WO2013177962A1 - 太阳能发电机组的自动追日调控装置 - Google Patents
太阳能发电机组的自动追日调控装置 Download PDFInfo
- Publication number
- WO2013177962A1 WO2013177962A1 PCT/CN2013/071456 CN2013071456W WO2013177962A1 WO 2013177962 A1 WO2013177962 A1 WO 2013177962A1 CN 2013071456 W CN2013071456 W CN 2013071456W WO 2013177962 A1 WO2013177962 A1 WO 2013177962A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar
- generator set
- set according
- automatic
- solar power
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 26
- 238000012937 correction Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims description 2
- 238000004804 winding Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S25/10—Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
- F24S25/13—Profile arrangements, e.g. trusses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S30/40—Arrangements for moving or orienting solar heat collector modules for rotary movement
- F24S30/45—Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/30—Supporting structures being movable or adjustable, e.g. for angle adjustment
- H02S20/32—Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S2030/10—Special components
- F24S2030/13—Transmissions
- F24S2030/133—Transmissions in the form of flexible elements, e.g. belts, chains, ropes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S40/00—Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
- F24S40/80—Accommodating differential expansion of solar collector elements
- F24S40/85—Arrangements for protecting solar collectors against adverse weather conditions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to an automatic solar tracking control device for a solar power generating set, in particular to a tilting state capable of driving and detecting and adjusting a solar power generating module, so as to accurately adjust the sun tracking control corresponding to the sun direction according to the setting.
- Device. Background technique
- solar power plants with adjustable skew angles are disclosed.
- Most of them are to install solar panels on a stable support frame via a pivot joint, and drive the same with a suitable drive structure.
- the solar panel generates pivoting relative to the support frame, so that the solar panel can have different inclination angles according to the movement of the sun position according to the setting, thereby effectively improving the state of the direct sunlight solar panel to improve the overall power generation.
- Efficiency since the above-mentioned mechanism for driving the solar panel pivoting mostly uses a motor as a power source and transmits the power output from the power source (motor) via a chain or a belt, it is difficult to avoid in driving the solar panel to rotate.
- the technical means adopted by the present invention include: a support assembly having a seat at one end of the support assembly; and a load bearing platform disposed on the support via a pivoting assembly having a two-dimensional active mode At least one solar power generation module that generates electricity by sunlight is disposed on the load platform; at least one linkage component is disposed between the support component and the load platform, and the linkage component is a control unit Driving the carrying platform according to a pre-stored standard parameter, so that the carrying platform can be tilted in different directions and angles based on the pivoting component; a detecting and correcting module is disposed on the carrying platform to sense the Carrying the actual parameters such as the tilting direction and the angle of the platform, and feeding back the actual parameters to the control unit to compare with the pre-stored standard parameters, and obtaining a comparison result, and according to the ratio The result is corrected by the linkage component to the tilt direction and angle of the load bearing platform and the solar power generation module.
- the detection and correction module includes at least one accelerometer.
- control unit is disposed in the detection and correction module.
- the support assembly has at least one pillar, and the support is disposed at one end of the pillar.
- the two supporting components are disposed between the supporting component and the carrying platform, and the two interlocking components respectively comprise at least one power source and a connecting component driven by the power source, and the connecting components are connected A flexible body on the opposite portion of the carrying platform.
- the power source is coupled to the connecting member via a driving member.
- the power source is a motor
- the connecting member is a steel cable
- the driving member is a driving wheel combined with the steel cable
- each of the interlocking components respectively further comprises at least one inerting element, and the connecting element forms a reverse bending extension through the edge of the inertia element.
- each of the connecting members is respectively connected to the at least one elastic member.
- the elastic member is disposed at a portion where the connecting member is coupled to the carrying platform.
- each of the driving elements is provided with two driving portions that are synchronously operated, and the two connecting members are respectively connected to the two driving portions in opposite directions by one end, and the other ends of the connecting members are respectively connected to the carrying portions.
- the platform corresponds to the opposite end corners of the side of the support assembly.
- each of the connecting elements is respectively coupled to an elastic adjusting component.
- the elastic adjusting component includes at least a resilient member that is sleeved on the connecting member.
- one end of the elastic member is coupled to the outer fixed position, and the other end of the elastic member is coupled to the middle portion of the coupling member via a set of fittings.
- the fitting member is a pulley.
- the two driving portions are respectively disposed on the driving element, and the two connecting members are wound in opposite directions.
- the second ring groove is formed on the driving element, and the two connecting members are wound in opposite directions.
- the carrying platform is polygonal, and the two ends of each of the connecting elements are respectively connected to two opposite end corner portions of the carrying platform.
- the pivoting assembly includes a pivoting seat, and a first shaft and a second shaft extending through the pivoting seat and extending across the pivoting seat, and the two ends of the first shaft are disposed on the bearing And the two ends of the second shaft are disposed on the carrying platform.
- the two ends of the first shaft are pivotally connected to the support via a bearing
- the two ends of the second shaft are pivotally connected to the carrying platform via bearings.
- the invention provides an automatic sun-tracking control device for a solar generator set, which can use an accelerometer to sense the deflection angle and direction of the solar power generation module, thereby generating correction information for controlling the pivoting of the solar power generation module, thereby enabling solar power generation.
- the module can be accurately maintained at the correct angle and direction according to the previously set chasing parameters.
- the present invention provides an automatic solar tracking controller for a solar power generator set, which can effectively avoid slipping and idling during driving, thereby more precisely controlling the rotation of the solar power generating module.
- Figure 1 is a perspective view showing the structure of the first embodiment of the present invention
- FIG. 2 is a schematic structural view of a pivot joint and its related parts according to a first embodiment of the present invention
- Figure 3 is a schematic view (1) of the operation of the first embodiment of the present invention.
- Figure 4 is a schematic view (II) of the operation of the first embodiment of the present invention.
- Figure 5 is a perspective view showing the structure of the present invention:
- FIG. 6 is a schematic structural view of a first driving component, a second driving component, and related parts thereof according to an embodiment of the present invention
- FIG. 7 is a side view planar structure and an operation diagram thereof of the embodiment of the present invention
- Figure 8 is a schematic view showing the structure of a first driving unit, a second driving unit and related parts of the first embodiment of the present invention. Component symbol description:
- the structure of the first embodiment of the present invention mainly includes: a support assembly 1, a solar power generation module, 2, at least one linkage component that can drive the solar power generation module 2 (in the figure First linkage group
- the struts 11 are provided with a base 12 extending outwardly at one end of the struts 11 for forming a stable support on the ground or a predetermined plane, and a central recessed support at the end of the struts 11 away from the base 12. 13.
- the pivoting assembly 5 is composed of a pivoting base 51, and a first shaft 52 and a second shaft 53 extending through the pivoting seat 51 and extending across the pivoting seat 51.
- the first shaft 52 is fixable to the pivoting joint.
- the two ends of the first shaft 52 are pivoted to the support 13 via the two bearings 521 (in practical applications, the two ends of the first shaft 52 can also be fixed to the support 13).
- the solar power module module 2 is disposed on the carrying platform 21 to receive solar energy to generate electric energy.
- the first linkage assembly 3 and the second linkage assembly 4 are respectively disposed between the support assembly 1 and the carrier platform 21.
- the first linkage assembly 3 includes at least a first power source 31. (may be a motor) and a connecting component 32 (which may be a cable), and the first power source 31 (motor) is coupled to drive the connecting component 32 via a first driving component 311 (which may be a driving wheel) (the cable), and the two ends of the connecting member 32 (the cable) are connected to the opposite end corners of the carrying platform 21, and in the embodiment, the carrying platform 21 is in a polygonal shape.
- the power source 31 is disposed in the middle of the pillar 11 , and the base 12 of the support assembly 1 is provided with two idler elements 33 , 331 (which can be idlers), so that the connecting component 32 (wire rope) can pass through the two idle components 33, 331 forms a W-shaped bend, and the two ends of the connecting member 32 (wire cable) can be respectively connected to the corresponding end corners of the carrying platform 21 after being connected in series with an elastic member 34, 341.
- the second linkage component 4 includes at least a second power source 41 (which may be a motor) and a connecting component 42 (which may be a cable).
- the second power source 41 (motor) is via a second driver.
- the component 411 (which may be a driving wheel) is combined to drive the connecting component 42 (wire cable), and the two ends of the connecting component 42 (wire cable) are connected to the other two opposite end corners of the carrying platform 21, in this embodiment.
- the load platform 21 is in a multi-angle (square) shape, and the power source 41 is disposed in the middle of the pillar 11 , and the base 12 of the support assembly 1 is provided with two idler elements 43 , 431 (which can be idlers).
- the connecting member 42 (wire cable) can be bent into a W shape via the two idler members 43 and 431, and the two ends of the connecting member 42 (wire cable) can be connected after connecting the elastic members 44 and 441 respectively. On the corresponding corner of the carrying platform 21 .
- the detection and correction module 6 is disposed on the carrying platform 21 and has at least one accelerometer and a control therein.
- the accelerometer can sense various actual parameters such as the tilt direction and the angle of the position, and can transmit the actual parameters to the control unit, and store preset standard parameters in the control unit. For comparison with the actual parameter, and the control unit can correct the output of the power source 31, 41 according to the comparison result.
- control unit can be disposed outside the detecting and correcting module 6, and in actual application, the control unit can also be disposed outside the detecting and correcting module 6 (for example, the base 12 of the supporting assembly 1) ), and can be accommodated in a container as needed.
- the first embodiment of the present invention first drives the first linkage component 3 by the control unit in the detection and correction module 6 according to various parameters stored therein.
- the first power source 31 (motor) and the second power source 41 (motor) of the second linkage assembly 4 operate, and the first power source 31 (motor) and the second power source 41 (motor) are via the first driving element 311 ( a driving wheel), a second driving element 411 (drive wheel) respectively interlocking the connecting elements 32, 42 (wire cables), which in turn can drive the carrying platform 21 to pivot (based on) the pivoting assembly Turn tilt.
- the accelerometer in the detecting and correcting module 6 is also tilted synchronously.
- the accelerometer can sense various actual parameters such as the tilting direction and the angle of the carrying platform 21. And transmitting the actual parameters to the control unit, the control unit is compared with the preset standard parameters stored therein, and then the control unit corrects the first power source 31 according to the result of the comparison,
- the output of the second power source 41 is such that the tilting direction and the angle of the carrying platform 21 are consistent with the parameter settings stored in the control unit, so that the solar power generation module on the carrying platform 21 can be made. 2 Maintain the direction and inclination angle to the sun according to the settings to meet the needs of optimal solar radiation and power generation efficiency.
- the structure of the second embodiment of the present invention includes: a first linkage assembly 7, a second linkage assembly 8, and the same support assembly as the first embodiment described above, solar power generation
- the first driving element 72, the second driving element 82, and the plurality of connecting elements 73, 74, 83, 84 driven by the source 71 and the second power source 81 are formed by the first driving element 72 and the second driving element 82.
- the first driving unit 721, the second driving unit 722, the third driving unit 821, and the fourth driving unit 822 are respectively provided with two synchronous operations.
- the first power source 71 and the second power source are provided.
- the power source 81 can be a motor.
- the first driving component 72 and the second driving component 82 can be a driving wheel disposed on the output shaft of the motor.
- the first driving portion 721 and the second driving portion 722 are disposed on the first driving.
- Two adjacent ring grooves on the component 72 (drive wheel), and the two connecting elements 73 74 are reverse wound on to one end of the first driving portion 721 (annular groove), second driving unit 722 (cyclo a cable on the slot, and the third and fourth driving portions 821 and 822 are two adjacent annular grooves provided on the second driving member 82 (drive wheel), and the two connecting members 83 and 84 are respectively at one end.
- each of the coupling members 73, 74, 83, 84 is first sheathed with an idler member 731 After 741, 831, and 841 (the idler members 731, 741, 831, and 841 can be pulleys positioned on the base 12), and the other ends of the connecting members 73, 74, 83, and 84 are respectively connected to the carrying platform.
- the middle portions of the connecting members 73, 74, 83, 84 can be respectively coupled with an elastic adjusting assembly 73a, 74a, 83a, 84a, utilizing elasticity
- the adjustment members 73a, 74a, 83a, 84a generate an elastic pulling force in the middle of each of the coupling members 73, 74, 83, 84 so that the respective coupling members 73, 74, 83, 84 are maintained in proper tension.
- the elastic adjusting members 73a, 74a, 83a, 84a have the same structure, and respectively comprise an elastic member 731a, 741a, 831a, 841a (which may be a spring), and the elastic member 731a, 741a, 831a, 841a have sleeves 732a, 742a, 832a, 842a (which may be a pulley) that can be fitted over the coupling elements 73, 74, 83, 84 at one end, and the elastic elements 731a, 741a, 831a, 841a The other end is coupled to the base 12; by the elastic tension of the elastic members 731a, 741a, 831a, 841a, the connecting members 73, 74, 83, 84 can be maintained in an appropriately tight state.
- the two connecting components 73, 74 are respectively reversely wound around the first driving portion 721 and the second driving portion 722 (ring groove). Therefore, if the first driving unit 721 is to drive the connecting element 73 to perform the retracting operation, the second driving unit 722 can simultaneously drive the connecting element 74 to perform a releasing operation, so that the two connecting elements 73, 74 Simultaneously extending in the same direction, when the first driving portion 721 drives the release coupling member 73 in the reverse direction, the second driving portion 722 is the forward driving and winding coupling member 74, and thus, the first driving The element 72 can drive the two connecting elements 73, 74 to extend in the same direction, respectively, and the two connecting elements 73, 74 and the first driving element 72 can effectively avoid sliding during driving to ensure accurate overall movement.
- the linkage assembly 8 is also operated and operated in the same manner, so that the solar power generation module 2 (the carrier platform 21) can be
- the structure of the third embodiment of the present invention is mainly based on the foregoing second embodiment. Since the structure of the second embodiment is applied in practice, the connecting members 73, 74 and the connecting member 83, The extending direction of 84 is staggered (in the illustration, the connecting elements 74, 83 are staggered, and the connecting elements 73, 84 are not staggered), in order to avoid the staggered connecting elements 74, 83 from being generated during the sliding process.
- the structural difference of the embodiment is only that: the elastic adjusting components are not disposed on the connecting elements 74, 83 which are staggered to avoid slipping An offset occurs during the movement to cause a touch interference; and in the middle of the uninterlaced connecting members 73, 84, the same elastic adjustment members 73a, 84a as the second embodiment described above can be disposed, and the remaining portions are The structure is also identical to the second embodiment.
- the automatic solar tracking controller of the solar generator set of the present invention can achieve the active detection of the tilt state of the solar power generation module, and automatically adjusts to the correct tilt angle and direction according to the setting.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种太阳能发电机组的自动追日调控装置,其包括一支撑组件(1),一可二维枢转活动的枢转组件(5)设置于该支撑组件(1)上,一可接受太阳光作用而产生电能的太阳能发电模块(2)经由该枢转组件(5)设置于该支撑组件(1)上,至少一连动组件(3,4,7,8)设置于该支撑组件(1)与太阳能发电模块(2)之间,该连动组件(3,4,7,8)受一控制单元依其一预先储存的标准参数而分别驱动该太阳能发电模块(2)产生不同方向及角度的倾斜,一检测及修正模块(6)设于该太阳能发电模块(2)上,可感测该太阳能发电模块(2)的对应方向及倾斜角度等实际参数,并与该预先储存的标准参数相比对,依该比对所得的结果,修正该连动组件(3,4,7,8),使该太阳能发电模块(2)的倾斜方向及角度得以趋近该标准参数进行调节。
Description
太阳能发电机组的自动追日调控装置 技术领域
本发明是有关一种太阳能发电机组的自动追日调控装置,尤指一种可驱动并检测调 整太阳能发电模块的倾斜状态,使其精确地自动依设定而调整对应于太阳方向的追日调 控装置。 背景技术
传统较简易的太阳能发电装置(太阳能板)大多是以固定的位置及延伸角度设置于 太阳阳光可投射之处,此种应用形态虽具有较简易的结构,可降低设置及后续维护成本; 但其于实际应用时, 由于太阳的位置随时在改变, 因此该具有固定位置及角度的太阳能 发电装置 (太阳能板)无法随时保持与太阳阳光投射方向相垂直的角度, 致使该阳光作 用于太阳能发电装置 (太阳能板) 的效率难以保持于最佳, 而有发电效率不佳的情形。
为此, 仍有偏斜角度可调整的太阳能发电装置 (太阳能板)被公开应用, 其大多是 将太阳能板经由一枢转接头设置于一稳固的支撑架上, 并利用适当的驱动结构带动该太 阳能板产生相对于支撑架的枢转,使该太阳能板可依设定而随着太阳位置的移动具有不 同倾斜角度,如此一来,可有效改善太阳光直射太阳能板的状态, 以增进整体发电效率; 然而, 由于上述驱动太阳能板枢转的机构大多是以马达作为动力源, 并经由链条或皮带 传递该动力源 (马达)输出的动力, 因此在驱动该太阳能板转动的过程中, 难以避免的 会产生滑动或精度误差的累积, 致使其枢转偏斜的角度与方向皆无法达到预期的位置, 故, 如何能使太阳能板随时自动检测偏斜的角度与方向, 并与其原始设定值相互比对, 再使太阳能板作出适当修正, 以产生一符合设定值的精确枢转与偏斜, 进而达到较佳日 照效果与发电效率, 仍为相关业者所亟待努力的课题。
有鉴于常见的太阳能发电装置有上述缺点, 发明人仍针对该些缺点研究改进之道, 终于有本发明产生。 发明内容
为解决上述技术问题, 本发明所采行的技术手段包括: 一支撑组件, 于该支撑 组件一端设有一支座; 一承载平台, 经由一具有二维活动模式的枢转组件设置于该支座
上, 于该承载平台上设有至少一受太阳光作用而产生电能的太阳能发电模块; 至少一连 动组件, 是设置于该支撑组件与承载平台的间, 该连动组件是以一控制单元依一预先储 存的标准参数而驱动该承载平台,使该承载平台得以该枢转组件为基础而产生不同方向 及角度的倾斜; 一检测及修正模块, 设于该承载平台上, 藉以感测该承载平台的倾斜方 向及角度等各项实际参数, 并将该等实际参数回馈至该控制单元, 以与该预先储存的各 项标准参数相比对, 而获取一比对结果, 并依该比对结果经由该连动组件修正该承载平 台与太阳能发电模块的倾斜方向及角度。
依上述结构, 其中该检测及修正模块至少包含一加速度计。
依上述结构, 其中该控制单元设置于该检测及修正模块中。
依上述结构, 其中该支撑组件至少具有一支柱, 且该支座设置于该支柱的一端部。 依上述结构, 其中该支撑组件与承载平台之间设有二组连动组件, 且该二连动组件 分别至少包含一动力源及一受该动力源驱动的连结元件, 且各连结元件为衔接于承载平 台上二相对部位的挠性体。
依上述结构, 其中该动力源经由一驱动元件结合于该连结元件。
依上述结构, 其中该动力源为一马达, 该连结元件为一钢索, 而该驱动元件为一与 钢索相结合的驱动轮。
依上述结构, 其中各连动组件分别另包含至少一惰转元件, 且该连结元件是通过该 惰转元件边缘而形成反向弯折延伸。
依上述结构, 其中各连结元件分别连接至少一弹性元件。
依上述结构, 其中该弹性元件是设置于连结元件与承载平台相连结的部位。
依上述结构, 其中各驱动元件上设有同步动作的二驱动部, 利用二连结元件分别以 一端反方向连结于二个所述驱动部上, 且二所述连结元件的另一端分别衔接于承载平台 上对应于支撑组件二旁侧相对的端角部位。
依上述结构, 其中各连结元件分别连结一弹性调整组件。
依上述结构, 其中该弹性调整组件至少包括一滑套于连结元件上的弹性元件。 依上述结构, 其中该弹性元件的一端连结外部的固定位置上, 弹性元件的另一端经 由一套合件结合于连结元件中段。
依上述结构, 其中该套合元件为一滑轮。
依上述结构,其中该二驱动部为设置于该驱动元件上分别供二连结元件反方向缠绕
的二环槽。
依上述结构, 其中该承载平台是呈多角形, 且各所述连结元件的二端分别衔接于该 承载平台上的二相对端角部位。
依上述结构, 其中该枢转组件包括一枢接座, 以及二贯穿该枢接座且交叉延伸的第 一轴杆、 第二轴杆, 该第一轴杆的二端部设置于该支座上, 而该第二轴杆的二端部设置 于该承载平台上。
依上述结构, 其中该第一轴杆的二端部经由轴承枢接于支座上, 该第二轴杆的二端 部经由轴承枢接于该承载平台上。
本发明提供的一种太阳能发电机组的自动追日调控装置,其可利用一加速度计感测 太阳能发电模块的偏斜角度与方向, 藉以产生控制太阳能发电模块枢转的修正资讯, 进 而使太阳能发电模块得以依原先设定的追日参数而精确地保持于正确的角度与方向。另 外, 本发明提供的一种太阳能发电机组的自动追日调控装置, 其可有效避免驱动过程中 产生打滑空转, 进而得以更精准地控制太阳能发电模块的转动。
为使本发明的上述目的、功效及特征可获致更具体的了解,兹依下列附图说明如下: 附图说明
图 1是本发明第- -实施例的立体结构示意图;
图 2是本发明第- -实施例的枢接座及其相关部位结构示意图;
图 3是本发明第- -实施例的操作示意图(一);
图 4是本发明第- -实施例的操作示意图(二);
图 5是本发明第: :实施例的立体结构示意图;
图 6是本发明第: :实施例的第一驱动组件、 第二驱动组件及其相关部位结构示意图; 图 7是本发明第::实施例的侧视平面结构及其动作图;
图 8是本发明第」 :实施例的第一驱动组件、 第二驱动组件及其相关部位结构示意图。 元件符号说明:
I . . . . .支撑组件
I I. . . .支柱
12. . . .底座
13....支座
2.....太阳能发电模组模块
2L...承载平台
3、 7 第一连动组件
31、 7L...第一动力源
311、 72...第一驱动元件
32、 42、 73、 74、 83、 84 连结元件
33、 331、 43、 431、 731、 741、 831、 841...惰转元件
34、 341、 44、 441、 731a, 741a, 831a, 841a...弹性元件
4、 8 第二连动组件
41、 81...第二动力源
411、 82...第二驱动元件
5 枢转组件
51....枢接座
52....第一轴杆
521、 531...轴承
53....第二轴杆
6 检测及修正模块
721...第一驱动部
722...第二驱动部
73a、 74a、 83a、 84a...弹性调整组件
732a, 742a, 832a, 842a..套合件
821...第三驱动部
822...第四驱动部 具体实施方式
请参第 1、 2图, 可知本发明第一实施例的结构主要包括: 支撑组件 1、 太阳能发电 模块、 2、 至少一可驱动该太阳能发电模块 2的连动组件 (于在图示中具有一第一连动组
具有一支柱 11, 在该支柱 11一端部设有向外扩张延伸的底座 12, 以供于地面或预设平 面上形成稳固支撑, 另于支柱 11远离底座 12的一端部设有一中段凹陷支座 13。
枢转组件 5是由一枢接座 51, 以及二贯穿该枢接座 51且交叉延伸的第一轴杆 52、 第二轴杆 53所组成, 该第一轴杆 52是可固定于枢接座 51上, 并使第一轴杆 52二端部 经由二轴承 521枢设于该支座 13上 (于实际应用上, 亦可以以该第一轴杆 52的二端部 固定于支座 13上, 并使第一轴杆 52中段枢接于枢接座 51内), 使该枢接座 51得以沿 第一轴杆 52相对于支座 13产生一维的枢转活动, 而该第二轴杆 53亦是固定于枢接座 51上, 并使第二轴杆 53的二端部可经由二轴承 531枢设于一承载平台 21上 (于实际应 用上, 亦可利用该第二轴杆 53二端部固定于该承载平台 21上, 并使第二轴杆 53中段 枢接于枢接座 51内), 使该承载平台 21得以经由第二轴杆 53相对于支座 13产生二维 的枢转活动。
太阳能发电模组模块 2是设置于该承载平台 21上, 以接受太阳光作用而产生电能。 该第一连动组件 3与第二连动组件 4是分别设置于该支撑组件 1与承载平台 21之 间,在本实施例中,该第一连动组件 3至少包含一第一动力源 31 (可为一马达)及一连结 元件 32 (可为一钢索), 且该第一动力源 31 (马达)是经由一第一驱动元件 311 (可为一驱 动轮)结合驱动该连结元件 32 (钢索),而该连结元件 32 (钢索)的二端是连结于该承载平 台 21的二相对端角部位, 于本实施例中, 该承载平台 21是呈多角(方)形, 且该动力源 31设置于支柱 11中段, 另于支撑组件 1的底座 12上设有二惰转元件 33、 331 (可为惰 轮), 使该连结元件 32 (钢索)可经由二惰转元件 33、 331形成一 W形弯折, 且该连结元 件 32 (钢索)的二端可分别于串接一弹性元件 34、 341后, 再连结于该承载平台 21相对 应的端角上。
而该第二连动组件 4至少包含一第二动力源 41 (可为一马达)及一连结元件 42 (可为 一钢索), 该第二动力源 41 (马达)是经由一第二驱动元件 411 (可为一驱动轮)结合驱动 该连结元件 42 (钢索),而连结元件 42 (钢索)的二端是连结于该承载平台 21的另外二相 对端角部位, 于本实施例中, 该承载平台 21是呈多角(方)形, 且动力源 41是设置于支 柱 11中段, 另于支撑组件 1的底座 12上设有二惰转元件 43、 431 (可为惰轮), 使连结 元件 42 (钢索)可经由二惰转元件 43、 431形成一 W形弯折, 且该连结元件 42 (钢索)的 二端可分别于串接一弹性元件 44、 441后再连结于该承载平台 21相对应的端角上。
检测及修正模块 6是设于该承载平台 21上, 其内部具有至少一加速度计及一控制
单元, 该加速度计可感测所处位置的倾斜方向及角度等各项实际参数, 并可将该等实际 参数输送至该控制单元, 于该控制单元内部储存有各项预设的标准参数, 以供与该实际 参数比对, 且该控制单元可依比对结果修正该动力源 31、 41的输出。
上述结构中, 该控制单元除可设置于检测及修正模块 6内部的外, 在实际应用时, 该控制单元亦可被设置于检测及修正模块 6外部 (例如: 该支撑组件 1的底座 12上), 并可依需要另以一容器容纳。
请参 3、 4图, 可知本发明第一实施例于操作时, 先由该检测及修正模块 6内的控 制单元依其内部储存的各项参数而分别驱动该第一连动组件 3、 第二连动组件 4的第一 动力源 31 (马达)、 第二动力源 41 (马达)动作, 该第一动力源 31 (马达)、 第二动力源 41 (马达)经由第一驱动元件 311 (驱动轮)、 第二驱动元件 411 (驱动轮)分别连动所述连 结元件 32、 42 (钢索), 进而可带动该承载平台 21以枢转组件为基础 (或中心)朝预设方 向枢转倾斜。
而在该承载平台 21枢转倾斜的过程中, 检测及修正模块 6内的加速度计亦随之同 步倾斜, 此时该加速度计可感测该承载平台 21的倾斜方向及角度等各项实际参数, 并 将该等实际参数输送至控制单元, 由该控制单元与其内部储存的各项预设的标准参数相 比对,然后由该控制单元依该比对的结果修正该第一动力源 31、第二动力源 41的输出, 以令该承载平台 21的倾斜方向及角度得以符合该控制单元内部储存的各项参数设定, 如此一来, 即可使该承载平台 21上的太阳能电发电模块 2依设定而保持面向太阳的方 向及倾斜角度, 以满足最佳日光照射效果及发电效率的需求。
请参第 5至 7图所示, 可知本发明第二实施例的结构包括: 第一连动组件 7、 第二 连动组件 8, 以及与前述第一实施例相同的支撑组件 1、 太阳能发电模块 2、 枢转组件 5 及检测及修正模块 6,其中该第一连动组件 7、第二连动组件 8分别由一第一动力源 71、 第二动力源 81、一受该第一动力源 71、第二动力源 81带动的第一驱动元件 72、第二驱 动元件 82, 及多个连结元件 73、 74、 83、 84所组成, 于该第一驱动元件 72、 第二驱动 元件 82上分别设有二同步动作的第一驱动部 721、 第二驱动部 722及第三驱动部 821、 第四驱动部 822, 于该图示的实施例中, 该第一动力源 71、 第二动力源 81可为一马达, 该第一驱动元件 72、 第二驱动元件 82可为设置于马达输出轴上的驱动轮, 该第一驱动 部 721、第二驱动部 722为设置于第一驱动元件 72 (驱动轮)上二相邻的环槽, 且所述二 连结元件 73、74分别为以一端反向缠绕于该第一驱动部 721 (环槽)、第二驱动部 722 (环
槽)上的钢索, 而第三、 四驱动部 821、 822为设置于第二驱动元件 82 (驱动轮)上二相邻 的环槽, 且二所述连结元件 83、 84分别为以一端反向缠绕于该第三驱动部 821 (环槽)、 第四驱动部 822 (环槽)上的钢索; 各连结元件 73、 74、 83、 84的中段先分别穿套一惰 转元件 731、 741、 831、 841之后(各惰转元件 731、 741、 831、 841可为定位于底座 12 上的滑轮), 再使各连结元件 73、 74、 83、 84的另一端分别衔接于承载平台 21上对应 于支撑组件 1二旁侧相对端角部位; 于实际应用时, 各连结元件 73、 74、 83、 84的中 段可另分别连结一弹性调整组件 73a、 74a, 83a、 84a, 利用弹性调整组件 73a、 74a, 83a、 84a在各连结元件 73、 74、 83、 84中段产生一弹性拉力, 以使各连结元件 73、 74、 83、 84得以保持适当紧度。
上述第二实施例的结构中, 该弹性调整组件 73a、 74a, 83a、 84a具有相同的结构, 其分别包括一弹性元件 731a、 741a, 831a, 841a (可为一弹簧),该弹性元件 731a、 741a, 831a, 841a于一端具有可套合于连结元件 73、 74、 83、 84的套合部 732a、 742a, 832a, 842a (可为一滑轮), 而弹性元件 731a、 741a, 831a, 841a的另一端连结于底座 12上; 利用该弹性元件 731a、 741a, 831a, 841a的弹性拉持, 可使连结元件 73、 74、 83、 84 保持适当紧绷状态。
于操作时, 当连动组件 7的动力源 71驱动该第一驱动元件 72转动时, 由于二连结 元件 73、 74分别反向缠绕于第一驱动部 721、 第二驱动部 722 (环槽)上, 因此若该第一 驱动部 721为正向驱动该连结元件 73进行卷收动作, 则该第二驱动部 722可同时驱动 连结元件 74进行释放动作, 以使所述二连结元件 73、 74得以同步朝向同一方向延伸, 同理, 当该第一驱动部 721反向驱动释放连结元件 73时, 则该第二驱动部 722为正向 驱动卷收连结元件 74, 如此一来, 第一驱动元件 72可分别驱动所述二连结元件 73、 74 朝向同一方向延伸, 且二连结元件 73、 74与该第一驱动元件 72可有效避免在驱动过程 中产生滑动的情形, 以确保整体动作的精准性; 而该连动组件 8亦以相同方式进行操作 与动作, 进而可使该太阳能发电模块 2 (承载平台 21)可稳定地朝向预设方向倾斜。
请参图 8所示, 可知本发明第三实施例的结构主要是以前述第二实施例为基础, 由 于该第二实施例的结构于实际应用时, 连结元件 73、 74与连结元件 83、 84的延伸方向 形成交错(于图示中, 所述连结元件 74、 83呈交错, 而所述连结元件 73、 84则未交错), 为避免该交错的连结元件 74、 83于滑动过程中产生碰触干涉, 因此本实施例的结构差 异仅在于: 于相交错的所述连结元件 74、 83上并未设置弹性调整组件, 以避免其于滑
动过程中产生偏移而造成碰触干涉; 而于未相交错的所述连结元件 73、 84中段, 则仍 可设置与前述第二实施例相同的弹性调整组件 73a、 84a,且其余各部位的结构亦与该第 二实施例完全相同。
综合以上所述,本发明太阳能发电机组的自动追日调控装置确可达成主动检测太阳 能发电模块的倾斜状态, 并自动依设定而调整至正确倾斜角度与方向的功效。
以上所述, 仅为本发明的可行实施例而已, 并非用来限定本发明实施的范围, 即凡 依本发明权利要求范围所作的均等变化与修饰, 皆为本发明权利要求范围所涵盖。
Claims
1.一种太阳能发电机组的自动追日调控装置,其特征在于,所述调控装置至少包括: 一支撑组件, 于该支撑组件一端设有一支座;
一承载平台, 经由一具有二维活动模式的枢转组件设置于该支座上, 于该承载 平台上设有至少一受太阳光作用而产生电能的太阳能发电模块;
至少一连动组件, 是设置于该支撑组件与承载平台之间, 该连动组件是以一控 制单元依一预先储存的标准参数而驱动该承载平台,使该承载平台能够以该枢转组件为 基础而产生不同方向及角度的倾斜;
一检测及修正模块, 设于该承载平台上, 用以感测该承载平台的包括倾斜方向 及角度的实际参数, 并将所述实际参数回馈至该控制单元, 以与该预先储存的各项标准 参数相比对, 而获取一比对结果, 并依该比对结果经由该连动组件修正该承载平台与太 阳能发电模块的倾斜方向及角度。
2.如权利要求 1所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该检测 及修正模块至少包含一加速度计。
3.如权利要求 2所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该控制 单元是设置于该检测及修正模块中。
4.如权利要求 1所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该支撑 组件至少具有一支柱, 且该支座是设置于该支柱的一端部。
5.如权利要求 1一 4任意一项所述的太阳能发电机组的自动追日调控装置,其特征在 于, 该支撑组件与承载平台之间设有二组连动组件, 且二组所述连动组件分别包含至少 一动力源及一受该动力源驱动的连结元件, 且各连结元件为衔接于承载平台上二相对部 位的挠性体。
6.如权利要求 5所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该动力 源经由一驱动元件结合该连结元件。
7.如权利要求 6所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该动力 源为一马达, 该连结元件为一钢索, 而该驱动元件为一与钢索相结合的驱动轮。
8.如权利要求 5所述的太阳能发电机组的自动追日调控装置, 其特征在于, 各连动 组件分别包含至少一惰转元件, 且各连结元件通过该惰转元件边缘而形成反向弯折延 伸。
9.如权利要求 5所述的太阳能发电机组的自动追日调控装置, 其特征在于, 各连结 元件分别连接至少一弹性元件。
10.如权利要求 9所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该弹性 元件是设置于连结元件与承载平台相连结的部位。
11.如权利要求 6所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该驱动 元件的至少其中之一设有同步动作的二驱动部, 且二连结元件分别以其中一端反方向连 结于二所述驱动部上, 另一端则分别衔接于承载平台上对应于支撑组件二相对的端角部 位。
12.如权利要求 11所述的太阳能发电机组的自动追日调控装置, 其特征在于, 各连 结元件分别连结一弹性调整组件。
13.如权利要求 12所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该弹 性调整组件至少包括一滑套于连结元件上的弹性元件。
14.如权利要求 13所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该弹 性元件的一端连结外部的固定位置上, 弹性元件的另一端经由一套合件结合于连结元件 中段。
15.如权利要求 14所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该套 合元件为一滑轮。
16.如权利要求 11所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该二 驱动部为设置于该驱动元件上分别供二连结元件反方向缠绕的二环槽。
17.如权利要求 5所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该承载 平台是呈多角形, 且各所述连结元件的二端分别衔接于该承载平台上的二相对端角部 位。
18.如权利要求 1一 4任意一项所述的太阳能发电机组的自动追日调控装置, 其特征 在于, 该枢转组件包括一枢接座, 以及二贯穿该枢接座且交叉延伸的第一轴杆、 第二轴 杆,该第一轴杆的二端部设置于该支座上,而该第二轴杆的二端部设置于该承载平台上。
19.如权利要求 5所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该枢转 组件包括一枢接座, 以及二贯穿该枢接座且交叉延伸的第一轴杆、 第二轴杆, 该第一轴 杆的二端部设置于该支座上, 而该第二轴杆的二端部设置于该承载平台上。
20.如权利要求 18所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该第
一轴杆的二端部经由轴承枢接于支座上, 该第二轴杆的二端部经由轴承枢接于该承载平 台上。
21.如权利要求 19所述的太阳能发电机组的自动追日调控装置, 其特征在于, 该第 一轴杆的二端部经由轴承枢接于支座上, 该第二轴杆的二端部经由轴承枢接于该承载平
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210169359.2 | 2012-05-29 | ||
CN201210169359.2A CN103455044B (zh) | 2012-05-29 | 2012-05-29 | 太阳能发电机组的自动追日调控装置 |
CN201210453340 | 2012-11-13 | ||
CN201210453340.0 | 2012-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013177962A1 true WO2013177962A1 (zh) | 2013-12-05 |
Family
ID=49672370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/071456 WO2013177962A1 (zh) | 2012-05-29 | 2013-02-06 | 太阳能发电机组的自动追日调控装置 |
Country Status (2)
Country | Link |
---|---|
CL (1) | CL2014002948A1 (zh) |
WO (1) | WO2013177962A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090009732U (ko) * | 2008-03-24 | 2009-09-29 | (주)한라이앤씨 | 태양전지판의 각도조절장치 |
CN101576751A (zh) * | 2009-05-21 | 2009-11-11 | 苏州工业园区美能新能源有限公司 | 高精度太阳双轴自动跟踪控制装置 |
US20100059042A1 (en) * | 2008-09-10 | 2010-03-11 | Sunplus Mmedia Inc. | Solar tracking and concentration device |
CN102244481A (zh) * | 2010-05-12 | 2011-11-16 | 上海超日太阳能科技股份有限公司 | 太阳指向双轴全自动跟踪控制发电设备 |
CN102298393A (zh) * | 2011-06-16 | 2011-12-28 | 刘建中 | 太阳光对应装置 |
TWM421480U (en) * | 2011-09-19 | 2012-01-21 | Topper Sun Energy Technology | Solar generator apparatus with elastically cable-controlled tracking |
CN202143005U (zh) * | 2011-07-08 | 2012-02-08 | 上阳能源科技有限公司 | 钢索控制追日式太阳能发电设备 |
-
2013
- 2013-02-06 WO PCT/CN2013/071456 patent/WO2013177962A1/zh active Application Filing
-
2014
- 2014-10-30 CL CL2014002948A patent/CL2014002948A1/es unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090009732U (ko) * | 2008-03-24 | 2009-09-29 | (주)한라이앤씨 | 태양전지판의 각도조절장치 |
US20100059042A1 (en) * | 2008-09-10 | 2010-03-11 | Sunplus Mmedia Inc. | Solar tracking and concentration device |
CN101576751A (zh) * | 2009-05-21 | 2009-11-11 | 苏州工业园区美能新能源有限公司 | 高精度太阳双轴自动跟踪控制装置 |
CN102244481A (zh) * | 2010-05-12 | 2011-11-16 | 上海超日太阳能科技股份有限公司 | 太阳指向双轴全自动跟踪控制发电设备 |
CN102298393A (zh) * | 2011-06-16 | 2011-12-28 | 刘建中 | 太阳光对应装置 |
CN202143005U (zh) * | 2011-07-08 | 2012-02-08 | 上阳能源科技有限公司 | 钢索控制追日式太阳能发电设备 |
TWM421480U (en) * | 2011-09-19 | 2012-01-21 | Topper Sun Energy Technology | Solar generator apparatus with elastically cable-controlled tracking |
Also Published As
Publication number | Publication date |
---|---|
CL2014002948A1 (es) | 2015-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5763109B2 (ja) | 太陽光発電機ユニットの自動太陽追尾調整コントロール装置 | |
TWI519747B (zh) | Automatic Regeneration Device for Solar Generators | |
JP6413128B2 (ja) | 太陽エネルギー集光のための支持体を含む太陽追尾式の光起電太陽集光器アレイ | |
KR101264846B1 (ko) | 태양광 트랙커 및 태양광 발전장치 | |
WO2020078061A1 (zh) | 绳索传动结构、太阳能跟踪器及其使用方法 | |
US20130312412A1 (en) | Collapsible Solar-Thermal Concentrator For Renewable, Sustainable Expeditionary Power Generator System | |
JP2013021287A (ja) | 太陽追尾機能を有するソーラー発電装置 | |
KR101634301B1 (ko) | 태양광 발전기의 전동식 각도조절장치 | |
JP2016092969A (ja) | 角度可変形太陽光発電システム | |
US20140123645A1 (en) | Pull control apparatus of solar tracking power generation mechanism | |
CN103455044B (zh) | 太阳能发电机组的自动追日调控装置 | |
WO2012160905A1 (ja) | 太陽光集光システム | |
JP5834323B1 (ja) | 太陽光パネルの回動機構 | |
WO2013177962A1 (zh) | 太阳能发电机组的自动追日调控装置 | |
US11323063B2 (en) | Heliostat with tripod stand and top-mounted optical member | |
KR101034475B1 (ko) | 태양광 발전기의 전동식 각도조절장치 | |
CN211716909U (zh) | 一种联排式平板集热器防过热支架 | |
KR101259336B1 (ko) | 태양전지패널의 경사각 조절 태양광 발전장치 | |
KR101516803B1 (ko) | 각도 조절이 가능한 태양광 패널이 탑재된 주익 | |
EP2660535A1 (en) | Structural support azimuth rotation device | |
KR20160093288A (ko) | 하이브리드 발전장치 | |
WO2023091432A1 (en) | An improved single-axis photovoltaic tracking system | |
CN112539565A (zh) | 一种联排式平板集热器防过热支架 | |
TW201303237A (zh) | 具有追日功能之太陽能發電裝置 | |
JP2014130283A (ja) | 太陽パネルユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13796475 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014002948 Country of ref document: CL |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13796475 Country of ref document: EP Kind code of ref document: A1 |