WO2013176224A1 - Method for manufacturing multilayer printed wiring board - Google Patents

Method for manufacturing multilayer printed wiring board Download PDF

Info

Publication number
WO2013176224A1
WO2013176224A1 PCT/JP2013/064386 JP2013064386W WO2013176224A1 WO 2013176224 A1 WO2013176224 A1 WO 2013176224A1 JP 2013064386 W JP2013064386 W JP 2013064386W WO 2013176224 A1 WO2013176224 A1 WO 2013176224A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
printed wiring
wiring board
multilayer printed
mass
Prior art date
Application number
PCT/JP2013/064386
Other languages
French (fr)
Japanese (ja)
Inventor
亮 宮本
弘久 奈良橋
中村 茂雄
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2014516852A priority Critical patent/JP6281489B2/en
Publication of WO2013176224A1 publication Critical patent/WO2013176224A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0293Non-woven fibrous reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/068Features of the lamination press or of the lamination process, e.g. using special separator sheets

Definitions

  • the present invention relates to a method for manufacturing a multilayer printed wiring board. Furthermore, the present invention relates to a semiconductor device using the multilayer printed wiring board.
  • a multilayer printed wiring board is used for an integrated circuit which is indispensable for a semiconductor device, and a metal-clad laminated board can be cited as a main component.
  • a method for producing the metal-clad laminate a prepreg is prepared by cutting to an arbitrary size, one or several sheets of this are stacked, and a copper foil of the same size or larger than that of the prepreg is formed on the upper and lower sides thereof. Is generally used, and a vacuum press molding is performed by laminating the layers between hot plates.
  • Patent Document 1 there is a description of stacking prepregs, but studies on the prepreg itself and the manufacturing method are scarce, and the performance of the multilayer printed wiring board is sufficient, such as a low glass transition temperature of the obtained insulating layer. It was not a thing.
  • An object of the present invention is to provide a method for producing a multilayer printed wiring board having an insulating layer having a uniform film thickness with a high glass transition temperature, a low coefficient of linear thermal expansion, and suppressed voids.
  • the present inventors have found that the above problems can be achieved by combining a specific prepreg and a specific vacuum lamination method.
  • the present invention includes the following aspects.
  • a method for producing a multilayer printed wiring board comprising: The prepreg contains a curable resin composition and a sheet fiber substrate, The content of the curable resin composition in the prepreg is 30% by mass or more and 85% by mass or less, The curable resin composition contains an inorganic filler,
  • step (A) the degree of vacuum during lamination is 0.001 to 0.40 kPa, the time to reach vacuum is 15 seconds or less, the pressure during lamination is 1 to 16 kgf / cm 2 , and the heating temperature during lamination is 60 to
  • a method for producing a multilayer printed wiring board characterized in that the lamination time is 10 to 300 seconds at 160 ° C.
  • Any of the above [1] to [3], wherein the sheet-like fiber substrate contains one or more selected from the group consisting of E glass fiber, S glass fiber and Q glass fiber A method for producing a multilayer printed wiring board according to claim 1.
  • step (A) When the protective film is attached to the prepreg with the support wound in a roll shape, the protective film is peeled off and sequentially supplied to the vacuum laminator, and the prepreg surface of the prepreg with the support faces the inner circuit board.
  • step (B) The method for producing a multilayer printed wiring board according to any one of [1] to [10] above, wherein the temperature at the time of thermosetting is 150 to 250 ° C.
  • thermosetting is 30 to 300 minutes.
  • step (B) The method for producing a multilayer printed wiring board according to any one of the above [1] to [11], wherein the insulating layer is formed by thermosetting the prepreg using a heating oven.
  • step (B) The method for producing a multilayer printed wiring board according to any one of the above [1] to [12], wherein the prepreg is arranged in a vertical state in a heating oven and thermally cured to form an insulating layer.
  • step (B) The multilayer printed wiring board is fixed with a heat-resistant jig, the prepreg is heat-cured, and the multilayer printed wiring board inside the jig is cut out after being cured, according to any one of the above [1] to [13] A method for producing a multilayer printed wiring board.
  • [17] The method for producing a multilayer printed wiring board according to any one of [1] to [16], further comprising (C) a step of peeling the support.
  • a semiconductor device comprising a multilayer printed wiring board obtained by the manufacturing method according to any one of [1] to [20].
  • a multilayer printed wiring having an insulating layer with a uniform film thickness that has a high glass transition temperature, a low linear thermal expansion coefficient, and a suppressed void.
  • a method for manufacturing a plate can be provided.
  • the present invention (A) A step of heating and pressurizing the prepreg with a support to the inner layer circuit board to perform vacuum lamination, (B) a step of thermosetting the prepreg to form an insulating layer; (A method for producing a multilayer printed wiring board, comprising: The prepreg contains a curable resin composition and a sheet fiber substrate, The content of the curable resin composition in the prepreg is 30% by mass or more and 85% by mass or less, The curable resin composition contains an inorganic filler, In the step of (A) heating and pressurizing the prepreg with a support on the inner layer circuit board for vacuum lamination, the degree of vacuum during lamination is 0.001 to 0.40 kPa, the time to reach vacuum is 15 seconds or less, and A method for producing a multilayer printed wiring board, wherein the pressure is 1 to 16 kgf / cm 2 , the heating temperature during lamination is 60 to 160 ° C., and the time during lamination is 10 to 300 seconds.
  • the step (A) is a step of heating and pressurizing the prepreg with a support on the inner layer circuit board to perform vacuum lamination.
  • the prepreg used in the present invention contains a curable resin composition and a sheet-like fiber base material.
  • the curable resin composition can be used without any particular limitation. Among them, (c) a composition containing an inorganic filler is preferable, and (a) an epoxy resin and (c) a composition containing an inorganic filler are more preferable. More preferably, the composition contains (a) an epoxy resin, (b) a curing agent, and (c) an inorganic filler.
  • epoxy resin for example, bisphenol A type epoxy resin, biphenyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, alicyclic Epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, naphthylene ether type epoxy resin, glycidyl ester type epoxy resin, epoxy resin having butadiene structure, Diglycidyl etherified products of bisphenols, diglycidyl etherified products of naphthalene diol, glycidyl etherified products of phenols, and diglycidyl etherified products of alcohols, Alkyl-substituted bodies of these epoxy resins, halides and hydrogenated products, and the like in. These may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type from the viewpoint of improving heat resistance, improving insulation reliability, improving mechanical properties, and improving adhesion to metal foil (conductor layer).
  • Epoxy resins, naphthylene ether type epoxy resins, glycidyl ester type epoxy resins, and epoxy resins having a butadiene structure are preferable, and bisphenol A type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, and naphthylene ether type epoxy resins are more preferable. .
  • liquid bisphenol A type epoxy resin (“Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation), naphthalene type bifunctional epoxy resin (“HP4032”, “HP4032D”, “HP4032SS” manufactured by DIC Corporation)) Naphthalene type tetrafunctional epoxy resin (“HP4700”, “HP4710” manufactured by DIC Corporation), naphthol type epoxy resin (“ESN-475V” manufactured by Tohto Kasei Co., Ltd.), naphthylene ether type epoxy resin (DIC Corporation) ) “EXA-7310”, “EXA-7311”, “EXA-7311L”, “EXA7311-G3”), glycidyl ester type epoxy resin (“EX711”, “EX721”, manufactured by Nagase ChemteX Corp.) ) "R540” made by Printec), epoxy resin with butadiene structure ( Iseru Chemical Industry Co., "PB-3600” manufactured), biphenyl type epoxy resin (manufacture
  • the upper limit value of the content of the epoxy resin is preferably 40% by mass or less, more preferably 30% by mass or less, when the nonvolatile component in the curable resin composition is 100% by mass. Preferably, 20 mass% or less is more preferable.
  • the lower limit of the content of the epoxy resin is 1 when the nonvolatile component in the curable resin composition is 100% by mass from the viewpoints of improving heat resistance, improving insulation reliability, and improving adhesion to the metal foil. % By mass or more is preferable, 3% by mass or more is more preferable, and 5% by mass or more is more preferable.
  • liquid epoxy resin refers to an epoxy resin that is liquid at a temperature of 20 ° C.
  • solid epoxy resin refers to an epoxy resin that is solid at a temperature of 20 ° C.
  • a phenolic curing agent for example, a phenolic curing agent, an active ester curing agent, a cyanate ester curing agent, a benzoxazine curing agent, an acid anhydride curing agent, an amine curing agent, a guanidine curing agent, Examples thereof include imidazole-based curing agents, and epoxy adducts and microencapsulated products thereof. These may be used alone or in combination of two or more.
  • phenol-based curing agents active ester-based curing agents, and cyanate ester-based curing agents are preferable from the viewpoints of improving heat resistance and improving adhesion to a metal foil (conductor layer).
  • the phenolic curing agent is not particularly limited, but a biphenyl type curing agent, a naphthalene type curing agent, a phenol novolac type curing agent, a naphthylene ether type curing agent, and a triazine skeleton-containing phenolic curing agent are preferable.
  • MEH-7700, MEH-7810, MEH-7785 (Maywa Kasei Co., Ltd.) as biphenyl type curing agents, NHN, CBN, GPH (Nippon Kayaku Co., Ltd.) as naphthalene type curing agents, SN170, SN180, SN190, SN475, SN485, SN495, SN375, SN395 (manufactured by Tohto Kasei Co., Ltd.), EXB9500 (manufactured by DIC Corporation), TD2090 (manufactured by DIC Corporation) as a phenol novolac type curing agent, naphthylene
  • the ether type curing agent include EXB-6000 (manufactured by DIC Corporation).
  • triazine skeleton-containing phenolic curing agent examples include LA3018, LA7052, LA7054, LA1356 (manufactured by DIC Corporation) and the like.
  • a triazine skeleton-containing phenolic curing agent is preferable in terms of improving the appearance.
  • Active ester curing agents generally include compounds having two or more ester groups with high reaction activity in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and heterocyclic hydroxy compounds. Is preferably used.
  • the active ester compound is preferably an active ester compound obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • an active ester compound obtained from a carboxylic acid compound and a hydroxy compound is preferred, and an active ester compound obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferred.
  • Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl
  • an active ester compound individually by 1 type or in combination of 2 or more types.
  • an active ester compound disclosed in JP-A-2004-277460 may be used, or a commercially available active ester compound may be used.
  • commercially available active ester compounds include active ester compounds containing a dicyclopentadienyl diphenol structure, acetylated phenol novolacs, and benzoylated phenol novolacs.
  • EXB-9451 and EXB-9460 manufactured by DIC Corporation as active ester compounds having a dicyclopentadienyl diphenol structure, DC808 as an acetylated product of phenol novolac, and a benzoylated product of phenol novolac YLH1026 (manufactured by Mitsubishi Chemical Corporation) and the like.
  • cyanate ester type hardening curing agent, Novolac type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, bisphenol) Fate, bisphenol S type, etc.) cyanate ester curing agents, and prepolymers in which these are partially triazines.
  • the weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000.
  • cyanate ester curing agent examples include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3, Bifunctional cyanate resins such as 5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether , Phenol novolac, Examples include polyfunctional cyanate resins derived from resole novolac, dicyclopentadiene structure-containing phenol resins,
  • cyanate ester resin As a commercially available cyanate ester resin, a phenol novolak type polyfunctional cyanate ester resin (manufactured by Lonza Japan Co., Ltd., PT30, cyanate equivalent 124), or a part or all of bisphenol A dicyanate is triazine-modified. Examples include prepolymers (Lonza Japan Co., Ltd., BA230, cyanate equivalent 232), dicyclopentadiene structure-containing cyanate ester resins (Lonza Japan Co., Ltd., DT-4000, DT-7000) and the like that are trimers. It is done.
  • benzoxazine-based curing agent examples include Fa, Pd (manufactured by Shikoku Kasei Co., Ltd.), HFB2006M (manufactured by Showa Polymer Co., Ltd.), and the like.
  • the blending ratio of (a) epoxy resin and (b) curing agent is preferably such that when the number of epoxy groups of the epoxy resin is 1, the number of reactive groups of the curing agent is in the range of 0.4 to 2.0. A ratio in the range of 5 to 1.0 is more preferable.
  • the number of epoxy groups in the epoxy resin present in the curable resin composition is a value obtained by adding the values obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins.
  • the number of reactive groups of the curing agent is a value obtained by adding the values obtained by dividing the solid mass of each curing agent by the reactive group equivalent for all the curing agents. When the ratio of the reactive groups is within this range, the mechanical strength and water resistance of the cured product tend to be improved.
  • Examples of the inorganic filler (c) include silica, alumina, mica, mica, silicate, barium sulfate, magnesium hydroxide, titanium oxide, and the like. Silica and alumina are preferable, and amorphous silica, fused silica, Silica such as crystalline silica, synthetic silica and hollow silica is preferred. As the silica, spherical silica is preferable. These may be used alone or in combination of two or more. Spherical fused silica is preferred from the viewpoint of improving the filling properties of the resin composition. Examples of commercially available spherical fused silica include “SOC2” and “SOC1” manufactured by Admatechs Corporation.
  • the upper limit of the average particle size of the inorganic filler is preferably 2 ⁇ m or less, from the viewpoint of improving the insulation reliability and improving the impregnation property of the resin varnish into the sheet-like fiber base material. Is more preferably 0.8 ⁇ m or less, still more preferably 0.6 ⁇ m or less, still more preferably 0.4 ⁇ m or less, and particularly preferably 0.3 ⁇ m or less.
  • the lower limit of the average particle size of the inorganic filler is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more from the viewpoint of preventing aggregation of the inorganic filler and improving dispersibility. Is more preferable.
  • an inorganic filler having an average particle diameter of 0.01 to 0.4 ⁇ m is used in combination from the viewpoint of improving the impregnation property of the resin varnish into the sheet-like fiber base material and reducing the linear thermal expansion coefficient of the insulating layer. It is more preferable to use an inorganic filler having an average particle size of 0.01 to 0.3 ⁇ m in combination.
  • the average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory.
  • the particle size distribution of the inorganic filler can be prepared on a volume basis by a laser diffraction / scattering particle size distribution measuring apparatus, and the median diameter can be measured as the average particle diameter.
  • an inorganic filler dispersed in water by ultrasonic waves can be preferably used.
  • LA-500 manufactured by Horiba Ltd. can be used.
  • the content of the inorganic filler is a non-volatile component in the curable resin composition from the viewpoint of improving the impregnation property of the sheet-like fiber base material and the film thickness uniformity of the insulating layer. When it is 100 mass%, 85 mass% or less is preferable, and 80 mass% or less is more preferable.
  • the inorganic filler is preferably 40% by mass or more, more preferably 45% by mass or more, still more preferably 50% by mass or more, still more preferably 55% by mass or more, and particularly preferably 60% by mass or more.
  • Inorganic fillers are epoxy silane coupling agents, aminosilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, titanate cups from the viewpoint of improving moisture resistance. It is preferable that the surface treatment is performed with a surface treatment agent such as a ring agent. You may use a surface treating agent individually by 1 type or in combination of 2 or more types.
  • the surface treatment agent examples include aminopropylmethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (2-aminoethyl) aminopropyltrimethoxysilane, and the like.
  • Aminosilane coupling agents glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc.
  • Epoxysilane coupling agents such as mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, methyltrimethoxysilane, octadecyl Silane coupling agents such as trimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, hexamethyldisilazane, hexaphenyldisilazane, trisilazane, cyclotrisilazane, 1,1,3 , 3,5,5-hexamethylcyclotrisilazane and other organosilazane compounds, butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium , Bis
  • the curable resin composition may further contain (d) a thermoplastic resin from the viewpoint that moderate flexibility can be imparted to the prepreg.
  • a thermoplastic resin from the viewpoint that moderate flexibility can be imparted to the prepreg.
  • examples thereof include phenoxy resin, polyvinyl acetal resin, polyimide, polyamideimide, polyethersulfone, polysulfone and the like. These may be used alone or in combination of two or more.
  • the content of the thermoplastic resin is preferably 30% by mass or less, more preferably 20% by mass or less, when the nonvolatile component in the curable resin composition is 100% by mass. 10 mass% or less is still more preferable.
  • the lower limit of the content of the thermoplastic resin is (d) in the curable resin composition.
  • phenoxy resin examples include “FX280” and “FX293” manufactured by Toto Kasei Co., Ltd., “YX8100”, “YL6954”, “YL6974”, “YL7213”, “YL6794”, “YL6794”, “Mitsubishi Chemical Co., Ltd.” YL7553 ",” YL7482 ", etc. are mentioned.
  • polyvinyl acetal resin examples include Denki Butyral 4000-2, 5000-A, 6000-C, and 6000-EP manufactured by Denki Kagaku Kogyo Co., Ltd., and Slekk BH Series, BX Series, and KS Series manufactured by Sekisui Chemical Co., Ltd.
  • polyimide examples include “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd.
  • the polyimide linear polyimide obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (as described in JP-A-2006-37083), a polysiloxane skeleton-containing polyimide (specialty) Examples thereof include modified polyimides such as those described in JP-A No. 2002-12667 and JP-A No. 2000-319386.
  • polyamideimide examples include “Bilomax HR11NN” and “Bilomax HR16NN” manufactured by Toyobo Co., Ltd.
  • polyamideimide examples include modified polyamideimides such as polysiloxane skeleton-containing polyamideimides “KS9100” and “KS9300” manufactured by Hitachi Chemical Co., Ltd.
  • polyethersulfone examples include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd.
  • polysulfone examples include “P1700” and “P3500” manufactured by Solven Advanced Polymers Co., Ltd.
  • the curable resin composition may further contain (e) a curing accelerator from the viewpoint of efficiently curing the epoxy resin and the curing agent.
  • a curing accelerator from the viewpoint of efficiently curing the epoxy resin and the curing agent.
  • examples include imidazole compounds, pyridine compounds, and organic phosphine compounds. Specific examples include 2-methylimidazole, 4-dimethylaminopyridine, and triphenylphosphine. These may be used alone or in combination of two or more.
  • a curing accelerator it is preferably used in the range of 0.1 to 3.0% by mass relative to (a) the epoxy resin.
  • the curable resin composition may further contain (f) rubber particles for the purpose of preventing cracking of the insulating layer and reducing the stress.
  • the rubber particles do not dissolve in the organic solvent when preparing the curable resin composition, are not compatible with other components in the curable resin composition such as epoxy resin, and in the varnish of the curable resin composition Those present in a dispersed state are preferred.
  • Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles.
  • the rubber particles include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a rubber particle having a two-layer structure in which an outer shell layer is a glassy polymer and an inner core layer is a rubbery polymer Alternatively, rubber particles having a three-layer structure in which the shell layer of the outer layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a glassy polymer can be used.
  • the glassy polymer is composed of, for example, a polymer of methyl methacrylate, and the rubbery polymer is composed of, for example, a butyl acrylate polymer (butyl rubber).
  • core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name of Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name of Mitsubishi Rayon Co., Ltd.).
  • Specific examples of acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 ⁇ m, manufactured by JSR Corporation).
  • Specific examples of styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 ⁇ m, manufactured by JSR Corporation).
  • Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 ⁇ m), W450A (average particle size 0.5 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the curable resin composition includes a bismaleimide-triazine resin, an acrylic resin, a maleimide compound, a bisallylnadiimide compound, a vinyl benzyl resin, a vinyl benzyl ether resin, as long as the effects of the present invention are exhibited as necessary.
  • BMI1000, BMI2000, BMI3000, BMI4000, BMI5100 (manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI, BMI-70, BMI-80 (manufactured by KEI Kasei Co., Ltd.), ANILIX-MI (Mitsui Chemical Fine) Manufactured by Co., Ltd.), BANI-M and BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.) as bisallylnadiimide compounds, V5000 (manufactured by Showa Polymer Co., Ltd.) and vinylbenzyl ether as vinylbenzyl resins.
  • Examples of the resin include V1000X and V1100X (manufactured by Showa Polymer Co., Ltd.).
  • Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.
  • Examples of organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd., and Ajinomoto Fine Techno.
  • Examples of the organic nitrogen-containing phosphorus compound include phosphoric ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., and phosphazene compounds such as SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd.
  • Examples of metal hydroxides include magnesium hydroxide such as UD65, UD650, and UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308, B manufactured by Sakai Kogyo Co., Ltd. And aluminum hydroxide such as ⁇ 303 and UFH-20.
  • the curable resin composition may also contain other components as long as the effects of the present invention are exhibited.
  • other components include fillers such as silicone powder, nylon powder and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based and polymer-based antifoaming agents or leveling agents, and imidazole.
  • the curable resin composition is appropriately mixed with the above components and, if necessary, kneaded or mixed by a kneading means such as a three roll, ball mill, bead mill, or sand mill, or a stirring means such as a super mixer or a planetary mixer.
  • a kneading means such as a three roll, ball mill, bead mill, or sand mill, or a stirring means such as a super mixer or a planetary mixer.
  • a stirring means such as a super mixer or a planetary mixer.
  • the sheet-like fiber base material used for the prepreg is not particularly limited, and examples thereof include a glass fiber base material and an organic fiber base material, and in particular, one type selected from the group consisting of glass cloth, glass nonwoven fabric, organic woven fabric, and organic nonwoven fabric. It is preferable to contain the above. From the viewpoint of reducing the linear thermal expansion coefficient of the prepreg, a sheet fiber substrate such as a glass fiber substrate, an aramid nonwoven fabric, and a liquid crystal polymer nonwoven fabric is preferable, a glass fiber substrate is more preferable, and a glass cloth is more preferable.
  • a glass fiber used for a glass fiber base material from a viewpoint that a linear thermal expansion coefficient can be reduced, 1 or more types of glass fibers selected from the group which consists of E glass fiber, S glass fiber, and Q glass fiber are included.
  • S glass fiber and Q glass fiber are more preferable, and Q glass fiber is still more preferable.
  • Q glass fiber refers to glass fiber in which the content of silicon dioxide occupies 90% or more.
  • the thickness of the sheet fiber substrate is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 80 ⁇ m or less, still more preferably 50 ⁇ m or less, and even more preferably 40 ⁇ m or less, from the viewpoint of reducing the thickness of the prepreg. Further, from the viewpoint of improving the handleability and the viewpoint of improving the rigidity of the prepreg, it is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 15 ⁇ m or more.
  • the sheet-like fiber base material for example, Style 1027MS (A warp density of 75/25 mm, a weft density of 75/25 mm, a fabric weight of 20 g / m 2 , a thickness of 19 ⁇ m (E glass fiber)) manufactured by Asahi Schavel Co., Ltd. Co., Ltd.
  • Style 1027MS A warp density of 75/25 mm, a weft density of 75/25 mm, a fabric weight of 20 g / m 2 , a thickness of 19 ⁇ m (E glass fiber) manufactured by Asahi Schavel Co., Ltd. Co., Ltd.
  • Style 1037MS (warp density 70/25 mm, weft density 73/25 mm, fabric weight 24 g / m 2 , thickness 28 ⁇ m (E glass fiber)), 1078 manufactured by Arizawa Seisakusho (warp density) 54/25 mm, weft density 54/25 mm, fabric weight 48 g / m 2 , thickness 43 ⁇ m (E glass fiber)), 2116 manufactured by Arisawa Manufacturing Co., Ltd. (warp density 50/25 mm, weft density 58 / 25 mm, fabric weight 103.8 g / m 2 , thickness 94 ⁇ m (E glass fiber)), 1067 manufactured by Arisawa Manufacturing Co., Ltd.
  • liquid crystal polymer non-woven fabrics include Vecrus (weighing 6 to 15 g / m 2 ), which is a non-woven fabric manufactured from a polyarylate-based liquid crystal polymer manufactured by Kuraray Co., Ltd., and Vectran manufactured by Kuraray Co., Ltd. And non-woven fabrics.
  • the support body used by this invention is not restrict
  • a metal foil and a plastic film are used suitably.
  • the metal foil include copper foil and aluminum foil.
  • the plastic film include polyethylene terephthalate film, polyethylene naphthalate, polyimide, polyamideimide, polyamide, polytetrafluoroethylene, polycarbonate, and the like. Polyethylene terephthalate film and polyethylene naphthalate film are preferable, and polyethylene is inexpensive. A terephthalate film is more preferable.
  • the plastic film is preferably a release plastic film subjected to surface treatment such as mat treatment or corona treatment for the purpose of improving the peelability after curing.
  • the surface of the support in contact with the prepreg preferably has a surface roughness (Ra value) of 50 nm or less, more preferably 40 nm or less, still more preferably 35 nm or less, and further preferably 30 nm or less. More preferred is 25 nm or less.
  • the lower limit of the surface roughness (Ra value) is not particularly limited, but is preferably 0.1 nm or more and more preferably 0.5 nm or more from the viewpoint of practicality of the support.
  • the surface roughness (Ra value) can be measured by using a known method, for example, by using a device such as a non-contact type surface roughness meter (for example, WYKO NT3300 manufactured by Beec Instruments). it can.
  • the support may be a commercially available support, for example, T60 (manufactured by Toray Industries, Inc., polyethylene terephthalate film), A4100 (manufactured by Toyobo Co., Ltd., polyethylene terephthalate film), Q83 (manufactured by Teijin DuPont Films, Inc.) , Polyethylene naphthalate film), polyethylene terephthalate film with alkyd mold release agent (AL-5) manufactured by Lintec Corporation, Diafoil B100 (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., polyethylene terephthalate film), JTC foil (JX And Nippon Mining & Metals Co., Ltd.
  • the thickness of the support is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, from the viewpoint of improving the handleability of the support and improving the peelability of the support. Moreover, from a viewpoint of cost performance, 70 micrometers or less are preferable and 50 micrometers or less are more preferable.
  • a prepreg with a support used in the present invention is obtained by bonding a support to the prepreg surface. Therefore, in one embodiment, a prepreg with a support includes a support and a prepreg joined to the support. In the prepreg with a support, an ultrathin resin layer may be interposed between the support and the prepreg. Therefore, in another embodiment, the prepreg with a support includes a support, an ultrathin resin layer bonded to the support, and a prepreg bonded to the ultrathin resin layer.
  • the ultrathin resin layer refers to a resin layer (insulating layer) having a thickness of 1 to 10 ⁇ m and containing no sheet-like fiber base material.
  • a method for producing the prepreg with a support is not particularly limited, and examples thereof include a hot melt method and a solvent method, and the following methods (i) to (iv) are preferable.
  • a method comprising directly applying a resin varnish to form a curable resin composition layer, and laminating the curable resin composition layer from both sides of a sheet-like fiber substrate.
  • a support may be bonded to the prepreg surface, and a protective film may be bonded to the other surface of the prepreg.
  • the thing similar to a support body can be used for a protective film.
  • the drying conditions are as follows. There is no particular limitation. If a large amount of the organic solvent remains in the prepreg, it may cause blistering after curing. Therefore, a drying condition in which the content of the organic solvent in the curable resin composition is 0.05 to 5% by mass is preferable. A drying condition of 1 to 2% by mass is more preferable. Specific drying conditions vary depending on the curability of the curable resin composition and the amount of the organic solvent in the varnish, but it is preferable to dry at 80 to 180 ° C. for 3 to 13 minutes, and at 90 to 140 ° C. for 3 to 10 minutes. It is preferable to dry for a minute.
  • the thickness of the prepreg is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and still more preferably 40 ⁇ m or more, from the viewpoint of ensuring the rigidity desired as the prepreg.
  • 200 micrometers or less are preferable, 150 micrometers or less are more preferable, 100 micrometers or less are still more preferable, and 70 micrometers or less are still more preferable.
  • the prepreg must have fluidity that can be laminated following the unevenness of the inner circuit board during lamination, and the minimum melt viscosity of the curable resin composition in the prepreg is in the range of 200 to 30000 poise. Is preferable, more preferably in the range of 500 to 20000 poise, and still more preferably in the range of 1000 to 10,000 poise.
  • the thickness of the sheet-like fiber base material (the thickness of the sheet-like fiber base material / the thickness of the prepreg) when the thickness of the prepreg is 1 is controlled to 0.25 to 0.88. It is preferable. From the viewpoint of increasing the rigidity of the prepreg and achieving a low linear thermal expansion coefficient, 0.3 or more is more preferable, 0.35 or more is further preferable, and 0.4 or more is even more preferable. Moreover, 0.85 or less is more preferable from the point which improves film thickness uniformity and suppresses appearance defect, and 0.80 or less is still more preferable.
  • the prepreg of the present invention has a curable resin composition content of 30 to 85 mass in the prepreg in order to achieve uniform thickness and thinning of the insulating layer while satisfactorily embedding the wiring pattern of the inner circuit board. % Is preferably controlled. From the viewpoint of reducing the linear thermal expansion coefficient and contributing to thinning, the content of the curable resin composition in the prepreg is more preferably 80% by mass or less, still more preferably 75% by mass or less, and 70% by mass or less. Is even more preferable, and 65% by mass or less is particularly preferable.
  • 32% by mass or more is more preferable, 34% by mass or more is further preferable, 36% by mass or more is further more preferable, and 38% by mass or more. Is more preferably 40% by mass or more, particularly preferably 42% by mass or more.
  • curable resin composition content rate in a prepreg is defined as follows.
  • the content ratio of the sheet-like fiber substrate and the inorganic filler in the prepreg (the mass of the sheet-like fiber substrate / the mass of the inorganic filler) is 0.2 to It is preferable to control to 2.5. Furthermore, the content ratio is more preferably 2.3 or less from the viewpoint that the linear thermal expansion coefficient can be efficiently reduced by filling the gaps in the sheet-like fiber base material with many inorganic fillers. 0.1 or less is more preferable, 1.9 or less is still more preferable, 1.7 or less is still more preferable, and 1.5 or less is especially preferable.
  • melt viscosity of a curable resin composition will be raised and it will become difficult for an inorganic filler to enter into the clearance gap between sheet-like fiber base materials efficiently.
  • 3 or more is more preferable, 0.4 or more is more preferable, and 0.5 or more is still more preferable.
  • the prepreg with the support is heated and pressed on the inner layer circuit board and vacuum laminated.
  • the prepreg surface of the prepreg with the support is faced to the inner layer circuit board and supported by heating and pressing using a vacuum laminator.
  • the prepreg with body is vacuum laminated on the inner circuit board.
  • the prepreg with the support wound in a roll shape is peeled off when the protective film is laminated, and then supplied to the vacuum laminator sequentially and continuously.
  • the prepreg surface of the prepreg with the support is opposed to the inner layer circuit board and heated and pressurized using a vacuum laminator to vacuum laminate the prepreg with the support.
  • the inner layer circuit board refers to a board having a conductor layer having a wiring pattern formed on one side or both sides. When a multilayer printed wiring board is manufactured, an insulating layer and a conductor layer are further formed on the board. An intermediate product to say.
  • the substrate used for the inner circuit board include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • the thickness of the inner layer circuit board is preferably 0.05 to 0.9 mm, more preferably 0.05 to 0.7 mm, from the viewpoint of achieving a multilayer printed wiring board having sufficient rigidity and a reduced thickness. 0.1 to 0.5 mm is more preferable, and 0.15 to 0.3 mm is even more preferable.
  • Examples of the vacuum laminator include a batch type laminator and a roll type laminator, but a batch type laminator is preferable from the viewpoint of improving the smoothness of the obtained insulating layer.
  • Commercially available vacuum laminators include, for example, batch type vacuum press laminator MVLP-500 manufactured by Meiki Seisakusho Co., Ltd., vacuum applicator manufactured by Nichigo Morton Co., Ltd., roll dry coater manufactured by Hitachi Industries, Ltd. Examples include a vacuum laminator manufactured by Hitachi IC Corporation.
  • Lamination using a vacuum laminator is performed by temporarily attaching a prepreg to an inner layer circuit board by an auto cutter, and the inner layer circuit board on which the prepreg is temporarily attached is conveyed into a vacuum chamber of the vacuum laminator.
  • the heating temperature at the time of lamination is preferably 60 ° C. or higher, more preferably 75 ° C. or higher, still more preferably 90 ° C. or higher, from the viewpoint of improving the adhesion between the prepreg and the inner circuit board and improving smoothness. More preferably, the temperature is higher than or equal to ° C. Also, from the viewpoint of heat resistance of the transport PET used in the laminator apparatus, from the viewpoint of obtaining film thickness uniformity, and from the viewpoint of preventing the curable resin composition from exuding, it is preferably 160 ° C or lower, more preferably 150 ° C or lower. 140 ° C. or lower is more preferable, and 130 ° C. or lower is still more preferable.
  • the time during lamination is preferably 10 seconds or longer, more preferably 15 seconds or longer, further preferably 20 seconds or longer, and even more preferably 25 seconds or longer, from the viewpoint of sufficiently flowing the resin. . From the viewpoint of improving productivity, it is preferably 300 seconds or shorter, more preferably 250 seconds or shorter, still more preferably 200 seconds or shorter, even more preferably 150 seconds or shorter, even more preferably 100 seconds or shorter, particularly preferably 50 seconds or shorter. .
  • the vacuum during lamination is preferably 0.001 kPa or more, more preferably 0.003 kPa or more, still more preferably 0.005 kPa or more, and even more preferably 0.007 kPa or more, from the viewpoint of efficiently performing the lamination process. 0.01 kPa or more is particularly preferable. In addition, from the viewpoint of preventing air from entering the insulating layer and suppressing the generation of voids, and from the viewpoint of reducing undulation, it is preferably 0.40 kPa or less, more preferably 0.27 kPa or less, and 0.13 kPa or less.
  • the time to reach the predetermined degree of vacuum (hereinafter referred to as “vacuum arrival time”) is 15 seconds or less, preferably 14 seconds or less, more preferably from the viewpoint of suppressing the generation of voids in the insulating layer. Is 12 seconds or less, more preferably 10 seconds or less, even more preferably 8 seconds or less, and particularly preferably 6 seconds or less.
  • the vacuum arrival time refers to the elapsed time from the time when the vacuum chamber is closed and the degree of vacuum starts to drop until the predetermined vacuum degree is reached in the vacuum laminator.
  • the pressurization at the time of lamination is preferably 1 kgf / cm 2 or more from the viewpoint of flowing the curable resin composition and embedding between the wiring patterns to improve the adhesion with the inner circuit board, and 1.5 kgf / cm 2.
  • the above is more preferable, 2 kgf / cm 2 or more is more preferable, and 3 kgf / cm 2 or more is even more preferable.
  • a uniform insulating layer having a thickness preferably 16 kgf / cm 2 or less, more preferably 13 kgf / cm 2 or less, is 11 kgf / cm 2 or less More preferably, 9 kgf / cm 2 or less is even more preferable, and 7 kgf / cm 2 or less is even more preferable.
  • the prepreg in the step (A), by controlling the configuration of the prepreg and also controlling the vacuum lamination method, the prepreg is used to suppress voids, and the glass transition temperature is high.
  • An insulating layer having a low thermal expansion coefficient and a uniform film thickness can be formed on the inner circuit board. Therefore, according to the method of the present invention, it is possible to produce a multilayer printed wiring board that has a sufficient rigidity and is thinned.
  • a prepreg with a support provided with a prepreg having the above-described specific configuration has a degree of vacuum of 0.001 to 0.40 kPa at the time of lamination, a vacuum arrival time of 15 seconds or less, and a pressure of 1 at the time of lamination.
  • a process is a process of thermosetting a prepreg and forming an insulating layer.
  • an insulating layer can be formed on the inner layer circuit board.
  • the heat resistance of the insulating layer of a multilayer printed wiring board and a glass transition temperature can be improved by thermosetting a prepreg using a heating oven to form an insulating layer.
  • thermosetting a prepreg using a heating oven to form an insulating layer.
  • a large number of sheets can be put into the heating oven at one time.
  • the heating oven for example, a clean oven (“Clean Oven DE610” manufactured by Yamato Scientific Co., Ltd.) or the like can be used.
  • the temperature during thermosetting is preferably 250 ° C. or lower, more preferably 240 ° C. or lower, still more preferably 230 ° C. or lower, even more preferably 220 ° C. or lower, 210 It is particularly preferable that the temperature is not higher than ° C. Further, from the viewpoint of sufficient heat curing of the curable resin composition, 150 ° C. or higher is preferable, 160 ° C. or higher is more preferable, 170 ° C. or higher is further preferable, 180 ° C. or higher is even more preferable, and 190 ° C. or higher is particularly high. preferable.
  • the time for thermosetting is preferably 300 minutes or less, more preferably 180 minutes or less, still more preferably 120 minutes or less, and even more preferably 110 minutes or less, from the viewpoint of preventing thermal decomposition of the curable resin composition. Particularly preferred are minutes or less. Further, from the viewpoint of sufficiently curing the curable resin composition, it is preferably 30 minutes or longer, more preferably 60 minutes or longer, still more preferably 70 minutes or longer, and even more preferably 80 minutes or longer.
  • the upper limit value of the linear thermal expansion coefficient of the insulating layer is preferably 15 ppm or less, more preferably less than 15 ppm, still more preferably 13 ppm or less, still more preferably 11 ppm or less, and even more preferably 10 ppm or less, from the viewpoint of improving mountability of chips and the like. More preferably, 9.5 ppm or less is particularly preferred, 9 ppm or less is particularly preferred, and 8.5 ppm or less is particularly preferred. According to the present invention, even an insulating layer having an extremely low linear thermal expansion coefficient of less than 8 ppm can be realized.
  • the lower limit of the linear thermal expansion coefficient is not particularly limited, but is generally 1 ppm or more.
  • the lower limit of the glass transition temperature of the insulating layer is preferably 181 ° C. or higher, more preferably 183 ° C. or higher, and 185 ° C. from the viewpoint of preventing cracking of the insulating layer and improving the mountability of chips and the like by reducing warpage at high temperatures. The above is more preferable.
  • the upper limit of the glass transition temperature of the insulating layer is not particularly limited, but is generally 270 ° C. or lower.
  • step (B) it is more preferable to employ a method in which the multilayer printed wiring board is fixed with a heat-resistant jig, the prepreg is thermally cured, and the multilayer printed wiring board inside the jig is cut out after curing.
  • a multilayer printed wiring board can be made into a smooth state without a wrinkle, and an external appearance can be kept favorable.
  • the multilayer printed wiring board as used in the (B) process means an inner layer circuit board on which the prepreg is laminated in the (A) process.
  • the production method of the present invention may further include (C) a step of peeling the support (step (C)).
  • step (C) may be performed before the step (B) or may be performed after the step (B), but is preferably performed after the step (B) from the viewpoint of improving the smoothness of the insulating layer.
  • the support is a plastic film
  • the support can be peeled manually or by mechanical removal with an automatic peeling device.
  • the support is a metal foil
  • the support can be peeled and removed by dissolving the metal foil with an etching solution or the like.
  • the manufacturing method of the present invention may further include (D) a step of forming a via hole ((D) step).
  • the step (D) is not particularly limited as long as the object is achieved, and a via hole can be formed by a known method.
  • a mechanical drill or a laser such as a carbon dioxide laser or a YAG laser can be used.
  • the step (D) is preferably performed after the step (B).
  • (D) process may be performed before (C) process and may be performed after (C) process, it is preferable to perform before (C) process. By doing so, the via shape can be kept good.
  • the production method of the present invention may further include (E) a desmear process ((E) process).
  • a desmear process ((E) process).
  • the surface of the insulating layer can be roughened to improve the plating adhesion, and the resin residue in the via hole can be removed.
  • a known method such as a dry method such as plasma treatment or a wet method such as oxidant treatment can be used, but oxidant treatment is preferable.
  • oxidant treatment is preferable.
  • swelling liquid For example, an alkaline solution, surfactant solution, etc. are mentioned, Preferably it is an alkaline solution.
  • the alkaline solution is preferably a sodium hydroxide solution or a potassium hydroxide solution.
  • Examples of commercially available swelling liquids include Swelling Dip Securigans P (Swelling Dip Securigans SBU) and Swelling Dip Securigans SBU manufactured by Atotech Japan Co., Ltd. be able to.
  • the swelling treatment with the swelling liquid is not particularly limited, but is performed by applying a swelling liquid of 50 to 80 ° C. to the insulating layer surface for 1 to 15 minutes from the viewpoint of improving workability and preventing the resin from being excessively swollen. Is preferred.
  • dissolved potassium permanganate and sodium permanganate in sodium hydroxide aqueous solution can be mentioned.
  • Roughening treatment with an oxidizing agent such as an alkaline permanganic acid solution is preferably performed by subjecting the surface of the insulating layer to an oxidizing agent solution heated to 60 to 80 ° C. for 10 to 30 minutes.
  • the concentration of permanganate in the alkaline permanganic acid solution is preferably 5 to 10% by mass.
  • Examples of commercially available oxidizing agents include alkaline permanganic acid solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan.
  • neutralization liquid there is no restriction
  • An acidic aqueous solution is preferable
  • Atotech Japan Co., Ltd. reduction shorysin securigant P neutralization liquid
  • a method of applying a neutralizing solution at 30 to 60 ° C. for 5 to 20 minutes to the treated surface that has been roughened with an oxidizing agent solution can be used.
  • the step (E) is preferably performed after the step (C) and the step (D). By doing so, the surface of the insulating layer and the via wall surface can be roughened, and the resin residue in the via can be removed.
  • the manufacturing method of the present invention may further include (F) a step of forming a conductor layer by plating ((F) step).
  • a process can be performed by a well-known method.
  • the conductor layer can be formed by combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a subsequent pattern formation method for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
  • Examples of the conductor used for the conductor layer include copper, nickel, gold, and palladium, and copper is particularly preferable.
  • a multilayer printed wiring board can be produced by appropriately repeating the above-described steps.
  • the present invention is a method suitable for build-up, and the outermost solder resist is also part of the build-up, and therefore can be applied.
  • a method for manufacturing a semiconductor device of the present invention will be described.
  • a semiconductor device is manufactured by bonding a semiconductor element to the connection electrode portion on the multilayer printed wiring board of the present invention.
  • the mounting method of the semiconductor element is not particularly limited, and examples thereof include wire bonding mounting, flip chip mounting, mounting with an anisotropic conductive film (ACF), mounting with a non-conductive film (NCF), and the like.
  • the multilayer printed wiring board of the present invention has a build-up layer made of a prepreg and is a highly rigid multilayer printed wiring board, has a high mountability of a semiconductor chip, and can be suitably used for a semiconductor device.
  • part means “part by mass”.
  • the prepregs produced in the examples and comparative examples were cut into a size of 500 mm ⁇ 500 mm with a cutting machine.
  • a prepreg was placed between two copper foils (MT18Ex manufactured by Mitsui Mining & Smelting Co., Ltd.) having a larger area than the prepreg, and a laminator manufactured by Nichigo Morton Co., Ltd. (2-stage buildup laminator CVP7200) was used.
  • Lamination was performed under the same conditions as the vacuum lamination or vacuum press of each example and comparative example, and the prepreg was thermoset under the same conditions.
  • the copper foil was immersed in an aqueous iron (II) chloride solution (manufactured by Tsurumi Soda Co., Ltd., Baume degree 40) to remove the copper foil, thereby obtaining a cured product sample.
  • the cured product sample was cut into a test piece having a width of about 5 mm and a length of about 15 mm, and thermomechanical analysis was performed by a tensile load method using a thermomechanical analyzer Thermo Plus TMA8310 (manufactured by Rigaku Corporation). . After the sample was mounted on the apparatus, it was measured twice in succession under measurement conditions of a load of 1 g and a heating rate of 5 ° C./min.
  • the average linear thermal expansion coefficient (ppm) in the temperature range from 25 ° C. to 150 ° C. in the second measurement was calculated.
  • the case where the value of linear thermal expansion coefficient was less than 8 ppm was evaluated as “ ⁇ ”, 8 ppm or more but less than 12 ppm as “ ⁇ ”, 12 ppm or more but less than 15 ppm as “ ⁇ ”, and 15 ppm or more as “ ⁇ ”.
  • thermomechanical analysis was performed by a tensile load method using a dynamic viscoelasticity measuring apparatus (EXSTAR6000 manufactured by SII Nanotechnology Co., Ltd.). .
  • EXSTAR6000 manufactured by SII Nanotechnology Co., Ltd.
  • the glass transition temperature (° C.) was calculated from the point at which the slope of the dimensional change signal in the second measurement changed.
  • a glass transition temperature value of 185 ° C. or higher was evaluated as “ ⁇ ” and less than 185 ° C. was evaluated as “X”.
  • ⁇ Appearance evaluation> The support was peeled off (removed) from the multilayer printed wiring boards produced in the examples and comparative examples. Thereafter, the surface of the insulating layer is cut into a 200 mm ⁇ 200 mm test piece, and the surface state is observed using a microscope (Microscope VH-5500, manufactured by KEYENCE Co., Ltd.). The evaluation was “ ⁇ ” for 1 to 3 pieces, “ ⁇ ” for 4 to 6 pieces, and “ ⁇ ” for 7 or more pieces.
  • a MEK solution having a solid content of 60% by weight of a triazine skeleton-containing phenol novolak resin (hydroxyl equivalent 125, “LA7054” manufactured by DIC Corporation, nitrogen content approximately 12% by weight), naphthol-based curing agent (hydroxyl equivalent) 215, 15 parts of MEK solution with a solid content of 60% by weight of “SN-485” manufactured by Tohto Kasei Co., Ltd., solid content of naphthol-based curing agent (hydroxyl equivalent 153, “EXB-9500” manufactured by DIC Corporation) 50 5 parts by weight MEK solution, 10 parts of reactive flame retardant (hydroxyl equivalent 162, “HCA-HQ” manufactured by Sanko Co., Ltd., phosphorus content 9.5%), spherical silica (average particle size 0.5 ⁇ m, ( 250 parts by weight of “SOC2” manufactured by Admatechs Co., Ltd., with aminosilane treatment, ethanol with a solid content of 15% by weight of polyvin
  • the varnish was impregnated into 1067 glass cloth (thickness 33 ⁇ m) manufactured by Arisawa Manufacturing Co., Ltd., and dried at 130 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg.
  • the residual solvent amount of the prepreg is 0.1 to 2% by mass in the curable resin composition not containing glass cloth, the content of the curable resin composition in the prepreg is 42% by mass, the thickness of the prepreg is 48 ⁇ m, and the thickness of the prepreg is The thickness of the sheet-like fiber base material when set to 1 was 0.69, and the content ratio of the sheet-like fiber base material and the inorganic filler in the prepreg was 1.8.
  • a prepreg was placed between the release surface of a PET film having a thickness of 38 ⁇ m (AL5 manufactured by Lintec Corporation) and a polypropylene film having a thickness of 15 ⁇ m, and a laminator manufactured by Nichigo Morton Co., Ltd. (two-stage buildup laminator).
  • CVP7200 was used to wind up into a roll while bonding, and a prepreg with a support wound into a roll was produced.
  • a wiring pattern is formed on both sides of a glass cloth base epoxy resin double-sided copper-clad laminate [copper foil thickness 18 ⁇ m, substrate thickness 0.2 mm, Matsushita Electric Works R1515A], and a microetching agent (MEC A roughening process was performed with CZ8100 manufactured by Co., Ltd. to produce an inner layer circuit board.
  • a glass cloth base epoxy resin double-sided copper-clad laminate [copper foil thickness 18 ⁇ m, substrate thickness 0.2 mm, Matsushita Electric Works R1515A]
  • MEC microetching agent
  • the substrate is fixed to all parts having a width of 5 mm from the four sides with a heat-resistant jig, and then the substrate is put into a heating oven in a vertical state at an atmospheric pressure of 210 ° C.
  • a multilayer printed wiring board was produced by thermosetting for 90 minutes.
  • Example 2 A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 ⁇ m, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63.
  • the content ratio of the inorganic filler was 1.1.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 3 A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 65% by mass, the thickness of the prepreg is 55 ⁇ m, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.6. And the content ratio of the inorganic filler became 0.7.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 4 A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 75% by mass, the thickness of the prepreg is 63 ⁇ m, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.52. And the content ratio of the inorganic filler became 0.4.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 5> A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 55% by mass
  • the thickness of the prepreg is 52 ⁇ m
  • the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63.
  • the content ratio of the inorganic filler was 1.1.
  • the multilayer printed wiring board was produced like Example 1 except having changed the pressurization at the time of lamination
  • Example 6> A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 55% by mass
  • the thickness of the prepreg is 52 ⁇ m
  • the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63.
  • the content ratio of the inorganic filler was 1.1.
  • the multilayer printed wiring board was produced like Example 1 except having changed the pressurization at the time of lamination
  • Example 7 A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 55% by mass
  • the thickness of the prepreg is 52 ⁇ m
  • the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63.
  • the content ratio of the inorganic filler was 1.1.
  • the multilayer printed wiring board was produced like Example 1 except having changed the vacuum degree at the time of lamination
  • Example 8> Except for the point that the impregnation amount of the resin varnish into the glass cloth was changed, and the 1035 type quartz glass cloth (thickness 32 ⁇ m, Q glass fiber) manufactured by Shin-Etsu Quartz Co., Ltd. and IPC standard as the glass cloth,
  • a prepreg with a support was produced.
  • the content of the curable resin composition in the prepreg is 55% by mass
  • the thickness of the prepreg is 45 ⁇ m
  • the sheet-like fiber substrate in the prepreg is 0.71.
  • the content ratio of the inorganic filler was 1.1.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 9 A prepreg with a support was prepared in the same manner as in Example 1 except that the amount of resin varnish impregnated into the glass cloth was changed and copper foil (MT18Ex manufactured by Mitsui Mining & Smelting Co., Ltd.) was used as the support. Produced.
  • the content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 ⁇ m, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63. And the content ratio of the inorganic filler was 1.1.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 10 20 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation) and 25 parts of naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, “HP4710” manufactured by DIC Corporation) It was heated and dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring.
  • liquid bisphenol A type epoxy resin epoxy equivalent 180, “Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation
  • naphthalene type tetrafunctional epoxy resin epoxy equivalent 163, “HP4710” manufactured by DIC Corporation
  • the varnish was impregnated into 1067 glass cloth (thickness 33 ⁇ m) manufactured by Arisawa Manufacturing Co., Ltd. and dried at 130 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg precursor.
  • the thickness of the prepreg precursor was 41 ⁇ m.
  • the prepreg precursor was further impregnated into the resin varnish of Example 1, and dried at 130 ° C. for 5 minutes in a vertical drying oven to prepare a prepreg.
  • the final amount of residual solvent of the prepreg is 0.1 to 2% by mass in the curable resin composition not containing glass cloth, the content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 ⁇ m, and the prepreg When the thickness of the sheet-like fiber substrate is 1, the thickness of the sheet-like fiber substrate is 0.63, and the content ratio of the sheet-like fiber substrate and the inorganic filler in the prepreg is 1.0. Thereafter, a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 11 20 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation), 20 parts of naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, “HP4710” manufactured by DIC Corporation), 10 parts of a naphthylene ether type epoxy resin (epoxy equivalent 248, “HP6000” manufactured by DIC Corporation) was dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring.
  • liquid bisphenol A type epoxy resin epoxy equivalent 180, “Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation
  • naphthalene type tetrafunctional epoxy resin epoxy equivalent 163, “HP4710” manufactured by DIC Corporation
  • 10 parts of a naphthylene ether type epoxy resin epoxy equivalent 248, “HP6000” manufactured by DIC Corporation
  • a MEK solution having a solid content of 60% by weight of a triazine skeleton-containing phenol novolak resin (hydroxyl equivalent 125, “LA7054” manufactured by DIC Corporation, nitrogen content approximately 12% by weight), naphthol-based curing agent (hydroxyl equivalent) 215, 15 parts of MEK solution having a solid content of 60% by weight of “SN-485” manufactured by Toto Kasei Co., Ltd., solid of naphthylene ether type curing agent (hydroxyl equivalent 155, “EXB-6000” manufactured by DIC Corporation) 5 parts by weight of MEK solution of 50% by weight and 250 parts of MEK slurry solution of 60% by weight solid content of spherical silica (average particle size 0.05 ⁇ m, “YA050C-MJA” manufactured by Admatechs Co., Ltd.) To uniformly disperse the resin varnish.
  • the varnish was impregnated into 1067 glass cloth (thickness 33 ⁇ m) manufactured by Arisawa Manufacturing Co., Ltd., and dried at 130 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg.
  • the content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 ⁇ m, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63.
  • the content ratio of the inorganic filler was 1.1.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 12 A prepreg with a support is produced in the same manner as in Example 1, except that the amount of resin varnish impregnated into the glass cloth is changed and a 1015 glass cloth (thickness 15 ⁇ m) manufactured by Arisawa Seisakusho is used as the glass cloth. did.
  • the content of the curable resin composition in the prepreg is 81% by mass, the thickness of the prepreg is 50 ⁇ m, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.30. And the content ratio of the inorganic filler became 0.3.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 13 In the same manner as in Example 1, a prepreg with a support was produced. And the multilayer printed wiring board was produced like Example 1 except having made vacuum arrival time into 10 second. That is, the laminate was laminated for 30 seconds under the lamination conditions of 0.05 kPa during lamination, a vacuum arrival time of 10 seconds, a pressure of 7 kgf / cm 2 , and a temperature of 120 ° C. The evacuation time was 0.75 minutes.
  • Example 14 In the same manner as in Example 1, a prepreg with a support was produced. And the multilayer printed wiring board was produced like Example 1 except having made vacuum arrival time into 15 second. That is, lamination was performed for 30 seconds under a lamination condition of a vacuum degree of 0.05 kPa at the time of lamination, a vacuum arrival time of 15 seconds, a pressure of 7 kgf / cm 2 , and a temperature of 120 ° C. The evacuation time was 0.75 minutes.
  • Example 1 A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 65 wt%
  • the thickness of the prepreg is 55 ⁇ m
  • the sheet-like fiber substrate in the prepreg is The content ratio with the inorganic filler was 0.7.
  • the multilayer printed wiring board was produced like Example 1 except having changed the vacuum degree at the time of lamination
  • a prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 65 wt%
  • the thickness of the prepreg is 55 ⁇ m
  • the multilayer printed wiring board was produced like Example 1 except having changed the pressurization at the time of lamination
  • a prepreg with a support is produced in the same manner as in Example 1, except that the amount of resin varnish impregnated into the glass cloth is changed and a 1015 glass cloth (thickness 15 ⁇ m) manufactured by Arisawa Seisakusho is used as the glass cloth. did.
  • the content of the curable resin composition in the prepreg is 90% by mass, the thickness of the prepreg is 70 ⁇ m, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.21. And the content ratio of the inorganic filler was 1.1.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • a prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 28 wt%
  • the thickness of the prepreg is 37 ⁇ m
  • the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1 is 0.89
  • the sheet-like fiber substrate in the prepreg The content ratio with the inorganic filler was 3.4.
  • a multilayer printed wiring board was produced in the same manner as in Example 1.
  • Example 5 A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed.
  • the content of the curable resin composition in the prepreg is 55 wt%
  • the thickness of the prepreg is 52 ⁇ m
  • the content ratio with the inorganic filler was 1.1.
  • the multilayer printed wiring board was produced like Example 1 except having changed the vacuum degree at the time of lamination
  • Example 7 A prepreg with a support is produced in the same manner as in Example 1, except that the amount of resin varnish impregnated into the glass cloth is changed and a 1015 glass cloth (thickness 15 ⁇ m) manufactured by Arisawa Seisakusho is used as the glass cloth. did.
  • the content of the curable resin composition in the prepreg is 90% by mass, the thickness of the prepreg is 70 ⁇ m, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.21. And the content ratio of the inorganic filler was 1.1.
  • the multilayer printed wiring board was produced like the comparative example 6.
  • Example 8 In the same manner as in Example 1, a prepreg with a support was produced. And the multilayer printed wiring board was produced like Example 1 except having made vacuum arrival time into 20 second. That is, lamination was performed for 30 seconds under a lamination condition of a degree of vacuum at the time of lamination of 0.05 kPa, a vacuum arrival time of 20 seconds, a pressure of 7 kgf / cm 2 and a temperature of 120 ° C. The evacuation time was 0.75 minutes.
  • a multilayer printed wiring board having an insulating layer with a uniform film thickness having a high glass transition temperature, a low coefficient of linear thermal expansion, and suppressed generation of voids is obtained. I was able to. It can be seen that it is an excellent effect of the present invention that a multilayer printed wiring board can be produced by employing a specific prepreg and a specific vacuum lamination method. In Comparative Example 1, since pressure was not reduced at the time of lamination, air entered between the prepreg and the inner layer circuit board, resulting in poor appearance.
  • Comparative Example 2 since the pressurization at the time of lamination was large, a resin ooze (flow) occurred, the film thickness became non-uniform, and the appearance was poor. Since the comparative example 3 had too much curable resin composition content, it became difficult to make a linear thermal expansion coefficient low. Since the comparative example 4 had too little content of curable resin composition, the external appearance became bad. In Comparative Example 5, since the degree of vacuum at the time of lamination was insufficient, air between the prepreg and the inner layer circuit board did not escape sufficiently, resulting in poor appearance.
  • Comparative Example 6 since lamination and heating are performed using a vacuum press machine, the degree of vacuum is insufficient, the air between the prepreg and the inner circuit board is not sufficiently removed, the appearance is deteriorated, and the glass transition The temperature did not improve.
  • Comparative Example 7 in which the content of the curable resin composition in the prepreg is high and lamination and thermosetting are performed using a vacuum press machine is excellent in film thickness uniformity and appearance after removal of the copper foil, but linear thermal expansion. The result was an insulating layer with a large coefficient and a low glass transition temperature.
  • Comparative Example 8 since the time to reach the vacuum at the time of lamination was long, the generation of voids was remarkable and the appearance was poor.
  • a multilayer printed wiring board having an insulating layer having a uniform glass thickness, a high glass transition temperature, a low linear thermal expansion coefficient, and no voids.
  • electrical products such as semiconductor devices, computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and airplanes equipped with the multilayer printed wiring board can be provided. It was.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Provided is a method for manufacturing a multilayer printed wiring board which comprises an insulating layer that has a uniform thickness, high glass transition temperature, low linear thermal expansion coefficient and less voids. This method for manufacturing a multilayer printed wiring board is characterized by comprising (A) a step wherein a prepreg with a supporting body is vacuum laminated on an inner circuit board by applying heat and pressure thereto and (B) a step wherein an insulating layer is formed by thermally curing the prepreg. This method for manufacturing a multilayer printed wiring board is also characterized in that: the prepreg contains a curable resin composition and a sheet-like fiber base; the content of the curable resin composition in the prepreg is from 30% by mass to 85% by mass (inclusive); the curable resin composition contains an inorganic filler; and, in the step (A), the degree of vacuum during the lamination is 0.001-0.40 kPa, the time to vacuum is 15 seconds or less, the pressure applied during the lamination is 1-16 kgf/cm2, the heating temperature during the lamination is 60-160°C, and the time duration of the lamination is 10-300 seconds.

Description

多層プリント配線板の製造方法Manufacturing method of multilayer printed wiring board
 本発明は多層プリント配線板の製造方法に関する。更に、該多層プリント配線板を用いた半導体装置に関する。 The present invention relates to a method for manufacturing a multilayer printed wiring board. Furthermore, the present invention relates to a semiconductor device using the multilayer printed wiring board.
 半導体装置に欠くことができない集積回路には多層プリント配線板が使用されており、その主要部品として、金属張積層板が挙げられる。その金属張積層板を製造する方法としては、任意のサイズに断裁することによりプリプレグを準備し、これを1枚あるいは数枚重ね、その上下にプリプレグと同サイズあるいはそれよりも大きいサイズの銅箔を配し、これを熱盤間に多段積層して真空プレス成型するという工法が一般的である。 A multilayer printed wiring board is used for an integrated circuit which is indispensable for a semiconductor device, and a metal-clad laminated board can be cited as a main component. As a method for producing the metal-clad laminate, a prepreg is prepared by cutting to an arbitrary size, one or several sheets of this are stacked, and a copper foil of the same size or larger than that of the prepreg is formed on the upper and lower sides thereof. Is generally used, and a vacuum press molding is performed by laminating the layers between hot plates.
 昨今、半導体装置の小型化、高機能化に伴い、多層プリント配線板において、強度を維持したままの薄層化が求められてきており、金属張積層板のみならず、ビルドアップ層においても、剛性あるプリプレグを積層することが求められている。しかし、プリプレグのビルドアップ積層は、プリプレグ中のシート状繊維基材の存在により、流動性、埋め込み性などのバランスを保つことが難しい。とりわけ、得られる絶縁層の線熱膨張係数を低下させるべく無機充填材を高い含有量(例えば、60質量%以上)にて含む硬化性樹脂組成物を使用する場合には、絶縁層内のボイド生成や絶縁層表面の平滑性といった問題がより顕在化し、斯かるバランスの維持はより困難となる。特許文献1では、プリプレグを積層することについての記載はあるが、プリプレグ自体や製法面での検討は乏しく、得られる絶縁層のガラス転移温度が低いなど、多層プリント配線板の性能としても十分なものではなかった。 In recent years, with the miniaturization and higher functionality of semiconductor devices, multilayer printed wiring boards have been required to be thinned while maintaining strength, not only in metal-clad laminates, but also in build-up layers, It is required to laminate a rigid prepreg. However, in the prepreg build-up lamination, it is difficult to maintain a balance between fluidity and embedding property due to the presence of the sheet-like fiber base material in the prepreg. In particular, when using a curable resin composition containing a high content (for example, 60% by mass or more) of an inorganic filler so as to reduce the linear thermal expansion coefficient of the obtained insulating layer, voids in the insulating layer are used. Problems such as generation and smoothness of the surface of the insulating layer become more obvious, and it becomes more difficult to maintain such a balance. In Patent Document 1, there is a description of stacking prepregs, but studies on the prepreg itself and the manufacturing method are scarce, and the performance of the multilayer printed wiring board is sufficient, such as a low glass transition temperature of the obtained insulating layer. It was not a thing.
特開2009-49365号公報JP 2009-49365 A
 本発明の課題は、ガラス転移温度が高く線熱膨張係数が低い、ボイドが抑制された、均一な膜厚の絶縁層を有する多層プリント配線板の製造方法を提供することである。 An object of the present invention is to provide a method for producing a multilayer printed wiring board having an insulating layer having a uniform film thickness with a high glass transition temperature, a low coefficient of linear thermal expansion, and suppressed voids.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定のプリプレグと特定の真空積層方法を組み合わせることにより、上記課題が達成できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be achieved by combining a specific prepreg and a specific vacuum lamination method.
 本発明は、以下の態様を含む。
〔1〕 (A)支持体付きプリプレグを内層回路基板に加熱及び加圧して真空積層する工程、
 (B)プリプレグを熱硬化して絶縁層を形成する工程、
を含有することを特徴とする多層プリント配線板の製造方法であって、
 前記プリプレグが硬化性樹脂組成物とシート状繊維基材とを含有し、
 前記プリプレグ中の硬化性樹脂組成物含有率が30質量%以上85質量%以下であり、
 前記硬化性樹脂組成物が無機充填材を含有し、
 前記(A)工程において、積層時の真空度が0.001~0.40kPa、真空到達時間が15秒間以下、積層時の加圧が1~16kgf/cm、積層時の加熱温度が60~160℃、積層時の時間が10~300秒間であることを特徴とする多層プリント配線板の製造方法。
〔2〕 前記プリプレグの厚みを1とした場合のシート状繊維基材の厚みが0.25~0.88であることを特徴とする上記〔1〕に記載の多層プリント配線板の製造方法。
〔3〕 前記プリプレグ中のシート状繊維基材と無機充填材との含有比率(シート状繊維基材の質量/無機充填材の質量)が0.2~2.5であることを特徴とする上記〔1〕又は〔2〕に記載の多層プリント配線板の製造方法。
〔4〕 前記シート状繊維基材がガラスクロス、ガラス不織布、有機織布及び有機不織布からなる群より選択される1種以上を含有することを特徴とする、上記〔1〕~〔3〕のいずれかに記載の多層プリント配線板の製造方法。
〔5〕 前記シート状繊維基材がEガラス繊維、Sガラス繊維及びQガラス繊維からなる群より選択される1種以上を含有することを特徴とする、上記〔1〕~〔3〕のいずれかに記載の多層プリント配線板の製造方法。
〔6〕 前記無機充填材の平均粒径が0.01~2μmであることを特徴とする上記〔1〕~〔5〕のいずれかに記載の多層プリント配線板の製造方法。
〔7〕 前記無機充填材の平均粒径が0.01~0.4μmであることを特徴とする上記〔1〕~〔6〕のいずれかに記載の多層プリント配線板の製造方法。
〔8〕 前記無機充填材の含有量が、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、40~85質量%であることを特徴とする上記〔1〕~〔7〕のいずれかに記載の多層プリント配線板の製造方法。
〔9〕 前記無機充填材の含有量が、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、60~85質量%であることを特徴とする上記〔1〕~〔8〕のいずれかに記載の多層プリント配線板の製造方法。
〔10〕 前記(A)工程において、
 ロール状に巻き取られた支持体付きプリプレグを、保護フィルムが張り合わせてある場合は保護フィルムを剥離し、順次連続的に真空ラミネーターに供給し、支持体付きプリプレグのプリプレグ面を内層回路基板に向かい合わせ、真空ラミネーターを用いて加熱及び加圧して支持体付きプリプレグを内層回路基板に真空積層することを特徴とする上記〔1〕~〔9〕のいずれかに記載の多層プリント配線板の製造方法。
〔11〕 前記(B)工程において、
 熱硬化時の温度が150~250℃、熱硬化時の時間が30~300分間であることを特徴とする上記〔1〕~〔10〕のいずれかに記載の多層プリント配線板の製造方法。
〔12〕 前記(B)工程において、
 加熱オーブンを用いてプリプレグを熱硬化して絶縁層を形成することを特徴とする上記〔1〕~〔11〕のいずれかに記載の多層プリント配線板の製造方法。
〔13〕 前記(B)工程において、
 プリプレグを加熱オーブン内で垂直状態に配置し、熱硬化して絶縁層を形成することを特徴とする上記〔1〕~〔12〕のいずれかに記載の多層プリント配線板の製造方法。
〔14〕 前記(B)工程において、
 多層プリント配線板を耐熱治具で固定してプリプレグを熱硬化し、硬化後に治具の内側の多層プリント配線板を切り出すことを特徴とする上記〔1〕~〔13〕のいずれかに記載の多層プリント配線板の製造方法。
〔15〕 前記絶縁層の線熱膨張係数が15ppm以下であることを特徴とする上記〔1〕~〔14〕のいずれかに記載の多層プリント配線板の製造方法。
〔16〕 前記絶縁層のガラス転移温度が181℃以上であることを特徴とする上記〔1〕~〔15〕のいずれかに記載の多層プリント配線板の製造方法。
〔17〕 更に(C)支持体を剥離する工程を含むことを特徴とする上記〔1〕~〔16〕のいずれかに記載の多層プリント配線板の製造方法。
〔18〕 更に(D)ビアホールを形成する工程を含むことを特徴とする上記〔1〕~〔17〕のいずれかに記載の多層プリント配線板の製造方法。
〔19〕 更に(E)デスミア工程を含むことを特徴とする上記〔1〕~〔18〕のいずれかに記載の多層プリント配線板の製造方法。
〔20〕 更に(F)メッキにより導体層を形成する工程を含むことを特徴とする上記〔1〕~〔19〕のいずれかに記載の多層プリント配線板の製造方法。
〔21〕 上記〔1〕~〔20〕のいずれかに記載の製造方法で得られた多層プリント配線板を含有することを特徴とする半導体装置。
The present invention includes the following aspects.
[1] (A) Step of heating and pressurizing the prepreg with a support to the inner layer circuit board for vacuum lamination,
(B) a step of thermosetting the prepreg to form an insulating layer;
A method for producing a multilayer printed wiring board, comprising:
The prepreg contains a curable resin composition and a sheet fiber substrate,
The content of the curable resin composition in the prepreg is 30% by mass or more and 85% by mass or less,
The curable resin composition contains an inorganic filler,
In step (A), the degree of vacuum during lamination is 0.001 to 0.40 kPa, the time to reach vacuum is 15 seconds or less, the pressure during lamination is 1 to 16 kgf / cm 2 , and the heating temperature during lamination is 60 to A method for producing a multilayer printed wiring board, characterized in that the lamination time is 10 to 300 seconds at 160 ° C.
[2] The method for producing a multilayer printed wiring board according to the above [1], wherein the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1 is 0.25 to 0.88.
[3] The content ratio of the sheet-like fiber substrate and the inorganic filler in the prepreg (the mass of the sheet-like fiber substrate / the mass of the inorganic filler) is 0.2 to 2.5. The manufacturing method of the multilayer printed wiring board as described in said [1] or [2].
[4] The above-mentioned [1] to [3], wherein the sheet-like fiber base material contains one or more selected from the group consisting of glass cloth, glass nonwoven fabric, organic woven fabric, and organic nonwoven fabric. The manufacturing method of the multilayer printed wiring board in any one.
[5] Any of the above [1] to [3], wherein the sheet-like fiber substrate contains one or more selected from the group consisting of E glass fiber, S glass fiber and Q glass fiber A method for producing a multilayer printed wiring board according to claim 1.
[6] The method for producing a multilayer printed wiring board according to any one of [1] to [5], wherein the inorganic filler has an average particle size of 0.01 to 2 μm.
[7] The method for producing a multilayer printed wiring board according to any one of [1] to [6], wherein the inorganic filler has an average particle size of 0.01 to 0.4 μm.
[8] The above-mentioned [1] to [7], wherein the content of the inorganic filler is 40 to 85% by mass when the nonvolatile component in the curable resin composition is 100% by mass. The manufacturing method of the multilayer printed wiring board in any one.
[9] The content of the inorganic filler is 60 to 85% by mass when the nonvolatile component in the curable resin composition is 100% by mass, according to the above [1] to [8] The manufacturing method of the multilayer printed wiring board in any one.
[10] In the step (A),
When the protective film is attached to the prepreg with the support wound in a roll shape, the protective film is peeled off and sequentially supplied to the vacuum laminator, and the prepreg surface of the prepreg with the support faces the inner circuit board. The method for producing a multilayer printed wiring board according to any one of the above [1] to [9], wherein a prepreg with a support is vacuum laminated on an inner circuit board by heating and pressurizing using a vacuum laminator .
[11] In the step (B),
The method for producing a multilayer printed wiring board according to any one of [1] to [10] above, wherein the temperature at the time of thermosetting is 150 to 250 ° C. and the time at the time of thermosetting is 30 to 300 minutes.
[12] In the step (B),
The method for producing a multilayer printed wiring board according to any one of the above [1] to [11], wherein the insulating layer is formed by thermosetting the prepreg using a heating oven.
[13] In the step (B),
The method for producing a multilayer printed wiring board according to any one of the above [1] to [12], wherein the prepreg is arranged in a vertical state in a heating oven and thermally cured to form an insulating layer.
[14] In the step (B),
The multilayer printed wiring board is fixed with a heat-resistant jig, the prepreg is heat-cured, and the multilayer printed wiring board inside the jig is cut out after being cured, according to any one of the above [1] to [13] A method for producing a multilayer printed wiring board.
[15] The method for producing a multilayer printed wiring board according to any one of [1] to [14], wherein the insulating layer has a linear thermal expansion coefficient of 15 ppm or less.
[16] The method for producing a multilayer printed wiring board according to any one of [1] to [15], wherein the insulating layer has a glass transition temperature of 181 ° C. or higher.
[17] The method for producing a multilayer printed wiring board according to any one of [1] to [16], further comprising (C) a step of peeling the support.
[18] The method for producing a multilayer printed wiring board according to any one of [1] to [17], further comprising (D) a step of forming a via hole.
[19] The method for producing a multilayer printed wiring board according to any one of [1] to [18], further comprising (E) a desmear process.
[20] The method for producing a multilayer printed wiring board according to any one of [1] to [19], further comprising (F) a step of forming a conductor layer by plating.
[21] A semiconductor device comprising a multilayer printed wiring board obtained by the manufacturing method according to any one of [1] to [20].
 本発明によれば、特定のプリプレグと特定の真空積層方法を組み合わせることにより、ガラス転移温度が高く線熱膨張係数が低い、ボイドが抑制された、均一な膜厚の絶縁層を有する多層プリント配線板の製造方法を提供することができる。 According to the present invention, by combining a specific prepreg and a specific vacuum laminating method, a multilayer printed wiring having an insulating layer with a uniform film thickness that has a high glass transition temperature, a low linear thermal expansion coefficient, and a suppressed void. A method for manufacturing a plate can be provided.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
 本発明は、
 (A)支持体付きプリプレグを内層回路基板に加熱及び加圧して真空積層する工程、
 (B)プリプレグを熱硬化して絶縁層を形成する工程、
を含有することを特徴とする多層プリント配線板の製造方法であって、
 前記プリプレグが硬化性樹脂組成物とシート状繊維基材とを含有し、
 前記プリプレグ中の硬化性樹脂組成物含有率が30質量%以上85質量%以下であり、
 前記硬化性樹脂組成物が無機充填材を含有し、
 前記(A)支持体付きプリプレグを内層回路基板に加熱及び加圧して真空積層する工程において、積層時の真空度が0.001~0.40kPa、真空到達時間が15秒間以下、積層時の加圧が1~16kgf/cm、積層時の加熱温度が60~160℃、積層時の時間が10~300秒間であることを特徴とする多層プリント配線板の製造方法である。
The present invention
(A) A step of heating and pressurizing the prepreg with a support to the inner layer circuit board to perform vacuum lamination,
(B) a step of thermosetting the prepreg to form an insulating layer;
A method for producing a multilayer printed wiring board, comprising:
The prepreg contains a curable resin composition and a sheet fiber substrate,
The content of the curable resin composition in the prepreg is 30% by mass or more and 85% by mass or less,
The curable resin composition contains an inorganic filler,
In the step of (A) heating and pressurizing the prepreg with a support on the inner layer circuit board for vacuum lamination, the degree of vacuum during lamination is 0.001 to 0.40 kPa, the time to reach vacuum is 15 seconds or less, and A method for producing a multilayer printed wiring board, wherein the pressure is 1 to 16 kgf / cm 2 , the heating temperature during lamination is 60 to 160 ° C., and the time during lamination is 10 to 300 seconds.
 <(A)工程>
 (A)工程は、支持体付きプリプレグを内層回路基板に加熱及び加圧して真空積層する工程である。本発明で使用するプリプレグは、硬化性樹脂組成物とシート状繊維基材を含有している。
<(A) Process>
The step (A) is a step of heating and pressurizing the prepreg with a support on the inner layer circuit board to perform vacuum lamination. The prepreg used in the present invention contains a curable resin composition and a sheet-like fiber base material.
 [硬化性樹脂組成物]
 硬化性樹脂組成物は、特に限定なく使用できるが、中でも、(c)無機充填材を含有する組成物が好ましく、(a)エポキシ樹脂及び(c)無機充填材を含有する組成物がより好ましく、(a)エポキシ樹脂、(b)硬化剤及び(c)無機充填材を含有する組成物が更に好ましい。(a)エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ビスフェノール類のジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。これらは1種単独で又は2種以上を組み合わせて使用してよい。
[Curable resin composition]
The curable resin composition can be used without any particular limitation. Among them, (c) a composition containing an inorganic filler is preferable, and (a) an epoxy resin and (c) a composition containing an inorganic filler are more preferable. More preferably, the composition contains (a) an epoxy resin, (b) a curing agent, and (c) an inorganic filler. (a) As an epoxy resin, for example, bisphenol A type epoxy resin, biphenyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, alicyclic Epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, naphthylene ether type epoxy resin, glycidyl ester type epoxy resin, epoxy resin having butadiene structure, Diglycidyl etherified products of bisphenols, diglycidyl etherified products of naphthalene diol, glycidyl etherified products of phenols, and diglycidyl etherified products of alcohols, Alkyl-substituted bodies of these epoxy resins, halides and hydrogenated products, and the like in. These may be used alone or in combination of two or more.
 これらの中でも、耐熱性向上、絶縁信頼性向上、機械特性向上、金属箔(導体層)との密着性向上の観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂がより好ましい。具体的には、例えば、液状ビスフェノールA型エポキシ樹脂(三菱化学(株)製「エピコート828EL」)、ナフタレン型2官能エポキシ樹脂(DIC(株)製「HP4032」、「HP4032D」、「HP4032SS」)、ナフタレン型4官能エポキシ樹脂(DIC(株)製「HP4700」、「HP4710」)、ナフトール型エポキシ樹脂(東都化成(株)製「ESN-475V」)、ナフチレンエーテル型エポキシ樹脂(DIC(株)製「EXA-7310」、「EXA-7311」、「EXA-7311L」、「EXA7311-G3」)、グリシジルエステル型エポキシ樹脂(ナガセケムテックス(株)製「EX711」、「EX721」、(株)プリンテック製「R540」)、ブタジエン構造を有するエポキシ樹脂(ダイセル化学工業(株)製「PB-3600」)、ビフェニル型エポキシ樹脂(日本化薬(株)製「NC3000H」、「NC3000L」、三菱化学(株)製「YX4000」)などが挙げられる。 Among these, bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type from the viewpoint of improving heat resistance, improving insulation reliability, improving mechanical properties, and improving adhesion to metal foil (conductor layer). Epoxy resins, naphthylene ether type epoxy resins, glycidyl ester type epoxy resins, and epoxy resins having a butadiene structure are preferable, and bisphenol A type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, and naphthylene ether type epoxy resins are more preferable. . Specifically, for example, liquid bisphenol A type epoxy resin (“Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation), naphthalene type bifunctional epoxy resin (“HP4032”, “HP4032D”, “HP4032SS” manufactured by DIC Corporation)) Naphthalene type tetrafunctional epoxy resin (“HP4700”, “HP4710” manufactured by DIC Corporation), naphthol type epoxy resin (“ESN-475V” manufactured by Tohto Kasei Co., Ltd.), naphthylene ether type epoxy resin (DIC Corporation) ) “EXA-7310”, “EXA-7311”, “EXA-7311L”, “EXA7311-G3”), glycidyl ester type epoxy resin (“EX711”, “EX721”, manufactured by Nagase ChemteX Corp.) ) "R540" made by Printec), epoxy resin with butadiene structure ( Iseru Chemical Industry Co., "PB-3600" manufactured), biphenyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd. "NC3000H", "NC3000L", Mitsubishi Chemical Co., Ltd. "YX4000") and the like.
 (a)エポキシ樹脂の含有量の上限値は、機械特性向上という観点から、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。一方、エポキシ樹脂の含有量の下限値は、耐熱性向上、絶縁信頼性向上、金属箔との密着性向上という観点から、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましい。また、エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂を併用することが好ましく、その場合、液状エポキシ樹脂はプリプレグの可とう性を向上させ、プリプレグにおける真空積層方法を可能にするのに好適であり、固体状エポキシ樹脂はプリプレグの剛性を付与するために好適である。斯かる観点から、液状エポキシ樹脂と固体状エポキシ樹脂の配合割合(液状エポキシ樹脂:固体状エポキシ樹脂)は質量比で1:0.1~1:2の範囲が好ましく、1:0.3~1:1.8の範囲がより好ましく、1:0.6~1:1.5の範囲が更に好ましい。
 なお本発明において、「液状エポキシ樹脂」とは、温度20℃で液状のエポキシ樹脂をいい、「固体状エポキシ樹脂」とは、温度20℃で固体状のエポキシ樹脂をいう。
(a) From the viewpoint of improving mechanical properties, the upper limit value of the content of the epoxy resin is preferably 40% by mass or less, more preferably 30% by mass or less, when the nonvolatile component in the curable resin composition is 100% by mass. Preferably, 20 mass% or less is more preferable. On the other hand, the lower limit of the content of the epoxy resin is 1 when the nonvolatile component in the curable resin composition is 100% by mass from the viewpoints of improving heat resistance, improving insulation reliability, and improving adhesion to the metal foil. % By mass or more is preferable, 3% by mass or more is more preferable, and 5% by mass or more is more preferable. Further, it is preferable to use a liquid epoxy resin and a solid epoxy resin in combination as the epoxy resin, in which case the liquid epoxy resin is suitable for improving the flexibility of the prepreg and enabling a vacuum lamination method in the prepreg. Yes, a solid epoxy resin is suitable for imparting the rigidity of the prepreg. From such a viewpoint, the mixing ratio of the liquid epoxy resin and the solid epoxy resin (liquid epoxy resin: solid epoxy resin) is preferably in the range of 1: 0.1 to 1: 2 by mass ratio, The range of 1: 1.8 is more preferable, and the range of 1: 0.6 to 1: 1.5 is more preferable.
In the present invention, “liquid epoxy resin” refers to an epoxy resin that is liquid at a temperature of 20 ° C., and “solid epoxy resin” refers to an epoxy resin that is solid at a temperature of 20 ° C.
 (b)硬化剤としては、例えば、フェノール系硬化剤、活性エステル系硬化剤、シアネートエステル系硬化剤、ベンゾオキサジン系硬化剤、酸無水物系硬化剤、アミン系硬化剤、グアニジン系硬化剤、イミダゾール系硬化剤、又はこれらのエポキシアダクトやマイクロカプセル化物等を挙げることができる。これらは1種単独で又は2種以上を組み合わせて使用してよい。 (b) As the curing agent, for example, a phenolic curing agent, an active ester curing agent, a cyanate ester curing agent, a benzoxazine curing agent, an acid anhydride curing agent, an amine curing agent, a guanidine curing agent, Examples thereof include imidazole-based curing agents, and epoxy adducts and microencapsulated products thereof. These may be used alone or in combination of two or more.
 これらの中でも、耐熱性向上、金属箔(導体層)との密着性向上という観点から、フェノール系硬化剤、活性エステル系硬化剤、シアネートエステル系硬化剤が好ましい。 Among these, phenol-based curing agents, active ester-based curing agents, and cyanate ester-based curing agents are preferable from the viewpoints of improving heat resistance and improving adhesion to a metal foil (conductor layer).
 フェノール系硬化剤としては、特に制限されないが、ビフェニル型硬化剤、ナフタレン型硬化剤、フェノールノボラック型硬化剤、ナフチレンエーテル型硬化剤、トリアジン骨格含有フェノール系硬化剤が好ましい。具体的には、ビフェニル型硬化剤としてMEH-7700、MEH-7810、MEH-7851(明和化成(株)製)、ナフタレン型硬化剤としてNHN、CBN、GPH(日本化薬(株)製)、SN170、SN180、SN190、SN475、SN485、SN495、SN375、SN395(東都化成(株)製)、EXB9500(DIC(株)製)、フェノールノボラック型硬化剤としてTD2090(DIC(株)製)、ナフチレンエーテル型硬化剤としてEXB-6000(DIC(株)製)等が挙げられる。トリアジン骨格含有フェノール系硬化剤の具体例としては、LA3018、LA7052、LA7054、LA1356(DIC(株)製)等が挙げられる。特に、外観向上という点でトリアジン骨格含有フェノール系硬化剤が好適である。 The phenolic curing agent is not particularly limited, but a biphenyl type curing agent, a naphthalene type curing agent, a phenol novolac type curing agent, a naphthylene ether type curing agent, and a triazine skeleton-containing phenolic curing agent are preferable. Specifically, MEH-7700, MEH-7810, MEH-7785 (Maywa Kasei Co., Ltd.) as biphenyl type curing agents, NHN, CBN, GPH (Nippon Kayaku Co., Ltd.) as naphthalene type curing agents, SN170, SN180, SN190, SN475, SN485, SN495, SN375, SN395 (manufactured by Tohto Kasei Co., Ltd.), EXB9500 (manufactured by DIC Corporation), TD2090 (manufactured by DIC Corporation) as a phenol novolac type curing agent, naphthylene Examples of the ether type curing agent include EXB-6000 (manufactured by DIC Corporation). Specific examples of the triazine skeleton-containing phenolic curing agent include LA3018, LA7052, LA7054, LA1356 (manufactured by DIC Corporation) and the like. In particular, a triazine skeleton-containing phenolic curing agent is preferable in terms of improving the appearance.
 活性エステル系硬化剤には、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル化合物としては、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られる活性エステル化合物が好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル化合物が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル化合物がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。活性エステル化合物は1種単独で又は2種以上を組み合わせて使用してよい。活性エステル化合物としては、特開2004-277460号公報に開示されている活性エステル化合物を用いてもよく、また市販の活性エステル化合物を用いてもよい。市販されている活性エステル化合物としては、例えば、ジシクロペンタジエニルジフェノール構造を含む活性エステル化合物、フェノールノボラックのアセチル化物、フェノールノボラックのベンゾイル化物などが挙げられる。具体的には、例えば、ジシクロペンタジエニルジフェノール構造を含む活性エステル化合物として、EXB-9451、EXB-9460(DIC(株)製)、フェノールノボラックのアセチル化物としてDC808、フェノールノボラックのベンゾイル化物としてYLH1026(三菱化学(株)製)などが挙げられる。 Active ester curing agents generally include compounds having two or more ester groups with high reaction activity in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and heterocyclic hydroxy compounds. Is preferably used. The active ester compound is preferably an active ester compound obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester compound obtained from a carboxylic acid compound and a hydroxy compound is preferred, and an active ester compound obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferred. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like. You may use an active ester compound individually by 1 type or in combination of 2 or more types. As the active ester compound, an active ester compound disclosed in JP-A-2004-277460 may be used, or a commercially available active ester compound may be used. Examples of commercially available active ester compounds include active ester compounds containing a dicyclopentadienyl diphenol structure, acetylated phenol novolacs, and benzoylated phenol novolacs. Specifically, for example, EXB-9451 and EXB-9460 (manufactured by DIC Corporation) as active ester compounds having a dicyclopentadienyl diphenol structure, DC808 as an acetylated product of phenol novolac, and a benzoylated product of phenol novolac YLH1026 (manufactured by Mitsubishi Chemical Corporation) and the like.
 シアネートエステル系硬化剤としては、特に制限はないが、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル系硬化剤、及びこれらが一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の重量平均分子量は、特に限定されるものではないが、500~4500が好ましく、600~3000がより好ましい。シアネートエステル系硬化剤の具体例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。これらは1種単独で又は2種以上を組み合わせて使用してもよい。市販されているシアネートエステル樹脂としては、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製、PT30、シアネート当量124)、ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン(株)製、BA230、シアネート当量232)、ジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン(株)製、DT-4000、DT-7000)等が挙げられる。 Although there is no restriction | limiting in particular as cyanate ester type hardening | curing agent, Novolac type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, bisphenol) Fate, bisphenol S type, etc.) cyanate ester curing agents, and prepolymers in which these are partially triazines. The weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000. Specific examples of the cyanate ester curing agent include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3, Bifunctional cyanate resins such as 5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether , Phenol novolac, Examples include polyfunctional cyanate resins derived from resole novolac, dicyclopentadiene structure-containing phenol resins, prepolymers in which these cyanate resins are partially triazines, and these are used alone or in combination of two or more. As a commercially available cyanate ester resin, a phenol novolak type polyfunctional cyanate ester resin (manufactured by Lonza Japan Co., Ltd., PT30, cyanate equivalent 124), or a part or all of bisphenol A dicyanate is triazine-modified. Examples include prepolymers (Lonza Japan Co., Ltd., BA230, cyanate equivalent 232), dicyclopentadiene structure-containing cyanate ester resins (Lonza Japan Co., Ltd., DT-4000, DT-7000) and the like that are trimers. It is done.
 ベンゾオキサジン系硬化剤の具体的例としては、F-a、P-d(四国化成(株)製)、HFB2006M(昭和高分子(株)製)などが挙げられる。 Specific examples of the benzoxazine-based curing agent include Fa, Pd (manufactured by Shikoku Kasei Co., Ltd.), HFB2006M (manufactured by Showa Polymer Co., Ltd.), and the like.
 (a)エポキシ樹脂と(b)硬化剤の配合比率は、エポキシ樹脂のエポキシ基数を1としたときに硬化剤の反応基数が0.4~2.0の範囲となる比率が好ましく、0.5~1.0の範囲となる比率がより好ましい。なお硬化性樹脂組成物中に存在するエポキシ樹脂のエポキシ基数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値である。また、硬化剤の反応基数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。反応基の比率がこの範囲内であることで、硬化物の機械強度や耐水性が向上する傾向にある。 The blending ratio of (a) epoxy resin and (b) curing agent is preferably such that when the number of epoxy groups of the epoxy resin is 1, the number of reactive groups of the curing agent is in the range of 0.4 to 2.0. A ratio in the range of 5 to 1.0 is more preferable. The number of epoxy groups in the epoxy resin present in the curable resin composition is a value obtained by adding the values obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins. Further, the number of reactive groups of the curing agent is a value obtained by adding the values obtained by dividing the solid mass of each curing agent by the reactive group equivalent for all the curing agents. When the ratio of the reactive groups is within this range, the mechanical strength and water resistance of the cured product tend to be improved.
 (c)無機充填材としては、例えば、シリカ、アルミナ、雲母、マイカ、珪酸塩、硫酸バリウム、水酸化マグネシウム、酸化チタン等が挙げられ、シリカ、アルミナが好ましく、特に無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等のシリカが好ましい。シリカとしては球状のシリカが好ましい。これらは1種単独で又は2種以上を組み合わせて使用してよい。樹脂組成物への充填性向上の観点から、球状溶融シリカが好ましい。市販されている球状溶融シリカとして、例えば、(株)アドマテックス製「SOC2」、「SOC1」が挙げられる。 Examples of the inorganic filler (c) include silica, alumina, mica, mica, silicate, barium sulfate, magnesium hydroxide, titanium oxide, and the like. Silica and alumina are preferable, and amorphous silica, fused silica, Silica such as crystalline silica, synthetic silica and hollow silica is preferred. As the silica, spherical silica is preferable. These may be used alone or in combination of two or more. Spherical fused silica is preferred from the viewpoint of improving the filling properties of the resin composition. Examples of commercially available spherical fused silica include “SOC2” and “SOC1” manufactured by Admatechs Corporation.
 (c)無機充填材の平均粒径の上限値は、絶縁信頼性を向上させるという点や、シート状繊維基材への樹脂ワニスの含浸性を向上させる観点から、2μm以下が好ましく、1μm以下がより好ましく、0.8μm以下が更に好ましく、0.6μm以下が更により好ましく、0.4μm以下が殊更好ましく、0.3μm以下が特に好ましい。一方、無機充填材の平均粒径の下限値は、無機充填材の凝集を防止し、分散性を向上させる観点から、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上が更に好ましい。なかでも、シート状繊維基材への樹脂ワニスの含浸性を向上させて絶縁層の線熱膨張係数を低下させる観点から、平均粒径0.01~0.4μmの無機充填材を併用することが好ましく、平均粒径0.01~0.3μmの無機充填材を併用することがより好ましい。無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、(株)堀場製作所製 LA-500等を使用することができる。 (C) The upper limit of the average particle size of the inorganic filler is preferably 2 μm or less, from the viewpoint of improving the insulation reliability and improving the impregnation property of the resin varnish into the sheet-like fiber base material. Is more preferably 0.8 μm or less, still more preferably 0.6 μm or less, still more preferably 0.4 μm or less, and particularly preferably 0.3 μm or less. On the other hand, the lower limit of the average particle size of the inorganic filler is preferably 0.01 μm or more, more preferably 0.05 μm or more, and more preferably 0.1 μm or more from the viewpoint of preventing aggregation of the inorganic filler and improving dispersibility. Is more preferable. In particular, an inorganic filler having an average particle diameter of 0.01 to 0.4 μm is used in combination from the viewpoint of improving the impregnation property of the resin varnish into the sheet-like fiber base material and reducing the linear thermal expansion coefficient of the insulating layer. It is more preferable to use an inorganic filler having an average particle size of 0.01 to 0.3 μm in combination. The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be prepared on a volume basis by a laser diffraction / scattering particle size distribution measuring apparatus, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction scattering type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used.
 (c)無機充填材の含有量は、シート状繊維基材への含浸性を向上させるという観点、絶縁層の膜厚均一性を向上させるという観点から、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、85質量%以下が好ましく、80質量%以下がより好ましい。一方、絶縁層の線熱膨張率を低下させるという観点、絶縁層に剛性を付与するという観点から、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、(C)無機充填材の含有量の下限値は、40質量%以上が好ましく、45質量%以上がより好ましく、50質量%以上が更に好ましく、55質量%以上が更により好ましく、60質量%以上が特に好ましい。 (C) The content of the inorganic filler is a non-volatile component in the curable resin composition from the viewpoint of improving the impregnation property of the sheet-like fiber base material and the film thickness uniformity of the insulating layer. When it is 100 mass%, 85 mass% or less is preferable, and 80 mass% or less is more preferable. On the other hand, from the viewpoint of reducing the linear thermal expansion coefficient of the insulating layer and from the viewpoint of imparting rigidity to the insulating layer, when the non-volatile component in the curable resin composition is 100% by mass, (C) the inorganic filler The lower limit of the content is preferably 40% by mass or more, more preferably 45% by mass or more, still more preferably 50% by mass or more, still more preferably 55% by mass or more, and particularly preferably 60% by mass or more.
 (c)無機充填材は、その耐湿性を向上させる観点から、エポキシシラン系カップリング剤、アミノシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等の表面処理剤で表面処理されていることが好ましい。表面処理剤は1種単独でまたは2種以上組み合わせて使用してもよい。具体的に表面処理剤としては、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)アミノプロピルトリメトキシシラン等のアミノシラン系カップリング剤、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤、メチルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等のシラン系カップリング剤、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等のオルガノシラザン化合物、ブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリ-n-ブトキシチタンモノステアレート、テトラ-n-ブチルチタネート、テトラ(2-エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミドエチル・アミノエチル)チタネート等のチタネート系カップリング剤等が挙げられる。これらのなかでもアミノシラン系カップリング剤は耐湿性、分散性、硬化物の特性などに優れていて好ましい。 (C) Inorganic fillers are epoxy silane coupling agents, aminosilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, titanate cups from the viewpoint of improving moisture resistance. It is preferable that the surface treatment is performed with a surface treatment agent such as a ring agent. You may use a surface treating agent individually by 1 type or in combination of 2 or more types. Specific examples of the surface treatment agent include aminopropylmethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (2-aminoethyl) aminopropyltrimethoxysilane, and the like. Aminosilane coupling agents, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc. Epoxysilane coupling agents, mercaptosilane coupling agents such as mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, methyltrimethoxysilane, octadecyl Silane coupling agents such as trimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, hexamethyldisilazane, hexaphenyldisilazane, trisilazane, cyclotrisilazane, 1,1,3 , 3,5,5-hexamethylcyclotrisilazane and other organosilazane compounds, butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium , Bis (dioctylpyrophosphate) ethylene titanate, bis (dioctylpyrophosphate) oxyacetate titanate, tri-n-butoxytitanium mono Tearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1- Butyl) bis (ditridecyl) phosphite titanate, isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tri (dioctyl phosphate) titanate, Isopropyltridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pi Phosphate) titanate, isopropyl tri (N- amidoethyl-aminoethyl) titanate coupling agents such as titanates. Of these, aminosilane coupling agents are preferred because of their excellent moisture resistance, dispersibility, and properties of cured products.
 硬化性樹脂組成物には、プリプレグに適度な可撓性を付与することができるという点で、(d)熱可塑性樹脂をさらに含有させてもよい。例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン等が挙げられる。これらは1種単独で又は2種以上を組み合わせて使用してよい。 The curable resin composition may further contain (d) a thermoplastic resin from the viewpoint that moderate flexibility can be imparted to the prepreg. Examples thereof include phenoxy resin, polyvinyl acetal resin, polyimide, polyamideimide, polyethersulfone, polysulfone and the like. These may be used alone or in combination of two or more.
 (d)熱可塑性樹脂の含有量は、耐熱性向上という観点から、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が更に好ましい。また、硬化性樹脂組成物の粘度を上昇させて均一な膜厚のプリプレグ(ひいては絶縁層)を得るという観点から、(d)熱可塑性樹脂の含有量の下限値は、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、0.5質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上が更に好ましい。 (d) From the viewpoint of improving heat resistance, the content of the thermoplastic resin is preferably 30% by mass or less, more preferably 20% by mass or less, when the nonvolatile component in the curable resin composition is 100% by mass. 10 mass% or less is still more preferable. Further, from the viewpoint of increasing the viscosity of the curable resin composition to obtain a prepreg (and thus an insulating layer) having a uniform film thickness, the lower limit of the content of the thermoplastic resin is (d) in the curable resin composition. When the non-volatile component is 100% by mass, 0.5% by mass or more is preferable, 1% by mass or more is more preferable, and 3% by mass or more is more preferable.
 フェノキシ樹脂としては、例えば、東都化成(株)製の「FX280」、「FX293」、三菱化学(株)製の「YX8100」、「YL6954」、「YL6974」、「YL7213」、「YL6794」、「YL7553」、「YL7482」等が挙げられる。ポリビニルアセタール樹脂としては、例えば、電気化学工業(株)製、電化ブチラール4000-2、5000-A、6000-C、6000-EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられ、ポリビニルブチラール樹脂が好ましい。ポリイミドとしては、例えば、新日本理化(株)製の「リカコートSN20」、「リカコートPN20」等が挙げられる。ポリイミドとしてはまた、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006-37083号公報記載のもの)、ポリシロキサン骨格含有ポリイミド(特開2002-12667号公報、特開2000-319386号公報等に記載のもの)等の変性ポリイミドも挙げられる。ポリアミドイミドとしては、例えば、東洋紡績(株)製の「バイロマックスHR11NN」、「バイロマックスHR16NN」等が挙げられる。ポリアミドイミドとしてはまた、日立化成工業(株)製のポリシロキサン骨格含有ポリアミドイミド「KS9100」、「KS9300」等の変性ポリアミドイミドも挙げられる。ポリエーテルスルホンとしては、例えば、住友化学(株)製の「PES5003P」等が挙げられる。ポリスルホンとしては、例えば、ソルベンアドバンストポリマーズ(株)製の「P1700」、「P3500」等が挙げられる。 Examples of the phenoxy resin include “FX280” and “FX293” manufactured by Toto Kasei Co., Ltd., “YX8100”, “YL6954”, “YL6974”, “YL7213”, “YL6794”, “YL6794”, “Mitsubishi Chemical Co., Ltd.” YL7553 "," YL7482 ", etc. are mentioned. Examples of the polyvinyl acetal resin include Denki Butyral 4000-2, 5000-A, 6000-C, and 6000-EP manufactured by Denki Kagaku Kogyo Co., Ltd., and Slekk BH Series, BX Series, and KS Series manufactured by Sekisui Chemical Co., Ltd. , BL series, BM series and the like, and polyvinyl butyral resin is preferable. Examples of the polyimide include “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd. As the polyimide, linear polyimide obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (as described in JP-A-2006-37083), a polysiloxane skeleton-containing polyimide (specialty) Examples thereof include modified polyimides such as those described in JP-A No. 2002-12667 and JP-A No. 2000-319386. Examples of the polyamideimide include “Bilomax HR11NN” and “Bilomax HR16NN” manufactured by Toyobo Co., Ltd. Examples of the polyamideimide include modified polyamideimides such as polysiloxane skeleton-containing polyamideimides “KS9100” and “KS9300” manufactured by Hitachi Chemical Co., Ltd. Examples of polyethersulfone include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd. Examples of the polysulfone include “P1700” and “P3500” manufactured by Solven Advanced Polymers Co., Ltd.
 硬化性樹脂組成物には、エポキシ樹脂や硬化剤を効率良く硬化させるという観点から、(e)硬化促進剤をさらに含有させてもよい。例えば、イミダゾール系化合物、ピリジン系化合物、有機ホスフィン系化合物等が挙げられ、具体例としては、2-メチルイミダゾール、4-ジメチルアミノピリジン、トリフェニルホスフィンなどを挙げることができる。これらは1種単独で又は2種以上を組み合わせて使用してよい。(e)硬化促進剤を用いる場合、(a)エポキシ樹脂に対して0.1~3.0質量%の範囲で用いるのが好ましい。 The curable resin composition may further contain (e) a curing accelerator from the viewpoint of efficiently curing the epoxy resin and the curing agent. Examples include imidazole compounds, pyridine compounds, and organic phosphine compounds. Specific examples include 2-methylimidazole, 4-dimethylaminopyridine, and triphenylphosphine. These may be used alone or in combination of two or more. When (e) a curing accelerator is used, it is preferably used in the range of 0.1 to 3.0% by mass relative to (a) the epoxy resin.
 硬化性樹脂組成物には、絶縁層のクラック防止、応力緩和効果の目的で、(f)ゴム粒子をさらに含有させてもよい。ゴム粒子は、硬化性樹脂組成物を調製する際の有機溶媒に溶解せず、エポキシ樹脂等の硬化性樹脂組成物中の他の成分とも相溶せず、硬化性樹脂組成物のワニス中では分散状態で存在するものが好ましい。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。ゴム粒子としては、例えば、コアシェル型ゴム粒子、架橋アクリルニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、粒子がコア層とシェル層を有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマー、内層のコア層がゴム状ポリマーで構成される2層構造のゴム粒子、または外層のシェル層がガラス状ポリマー、中間層がゴム状ポリマー、コア層がガラス状ポリマーで構成される3層構造のゴム粒子などが挙げられる。ガラス状ポリマーは例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマーは例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(ガンツ化成(株)商品名)、メタブレンKW-4426(三菱レイヨン(株)商品名)が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒径0.5μm、JSR(株)製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.5μm)(三菱レイヨン(株)製)を挙げることができる。 The curable resin composition may further contain (f) rubber particles for the purpose of preventing cracking of the insulating layer and reducing the stress. The rubber particles do not dissolve in the organic solvent when preparing the curable resin composition, are not compatible with other components in the curable resin composition such as epoxy resin, and in the varnish of the curable resin composition Those present in a dispersed state are preferred. Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles. Examples of the rubber particles include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a rubber particle having a two-layer structure in which an outer shell layer is a glassy polymer and an inner core layer is a rubbery polymer, Alternatively, rubber particles having a three-layer structure in which the shell layer of the outer layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a glassy polymer can be used. The glassy polymer is composed of, for example, a polymer of methyl methacrylate, and the rubbery polymer is composed of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name of Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name of Mitsubishi Rayon Co., Ltd.). Specific examples of acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 μm), W450A (average particle size 0.5 μm) (manufactured by Mitsubishi Rayon Co., Ltd.).
 硬化性樹脂組成物には、必要に応じて本発明の効果が発揮される範囲で、ビスマレイミド-トリアジン樹脂、アクリル樹脂、マレイミド化合物、ビスアリルナジイミド化合物、ビニルベンジル樹脂、ビニルベンジルエーテル樹脂、ブロックイソシアネート化合物などのエポキシ樹脂以外の熱硬化性樹脂、難燃剤等を配合してもよい。これらは1種単独で又は2種以上を組み合わせて使用してよい。マレイミド樹脂としてはBMI1000、BMI2000、BMI3000、BMI4000、BMI5100(大和化成工業(株)製)、BMI、BMI-70、BMI-80(ケイ・アイ化成(株)製)、ANILIX-MI(三井化学ファイン(株)製)、ビスアリルナジイミド化合物としてはBANI-M、BANI-X(丸善石油化学工業(株)製)、ビニルベンジル樹脂としてはV5000(昭和高分子(株)製)、ビニルベンジルエーテル樹脂としてはV1000X、V1100X(昭和高分子(株)製)が挙げられる。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA-HQ、HCA-NQ等のホスフィン化合物、昭和高分子(株)製のHFB-2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX310等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルアミド化合物、大塚化学(株)製のSPB100、SPE100等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)製のB-30、B-325、B-315、B-308、B-303、UFH-20等の水酸化アルミニウム等が挙げられる。 The curable resin composition includes a bismaleimide-triazine resin, an acrylic resin, a maleimide compound, a bisallylnadiimide compound, a vinyl benzyl resin, a vinyl benzyl ether resin, as long as the effects of the present invention are exhibited as necessary. You may mix | blend thermosetting resins other than epoxy resins, such as a block isocyanate compound, a flame retardant, etc. These may be used alone or in combination of two or more. As maleimide resins, BMI1000, BMI2000, BMI3000, BMI4000, BMI5100 (manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI, BMI-70, BMI-80 (manufactured by KEI Kasei Co., Ltd.), ANILIX-MI (Mitsui Chemical Fine) Manufactured by Co., Ltd.), BANI-M and BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.) as bisallylnadiimide compounds, V5000 (manufactured by Showa Polymer Co., Ltd.) and vinylbenzyl ether as vinylbenzyl resins. Examples of the resin include V1000X and V1100X (manufactured by Showa Polymer Co., Ltd.). Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. Examples of organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd., and Ajinomoto Fine Techno. Reefos 30, 50, 65, 90, 110, TPP, RPD, BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, PPQ manufactured by Hokuko Chemical Co., Ltd., Clariant Phosphorus ester compounds such as OP930 manufactured by Daihachi Chemical Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289 manufactured by Toto Kasei Co., Ltd., and FX310, and phosphorus-containing phenoxy such as ERF001 manufactured by Toto Kasei Co. Examples thereof include resins. Examples of the organic nitrogen-containing phosphorus compound include phosphoric ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., and phosphazene compounds such as SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd. Examples of metal hydroxides include magnesium hydroxide such as UD65, UD650, and UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308, B manufactured by Sakai Kogyo Co., Ltd. And aluminum hydroxide such as −303 and UFH-20.
 硬化性樹脂組成物にはまた、本発明の効果が発揮される範囲で、他の成分を含有させてもよい。斯かる他の成分としては、例えば、シリコーンパウダー、ナイロンパウダー、フッ素パウダー等の充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤、ケトン類(アセトン、メチルエチルケトン、シクロヘキサノン等)、酢酸エステル類(酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等)、カルビトール類(セロソルブ、ブチルカルビトール等)、芳香族炭化水素類(トルエン、キシレン等)、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の有機溶媒、等を挙げることができる。 The curable resin composition may also contain other components as long as the effects of the present invention are exhibited. Examples of such other components include fillers such as silicone powder, nylon powder and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based and polymer-based antifoaming agents or leveling agents, and imidazole. , Thiazole, triazole, silane coupling agents, etc., colorants such as phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, carbon black, ketones (acetone, methyl ethyl ketone, cyclohexanone) Etc.), acetates (ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, etc.), carbitols (cellosolve, butyl carbitol, etc.), aromatic hydrocarbons (True) , Xylene), dimethylformamide, dimethylacetamide, organic solvents such as N- methylpyrrolidone, and the like.
 硬化性樹脂組成物は、上記成分を適宜混合し、また、必要に応じて三本ロール、ボールミル、ビーズミル、サンドミル等の混練手段、あるいはスーパーミキサー、プラネタリーミキサー等の撹拌手段により混練または混合することにより調製することができる。また、さらに有機溶剤を加えることで樹脂ワニスとしても調製することができる。 The curable resin composition is appropriately mixed with the above components and, if necessary, kneaded or mixed by a kneading means such as a three roll, ball mill, bead mill, or sand mill, or a stirring means such as a super mixer or a planetary mixer. Can be prepared. Further, it can be prepared as a resin varnish by further adding an organic solvent.
 [シート状繊維基材]
 プリプレグに用いるシート状繊維基材は特に限定されず、ガラス繊維基材、有機繊維基材等が挙げられ、特にガラスクロス、ガラス不織布、有機織布及び有機不織布からなる群より選択される1種以上を含有することが好ましい。プリプレグの線熱膨張係数を低下させるという点からは、ガラス繊維基材、アラミド不織布、液晶ポリマー不織布等のシート状繊維基材が好ましく、ガラス繊維基材がより好ましく、ガラスクロスが更に好ましい。ガラス繊維基材に用いるガラス繊維としては、線熱膨張係数を低下させることができるという観点から、Eガラス繊維、Sガラス繊維、Qガラス繊維からなる群より選択される1種以上のガラス繊維が好ましく、Sガラス繊維、Qガラス繊維がより好ましく、Qガラス繊維が更に好ましい。Qガラス繊維とは、二酸化珪素の含有率が90%以上を占めるガラス繊維のことをいう。シート状繊維基材の厚さは、プリプレグを薄膜化するという観点から、200μm以下が好ましく、100μm以下がより好ましく、80μm以下が更に好ましく、50μm以下が更に一層好ましく、40μm以下が殊更好ましい。また、取り扱い性を向上させるという観点やプリプレグの剛性を向上させるという観点から、1μm以上が好ましく、10μm以上がより好ましく、15μm以上が更に好ましい。
[Sheet fiber substrate]
The sheet-like fiber base material used for the prepreg is not particularly limited, and examples thereof include a glass fiber base material and an organic fiber base material, and in particular, one type selected from the group consisting of glass cloth, glass nonwoven fabric, organic woven fabric, and organic nonwoven fabric. It is preferable to contain the above. From the viewpoint of reducing the linear thermal expansion coefficient of the prepreg, a sheet fiber substrate such as a glass fiber substrate, an aramid nonwoven fabric, and a liquid crystal polymer nonwoven fabric is preferable, a glass fiber substrate is more preferable, and a glass cloth is more preferable. As a glass fiber used for a glass fiber base material, from a viewpoint that a linear thermal expansion coefficient can be reduced, 1 or more types of glass fibers selected from the group which consists of E glass fiber, S glass fiber, and Q glass fiber are included. Preferably, S glass fiber and Q glass fiber are more preferable, and Q glass fiber is still more preferable. Q glass fiber refers to glass fiber in which the content of silicon dioxide occupies 90% or more. The thickness of the sheet fiber substrate is preferably 200 μm or less, more preferably 100 μm or less, still more preferably 80 μm or less, still more preferably 50 μm or less, and even more preferably 40 μm or less, from the viewpoint of reducing the thickness of the prepreg. Further, from the viewpoint of improving the handleability and the viewpoint of improving the rigidity of the prepreg, it is preferably 1 μm or more, more preferably 10 μm or more, and further preferably 15 μm or more.
 シート状繊維基材の具体的な例を以下に挙げる。ガラスクロスとしては、例えば、旭シュエーベル(株)製のスタイル1027MS(経糸密度75本/25mm、緯糸密度75本/25mm、布重量20g/m、厚さ19μm(Eガラス繊維))、旭シュエーベル(株)製のスタイル1037MS(経糸密度70本/25mm、緯糸密度73本/25mm、布重量24g/m、厚さ28μm(Eガラス繊維))、(株)有沢製作所製の1078(経糸密度54本/25mm、緯糸密度54本/25mm、布重量48g/m、厚さ43μm(Eガラス繊維))、(株)有沢製作所製の2116(経糸密度50本/25mm、緯糸密度58本/25mm、布重量103.8g/m、厚さ94μm(Eガラス繊維))、(株)有沢製作所製の1067(経糸密度70本/25mm、緯糸密度70本/25mm、布重量31g/m、厚さ33μm(Eガラス繊維))、信越石英(株)製の石英ガラスクロス(IPC規格2116タイプクロスやIPC規格1035タイプクロス(Qガラス繊維))、日東紡製のTガラスクロス(IPC規格の1078、1035、1037、1027(Tガラス繊維))などが挙げられる。また液晶ポリマー不織布としては、(株)クラレ製のポリアリレート系液晶ポリマーからメルトブローン方式で製造された不織布であるベクルス(目付け量6~15g/m2)や(株)クラレ製のベクトランを繊維素材とする不織布などが挙げられる。 Specific examples of the sheet-like fiber base material are given below. As the glass cloth, for example, Style 1027MS (A warp density of 75/25 mm, a weft density of 75/25 mm, a fabric weight of 20 g / m 2 , a thickness of 19 μm (E glass fiber)) manufactured by Asahi Schavel Co., Ltd. Co., Ltd. Style 1037MS (warp density 70/25 mm, weft density 73/25 mm, fabric weight 24 g / m 2 , thickness 28 μm (E glass fiber)), 1078 manufactured by Arizawa Seisakusho (warp density) 54/25 mm, weft density 54/25 mm, fabric weight 48 g / m 2 , thickness 43 μm (E glass fiber)), 2116 manufactured by Arisawa Manufacturing Co., Ltd. (warp density 50/25 mm, weft density 58 / 25 mm, fabric weight 103.8 g / m 2 , thickness 94 μm (E glass fiber)), 1067 manufactured by Arisawa Manufacturing Co., Ltd. (warp density 70/25 mm, weft) Density 70 / 25mm, fabric weight 31g / m 2 , thickness 33μm (E glass fiber)), quartz glass cloth (IPC standard 2116 type cloth and IPC standard 1035 type cloth (Q glass fiber) manufactured by Shin-Etsu Quartz Co., Ltd.) ), T glass cloth (IPC standard 1078, 1035, 1037, 1027 (T glass fiber)) manufactured by Nittobo. In addition, liquid crystal polymer non-woven fabrics include Vecrus (weighing 6 to 15 g / m 2 ), which is a non-woven fabric manufactured from a polyarylate-based liquid crystal polymer manufactured by Kuraray Co., Ltd., and Vectran manufactured by Kuraray Co., Ltd. And non-woven fabrics.
 [支持体]
 本発明で使用する支持体は、特に制限されないが、自己支持性を有するフィルムであり、金属箔、プラスチックフィルムが好適に用いられる。金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられる。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート、ポリイミド、ポリアミドイミド、ポリアミド、ポリテトラフルオロエチレン、ポリカーボネート等が挙げられ、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムが好ましく、安価であることからポリエチレンテレフタレートフィルムがより好ましい。またプラスチックフィルムは、硬化後の剥離性を向上させる目的で、マット処理、コロナ処理等の表面処理を施した離型プラスチックフィルムが好ましい。また、巻き取りを考慮して、支持体の両面に表面処理を施してもよい。プリプレグと接する側の支持体表面は、プリプレグの膜厚均一性向上という観点から、表面粗さ(Ra値)は50nm以下が好ましく、40nm以下がより好ましく、35nm以下が更に好ましく、30nm以下が更に一層好ましく、25nm以下が殊更好ましい。表面粗さ(Ra値)の下限値は特に限定されるものではないが、支持体の実用性の観点から、0.1nm以上が好ましく、0.5nm以上がより好ましい。表面粗さ(Ra値)の測定は、公知の方法を用いることができ、例えば、非接触型表面粗さ計(例えば、ビーコインスツルメンツ社製WYKO NT3300等)などの装置を用いて測定することができる。支持体は市販の支持体を用いてもよく、例えば、T60(東レ(株)製、ポリエチレンテレフタレートフィルム)、A4100(東洋紡(株)製、ポリエチレンテレフタレートフィルム)、Q83(帝人デュポンフィルム(株)製、ポリエチレンナフタレートフィルム)、リンテック(株)製のアルキッド型離型剤(AL-5)付きポリエチレンテレフタレートフィルム、ダイアホイルB100(三菱化学ポリエステルフィルム(株)製、ポリエチレンテレフタレートフィルム)、JTC箔(JX日鉱日石金属(株)製(厚さ18μm))、MT18Ex(三井金属鉱業(株)製)、などが挙げられる。支持体の厚みは、支持体の取り扱い性向上や支持体の剥離性向上という点から、10μm以上が好ましく、15μm以上がより好ましい。また、コストパフォーマンスの観点から、70μm以下が好ましく、50μm以下がより好ましい。
[Support]
Although the support body used by this invention is not restrict | limited in particular, It is a film which has self-supporting property, A metal foil and a plastic film are used suitably. Examples of the metal foil include copper foil and aluminum foil. Examples of the plastic film include polyethylene terephthalate film, polyethylene naphthalate, polyimide, polyamideimide, polyamide, polytetrafluoroethylene, polycarbonate, and the like. Polyethylene terephthalate film and polyethylene naphthalate film are preferable, and polyethylene is inexpensive. A terephthalate film is more preferable. The plastic film is preferably a release plastic film subjected to surface treatment such as mat treatment or corona treatment for the purpose of improving the peelability after curing. In consideration of winding, surface treatment may be performed on both surfaces of the support. From the viewpoint of improving the film thickness uniformity of the prepreg, the surface of the support in contact with the prepreg preferably has a surface roughness (Ra value) of 50 nm or less, more preferably 40 nm or less, still more preferably 35 nm or less, and further preferably 30 nm or less. More preferred is 25 nm or less. The lower limit of the surface roughness (Ra value) is not particularly limited, but is preferably 0.1 nm or more and more preferably 0.5 nm or more from the viewpoint of practicality of the support. The surface roughness (Ra value) can be measured by using a known method, for example, by using a device such as a non-contact type surface roughness meter (for example, WYKO NT3300 manufactured by Beec Instruments). it can. The support may be a commercially available support, for example, T60 (manufactured by Toray Industries, Inc., polyethylene terephthalate film), A4100 (manufactured by Toyobo Co., Ltd., polyethylene terephthalate film), Q83 (manufactured by Teijin DuPont Films, Inc.) , Polyethylene naphthalate film), polyethylene terephthalate film with alkyd mold release agent (AL-5) manufactured by Lintec Corporation, Diafoil B100 (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., polyethylene terephthalate film), JTC foil (JX And Nippon Mining & Metals Co., Ltd. (thickness 18 μm), MT18Ex (manufactured by Mitsui Mining & Smelting Co., Ltd.) The thickness of the support is preferably 10 μm or more, more preferably 15 μm or more, from the viewpoint of improving the handleability of the support and improving the peelability of the support. Moreover, from a viewpoint of cost performance, 70 micrometers or less are preferable and 50 micrometers or less are more preferable.
 [支持体付きプリプレグ]
 本発明で使用する支持体付きプリプレグは、プリプレグ表面に支持体を貼り合わせたものである。したがって一実施形態において、支持体付きプリプレグは、支持体と、該支持体と接合するプリプレグとを含む。該支持体付きプリプレグにおいて、支持体とプリプレグとの間に極薄樹脂層を介しても良い。したがって他の実施形態において、支持体付きプリプレグは、支持体と、該支持体と接合する極薄樹脂層と、該極薄樹脂層と接合するプリプレグとを含む。ここで、極薄樹脂層とは、厚みが1~10μmの、シート状繊維基材を含有しない樹脂層(絶縁層)のことを示す。支持体付きプリプレグの製造方法は、特に制限されないが、ホットメルト法やソルベント法が挙げられ、以下の方法(i)~(iv)が好適である。
[Prepreg with support]
The prepreg with a support used in the present invention is obtained by bonding a support to the prepreg surface. Therefore, in one embodiment, a prepreg with a support includes a support and a prepreg joined to the support. In the prepreg with a support, an ultrathin resin layer may be interposed between the support and the prepreg. Therefore, in another embodiment, the prepreg with a support includes a support, an ultrathin resin layer bonded to the support, and a prepreg bonded to the ultrathin resin layer. Here, the ultrathin resin layer refers to a resin layer (insulating layer) having a thickness of 1 to 10 μm and containing no sheet-like fiber base material. A method for producing the prepreg with a support is not particularly limited, and examples thereof include a hot melt method and a solvent method, and the following methods (i) to (iv) are preferable.
 (i):硬化性樹脂組成物を有機溶剤に溶解することなく、硬化性樹脂組成物を支持体上に一旦コーティングし、それをシート状繊維基材にラミネートする方法
 (ii):ダイコーター等により硬化性樹脂組成物をシート状繊維基材上に直接塗工してプリプレグを形成し、その後支持体上にプリプレグをラミネートする方法
 (iii):硬化性樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、シート状繊維基材を樹脂ワニスに浸漬、含浸、乾燥させてプリプレグを形成し、その後支持体上にプリプレグをラミネートする方法
 (iv):支持体上にダイコーター等を用いて樹脂ワニスを直接塗工して硬化性樹脂組成物層を形成し、該硬化性樹脂組成物層をシート状繊維基材の両面からラミネートする方法
 上記の方法(i)~(iv)からなる群より選択される1種以上の方法を用いて、支持体付きプリプレグを作製することが好適である。なお、プリプレグへのごみ等の付着を防止するために、プリプレグ表面に支持体を貼り合わせ、プリプレグの他方の面に保護フィルムを貼りあわせてもよい。保護フィルムは、支持体と同様の物を用いることができる。なお、支持体付きプリプレグが極薄樹脂層を有する場合は、予め支持体上に極薄樹脂層を形成しておくことで、上述した方法と同様にして支持体付きプリプレグを形成することができる。
(I): a method in which a curable resin composition is once coated on a support without dissolving the curable resin composition in an organic solvent, and is laminated on a sheet-like fiber substrate (ii): a die coater or the like (Iii): Resin in which the curable resin composition is dissolved in an organic solvent. (Iii): A resin in which a curable resin composition is dissolved in an organic solvent. A method of preparing a varnish, immersing, impregnating and drying a sheet-like fiber base material into a resin varnish to form a prepreg, and then laminating the prepreg on the support (iv): using a die coater or the like on the support A method comprising directly applying a resin varnish to form a curable resin composition layer, and laminating the curable resin composition layer from both sides of a sheet-like fiber substrate. The group consisting of the above methods (i) to (iv) Than It is preferable to produce a prepreg with a support using one or more selected methods. In order to prevent dust and the like from adhering to the prepreg, a support may be bonded to the prepreg surface, and a protective film may be bonded to the other surface of the prepreg. The thing similar to a support body can be used for a protective film. When the prepreg with a support has an ultrathin resin layer, the prepreg with a support can be formed in the same manner as described above by forming an ultrathin resin layer on the support in advance. .
 硬化性樹脂組成物や樹脂ワニスを塗工した場合に、有機溶剤を乾燥させる必要があるが、ラミネート工程において、硬化性樹脂組成物が流動性及び接着性を有しさえすれば、乾燥条件は特に制限はされない。プリプレグ内に有機溶剤が多く残留すると、硬化後に膨れが発生する原因となるため、硬化性樹脂組成物中の有機溶剤の含有割合が0.05~5質量%となる乾燥条件が好ましく、0.1~2質量%となる乾燥条件がより好ましい。具体的な乾燥条件は、硬化性樹脂組成物の硬化性やワニス中の有機溶媒量によっても異なるが、80~180℃で3~13分間乾燥させるのが好ましく、90~140℃で3~10分間乾燥させるのが好ましい。 When a curable resin composition or a resin varnish is applied, it is necessary to dry the organic solvent. In the laminating process, as long as the curable resin composition has fluidity and adhesiveness, the drying conditions are as follows. There is no particular limitation. If a large amount of the organic solvent remains in the prepreg, it may cause blistering after curing. Therefore, a drying condition in which the content of the organic solvent in the curable resin composition is 0.05 to 5% by mass is preferable. A drying condition of 1 to 2% by mass is more preferable. Specific drying conditions vary depending on the curability of the curable resin composition and the amount of the organic solvent in the varnish, but it is preferable to dry at 80 to 180 ° C. for 3 to 13 minutes, and at 90 to 140 ° C. for 3 to 10 minutes. It is preferable to dry for a minute.
 支持体付きプリプレグにおいて、プリプレグの厚さは、プリプレグとして所望される剛性を確保するという観点から、20μm以上が好ましく、30μm以上がより好ましく、40μm以上が更に好ましい。また、多層プリント配線板を薄膜化するという観点から、200μm以下が好ましく、150μm以下がより好ましく、100μm以下が更に好ましく、70μm以下が更に一層好ましい。また、プリプレグはラミネート時に内層回路基板の凹凸に追従して積層可能な流動性を持つことが必要であり、プリプレグ中の硬化性樹脂組成物の最低溶融粘度は、200~30000poiseの範囲であることが好ましく、500~20000poiseの範囲であることがより好ましく、1000~10000poiseの範囲であることが更に好ましい。 In the prepreg with a support, the thickness of the prepreg is preferably 20 μm or more, more preferably 30 μm or more, and still more preferably 40 μm or more, from the viewpoint of ensuring the rigidity desired as the prepreg. Moreover, from a viewpoint of making a multilayer printed wiring board into a thin film, 200 micrometers or less are preferable, 150 micrometers or less are more preferable, 100 micrometers or less are still more preferable, and 70 micrometers or less are still more preferable. In addition, the prepreg must have fluidity that can be laminated following the unevenness of the inner circuit board during lamination, and the minimum melt viscosity of the curable resin composition in the prepreg is in the range of 200 to 30000 poise. Is preferable, more preferably in the range of 500 to 20000 poise, and still more preferably in the range of 1000 to 10,000 poise.
 さらに、プリプレグの剛性を高めるために、プリプレグの厚みを1とした場合のシート状繊維基材の厚み(シート状繊維基材の厚み/プリプレグの厚み)を0.25~0.88に制御することが好ましい。プリプレグの剛性を高め、低線熱膨張係数を達成する点から、0.3以上がより好ましく、0.35以上が更に好ましく、0.4以上が更に一層好ましい。また、膜厚均一性を向上させ、外観不良を抑制させる点から、0.85以下がより好ましく、0.80以下が更に好ましい。 Further, in order to increase the rigidity of the prepreg, the thickness of the sheet-like fiber base material (the thickness of the sheet-like fiber base material / the thickness of the prepreg) when the thickness of the prepreg is 1 is controlled to 0.25 to 0.88. It is preferable. From the viewpoint of increasing the rigidity of the prepreg and achieving a low linear thermal expansion coefficient, 0.3 or more is more preferable, 0.35 or more is further preferable, and 0.4 or more is even more preferable. Moreover, 0.85 or less is more preferable from the point which improves film thickness uniformity and suppresses appearance defect, and 0.80 or less is still more preferable.
 また、本願発明のプリプレグは内層回路基板の配線パターンを良好に埋め込みながらも絶縁層の膜厚均一性や薄膜化を達成するために、プリプレグ中の硬化性樹脂組成物含有率を30~85質量%に制御することが好ましい。線熱膨張係数を低下させ、薄膜化にも寄与するという観点から、プリプレグ中の硬化性樹脂組成物含有率は、80質量%以下がより好ましく、75質量%以下が更に好ましく、70質量%以下が更に一層好ましく、65質量%以下が殊更好ましい。また、内層回路基板との密着性向上、膜厚均一性の向上という観点から、32質量%以上がより好ましく、34質量%以上が更に好ましく、36質量%以上が更に一層好ましく、38質量%以上が殊更好ましく、40質量%以上が特に好ましく、42質量%以上がとりわけ好ましい。 In addition, the prepreg of the present invention has a curable resin composition content of 30 to 85 mass in the prepreg in order to achieve uniform thickness and thinning of the insulating layer while satisfactorily embedding the wiring pattern of the inner circuit board. % Is preferably controlled. From the viewpoint of reducing the linear thermal expansion coefficient and contributing to thinning, the content of the curable resin composition in the prepreg is more preferably 80% by mass or less, still more preferably 75% by mass or less, and 70% by mass or less. Is even more preferable, and 65% by mass or less is particularly preferable. Further, from the viewpoint of improving adhesion with the inner layer circuit board and improving the film thickness uniformity, 32% by mass or more is more preferable, 34% by mass or more is further preferable, 36% by mass or more is further more preferable, and 38% by mass or more. Is more preferably 40% by mass or more, particularly preferably 42% by mass or more.
 なお、プリプレグ中の硬化性樹脂組成物含有率は以下のように定義される。
Figure JPOXMLDOC01-appb-M000001
In addition, the curable resin composition content rate in a prepreg is defined as follows.
Figure JPOXMLDOC01-appb-M000001
 また、プリプレグの剛性や薄膜化を達成するために、プリプレグ中のシート状繊維基材と無機充填材との含有比率(シート状繊維基材の質量/無機充填材の質量)を0.2~2.5に制御することが好ましい。さらに、シート状繊維基材の隙間を多くの無機充填材で埋めることで線熱膨張係数を効率的に低下させることができるという点から、上記含有比率は、2.3以下がより好ましく、2.1以下が更に好ましく、1.9以下が更に一層好ましく、1.7以下が更に一層好ましく、1.5以下が殊更好ましい。また、無機充填材が多すぎると硬化性樹脂組成物の溶融粘度を上昇させてしまい、無機充填材が効率良くシート状繊維基材の隙間に入り込みにくくなることから、上記含有比率は、0.3以上がより好ましく、0.4以上が更に好ましく、0.5以上が更に一層好ましい。 Further, in order to achieve rigidity and thinning of the prepreg, the content ratio of the sheet-like fiber substrate and the inorganic filler in the prepreg (the mass of the sheet-like fiber substrate / the mass of the inorganic filler) is 0.2 to It is preferable to control to 2.5. Furthermore, the content ratio is more preferably 2.3 or less from the viewpoint that the linear thermal expansion coefficient can be efficiently reduced by filling the gaps in the sheet-like fiber base material with many inorganic fillers. 0.1 or less is more preferable, 1.9 or less is still more preferable, 1.7 or less is still more preferable, and 1.5 or less is especially preferable. Moreover, when there are too many inorganic fillers, the melt viscosity of a curable resin composition will be raised and it will become difficult for an inorganic filler to enter into the clearance gap between sheet-like fiber base materials efficiently. 3 or more is more preferable, 0.4 or more is more preferable, and 0.5 or more is still more preferable.
 このように、プリプレグの構成を制御することで、内層回路基板に加熱及び加圧して真空積層するための好適な支持体付きプリプレグを得ることができ、斯かる支持体付きプリプレグを使用することで、十分な剛性を有しつつ薄層化された多層プリント配線板の製造方法を提供することができる。 Thus, by controlling the configuration of the prepreg, it is possible to obtain a suitable prepreg with a support for vacuum lamination by heating and pressurizing the inner layer circuit board, and by using such a prepreg with a support. It is possible to provide a method for producing a thin multilayer printed wiring board having sufficient rigidity.
 [真空積層方法]
 (A)工程では、支持体付きプリプレグを内層回路基板に加熱及び加圧して真空積層する。ここで、支持体付きプリプレグに保護フィルムが張り合わせてある場合は、保護フィルムを剥離した後に、支持体付きプリプレグのプリプレグ面を内層回路基板に向かい合わせ、真空ラミネーターを用いて加熱及び加圧して支持体付きプリプレグを内層回路基板に真空積層する。また、生産性向上の点から、(A)工程では、ロール状に巻き取られた支持体付きプリプレグを、保護フィルムが張り合わせてある場合は保護フィルムを剥離し、順次連続的に真空ラミネーターに供給し、支持体付きプリプレグのプリプレグ面を内層回路基板に向かい合わせ、真空ラミネーターを用いて加熱及び加圧して支持体付きプリプレグを真空積層することが好ましい。ここで内層回路基板とは、片面又は両面に配線パターンが形成された導体層を有する基板をいい、多層プリント配線板を製造する際に、当該基板上にさらに絶縁層および導体層が形成されるべき中間製造物を言う。内層回路基板に用いられる基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。内層回路基板の厚みは、十分な剛性を有しつつ薄層化された多層プリント配線板を達成すると言う観点から、0.05~0.9mmが好ましく、0.05~0.7mmがより好ましく、0.1~0.5mmが更に好ましく、0.15~0.3mmが殊更好ましい。
[Vacuum lamination method]
In the step (A), the prepreg with the support is heated and pressed on the inner layer circuit board and vacuum laminated. Here, when the protective film is attached to the prepreg with the support, after the protective film is peeled off, the prepreg surface of the prepreg with the support is faced to the inner layer circuit board and supported by heating and pressing using a vacuum laminator. The prepreg with body is vacuum laminated on the inner circuit board. In addition, from the point of productivity improvement, in the step (A), the prepreg with the support wound in a roll shape is peeled off when the protective film is laminated, and then supplied to the vacuum laminator sequentially and continuously. It is preferable that the prepreg surface of the prepreg with the support is opposed to the inner layer circuit board and heated and pressurized using a vacuum laminator to vacuum laminate the prepreg with the support. Here, the inner layer circuit board refers to a board having a conductor layer having a wiring pattern formed on one side or both sides. When a multilayer printed wiring board is manufactured, an insulating layer and a conductor layer are further formed on the board. An intermediate product to say. Examples of the substrate used for the inner circuit board include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate. The thickness of the inner layer circuit board is preferably 0.05 to 0.9 mm, more preferably 0.05 to 0.7 mm, from the viewpoint of achieving a multilayer printed wiring board having sufficient rigidity and a reduced thickness. 0.1 to 0.5 mm is more preferable, and 0.15 to 0.3 mm is even more preferable.
 真空ラミネーターは、バッチ式ラミネーター、ロール式ラミネーターが挙げられるが、得られる絶縁層の平滑性を向上させる点からバッチ式ラミネーターが好ましい。市販の真空ラミネーターとしては、例えば、(株)名機製作所製 バッチ式真空加圧ラミネーター MVLP-500、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)日立インダストリイズ製 ロール式ドライコータ、日立エーアイーシー(株)製 真空ラミネーター等を挙げることができる。 Examples of the vacuum laminator include a batch type laminator and a roll type laminator, but a batch type laminator is preferable from the viewpoint of improving the smoothness of the obtained insulating layer. Commercially available vacuum laminators include, for example, batch type vacuum press laminator MVLP-500 manufactured by Meiki Seisakusho Co., Ltd., vacuum applicator manufactured by Nichigo Morton Co., Ltd., roll dry coater manufactured by Hitachi Industries, Ltd. Examples include a vacuum laminator manufactured by Hitachi IC Corporation.
 真空ラミネーターによる積層は、オートカッターにより、内層回路基板にプリプレグを仮付けし、プリプレグが仮付けされた内層回路基板が真空ラミネーターの真空チャンバー内に搬送され、通常、真空チャンバー内で所定の真空度に到達した後、加熱されたSUS鏡板等の金属板を、耐熱ゴム等の弾性材を介して、支持体側からプレスすることにより行うことができる(国際公開第2009/35014号パンフレット等参照)。 Lamination using a vacuum laminator is performed by temporarily attaching a prepreg to an inner layer circuit board by an auto cutter, and the inner layer circuit board on which the prepreg is temporarily attached is conveyed into a vacuum chamber of the vacuum laminator. Can be performed by pressing a metal plate such as a heated SUS end plate from the support side through an elastic material such as heat-resistant rubber (see International Publication No. 2009/35014 pamphlet, etc.).
 積層時の加熱温度は、プリプレグと内層回路基板の接着性を高めるという観点、平滑化を向上させるという観点から、60℃以上が好ましく、75℃以上がより好ましく、90℃以上が更に好ましく、105℃以上が更に一層好ましい。また、ラミネーター装置に用いられる搬送PETの耐熱性の観点、膜厚均一性を得る観点、硬化性樹脂組成物の染み出しを防止するという観点から、160℃以下が好ましく、150℃以下がより好ましく、140℃以下が更に好ましく、130℃以下が更に一層好ましい。 The heating temperature at the time of lamination is preferably 60 ° C. or higher, more preferably 75 ° C. or higher, still more preferably 90 ° C. or higher, from the viewpoint of improving the adhesion between the prepreg and the inner circuit board and improving smoothness. More preferably, the temperature is higher than or equal to ° C. Also, from the viewpoint of heat resistance of the transport PET used in the laminator apparatus, from the viewpoint of obtaining film thickness uniformity, and from the viewpoint of preventing the curable resin composition from exuding, it is preferably 160 ° C or lower, more preferably 150 ° C or lower. 140 ° C. or lower is more preferable, and 130 ° C. or lower is still more preferable.
 積層時の時間(金属板によるプレス時間)は、樹脂を十分に流動させるという観点から、10秒間以上が好ましく、15秒間以上がより好ましく、20秒間以上が更に好ましく、25秒間以上が更に一層好ましい。また、生産性向上の観点から、300秒間以下が好ましく、250秒間以下がより好ましく、200秒間以下が更に好ましく、150秒間以下が更に一層好ましく、100秒間以下が殊更好ましく、50秒間以下が特に好ましい。 The time during lamination (pressing time with a metal plate) is preferably 10 seconds or longer, more preferably 15 seconds or longer, further preferably 20 seconds or longer, and even more preferably 25 seconds or longer, from the viewpoint of sufficiently flowing the resin. . From the viewpoint of improving productivity, it is preferably 300 seconds or shorter, more preferably 250 seconds or shorter, still more preferably 200 seconds or shorter, even more preferably 150 seconds or shorter, even more preferably 100 seconds or shorter, particularly preferably 50 seconds or shorter. .
 積層時の真空度は、効率的に積層工程を実施し得る観点から、0.001kPa以上が好ましく、0.003kPa以上がより好ましく、0.005kPa以上が更に好ましく、0.007kPa以上が更に一層好ましく、0.01kPa以上が特に好ましい。また、絶縁層への空気の侵入を防いでボイドの発生を抑制するという観点、アンジュレーションを低減させるという観点から、0.40kPa以下が好ましく、0.27kPa以下がより好ましく、0.13kPa以下が更に好ましく、0.11kPa以下が更に一層好ましく、0.080kPa以下が殊更好ましく、0.053kPa以下が特に好ましく、0.035kPa以下又は0.027kPa以下がとりわけ好ましい。
 なお、上記所定の真空度への到達時間(以下、「真空到達時間」という。)は、絶縁層中のボイド発生を抑制する観点から、15秒間以下であり、好ましくは14秒間以下、より好ましくは12秒間以下、更に好ましくは10秒間以下、更により好ましくは8秒間以下、特に好ましくは6秒間以下である。真空到達時間は、真空ラミネーターにおいて、真空チャンバーを閉じて真空度が低下し始める時点から所定の真空度に到達する時点までの経過時間をいう。
The vacuum during lamination is preferably 0.001 kPa or more, more preferably 0.003 kPa or more, still more preferably 0.005 kPa or more, and even more preferably 0.007 kPa or more, from the viewpoint of efficiently performing the lamination process. 0.01 kPa or more is particularly preferable. In addition, from the viewpoint of preventing air from entering the insulating layer and suppressing the generation of voids, and from the viewpoint of reducing undulation, it is preferably 0.40 kPa or less, more preferably 0.27 kPa or less, and 0.13 kPa or less. More preferably, 0.11 kPa or less is even more preferable, 0.080 kPa or less is particularly preferable, 0.053 kPa or less is particularly preferable, and 0.035 kPa or less or 0.027 kPa is particularly preferable.
The time to reach the predetermined degree of vacuum (hereinafter referred to as “vacuum arrival time”) is 15 seconds or less, preferably 14 seconds or less, more preferably from the viewpoint of suppressing the generation of voids in the insulating layer. Is 12 seconds or less, more preferably 10 seconds or less, even more preferably 8 seconds or less, and particularly preferably 6 seconds or less. The vacuum arrival time refers to the elapsed time from the time when the vacuum chamber is closed and the degree of vacuum starts to drop until the predetermined vacuum degree is reached in the vacuum laminator.
 積層時の加圧は、硬化性樹脂組成物を流動させて配線パターン間に埋め込み、内層回路基板との密着性を向上させるという観点から、1kgf/cm以上が好ましく、1.5kgf/cm以上がより好ましく、2kgf/cm以上が更に好ましく、3kgf/cm以上が更に一層好ましい。また、硬化性樹脂組成物のしみだしを防止し、膜厚の均一な絶縁層を得るという観点から、16kgf/cm以下が好ましく、13kgf/cm以下がより好ましく、11kgf/cm以下が更に好ましく、9kgf/cm以下が更に一層好ましく、7kgf/cm以下が殊更好ましい。 The pressurization at the time of lamination is preferably 1 kgf / cm 2 or more from the viewpoint of flowing the curable resin composition and embedding between the wiring patterns to improve the adhesion with the inner circuit board, and 1.5 kgf / cm 2. The above is more preferable, 2 kgf / cm 2 or more is more preferable, and 3 kgf / cm 2 or more is even more preferable. Also, to prevent the oozing of the curable resin composition, from the viewpoint of obtaining a uniform insulating layer having a thickness, preferably 16 kgf / cm 2 or less, more preferably 13 kgf / cm 2 or less, is 11 kgf / cm 2 or less More preferably, 9 kgf / cm 2 or less is even more preferable, and 7 kgf / cm 2 or less is even more preferable.
 このように、本発明においては、(A)工程において、プリプレグの構成を制御し、かつ真空積層方法をも制御することによって、プリプレグを使用して、ボイドを抑制し、ガラス転移温度が高く線熱膨張係数が低い、均一な膜厚を有する絶縁層を内層回路基板上に形成することができる。したがって本発明の方法によれば、十分な剛性を有しつつ薄層化された多層プリント配線板を製造することができる。
 詳細には、上述の特定の構成を有するプリプレグを備えた支持体付きプリプレグを、積層時の真空度が0.001~0.40kPa、真空到達時間が15秒間以下、積層時の加圧が1~16kgf/cm、積層時の加熱温度が60~160℃、積層時の時間が10~300秒間である特定の真空積層方法により内層回路基板に積層することにより、ボイドを抑制し、ガラス転移温度が高く線熱膨張係数が低い、均一な膜厚を有する絶縁層を内層回路基板上に形成することができ、その結果、十分な剛性を有しつつ薄層化された多層プリント配線板を製造することができる。
Thus, in the present invention, in the step (A), by controlling the configuration of the prepreg and also controlling the vacuum lamination method, the prepreg is used to suppress voids, and the glass transition temperature is high. An insulating layer having a low thermal expansion coefficient and a uniform film thickness can be formed on the inner circuit board. Therefore, according to the method of the present invention, it is possible to produce a multilayer printed wiring board that has a sufficient rigidity and is thinned.
Specifically, a prepreg with a support provided with a prepreg having the above-described specific configuration has a degree of vacuum of 0.001 to 0.40 kPa at the time of lamination, a vacuum arrival time of 15 seconds or less, and a pressure of 1 at the time of lamination. By laminating on the inner circuit board by a specific vacuum laminating method that is ~ 16kgf / cm 2 , heating temperature during lamination is 60 ~ 160 ° C, and lamination time is 10 ~ 300 seconds, voids are suppressed and glass transition An insulating layer having a uniform film thickness with a high temperature and a low coefficient of linear thermal expansion can be formed on the inner layer circuit board. As a result, a multilayer printed wiring board having a sufficient rigidity and a thin layer can be obtained. Can be manufactured.
 <(B)工程>
 (B)工程は、プリプレグを熱硬化して絶縁層を形成する工程である。(A)工程の後に(B)工程を行うことで、内層回路基板上に絶縁層を形成することができる。なかでも、加熱オーブンを用いてプリプレグを熱硬化して絶縁層を形成することにより、多層プリント配線板の絶縁層の耐熱性、ガラス転移温度を向上させることができる。さらに、プリプレグを加熱オーブン内で垂直状態に配置し、熱硬化して絶縁層を形成することにより、一度に多くの枚数を加熱オーブン内に投入することができ、(A)工程から(B)工程への連続的でスムーズな作業を可能とし、生産性向上に寄与する。加熱オーブンとして、例えば、クリーンオーブン(ヤマト科学(株)製「クリーンオーブンDE610」)等を用いることができる。
<(B) Process>
(B) A process is a process of thermosetting a prepreg and forming an insulating layer. By performing the step (B) after the step (A), an insulating layer can be formed on the inner layer circuit board. Especially, the heat resistance of the insulating layer of a multilayer printed wiring board and a glass transition temperature can be improved by thermosetting a prepreg using a heating oven to form an insulating layer. Furthermore, by placing the prepreg in a vertical state in a heating oven and thermosetting to form an insulating layer, a large number of sheets can be put into the heating oven at one time. From step (A) to (B) It enables continuous and smooth work on the process, contributing to productivity improvement. As the heating oven, for example, a clean oven (“Clean Oven DE610” manufactured by Yamato Scientific Co., Ltd.) or the like can be used.
 [硬化方法]
 熱硬化時の温度は、硬化性樹脂組成物の熱分解を防ぐという観点から、250℃以下が好ましく、240℃以下がより好ましく、230℃以下が更に好ましく、220℃以下が更に一層好ましく、210℃以下が殊更好ましい。また、硬化性樹脂組成物の熱硬化を十分行うという観点から、150℃以上が好ましく、160℃以上がより好ましく、170度以上が更に好ましく、180℃以上が更に一層好ましく、190℃以上が殊更好ましい。
[Curing method]
From the viewpoint of preventing thermal decomposition of the curable resin composition, the temperature during thermosetting is preferably 250 ° C. or lower, more preferably 240 ° C. or lower, still more preferably 230 ° C. or lower, even more preferably 220 ° C. or lower, 210 It is particularly preferable that the temperature is not higher than ° C. Further, from the viewpoint of sufficient heat curing of the curable resin composition, 150 ° C. or higher is preferable, 160 ° C. or higher is more preferable, 170 ° C. or higher is further preferable, 180 ° C. or higher is even more preferable, and 190 ° C. or higher is particularly high. preferable.
 熱硬化時の時間は、硬化性樹脂組成物の熱分解を防ぐという観点から、300分間以下が好ましく、180分間以下がより好ましく、120分間以下が更に好ましく、110分間以下が更に一層好ましく、100分間以下が殊更好ましい。また、硬化性樹脂組成物の熱硬化を十分行うという観点から、30分間以上が好ましく、60分間以上がより好ましく、70分間以上が更に好ましく、80分間以上が更に一層好ましい。 The time for thermosetting is preferably 300 minutes or less, more preferably 180 minutes or less, still more preferably 120 minutes or less, and even more preferably 110 minutes or less, from the viewpoint of preventing thermal decomposition of the curable resin composition. Particularly preferred are minutes or less. Further, from the viewpoint of sufficiently curing the curable resin composition, it is preferably 30 minutes or longer, more preferably 60 minutes or longer, still more preferably 70 minutes or longer, and even more preferably 80 minutes or longer.
 絶縁層の線熱膨張係数の上限値は、チップ等の実装性向上という観点から、15ppm以下が好ましく、15ppm未満がより好ましく、13ppm以下が更に好ましく、11ppm以下が更により好ましく、10ppm以下が更に一層好ましく、9.5ppm以下が殊更好ましく、9ppm以下が特に好ましく、8.5ppm以下がとりわけ好ましい。本発明によれば、線熱膨張係数が8ppm未満と極めて低い絶縁層であっても実現することもできる。線熱膨張係数の下限値は、特に制限は無いが、一般的に1ppm以上となる。 The upper limit value of the linear thermal expansion coefficient of the insulating layer is preferably 15 ppm or less, more preferably less than 15 ppm, still more preferably 13 ppm or less, still more preferably 11 ppm or less, and even more preferably 10 ppm or less, from the viewpoint of improving mountability of chips and the like. More preferably, 9.5 ppm or less is particularly preferred, 9 ppm or less is particularly preferred, and 8.5 ppm or less is particularly preferred. According to the present invention, even an insulating layer having an extremely low linear thermal expansion coefficient of less than 8 ppm can be realized. The lower limit of the linear thermal expansion coefficient is not particularly limited, but is generally 1 ppm or more.
 絶縁層のガラス転移温度の下限値は、絶縁層のクラックを防止し、高温時の反り低減によるチップ等の実装性向上という観点から、181℃以上が好ましく、183℃以上がより好ましく、185℃以上が更に好ましい。そして、絶縁層のガラス転移温度の上限値は、特に制限は無いが、一般的に270℃以下となる。 The lower limit of the glass transition temperature of the insulating layer is preferably 181 ° C. or higher, more preferably 183 ° C. or higher, and 185 ° C. from the viewpoint of preventing cracking of the insulating layer and improving the mountability of chips and the like by reducing warpage at high temperatures. The above is more preferable. The upper limit of the glass transition temperature of the insulating layer is not particularly limited, but is generally 270 ° C. or lower.
 また、(B)工程においては、多層プリント配線板を耐熱治具で固定してプリプレグを熱硬化し、硬化後に治具の内側の多層プリント配線板を切り出す方法を採用することが更に好ましい。これにより多層プリント配線板を、しわのない平滑な状態にして外観を良好に保つことができる。耐熱治具で固定する方法としては、例えば、多層プリント配線板の4辺の内の少なくとも2辺を耐熱治具で固定する方法、多層プリント配線板の上部2端を挟んで自重で吊るす方法、多層プリント配線板を耐熱治具によって四辺から5mm幅の全ての部分を固定する方法などが挙げられる。なお、(B)工程においていう多層プリント配線板とは、(A)工程においてプリプレグが積層された内層回路基板をいう。 In the step (B), it is more preferable to employ a method in which the multilayer printed wiring board is fixed with a heat-resistant jig, the prepreg is thermally cured, and the multilayer printed wiring board inside the jig is cut out after curing. Thereby, a multilayer printed wiring board can be made into a smooth state without a wrinkle, and an external appearance can be kept favorable. As a method of fixing with a heat-resistant jig, for example, a method of fixing at least two of the four sides of the multilayer printed wiring board with a heat-resistant jig, a method of hanging by its own weight across the upper two ends of the multilayer printed wiring board, For example, a method of fixing all parts of the multilayer printed wiring board with a width of 5 mm from the four sides by a heat-resistant jig can be mentioned. In addition, the multilayer printed wiring board as used in the (B) process means an inner layer circuit board on which the prepreg is laminated in the (A) process.
 <(C)工程>
 本発明の製造方法は、更に(C)支持体を剥離する工程((C)工程)を含んでもよい。これにより絶縁層表面を露出させ、他の工程に進むことができる。(C)工程は、(B)工程の前に行ってもよく、(B)工程の後に行っても良いが、絶縁層の平滑性向上という点から、(B)工程の後に行うことが好ましい。支持体がプラスチックフィルムの場合は、支持体の剥離は手動または自動剥離装置により機械的に除去することによって行うことができる。また、支持体が金属箔の場合は、エッチング液などにより金属箔を溶解して、支持体を剥離、除去することができる。
<Process (C)>
The production method of the present invention may further include (C) a step of peeling the support (step (C)). As a result, the surface of the insulating layer can be exposed to proceed to another process. The step (C) may be performed before the step (B) or may be performed after the step (B), but is preferably performed after the step (B) from the viewpoint of improving the smoothness of the insulating layer. . When the support is a plastic film, the support can be peeled manually or by mechanical removal with an automatic peeling device. When the support is a metal foil, the support can be peeled and removed by dissolving the metal foil with an etching solution or the like.
 <(D)工程>
 本発明の製造方法は、更に(D)ビアホールを形成する工程((D)工程)を含んでもよい。これにより、絶縁層の層間の導通を行うことができる。(D)工程は、目的が達成される限り特に制限はなく、公知の方法によりビアホールの形成を行うことができる。例えば、機械ドリル、あるいは炭酸ガスレーザー、YAGレーザー等のレーザーを用いることができる。また、(D)工程は、(B)工程の後に行うのが好ましい。また、(D)工程は、(C)工程の前に行ってもよく、(C)工程の後に行っても良いが、(C)工程の前に行うことが好ましい。こうすることで、ビア形状を良好に保つことができる。
<(D) Process>
The manufacturing method of the present invention may further include (D) a step of forming a via hole ((D) step). Thereby, conduction between the layers of the insulating layer can be performed. The step (D) is not particularly limited as long as the object is achieved, and a via hole can be formed by a known method. For example, a mechanical drill or a laser such as a carbon dioxide laser or a YAG laser can be used. The step (D) is preferably performed after the step (B). Moreover, although (D) process may be performed before (C) process and may be performed after (C) process, it is preferable to perform before (C) process. By doing so, the via shape can be kept good.
 <(E)工程>
 本発明の製造方法は、更に(E)デスミア工程((E)工程)を含んでもよい。これにより、絶縁層表面を粗化処理し、メッキ密着性を向上させ得ると共に、ビアホール内の樹脂残渣を除去することができる。(E)工程はプラズマ処理等のドライ法、酸化剤処理等のウエット法など公知の方法を用いることができるが、酸化剤処理が好ましい。(E)工程において酸化剤処理を行う場合は、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に行うのが好ましい。膨潤液としては特に制限はないが、例えば、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液である。該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液が好ましい。市販されている膨潤液としては、例えば、アトテックジャパン(株)製のスウェリング・ディップ・セキュリガンスP(Swelling Dip Securiganth P)、スウェリング・ディップ・セキュリガンスSBU(Swelling Dip Securiganth SBU)等を挙げることができる。膨潤液による膨潤処理は、特に制限はないが、作業性向上、樹脂が膨潤されすぎないようにする点から、絶縁層表面に50~80℃の膨潤液を1~15分間付すことで行うのが好ましい。酸化剤としては特に制限はないが、例えば、水酸化ナトリウム水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液を挙げることができる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、絶縁層表面を60~80℃に加熱した酸化剤溶液に10~30分間付すことで行うのが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5~10質量%とするのが好ましい。市販されている酸化剤としては、例えば、アトテックジャパン(株)製のコンセントレート・コンパクト CP、ドージングソリューション セキュリガンスP等のアルカリ性過マンガン酸溶液が挙げられる。また、中和液としては特に制限はないが、酸性の水溶液が好ましく、市販品としては、アトテックジャパン(株)製のリダクションショリューシン・セキュリガントP(中和液)が挙げられる。中和液による処理は、酸化剤溶液による粗化処理がなされた処理面に30~60℃の中和液を5~20分間付す方法を用いることができる。(E)工程は、(C)工程及び(D)工程の後に行うことが好ましい。こうすることで、絶縁層表面やビア壁面の粗化処理を行うこができ、ビア内の樹脂残渣を除去することが可能となる。
<(E) Process>
The production method of the present invention may further include (E) a desmear process ((E) process). Thereby, the surface of the insulating layer can be roughened to improve the plating adhesion, and the resin residue in the via hole can be removed. In the step (E), a known method such as a dry method such as plasma treatment or a wet method such as oxidant treatment can be used, but oxidant treatment is preferable. (E) When performing an oxidizing agent process in a process, it is preferable to perform the swelling process by a swelling liquid, the roughening process by an oxidizing agent, and the neutralization process by a neutralization liquid in this order. Although there is no restriction | limiting in particular as swelling liquid, For example, an alkaline solution, surfactant solution, etc. are mentioned, Preferably it is an alkaline solution. The alkaline solution is preferably a sodium hydroxide solution or a potassium hydroxide solution. Examples of commercially available swelling liquids include Swelling Dip Securigans P (Swelling Dip Securigans SBU) and Swelling Dip Securigans SBU manufactured by Atotech Japan Co., Ltd. be able to. The swelling treatment with the swelling liquid is not particularly limited, but is performed by applying a swelling liquid of 50 to 80 ° C. to the insulating layer surface for 1 to 15 minutes from the viewpoint of improving workability and preventing the resin from being excessively swollen. Is preferred. Although there is no restriction | limiting in particular as an oxidizing agent, For example, the alkaline permanganate solution which melt | dissolved potassium permanganate and sodium permanganate in sodium hydroxide aqueous solution can be mentioned. Roughening treatment with an oxidizing agent such as an alkaline permanganic acid solution is preferably performed by subjecting the surface of the insulating layer to an oxidizing agent solution heated to 60 to 80 ° C. for 10 to 30 minutes. The concentration of permanganate in the alkaline permanganic acid solution is preferably 5 to 10% by mass. Examples of commercially available oxidizing agents include alkaline permanganic acid solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan. Moreover, there is no restriction | limiting in particular as a neutralization liquid, However, An acidic aqueous solution is preferable, As a commercial item, Atotech Japan Co., Ltd. reduction shorysin securigant P (neutralization liquid) is mentioned. For the treatment with the neutralizing solution, a method of applying a neutralizing solution at 30 to 60 ° C. for 5 to 20 minutes to the treated surface that has been roughened with an oxidizing agent solution can be used. The step (E) is preferably performed after the step (C) and the step (D). By doing so, the surface of the insulating layer and the via wall surface can be roughened, and the resin residue in the via can be removed.
 <(F)工程>
 本発明の製造方法は、更に(F)メッキにより導体層を形成する工程((F)工程)含んでもよい。(F)工程は、公知の方法により行うことができる。例えば、無電解メッキと電解メッキとを組み合わせて導体層を形成することができる。あるいはまた、導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、当業者に公知のサブトラクティブ法、セミアディティブ法などを用いることができる。導体層に用いる導体としては、例えば、銅、ニッケル、金、パラジウム等が挙げられるが、銅が特に好ましい。
<(F) Process>
The manufacturing method of the present invention may further include (F) a step of forming a conductor layer by plating ((F) step). (F) A process can be performed by a well-known method. For example, the conductor layer can be formed by combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a subsequent pattern formation method, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used. Examples of the conductor used for the conductor layer include copper, nickel, gold, and palladium, and copper is particularly preferable.
 本発明の製造方法では、適宜上述した工程を繰り返すことで、多層プリント配線板を作製することができる。なお、本発明はビルドアップに適した方法であり、最外層のソルダーレジストも、ビルドアップの一部であるので、適用可能である。 In the production method of the present invention, a multilayer printed wiring board can be produced by appropriately repeating the above-described steps. Note that the present invention is a method suitable for build-up, and the outermost solder resist is also part of the build-up, and therefore can be applied.
 <半導体装置>
 本発明の半導体装置の製造方法を説明する。本発明の多層プリント配線板上の接続用電極部分に半導体素子を接合することにより、半導体装置を製造する。半導体素子の搭載方法は、特に限定されないが、例えば、ワイヤボンディング実装、フリップチップ実装、異方性導電フィルム(ACF)による実装、非導電性フィルム(NCF)による実装などが挙げられる。本発明の多層プリント配線板は、ビルドアップ層がプリプレグで構成され、剛性の高い多層プリント配線板となっており、半導体チップの実装性が高く、半導体装置に好適に用いることができる。
<Semiconductor device>
A method for manufacturing a semiconductor device of the present invention will be described. A semiconductor device is manufactured by bonding a semiconductor element to the connection electrode portion on the multilayer printed wiring board of the present invention. The mounting method of the semiconductor element is not particularly limited, and examples thereof include wire bonding mounting, flip chip mounting, mounting with an anisotropic conductive film (ACF), mounting with a non-conductive film (NCF), and the like. The multilayer printed wiring board of the present invention has a build-up layer made of a prepreg and is a highly rigid multilayer printed wiring board, has a high mountability of a semiconductor chip, and can be suitably used for a semiconductor device.
 以下、実施例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって何等限定されるものではない。なお、以下の記載中の「部」は「質量部」を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. In the following description, “part” means “part by mass”.
 まず、本明細書での物性評価における測定方法・評価方法について説明する。 First, the measurement method and evaluation method in the physical property evaluation in this specification will be described.
 <線熱膨張係数の測定及び評価>
 実施例及び比較例において作製したプリプレグを、500mmx500mmの大きさに裁断機で裁断した。該プリプレグよりも大きな面積を有する銅箔(三井金属鉱業(株)製 MT18Ex)2枚の間にプリプレグを配し、(株)ニチゴー・モートン製ラミネーター(2ステージビルドアップラミネーター CVP7200)を用いて、各実施例及び比較例の真空ラミネート又は真空プレスと同様の条件にて積層し、同様の条件でプリプレグを熱硬化した。その後、銅箔を塩化鉄(II)水溶液(鶴見曹達(株)製、ボーメ度40)中に浸漬して銅箔を除去し、硬化物サンプルを得た。その硬化物サンプルを、幅約5mm、長さ約15mmの試験片に切断し、熱機械分析装置Thermo  Plus  TMA8310((株)リガク製)を使用して、引張加重法で熱機械分析を行った。サンプルを前記装置に装着後、荷重1g、昇温速度5℃/分の測定条件にて連続して2回測定した。2回目の測定における25℃から150℃までの温度範囲における平均の線熱膨張係数(ppm)を算出した。線熱膨張係数の値が、8ppm未満の場合を「◎」、8ppm以上12ppm未満を「○」、12ppm以上15ppm未満を「△」、15ppm以上を「×」と評価した。
<Measurement and evaluation of linear thermal expansion coefficient>
The prepregs produced in the examples and comparative examples were cut into a size of 500 mm × 500 mm with a cutting machine. A prepreg was placed between two copper foils (MT18Ex manufactured by Mitsui Mining & Smelting Co., Ltd.) having a larger area than the prepreg, and a laminator manufactured by Nichigo Morton Co., Ltd. (2-stage buildup laminator CVP7200) was used. Lamination was performed under the same conditions as the vacuum lamination or vacuum press of each example and comparative example, and the prepreg was thermoset under the same conditions. Thereafter, the copper foil was immersed in an aqueous iron (II) chloride solution (manufactured by Tsurumi Soda Co., Ltd., Baume degree 40) to remove the copper foil, thereby obtaining a cured product sample. The cured product sample was cut into a test piece having a width of about 5 mm and a length of about 15 mm, and thermomechanical analysis was performed by a tensile load method using a thermomechanical analyzer Thermo Plus TMA8310 (manufactured by Rigaku Corporation). . After the sample was mounted on the apparatus, it was measured twice in succession under measurement conditions of a load of 1 g and a heating rate of 5 ° C./min. The average linear thermal expansion coefficient (ppm) in the temperature range from 25 ° C. to 150 ° C. in the second measurement was calculated. The case where the value of linear thermal expansion coefficient was less than 8 ppm was evaluated as “◎”, 8 ppm or more but less than 12 ppm as “◯”, 12 ppm or more but less than 15 ppm as “Δ”, and 15 ppm or more as “×”.
 <ガラス転移温度の測定及び評価>
 上記の硬化物サンプルを、幅5mm、長さ15mmの試験片に切断し、動的粘弾性測定装置(SIIナノテクノロジー(株)製 EXSTAR6000)を使用して引張加重法で熱機械分析を行った。サンプルを前記装置に装着後、荷重200mN、昇温速度2℃/分の測定条件にて連続して2回測定した。2回目の測定における寸法変化シグナルの傾きが変化する点からガラス転移温度(℃)を算出した。ガラス転移温度の値が、185℃以上を「○」、185℃未満を「×」と評価した。
<Measurement and evaluation of glass transition temperature>
The cured material sample was cut into a test piece having a width of 5 mm and a length of 15 mm, and thermomechanical analysis was performed by a tensile load method using a dynamic viscoelasticity measuring apparatus (EXSTAR6000 manufactured by SII Nanotechnology Co., Ltd.). . After mounting the sample on the apparatus, the measurement was performed twice continuously under the measurement conditions of a load of 200 mN and a heating rate of 2 ° C./min. The glass transition temperature (° C.) was calculated from the point at which the slope of the dimensional change signal in the second measurement changed. A glass transition temperature value of 185 ° C. or higher was evaluated as “◯” and less than 185 ° C. was evaluated as “X”.
 <膜厚均一性の評価>
 実施例及び比較例において作製した多層プリント配線板から、支持体を剥離(除去)した。その後、絶縁層表面を200mmx200mmの試験片に切断し、光干渉型表面粗度・表面形状測定装置(日本Veeco(株)製 Wyko NT9300)用いて表面状態を観察し、アンジュレーションが3μm未満の場合を「◎○」、3μm以上5μm未満の場合を「◎」、5μm以上7μm未満の場合を「○」、7μm以上9μm未満の場合を「△」、9μm以上の場合を「×」と評価した。
<Evaluation of film thickness uniformity>
The support was peeled off (removed) from the multilayer printed wiring boards produced in the examples and comparative examples. After that, when the surface of the insulating layer is cut into 200 mm × 200 mm test pieces and the surface state is observed using an optical interference type surface roughness / surface shape measuring device (Wyko NT9300, manufactured by Veeco Japan), the undulation is less than 3 μm. Was evaluated as “◎” when 3 μm or more and less than 5 μm, “◯” when 5 μm or more but less than 7 μm, “Δ” when 7 μm or more but less than 9 μm, and “×” when 9 μm or more. .
 <外観の評価>
 実施例及び比較例において作製した多層プリント配線板から、支持体を剥離(除去)した。その後、絶縁層表面を200mmx200mmの試験片に切断し、マイクロスコープ(KEYENCE(株)製 マイクロスコープVH-5500)を用いて表面状態を観察し、試験片のうちボイドが0個の場合は「◎」、1~3個の場合は「○」、4~6個の場合は「△」、7個以上あれば「×」と評価した。
<Appearance evaluation>
The support was peeled off (removed) from the multilayer printed wiring boards produced in the examples and comparative examples. Thereafter, the surface of the insulating layer is cut into a 200 mm × 200 mm test piece, and the surface state is observed using a microscope (Microscope VH-5500, manufactured by KEYENCE Co., Ltd.). The evaluation was “◯” for 1 to 3 pieces, “Δ” for 4 to 6 pieces, and “×” for 7 or more pieces.
 <実施例1>
 (1)支持体付きプリプレグの作製
 液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、三菱化学(株)製「エピコート828EL」)20部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、DIC(株)製「HP4710」)25部、フェノキシ樹脂(ジャパンエポキシレジン(株)製「YL7553BH30」)5部とをMEK15部、シクロヘキサノン15部に撹拌しながら加熱溶解させた。そこへ、トリアジン骨格含有フェノールノボラック樹脂(水酸基当量125、DIC(株)製「LA7054」、窒素含有量約12重量%)の固形分60重量%のMEK溶液15部、ナフトール系硬化剤(水酸基当量215、東都化成(株)製「SN-485」)の固形分60重量%のMEK溶液15部、ナフトール系硬化剤(水酸基当量153、DIC(株)製「EXB―9500」)の固形分50重量%のMEK溶液5部、反応型難燃剤(水酸基当量162、(株)三光製「HCA-HQ」、リン含有量9.5%)10部、球形シリカ(平均粒径0.5μm、(株)アドマテックス製「SOC2」、アミノシラン処理付き)250部、ポリビニルブチラール樹脂(積水化学工業(株)製「KS-1」)の固形分15重量%のエタノールとトルエンの1:1溶液5部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。該ワニスを、(株)有沢製作所製1067ガラスクロス(厚み33μm)に含浸し、縦型乾燥炉にて130℃で5分間乾燥させプリプレグを作製した。プリプレグの残留溶剤量はガラスクロスを含まない硬化性樹脂組成物中0.1~2質量%、プリプレグ中の硬化性樹脂組成物含有率は42質量%、プリプレグの厚みは48μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.69、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.8であった。その後、厚み38μmのPETフィルム(リンテック(株)製AL5)の離型面と、厚さ15μmのポリプロピレンフィルムとの間にプリプレグを配置し、(株)ニチゴー・モートン製ラミネーター(2ステージビルドアップラミネーター CVP7200)を用いて、貼り合わせながらロール状に巻き取り、ロール状に巻き取られた支持体付きプリプレグを作製した。
<Example 1>
(1) Preparation of prepreg with support 20 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, DIC Corporation) 25 parts of “HP4710”) and 5 parts of phenoxy resin (“YL7553BH30” manufactured by Japan Epoxy Resin Co., Ltd.) were dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring. Thereto, 15 parts of a MEK solution having a solid content of 60% by weight of a triazine skeleton-containing phenol novolak resin (hydroxyl equivalent 125, “LA7054” manufactured by DIC Corporation, nitrogen content approximately 12% by weight), naphthol-based curing agent (hydroxyl equivalent) 215, 15 parts of MEK solution with a solid content of 60% by weight of “SN-485” manufactured by Tohto Kasei Co., Ltd., solid content of naphthol-based curing agent (hydroxyl equivalent 153, “EXB-9500” manufactured by DIC Corporation) 50 5 parts by weight MEK solution, 10 parts of reactive flame retardant (hydroxyl equivalent 162, “HCA-HQ” manufactured by Sanko Co., Ltd., phosphorus content 9.5%), spherical silica (average particle size 0.5 μm, ( 250 parts by weight of “SOC2” manufactured by Admatechs Co., Ltd., with aminosilane treatment, ethanol with a solid content of 15% by weight of polyvinyl butyral resin (“KS-1” manufactured by Sekisui Chemical Co., Ltd.) Toluene of 1: 1 solution 5 parts were mixed and uniformly dispersed in a high-speed rotary mixer to prepare a resin varnish. The varnish was impregnated into 1067 glass cloth (thickness 33 μm) manufactured by Arisawa Manufacturing Co., Ltd., and dried at 130 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg. The residual solvent amount of the prepreg is 0.1 to 2% by mass in the curable resin composition not containing glass cloth, the content of the curable resin composition in the prepreg is 42% by mass, the thickness of the prepreg is 48 μm, and the thickness of the prepreg is The thickness of the sheet-like fiber base material when set to 1 was 0.69, and the content ratio of the sheet-like fiber base material and the inorganic filler in the prepreg was 1.8. After that, a prepreg was placed between the release surface of a PET film having a thickness of 38 μm (AL5 manufactured by Lintec Corporation) and a polypropylene film having a thickness of 15 μm, and a laminator manufactured by Nichigo Morton Co., Ltd. (two-stage buildup laminator). CVP7200) was used to wind up into a roll while bonding, and a prepreg with a support wound into a roll was produced.
 (2)内層回路基板の作製 
 ガラス布基材エポキシ樹脂両面銅張積層板[銅箔の厚さ18μm、基板厚み0.2mm、松下電工(株)製R1515A]の両面にエッチングにより配線パターンを形成し、さらにマイクロエッチング剤(メック(株)製CZ8100)で粗化処理を行い、内層回路基板を作製した。
(2) Production of inner layer circuit board
A wiring pattern is formed on both sides of a glass cloth base epoxy resin double-sided copper-clad laminate [copper foil thickness 18 μm, substrate thickness 0.2 mm, Matsushita Electric Works R1515A], and a microetching agent (MEC A roughening process was performed with CZ8100 manufactured by Co., Ltd. to produce an inner layer circuit board.
 (3)支持体付きプリプレグのラミネート
 支持体付きプリプレグを、保護フィルムを剥離し、順次連続的に(株)ニチゴー・モートン製ラミネーター(2ステージビルドアップラミネーター CVP7200)に供給し、上記(2)で作製した内層回路基板の両面に、ラミネートした。積層時の真空度0.05kPa、真空到達時間5秒間、加圧7kgf/cm、温度120℃のラミネート条件で30秒間ラミネートして積層した。真空引き時間は0.5分間であった。
(3) Lamination of the prepreg with the support The prepreg with the support is peeled off the protective film, and sequentially supplied to the Nichigo-Morton laminator (2-stage build-up laminator CVP7200) in the above (2). Lamination was performed on both surfaces of the produced inner circuit board. Lamination was carried out for 30 seconds under lamination conditions of a vacuum degree of lamination of 0.05 kPa, a vacuum arrival time of 5 seconds, a pressure of 7 kgf / cm 2 , and a temperature of 120 ° C. The evacuation time was 0.5 minutes.
 (4)硬化性樹脂組成物の硬化
 該基板を耐熱治具によって四辺から5mm幅の全ての部分を固定し、次いで、該基板を垂直状態で加熱オーブン内へ投入し、大気圧、210℃で90分間熱硬化することで多層プリント配線板を作製した。
(4) Curing of the curable resin composition The substrate is fixed to all parts having a width of 5 mm from the four sides with a heat-resistant jig, and then the substrate is put into a heating oven in a vertical state at an atmospheric pressure of 210 ° C. A multilayer printed wiring board was produced by thermosetting for 90 minutes.
 <実施例2>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は55質量%、プリプレグの厚みは52μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.63、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Example 2>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63. And the content ratio of the inorganic filler was 1.1. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <実施例3>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は65質量%、プリプレグの厚みは55μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.6、プリプレグ中のシート状繊維基材と無機充填材との含有比率は0.7となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Example 3>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 65% by mass, the thickness of the prepreg is 55 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.6. And the content ratio of the inorganic filler became 0.7. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <実施例4>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は75質量%、プリプレグの厚みは63μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.52、プリプレグ中のシート状繊維基材と無機充填材との含有比率は0.4となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Example 4>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 75% by mass, the thickness of the prepreg is 63 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.52. And the content ratio of the inorganic filler became 0.4. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <実施例5>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は55質量%、プリプレグの厚みは52μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.63、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、積層時の加圧を3kgf/cmに変更した以外は実施例1と同様にして多層プリント配線板を作製した。
<Example 5>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63. And the content ratio of the inorganic filler was 1.1. And the multilayer printed wiring board was produced like Example 1 except having changed the pressurization at the time of lamination | stacking into 3 kgf / cm < 2 >.
 <実施例6>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は55質量%、プリプレグの厚みは52μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.63、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、積層時の加圧を15kgf/cmに変更した以外は実施例1と同様にして多層プリント配線板を作製した。
<Example 6>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63. And the content ratio of the inorganic filler was 1.1. And the multilayer printed wiring board was produced like Example 1 except having changed the pressurization at the time of lamination | stacking into 15 kgf / cm < 2 >.
 <実施例7>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は55質量%、プリプレグの厚みは52μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.63、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、積層時の真空度を0.03kPaに変更した以外は実施例1と同様にして多層プリント配線板を作製した。
<Example 7>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63. And the content ratio of the inorganic filler was 1.1. And the multilayer printed wiring board was produced like Example 1 except having changed the vacuum degree at the time of lamination | stacking to 0.03 kPa.
 <実施例8>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた点、およびガラスクロスとして信越石英(株)製、IPC規格で1035タイプの石英ガラスクロス(厚み32μm、Qガラス繊維)を使用した点以外は、実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は55質量%、プリプレグの厚みは45μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.71、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Example 8>
Except for the point that the impregnation amount of the resin varnish into the glass cloth was changed, and the 1035 type quartz glass cloth (thickness 32 μm, Q glass fiber) manufactured by Shin-Etsu Quartz Co., Ltd. and IPC standard as the glass cloth, In the same manner as in Example 1, a prepreg with a support was produced. The content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 45 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.71. And the content ratio of the inorganic filler was 1.1. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <実施例9>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた点、および支持体として銅箔((株)三井金属鉱業製 MT18Ex)を使用した点以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は55質量%、プリプレグの厚みは52μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.63、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Example 9>
A prepreg with a support was prepared in the same manner as in Example 1 except that the amount of resin varnish impregnated into the glass cloth was changed and copper foil (MT18Ex manufactured by Mitsui Mining & Smelting Co., Ltd.) was used as the support. Produced. The content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63. And the content ratio of the inorganic filler was 1.1. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <実施例10>
 液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、三菱化学(株)製「エピコート828EL」)20部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、DIC(株)製「HP4710」)25部を、MEK15部、シクロヘキサノン15部に撹拌しながら加熱溶解させた。そこへ、トリアジン骨格含有フェノールノボラック樹脂(水酸基当量125、DIC(株)製「LA7054」、窒素含有量約12重量%)の固形分60重量%のMEK溶液15部、ナフトール系硬化剤(水酸基当量215、東都化成(株)製「SN-485」)の固形分60重量%のMEK溶液15部、ナフトール系硬化剤(水酸基当量153、DIC(株)製「EXB―9500」)の固形分50重量%のMEK溶液5部、球形シリカ(平均粒径0.05μm、(株)アドマテックス製「YA050C-MJA」)の固形分60重量%MEKスラリー溶液250部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。該ワニスを、(株)有沢製作所製1067ガラスクロス(厚み33μm)に含浸し、縦型乾燥炉にて130℃で5分間乾燥させプリプレグ前駆体を作製した。プリプレグ前駆体の厚みは41μmであった。該プリプレグ前駆体をさらに実施例1の樹脂ワニスに含浸し、縦置き乾燥炉にて130℃で5分間乾燥させ、プリプレグを作製した。最終的なプリプレグの残留溶剤量はガラスクロスを含まない硬化性樹脂組成物中0.1~2質量%、プリプレグ中の硬化性樹脂組成物含有比率は55質量%、プリプレグの厚みは52μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.63、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.0であった。その後、実施例1と同様にして多層プリント配線板を作製した。
<Example 10>
20 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation) and 25 parts of naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, “HP4710” manufactured by DIC Corporation) It was heated and dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring. Thereto, 15 parts of a MEK solution having a solid content of 60% by weight of a triazine skeleton-containing phenol novolak resin (hydroxyl equivalent 125, “LA7054” manufactured by DIC Corporation, nitrogen content approximately 12% by weight), naphthol-based curing agent (hydroxyl equivalent) 215, 15 parts of MEK solution with a solid content of 60% by weight of “SN-485” manufactured by Tohto Kasei Co., Ltd., solid content of naphthol-based curing agent (hydroxyl equivalent 153, “EXB-9500” manufactured by DIC Corporation) 50 Mix 5 parts by weight of MEK solution of 5% and 250 parts of MEK slurry solution of 60% by weight solid content of spherical silica (average particle size 0.05μm, “YA050C-MJA” manufactured by Admatechs Co., Ltd.) To obtain a resin varnish. The varnish was impregnated into 1067 glass cloth (thickness 33 μm) manufactured by Arisawa Manufacturing Co., Ltd. and dried at 130 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg precursor. The thickness of the prepreg precursor was 41 μm. The prepreg precursor was further impregnated into the resin varnish of Example 1, and dried at 130 ° C. for 5 minutes in a vertical drying oven to prepare a prepreg. The final amount of residual solvent of the prepreg is 0.1 to 2% by mass in the curable resin composition not containing glass cloth, the content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 μm, and the prepreg When the thickness of the sheet-like fiber substrate is 1, the thickness of the sheet-like fiber substrate is 0.63, and the content ratio of the sheet-like fiber substrate and the inorganic filler in the prepreg is 1.0. Thereafter, a multilayer printed wiring board was produced in the same manner as in Example 1.
 <実施例11>
 液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、三菱化学(株)製「エピコート828EL」)20部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、DIC(株)製「HP4710」)20部と、ナフチレンエーテル型エポキシ樹脂(エポキシ当量248、DIC(株)製「HP6000」)10部を、MEK15部、シクロヘキサノン15部に撹拌しながら加熱溶解させた。そこへ、トリアジン骨格含有フェノールノボラック樹脂(水酸基当量125、DIC(株)製「LA7054」、窒素含有量約12重量%)の固形分60重量%のMEK溶液15部、ナフトール系硬化剤(水酸基当量215、東都化成(株)製「SN-485」)の固形分60重量%のMEK溶液15部、ナフチレンエーテル型硬化剤(水酸基当量155、DIC(株)製「EXB―6000」)の固形分50重量%のMEK溶液5部、球形シリカ(平均粒径0.05μm、(株)アドマテックス製「YA050C-MJA」)の固形分60重量%MEKスラリー溶液250部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。該ワニスを、(株)有沢製作所製1067ガラスクロス(厚み33μm)に含浸し、縦型乾燥炉にて130℃で5分間乾燥させプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は55質量%、プリプレグの厚みは52μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.63、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Example 11>
20 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation), 20 parts of naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, “HP4710” manufactured by DIC Corporation), 10 parts of a naphthylene ether type epoxy resin (epoxy equivalent 248, “HP6000” manufactured by DIC Corporation) was dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring. Thereto, 15 parts of a MEK solution having a solid content of 60% by weight of a triazine skeleton-containing phenol novolak resin (hydroxyl equivalent 125, “LA7054” manufactured by DIC Corporation, nitrogen content approximately 12% by weight), naphthol-based curing agent (hydroxyl equivalent) 215, 15 parts of MEK solution having a solid content of 60% by weight of “SN-485” manufactured by Toto Kasei Co., Ltd., solid of naphthylene ether type curing agent (hydroxyl equivalent 155, “EXB-6000” manufactured by DIC Corporation) 5 parts by weight of MEK solution of 50% by weight and 250 parts of MEK slurry solution of 60% by weight solid content of spherical silica (average particle size 0.05 μm, “YA050C-MJA” manufactured by Admatechs Co., Ltd.) To uniformly disperse the resin varnish. The varnish was impregnated into 1067 glass cloth (thickness 33 μm) manufactured by Arisawa Manufacturing Co., Ltd., and dried at 130 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg. The content of the curable resin composition in the prepreg is 55% by mass, the thickness of the prepreg is 52 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.63. And the content ratio of the inorganic filler was 1.1. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <実施例12>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた点、およびガラスクロスとして有沢製作所製1015ガラスクロス(厚み15μm)を使用した点以外は、実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は81質量%、プリプレグの厚みは50μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.30、プリプレグ中のシート状繊維基材と無機充填材との含有比率は0.3となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Example 12>
A prepreg with a support is produced in the same manner as in Example 1, except that the amount of resin varnish impregnated into the glass cloth is changed and a 1015 glass cloth (thickness 15 μm) manufactured by Arisawa Seisakusho is used as the glass cloth. did. The content of the curable resin composition in the prepreg is 81% by mass, the thickness of the prepreg is 50 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.30. And the content ratio of the inorganic filler became 0.3. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <実施例13>
 実施例1と同様にして、支持体付きプリプレグを作製した。そして、真空到達時間を10秒間とした以外は実施例1と同様にして多層プリント配線板を作製した。すなわち、積層時の真空度0.05kPa、真空到達時間10秒間、加圧7kgf/cm、温度120℃のラミネート条件で30秒間ラミネートした。真空引き時間は0.75分間とした。
<Example 13>
In the same manner as in Example 1, a prepreg with a support was produced. And the multilayer printed wiring board was produced like Example 1 except having made vacuum arrival time into 10 second. That is, the laminate was laminated for 30 seconds under the lamination conditions of 0.05 kPa during lamination, a vacuum arrival time of 10 seconds, a pressure of 7 kgf / cm 2 , and a temperature of 120 ° C. The evacuation time was 0.75 minutes.
 <実施例14>
 実施例1と同様にして、支持体付きプリプレグを作製した。そして、真空到達時間を15秒間とした以外は実施例1と同様にして多層プリント配線板を作製した。すなわち、積層時の真空度0.05kPa、真空到達時間15秒間、加圧7kgf/cm、温度120℃のラミネート条件で30秒間ラミネートした。真空引き時間は0.75分間とした。
<Example 14>
In the same manner as in Example 1, a prepreg with a support was produced. And the multilayer printed wiring board was produced like Example 1 except having made vacuum arrival time into 15 second. That is, lamination was performed for 30 seconds under a lamination condition of a vacuum degree of 0.05 kPa at the time of lamination, a vacuum arrival time of 15 seconds, a pressure of 7 kgf / cm 2 , and a temperature of 120 ° C. The evacuation time was 0.75 minutes.
 <比較例1>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は65wt%、プリプレグの厚みは55μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.6、プリプレグ中のシート状繊維基材と無機充填材との含有比率は0.7となった。そして、積層時の真空度を101.3kPaに変更した以外は実施例1と同様にして多層プリント配線板を作製した。
<Comparative Example 1>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 65 wt%, the thickness of the prepreg is 55 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is The content ratio with the inorganic filler was 0.7. And the multilayer printed wiring board was produced like Example 1 except having changed the vacuum degree at the time of lamination | stacking to 101.3 kPa.
 <比較例2>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は65wt%、プリプレグの厚みは55μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.6、プリプレグ中のシート状繊維基材と無機充填材との含有比率は0.7となった。そして、積層時の加圧を25kgf/cmに変更した以外は実施例1と同様にして多層プリント配線板を作製した。
<Comparative example 2>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 65 wt%, the thickness of the prepreg is 55 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is The content ratio with the inorganic filler was 0.7. And the multilayer printed wiring board was produced like Example 1 except having changed the pressurization at the time of lamination | stacking into 25 kgf / cm < 2 >.
 <比較例3>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた点、およびガラスクロスとして有沢製作所製1015ガラスクロス(厚み15μm)を使用した点以外は、実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は90質量%、プリプレグの厚みは70μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.21、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Comparative Example 3>
A prepreg with a support is produced in the same manner as in Example 1, except that the amount of resin varnish impregnated into the glass cloth is changed and a 1015 glass cloth (thickness 15 μm) manufactured by Arisawa Seisakusho is used as the glass cloth. did. The content of the curable resin composition in the prepreg is 90% by mass, the thickness of the prepreg is 70 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.21. And the content ratio of the inorganic filler was 1.1. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <比較例4>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は28wt%、プリプレグの厚みは37μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.89、プリプレグ中のシート状繊維基材と無機充填材との含有比率は3.4となった。そして、実施例1と同様にして多層プリント配線板を作製した。
<Comparative Example 4>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 28 wt%, the thickness of the prepreg is 37 μm, and the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1 is 0.89, and the sheet-like fiber substrate in the prepreg The content ratio with the inorganic filler was 3.4. A multilayer printed wiring board was produced in the same manner as in Example 1.
 <比較例5>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は55wt%、プリプレグの厚みは52μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.63、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、積層時の真空度を0.6kPaに変更した以外は実施例1と同様にして多層プリント配線板を作製した。
<Comparative Example 5>
A prepreg with a support was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 55 wt%, the thickness of the prepreg is 52 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the thickness of the sheet-like fiber substrate in the prepreg is 0.63. The content ratio with the inorganic filler was 1.1. And the multilayer printed wiring board was produced like Example 1 except having changed the vacuum degree at the time of lamination | stacking to 0.6 kPa.
 <比較例6>
 (1)支持体付きプリプレグの作製
 ガラスクロスへの樹脂ワニスの含浸量を変化させた以外は実施例1と同様にして、プリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は65wt%、プリプレグの厚みは55μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.6、プリプレグ中のシート状繊維基材と無機充填材との含有比率は0.7となった。その後、銅箔((株)三井金属鉱業製 MT18Ex)の光沢面と、厚さ15μmのポリプロピレンフィルムとの間にプリプレグを配置し、(株)ニチゴー・モートン製ラミネーター(2ステージビルドアップラミネーター CVP7200)を用いて、貼り合わせながらロール状に巻き取り、ロール状に巻き取られた支持体付きプリプレグを作製した。
 (2)内層回路基板の作製
 実施例1と同様にして内層回路基板を作製した。
 (3)支持体付きプリプレグのプレス及び硬化性樹脂組成物の硬化
 支持体付きプリプレグを、保護フィルムを剥離した後、上記(2)で作製した内層回路基板の両面に、真空プレス機((株)名機製作所製 MNPC-V-750-750-5-200)を用いて、プレス時の真空度を1kPa、加圧が10kgf/cm、昇温速度3℃/分で25℃から30分間昇温し115℃とした後、加圧を30kgf/cmとし、115℃から昇温速度3℃/分で230℃まで昇温させて90分間保持することで、多層プリント配線板を作製した。
<Comparative Example 6>
(1) Production of prepreg with support A prepreg was produced in the same manner as in Example 1 except that the amount of the resin varnish impregnated into the glass cloth was changed. The content of the curable resin composition in the prepreg is 65 wt%, the thickness of the prepreg is 55 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is The content ratio with the inorganic filler was 0.7. Thereafter, a prepreg was placed between the glossy surface of copper foil (MT18Ex manufactured by Mitsui Mining & Smelting Co., Ltd.) and a polypropylene film having a thickness of 15 μm, and a laminator manufactured by Nichigo Morton Co., Ltd. (two-stage buildup laminator CVP7200). Was used to prepare a prepreg with a support that was wound into a roll while being bonded together.
(2) Production of inner layer circuit board An inner layer circuit board was produced in the same manner as in Example 1.
(3) Pressing of prepreg with support and curing of curable resin composition After peeling off the protective film, the prepreg with support was peeled off on both sides of the inner layer circuit board prepared in (2) above by using a vacuum press ( ) Using MNPC-V-750-750-5-200 manufactured by Meiki Seisakusho, the degree of vacuum during pressing is 1 kPa, the pressure is 10 kgf / cm 2 , and the heating rate is 3 ° C./min. After the temperature was raised to 115 ° C., the pressure was set to 30 kgf / cm 2 , the temperature was raised from 115 ° C. to 230 ° C. at a rate of temperature rise of 3 ° C./min, and maintained for 90 minutes, thereby producing a multilayer printed wiring board. .
 <比較例7>
 ガラスクロスへの樹脂ワニスの含浸量を変化させた点、およびガラスクロスとして有沢製作所製1015ガラスクロス(厚み15μm)を使用した点以外は、実施例1と同様にして、支持体付きプリプレグを作製した。プリプレグ中の硬化性樹脂組成物含有率は90質量%、プリプレグの厚みは70μm、プリプレグの厚みを1とした場合のシート状繊維基材の厚みは0.21、プリプレグ中のシート状繊維基材と無機充填材との含有比率は1.1となった。そして、比較例6と同様にして多層プリント配線板を作製した。
<Comparative Example 7>
A prepreg with a support is produced in the same manner as in Example 1, except that the amount of resin varnish impregnated into the glass cloth is changed and a 1015 glass cloth (thickness 15 μm) manufactured by Arisawa Seisakusho is used as the glass cloth. did. The content of the curable resin composition in the prepreg is 90% by mass, the thickness of the prepreg is 70 μm, the thickness of the sheet-like fiber substrate when the thickness of the prepreg is 1, and the sheet-like fiber substrate in the prepreg is 0.21. And the content ratio of the inorganic filler was 1.1. And the multilayer printed wiring board was produced like the comparative example 6. FIG.
 <比較例8>
 実施例1と同様にして、支持体付きプリプレグを作製した。そして、真空到達時間を20秒間とした以外は実施例1と同様にして多層プリント配線板を作製した。すなわち、積層時の真空度0.05kPa、真空到達時間20秒間、加圧7kgf/cm、温度120℃のラミネート条件で30秒間ラミネートした。真空引き時間は0.75分間とした。
<Comparative Example 8>
In the same manner as in Example 1, a prepreg with a support was produced. And the multilayer printed wiring board was produced like Example 1 except having made vacuum arrival time into 20 second. That is, lamination was performed for 30 seconds under a lamination condition of a degree of vacuum at the time of lamination of 0.05 kPa, a vacuum arrival time of 20 seconds, a pressure of 7 kgf / cm 2 and a temperature of 120 ° C. The evacuation time was 0.75 minutes.
 測定結果を、表1、2に示す。 The measurement results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~14により、本発明の製造方法によれば、ガラス転移温度が高く線熱膨張係数が低い、ボイド発生が抑制された、均一な膜厚の絶縁層を有する多層プリント配線板を得ることができた。特定のプリプレグと特定の真空積層方法とを採用することにより、多層プリント配線板を作成できることは、まさに本発明における優れた効果であることが分かる。比較例1は、積層時に減圧されていないため、プリプレグと内層回路基板間に空気が侵入し、外観に不良が生じた。比較例2は、積層時の加圧が大きいため、樹脂のしみだし(フロー)が生じ、膜厚が不均一になり、外観も不良となった。比較例3は、硬化性樹脂組成物含有量が多すぎるため、線熱膨張係数を低くすることが困難となった。比較例4は、硬化性樹脂組成物含有量が少なすぎるため、外観が不良となった。比較例5は、積層時の真空度が不十分なため、プリプレグと内層回路基板間の空気が十分に抜けず、外観に不良が生じた。比較例6は、真空プレス機を用いて積層、加熱を行っているため、真空度が不十分であり、プリプレグと内層回路基板間の空気が十分に抜けず、外観に不良が生じ、ガラス転移温度も向上しなかった。プリプレグ中の硬化性樹脂組成物含有率が高く、真空プレス機を用いて積層、熱硬化を行う比較例7は、膜厚均一性、銅箔除去後の外観は良好であるものの、線熱膨張係数が大きく、ガラス転移温度の低い絶縁層に帰着した。比較例8は、積層時の真空到達時間が長いため、ボイドが発生が顕著となり外観が不良となった。 According to Examples 1 to 14, according to the manufacturing method of the present invention, a multilayer printed wiring board having an insulating layer with a uniform film thickness having a high glass transition temperature, a low coefficient of linear thermal expansion, and suppressed generation of voids is obtained. I was able to. It can be seen that it is an excellent effect of the present invention that a multilayer printed wiring board can be produced by employing a specific prepreg and a specific vacuum lamination method. In Comparative Example 1, since pressure was not reduced at the time of lamination, air entered between the prepreg and the inner layer circuit board, resulting in poor appearance. In Comparative Example 2, since the pressurization at the time of lamination was large, a resin ooze (flow) occurred, the film thickness became non-uniform, and the appearance was poor. Since the comparative example 3 had too much curable resin composition content, it became difficult to make a linear thermal expansion coefficient low. Since the comparative example 4 had too little content of curable resin composition, the external appearance became bad. In Comparative Example 5, since the degree of vacuum at the time of lamination was insufficient, air between the prepreg and the inner layer circuit board did not escape sufficiently, resulting in poor appearance. In Comparative Example 6, since lamination and heating are performed using a vacuum press machine, the degree of vacuum is insufficient, the air between the prepreg and the inner circuit board is not sufficiently removed, the appearance is deteriorated, and the glass transition The temperature did not improve. Comparative Example 7 in which the content of the curable resin composition in the prepreg is high and lamination and thermosetting are performed using a vacuum press machine is excellent in film thickness uniformity and appearance after removal of the copper foil, but linear thermal expansion. The result was an insulating layer with a large coefficient and a low glass transition temperature. In Comparative Example 8, since the time to reach the vacuum at the time of lamination was long, the generation of voids was remarkable and the appearance was poor.
 本発明によれば、特定のプリプレグと特定の真空積層方法を組み合わせることにより、ガラス転移温度が高く線熱膨張係数が低い、ボイドを含まぬ、均一な膜厚の絶縁層を有する多層プリント配線板を得ることができるようになった。更に、該多層プリント配線板を搭載した、半導体装置、コンピューター、携帯電話、デジタルカメラ、テレビ、等の電気製品や、自動二輪車、自動車、電車、船舶、航空機、等の乗物も提供できるようになった。 According to the present invention, by combining a specific prepreg and a specific vacuum laminating method, a multilayer printed wiring board having an insulating layer having a uniform glass thickness, a high glass transition temperature, a low linear thermal expansion coefficient, and no voids. You can get In addition, electrical products such as semiconductor devices, computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and airplanes equipped with the multilayer printed wiring board can be provided. It was.

Claims (21)

  1.  (A)支持体付きプリプレグを内層回路基板に加熱及び加圧して真空積層する工程、
     (B)プリプレグを熱硬化して絶縁層を形成する工程、
    を含有することを特徴とする多層プリント配線板の製造方法であって、
     前記プリプレグが硬化性樹脂組成物とシート状繊維基材とを含有し、
     前記プリプレグ中の硬化性樹脂組成物含有率が30質量%以上85質量%以下であり、
     前記硬化性樹脂組成物が無機充填材を含有し、
     前記(A)工程において、積層時の真空度が0.001~0.40kPa、真空到達時間が15秒間以下、積層時の加圧が1~16kgf/cm、積層時の加熱温度が60~160℃、積層時の時間が10~300秒間であることを特徴とする多層プリント配線板の製造方法。
    (A) A step of heating and pressurizing the prepreg with a support to the inner layer circuit board to perform vacuum lamination,
    (B) a step of thermosetting the prepreg to form an insulating layer;
    A method for producing a multilayer printed wiring board, comprising:
    The prepreg contains a curable resin composition and a sheet fiber substrate,
    The content of the curable resin composition in the prepreg is 30% by mass or more and 85% by mass or less,
    The curable resin composition contains an inorganic filler,
    In step (A), the degree of vacuum during lamination is 0.001 to 0.40 kPa, the time to reach vacuum is 15 seconds or less, the pressure during lamination is 1 to 16 kgf / cm 2 , and the heating temperature during lamination is 60 to A method for producing a multilayer printed wiring board, characterized in that the lamination time is 10 to 300 seconds at 160 ° C.
  2.  前記プリプレグの厚みを1とした場合のシート状繊維基材の厚みが0.25~0.88であることを特徴とする請求項1に記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to claim 1, wherein the thickness of the sheet-like fiber base material is 0.25 to 0.88 when the thickness of the prepreg is 1.
  3.  前記プリプレグ中のシート状繊維基材と無機充填材との含有比率(シート状繊維基材の質量/無機充填材の質量)が0.2~2.5であることを特徴とする請求項1又は2に記載の多層プリント配線板の製造方法。 The content ratio of the sheet-like fiber substrate and the inorganic filler in the prepreg (the mass of the sheet-like fiber substrate / the mass of the inorganic filler) is 0.2 to 2.5. Or the manufacturing method of the multilayer printed wiring board of 2.
  4.  前記シート状繊維基材がガラスクロス、ガラス不織布、有機織布及び有機不織布からなる群より選択される1種以上を含有することを特徴とする請求項1~3のいずれか1項に記載の多層プリント配線板の製造方法。 The sheet-like fiber base material contains at least one selected from the group consisting of glass cloth, glass nonwoven fabric, organic woven fabric, and organic nonwoven fabric, according to any one of claims 1 to 3. A method for producing a multilayer printed wiring board.
  5.  前記シート状繊維基材がEガラス繊維、Sガラス繊維及びQガラス繊維からなる群より選択される1種以上を含有することを特徴とする請求項1~3のいずれか1項に記載の多層プリント配線板の製造方法。 The multilayer according to any one of claims 1 to 3, wherein the sheet-like fiber base material contains at least one selected from the group consisting of E glass fiber, S glass fiber, and Q glass fiber. Manufacturing method of printed wiring board.
  6.  前記無機充填材の平均粒径が0.01~2μmであることを特徴とする請求項1~5のいずれか1項に記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 1 to 5, wherein the inorganic filler has an average particle diameter of 0.01 to 2 µm.
  7.  前記無機充填材の平均粒径が0.01~0.4μmであることを特徴とする請求項1~6のいずれか1項に記載の多層プリント配線板の製造方法。 7. The method for producing a multilayer printed wiring board according to claim 1, wherein the inorganic filler has an average particle diameter of 0.01 to 0.4 μm.
  8.  前記無機充填材の含有量が、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、40~85質量%であることを特徴とする請求項1~7のいずれか1項に記載の多層プリント配線板の製造方法。 The content of the inorganic filler is 40 to 85% by mass when the nonvolatile component in the curable resin composition is 100% by mass. Manufacturing method for multilayer printed wiring boards.
  9.  前記無機充填材の含有量が、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、60~85質量%であることを特徴とする請求項1~8のいずれか1項に記載の多層プリント配線板の製造方法。 The content of the inorganic filler is 60 to 85% by mass when the nonvolatile component in the curable resin composition is 100% by mass. Manufacturing method for multilayer printed wiring boards.
  10.  前記(A)工程において、
     ロール状に巻き取られた支持体付きプリプレグを、保護フィルムが張り合わせてある場合は保護フィルムを剥離し、順次連続的に真空ラミネーターに供給し、支持体付きプリプレグのプリプレグ面を内層回路基板に向かい合わせ、真空ラミネーターを用いて加熱及び加圧して支持体付きプリプレグを内層回路基板に真空積層することを特徴とする請求項1~9のいずれか1項に記載の多層プリント配線板の製造方法。
    In the step (A),
    When the protective film is attached to the prepreg with the support wound in a roll shape, the protective film is peeled off and sequentially supplied to the vacuum laminator, and the prepreg surface of the prepreg with the support faces the inner circuit board. The method for producing a multilayer printed wiring board according to any one of claims 1 to 9, wherein the prepreg with a support is vacuum laminated on the inner circuit board by heating and pressurizing using a vacuum laminator.
  11.  前記(B)工程において、
     熱硬化時の温度が150~250℃、熱硬化時の時間が30~300分間であることを特徴とする請求項1~10のいずれか1項に記載の多層プリント配線板の製造方法。
    In the step (B),
    The method for producing a multilayer printed wiring board according to any one of claims 1 to 10, wherein the temperature during thermosetting is 150 to 250 ° C and the time during thermosetting is 30 to 300 minutes.
  12.  前記(B)工程において、
     加熱オーブンを用いてプリプレグを熱硬化して絶縁層を形成することを特徴とする、請求項1~11のいずれか1項に記載の多層プリント配線板の製造方法。
    In the step (B),
    The method for producing a multilayer printed wiring board according to any one of claims 1 to 11, wherein the insulating layer is formed by thermally curing the prepreg using a heating oven.
  13.  前記(B)工程において、
     プリプレグを加熱オーブン内で垂直状態に配置し、熱硬化して絶縁層を形成することを特徴とする請求項1~12のいずれか1項に記載の多層プリント配線板の製造方法。
    In the step (B),
    The method for producing a multilayer printed wiring board according to any one of claims 1 to 12, wherein the prepreg is arranged in a vertical state in a heating oven and thermally cured to form an insulating layer.
  14.  前記(B)工程において、
     多層プリント配線板を耐熱治具で固定してプリプレグを熱硬化し、硬化後に治具の内側の多層プリント配線板を切り出すことを特徴とする請求項1~13のいずれか1項に記載の多層プリント配線板の製造方法。
    In the step (B),
    The multilayer printed wiring board according to any one of claims 1 to 13, wherein the multilayer printed wiring board is fixed with a heat-resistant jig, the prepreg is thermally cured, and the multilayer printed wiring board inside the jig is cut out after the curing. Manufacturing method of printed wiring board.
  15.  前記絶縁層の線熱膨張係数が15ppm以下であることを特徴とする請求項1~14のいずれか1項に記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 1 to 14, wherein a linear thermal expansion coefficient of the insulating layer is 15 ppm or less.
  16.  前記絶縁層のガラス転移温度が181℃以上であることを特徴とする請求項1~15のいずれか1項に記載の多層プリント配線板の製造方法。 16. The method for producing a multilayer printed wiring board according to claim 1, wherein the insulating layer has a glass transition temperature of 181 ° C. or higher.
  17.  更に(C)支持体を剥離する工程を含むことを特徴とする請求項1~16のいずれか1項に記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 1 to 16, further comprising (C) a step of peeling the support.
  18.  更に(D)ビアホールを形成する工程を含むことを特徴とする請求項1~17のいずれか1項に記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 1 to 17, further comprising (D) a step of forming a via hole.
  19.  更に(E)デスミア工程を含むことを特徴とする請求項1~18のいずれか1項に記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 1 to 18, further comprising (E) a desmear process.
  20.  更に(F)メッキにより導体層を形成する工程を含むことを特徴とする請求項1~19のいずれか1項に記載の多層プリント配線板の製造方法。 The method for manufacturing a multilayer printed wiring board according to any one of claims 1 to 19, further comprising (F) a step of forming a conductor layer by plating.
  21.  請求項1~20のいずれか1項に記載の製造方法で得られた多層プリント配線板を含有することを特徴とする半導体装置。 A semiconductor device comprising a multilayer printed wiring board obtained by the manufacturing method according to any one of claims 1 to 20.
PCT/JP2013/064386 2012-05-23 2013-05-23 Method for manufacturing multilayer printed wiring board WO2013176224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014516852A JP6281489B2 (en) 2012-05-23 2013-05-23 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-118025 2012-05-23
JP2012118025 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013176224A1 true WO2013176224A1 (en) 2013-11-28

Family

ID=49623905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064386 WO2013176224A1 (en) 2012-05-23 2013-05-23 Method for manufacturing multilayer printed wiring board

Country Status (3)

Country Link
JP (1) JP6281489B2 (en)
TW (1) TWI605742B (en)
WO (1) WO2013176224A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230901A (en) * 2014-06-03 2015-12-21 三菱瓦斯化学株式会社 Resin laminate and printed wiring board
JP2018119108A (en) * 2017-01-27 2018-08-02 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed board and semiconductor device
JPWO2018070329A1 (en) * 2016-10-12 2019-07-25 住友電工プリントサーキット株式会社 Printed wiring board and method of manufacturing the same
JP2020508230A (en) * 2017-02-21 2020-03-19 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Process for producing composite products and semi-finished products and products obtained thereby
CN114554733A (en) * 2022-04-25 2022-05-27 绵阳新能智造科技有限公司 Pasting device for laminated PCB (printed circuit board)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788808B2 (en) * 2015-07-06 2020-11-25 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, and printed wiring board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235844A (en) * 1984-05-08 1985-11-22 Hitachi Ltd Prepreg sheet and laminate thereof
JPS6347135A (en) * 1986-08-15 1988-02-27 松下電工株式会社 Multilayer printed wiring board
JP2001168537A (en) * 1999-12-03 2001-06-22 Muraki:Kk Multilayer printed wiring board and measuring method for inter-layer dislocation
JP2005039247A (en) * 2003-06-27 2005-02-10 Ajinomoto Co Inc Resin composition and adhesive film for multilayer printed wiring board
JP2005154727A (en) * 2003-05-27 2005-06-16 Ajinomoto Co Inc Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
JP2009231240A (en) * 2008-03-25 2009-10-08 Ajinomoto Co Inc Method of manufacturing multilayer printed wiring board
JP2010079089A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Pattern forming method
WO2010047411A1 (en) * 2008-10-21 2010-04-29 味の素株式会社 Thermosetting resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235844A (en) * 1984-05-08 1985-11-22 Hitachi Ltd Prepreg sheet and laminate thereof
JPS6347135A (en) * 1986-08-15 1988-02-27 松下電工株式会社 Multilayer printed wiring board
JP2001168537A (en) * 1999-12-03 2001-06-22 Muraki:Kk Multilayer printed wiring board and measuring method for inter-layer dislocation
JP2005154727A (en) * 2003-05-27 2005-06-16 Ajinomoto Co Inc Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
JP2005039247A (en) * 2003-06-27 2005-02-10 Ajinomoto Co Inc Resin composition and adhesive film for multilayer printed wiring board
JP2009231240A (en) * 2008-03-25 2009-10-08 Ajinomoto Co Inc Method of manufacturing multilayer printed wiring board
JP2010079089A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Pattern forming method
WO2010047411A1 (en) * 2008-10-21 2010-04-29 味の素株式会社 Thermosetting resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230901A (en) * 2014-06-03 2015-12-21 三菱瓦斯化学株式会社 Resin laminate and printed wiring board
JPWO2018070329A1 (en) * 2016-10-12 2019-07-25 住友電工プリントサーキット株式会社 Printed wiring board and method of manufacturing the same
JP2022087315A (en) * 2016-10-12 2022-06-09 住友電工プリントサーキット株式会社 Method for manufacturing laminate
JP2018119108A (en) * 2017-01-27 2018-08-02 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed board and semiconductor device
JP2020508230A (en) * 2017-02-21 2020-03-19 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Process for producing composite products and semi-finished products and products obtained thereby
JP7108617B2 (en) 2017-02-21 2022-07-28 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Process and semi-finished products for manufacturing composite products and products obtained thereby
CN114554733A (en) * 2022-04-25 2022-05-27 绵阳新能智造科技有限公司 Pasting device for laminated PCB (printed circuit board)

Also Published As

Publication number Publication date
JP6281489B2 (en) 2018-02-21
TW201412217A (en) 2014-03-16
JPWO2013176224A1 (en) 2016-01-14
TWI605742B (en) 2017-11-11

Similar Documents

Publication Publication Date Title
JP5540984B2 (en) Laminate production method
TWI511876B (en) Production method of copper laminated board and copper clad laminate
JP6281489B2 (en) Manufacturing method of multilayer printed wiring board
JP2016035969A (en) Circuit board and method for manufacturing the same
JP2015038197A (en) Resin composition
TW201031707A (en) Resin composition
JP6427861B2 (en) Circuit board manufacturing method
TWI639371B (en) Manufacturing method of laminated board
KR102000921B1 (en) Insulating resin sheet
JP6085919B2 (en) Film with ultra-thin copper layer, adhesive film with ultra-thin copper layer, manufacturing method thereof, copper-clad laminate, and wiring board
JP5740940B2 (en) Method for producing metal-clad laminate
JP2018168262A (en) Resin composition
JP6252658B2 (en) Insulating resin sheet
JP6798537B2 (en) Circuit board and its manufacturing method
JP6291714B2 (en) Insulating resin sheet
JP7140175B2 (en) Circuit board and its manufacturing method
JP2015211085A (en) Method of manufacturing circuit board
JP6627944B2 (en) Circuit board manufacturing method
JP2003249764A (en) Manufacturing method for b-stage resin composition sheet containing base for additive
KR102191651B1 (en) Method for manufacturing multilayer printed wiring board
JP6287004B2 (en) Manufacturing method of multilayer printed wiring board
JP6657954B2 (en) Manufacturing method of wiring board
JP6229402B2 (en) Manufacturing method of multilayer printed wiring board
JP6658722B2 (en) Manufacturing method of printed wiring board
JP5907206B2 (en) Laminate production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794596

Country of ref document: EP

Kind code of ref document: A1