子膜の撥液性チオール自己組織化膜からなり、層厚の有機材料を用いないためにアウトガスが発生しない隔壁構造が提案されている。 Since the partition wall is thicker than the other members constituting the organic EL light-emitting panel, if an organic material is used for the partition wall, it is outgassed from the partition wall when heated in the drying process after the ink application during the production of the organic functional layer. May occur and may adhere to the organic functional layer and cause deterioration of the organic EL panel. In order to cope with this, in Patent Document 1, the partition wall is composed of an inorganic insulating film, a metal thin film, and then a monomolecular liquid-repellent thiol self-assembled film from the substrate side. A partition wall structure that does not generate outgas because it is not used has been proposed.
 特許文献1に開示された隔壁構造は、撥液性チオール自己組織化膜の下は、導電性を有する金属薄膜であり、撥液性チオール自己組織化膜の上には金属電極である陰極が位置している。単分子膜は、薄いため、金属電極と金属薄膜との間で導通を生じることがある。特許文献1の開示技術では、金属電極と金属薄膜との間での導通による異常発光やクロストークを防止するために、金属薄膜の端縁と無機絶縁膜の端縁の間隔を0.5μm以上離すことが行われている。 The partition structure disclosed in Patent Document 1 is a metal thin film having conductivity under the liquid repellent thiol self-assembled film, and a cathode that is a metal electrode on the liquid repellent thiol self-assembled film. positioned. Since the monomolecular film is thin, conduction may occur between the metal electrode and the metal thin film. In the disclosed technique of Patent Document 1, in order to prevent abnormal light emission and crosstalk due to conduction between the metal electrode and the metal thin film, the distance between the edge of the metal thin film and the edge of the inorganic insulating film is 0.5 μm or more. It has been done.
 しかしながら、正確に0.5μmの間隔をフォトリソグラフィ技術で作り込むのは、非常に困難である上、金属薄膜と無機絶縁膜を別々にパターニングしなければならないため、製造段階での工程数が増える。また、その間隔を開け過ぎると、有機ELパネルの開口率が小さくなり、有機ELパネルとして所望の輝度を得るために、過剰に駆動電流を流すことが必要となり、有機ELパネルの短寿命化が懸念される。 However, it is very difficult to accurately form an interval of 0.5 μm by the photolithography technique, and the metal thin film and the inorganic insulating film must be separately patterned, which increases the number of processes in the manufacturing stage. . If the interval is too large, the aperture ratio of the organic EL panel becomes small, and it is necessary to pass an excessive driving current in order to obtain a desired luminance as the organic EL panel, which shortens the life of the organic EL panel. Concerned.
 そこで、本発明が解決しようとする課題は、上記の欠点が一例として挙げられ、隔壁に有機材料を用いることなく開口率を十分に確保しかつ長寿命化を図ることができる有機ELパネル及びその製造方法を提供することが本発明の目的である。 Therefore, the problem to be solved by the present invention includes the above-mentioned drawbacks as an example, an organic EL panel capable of sufficiently securing an aperture ratio and extending the life without using an organic material for the partition, and its It is an object of the present invention to provide a manufacturing method.
 請求項1に係る発明の有機ELパネルは、基板と、前記基板上に形成された第1の電極と、前記第1の電極上に互いに間隔を置いて並置された複数の補助電極と、前記第1の電極上において前記補助電極を個別に覆って、少なくとも1つの発光領域を定める複数の隔壁と、前記発光領域内に形成された有機機能層と、前記有機機能層に接した第2の電極と、を備える有機ELパネルであって、前記隔壁は、前記補助電極を覆う第1の無機絶縁膜と、一方の主面が前記第1の無機絶縁膜に接し、他方の主面に第2の無機絶縁膜を含む絶縁層と、前記第2の無機絶縁膜を覆う撥液性自己組織化膜と、を含むことを特徴としている。 An organic EL panel according to a first aspect of the present invention includes a substrate, a first electrode formed on the substrate, a plurality of auxiliary electrodes juxtaposed at a distance from each other on the first electrode, A plurality of partition walls that individually cover the auxiliary electrode on the first electrode to define at least one light emitting region, an organic functional layer formed in the light emitting region, and a second layer in contact with the organic functional layer The partition includes a first inorganic insulating film that covers the auxiliary electrode, one main surface in contact with the first inorganic insulating film, and a second main surface that is in contact with the first inorganic insulating film. And an insulating layer including two inorganic insulating films, and a liquid-repellent self-assembled film covering the second inorganic insulating film.
 請求項7に係る発明の有機ELパネルの製造方法は、基板上に第1の電極を形成する工程と、前記第1の電極上に複数の第1の電極を互いに間隔を置いて並置する工程と、前記第1の電極上において前記補助電極を個別に覆って、少なくとも1つの発光領域を定める複数の隔壁を形成する隔壁形成工程と、前記発光領域に有機機能層を形成する工程と、前記有機機能層に接した第2の電極を形成する工程と、を含む有機ELパネルの製造方法であって、前記隔壁の形成工程は、前記第1の電極上に前記補助電極を覆うように第1の無機絶縁膜を形成する工程と、一方の主面が前記第1の無機絶縁膜に接し、他方の主面に第2の無機絶縁膜を含む絶縁層を形成する絶縁層形成工程と、前記第2の無機絶縁膜の前記発光領域に対応した部分をエッチングする第1エッチング工程と、前記第1エッチング工程で残った前記第2の無機絶縁膜を覆う撥液性自己組織化膜を形成する工程と、前記自己組織膜の形成後、前記第1の無機絶縁膜の露出部分をエッチングして除去する第2エッチング工程と、を含むことを特徴としている。 According to a seventh aspect of the present invention, there is provided a method for manufacturing an organic EL panel, comprising: forming a first electrode on a substrate; and placing a plurality of first electrodes on the first electrode at a distance from each other. A partition forming step of individually covering the auxiliary electrodes on the first electrode to form a plurality of partitions defining at least one light emitting region, a step of forming an organic functional layer in the light emitting region, Forming a second electrode in contact with the organic functional layer, wherein the partition forming step includes a step of covering the auxiliary electrode on the first electrode. A step of forming one inorganic insulating film, and an insulating layer forming step in which one main surface is in contact with the first inorganic insulating film and an insulating layer including a second inorganic insulating film is formed on the other main surface; A portion corresponding to the light emitting region of the second inorganic insulating film is etched. A first etching step of etching, a step of forming a liquid-repellent self-assembled film covering the second inorganic insulating film remaining in the first etching step, and after the formation of the self-assembled film, And a second etching step of etching and removing the exposed portion of the inorganic insulating film.
本発明の実施例の有機ELパネルの有機機能層部分を除く部分を示す断面図である。It is sectional drawing which shows the part except the organic functional layer part of the organic electroluminescent panel of the Example of this invention. 図1の有機ELパネルの製造工程毎の断面図である。It is sectional drawing for every manufacturing process of the organic electroluminescent panel of FIG. 本発明の実施例の有機ELパネルの断面図である。It is sectional drawing of the organic electroluminescent panel of the Example of this invention. 本発明の他の実施例の有機ELパネルの断面図である。It is sectional drawing of the organic electroluminescent panel of the other Example of this invention.
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1に示した実施例の有機ELパネルにおいては、ガラス基板11上に透明電極12が第1の電極として形成されている。透明電極12は例えば、スパッタ法により形成された膜厚100nmのITO膜又はIZO膜からなる。透明電極12上には複数の補助電極13が形成されている。補助電極13は透明電極12上に形成された長手部材であり、互いに間隔を置いて並置されている。補助電極13の材料としてAlが用いられており、その厚さは例えば、100nmである。 In the organic EL panel of the embodiment shown in FIG. 1, a transparent electrode 12 is formed on a glass substrate 11 as a first electrode. The transparent electrode 12 is made of, for example, a 100 nm thick ITO film or IZO film formed by sputtering. A plurality of auxiliary electrodes 13 are formed on the transparent electrode 12. The auxiliary electrode 13 is a longitudinal member formed on the transparent electrode 12 and is juxtaposed at intervals. Al is used as the material of the auxiliary electrode 13, and the thickness thereof is, for example, 100 nm.
 各補助電極13上には補助電極13を個別に覆うように隔壁14が形成されている。隔壁14は第1の無機絶縁膜15、金属薄膜16、第2の無機絶縁膜17、及び撥液性自己組織化膜18から構成されている。第1の無機絶縁膜15、金属薄膜16、第2の無機絶縁膜17は補助電極13上にその順に積層されている。金属薄膜16及び第2の無機絶縁膜17は、一方の主面が第1の無機絶縁膜15に接し、他方の主面に第2の無機絶縁膜17を含む絶縁層を構成している。撥液性自己組織化膜18は第2の無機絶縁膜17の表面を覆うように形成されている。隔壁14の間は発光領域であり、後述するように有機機能層31が形成される。 A partition wall 14 is formed on each auxiliary electrode 13 so as to individually cover the auxiliary electrode 13. The partition wall 14 includes a first inorganic insulating film 15, a metal thin film 16, a second inorganic insulating film 17, and a liquid repellent self-assembled film 18. The first inorganic insulating film 15, the metal thin film 16, and the second inorganic insulating film 17 are laminated on the auxiliary electrode 13 in that order. The metal thin film 16 and the second inorganic insulating film 17 constitute an insulating layer in which one main surface is in contact with the first inorganic insulating film 15 and the second main surface includes the second inorganic insulating film 17. The liquid repellent self-assembled film 18 is formed so as to cover the surface of the second inorganic insulating film 17. Between the partition walls 14 is a light emitting region, and an organic functional layer 31 is formed as described later.
 図2(a)~(i)は図1の有機ELパネル中の隔壁14の製造工程毎の状態を示している。先ず、図2(a)は、ガラス基板11上に透明電極12の膜が形成され、更に透明電極12上に複数の補助電極13が形成された状態を示している。 2 (a) to 2 (i) show the state of each manufacturing process of the partition 14 in the organic EL panel of FIG. First, FIG. 2A shows a state in which a film of the transparent electrode 12 is formed on the glass substrate 11 and a plurality of auxiliary electrodes 13 are formed on the transparent electrode 12.
 例えば、ガラス基板11上にスパッタ法によりITOを材料として透明膜が付着形成され、その後、フォトリソグラフィ技術によりITO膜上にフォトレジストが塗布され、そのレジストにマスクパターンを転写するために露光及び現像が順に行われ、更に、エッチングで陽極として残すべき部分以外のITO膜が除去される。そして、ガラス基板11上においてレジストが除去されると、残ったITO膜が透明電極12として得られる。 For example, a transparent film is deposited and formed on a glass substrate 11 by sputtering using ITO as a material, and then a photoresist is applied on the ITO film by photolithography, and exposure and development are performed to transfer a mask pattern to the resist. Further, the ITO film other than the portion to be left as the anode by etching is removed. Then, when the resist is removed on the glass substrate 11, the remaining ITO film is obtained as the transparent electrode 12.
 透明電極12上にスパッタ法によりAlを材料として膜が付着形成され、その後、フォトリソグラフィ技術によりAl膜上にレジストが塗布され、そのレジストにマスクパターンを転写するために露光及び現像が順に行われ、更に、エッチングでバスラインとして残すべき部分以外のAl膜が除去される。そして、ガラス基板11上においてレジストが除去されると、図2(a)に示すように、残ったAl膜が補助電極13として得られる。補助電極13は導電性を有しており、透明電極12への給電ラインである。 A film is deposited and formed on the transparent electrode 12 by sputtering using Al as a material. After that, a resist is applied onto the Al film by photolithography, and exposure and development are sequentially performed to transfer the mask pattern to the resist. Further, the Al film other than the portion to be left as a bus line is removed by etching. Then, when the resist is removed on the glass substrate 11, the remaining Al film is obtained as the auxiliary electrode 13 as shown in FIG. The auxiliary electrode 13 has conductivity and is a power supply line to the transparent electrode 12.
 補助電極13が形成された後、透明電極12上には図2(b)に示すように、無機絶縁膜21、金属薄膜22、そして無機絶縁膜23がその順にスパッタ法により積層形成される。無機絶縁膜21、金属薄膜22、及び無機絶縁膜23は最終的に上記した第1の無機絶縁膜15、金属薄膜16、及び第2の無機絶縁膜17を得るために成膜された部分である。無機絶縁膜21の材料としては十分な絶縁性を確保できる、例えば、SiO、Si、Al、Ta等の無機材料が用いられる。無機絶縁膜21の厚さは例えば、150nmである。金属薄膜22は金属等の電導性部材との電気的な接続をしていないので、有機ELパネルの駆動に影響を与えることはない。従って、その材料としては特に限定されることはないが、好ましくは、Au等の化学的耐性がある金属が良い。金属薄膜22の厚さは例えば、50nmである。無機絶縁膜23は最終的に上記した第2の無機絶縁膜17とされ、その表面に撥液性自己組織化膜18が形成されるので、例えば、SiO、Al、Ta等の金属酸化物であることが望ましい。無機絶縁膜23の厚さは例えば、700nmである。 After the auxiliary electrode 13 is formed, as shown in FIG. 2B, an inorganic insulating film 21, a metal thin film 22, and an inorganic insulating film 23 are laminated on the transparent electrode 12 in this order by sputtering. The inorganic insulating film 21, the metal thin film 22, and the inorganic insulating film 23 are portions formed to finally obtain the first inorganic insulating film 15, the metal thin film 16, and the second inorganic insulating film 17. is there. As the material of the inorganic insulating film 21, an inorganic material such as SiO 2 , Si 3 N 4 , Al 2 O 3 , Ta 2 O 5 or the like that can ensure sufficient insulation is used. The thickness of the inorganic insulating film 21 is, for example, 150 nm. Since the metal thin film 22 is not electrically connected to a conductive member such as metal, it does not affect the driving of the organic EL panel. Therefore, the material is not particularly limited, but a metal having chemical resistance such as Au is preferable. The thickness of the metal thin film 22 is, for example, 50 nm. The inorganic insulating film 23 is finally the second inorganic insulating film 17 described above, and the liquid-repellent self-assembled film 18 is formed on the surface thereof. For example, SiO 2 , Al 2 O 3 , Ta 2 O A metal oxide such as 5 is desirable. The thickness of the inorganic insulating film 23 is 700 nm, for example.
 無機絶縁膜21、金属薄膜22、及び無機絶縁膜23の形成後、図2(c)に示すように、その無機絶縁膜23の上面全面にポジ型のレジスト24が塗布される。そして、フォトリソグラフィ技術によりそのレジスト24にマスクパターンを転写するために露光及び現像が順に行われ、図2(d)に示すように、上記の隔壁14に対応する位置のレジスト24だけが残される。 After the formation of the inorganic insulating film 21, the metal thin film 22, and the inorganic insulating film 23, a positive resist 24 is applied to the entire upper surface of the inorganic insulating film 23 as shown in FIG. Then, exposure and development are sequentially performed in order to transfer the mask pattern to the resist 24 by photolithography technology, and only the resist 24 at the position corresponding to the partition wall 14 is left as shown in FIG. .
 次に、無機絶縁膜23に対して例えば、バッファードフッ酸を用いてエッチング処理が施され(第1エッチング工程)、図2(e)に示すように、無機絶縁膜23はレジスト24で覆われた部分だけを残して除去される。そして、図2(f)に示すように、レジスト24が除去され、その結果、露出した無機絶縁膜23が第2の無機絶縁膜17として得られる。第2の無機絶縁膜17の表面はUVオゾン処理により洗浄される。 Next, the inorganic insulating film 23 is etched using, for example, buffered hydrofluoric acid (first etching step), and the inorganic insulating film 23 is covered with a resist 24 as shown in FIG. It is removed leaving only the broken part. Then, as shown in FIG. 2 (f), the resist 24 is removed, and as a result, the exposed inorganic insulating film 23 is obtained as the second inorganic insulating film 17. The surface of the second inorganic insulating film 17 is cleaned by UV ozone treatment.
 その後、図2(g)に示すように、第2の無機絶縁膜17の表面に対して自己組織化材料が塗布されることにより撥液処理が施される。自己組織化材料としては無機絶縁膜17の表面に化学吸着し、更に、その表面を撥液性にする官能基のものが選ばれる。例えば、アルコキシシラン、ハロゲン化シラン、或いはシラザンの他にフッ素、アルキル鎖を有するものが望ましい。具体的には、パーフルオロ化オクタデシルトリクロロシラン、オクタデシルトリクロロシラン、ヘキサメチルジシラザン等の材料を用いることができる。この撥液処理の結果、撥液性自己組織化膜18が第2の無機絶縁膜17の表面に形成される。この撥液処理の際には撥液処理が作用しない金属薄膜22が存在しているので、第2の無機絶縁膜17の表面だけが撥液処理され、金属薄膜22より下部部分は撥液処理されない。 Thereafter, as shown in FIG. 2G, a liquid repellent treatment is performed by applying a self-organizing material to the surface of the second inorganic insulating film 17. As the self-organizing material, a functional group that is chemically adsorbed on the surface of the inorganic insulating film 17 and further makes the surface liquid-repellent is selected. For example, those having fluorine and alkyl chains in addition to alkoxysilane, halogenated silane, or silazane are desirable. Specifically, materials such as perfluorinated octadecyltrichlorosilane, octadecyltrichlorosilane, and hexamethyldisilazane can be used. As a result of this liquid repellent treatment, a liquid repellent self-assembled film 18 is formed on the surface of the second inorganic insulating film 17. Since there is a metal thin film 22 to which the liquid repellent treatment does not act during the liquid repellent treatment, only the surface of the second inorganic insulating film 17 is subjected to the liquid repellent treatment. Not.
 次いで、金属薄膜22に対してエッチング処理が施される。このエッチング処理は第2の無機絶縁膜17がレジストとなって行われ、金属薄膜22は図2(h)に示すように、第2の無機絶縁膜17で覆われた部分だけを残して除去される。残った金属薄膜22は金属薄膜16となる。金属薄膜22がAuである場合にはエッチング液として関東化学株式会社製のAURUM-302(登録商標)が用いられる。 Next, the metal thin film 22 is subjected to an etching process. This etching process is performed using the second inorganic insulating film 17 as a resist, and the metal thin film 22 is removed leaving only the portion covered with the second inorganic insulating film 17, as shown in FIG. 2 (h). Is done. The remaining metal thin film 22 becomes the metal thin film 16. When the metal thin film 22 is Au, AURUM-302 (registered trademark) manufactured by Kanto Chemical Co., Inc. is used as an etching solution.
 更に、無機絶縁膜21に対して例えば、バッファードフッ酸を用いてエッチング処理が施される(第2エッチング工程)。このエッチング処理は自己組織化材料18にて処理された無機絶縁膜17、及び金属薄膜16がレジストの代替となって行われ、無機絶縁膜21は図2(i)に示すように、金属薄膜16で覆われた部分だけを残して除去される。残った無機絶縁膜21は第1の無機絶縁膜15となり、隔壁14の形成が完了する。 Furthermore, the inorganic insulating film 21 is subjected to an etching process using, for example, buffered hydrofluoric acid (second etching step). In this etching process, the inorganic insulating film 17 treated with the self-organizing material 18 and the metal thin film 16 are substituted for the resist, and the inorganic insulating film 21 is formed of a metal thin film as shown in FIG. Only the portion covered with 16 is removed. The remaining inorganic insulating film 21 becomes the first inorganic insulating film 15 and the formation of the partition 14 is completed.
 なお、無機絶縁膜21、金属薄膜22、及び無機絶縁膜23のエッチングについては、エッチング液によるウエットエッチングと、RIE(リアクティブイオンエッチング)等のドライエッチングとのうちのいずれを使用しても良い。 For the etching of the inorganic insulating film 21, the metal thin film 22, and the inorganic insulating film 23, any of wet etching using an etching solution and dry etching such as RIE (reactive ion etching) may be used. .
 隔壁14間の発光領域の透明電極12上には、図3に示すように有機機能層31が形成されている。有機機能層31においては透明電極12側から順に、正孔注入層/正孔輸送層、及び発光層がインクジェット法により積層されている。正孔注入層/正孔輸送層としては、例えば、ポリエチレンジオキシチオフェン(PEDOT)等のポリチオフェン誘導体とポリスチレンスルホン酸(PSS)等との混合物を用いることができる。発光層としては、例えば、ポリフルオレン誘導体、ポリフェニレン誘導体、ポリビニルカルバゾール等をホスト材料として、クマリン6、キナクリドン、ルブレン等をドーパントとして用いることができる。有機機能層31では電子注入効率を上げるためにLiF層等の電子注入層や電子輸送層を発光層上(発光層と後述の金属電極32との間)に例えば、蒸着法により設けても良い。 As shown in FIG. 3, an organic functional layer 31 is formed on the transparent electrode 12 in the light emitting region between the partition walls 14. In the organic functional layer 31, a hole injection layer / hole transport layer and a light emitting layer are laminated in order from the transparent electrode 12 side by an inkjet method. As the hole injection layer / hole transport layer, for example, a mixture of a polythiophene derivative such as polyethylenedioxythiophene (PEDOT) and polystyrenesulfonic acid (PSS) can be used. As the light emitting layer, for example, polyfluorene derivatives, polyphenylene derivatives, polyvinyl carbazole, or the like can be used as a host material, and coumarin 6, quinacridone, rubrene, or the like can be used as a dopant. In the organic functional layer 31, an electron injection layer such as a LiF layer or an electron transport layer may be provided on the light emitting layer (between the light emitting layer and a metal electrode 32 described later), for example, by vapor deposition in order to increase the electron injection efficiency. .
 なお、この有機機能層31の構造は一例であり、本発明はこれに限定されず、また、有機機能層31の製造方法についても限定されない。 In addition, the structure of this organic functional layer 31 is an example, and the present invention is not limited to this, and the manufacturing method of the organic functional layer 31 is not limited.
 更に、隔壁14及び有機機能層31を覆うように金属電極32が第2の電極として蒸着法により形成されている。金属電極32は陰極として作用するものであり、例えば、Alからなる。 Furthermore, a metal electrode 32 is formed as a second electrode by vapor deposition so as to cover the partition wall 14 and the organic functional layer 31. The metal electrode 32 functions as a cathode and is made of, for example, Al.
 かかる実施例の有機ELパネルにおいては、撥液性自己組織化膜18が第2の無機絶縁膜17の表面を覆っており、無機絶縁膜17は、撥液性自己組織化膜18と比較して、十分な絶縁性を有している。よって、陰極32と金属薄膜16との間の絶縁状態が十分であるので、異常発光やクロストークの心配がなく、そのため、特許文献1に示された従来技術のように金属薄膜の端縁と無機絶縁膜の端縁の間に間隔をあける必要もなく開口率も十分に確保することができ、過剰な駆動電流を流すこともなく有機ELパネルとしての寿命も長くできる。また、実施例の金属薄膜16は、有機ELパネルの陽極12及び陰極32への配線とは独立したものであり、電気を通す役割はなく、その必要もない。 In the organic EL panel of this example, the liquid repellent self-assembled film 18 covers the surface of the second inorganic insulating film 17, and the inorganic insulating film 17 is compared with the liquid repellent self-assembled film 18. And has a sufficient insulating property. Therefore, since the insulation state between the cathode 32 and the metal thin film 16 is sufficient, there is no fear of abnormal light emission or crosstalk. Therefore, unlike the prior art disclosed in Patent Document 1, the edge of the metal thin film It is not necessary to provide a gap between the edges of the inorganic insulating film, and the aperture ratio can be sufficiently secured, so that an excessive driving current does not flow and the life as an organic EL panel can be extended. In addition, the metal thin film 16 of the embodiment is independent of the wiring to the anode 12 and the cathode 32 of the organic EL panel, does not have a role to conduct electricity, and is not necessary.
 従来、隔壁が親液性の材料からなると、有機機能層の各膜のエッジが厚くなり、発光が中央付近と比べて暗くなる。また、隔壁が撥液性の材料からなると、逆に膜のエッジが薄くなり、その部分が中央付近と比べて明るくなる。従って、従来の有機ELパネルではメニスカスによって発光ムラの原因となることがある。これに対し、実施例の有機ELパネルにおいては、第2の無機絶縁膜17の表面に対して撥液処理する際には金属薄膜22が第1の無機絶縁膜23の上面を覆っているので、製造中に有機ELパネルの金属薄膜22より下部、すなわち第1の無機絶縁膜23や透明電極12が撥液処理されることがない。よって、隔壁14の上部である第2の無機絶縁膜17の表面だけが撥液処理されるので、インクジェット法での有機機能層の形成の際のインクの溢れ及び、メニスカスの低減ができ、これにより発光ムラがない良好な有機EL膜が得られる。 Conventionally, when the partition wall is made of a lyophilic material, the edge of each film of the organic functional layer becomes thick, and light emission becomes darker than near the center. On the other hand, when the partition wall is made of a liquid repellent material, the edge of the film becomes thin and the portion becomes brighter than the vicinity of the center. Therefore, the conventional organic EL panel may cause uneven light emission due to the meniscus. On the other hand, in the organic EL panel of the embodiment, the metal thin film 22 covers the upper surface of the first inorganic insulating film 23 when the surface of the second inorganic insulating film 17 is subjected to the liquid repellent treatment. The lower part of the organic EL panel than the metal thin film 22, that is, the first inorganic insulating film 23 and the transparent electrode 12 are not subjected to the liquid repellent treatment during the manufacture. Therefore, since only the surface of the second inorganic insulating film 17 which is the upper part of the partition wall 14 is subjected to the liquid repellent treatment, ink overflow and meniscus can be reduced when forming the organic functional layer by the ink jet method. As a result, a good organic EL film having no emission unevenness can be obtained.
 実施例では第1の無機絶縁膜15及び第2の無機絶縁膜17の材料は同一であっても異なっても良い。また、実施例では金属薄膜16が設けられているが、図4に示すように、第1の無機絶縁膜15及び第2の無機絶縁膜17の材料が異なる場合には金属薄膜16を省いて、第1の無機絶縁膜15上に直接、第2の無機絶縁膜17を形成しても良い。例えば、第1の無機絶縁膜15の材料としてSiを用い、第2の無機絶縁膜17の材料としてSiOを用いることができ、Siにダメージを与えることなくSiOだけをエッチングするエッチング液を用いることによって可能である。Siには水酸基がないため自己組織化膜が吸着しないので、SiOの第2の無機絶縁膜17の表面にだけ撥液処理することができる。なお、第1の無機絶縁膜15の材料としてSiを用いた場合に第2の無機絶縁膜17の材料としてSiO以外の金属酸化物を用いることができる。 In the embodiment, the materials of the first inorganic insulating film 15 and the second inorganic insulating film 17 may be the same or different. In the embodiment, the metal thin film 16 is provided. However, as shown in FIG. 4, when the materials of the first inorganic insulating film 15 and the second inorganic insulating film 17 are different, the metal thin film 16 is omitted. Alternatively, the second inorganic insulating film 17 may be formed directly on the first inorganic insulating film 15. For example, Si 3 N 4 can be used as the material of the first inorganic insulating film 15, and SiO 2 can be used as the material of the second inorganic insulating film 17. Only SiO 2 can be used without damaging the Si 3 N 4. This is possible by using an etchant that etches. Since Si 3 N 4 has no hydroxyl group, the self-assembled film does not adsorb, and therefore, only the surface of the second inorganic insulating film 17 made of SiO 2 can be subjected to a liquid repellent treatment. Note that when Si 3 N 4 is used as the material of the first inorganic insulating film 15, a metal oxide other than SiO 2 can be used as the material of the second inorganic insulating film 17.
 更に、第1の無機絶縁膜15は補助電極13を陽極酸化することによっても作製することができる。また、金属薄膜16はめっきによって作製することもできる。 Furthermore, the first inorganic insulating film 15 can also be produced by anodizing the auxiliary electrode 13. Moreover, the metal thin film 16 can also be produced by plating.
 以上のように、本発明の有機ELパネルによれば、隔壁は、第1の電極を覆う第1の無機絶縁膜と、一方の主面が第1の無機絶縁膜に接し、他方の主面に第2の無機絶縁膜を含む絶縁層と、第2の無機絶縁膜を覆う撥液性自己組織化膜とを含み、隔壁に有機材料が用いられていないので、隔壁からアウトガスが発生することはない故に、アウトガスによる有機ELパネルの劣化を抑制することができる。また、隔壁の上部の第2の無機絶縁膜の表面を撥液性自己組織化膜が覆っているので、有機機能層の各層の有機材料のインク塗布の際にインクの隣の発光領域への溢れを防止すると共にメニスカスの少ない有機機能層を形成することができる。更に、隔壁は十分の絶縁性を有するので、従来技術のように金属薄膜の端縁と無機絶縁膜の端縁の間に間隔をあける必要もなく、開口率を十分に確保しかつ長寿命化を図ることができる。 As described above, according to the organic EL panel of the present invention, the partition wall includes the first inorganic insulating film that covers the first electrode, one main surface in contact with the first inorganic insulating film, and the other main surface. And an insulating layer including the second inorganic insulating film and a liquid repellent self-assembled film covering the second inorganic insulating film, and an organic material is not used for the partition wall, so that outgas is generated from the partition wall. Therefore, deterioration of the organic EL panel due to outgassing can be suppressed. In addition, since the liquid repellent self-assembled film covers the surface of the second inorganic insulating film on the upper part of the partition wall, when the ink of the organic material of each layer of the organic functional layer is applied, the light emitting area adjacent to the ink Overflow can be prevented and an organic functional layer with less meniscus can be formed. Furthermore, since the partition wall has sufficient insulating properties, it is not necessary to provide a gap between the edge of the metal thin film and the edge of the inorganic insulating film as in the prior art, ensuring a sufficient aperture ratio and extending the life. Can be achieved.
 本発明の有機ELパネルは有機EL照明装置の光源や有機ELディスプレイに利用することができる。 The organic EL panel of the present invention can be used for a light source of an organic EL lighting device or an organic EL display.
11 ガラス基板
12 透明電極
13 補助電極
14 隔壁
15 第1の無機絶縁膜
16,22 金属薄膜
17 第2の無機絶縁膜
18 撥液性自己組織化膜
21,23 無機絶縁膜
24 レジスト
31 有機機能層
32 金属電極
DESCRIPTION OF SYMBOLS 11 Glass substrate 12 Transparent electrode 13 Auxiliary electrode 14 Partition 15 1st inorganic insulating film 16,22 Metal thin film 17 2nd inorganic insulating film 18 Liquid-repellent self-organizing films 21, 23 Inorganic insulating film 24 Resist 31 Organic functional layer 32 metal electrodes

Claims (7)

  1.  基板と、
     前記基板上に形成された第1の電極と、
     前記第1の電極上に互いに間隔を置いて並置された複数の補助電極と、
     前記第1の電極上において前記補助電極を個別に覆って、少なくとも1つの発光領域を定める複数の隔壁と、
     前記発光領域内に形成された有機機能層と、
     前記有機機能層に接した第2の電極と、を備える有機ELパネルであって、
     前記隔壁は、
     前記補助電極を覆う第1の無機絶縁膜と、
     一方の主面が前記第1の無機絶縁膜に接し、他方の主面に第2の無機絶縁膜を含む絶縁層と、
     前記第2の無機絶縁膜を覆う撥液性自己組織化膜と、を含むことを特徴とする有機ELパネル。
    A substrate,
    A first electrode formed on the substrate;
    A plurality of auxiliary electrodes juxtaposed at a distance from each other on the first electrode;
    A plurality of partition walls individually covering the auxiliary electrodes on the first electrode to define at least one light emitting region;
    An organic functional layer formed in the light emitting region;
    A second electrode in contact with the organic functional layer, and an organic EL panel comprising:
    The partition is
    A first inorganic insulating film covering the auxiliary electrode;
    An insulating layer having one main surface in contact with the first inorganic insulating film and the second main surface including a second inorganic insulating film;
    An organic EL panel comprising: a liquid-repellent self-assembled film that covers the second inorganic insulating film.
  2.  前記絶縁層は、前記第1の無機絶縁膜に接した金属薄膜を含み、
     前記第2の無機絶縁膜は前記金属薄膜上に形成されていることを特徴とする請求項1記載の有機ELパネル。
    The insulating layer includes a metal thin film in contact with the first inorganic insulating film,
    The organic EL panel according to claim 1, wherein the second inorganic insulating film is formed on the metal thin film.
  3.  前記絶縁層は、前記第1の無機絶縁膜の材料とは異なる材料からなる前記第2の無機絶縁膜のみで構成され、
     前記第2の無機絶縁膜は前記第1の無機絶縁膜上に形成されていることを特徴とする請求項1記載の有機ELパネル。
    The insulating layer is composed of only the second inorganic insulating film made of a material different from the material of the first inorganic insulating film,
    The organic EL panel according to claim 1, wherein the second inorganic insulating film is formed on the first inorganic insulating film.
  4.  前記第2の無機絶縁膜は金属酸化膜であることを特徴とする請求項2又は3記載の有機ELパネル。 4. The organic EL panel according to claim 2, wherein the second inorganic insulating film is a metal oxide film.
  5.  前記撥液性自己組織化膜はアルコキシシラン、又はクロロシラン化合物からなることを特徴とする請求項4記載の有機ELパネル。 5. The organic EL panel according to claim 4, wherein the liquid repellent self-assembled film is made of an alkoxysilane or a chlorosilane compound.
  6.  前記第1の無機絶縁膜はSiからなることを特徴とする請求項3記載の有機ELパネル。 The organic EL panel according to claim 3, wherein the first inorganic insulating film is made of Si 3 N 4 .
  7.  基板上に第1の電極を形成する工程と、
     前記第1の電極上に複数の第1の電極を互いに間隔を置いて並置する工程と、
     前記第1の電極上において前記補助電極を個別に覆って、少なくとも1つの発光領域を定める複数の隔壁を形成する隔壁形成工程と、
     前記発光領域に有機機能層を形成する工程と、
     前記有機機能層に接した第2の電極を形成する工程と、を含む有機ELパネルの製造方法であって、
     前記隔壁の形成工程は、
     前記第1の電極上に前記補助電極を覆うように第1の無機絶縁膜を形成する工程と、
     一方の主面が前記第1の無機絶縁膜に接し、他方の主面に第2の無機絶縁膜を含む絶縁層を形成する絶縁層形成工程と、
     前記第2の無機絶縁膜の前記発光領域に対応した部分をエッチングする第1エッチング工程と、
     前記第1エッチング工程で残った前記第2の無機絶縁膜を覆う撥液性自己組織化膜を形成する工程と、
     前記自己組織膜の形成後、前記第1の無機絶縁膜の露出部分をエッチングして除去する第2エッチング工程と、を含むことを特徴とする製造方法。
    Forming a first electrode on a substrate;
    Juxtaposing a plurality of first electrodes on the first electrode, spaced apart from each other;
    A partition formation step of individually forming the plurality of partitions defining the at least one light emitting region by individually covering the auxiliary electrodes on the first electrode;
    Forming an organic functional layer in the light emitting region;
    Forming a second electrode in contact with the organic functional layer, and a method of manufacturing an organic EL panel,
    The step of forming the partition wall includes
    Forming a first inorganic insulating film on the first electrode so as to cover the auxiliary electrode;
    An insulating layer forming step in which one main surface is in contact with the first inorganic insulating film and an insulating layer including a second inorganic insulating film is formed on the other main surface;
    A first etching step of etching a portion corresponding to the light emitting region of the second inorganic insulating film;
    Forming a liquid repellent self-assembled film that covers the second inorganic insulating film remaining in the first etching process;
    And a second etching step of etching and removing the exposed portion of the first inorganic insulating film after the formation of the self-organized film.
PCT/JP2012/064291 2012-06-01 2012-06-01 Organic el panel and method for manufacturing same WO2013179485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064291 WO2013179485A1 (en) 2012-06-01 2012-06-01 Organic el panel and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064291 WO2013179485A1 (en) 2012-06-01 2012-06-01 Organic el panel and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013179485A1 true WO2013179485A1 (en) 2013-12-05

Family

ID=49672734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064291 WO2013179485A1 (en) 2012-06-01 2012-06-01 Organic el panel and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013179485A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237383A (en) * 2000-03-31 2002-08-23 Seiko Epson Corp Manufacturing method of organic el element and organic el element
JP2009140817A (en) * 2007-12-07 2009-06-25 Rohm Co Ltd Organic el planar light-emitting apparatus
JP2010010670A (en) * 2008-05-28 2010-01-14 Panasonic Corp Light emitting device and method of manufacturing the same
JP2010160946A (en) * 2009-01-07 2010-07-22 Sumitomo Chemical Co Ltd Method for manufacturing organic electroluminescence device
JP2012048906A (en) * 2010-08-25 2012-03-08 Sony Corp Organic el display device and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237383A (en) * 2000-03-31 2002-08-23 Seiko Epson Corp Manufacturing method of organic el element and organic el element
JP2009140817A (en) * 2007-12-07 2009-06-25 Rohm Co Ltd Organic el planar light-emitting apparatus
JP2010010670A (en) * 2008-05-28 2010-01-14 Panasonic Corp Light emitting device and method of manufacturing the same
JP2010160946A (en) * 2009-01-07 2010-07-22 Sumitomo Chemical Co Ltd Method for manufacturing organic electroluminescence device
JP2012048906A (en) * 2010-08-25 2012-03-08 Sony Corp Organic el display device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP7331206B2 (en) organic light emitting display
JP4647708B2 (en) Organic EL device and manufacturing method thereof
CN102106186B (en) Organic EL display panel and method for manufacturing same
JP4540747B2 (en) Organic EL device and organic EL display panel
CN103229596B (en) Organic EL display panel and manufacture method thereof
KR102629936B1 (en) Organic light-emitting apparatus and the method for manufacturing of the organic light-emitting display apparatus
TWI619246B (en) Inkjet devices
KR102602193B1 (en) Organic light-emitting apparatus and the method for manufacturing of the organic light-emitting display apparatus
KR20080003074A (en) Organic light emitting display device and and method for fabricating the same
JP2007109629A (en) Manufacturing method of electroluminescent element, and electroluminescent element
JP5543600B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE HAVING LIGHT EMITTING ELEMENT, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
WO2017020481A1 (en) Electrode structure, and organic luminescence unit and manufacturing method therefor
KR20070011105A (en) Self-emission panel and method of manufacturing the same
JP2006114480A (en) Organic electroluminescence display device and its manufacturing method
JP2008243559A (en) Manufacturing method of organic electroluminescent display device
JP2001068267A5 (en)
JP2010282903A (en) Organic el display panel
JP2009230956A (en) Manufacturing method of organic electroluminescent display device
JP6207928B2 (en) Method for manufacturing light emitting device
JP4457697B2 (en) Manufacturing method of organic EL element
KR20080003079A (en) Organic light emitting display device and and method for fabricating the same
JPWO2013190636A1 (en) Organic EL panel
JP2010009753A (en) Organic electroluminescent display device, and manufacturing method thereof
WO2013179485A1 (en) Organic el panel and method for manufacturing same
JP2010003797A (en) Organic el element, and manufacturing method of the organic el element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP