WO2013179342A1 - Biochip - Google Patents

Biochip Download PDF

Info

Publication number
WO2013179342A1
WO2013179342A1 PCT/JP2012/003561 JP2012003561W WO2013179342A1 WO 2013179342 A1 WO2013179342 A1 WO 2013179342A1 JP 2012003561 W JP2012003561 W JP 2012003561W WO 2013179342 A1 WO2013179342 A1 WO 2013179342A1
Authority
WO
WIPO (PCT)
Prior art keywords
biochip
substrate
flow path
metal layer
liquid
Prior art date
Application number
PCT/JP2012/003561
Other languages
French (fr)
Japanese (ja)
Inventor
民谷 栄一
大木 誠
真人 斉藤
瑞穂 村橋
準 向井
守 中西
Original Assignee
株式会社バイオマーカーサイエンス
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バイオマーカーサイエンス, 国立大学法人大阪大学 filed Critical 株式会社バイオマーカーサイエンス
Priority to PCT/JP2012/003561 priority Critical patent/WO2013179342A1/en
Priority to JP2014518088A priority patent/JPWO2013179342A1/en
Publication of WO2013179342A1 publication Critical patent/WO2013179342A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention relates to a biochip, and more particularly to a biochip for easily detecting or quantifying biomolecules in a biological sample.
  • biochips have been used for analysis of biomolecules such as DNA and proteins.
  • a predetermined probe is immobilized on the substrate according to a substance to be detected among DNA, protein, sugar chain, etc., and the probe and a biological sample such as blood are reacted, A desired biomolecule is bound to the probe. This enables detection and quantification of biomolecules in the biological sample.
  • Various tests can be performed simultaneously by fixing various probes on the substrate.
  • LSPR localized plasmon resonance
  • a biomolecule is bound to a noble metal particle portion deposited on a substrate of a biochip through a probe, the measurement light is irradiated to the noble metal particle portion, and the intensity of transmitted or reflected light and The magnitude of the shift of the absorption peak wavelength is measured.
  • a desired biomolecule can be quantified using the size as an index.
  • Biochips are used for the purpose of disease prevention and treatment.
  • the patient's condition can be examined by detecting and quantifying a biomarker such as a protein related to a disease in the patient's blood with a biochip using the patient's blood as a sample.
  • a biomarker such as a protein related to a disease in the patient's blood
  • a biochip using the patient's blood as a sample.
  • a biochip when a biochip is used, a plurality of biomarkers can be detected at the same time, and a plurality of patient biological samples can be simultaneously measured.
  • the present invention has been made in view of the above problems, and an object of the present invention is to obtain a biochip capable of easily measuring both various substances in a sample and creating a calibration curve without using an expensive apparatus. There is to do.
  • the present invention has a configuration in which a biochip has a plurality of flow paths, and the flow paths have gaps that allow the liquid to develop by capillary action.
  • the biochip according to the present invention is provided on a substrate having a metal layer formed on the upper surface, a plurality of partition portions extending in parallel to each other, and a plurality of partition portions.
  • a plurality of flow paths extending in parallel with each other by the substrate, the partition portion, and the cover member, and each flow path on the substrate has a plurality of solid phase probes.
  • the gap between the substrate and the cover member in the flow channel is a size that allows the liquid to develop from one end of the flow channel to the other end by capillary action.
  • a plurality of flow paths are formed on the substrate, and the gap between the substrate and the cover member in the flow paths can be developed from one end of the flow path to the other end by capillary action. Because of the size, a large number of samples can be easily measured simultaneously without using an expensive apparatus. It is also possible to create a calibration curve along with sample measurement. Furthermore, since a metal layer is formed on the upper surface of the substrate, LSPR can be used for measurement, and it is not necessary to perform a labeling step, and highly sensitive measurement can be performed more easily. .
  • the biochip according to the present invention preferably further includes a liquid discharge means that is detachably provided at one end or the other end of each flow path and discharges the liquid in the flow path.
  • the liquid discharging means may be a water-absorbing material having water absorption.
  • liquid discharging means may be a suction pump that can suck liquid.
  • the metal layer may be formed via an anodized alumina film having a porous layer on the upper surface of the substrate.
  • the substrate may have a concavo-convex structure on its upper surface, and the metal layer may be formed on the concavo-convex structure.
  • the concavo-convex structure is preferably formed by a nanoimprint method.
  • the metal layer may be formed on a plurality of silica beads arranged two-dimensionally on the upper surface of the substrate.
  • the metal layer may be formed by arranging metal nanoparticles directly on the substrate.
  • the metal layer may include gold.
  • the partition portion and the cover member may be integrated.
  • the partition portion and the cover member can be provided in the same process, and the production of the biochip becomes easier.
  • the biochip according to the present invention can easily measure a large number of samples and create a calibration curve without using an expensive apparatus. For this reason, it is possible to easily measure a plurality of biomolecules of one patient, or to measure a single or a plurality of biomolecules of a plurality of patients.
  • FIG. 1 is a perspective view showing a biochip according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing an example of a biochip partition section according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing a mode in which liquid is discharged from the flow path in the biochip according to the embodiment of the present invention.
  • FIG. 4 is a graph showing the results of measuring transthyretin using the biochip of the present invention and a conventional biochip.
  • FIG. 5 is a graph showing the results of measuring C-reactive protein using the biochip of the present invention and a conventional biochip.
  • FIG. 6 is a graph showing the results of measuring cystatin C using the biochip of the present invention and a conventional biochip.
  • a biochip according to an embodiment of the present invention will be described with reference to FIGS.
  • the biochip 10 is formed with a plurality of partition portions 2 extending in parallel on the upper surface of a substrate 1 made of, for example, glass.
  • a cover glass 3 as a cover member is provided on the substrate 1 and the partition 2.
  • a plurality of flow paths 4 extending in parallel are formed by the substrate 1, the partition portion 2, and the cover glass 3, and a plurality of solid-phase probes 5 are formed in the flow paths 4 on the upper surface of the substrate 1.
  • the gap between the substrate 1 and the cover glass 3 in the flow path 4 is such a size that the liquid can be developed from one end of the flow path 4 to the other end by capillary action.
  • the size of the gap is about 100 ⁇ m to 1000 ⁇ m.
  • one end of the flow path 4 is formed inside the end of the substrate 1, but it may extend to the end of the substrate 1 like the other end. Conversely, the other end of the flow path 4 may be formed inside the end of the substrate 1.
  • the solid-phase probe 5 formed on the substrate 1 includes, for example, an antibody, and specifically, the antibody or the like is fixed to a metal layer deposited on the substrate 1.
  • the kind of the immobilized probe 5 can be selected depending on the biomolecule to be detected or quantified.
  • a nucleic acid such as a DNA fragment capable of binding to the DNA can be used.
  • the metal layer may be a metal layer that can perform detection or measurement using localized plasmon resonance (LSPR), and may use silver or platinum in addition to gold.
  • LSPR localized plasmon resonance
  • the metal layer is preferably formed on the substrate 1 via an anodized alumina film having a porous layer. Further, the metal layer may be formed on a plurality of silica beads arranged two-dimensionally on the substrate 1. Further, the metal layer may be formed by arranging metal nanoparticles directly on the substrate 1.
  • an uneven structure having a desired shape may be formed on the substrate 1 and a metal layer may be formed thereon.
  • a nanoimprint method can be used.
  • a polymer resin can be used for the substrate 1.
  • a metal layer may be deposited on the upper surface.
  • the shape of the mold is preferably a shape suitable for depositing the metal layer on the upper surface of the substrate 1.
  • the partition portion 2 is provided so as to be interposed between the substrate 1 and the cover glass 3, thereby forming a gap between the substrate 1 and the cover glass 3. Moreover, the partition part 2 is fluid-adhered with the board
  • the partition portion 2 has a thickness capable of forming a gap between the substrate 1 and the cover glass 3 so that a liquid can be developed from one end to the other end of the flow path 4 by capillary action. Specifically, the thickness of the partition 2 is about 100 ⁇ m to 1000 ⁇ m.
  • the sample is developed in the flow path 4 in which the plurality of immobilized probes 5 are formed simply by dropping a liquid sample onto one end of each flow path 4, so that an expensive apparatus is not used. Multiple samples can be easily measured simultaneously. In addition, it is possible to create a calibration curve together with the measurement of the sample, and it is also possible to prevent contamination between samples when the sample is dropped. Furthermore, as described above, the liquid can be discharged from the flow path 4, and when the solid-phased probe 5 is irradiated with light, the light is easily focused and measurement is possible.
  • the partition part 2 for example, a double-sided tape having the above-mentioned thickness can be used. Moreover, you may form the partition part 2 by apply
  • a plurality of immobilized probes 5 are formed in each flow path 4 surrounded by the substrate 1, the partition 2 and the cover glass 3. For example, when 12 flow paths 4 are formed, if 8 immobilized probes 5 are formed in each flow path 4, 96 immobilized probes 5 are formed in a matrix on one biochip. it can.
  • the respective immobilized probes 5 may be the same type or a plurality of types.
  • the numbers of the flow paths 4 and the immobilized probes 5 are not limited to the above numbers.
  • the water absorbing material 6 which has a water absorption which is a liquid discharge means for discharging the liquid expand
  • the water absorbing material 6 for example, filter paper and resin having high water absorption can be used.
  • a suction pump using a motor or the like can be used as the liquid discharging means.
  • an antibody or a nucleic acid that binds to the desired biomarker is immobilized in advance as a solid phase probe on the biochip according to the present embodiment.
  • a plurality of solid-phase probes may be formed in each flow path. As described above, for example, when 12 rows of flow paths are formed, when solid-phase probes are formed at 8 locations in each flow path, 96 immobilized probes can be formed in a matrix on one biochip.
  • a sample such as human blood or serum is dropped on one end of the flow path of the biochip.
  • the dropped sample develops in the channel by capillary action and reaches the other end of the channel.
  • the dropping of the sample may use an automatic dispensing device, or may be performed manually with a normal pipette or dispenser.
  • a pipette that can easily replace the chip from the viewpoint of preventing contamination.
  • a protein standard solution can be dropped onto the same biochip together with the dropping of the sample in order to create a calibration curve. In this step, the liquid discharging means is not attached to the biochip.
  • the sample and the immobilized probe are reacted at a predetermined temperature and time.
  • suitable conditions can be appropriately selected according to the type of sample and the type of probe.
  • the sample is discharged from the other end of the flow path by attaching the liquid discharge means to the biochip.
  • the liquid discharging means For example, when a water absorbing material is used for the liquid discharging means, the water absorbing material is placed on the other end of the channel of the substrate so as to be in contact with the sample. Thereby, since a water absorption material absorbs the sample in a flow path, a sample can be discharged
  • a suction pump is used as the liquid discharge means, the sample can be discharged from each channel by placing the suction port of the suction pump on the other end of the channel. Note that the sample may be discharged from one end portion by providing it at one end portion of the flow path without providing the liquid discharge means at the other end portion of the flow path.
  • the liquid discharging means is removed from the biochip.
  • a predetermined cleaning solution that is a buffer solution such as phosphate buffered saline (PBS) is dropped onto one end of the flow path.
  • PBS phosphate buffered saline
  • the dropped sample develops in the channel by capillary action and reaches the other end of the channel.
  • the cleaning liquid is discharged from the other end of the flow path by the liquid discharging means. This washing is performed about 2 to 3 times.
  • the absorbance is measured in advance before reacting the sample and the probe, and compared with the absorbance after the reaction. It is measured by the shift amount of the absorption peak wavelength before the reaction and the absorption peak wavelength after the reaction.
  • a plurality of immobilized probes that bind to the biomolecule to be measured are formed in a flow path having a gap that allows the liquid to be developed by capillary action.
  • the reaction between each immobilized probe and a sample containing a biomolecule can be easily performed. Therefore, it is possible to easily measure a large number of biomolecules without using an expensive apparatus.
  • a calibration curve can be created using the same biochip together with the measurement of biomolecules.
  • the amount of transthyretin (TTR), C-reactive protein (CRP) and cystatin C in human serum was measured using the biochip of the present invention, and the results were measured using a conventional method. And compared with the measured results.
  • the anodized alumina film formed in the above process was removed.
  • the removal of the anodized alumina film is performed by reacting at 60 ° C. to 80 ° C. for 3 minutes using a solution obtained by adding 50 g / L of chromic acid to a solution containing phosphoric acid and water at a ratio of 8: 2. It was. After the reaction, ultrasonic treatment was performed for 10 minutes, and washing was performed using ultrapure water.
  • an anodizing treatment is performed for the second time at an applied voltage of 40 V under conditions of 10 ° C. for 5 minutes, and then ultrasonic treatment is performed for 10 minutes to obtain ultra pure water. Washing was performed using As a result, an anodized alumina film having a porous layer having a thickness of about 600 nm on the upper surface of the slide glass was obtained.
  • gold was deposited on the obtained anodized alumina film by a sputtering method. Specifically, gold was deposited around the opening of the porous layer of the anodized alumina film. As a result, a biochip substrate including a metal layer made of gold was obtained. This substrate can be stored in a desiccator until use.
  • the substrate was immersed in ethanol containing 1 mM 10-carboxyl-1-decanthiol overnight, preferably for 6 to 12 hours. Thereafter, the substrate was washed with ultrapure water and dried. Subsequently, the substrate was immersed in an aqueous solution containing 0.1 M N-hydroxysuccinimide ester (NHS) and 0.4 M water-soluble carbodiimide (WSC) for 10 minutes. Thereafter, the substrate was washed with phosphate buffered saline (PBS) and dried.
  • N-hydroxysuccinimide ester NHS
  • WSC water-soluble carbodiimide
  • an anti-TTR antibody, an anti-CRP antibody and an anti-cystatin C antibody were respectively dropped onto the substrate and allowed to stand for 30 minutes.
  • the dropping of the antibody is performed at a plurality of locations in a matrix.
  • each antibody was arranged in 8 spots of 2 columns ⁇ 4 rows, and a total of 24 spots of 6 columns ⁇ 4 rows were arranged in total.
  • the substrate was washed twice with Tween-20-containing PBS (PBST), washed once with PBS, and dried. As a result, a plurality of spot-like immobilized probes were formed.
  • a partition portion was provided on the substrate.
  • a double-sided tape with a thickness of 136 ⁇ m is used for the partitioning part, and five double-sided tapes are provided in parallel between the probes and at both ends along the row of probes formed in the above process on the substrate. Stuck on.
  • a commercially available ordinary cover glass was stuck on the substrate through a double-sided tape as a partition so as to cover the plurality of probes. Thereby, a gap corresponding to the thickness of the double-sided tape is formed between the substrate and the cover glass, and this gap becomes a flow path. In this embodiment, four flow paths are formed.
  • a water absorption pad made of filter paper as a liquid discharge means was prepared for discharging the sample from the flow path.
  • the biochip of this example was completed through the above steps.
  • sample measurement a method for measuring a sample using the biochip produced by the above process will be described.
  • a calibration curve is prepared using a standard protein mixed solution containing three kinds of proteins TTR, CRP and cystatin C, and the results of detecting and quantifying the three kinds of proteins using serum as a sample are shown.
  • the absorbance of the region where each immobilized probe of the biochip obtained by the above method is previously measured is measured, and the absorption peak wavelength is recorded.
  • a standard protein mixture and serum are dropped onto one end of each flow path.
  • standard protein mixtures 10 ng / mL and 100 ng / mL, and human serum diluted 100-fold and 1000-fold were used. These were each dropped onto one end of the flow path. Since the size of the gap between the substrate and the cover glass is the thickness of the double-sided tape and is extremely small, the human serum and standard protein mixture is developed from one end of the flow path to the other end due to capillary action. As a result, each probe in the flow path can react with the human serum and the standard protein mixture.
  • a water absorption pad made of filter paper was placed on the other end of the flow channel so as to contact the sample, and the sample in the flow channel was discharged. Thereafter, the flow path was washed twice with PBST, washed once with PBS, and then dried in the same manner as the step of developing the sample in the flow path.
  • FIGS. 4 to 6 show the results of the present example and the results of testing by dropping a sample on each probe in sequence using a conventional biochip having no flow path.
  • the biochip according to the present invention can easily measure a large number of samples simultaneously without using an expensive apparatus, and is particularly useful for biochips for detecting or quantifying biomolecules in a biological sample. .

Abstract

A biochip provided with: a substrate (1) in which a metal layer has been deposited on the upper surface; a plurality of partitioning parts (2) provided on the substrate (1), each partitioning part (2) extending in parallel fashion; and a cover member (3) provided on the plurality of partitioning parts (2). A plurality of flow channels (4), each extending in parallel fashion, is formed on the substrate (1) by the substrate (1), the partitioning parts (2), and the cover member (3). A plurality of solid-phase-forming probes (5) is formed in the flow channels (4) in respective fashion on the substrate (1). The gap in the flow channels (4) between the substrate (1) and the cover member (3) has a size that allows a liquid to deploy by capillary phenomenon from one end of the flow channels (4) to the other end.

Description

バイオチップBiochip
 本発明は、バイオチップに関し、特に、生体試料中の生体分子の検出又は定量を簡便に行うためのバイオチップに関する。 The present invention relates to a biochip, and more particularly to a biochip for easily detecting or quantifying biomolecules in a biological sample.
 近年、DNA及びタンパク質等の生体分子の解析のために、バイオチップが用いられている。従来のバイオチップには、その基板の上に、DNA、タンパク質又は糖鎖等のうち検出する物質に応じて所定のプローブが固定されており、プローブと血液等の生体試料とを反応させて、プローブに所望の生体分子を結合させる。これにより、生体試料中の生体分子の検出及び定量を可能とする。基板の上に種々のプローブを固定することにより、同時に種々の試験を行うことができる。 In recent years, biochips have been used for analysis of biomolecules such as DNA and proteins. In a conventional biochip, a predetermined probe is immobilized on the substrate according to a substance to be detected among DNA, protein, sugar chain, etc., and the probe and a biological sample such as blood are reacted, A desired biomolecule is bound to the probe. This enables detection and quantification of biomolecules in the biological sample. Various tests can be performed simultaneously by fixing various probes on the substrate.
 従来、タンパク質の検出及び定量は、蛍光物質等により標的のタンパク質の標識を行い、その蛍光強度を測定することにより行われている。このような測定方法は、標識工程を必要とするため、一連の工程を行うのに長い時間を必要とし、生体分子が有する高い認識能を阻害するため、感度の低下及び作業の煩雑化を招くこととなる。 Conventionally, protein detection and quantification are performed by labeling a target protein with a fluorescent substance or the like and measuring the fluorescence intensity. Since such a measuring method requires a labeling step, it takes a long time to perform a series of steps, and inhibits the high recognition ability of biomolecules, leading to a decrease in sensitivity and complication of work. It will be.
 そこで、近年、このような標識を行うことなく、生体分子の検出及び定量をするための方法として局在プラズモン共鳴(localized surface plasmon resonance:LSPR)を用いた非標識法が注目されている(例えば、特許文献1等を参照。)。LSPRは、金、銀及び白金等の貴金属微粒子に発現する非線形光学現象である。LSPRを利用した測定法では、バイオチップの基板の上に堆積された貴金属粒子部分にプローブを介して生体分子を結合させ、貴金属粒子部分に測定光を照射し、透過又は反射した光の強度及び吸収ピーク波長のシフトの大きさを測定する。その大きさを指標にして、所望の生体分子の定量を行うことができる。このような非標識法を用いると、標識の工程を行う必要が無く簡便に試験を行うことができる。 Therefore, in recent years, a non-labeling method using localized plasmon resonance (LSPR) has attracted attention as a method for detecting and quantifying biomolecules without performing such labeling (for example, , See Patent Document 1). LSPR is a nonlinear optical phenomenon that appears in noble metal fine particles such as gold, silver, and platinum. In the measurement method using LSPR, a biomolecule is bound to a noble metal particle portion deposited on a substrate of a biochip through a probe, the measurement light is irradiated to the noble metal particle portion, and the intensity of transmitted or reflected light and The magnitude of the shift of the absorption peak wavelength is measured. A desired biomolecule can be quantified using the size as an index. When such a non-labeling method is used, it is not necessary to perform a labeling step, and a test can be easily performed.
 バイオチップは、疾病の予防及び治療を目的として用いられている。例えば患者の血液を試料として、バイオチップにより、患者の血液中の疾病に関わるタンパク質等のバイオマーカーを検出及び定量することにより、患者の状態を検査することができる。また、バイオチップを用いると、同時に複数のバイオマーカーを検出でき、さらに、複数の患者の生体試料を同時に測定することも可能となる。 Biochips are used for the purpose of disease prevention and treatment. For example, the patient's condition can be examined by detecting and quantifying a biomarker such as a protein related to a disease in the patient's blood with a biochip using the patient's blood as a sample. In addition, when a biochip is used, a plurality of biomarkers can be detected at the same time, and a plurality of patient biological samples can be simultaneously measured.
特開2002-365210号公報JP 2002-365210 A
 しかしながら、従来のバイオチップは、その基板の上に複数のプローブが行列状に固定され、各プローブの上に微量の生体試料を順次滴下する必要があり、多大な労力及び時間が必要となる。また、自動的に試料を滴下することができる装置を用いたとしても、そのような装置は単一の試料を連続的に滴下することは可能であるが、複数の試料を滴下する場合に、工程が煩雑となり、装置内において試料同士のコンタミネーション等のおそれが生じる。例えば、ヒトの血液を試料とし、それをバイオチップに滴下すると共に、検量線を作成するための標準溶液を同一のバイオチップに滴下する場合、コンタミネーション等のおそれが生じることとなる。同様に、複数の患者の血液を同一のバイオチップに滴下する場合にもコンタミネーション等のおそれが生じる。 However, in the conventional biochip, a plurality of probes are fixed in a matrix on the substrate, and it is necessary to sequentially drop a small amount of biological sample on each probe, which requires a great deal of labor and time. In addition, even if a device that can automatically drop a sample is used, such a device can continuously drop a single sample, but when dropping a plurality of samples, The process becomes complicated, and there is a risk of contamination between samples in the apparatus. For example, when human blood is used as a sample and dropped onto a biochip, and a standard solution for creating a calibration curve is dropped onto the same biochip, there is a risk of contamination and the like. Similarly, there is a risk of contamination or the like when blood from a plurality of patients is dropped on the same biochip.
 本発明は前記の問題に鑑み、その目的は、高価な装置を用いる必要が無く、試料中の多種の物質の測定及び検量線の作成を共に容易に行うことができるバイオチップを得られるようにすることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to obtain a biochip capable of easily measuring both various substances in a sample and creating a calibration curve without using an expensive apparatus. There is to do.
 前記の目的を達成するため、本発明は、バイオチップを、複数の流路を有し、その流路は液体が毛細管現象により展開する程度の間隙を有する構成とする。 In order to achieve the above-described object, the present invention has a configuration in which a biochip has a plurality of flow paths, and the flow paths have gaps that allow the liquid to develop by capillary action.
 具体的に、本発明に係るバイオチップは、上面に金属層が形成された基板と、基板の上に設けられ、それぞれ並行に延びる複数の仕切部と、複数の仕切部の上に設けられたカバー部材とを備え、基板の上には、基板、仕切部及びカバー部材により、それぞれ並行に延びる複数の流路が形成され、基板の上の各流路には、それぞれ複数の固相化プローブが形成され、流路における基板とカバー部材との間隙は、液体が毛細管現象により流路の一端から他端にまで展開できる大きさである。 Specifically, the biochip according to the present invention is provided on a substrate having a metal layer formed on the upper surface, a plurality of partition portions extending in parallel to each other, and a plurality of partition portions. A plurality of flow paths extending in parallel with each other by the substrate, the partition portion, and the cover member, and each flow path on the substrate has a plurality of solid phase probes. The gap between the substrate and the cover member in the flow channel is a size that allows the liquid to develop from one end of the flow channel to the other end by capillary action.
 本発明に係るバイオチップによると、基板の上に複数の流路が形成され、その流路における基板とカバー部材との間隙は、液体が毛細管現象により流路の一端から他端にまで展開できる大きさであるため、高価な装置を用いることなく容易に多数の試料を同時に測定することができる。また、試料の測定と共に検量線の作成を行うことも可能である。さらに、基板の上面には金属層が形成されているため、測定の際にはLSPRを利用することができ、標識の工程を行う必要はなく、より簡便に高感度の測定を行うことができる。 According to the biochip of the present invention, a plurality of flow paths are formed on the substrate, and the gap between the substrate and the cover member in the flow paths can be developed from one end of the flow path to the other end by capillary action. Because of the size, a large number of samples can be easily measured simultaneously without using an expensive apparatus. It is also possible to create a calibration curve along with sample measurement. Furthermore, since a metal layer is formed on the upper surface of the substrate, LSPR can be used for measurement, and it is not necessary to perform a labeling step, and highly sensitive measurement can be performed more easily. .
 本発明に係るバイオチップは、各流路の一端部又は他端部の一方に着脱可能に設けられ、流路内の液体を排出する液体排出手段をさらに備えていることが好ましい。 The biochip according to the present invention preferably further includes a liquid discharge means that is detachably provided at one end or the other end of each flow path and discharges the liquid in the flow path.
 このようにすると、各流路の液体を迅速且つ簡便に排出することができる。 In this way, the liquid in each flow path can be quickly and easily discharged.
 この場合、液体排出手段は、吸水性を有する吸水材であってもよい。 In this case, the liquid discharging means may be a water-absorbing material having water absorption.
 さらに、液体排出手段は、液体を吸引できる吸引ポンプであってもよい。 Furthermore, the liquid discharging means may be a suction pump that can suck liquid.
 本発明に係るバイオチップにおいて、金属層は、基板の上面に多孔質層を有する陽極酸化アルミナ皮膜を介して形成されていてもよい。 In the biochip according to the present invention, the metal layer may be formed via an anodized alumina film having a porous layer on the upper surface of the substrate.
 本発明に係るバイオチップにおいて、基板は、その上面に凹凸構造を有し、金属層は、凹凸構造の上に形成されていてもよい。 In the biochip according to the present invention, the substrate may have a concavo-convex structure on its upper surface, and the metal layer may be formed on the concavo-convex structure.
 この場合、凹凸構造は、ナノインプリント法により形成されていることが好ましい。 In this case, the concavo-convex structure is preferably formed by a nanoimprint method.
 本発明に係るバイオチップにおいて、金属層は、基板の上面に二次元状に配列された複数のシリカビーズの上に形成されていてもよい。 In the biochip according to the present invention, the metal layer may be formed on a plurality of silica beads arranged two-dimensionally on the upper surface of the substrate.
 本発明に係るバイオチップにおいて、金属層は、基板の上に直接に金属ナノ粒子が配列されて形成されていてもよい。 In the biochip according to the present invention, the metal layer may be formed by arranging metal nanoparticles directly on the substrate.
 本発明に係るバイオチップにおいて、金属層は金を含んでもよい。 In the biochip according to the present invention, the metal layer may include gold.
 本発明に係るバイオチップにおいて、仕切部とカバー部材とは、一体であってもよい。 In the biochip according to the present invention, the partition portion and the cover member may be integrated.
 このようにすると、仕切部とカバー部材とを同一の工程で設けることが可能となり、バイオチップの作製がより簡便となる。 In this way, the partition portion and the cover member can be provided in the same process, and the production of the biochip becomes easier.
 本発明に係るバイオチップによると、高価な装置を用いることなく容易に多数の試料の測定を行うと共に検量線の作成をも行うことができる。このため、一人の患者の複数の生体分子の測定、又は複数の患者の単一若しくは複数の生体分子の測定を容易に行うことができる。 The biochip according to the present invention can easily measure a large number of samples and create a calibration curve without using an expensive apparatus. For this reason, it is possible to easily measure a plurality of biomolecules of one patient, or to measure a single or a plurality of biomolecules of a plurality of patients.
図1は本発明の一実施形態に係るバイオチップを示す斜視図である。FIG. 1 is a perspective view showing a biochip according to an embodiment of the present invention. 図2は本発明の一実施形態に係るバイオチップの仕切部の一例を示す平面図である。FIG. 2 is a plan view showing an example of a biochip partition section according to an embodiment of the present invention. 図3は本発明の一実施形態に係るバイオチップにおける流路から液体を排出する形態を示す斜視図である。FIG. 3 is a perspective view showing a mode in which liquid is discharged from the flow path in the biochip according to the embodiment of the present invention. 図4は本発明のバイオチップと従来のバイオチップとを用いてトランスサイレチンを測定した結果を示すグラフである。FIG. 4 is a graph showing the results of measuring transthyretin using the biochip of the present invention and a conventional biochip. 図5は本発明のバイオチップと従来のバイオチップとを用いてC反応性蛋白を測定した結果を示すグラフである。FIG. 5 is a graph showing the results of measuring C-reactive protein using the biochip of the present invention and a conventional biochip. 図6は本発明のバイオチップと従来のバイオチップとを用いてシスタチンCを測定した結果を示すグラフである。FIG. 6 is a graph showing the results of measuring cystatin C using the biochip of the present invention and a conventional biochip.
 本発明の一実施形態に係るバイオチップについて図1及び図2を参照しながら説明する。 A biochip according to an embodiment of the present invention will be described with reference to FIGS.
 図1に示すように、本実施形態に係るバイオチップ10には、例えばガラス等からなる基板1の上面にそれぞれ並行に延びる複数の仕切部2が形成されている。基板1及び仕切部2の上にはカバー部材であるカバーガラス3が設けられている。基板1、仕切部2及びカバーガラス3によりそれぞれ並行に延びる複数の流路4が形成され、基板1の上面の流路4には、複数の固相化プローブ5が形成されている。ここで、流路4における基板1とカバーガラス3との間隙は、液体が毛細管現象により流路4の一端から他端にまで展開できる程度の大きさである。具体的に、間隙の大きさは、100μm~1000μm程度である。100μm未満であると、流路4から液体を排出することが困難となり、1000μmよりも大きいと、固相化プローブ5に光を照射する際に光の焦点が合わず、測定が困難となる。また、図1では、流路4の一端は、基板1の端部よりも内側に形成されているが、他端と同様に基板1の端部にまで延びていても構わない。また、逆に、流路4の他端が基板1の端部よりも内側に形成されていても構わない。 As shown in FIG. 1, the biochip 10 according to the present embodiment is formed with a plurality of partition portions 2 extending in parallel on the upper surface of a substrate 1 made of, for example, glass. A cover glass 3 as a cover member is provided on the substrate 1 and the partition 2. A plurality of flow paths 4 extending in parallel are formed by the substrate 1, the partition portion 2, and the cover glass 3, and a plurality of solid-phase probes 5 are formed in the flow paths 4 on the upper surface of the substrate 1. Here, the gap between the substrate 1 and the cover glass 3 in the flow path 4 is such a size that the liquid can be developed from one end of the flow path 4 to the other end by capillary action. Specifically, the size of the gap is about 100 μm to 1000 μm. If it is less than 100 μm, it becomes difficult to discharge the liquid from the flow path 4, and if it is greater than 1000 μm, the light is not focused when irradiating the solid-phased probe 5, making measurement difficult. In FIG. 1, one end of the flow path 4 is formed inside the end of the substrate 1, but it may extend to the end of the substrate 1 like the other end. Conversely, the other end of the flow path 4 may be formed inside the end of the substrate 1.
 基板1の上面には、例えば金が蒸着されることにより形成された金属層(図示せず)が形成されている。また、基板1の上に形成された固相化プローブ5は、例えば抗体等を含み、具体的に、基板1の上に蒸着された金属層に抗体等が固定されている。固相化プローブ5の種類は、検出又は定量したい生体分子により選択でき、抗体の他に、所定のDNAを検出したい場合は、そのDNAと結合できるDNA断片等の核酸を用いることができる。また、金属層は、局在プラズモン共鳴(LSPR)を利用した検出又は測定を行うことが可能な金属層であればよく、金以外に、銀又は白金等を用いても構わない。 On the upper surface of the substrate 1, for example, a metal layer (not shown) formed by depositing gold is formed. The solid-phase probe 5 formed on the substrate 1 includes, for example, an antibody, and specifically, the antibody or the like is fixed to a metal layer deposited on the substrate 1. The kind of the immobilized probe 5 can be selected depending on the biomolecule to be detected or quantified. In addition to the antibody, when detecting a predetermined DNA, a nucleic acid such as a DNA fragment capable of binding to the DNA can be used. The metal layer may be a metal layer that can perform detection or measurement using localized plasmon resonance (LSPR), and may use silver or platinum in addition to gold.
 金属層は、基板1の上に多孔質層を有する陽極酸化アルミナ皮膜を介して形成されていることが好ましい。また、金属層は基板1の上に二次元状に配列された複数のシリカビーズの上に形成されてもよい。さらに、金属層は、基板1の上に直接に金属ナノ粒子が配設されることによって形成されてもよい。 The metal layer is preferably formed on the substrate 1 via an anodized alumina film having a porous layer. Further, the metal layer may be formed on a plurality of silica beads arranged two-dimensionally on the substrate 1. Further, the metal layer may be formed by arranging metal nanoparticles directly on the substrate 1.
 これらの他に、基板1に所望の形状を有する凹凸構造を形成し、その上に金属層を形成しても構わない。基板1に凹凸構造を形成するために、例えばナノインプリント法を用いることができる。ナノインプリント法を用いる場合、基板1に例えば高分子樹脂を用いることができる。このような基板1の上面に対して、特定の形状を有する鋳型を用いて型押しした後に、その上面に金属層を堆積してもよい。鋳型の形状は、金属層が基板1の上面に堆積するのに好適な形状であることが好ましい。 In addition to these, an uneven structure having a desired shape may be formed on the substrate 1 and a metal layer may be formed thereon. In order to form a concavo-convex structure on the substrate 1, for example, a nanoimprint method can be used. In the case of using the nanoimprint method, for example, a polymer resin can be used for the substrate 1. After the upper surface of the substrate 1 is embossed using a mold having a specific shape, a metal layer may be deposited on the upper surface. The shape of the mold is preferably a shape suitable for depositing the metal layer on the upper surface of the substrate 1.
 仕切部2は、基板1とカバーガラス3との間に介在するように設けられており、これにより、基板1とカバーガラス3との間に間隙を形成している。また、仕切部2は、基板1及びカバーガラス3と流体密に接着されており、これにより仕切部2同士の間にそれぞれ流路4が形成されている。仕切部2は、基板1とカバーガラス3との間に、液体が毛細管現象により流路4の一端から他端にまで展開できる程度の大きさの間隙を形成できる厚さを有する。具体的に、仕切部2の厚さは、100μm~1000μm程度である。このようにすると、各流路4の一端部に液体の試料を滴下するだけで、複数の固相化プローブ5が形成された流路4に試料が展開するため、高価な装置を用いることなく容易に多数の試料を同時に測定することができる。また、試料の測定と共に検量線の作成を行うことも可能であり、試料の滴下の際の試料同士等のコンタミネーションを防ぐこともできる。さらに、上述の通り、流路4から液体を排出することが可能となり、固相化プローブ5に光を照射する際に光の焦点が容易に合い、測定が可能となる。 The partition portion 2 is provided so as to be interposed between the substrate 1 and the cover glass 3, thereby forming a gap between the substrate 1 and the cover glass 3. Moreover, the partition part 2 is fluid-adhered with the board | substrate 1 and the cover glass 3, and the flow path 4 is formed between the partition parts 2 by this, respectively. The partition portion 2 has a thickness capable of forming a gap between the substrate 1 and the cover glass 3 so that a liquid can be developed from one end to the other end of the flow path 4 by capillary action. Specifically, the thickness of the partition 2 is about 100 μm to 1000 μm. In this way, the sample is developed in the flow path 4 in which the plurality of immobilized probes 5 are formed simply by dropping a liquid sample onto one end of each flow path 4, so that an expensive apparatus is not used. Multiple samples can be easily measured simultaneously. In addition, it is possible to create a calibration curve together with the measurement of the sample, and it is also possible to prevent contamination between samples when the sample is dropped. Furthermore, as described above, the liquid can be discharged from the flow path 4, and when the solid-phased probe 5 is irradiated with light, the light is easily focused and measurement is possible.
 仕切部2には、例えば前記の厚さを有する両面テープを用いることができる。また、前記の厚さで接着剤を塗布することにより仕切部2を形成してもよい。これらの他に、基板1に複数の樹脂等からなるガスケットを接着することにより仕切部2を形成することができる。また、複数のガスケットでなく、図2に示すような複数の仕切部2を有する櫛状のガスケット等の仕切部材20を用いてもよい。また、基板1又はカバーガラス3に、互いに並行に延びる複数の溝を形成することにより、溝の両側に仕切部2を形成してもよい。すなわち、基板1又はカバーガラス3と仕切部2とが一体となった構成であっても構わない。また、本実施形態では、カバー部材として、カバーガラス3を用いているが、透明なフィルムからなるカバー部材を用いてもよい。 For the partition part 2, for example, a double-sided tape having the above-mentioned thickness can be used. Moreover, you may form the partition part 2 by apply | coating an adhesive agent with the said thickness. In addition to these, the partition portion 2 can be formed by adhering a gasket made of a plurality of resins or the like to the substrate 1. Further, instead of a plurality of gaskets, a partition member 20 such as a comb-shaped gasket having a plurality of partition portions 2 as shown in FIG. 2 may be used. Moreover, you may form the partition part 2 in the both sides of a groove | channel by forming in the board | substrate 1 or the cover glass 3 the some groove | channel extended in parallel mutually. That is, the substrate 1 or the cover glass 3 and the partition portion 2 may be integrated. Moreover, in this embodiment, although the cover glass 3 is used as a cover member, you may use the cover member which consists of a transparent film.
 基板1、仕切部2及びカバーガラス3に囲まれた各流路4には、複数の固相化プローブ5が形成されている。例えば、12本の流路4が形成されている場合、各流路4に8個の固相化プローブ5を形成すると、1つのバイオチップに行列状に96個の固相化プローブ5を形成できる。ここで、各固相化プローブ5は、同一の種類であってもよく、複数の種類であってもよい。なお、流路4及び固相化プローブ5の数は、上記の数に限定されない。 A plurality of immobilized probes 5 are formed in each flow path 4 surrounded by the substrate 1, the partition 2 and the cover glass 3. For example, when 12 flow paths 4 are formed, if 8 immobilized probes 5 are formed in each flow path 4, 96 immobilized probes 5 are formed in a matrix on one biochip. it can. Here, the respective immobilized probes 5 may be the same type or a plurality of types. The numbers of the flow paths 4 and the immobilized probes 5 are not limited to the above numbers.
 また、図3に示すように、流路4の一端部又は他端部の一方に、各流路4内に展開した液体を排出するための液体排出手段である吸水性を有する吸水材6を着脱可能に設けることができる。吸水材6には、例えば吸水性が高い濾紙及び樹脂等を用いることができる。吸水材6を流路4の他端部に設けることにより、吸水材6が流路4内の試料を吸収するため、流路4から試料を排出することができる。この他に、液体排出手段には、モータ等を用いた吸引ポンプ等を用いることができる。このような液体排出手段により、各流路4の液体を迅速且つ簡便に排出することができる。 Moreover, as shown in FIG. 3, the water absorbing material 6 which has a water absorption which is a liquid discharge means for discharging the liquid expand | deployed in each flow path 4 is provided in one end part or the other end part of the flow path 4. It can be detachably provided. For the water absorbing material 6, for example, filter paper and resin having high water absorption can be used. By providing the water absorbing material 6 at the other end of the flow path 4, the water absorbing material 6 absorbs the sample in the flow path 4, so that the sample can be discharged from the flow path 4. In addition, a suction pump using a motor or the like can be used as the liquid discharging means. By such a liquid discharge means, the liquid in each flow path 4 can be discharged quickly and easily.
 次に、本実施形態に係るバイオチップを用いて、試料中の所望の生体分子を検出及び測定する方法について説明する。 Next, a method for detecting and measuring a desired biomolecule in a sample using the biochip according to the present embodiment will be described.
 例えばヒトの血液を試料として、血液内の疾病に関わるバイオマーカーを検出する場合、予め、本実施形態に係るバイオチップに、所望のバイオマーカーと結合する抗体又は核酸等を固相化プローブとして固定する。ここで、固相化プローブは各流路に複数形成されてよく、前記の通り、例えば12列の流路が形成されている場合、各流路の8箇所に固相化プローブを形成すると、行列状に96個の固相化プローブを1つのバイオチップに形成できる。 For example, when detecting a biomarker related to a disease in blood using human blood as a sample, an antibody or a nucleic acid that binds to the desired biomarker is immobilized in advance as a solid phase probe on the biochip according to the present embodiment. To do. Here, a plurality of solid-phase probes may be formed in each flow path. As described above, for example, when 12 rows of flow paths are formed, when solid-phase probes are formed at 8 locations in each flow path, 96 immobilized probes can be formed in a matrix on one biochip.
 次に、ヒトの血液又は血清等である試料をバイオチップの流路の一端部に滴下する。滴下された試料は、毛細管現象により流路内に展開し、流路の他端部にまで達する。ここで、試料の滴下は、自動の分注装置を用いてもよく、通常のピペット又は分注器により手動で行っても構わない。但し、複数種の試料を1つのバイオチップに滴下する場合、チップを容易に交換できるピペットを用いる方が、コンタミネーションの防止の観点から好ましい。また、試料の滴下と共に、検量線の作成のために、例えばタンパク質標準液を同一のバイオチップに滴下することもできる。なお、この工程では、液体排出手段は、バイオチップに装着されていない。 Next, a sample such as human blood or serum is dropped on one end of the flow path of the biochip. The dropped sample develops in the channel by capillary action and reaches the other end of the channel. Here, the dropping of the sample may use an automatic dispensing device, or may be performed manually with a normal pipette or dispenser. However, when a plurality of types of samples are dropped onto one biochip, it is preferable to use a pipette that can easily replace the chip from the viewpoint of preventing contamination. In addition, for example, a protein standard solution can be dropped onto the same biochip together with the dropping of the sample in order to create a calibration curve. In this step, the liquid discharging means is not attached to the biochip.
 次に、所定の温度及び時間で試料と固相化プローブとを反応させる。反応時間等は、試料の種類及びプローブの種類に応じて適宜好適な条件を選択することができる。 Next, the sample and the immobilized probe are reacted at a predetermined temperature and time. As for the reaction time and the like, suitable conditions can be appropriately selected according to the type of sample and the type of probe.
 次に、液体排出手段をバイオチップに装着することにより、流路の他端部から試料を排出する。例えば、液体排出手段に吸水材を用いる場合、吸水材を基板の流路の他端部に、試料と接触するように載置する。これにより、吸水材が流路内の試料を吸収するため、流路から試料を排出することができる。また、液体排出手段に、吸引ポンプを用いる場合、吸引ポンプの吸引口を流路の他端部に載置することにより、各流路から試料を排出することができる。なお、流路の他端部に液体排出手段を設けずに、流路の一端部に設けることによって一端部から試料を排出してもよい。試料を排出した後、液体排出手段をバイオチップから外す。 Next, the sample is discharged from the other end of the flow path by attaching the liquid discharge means to the biochip. For example, when a water absorbing material is used for the liquid discharging means, the water absorbing material is placed on the other end of the channel of the substrate so as to be in contact with the sample. Thereby, since a water absorption material absorbs the sample in a flow path, a sample can be discharged | emitted from a flow path. When a suction pump is used as the liquid discharge means, the sample can be discharged from each channel by placing the suction port of the suction pump on the other end of the channel. Note that the sample may be discharged from one end portion by providing it at one end portion of the flow path without providing the liquid discharge means at the other end portion of the flow path. After discharging the sample, the liquid discharging means is removed from the biochip.
 次に、例えばリン酸緩衝生理食塩水(PBS)等の緩衝液である所定の洗浄液を流路の一端部に滴下する。滴下された試料は、毛細管現象により流路内に展開し、流路の他端にまで達する。その後、試料と同様に、液体排出手段により洗浄液を流路の他端部から排出する。この洗浄を2回~3回程度行う。 Next, a predetermined cleaning solution that is a buffer solution such as phosphate buffered saline (PBS) is dropped onto one end of the flow path. The dropped sample develops in the channel by capillary action and reaches the other end of the channel. Thereafter, like the sample, the cleaning liquid is discharged from the other end of the flow path by the liquid discharging means. This washing is performed about 2 to 3 times.
 次に、バイオチップを乾燥した後に、吸光度の測定を行うことにより所望の生体分子の検出及び測定を行う。ここで、吸光度の測定は、試料とプローブとを反応させる前に予め行っておき、反応後の吸光度と比較する。反応前の吸収ピーク波長と反応後の吸収ピーク波長のシフト量により測定する。 Next, after the biochip is dried, a desired biomolecule is detected and measured by measuring the absorbance. Here, the absorbance is measured in advance before reacting the sample and the probe, and compared with the absorbance after the reaction. It is measured by the shift amount of the absorption peak wavelength before the reaction and the absorption peak wavelength after the reaction.
 本発明の一実施形態に係るバイオチップによると、測定対象の生体分子と結合する複数の固相化プローブが、液体が毛細管現象により展開できる程度の間隙を有する流路に形成されているため、各固相化プローブと生体分子を含む試料との反応を容易に行うことができる。従って、高価な装置を用いることなく容易に多数の生体分子の測定ができる。また、生体分子の測定と共に同一のバイオチップを用いて検量線を作成することもできる。 According to the biochip according to an embodiment of the present invention, a plurality of immobilized probes that bind to the biomolecule to be measured are formed in a flow path having a gap that allows the liquid to be developed by capillary action. The reaction between each immobilized probe and a sample containing a biomolecule can be easily performed. Therefore, it is possible to easily measure a large number of biomolecules without using an expensive apparatus. In addition, a calibration curve can be created using the same biochip together with the measurement of biomolecules.
 以下、本発明のバイオチップの具体的な実施例を示す。本実施例では、本発明のバイオチップを用いて、ヒトの血清中のトランスサイレチン(TTR)、C反応性蛋白(CRP)及びシスタチンCの量を測定し、その結果を従来の方法を用いて測定した結果と比較した。 Hereinafter, specific examples of the biochip of the present invention will be shown. In this example, the amount of transthyretin (TTR), C-reactive protein (CRP) and cystatin C in human serum was measured using the biochip of the present invention, and the results were measured using a conventional method. And compared with the measured results.
 (バイオチップ用基板の作製)
 まず、市販されている通常のスライドガラスの上面に、厚さが3μm程度のアルミニウム膜を蒸着させた。続いて、形成されたアルミニウム膜に対して、0.3Mのシュウ酸溶液を用いて、印加電圧40Vで、0℃で60分間の1回目の陽極酸化処理を行い、陽極酸化アルミナ皮膜を形成した。その後、形成されたアルミナ皮膜に対して10分間の超音波処理を行い、超純水を用いて洗浄を行った。
(Production of biochip substrate)
First, an aluminum film having a thickness of about 3 μm was deposited on the upper surface of a commercially available ordinary slide glass. Subsequently, the anodized alumina film was formed on the formed aluminum film by using a 0.3 M oxalic acid solution at an applied voltage of 40 V for the first time of 60 minutes at 0 ° C. . Thereafter, the formed alumina film was subjected to ultrasonic treatment for 10 minutes and washed with ultrapure water.
 次に、上記工程で形成された陽極酸化アルミナ皮膜を除去した。陽極酸化アルミナ皮膜の除去は、リン酸と水とを8:2の比率で含む溶液に50g/Lのクロム酸を加えた溶液を用いて、60℃~80℃で3分間反応させることにより行った。反応後に、10分間の超音波処理を行い、超純水を用いて洗浄を行った。 Next, the anodized alumina film formed in the above process was removed. The removal of the anodized alumina film is performed by reacting at 60 ° C. to 80 ° C. for 3 minutes using a solution obtained by adding 50 g / L of chromic acid to a solution containing phosphoric acid and water at a ratio of 8: 2. It was. After the reaction, ultrasonic treatment was performed for 10 minutes, and washing was performed using ultrapure water.
 次に、0.3Mのシュウ酸溶液を用いて、印加電圧40Vで、10℃で5分間の条件で2回目の陽極酸化処理を行い、その後、10分間の超音波処理を行い、超純水を用いて洗浄を行った。これにより、スライドガラスの上面に厚さが約600nmの多孔質層を有する陽極酸化アルミナ皮膜が得られた。 Next, using a 0.3 M oxalic acid solution, an anodizing treatment is performed for the second time at an applied voltage of 40 V under conditions of 10 ° C. for 5 minutes, and then ultrasonic treatment is performed for 10 minutes to obtain ultra pure water. Washing was performed using As a result, an anodized alumina film having a porous layer having a thickness of about 600 nm on the upper surface of the slide glass was obtained.
 次に、得られた陽極酸化アルミナ皮膜の上に、スパッタ法により金を堆積した。具体的に、陽極酸化アルミナ皮膜の多孔質層の開口部の周辺に金を付着させた。これにより、金からなる金属層を含むバイオチップ用の基板が得られた。この基板は、使用時までデシケータ内に保存することができる。 Next, gold was deposited on the obtained anodized alumina film by a sputtering method. Specifically, gold was deposited around the opening of the porous layer of the anodized alumina film. As a result, a biochip substrate including a metal layer made of gold was obtained. This substrate can be stored in a desiccator until use.
 (バイオチップの作製)
 作製した基板の上に固相化プローブを固定するために、まず、基板を1mMの10-カルボキシル-1-デカンチオールを含むエタノールに一晩、好ましくは6~12時間浸漬した。その後、基板を超純水により洗浄し、乾燥させた。続いて、基板を0.1MのN-ヒドロキシスクシンイミドエステル(NHS)と0.4Mの水溶性カルボジイミド(WSC)とを含む水溶液に10分間浸漬した。その後、基板をリン酸緩衝生理食塩水(PBS)により洗浄し、乾燥させた。
(Production of biochip)
In order to immobilize the immobilized probe on the prepared substrate, first, the substrate was immersed in ethanol containing 1 mM 10-carboxyl-1-decanthiol overnight, preferably for 6 to 12 hours. Thereafter, the substrate was washed with ultrapure water and dried. Subsequently, the substrate was immersed in an aqueous solution containing 0.1 M N-hydroxysuccinimide ester (NHS) and 0.4 M water-soluble carbodiimide (WSC) for 10 minutes. Thereafter, the substrate was washed with phosphate buffered saline (PBS) and dried.
 次に、基板の上に抗TTR抗体、抗CRP抗体及び抗シスタチンC抗体をそれぞれ滴下し、30分間静置した。ここで、抗体の滴下は、行列状に複数箇所に行う。本実施例では、各抗体を2列×4行の8スポットずつ配列し、合計で6列×4行の計24スポットを配列した。その後、基板をTween-20含有PBS(PBST)により2回洗浄し、PBSにより1回洗浄し、乾燥させた。これにより、複数のスポット状の固相化プローブが形成された。 Next, an anti-TTR antibody, an anti-CRP antibody and an anti-cystatin C antibody were respectively dropped onto the substrate and allowed to stand for 30 minutes. Here, the dropping of the antibody is performed at a plurality of locations in a matrix. In this example, each antibody was arranged in 8 spots of 2 columns × 4 rows, and a total of 24 spots of 6 columns × 4 rows were arranged in total. Thereafter, the substrate was washed twice with Tween-20-containing PBS (PBST), washed once with PBS, and dried. As a result, a plurality of spot-like immobilized probes were formed.
 次に、固相化プローブが形成された基板を、1%のウシ血清アルブミン(BSA)に30分間浸漬してブロッキングを行った。その後、基板をPBSTにより2回洗浄し、PBSにより1回洗浄し、乾燥させた。 Next, blocking was performed by immersing the substrate on which the immobilized probe was formed in 1% bovine serum albumin (BSA) for 30 minutes. Thereafter, the substrate was washed twice with PBST, once with PBS, and dried.
 次に、基板の上に仕切部を設けた。仕切部には、厚さが136μmの両面テープを用い、これを基板の上に、上記工程で形成されたプローブの行に沿って、プローブ同士の間及び両端に5本の両面テープをそれぞれ並行に貼着した。 Next, a partition portion was provided on the substrate. A double-sided tape with a thickness of 136 μm is used for the partitioning part, and five double-sided tapes are provided in parallel between the probes and at both ends along the row of probes formed in the above process on the substrate. Stuck on.
 次に、基板の上に、複数のプローブを覆うように、仕切部である両面テープを介して、市販されている通常のカバーガラスを貼着した。これにより、基板とカバーガラスとの間には、両面テープの厚み分の間隙が形成され、この間隙が流路となる。本実施例では4本の流路が形成されることとなる。 Next, a commercially available ordinary cover glass was stuck on the substrate through a double-sided tape as a partition so as to cover the plurality of probes. Thereby, a gap corresponding to the thickness of the double-sided tape is formed between the substrate and the cover glass, and this gap becomes a flow path. In this embodiment, four flow paths are formed.
 また、流路からの試料の排出のために、液体排出手段である濾紙からなる吸水パッドを準備した。 Also, a water absorption pad made of filter paper as a liquid discharge means was prepared for discharging the sample from the flow path.
 上記の工程により、本実施例のバイオチップが完成した。 The biochip of this example was completed through the above steps.
 (試料の測定)
 以下、上記の工程により作製したバイオチップを用いて、試料を測定する方法を説明する。本実施例では、TTR、CRP及びシスタチンCの3種のタンパク質を含む標準タンパク質混合液を用いて検量線を作成し、血清を試料として3種のタンパク質を検出及び定量した結果について示す。
(Sample measurement)
Hereinafter, a method for measuring a sample using the biochip produced by the above process will be described. In this example, a calibration curve is prepared using a standard protein mixed solution containing three kinds of proteins TTR, CRP and cystatin C, and the results of detecting and quantifying the three kinds of proteins using serum as a sample are shown.
 まず、予め上記方法により得られたバイオチップの各固相化プローブが形成された領域の吸光度の測定を行い、吸収ピーク波長を記録しておく。 First, the absorbance of the region where each immobilized probe of the biochip obtained by the above method is previously measured is measured, and the absorption peak wavelength is recorded.
 次に、標準タンパク質混合液及び血清をそれぞれ流路の一端部に滴下する。本実施例では、10ng/mL及び100ng/mLの標準タンパク質混合液、並びに100倍希釈及び1000倍希釈したヒト血清を用いた。これらをそれぞれ流路の一端部に滴下した。基板とカバーガラスとの間隙の大きさは両面テープの厚み分であり、極めて小さいため、毛細管現象により、ヒト血清及び標準タンパク質混合液が流路の一端から他端にまで展開する。これにより、流路における各プローブとヒト血清及び標準タンパク質混合液とが反応することができる。この状態で30分間静置した後に、流路の他端部に、試料と接するように濾紙からなる吸水パッドを載置して、流路内の試料を排出した。その後、流路内に試料を展開させた工程と同様に、流路をPBSTにより2回洗浄し、PBSにより1回洗浄し、その後に乾燥させた。 Next, a standard protein mixture and serum are dropped onto one end of each flow path. In this example, standard protein mixtures of 10 ng / mL and 100 ng / mL, and human serum diluted 100-fold and 1000-fold were used. These were each dropped onto one end of the flow path. Since the size of the gap between the substrate and the cover glass is the thickness of the double-sided tape and is extremely small, the human serum and standard protein mixture is developed from one end of the flow path to the other end due to capillary action. As a result, each probe in the flow path can react with the human serum and the standard protein mixture. After standing in this state for 30 minutes, a water absorption pad made of filter paper was placed on the other end of the flow channel so as to contact the sample, and the sample in the flow channel was discharged. Thereafter, the flow path was washed twice with PBST, washed once with PBS, and then dried in the same manner as the step of developing the sample in the flow path.
 次に、洗浄及び乾燥後のバイオチップの各固相化プローブが形成された領域の吸光度を測定し、試料と反応させる前に測定した吸収ピーク波長とのシフト量を指標として、標準タンパク質混合液による検量線を用いて各タンパク質の含有量を測定した。その結果を図4~図6に示す。なお、図4~図6には、本実施例の結果と共に、流路を有さない従来のバイオチップを用いて、各プローブの上に順次試料を滴下して試験した結果を示している。 Next, the absorbance of the region where each immobilized probe of the biochip after washing and drying is measured, and the amount of shift from the absorption peak wavelength measured before reacting with the sample is used as an index, the standard protein mixture Was used to measure the content of each protein. The results are shown in FIGS. FIGS. 4 to 6 show the results of the present example and the results of testing by dropping a sample on each probe in sequence using a conventional biochip having no flow path.
 図4~図6に示すように、本発明に係るバイオチップを用いても、従来のバイオチップを用いた場合と比較して同等の結果が得られた。すなわち、従来よりも簡便な方法で、従来と同等の測定結果を得ることができた。 As shown in FIGS. 4 to 6, even when the biochip according to the present invention was used, an equivalent result was obtained as compared with the case where the conventional biochip was used. That is, a measurement result equivalent to the conventional one could be obtained by a simpler method than the conventional one.
 本発明に係るバイオチップは、高価な装置を用いることなく容易に多数の試料を同時に測定することができ、特に、生体試料中の生体分子の検出又は定量のためのバイオチップ等に有用である。 The biochip according to the present invention can easily measure a large number of samples simultaneously without using an expensive apparatus, and is particularly useful for biochips for detecting or quantifying biomolecules in a biological sample. .
1 基板
2 仕切部
3 カバーガラス
4 流路
5 固相化プローブ
6 吸水材
10 バイオチップ
20 仕切部材


 
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Partition part 3 Cover glass 4 Channel 5 Solid-phase probe 6 Water absorbing material 10 Biochip 20 Partition member


Claims (11)

  1.  上面に金属層が形成された基板と、
     前記基板の上に設けられ、それぞれ並行に延びる複数の仕切部と、
     前記複数の仕切部の上に設けられたカバー部材とを備え、
     前記基板の上には、前記基板、仕切部及びカバー部材により、それぞれ並行に延びる複数の流路が形成され、
     前記基板の上の前記各流路には、それぞれ複数の固相化プローブが形成され、
     前記流路における前記基板と前記カバー部材との間隙は、液体が毛細管現象により前記流路の一端から他端にまで展開できる大きさであるバイオチップ。
    A substrate having a metal layer formed on the upper surface;
    A plurality of partitions provided on the substrate, each extending in parallel;
    A cover member provided on the plurality of partitions,
    On the substrate, a plurality of flow paths extending in parallel are formed by the substrate, the partition portion, and the cover member,
    A plurality of immobilized probes are formed in each flow path on the substrate,
    The gap between the substrate and the cover member in the channel is a biochip having a size that allows liquid to develop from one end of the channel to the other by capillary action.
  2.  請求項1において、
     前記各流路の一端部又は他端部の一方に着脱可能に設けられ、前記流路内の液体を排出する液体排出手段をさらに備えているバイオチップ。
    In claim 1,
    The biochip further provided with the liquid discharge | emission means which is provided in the one end part or other end part of each said flow path so that attachment or detachment is possible, and discharges the liquid in the said flow path.
  3.  請求項2において、
     前記液体排出手段は、吸水性を有する吸水材であるバイオチップ。
    In claim 2,
    The liquid discharging means is a biochip which is a water-absorbing material having water absorption.
  4.  請求項2において
     前記液体排出手段は、液体を吸引できる吸引ポンプであるバイオチップ。
    The biochip according to claim 2, wherein the liquid discharging means is a suction pump capable of sucking a liquid.
  5.  請求項1~4のいずれか1項において、
     前記金属層は、前記基板の上面に、多孔質層を有する陽極酸化アルミナ皮膜を介して形成されているバイオチップ。
    In any one of claims 1 to 4,
    The biochip is a biochip in which the metal layer is formed on an upper surface of the substrate via an anodized alumina film having a porous layer.
  6.  請求項1~4のいずれか1項において、
     前記基板は、その上面に凹凸構造を有し、
     前記金属層は、前記凹凸構造の上に形成されているバイオチップ。
    In any one of claims 1 to 4,
    The substrate has an uneven structure on its upper surface,
    The metal layer is a biochip formed on the concavo-convex structure.
  7.  請求項6において、
     前記凹凸構造は、ナノインプリント法により形成されているバイオチップ。
    In claim 6,
    The uneven structure is a biochip formed by a nanoimprint method.
  8.  請求項1~4のいずれか1項において、
     前記金属層は、前記基板の上面に二次元状に配列された複数のシリカビーズの上に形成されているバイオチップ。
    In any one of claims 1 to 4,
    The biochip is a biochip formed on a plurality of silica beads arranged two-dimensionally on the upper surface of the substrate.
  9.  請求項1~4のいずれか1項において、
     前記金属層は、前記基板の上に直接に金属ナノ粒子が配列されて形成されているバイオチップ。
    In any one of claims 1 to 4,
    The metal layer is a biochip in which metal nanoparticles are arranged directly on the substrate.
  10.  請求項1~9のいずれか1項において、
     前記金属層は、金を含むバイオチップ。
    In any one of claims 1 to 9,
    The metal layer is a biochip containing gold.
  11.  請求項1~10のいずれか1項において、
     前記仕切部と前記カバー部材とは、一体に形成されているバイオチップ。
    In any one of claims 1 to 10,
    The partition part and the cover member are biochips formed integrally.
PCT/JP2012/003561 2012-05-30 2012-05-30 Biochip WO2013179342A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/003561 WO2013179342A1 (en) 2012-05-30 2012-05-30 Biochip
JP2014518088A JPWO2013179342A1 (en) 2012-05-30 2012-05-30 Biochip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003561 WO2013179342A1 (en) 2012-05-30 2012-05-30 Biochip

Publications (1)

Publication Number Publication Date
WO2013179342A1 true WO2013179342A1 (en) 2013-12-05

Family

ID=49672601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003561 WO2013179342A1 (en) 2012-05-30 2012-05-30 Biochip

Country Status (2)

Country Link
JP (1) JPWO2013179342A1 (en)
WO (1) WO2013179342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169717A1 (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Inspection device, inspection apparatus, and inspection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093558A (en) * 2002-07-12 2004-03-25 Mitsubishi Chemicals Corp Chip for analysis, chip unit for analysis and analyzer, and manufacturing method of chip for analysis
JP2007303938A (en) * 2006-05-10 2007-11-22 Kobe Univ Sensor element of target molecule and its manufacturing method
JP2008076313A (en) * 2006-09-22 2008-04-03 Japan Advanced Institute Of Science & Technology Hokuriku Tip for analysis, its manufacturing method, and apparatus and method for analysis
WO2010044274A1 (en) * 2008-10-17 2010-04-22 国立大学法人東京工業大学 Optical sensor, method for manufacturing same and detection method using optical sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093558A (en) * 2002-07-12 2004-03-25 Mitsubishi Chemicals Corp Chip for analysis, chip unit for analysis and analyzer, and manufacturing method of chip for analysis
JP2007303938A (en) * 2006-05-10 2007-11-22 Kobe Univ Sensor element of target molecule and its manufacturing method
JP2008076313A (en) * 2006-09-22 2008-04-03 Japan Advanced Institute Of Science & Technology Hokuriku Tip for analysis, its manufacturing method, and apparatus and method for analysis
WO2010044274A1 (en) * 2008-10-17 2010-04-22 国立大学法人東京工業大学 Optical sensor, method for manufacturing same and detection method using optical sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169717A1 (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Inspection device, inspection apparatus, and inspection method

Also Published As

Publication number Publication date
JPWO2013179342A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
EP0422708A2 (en) Devices for use in chemical test procedures
KR20120013316A (en) Single-use microfluidic test cartridge for the bioassay of analytes
KR101254512B1 (en) Immunochromatogaraphic test instrument and semiquantitative method using the same
JP2003528311A (en) Assay method and assay device for multiple analytes
EP3394597B1 (en) Optical detection of a substance in fluid
JP2007218900A (en) Element for detecting target substance
JP6199527B1 (en) Lateral flow assay device with filtered flow control
KR20070097434A (en) Methods and systems for positioning microspheres for imaging
WO2002052265A1 (en) Specific bonding analysis method and specific bonding analysis device using it
KR20120014122A (en) Device and method for the verification and quantitative analysis of analytes, particularly mycotoxins
TWI526686B (en) Detection kit and detection method
US20120107961A1 (en) Magnetic sensor device, method of operating such a device and sample
US20210208075A1 (en) Autofluorescence quenching assay and device
CN109416357B (en) Devices, systems, and methods for detecting an analyte in a bodily fluid sample comprising a plurality of cells
US20200256790A1 (en) Uv solid state detection and methods therefor
WO2013179342A1 (en) Biochip
JP2012215420A (en) Measuring apparatus and measurement program
JP6457119B2 (en) Multi-unit for performing biochemical test and immune reaction test, and test method using the same
KR20190000851A (en) Lap on a chip, method for manufacturing the same and method for testing using the same
JP6713601B2 (en) Analysis device
WO2008113361A1 (en) A flow through system, flow through device and a method of performing a test
JP5964555B2 (en) Microchip, and measurement system and measurement method using the same
JP2009168803A (en) Method of detecting target substance
EP3995828A1 (en) Novel functionalized hydrogel coatings of assay plates and uses thereof
JP2005077396A (en) Optical waveguide for analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878152

Country of ref document: EP

Kind code of ref document: A1