WO2013175868A1 - Surface-emitting element - Google Patents

Surface-emitting element Download PDF

Info

Publication number
WO2013175868A1
WO2013175868A1 PCT/JP2013/060018 JP2013060018W WO2013175868A1 WO 2013175868 A1 WO2013175868 A1 WO 2013175868A1 JP 2013060018 W JP2013060018 W JP 2013060018W WO 2013175868 A1 WO2013175868 A1 WO 2013175868A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light emitting
emitting element
electrode layer
Prior art date
Application number
PCT/JP2013/060018
Other languages
French (fr)
Japanese (ja)
Inventor
孝二郎 関根
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013175868A1 publication Critical patent/WO2013175868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • a surface light emitting element As a new light source, a surface light emitting element can be mentioned. In the surface light emitting element, optimization of the structure of the surface light emitting element is being studied in order to improve the light extraction efficiency.
  • Patent Document 2 discloses a surface light emitting element using an organic EL as a backlight of a liquid crystal display device.
  • this surface light emitting device in order to improve the light extraction efficiency, the side surface of the transparent substrate is inclined outward, and the light emitted from the light source is reflected to the liquid crystal panel side using the inclined side surface. Is adopted.
  • an object of the present invention is to provide a surface light emitting device having a structure that can improve light extraction efficiency.
  • a light emitting layer that generates light
  • a first electrode layer that is provided on one surface of the light emitting layer and that allows light generated from the light emitting layer to pass through
  • the second electrode layer provided on the other surface of the light emitting layer, and the surface of the first electrode layer opposite to the surface on which the light emitting layer is located, pass light generated from the light emitting layer.
  • a light passage layer that is possible, and a light extraction layer that is provided on the surface of the light passage layer opposite to the surface on which the first electrode layer is located and that increases the light extraction efficiency from the light passage layer.
  • the side surface of the light passage layer includes an inclined surface that extends outward from the side surface of the first electrode layer as it goes from the first electrode layer side to the light extraction layer side.
  • FIG. 3 is a cross-sectional view of the surface light-emitting element according to Related Technology 1 taken along line II in FIG. 2. It is a top view of the surface emitting element in the related art 1.
  • FIG. 5 is a cross-sectional view of the surface light-emitting element according to Related Technology 2 taken along line III-III in FIG. 4. It is a top view of the surface emitting element in related technology 2.
  • FIG. 7 is a cross-sectional view of the surface light emitting element according to Related Technology 3 as viewed in the direction of arrows VV in FIG. 6. It is a top view of the surface emitting element in the related technique 3.
  • FIG. 9 is a cross-sectional view of the surface light emitting element according to the first embodiment, taken along line VII-VII in FIG.
  • FIG. 3 is a plan view of the surface light emitting element in the first embodiment.
  • FIG. 11 is a cross-sectional view taken along the line IX-IX of FIG.
  • FIG. 6 is a plan view of a surface light emitting element in a second embodiment.
  • FIG. 13 is a cross-sectional view taken along the line XI-XI in FIG.
  • FIG. 6 is a plan view of a surface light emitting element in a third embodiment.
  • FIG. 15 is a cross-sectional view taken along the line XIII-XIII in FIG.
  • FIG. 10 is a plan view of a surface light emitting element in a fourth embodiment.
  • FIG. 17 is a cross-sectional view taken along the line XV-XV in FIG.
  • FIG. 10 is a plan view of a surface light emitting element in a fifth embodiment.
  • FIG. 19 is a cross-sectional view of the surface light-emitting element according to the sixth embodiment, taken along line XVII-XVII in FIG. It is a top view of the surface emitting element in Embodiment 6. It is a figure which shows the light extraction efficiency of the surface emitting element in the related art 1-3 and Embodiment 1-6.
  • FIG. 1 is a cross-sectional view of a surface light emitting device 1 according to Related Art 1, and is a cross-sectional view taken along the line II in FIG.
  • FIG. 2 is a plan view of the surface light-emitting element 1 in the related art 1.
  • the surface light emitting element 1 has a rectangular shape in plan view. As an example, it is a regular square having a side of about 50 mm.
  • the surface light emitting device 1 includes a light emitting layer 13 that generates light, and a first electrode layer that is provided on one surface (front surface) of the light emitting layer 13 and that allows light generated from the light emitting layer 13 to pass therethrough.
  • a light transmissive electrode) 12 and a second electrode layer (back electrode) 14 provided on the other surface (back surface) of the light emitting layer 13.
  • a light-passing layer 11 capable of passing light generated from the light-emitting layer 13 is provided.
  • the layer thickness is about several tens of nanometers.
  • a transparent oxide semiconductor IZO (mixture of indium oxide and zinc oxide), ITO (mixture of indium oxide and tin oxide) or the like
  • the layer thickness is about several nanometers to several hundreds of nanometers.
  • a thin film metal electrode Al, Au, Cu, etc.
  • the second electrode layer 14 cathode layer
  • the layer thickness is about 100 nm to 200 nm.
  • organic EL When organic EL is used for the light emitting layer 13, when a negative potential is applied to the second electrode layer 14 and a positive potential is applied to the first electrode layer 12, free electrons generated in the second electrode layer 14 and the first electrode layer The holes generated in 12 are combined in the light emitting layer 13, and the organic matter in the light emitting layer 13 becomes excited and emits light when returning to the original stable state.
  • the light transmission layer 11 may be made of a material transparent to the emission wavelength in addition to a glass substrate, such as inorganic materials such as quartz and sapphire, acrylic, polycarbonate, PET (Polyethylene terephthalate), PEN (Polyethylene).
  • inorganic materials such as quartz and sapphire, acrylic, polycarbonate, PET (Polyethylene terephthalate), PEN (Polyethylene).
  • An organic material such as naphthalate (polyethylene naphthalate) is used, and the layer thickness is about 0.7 mm.
  • Light is generated from the light emitting layer 13 by applying predetermined power to the light emitting layer 13 using the first electrode layer 12 and the second electrode layer 14.
  • the light generated in the light emitting layer 13 passes through the first electrode layer 12 and the light passing layer 11 to the air on the surface (upper surface in the drawing) side of the light passing layer 11 opposite to the first electrode layer 12. Light is extracted.
  • the light inside the light passage layer 11 is only part of the light inside the light passage layer 11 due to total reflection at the interface between the light passage layer 11 and air. It cannot be taken out.
  • the surface light emitting element 2 has a rectangular shape in plan view.
  • the surface light emitting device 1 includes a light emitting layer 23 that generates light, and a first electrode layer (provided on one surface (front surface) of the light emitting layer 23, through which light generated from the light emitting layer 23 can pass.
  • a light transmissive electrode) 22 and a second electrode layer (back electrode) 24 provided on the other surface (back surface) of the light emitting layer 23.
  • a light passage layer 21 through which light generated from the light emitting layer 23 can pass is provided on the surface of the first electrode layer 22 opposite to the surface on which the light emitting layer 23 is located.
  • the side surface of the light passage layer 21 includes an inclined surface 25 that spreads outward from the side surface of the first electrode layer 22 from the first electrode layer 22 side toward the upper side in the drawing.
  • the inclined surface 25 is subjected to a light reflection process.
  • the inclination angle ( ⁇ ) of the inclined surface 25 is 45 degrees.
  • the light emitting layer 23, the first electrode layer 22, and the second electrode layer 24 are regular squares having a side of about 50 mm.
  • the light transmission layer 21 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 22.
  • Light is generated from the light emitting layer 23 by applying predetermined power to the light emitting layer 23 using the first electrode layer 22 and the second electrode layer 24.
  • the light generated in the light emitting layer 23 passes through the first electrode layer 22 and the light passage layer 21 to the air on the surface (upper surface in the drawing) side of the light passage layer 21 opposite to the first electrode layer 22. Light is extracted.
  • the light inside the light passage layer 21 is only part of the light inside the light passage layer 21 due to total reflection at the interface between the light passage layer 21 and air. It cannot be taken out.
  • the surface light emitting element 2 is provided with the inclined surface 25, so that the light extraction efficiency is improved.
  • FIG. 5 is a cross-sectional view of the surface light emitting element 3 in the related art 3, and is a cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a plan view of the surface light emitting element 3 in the related art 3.
  • An uneven light extraction layer 36 is provided on the surface of the light passage layer 31 opposite to the surface on which the first electrode layer 32 is located in order to increase the light extraction efficiency from the light passage layer 31.
  • the materials and layer thicknesses of the light emitting layer 33, the first electrode layer 32, the second electrode layer 34, and the light passing layer 31 are the same as those of the surface light emitting element 1.
  • the light extraction layer 36 is formed by processing the surface of the light passage layer 31 into a microlens array.
  • hemispheres having a diameter of about 30 ⁇ m are two-dimensionally arranged on the surface (light emitting surface) side of the light passage layer 31.
  • Light is generated from the light emitting layer 33 by applying a predetermined power to the light emitting layer 33 using the first electrode layer 32 and the second electrode layer 34.
  • the light generated in the light emitting layer 33 passes through the first electrode layer 32, the light passage layer 31, and the light extraction layer 36, and the surface of the light extraction layer 36 opposite to the light passage layer 31 (upper surface in the drawing). ) Light is taken out to the air on the side.
  • a microlens array is used for the light extraction layer 36.
  • the light extraction layer 36 that scatters light such as a microlens array, a part of the light that cannot be extracted by total reflection is emitted to the air.
  • FIG. 7 is a cross-sectional view of the surface light-emitting element 4 in the present embodiment, which is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a plan view of the surface light-emitting element 4 in the present embodiment.
  • the surface light emitting element 4 has a rectangular shape in plan view.
  • the planar shape is not limited to a rectangular shape.
  • the surface light emitting element 4 includes a light emitting layer 43 that generates light, and a first electrode layer (provided on one surface (front surface) of the light emitting layer 43, through which light generated from the light emitting layer 43 can pass.
  • a light-transmitting electrode) 42 and a second electrode layer (back electrode) 44 provided on the other surface (back surface) of the light-emitting layer 43.
  • a light passage layer 41 through which light generated from the light emitting layer 43 can pass is provided.
  • An uneven light extraction layer 46 is provided on the surface of the light passage layer 41 opposite to the surface on which the first electrode layer 42 is located in order to increase the light extraction efficiency from the light passage layer 31.
  • the materials and layer thicknesses of the light emitting layer 33, the first electrode layer 32, the second electrode layer 34, and the light passing layer 31 are the same as those of the surface light emitting element 1.
  • the light extraction layer 36 can be obtained by processing the surface of the light passage layer 31 into a microlens array shape or separately providing a microlens array sheet.
  • a hemisphere having a diameter of about 30 ⁇ m is two-dimensionally arranged on the surface (light emitting surface) side of the light passage layer 31.
  • the diameter is preferably 10 ⁇ m to 100 ⁇ m. If it is 10 ⁇ m or more, the diffraction effect and coloring hardly occur, and if it is 100 ⁇ m or less, the thickness can be reduced.
  • the side surface of the light passage layer 41 has an inclined surface 45 that spreads outward from the side surface of the first electrode layer 42 from the first electrode layer 42 side toward the upper side in the drawing. including.
  • the inclined surface 45 is subjected to a light reflection process. In some cases, the light reflection process is not performed.
  • the inclination angle ( ⁇ ) of the inclined surface 45 is 45 degrees.
  • an organic EL light emitting layer is used for the light emitting layer 43, and the layer thickness is about several tens of nm.
  • the first electrode layer 42 anode layer
  • a transparent oxide semiconductor ITO, IZO, etc.
  • the layer thickness is about several nm to several tens of nm.
  • the second electrode layer 44 cathode layer
  • a thin film metal electrode Al, Au, Cu, etc.
  • organic EL used for the light emitting layer
  • it is a light emitting layer which has equivalent performance
  • it will not be limited to organic EL, and the light emitting layer using inorganic EL, surface emitting laser, surface emitting LED, etc. Can also be adopted. The same applies to the following embodiments.
  • the light passing layer 41 may be a transparent material at the emission wavelength in addition to a glass substrate, such as inorganic materials such as quartz and sapphire, acrylic, polycarbonate, PET (Polyethylene terephthalate), PEN (Polyethylene naphthalate: An organic material such as polyethylene naphthalate) is used, and the layer thickness is about 5 mm.
  • inorganic materials such as quartz and sapphire, acrylic, polycarbonate, PET (Polyethylene terephthalate), PEN (Polyethylene naphthalate: An organic material such as polyethylene naphthalate) is used, and the layer thickness is about 5 mm.
  • the light emitting layer 43, the first electrode layer 42, and the second electrode layer 44 are regular squares having a side of about 50 mm.
  • the light passage layer 41 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 42.
  • a light extraction layer 46 using a microlens array is provided.
  • an inclined surface 45 is provided on the side surface of the light passage layer 41.
  • the configuration of the surface light emitting element 2 of the related art 2 since there is no light extraction layer, light once confined in the light passage layer is not emitted to the air even if there is an inclined surface. Therefore, in the configuration of the surface light emitting element 2 of the related art 2, there is a limit to improving the light extraction efficiency. In order to extract the light confined in the light passage layer, the light extraction efficiency can be further improved by providing a light extraction layer.
  • the light extraction efficiency can be further improved as compared with the configuration of the surface light emitting element 3 of the related technique 3.
  • the thickness ratio of the light passage layer 41 As the thickness ratio of the light passage layer 41 is increased, the light extraction efficiency can be increased. However, in order to realize a thin surface light emitting element, it is necessary to have a finite thickness.
  • the applicable range of the thickness ratio is preferably 0.05 to 0.5, and more preferably 0.05 to 0.1 from the viewpoint of thinness.
  • FIG. 9 is a cross-sectional view of the surface light-emitting element 5 in the present embodiment, and is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a plan view of the surface light-emitting element 5 in the present embodiment.
  • the surface light emitting element 5 has a rectangular shape in plan view.
  • the planar shape is not limited to a rectangular shape.
  • the surface light-emitting element 5 includes a light-emitting layer 53 that generates light, and a first electrode layer that is provided on one surface (front surface) of the light-emitting layer 53 and that allows light generated from the light-emitting layer 53 to pass therethrough.
  • a light-transmitting electrode) 52 and a second electrode layer (back electrode) 54 provided on the other surface (back surface) of the light-emitting layer 53.
  • a light passage layer 51 through which light generated from the light emitting layer 53 can pass is provided on the surface of the first electrode layer 52 opposite to the surface on which the light emitting layer 53 is located.
  • the side surface of the light passage layer 51 has an inclined surface 55 that spreads outward from the side surface of the first electrode layer 52 from the first electrode layer 52 side toward the upper side in the drawing. including.
  • the inclined surface 55 is subjected to a light reflection process. In some cases, the light reflection process is not performed.
  • the inclination angle ( ⁇ ) of the inclined surface 55 is 45 degrees.
  • the light emitting layer 53, the first electrode layer 52, and the second electrode layer 54 are regular squares having a side of about 50 mm.
  • the light transmission layer 51 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 52.
  • the region where the light extraction layer 56 is provided is different.
  • the light extraction layer 56 is provided at a position covering the light emitting layer 53, and the light extraction layer 56 is not provided at a position where the inclined surface 55 faces.
  • the exposed region of the light passage layer 51 is provided so as to surround the light extraction layer 56, but the embodiment is not limited thereto. As long as the light extraction layer 56 covers the light emitting layer 53, the exposed region of the light passage layer 51 may be in any form. For example, in FIG. 10, the exposed region of the light passage layer 51 may be provided only on the left and right sides of the light extraction layer 56, and the light extraction layer 56 may be provided so as to cover the light passage layer 51 in the upper and lower sides. The same applies to the following embodiments.
  • FIG. 11 is a cross-sectional view of the surface light emitting element 6 in the present embodiment, and is a cross-sectional view taken along line XI-XI in FIG.
  • FIG. 12 is a plan view of the surface light-emitting element 6 in the present embodiment.
  • the surface light emitting element 6 has a rectangular shape in plan view.
  • the planar shape is not limited to a rectangular shape.
  • the surface light-emitting element 6 includes a light-emitting layer 63 that generates light, and a first electrode layer (provided on one surface (surface) of the light-emitting layer 63, through which light generated from the light-emitting layer 63 can pass.
  • a light transmissive electrode) 62 and a second electrode layer (back electrode) 64 provided on the other surface (back surface) of the light emitting layer 63.
  • a light passing layer 61 capable of passing light generated from the light emitting layer 63 is provided.
  • the side surface of the light passage layer 61 has an inclined surface 65 that spreads outward from the side surface of the first electrode layer 62 from the first electrode layer 62 side toward the upper side in the drawing. including.
  • the inclined surface 65 is subjected to a light reflection process. In some cases, the light reflection process is not performed.
  • the inclination angle ( ⁇ ) of the inclined surface 45 is 45 degrees.
  • the materials and layer thicknesses of the light emitting layer 63, the first electrode layer 62, the second electrode layer 64, and the light passage layer 61 are the same as those of the surface light emitting element 4.
  • the light emitting layer 63, the first electrode layer 62, and the second electrode layer 64 are regular squares having a side of about 50 mm.
  • the light transmission layer 61 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 62.
  • a light extraction layer 66 is provided on the entire surface of the light passage layer 61 opposite to the surface on which the first electrode layer 62 is located.
  • a fine particle dispersion type diffusion layer is used for the light extraction layer 66.
  • this diffusion layer for example, a diffusion film “Light Up (registered trademark) 100NSH” manufactured by Kimoto Co., Ltd. was used.
  • This “Light-Up (registered trademark) 100NSH” has a configuration in which a diffusion layer in which diffusion beads are dispersed is laminated on a 100 ⁇ m PET base material.
  • the same effect as that of the surface light-emitting element 4 in the first embodiment can be obtained.
  • FIG. 13 is a cross-sectional view of the surface light emitting device 7 in the present embodiment, and is a cross-sectional view taken along line XIII-XIII in FIG.
  • FIG. 14 is a plan view of the surface light-emitting element 7 in the present embodiment.
  • the surface light emitting element 7 has a rectangular shape in plan view.
  • the planar shape is not limited to a rectangular shape.
  • This surface light emitting element 7 is provided with a light emitting layer 73 that generates light and a first electrode layer (provided on one surface (front surface) of the light emitting layer 73, through which light generated from the light emitting layer 73 can pass.
  • a light transmissive electrode) 72 and a second electrode layer (back surface electrode) 74 provided on the other side surface (back surface) of the light emitting layer 73.
  • a light passing layer 71 capable of passing light generated from the light emitting layer 73 is provided.
  • the side surface of the light passage layer 71 has an inclined surface 75 that spreads outward from the side surface of the first electrode layer 72 from the first electrode layer 72 side toward the upper side in the drawing. including.
  • the inclined surface 75 is subjected to light reflection processing. In some cases, the light reflection process is not performed.
  • the inclined angle ( ⁇ ) of the inclined surface 75 is 45 degrees.
  • the materials used and the layer thicknesses of the light emitting layer 73, the first electrode layer 72, the second electrode layer 74, and the light passage layer 71 are the same as those of the surface light emitting element 4.
  • the light emitting layer 73, the first electrode layer 72, and the second electrode layer 74 are regular squares having a side of about 50 mm.
  • the light passage layer 71 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 72.
  • a light extraction layer 76 is provided on the surface of the light passage layer 71 opposite to the surface on which the first electrode layer 72 is located.
  • a fine particle dispersion type diffusion layer similar to the surface light emitting element 6 is used for the light extraction layer 76.
  • the region where the light extraction layer 76 is provided is different.
  • the light extraction layer 76 is provided at a position covering the light emitting layer 73, and the light extraction layer 76 is not provided at a position where the inclined surface 75 faces.
  • a light passing layer 81 capable of passing light generated from the light emitting layer 83 is provided.
  • the surface of the light passage layer 81 on the first electrode layer 82 side is provided so as to protrude outward more than the side surface of the first electrode layer 82.
  • the side surface of the light passage layer 81 has an inclined surface 85 that spreads outward from the side surface of the first electrode layer 82 from the first electrode layer 82 side toward the upper side in the drawing. including.
  • a light reflection process is performed on the surface that protrudes more outward than the side surfaces of the inclined surface 85 and the first electrode layer 82. In some cases, the light reflection process is not performed.
  • the inclination angle ( ⁇ ) of the inclined surface 85 is 45 degrees.
  • the materials and layer thicknesses of the light emitting layer 83, the first electrode layer 82, the second electrode layer 84, and the light passage layer 81 are the same as those of the surface light emitting element 4.
  • the light emitting layer 83, the first electrode layer 82, and the second electrode layer 84 are regular squares having a side of about 50 mm.
  • the surface of the light passing layer 81 on the first electrode layer 82 side is a regular square having a side of about 56 mm.
  • the surface of the light transmission layer 81 opposite to the first electrode layer 82 side is a regular square having a side of about 66 mm.
  • An uneven light extraction layer 86 is provided on the surface of the light passage layer 81 opposite to the surface on which the first electrode layer 82 is located.
  • a microlens array similar to the surface light emitting elements 4 and 5 is used for the light extraction layer 86.
  • the surface of the light passing layer 81 on the first electrode layer 82 side is outside the side surface of the first electrode layer 82. It is in the point which is provided so that it may protrude greatly toward. Even in the protruding portion, it is possible to expect an improvement in light extraction efficiency due to the light reflection effect.
  • FIG. 17 is a cross-sectional view of the surface light emitting device 9 in the present embodiment, and is a cross-sectional view taken along line XVII-XVII in FIG.
  • FIG. 18 is a plan view of the surface light emitting element 9 in the present embodiment.
  • the surface light emitting element 9 has a rectangular shape in plan view.
  • the planar shape is not limited to a rectangular shape.
  • the surface light-emitting element 9 includes a light-emitting layer 93 that generates light, and a first electrode layer (provided on one surface (front surface) of the light-emitting layer 93, through which light generated from the light-emitting layer 93 can pass.
  • a light-transmitting electrode) 92 and a second electrode layer (back electrode) 94 provided on the other surface (back surface) of the light emitting layer 93.
  • the side surface of the first light passage layer 91 is more outward than the side surface of the first electrode layer 92 from the first electrode layer 92 side toward the upper side in the drawing.
  • An expanding inclined surface 95 is included. A light reflection process is performed on the inclined surface 95 and the surface that protrudes more outward than the side surface of the first electrode layer 92. In some cases, the light reflection process is not performed. In the surface light emitting element 9, the inclination angle ( ⁇ ) of the inclined surface 95 is 45 degrees.
  • the materials used and the layer thicknesses of the light emitting layer 93, the first electrode layer 92, and the second electrode layer 94 are the same as those of the surface light emitting element 4.
  • Materials used for the first light passage layer 91 and the second light passage layer 91a are the same as those of the surface light emitting element 4.
  • the layer thickness of the first light passage layer 91 is about 5 mm, and the layer thickness of the second light passage layer 91a is about 0.7 mm.
  • the light emitting layer 93, the first electrode layer 92, and the second electrode layer 94 are regular squares having a side of about 50 mm.
  • the surface of the first light passage layer 91 on the first electrode layer 92 side is a regular square having a side of about 50 mm.
  • the surface of the first light passage layer 91 opposite to the first electrode layer 92 side is a regular square having a side of about 60 mm.
  • An uneven light extraction layer 96 is provided on the surface of the first light passage layer 91 opposite to the surface on which the first electrode layer 92 is located.
  • the same microlens array as that of the surface light emitting elements 4 and 5 is used.
  • the light extraction layer 96 is provided at a position covering the light emitting layer 93 in the same manner as the structure of the surface light emitting element 5 of the second embodiment.
  • the light passage layer has a two-layer structure of a first light passage layer 91 and a second light passage layer 91a. Even when the layer thickness of the light passage layer (first light passage layer 91) when forming the surface light emitting device is thin, the light passage layer (second light passage layer 91a) optically adhered as a separate member is used. It is possible to increase the effective layer thickness of the light passage layer.
  • the surface of the first light passage layer 91 on the first electrode layer 92 side has a light emission area. Accordingly, by providing an inclined surface in a portion larger than the area of the light emitting portion, a thin commonly used substrate (second light passage layer 91a) advantageous in terms of manufacturing and cost, and a thickness for light extraction are provided. It becomes possible to combine with the board
  • the thickness of the light passage layer (the first light passage layer 91 + the second light passage layer 91a) is set to the light emission area.
  • FIG. 19 shows a list of light extraction efficiencies of the surface emitting element 1-9 in the related art 1-3 and the embodiment 1-6.
  • the light extraction efficiency of the surface light emitting element 1-3 in Related Art 1-3 is in the range of 40% to 60%, but the light extraction efficiency of the surface light emitting element 4-9 in Embodiment 1-6 is 70%. It has improved from 80 to 80%.
  • 1,2,3,4,5,6,7,8,9 surface light emitting element 11,21,31,41,51,61,71,81 light passing layer, 12,22,32,42,52, 62, 72, 82, 92 1st electrode layer, 13, 23, 33, 43, 53, 63, 73, 83, 93

Abstract

A surface-emitting element (4) is provided with: a light emitting layer (43), which generates light; a first electrode layer (42), which is provided on the light emitting layer (43) surface on one side of the light emitting layer, and which can pass through the light generated by the light emitting layer (43); a second electrode layer (44), which is provided on the light emitting layer (43) surface on the other side of the light emitting layer; a light passing layer (41), which is provided on the first electrode layer (42) surface on the reverse side of the surface where the light emitting layer (43) is positioned, and which can pass through the light generated by the light emitting layer (43); and a light extraction layer (46), which is provided on the light passing layer (41) surface on the reverse side of the surface where the first electrode layer (42) is positioned, and which improves efficiency of extraction of the light from the light passing layer (41). The side surface of the light passing layer (41) includes a tilted surface (45), which is tilted further outside than the side surface of the first electrode layer (42) from the first electrode layer (42) side toward the light extraction layer (46) side.

Description

面発光素子Surface light emitting device
 本発明は面発光素子の構造に関する。 The present invention relates to the structure of a surface light emitting device.
 新たな光源として面発光素子が挙げられる。面発光素子においては、光取り出し効率の向上を図るため、面発光素子の構造の最適化が検討されている。 As a new light source, a surface light emitting element can be mentioned. In the surface light emitting element, optimization of the structure of the surface light emitting element is being studied in order to improve the light extraction efficiency.
 特開2010-123436号公報(特許文献1)には、有機EL(Electro-Luminescence)を用いた面発光素子が開示されている。この面発光素子においては、光取り出し効率の向上を図るため、基板の光取り出し面側にマイクロレンズシートが配置されている。 Japanese Unexamined Patent Application Publication No. 2010-123436 (Patent Document 1) discloses a surface light emitting device using organic EL (Electro-Luminescence). In this surface light emitting device, a microlens sheet is disposed on the light extraction surface side of the substrate in order to improve the light extraction efficiency.
 特開2004-119211号公報(特許文献2)には、液晶表示装置のバックライトとして、有機ELを用いた面発光素子が開示されている。この面発光素子においては、光取り出し効率の向上を図るため、透明基板の側面を外側に向けて傾斜させ、この傾斜した側面を用いて、光源から発光された光を液晶パネル側に反射させる構造が採用されている。 Japanese Unexamined Patent Application Publication No. 2004-119211 (Patent Document 2) discloses a surface light emitting element using an organic EL as a backlight of a liquid crystal display device. In this surface light emitting device, in order to improve the light extraction efficiency, the side surface of the transparent substrate is inclined outward, and the light emitted from the light source is reflected to the liquid crystal panel side using the inclined side surface. Is adopted.
特開2010-123436号公報JP 2010-123436 A 特開2004-119211号公報JP 2004-119211 A
 今後、面発光素子の需要の拡大が期待されることから、面発光素子における光取り出し効率の向上を可能とする新規な面発光素子の構造の開発が重要となる。 In the future, since the demand for surface light emitting devices is expected to expand, it is important to develop a new surface light emitting device structure that can improve the light extraction efficiency of the surface light emitting device.
 したがって、本発明の目的は、光取り出し効率の向上を可能とする構造を備える面発光素子を提供することにある。 Therefore, an object of the present invention is to provide a surface light emitting device having a structure that can improve light extraction efficiency.
 この発明に基づいた面発光素子においては、光を発生する発光層と、上記発光層の一方側の面に設けられ、上記発光層から発生した光の通過が可能である第1電極層と、上記発光層の他方側の面に設けられる第2電極層と、上記第1電極層の上記発光層が位置する面とは反対側の面に設けられ、上記発光層から発生した光の通過が可能である光通過層と、上記光通過層の上記第1電極層が位置する面とは反対側の面に設けられ、上記光通過層からの光の取り出し効率を高める光取出層とを備える。 In the surface light emitting device according to the present invention, a light emitting layer that generates light, a first electrode layer that is provided on one surface of the light emitting layer and that allows light generated from the light emitting layer to pass through, The second electrode layer provided on the other surface of the light emitting layer, and the surface of the first electrode layer opposite to the surface on which the light emitting layer is located, pass light generated from the light emitting layer. A light passage layer that is possible, and a light extraction layer that is provided on the surface of the light passage layer opposite to the surface on which the first electrode layer is located and that increases the light extraction efficiency from the light passage layer. .
 上記光通過層の側面は、上記第1電極層側から上記光取出層側に向かうにしたがって上記第1電極層の側面よりも外側に広がる傾斜面を含む。 The side surface of the light passage layer includes an inclined surface that extends outward from the side surface of the first electrode layer as it goes from the first electrode layer side to the light extraction layer side.
 この発明によれば、光取り出し効率の向上を可能とする構造を備える面発光素子を提供することを可能とする。 According to the present invention, it is possible to provide a surface light emitting device having a structure capable of improving light extraction efficiency.
関連技術1における面発光素子の、図2中のI-I線矢視断面図である。FIG. 3 is a cross-sectional view of the surface light-emitting element according to Related Technology 1 taken along line II in FIG. 2. 関連技術1における面発光素子の平面図である。It is a top view of the surface emitting element in the related art 1. 関連技術2における面発光素子の、図4中のIII-III線矢視断面図である。FIG. 5 is a cross-sectional view of the surface light-emitting element according to Related Technology 2 taken along line III-III in FIG. 4. 関連技術2における面発光素子の平面図である。It is a top view of the surface emitting element in related technology 2. 関連技術3における面発光素子の、図6中のV-V線矢視断面図である。FIG. 7 is a cross-sectional view of the surface light emitting element according to Related Technology 3 as viewed in the direction of arrows VV in FIG. 6. 関連技術3における面発光素子の平面図である。It is a top view of the surface emitting element in the related technique 3. 実施の形態1における面発光素子の、図8中のVII-VII線矢視断面図である。FIG. 9 is a cross-sectional view of the surface light emitting element according to the first embodiment, taken along line VII-VII in FIG. 実施の形態1における面発光素子の平面図である。FIG. 3 is a plan view of the surface light emitting element in the first embodiment. 実施の形態2における面発光素子の、図10中のIX-IX線矢視断面図である。FIG. 11 is a cross-sectional view taken along the line IX-IX of FIG. 実施の形態2における面発光素子の平面図である。FIG. 6 is a plan view of a surface light emitting element in a second embodiment. 実施の形態3における面発光素子の、図12中のXI-XI線矢視断面図である。FIG. 13 is a cross-sectional view taken along the line XI-XI in FIG. 実施の形態3における面発光素子の平面図である。FIG. 6 is a plan view of a surface light emitting element in a third embodiment. 実施の形態4における面発光素子の、図14中のXIII-XIII線矢視断面図である。FIG. 15 is a cross-sectional view taken along the line XIII-XIII in FIG. 実施の形態4における面発光素子の平面図である。FIG. 10 is a plan view of a surface light emitting element in a fourth embodiment. 実施の形態5における面発光素子の、図16中のXV-XV線矢視断面図である。FIG. 17 is a cross-sectional view taken along the line XV-XV in FIG. 16 of the surface light emitting element in the fifth embodiment. 実施の形態5における面発光素子の平面図である。FIG. 10 is a plan view of a surface light emitting element in a fifth embodiment. 実施の形態6における面発光素子の、図18中のXVII-XVII線矢視断面図である。FIG. 19 is a cross-sectional view of the surface light-emitting element according to the sixth embodiment, taken along line XVII-XVII in FIG. 実施の形態6における面発光素子の平面図である。It is a top view of the surface emitting element in Embodiment 6. 関連技術1-3および実施の形態1-6における面発光素子の光取り出し効率を示す図である。It is a figure which shows the light extraction efficiency of the surface emitting element in the related art 1-3 and Embodiment 1-6.
 本発明に基づいた各実施の形態における面発光素子について、以下、図を参照しながら説明する。なお、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。また、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。また、各実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。 The surface light emitting device in each embodiment based on the present invention will be described below with reference to the drawings. Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. In addition, it is planned from the beginning to use the structures in the embodiments in appropriate combinations.
 (関連技術1から3:面発光素子1から3)
 図1から図6を参照して、本発明に基づいた各実施の形態における面発光素子の構造を説明する前に、関連技術1から3における面発光素子1から3について説明する。
(Related technologies 1 to 3: surface light emitting devices 1 to 3)
With reference to FIGS. 1 to 6, the surface light emitting devices 1 to 3 in the related arts 1 to 3 will be described before the structure of the surface light emitting device in each embodiment based on the present invention is described.
 (面発光素子1)
 まず、図1および図2を参照して、関連技術1における面発光素子1について説明する。図1は、関連技術1における面発光素子1の断面図で、図2中のI-I線矢視断面である。図2は、関連技術1における面発光素子1の平面図である。
(Surface emitting element 1)
First, with reference to FIG. 1 and FIG. 2, the surface emitting element 1 in the related technique 1 is demonstrated. FIG. 1 is a cross-sectional view of a surface light emitting device 1 according to Related Art 1, and is a cross-sectional view taken along the line II in FIG. FIG. 2 is a plan view of the surface light-emitting element 1 in the related art 1.
 この面発光素子1は、平面視において矩形形状を有している。一例として、一辺が約50mmの正四角形である。この面発光素子1は、光を発生する発光層13と、この発光層13の一方側の面(表面)に設けられ、発光層13から発生した光の通過が可能である第1電極層(光透過性電極)12と、発光層13の他方側の面(裏面)に設けられる第2電極層(裏面電極)14とを備える。 The surface light emitting element 1 has a rectangular shape in plan view. As an example, it is a regular square having a side of about 50 mm. The surface light emitting device 1 includes a light emitting layer 13 that generates light, and a first electrode layer that is provided on one surface (front surface) of the light emitting layer 13 and that allows light generated from the light emitting layer 13 to pass therethrough. A light transmissive electrode) 12 and a second electrode layer (back electrode) 14 provided on the other surface (back surface) of the light emitting layer 13.
 第1電極層12の発光層13が位置する面とは反対側の面には、発光層13から発生した光の通過が可能である光通過層11が設けられている。 On the surface of the first electrode layer 12 opposite to the surface on which the light-emitting layer 13 is located, a light-passing layer 11 capable of passing light generated from the light-emitting layer 13 is provided.
 発光層13には、たとえば有機EL発光層が用いられ、層厚さは、数十nm程度である。第1電極層12(陽極層)には、たとえば、透明酸化物半導体(IZO(インジウム酸化物と亜鉛酸化物の混合体)やITO(インジウム酸化物と錫酸化物の混合体)等)が用いられ、層厚さは、約数nm~百数十nm程度である。第2電極層14(陰極層)には、たとえば薄膜金属電極(Ag,Al,Au,Cu等)が用いられ、層厚さは、約100nm~200nm程度である。 As the light emitting layer 13, for example, an organic EL light emitting layer is used, and the layer thickness is about several tens of nanometers. For the first electrode layer 12 (anode layer), for example, a transparent oxide semiconductor (IZO (mixture of indium oxide and zinc oxide), ITO (mixture of indium oxide and tin oxide) or the like) is used. The layer thickness is about several nanometers to several hundreds of nanometers. For example, a thin film metal electrode (Ag, Al, Au, Cu, etc.) is used for the second electrode layer 14 (cathode layer), and the layer thickness is about 100 nm to 200 nm.
 有機ELを発光層13に用いた場合、第2電極層14にマイナス電位を印加し、第1電極層12にプラス電位を印加すると、第2電極層14で生じた自由電子と第1電極層12で生じた正孔とが発光層13で結合して、この発光層13の有機物が励起状態になり、元の安定状態に戻るときに発光する。 When organic EL is used for the light emitting layer 13, when a negative potential is applied to the second electrode layer 14 and a positive potential is applied to the first electrode layer 12, free electrons generated in the second electrode layer 14 and the first electrode layer The holes generated in 12 are combined in the light emitting layer 13, and the organic matter in the light emitting layer 13 becomes excited and emits light when returning to the original stable state.
 光通過層11には、ガラス基板の他、発光波長に対して透明な材料であれば良く、石英、サファイア等の無機材料、アクリル、ポリカーボネート、PET(Polyethylene terephthalate:ポリエチレンテレフタラート)、PEN(Polyethylene naphthalate:ポリエチレンナフタレート)等の有機材料が用いられ、層厚さは、約0.7mm程度である。 The light transmission layer 11 may be made of a material transparent to the emission wavelength in addition to a glass substrate, such as inorganic materials such as quartz and sapphire, acrylic, polycarbonate, PET (Polyethylene terephthalate), PEN (Polyethylene). An organic material such as naphthalate (polyethylene naphthalate) is used, and the layer thickness is about 0.7 mm.
 第1電極層12および第2電極層14を用いて発光層13に所定の電力が印加されることで、発光層13から光が発生する。発光層13において発生した光は、第1電極層12および光通過層11を経由して、光通過層11の第1電極層12とは反対側の面(図示において上方面)側の空気に光が取り出される。 Light is generated from the light emitting layer 13 by applying predetermined power to the light emitting layer 13 using the first electrode layer 12 and the second electrode layer 14. The light generated in the light emitting layer 13 passes through the first electrode layer 12 and the light passing layer 11 to the air on the surface (upper surface in the drawing) side of the light passing layer 11 opposite to the first electrode layer 12. Light is extracted.
 この面発光素子1の構造では、光通過層11の内部の光は、光通過層11と空気との界面にて全反射現象により、光通過層11の内部の光のうち一部しか空気に取り出すことができない。 In the structure of the surface light-emitting element 1, the light inside the light passage layer 11 is only part of the light inside the light passage layer 11 due to total reflection at the interface between the light passage layer 11 and air. It cannot be taken out.
 この面発光素子1の構造では、光通過層11の内部の光の内、約40%が空気に出射された。発光面積の一辺の長さは約50mm、厚さは約0.7mmであることから、光通過層11の厚さを発光面積の一辺の長さで割った比(厚さ比)では、0.7/50=0.014となる。 In the structure of the surface light emitting element 1, about 40% of the light inside the light passage layer 11 was emitted to the air. Since the length of one side of the light emitting area is about 50 mm and the thickness is about 0.7 mm, the ratio (thickness ratio) obtained by dividing the thickness of the light transmission layer 11 by the length of one side of the light emitting area is 0. 7/50 = 0.014.
 (面発光素子2)
 次に、図3および図4を参照して、関連技術2における面発光素子2について説明する。図3は、関連技術2における面発光素子2の断面図で、図4中のIII-III線矢視断面である。図4は、関連技術2における面発光素子2の平面図である。
(Surface emitting element 2)
Next, with reference to FIG. 3 and FIG. 4, the surface emitting element 2 in the related art 2 will be described. FIG. 3 is a cross-sectional view of the surface light emitting element 2 in the related art 2, and is a cross-sectional view taken along line III-III in FIG. FIG. 4 is a plan view of the surface light emitting element 2 in the related art 2.
 この面発光素子2は、平面視において矩形形状を有している。この面発光素子1は、光を発生する発光層23と、この発光層23の一方側の面(表面)に設けられ、発光層23から発生した光の通過が可能である第1電極層(光透過性電極)22と、発光層23の他方側の面(裏面)に設けられる第2電極層(裏面電極)24とを備える。 The surface light emitting element 2 has a rectangular shape in plan view. The surface light emitting device 1 includes a light emitting layer 23 that generates light, and a first electrode layer (provided on one surface (front surface) of the light emitting layer 23, through which light generated from the light emitting layer 23 can pass. A light transmissive electrode) 22 and a second electrode layer (back electrode) 24 provided on the other surface (back surface) of the light emitting layer 23.
 第1電極層22の発光層23が位置する面とは反対側の面には、発光層23から発生した光の通過が可能である光通過層21が設けられている。 A light passage layer 21 through which light generated from the light emitting layer 23 can pass is provided on the surface of the first electrode layer 22 opposite to the surface on which the light emitting layer 23 is located.
 光通過層21の側面は、第1電極層22側から図示において上方側に向かうにしたがって第1電極層22の側面よりも外側に広がる傾斜面25を含む。この傾斜面25には、光反射処理が施されている。この面発光素子2においては、傾斜面25の傾斜角度(α)は45度である。 The side surface of the light passage layer 21 includes an inclined surface 25 that spreads outward from the side surface of the first electrode layer 22 from the first electrode layer 22 side toward the upper side in the drawing. The inclined surface 25 is subjected to a light reflection process. In the surface light emitting element 2, the inclination angle (α) of the inclined surface 25 is 45 degrees.
 発光層23、第1電極層22、および第2電極層24の使用材料、層厚さは、上記面発光素子1と同じである。光通過層21の使用材料は、上記面発光素子1と同じであり、層厚さは、約5mmである。 The materials used and the layer thicknesses of the light emitting layer 23, the first electrode layer 22, and the second electrode layer 24 are the same as those of the surface light emitting element 1. The material used for the light transmission layer 21 is the same as that of the surface light emitting element 1, and the layer thickness is about 5 mm.
 発光層23、第1電極層22、および第2電極層24は、一辺が約50mmの正四角形である。光通過層21は、第1電極層22とは反対側の面において、一辺が約60mmの正四角形である。 The light emitting layer 23, the first electrode layer 22, and the second electrode layer 24 are regular squares having a side of about 50 mm. The light transmission layer 21 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 22.
 第1電極層22および第2電極層24を用いて発光層23に所定の電力が印加されることで、発光層23から光が発生する。発光層23において発生した光は、第1電極層22および光通過層21を経由して、光通過層21の第1電極層22とは反対側の面(図示において上方面)側の空気に光が取り出される。 Light is generated from the light emitting layer 23 by applying predetermined power to the light emitting layer 23 using the first electrode layer 22 and the second electrode layer 24. The light generated in the light emitting layer 23 passes through the first electrode layer 22 and the light passage layer 21 to the air on the surface (upper surface in the drawing) side of the light passage layer 21 opposite to the first electrode layer 22. Light is extracted.
 この面発光素子2の構造では、光通過層21の内部の光は、光通過層21と空気との界面にて全反射現象により、光通過層21の内部の光のうち一部しか空気に取り出すことができない。しかし、関連技術1の面発光素子1に比較して、この面発光素子2には、傾斜面25が設けられていることから、光り取り出し効率の向上が図られている。 In the structure of the surface light emitting element 2, the light inside the light passage layer 21 is only part of the light inside the light passage layer 21 due to total reflection at the interface between the light passage layer 21 and air. It cannot be taken out. However, compared with the surface light emitting element 1 of the related art 1, the surface light emitting element 2 is provided with the inclined surface 25, so that the light extraction efficiency is improved.
 この面発光素子2の構造では、光通過層21の内部の光の内、約65%が空気に出射された。発光面積の一辺の長さは約50mm、光通過層21の厚さは約5mmであることから、光通過層21の厚さを発光面積の一辺の長さで割った比(厚さ比)では、5/50=0.1となる。 In the structure of the surface light emitting element 2, about 65% of the light inside the light passage layer 21 was emitted to the air. Since the length of one side of the light emission area is about 50 mm and the thickness of the light passage layer 21 is about 5 mm, the ratio of the thickness of the light passage layer 21 divided by the length of one side of the light emission area (thickness ratio) Then, 5/50 = 0.1.
 (面発光素子3)
 次に、図5および図6を参照して、関連技術3における面発光素子3について説明する。図5は、関連技術3における面発光素子3の断面図で、図6中のV-V線矢視断面である。図6は、関連技術3における面発光素子3の平面図である。
(Surface emitting element 3)
Next, with reference to FIG. 5 and FIG. 6, the surface light emitting element 3 in the related art 3 will be described. FIG. 5 is a cross-sectional view of the surface light emitting element 3 in the related art 3, and is a cross-sectional view taken along line VV in FIG. FIG. 6 is a plan view of the surface light emitting element 3 in the related art 3.
 この面発光素子3は、平面視において矩形形状を有している。一例として、一辺が約50mmの正四角形である。この面発光素子3は、光を発生する発光層33と、この発光層33の一方側の面(表面)に設けられ、発光層33から発生した光の通過が可能である第1電極層(光透過性電極)32と、発光層33の他方側の面(裏面)に設けられる第2電極層(裏面電極)34とを備える。 The surface light emitting element 3 has a rectangular shape in plan view. As an example, it is a regular square having a side of about 50 mm. The surface light-emitting element 3 includes a light-emitting layer 33 that generates light and a first electrode layer (provided on one surface (front surface) of the light-emitting layer 33, through which light generated from the light-emitting layer 33 can pass. A light-transmitting electrode) 32 and a second electrode layer (back electrode) 34 provided on the other surface (back surface) of the light-emitting layer 33.
 第1電極層32の発光層33が位置する面とは反対側の面には、発光層33から発生した光の通過が可能である光通過層31が設けられている。 On the surface of the first electrode layer 32 opposite to the surface on which the light-emitting layer 33 is located, a light-passing layer 31 through which light generated from the light-emitting layer 33 can pass is provided.
 光通過層31の第1電極層32が位置する面とは反対側の面には、光通過層31からの光の取り出し効率を高めるため、凹凸形状の光取出層36が設けられている。 An uneven light extraction layer 36 is provided on the surface of the light passage layer 31 opposite to the surface on which the first electrode layer 32 is located in order to increase the light extraction efficiency from the light passage layer 31.
 発光層33、第1電極層32、第2電極層34、および光通過層31の使用材料、層厚さは、上記面発光素子1と同じである。光取出層36は、光通過層31の表面をマイクロレンズアレイ状に加工して形成されている。 The materials and layer thicknesses of the light emitting layer 33, the first electrode layer 32, the second electrode layer 34, and the light passing layer 31 are the same as those of the surface light emitting element 1. The light extraction layer 36 is formed by processing the surface of the light passage layer 31 into a microlens array.
 このマイクロレンズアレイとしては、光通過層31の表面(光放射面)側に、直径が約30μm程度の半球を2次元に配列する。 As this microlens array, hemispheres having a diameter of about 30 μm are two-dimensionally arranged on the surface (light emitting surface) side of the light passage layer 31.
 第1電極層32および第2電極層34を用いて発光層33に所定の電力が印加されることで、発光層33から光が発生する。発光層33において発生した光は、第1電極層32、光通過層31、および光取出層36を経由して、光取出層36の光通過層31とは反対側の面(図示において上方面)側の空気に光が取り出される。 Light is generated from the light emitting layer 33 by applying a predetermined power to the light emitting layer 33 using the first electrode layer 32 and the second electrode layer 34. The light generated in the light emitting layer 33 passes through the first electrode layer 32, the light passage layer 31, and the light extraction layer 36, and the surface of the light extraction layer 36 opposite to the light passage layer 31 (upper surface in the drawing). ) Light is taken out to the air on the side.
 この面発光素子3の構造では、光取出層36にマイクロレンズアレイが用いられている。マイクロレンズアレイのような光を散乱する光取出層36を設置することで全反射にて取り出せない光の内一部が空気に出射される。 In the structure of the surface light emitting element 3, a microlens array is used for the light extraction layer 36. By installing the light extraction layer 36 that scatters light such as a microlens array, a part of the light that cannot be extracted by total reflection is emitted to the air.
 光取出層36にて反射された光も反射された角度が入射角度とは変化するため、光通過層31、第1電極層32、発光層33、および第2電極層34を経由し、第2電極層34で再び反射され発光層33、第1電極層32を経て光通過層31に戻ってきた光はマイクロレンズアレイにて再び空気に取り出される機会を得る。1回で取り出されなくても複数回の反射を繰り返すことでいずれ空気側に出射される。 Since the angle at which the light reflected by the light extraction layer 36 is also changed from the incident angle, the light passing through the light passing layer 31, the first electrode layer 32, the light emitting layer 33, and the second electrode layer 34, Light that is reflected again by the two-electrode layer 34 and returns to the light-passing layer 31 through the light-emitting layer 33 and the first electrode layer 32 has an opportunity to be taken out to the air again by the microlens array. Even if it is not extracted once, it will be emitted to the air side by repeating reflection several times.
 このように、関連技術3における面発光素子3においては、関連技術1の面発光素子1に比較して、マイクロレンズアレイを用いた光取出層36が設けられていることから、光り取り出し効率の向上が図られている。 As described above, the surface light emitting element 3 in the related technique 3 is provided with the light extraction layer 36 using the microlens array as compared with the surface light emitting element 1 in the related technique 1, and thus the light extraction efficiency is improved. Improvements are being made.
 この面発光素子3の構造では、光通過層31の内部の光の内約68%が空気に出射された。発光面積の一辺の長さは約50mm、光通過層31の厚さは約0.7mmであることから、光通過層31の厚さを発光面積の一辺の長さで割った比(厚さ比)では、0.7/50=0.014となる。 In the structure of the surface light emitting element 3, about 68% of the light inside the light passage layer 31 was emitted to the air. Since the length of one side of the light emitting area is about 50 mm and the thickness of the light passing layer 31 is about 0.7 mm, the ratio (thickness) obtained by dividing the thickness of the light passing layer 31 by the length of one side of the light emitting area. Ratio) is 0.7 / 50 = 0.014.
 (本発明に基づいた各実施の形態)
 以下、図を参照しながら、本発明に基づいた各実施の形態における面発光素子について説明する。
(Embodiments based on the present invention)
Hereinafter, the surface light emitting device in each embodiment based on the present invention will be described with reference to the drawings.
 (実施の形態1:面発光素子4)
 図7および図8を参照して、実施の形態1における面発光素子4について説明する。図7は、本実施の形態における面発光素子4の断面図で、図8中のVII-VII線矢視断面である。図8は、本実施の形態における面発光素子4の平面図である。
Embodiment 1 Surface Light Emitting Element 4
With reference to FIG. 7 and FIG. 8, the surface light-emitting element 4 in Embodiment 1 is demonstrated. FIG. 7 is a cross-sectional view of the surface light-emitting element 4 in the present embodiment, which is a cross-sectional view taken along line VII-VII in FIG. FIG. 8 is a plan view of the surface light-emitting element 4 in the present embodiment.
 この面発光素子4は、平面視において矩形形状を有している。なお、平面形状は、矩形形状に限定はされない。この面発光素子4は、光を発生する発光層43と、この発光層43の一方側の面(表面)に設けられ、発光層43から発生した光の通過が可能である第1電極層(光透過性電極)42と、発光層43の他方側の面(裏面)に設けられる第2電極層(裏面電極)44とを備える。 The surface light emitting element 4 has a rectangular shape in plan view. The planar shape is not limited to a rectangular shape. The surface light emitting element 4 includes a light emitting layer 43 that generates light, and a first electrode layer (provided on one surface (front surface) of the light emitting layer 43, through which light generated from the light emitting layer 43 can pass. A light-transmitting electrode) 42 and a second electrode layer (back electrode) 44 provided on the other surface (back surface) of the light-emitting layer 43.
 第1電極層42の発光層43が位置する面とは反対側の面には、発光層43から発生した光の通過が可能である光通過層41が設けられている。 On the surface of the first electrode layer 42 opposite to the surface on which the light emitting layer 43 is located, a light passage layer 41 through which light generated from the light emitting layer 43 can pass is provided.
 光通過層41の第1電極層42が位置する面とは反対側の面には、光通過層31からの光の取り出し効率を高めるため、凹凸形状の光取出層46が設けられている。 An uneven light extraction layer 46 is provided on the surface of the light passage layer 41 opposite to the surface on which the first electrode layer 42 is located in order to increase the light extraction efficiency from the light passage layer 31.
 発光層33、第1電極層32、第2電極層34、および光通過層31の使用材料、層厚さは、上記面発光素子1と同じである。光取出層36は、光通過層31の表面をマイクロレンズアレイ状に加工したり、別途マイクロレンズアレイ状のシートを設けることができる。 The materials and layer thicknesses of the light emitting layer 33, the first electrode layer 32, the second electrode layer 34, and the light passing layer 31 are the same as those of the surface light emitting element 1. The light extraction layer 36 can be obtained by processing the surface of the light passage layer 31 into a microlens array shape or separately providing a microlens array sheet.
 マイクロレンズアレイの加工例としては、光通過層31の表面(光放射面)側に、直径が約30μm程度の半球を2次元に配列する。直径は、10μm~100μmが好ましい。10μm以上であれば、回折の効果および色付きが発生しにくく、100μm以下であれば薄型化を図ることができる。 As an example of processing the microlens array, a hemisphere having a diameter of about 30 μm is two-dimensionally arranged on the surface (light emitting surface) side of the light passage layer 31. The diameter is preferably 10 μm to 100 μm. If it is 10 μm or more, the diffraction effect and coloring hardly occur, and if it is 100 μm or less, the thickness can be reduced.
 光通過層41の側面は、光通過層41の光取り出し効率を高めるため、第1電極層42側から図示において上方側に向かうにしたがって第1電極層42の側面よりも外側に広がる傾斜面45を含む。この傾斜面45には、光反射処理が施されている。なお、光反射処理を施さない場合もある。この面発光素子4においては、傾斜面45の傾斜角度(α)は45度である。 In order to increase the light extraction efficiency of the light passage layer 41, the side surface of the light passage layer 41 has an inclined surface 45 that spreads outward from the side surface of the first electrode layer 42 from the first electrode layer 42 side toward the upper side in the drawing. including. The inclined surface 45 is subjected to a light reflection process. In some cases, the light reflection process is not performed. In this surface light emitting element 4, the inclination angle (α) of the inclined surface 45 is 45 degrees.
 発光層43には、たとえば有機EL発光層が用いられ、層厚さは、数十nm程度である。第1電極層42(陽極層)には、たとえば、透明酸化物半導体(ITO、IZO等)が用いられ、層厚さは、約数nm~百数十nm程度である。第2電極層44(陰極層)には、たとえば薄膜金属電極(Ag,Al,Au,Cu等)が用いられ、層厚さは、約100nm~200nm程度である。 For example, an organic EL light emitting layer is used for the light emitting layer 43, and the layer thickness is about several tens of nm. For the first electrode layer 42 (anode layer), for example, a transparent oxide semiconductor (ITO, IZO, etc.) is used, and the layer thickness is about several nm to several tens of nm. For the second electrode layer 44 (cathode layer), for example, a thin film metal electrode (Ag, Al, Au, Cu, etc.) is used, and the layer thickness is about 100 nm to 200 nm.
 なお、発光層に有機ELを用いた場合について説明したが、同等の性能を有する発光層であれば、有機ELに限定されず、無機EL、面発光レーザ、面発光LED等を用いた発光層の採用も可能である。以下の実施の形態でも同様である。 In addition, although the case where organic EL was used for the light emitting layer was demonstrated, if it is a light emitting layer which has equivalent performance, it will not be limited to organic EL, and the light emitting layer using inorganic EL, surface emitting laser, surface emitting LED, etc. Can also be adopted. The same applies to the following embodiments.
 光通過層41には、ガラス基板の他、発光波長で透明な材料であれば良く、石英、サファイア等の無機材料、アクリル、ポリカーボネート、PET(Polyethylene terephthalate:ポリエチレンテレフタラート)、PEN(Polyethylene naphthalate:ポリエチレンナフタレート)等の有機材料が用いられ、層厚さは、約5mm程度である。 The light passing layer 41 may be a transparent material at the emission wavelength in addition to a glass substrate, such as inorganic materials such as quartz and sapphire, acrylic, polycarbonate, PET (Polyethylene terephthalate), PEN (Polyethylene naphthalate: An organic material such as polyethylene naphthalate) is used, and the layer thickness is about 5 mm.
 発光層43、第1電極層42、および第2電極層44は、一辺が約50mmの正四角形である。光通過層41は、第1電極層42とは反対側の面において、一辺が約60mmの正四角形である。 The light emitting layer 43, the first electrode layer 42, and the second electrode layer 44 are regular squares having a side of about 50 mm. The light passage layer 41 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 42.
 関連技術2の面発光素子2の構成と比較すると、マイクロレンズアレイを用いた光取出層46が設けられている。関連技術3の面発光素子3の構成と比較すると、光通過層41の側面に、傾斜面45が設けられている。 Compared to the configuration of the surface light emitting element 2 of Related Technology 2, a light extraction layer 46 using a microlens array is provided. Compared to the configuration of the surface light emitting element 3 of Related Art 3, an inclined surface 45 is provided on the side surface of the light passage layer 41.
 関連技術2の面発光素子2の構成においては、傾斜面により空気側へ光が効率良く取り出されるが、一部の光は傾斜面によって光通過層に再び反射され、全反射で閉じ込められる光も存在する。 In the configuration of the surface light emitting element 2 of the related art 2, light is efficiently extracted to the air side by the inclined surface, but part of the light is reflected again by the inclined surface to the light passage layer and confined by total reflection. Exists.
 関連技術2の面発光素子2の構成においては、光取出層がないため、光通過層に一度閉じ込められてしまった光は傾斜面があっても空気には出射されない。そのため、関連技術2の面発光素子2の構成においては、光取出し効率の向上には限界がある。光通過層に閉じ込められた光を取り出すために、光取出層を設置するとさらに光取り出し効率を向上させることができる。 In the configuration of the surface light emitting element 2 of the related art 2, since there is no light extraction layer, light once confined in the light passage layer is not emitted to the air even if there is an inclined surface. Therefore, in the configuration of the surface light emitting element 2 of the related art 2, there is a limit to improving the light extraction efficiency. In order to extract the light confined in the light passage layer, the light extraction efficiency can be further improved by providing a light extraction layer.
 関連技術3の面発光素子3の構成においては、光取出層と発光層の垂直方向の多重反射にて光取り出しを実現している。しかし、第2電極層(裏面電極)、発光層、第1電極層12(透明電極)による光の吸収が無視できず、光取り出し向上には限界がある。 In the structure of the surface light emitting element 3 of Related Technology 3, light extraction is realized by multiple reflection in the vertical direction of the light extraction layer and the light emitting layer. However, light absorption by the second electrode layer (back electrode), the light emitting layer, and the first electrode layer 12 (transparent electrode) cannot be ignored, and there is a limit to improving light extraction.
 光通過層を厚くするだけでは、光通過層の側面に到達した光は、光通過層内に戻るか、光通過層の側面から出射するかのどちらかになるため、光通過層の第1電極層とは反対側(上方)に光を取り出しにくい。 By simply increasing the thickness of the light passage layer, the light that reaches the side surface of the light passage layer either returns into the light passage layer or exits from the side surface of the light passage layer. It is difficult to extract light on the side opposite to the electrode layer (upward).
 光通過層を厚くし、かつ、側面に傾斜面を形成することで、光の損失要因である多重反射回数が少ない段階で側面に到達した光を効率よく傾斜面で上方に取り出すことが可能となるため、関連技術3の面発光素子3の構成に比較して、さらに光取り出し効率を向上させることができる。 By increasing the thickness of the light-passing layer and forming an inclined surface on the side surface, it is possible to efficiently extract light that has reached the side surface at a stage where the number of multiple reflections, which is a cause of light loss, is low, on the inclined surface. Therefore, the light extraction efficiency can be further improved as compared with the configuration of the surface light emitting element 3 of the related technique 3.
 この面発光素子4の構造では、光通過層41の内部の光の内約78%が空気に出射された。発光面積の一辺の長さは約50mm、光通過層41の厚さは約5mmであることから、光通過層41の厚さを発光面積の一辺の長さで割った比(厚さ比)では、5/50=0.1となる。 In the structure of the surface light emitting element 4, about 78% of the light inside the light passage layer 41 was emitted to the air. Since the length of one side of the light emission area is about 50 mm and the thickness of the light passage layer 41 is about 5 mm, the ratio of the thickness of the light passage layer 41 divided by the length of one side of the light emission area (thickness ratio) Then, 5/50 = 0.1.
 光通過層41の厚さ比は大きくなるほど、光取り出し効率を高められるが、薄型の面発光素子を実現するためには有限の厚さである必要がある。厚さ比の適応領域としては0.05~0.5が望ましく、0.05~0.1が薄型の観点からさらに望ましい。 As the thickness ratio of the light passage layer 41 is increased, the light extraction efficiency can be increased. However, in order to realize a thin surface light emitting element, it is necessary to have a finite thickness. The applicable range of the thickness ratio is preferably 0.05 to 0.5, and more preferably 0.05 to 0.1 from the viewpoint of thinness.
 (実施の形態2:面発光素子5)
 図9および図10を参照して、実施の形態2における面発光素子5について説明する。図9は、本実施の形態における面発光素子5の断面図で、図10中のIX-IX線矢視断面である。図10は、本実施の形態における面発光素子5の平面図である。
(Embodiment 2: Surface light emitting element 5)
With reference to FIG. 9 and FIG. 10, the surface emitting element 5 in Embodiment 2 is demonstrated. FIG. 9 is a cross-sectional view of the surface light-emitting element 5 in the present embodiment, and is a cross-sectional view taken along line IX-IX in FIG. FIG. 10 is a plan view of the surface light-emitting element 5 in the present embodiment.
 この面発光素子5は、平面視において矩形形状を有している。なお、平面形状は、矩形形状に限定はされない。この面発光素子5は、光を発生する発光層53と、この発光層53の一方側の面(表面)に設けられ、発光層53から発生した光の通過が可能である第1電極層(光透過性電極)52と、発光層53の他方側の面(裏面)に設けられる第2電極層(裏面電極)54とを備える。 The surface light emitting element 5 has a rectangular shape in plan view. The planar shape is not limited to a rectangular shape. The surface light-emitting element 5 includes a light-emitting layer 53 that generates light, and a first electrode layer that is provided on one surface (front surface) of the light-emitting layer 53 and that allows light generated from the light-emitting layer 53 to pass therethrough. A light-transmitting electrode) 52 and a second electrode layer (back electrode) 54 provided on the other surface (back surface) of the light-emitting layer 53.
 第1電極層52の発光層53が位置する面とは反対側の面には、発光層53から発生した光の通過が可能である光通過層51が設けられている。 A light passage layer 51 through which light generated from the light emitting layer 53 can pass is provided on the surface of the first electrode layer 52 opposite to the surface on which the light emitting layer 53 is located.
 光通過層51の側面は、光通過層51の光取り出し効率を高めるため、第1電極層52側から図示において上方側に向かうにしたがって第1電極層52の側面よりも外側に広がる傾斜面55を含む。この傾斜面55には、光反射処理が施されている。なお、光反射処理を施さない場合もある。この面発光素子5においては、傾斜面55の傾斜角度(α)は45度である。 In order to increase the light extraction efficiency of the light passage layer 51, the side surface of the light passage layer 51 has an inclined surface 55 that spreads outward from the side surface of the first electrode layer 52 from the first electrode layer 52 side toward the upper side in the drawing. including. The inclined surface 55 is subjected to a light reflection process. In some cases, the light reflection process is not performed. In the surface light emitting element 5, the inclination angle (α) of the inclined surface 55 is 45 degrees.
 発光層53、第1電極層52、第2電極層54、および光通過層51の使用材料、層厚さは、上記面発光素子4と同じである。 The materials and layer thicknesses of the light emitting layer 53, the first electrode layer 52, the second electrode layer 54, and the light passage layer 51 are the same as those of the surface light emitting element 4.
 発光層53、第1電極層52、および第2電極層54は、一辺が約50mmの正四角形である。光通過層51は、第1電極層52とは反対側の面において、一辺が約60mmの正四角形である。 The light emitting layer 53, the first electrode layer 52, and the second electrode layer 54 are regular squares having a side of about 50 mm. The light transmission layer 51 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 52.
 光通過層51の第1電極層52が位置する面とは反対側の面には、凹凸形状の光取出層56が設けられている。光取出層56には、上記面発光素子4と同様のマイクロレンズアレイが用いられている。 An uneven light extraction layer 56 is provided on the surface of the light passage layer 51 opposite to the surface on which the first electrode layer 52 is located. For the light extraction layer 56, a microlens array similar to that of the surface light emitting element 4 is used.
 上記面発光素子4の構成と、本実施の形態における面発光素子5の構成とを比較すると、光取出層56が設けられる領域が異なっている。本実施の形態における面発光素子5においては、光取出層56は、発光層53を覆う位置に設けられ、傾斜面55が対向する位置には、光取出層56は設けられていない。 When the configuration of the surface light emitting element 4 and the configuration of the surface light emitting element 5 in the present embodiment are compared, the region where the light extraction layer 56 is provided is different. In the surface light emitting element 5 in the present embodiment, the light extraction layer 56 is provided at a position covering the light emitting layer 53, and the light extraction layer 56 is not provided at a position where the inclined surface 55 faces.
 このように光取出層56が設けられる領域を制限することで、発光層53に対向する領域での光取り出しは、光取出層56にて実施する。傾斜面55において反射した光のほとんどは、光通過層51に対して垂直方向に進むため、傾斜面55が対向する位置には、光散乱効果を有する光取出層56は設置しない方が、さらなる光取り出し効率の向上を期待することができる。 Thus, by limiting the region where the light extraction layer 56 is provided, light extraction in the region facing the light emitting layer 53 is performed in the light extraction layer 56. Since most of the light reflected on the inclined surface 55 travels in the direction perpendicular to the light passage layer 51, it is more preferable not to install the light extraction layer 56 having a light scattering effect at the position where the inclined surface 55 faces. An improvement in light extraction efficiency can be expected.
 この面発光素子5の構造では、光通過層51の内部の光の内約84%が空気に出射された。発光面積の一辺の長さは約50mm、光通過層51の厚さは約5mmであることから、光通過層51の厚さを発光面積の一辺の長さで割った比(厚さ比)では、5/50=0.1となる。 In the structure of the surface light emitting element 5, about 84% of the light inside the light passage layer 51 was emitted to the air. Since the length of one side of the light emitting area is about 50 mm and the thickness of the light passing layer 51 is about 5 mm, the ratio of the thickness of the light passing layer 51 divided by the length of one side of the light emitting area (thickness ratio) Then, 5/50 = 0.1.
 なお、本実施の形態では、光通過層51の露出する領域が、光取出層56を取り囲むように設けられているが、この形態に限定はされない。光取出層56が発光層53を覆う形態であれば、光通過層51の露出する領域がどのような形態であってもかまわない。たとえば、図10において、光取出層56の左右の側にのみ光通過層51の露出する領域を設け、上下においては、光通過層51を覆うように光取出層56を設けてもよい。以下の実施の形態においても同様である。 In the present embodiment, the exposed region of the light passage layer 51 is provided so as to surround the light extraction layer 56, but the embodiment is not limited thereto. As long as the light extraction layer 56 covers the light emitting layer 53, the exposed region of the light passage layer 51 may be in any form. For example, in FIG. 10, the exposed region of the light passage layer 51 may be provided only on the left and right sides of the light extraction layer 56, and the light extraction layer 56 may be provided so as to cover the light passage layer 51 in the upper and lower sides. The same applies to the following embodiments.
 (実施の形態3:面発光素子6)
 図11および図12を参照して、実施の形態3における面発光素子6について説明する。図11は、本実施の形態における面発光素子6の断面図で、図12中のXI-XI線矢視断面である。図12は、本実施の形態における面発光素子6の平面図である。
(Embodiment 3: Surface light emitting element 6)
With reference to FIG. 11 and FIG. 12, the surface emitting element 6 in Embodiment 3 is demonstrated. FIG. 11 is a cross-sectional view of the surface light emitting element 6 in the present embodiment, and is a cross-sectional view taken along line XI-XI in FIG. FIG. 12 is a plan view of the surface light-emitting element 6 in the present embodiment.
 この面発光素子6は、平面視において矩形形状を有している。なお、平面形状は、矩形形状に限定はされない。この面発光素子6は、光を発生する発光層63と、この発光層63の一方側の面(表面)に設けられ、発光層63から発生した光の通過が可能である第1電極層(光透過性電極)62と、発光層63の他方側の面(裏面)に設けられる第2電極層(裏面電極)64とを備える。 The surface light emitting element 6 has a rectangular shape in plan view. The planar shape is not limited to a rectangular shape. The surface light-emitting element 6 includes a light-emitting layer 63 that generates light, and a first electrode layer (provided on one surface (surface) of the light-emitting layer 63, through which light generated from the light-emitting layer 63 can pass. A light transmissive electrode) 62 and a second electrode layer (back electrode) 64 provided on the other surface (back surface) of the light emitting layer 63.
 第1電極層62の発光層63が位置する面とは反対側の面には、発光層63から発生した光の通過が可能である光通過層61が設けられている。 On the surface of the first electrode layer 62 opposite to the surface on which the light emitting layer 63 is located, a light passing layer 61 capable of passing light generated from the light emitting layer 63 is provided.
 光通過層61の側面は、光通過層61の光取り出し効率を高めるため、第1電極層62側から図示において上方側に向かうにしたがって第1電極層62の側面よりも外側に広がる傾斜面65を含む。この傾斜面65には、光反射処理が施されている。なお、光反射処理を施さない場合もある。この面発光素子6においては、傾斜面45の傾斜角度(α)は45度である。 In order to increase the light extraction efficiency of the light passage layer 61, the side surface of the light passage layer 61 has an inclined surface 65 that spreads outward from the side surface of the first electrode layer 62 from the first electrode layer 62 side toward the upper side in the drawing. including. The inclined surface 65 is subjected to a light reflection process. In some cases, the light reflection process is not performed. In the surface light emitting element 6, the inclination angle (α) of the inclined surface 45 is 45 degrees.
 発光層63、第1電極層62、第2電極層64、および光通過層61の使用材料、層厚さは、上記面発光素子4と同じである。 The materials and layer thicknesses of the light emitting layer 63, the first electrode layer 62, the second electrode layer 64, and the light passage layer 61 are the same as those of the surface light emitting element 4.
 発光層63、第1電極層62、および第2電極層64は、一辺が約50mmの正四角形である。光通過層61は、第1電極層62とは反対側の面において、一辺が約60mmの正四角形である。 The light emitting layer 63, the first electrode layer 62, and the second electrode layer 64 are regular squares having a side of about 50 mm. The light transmission layer 61 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 62.
 光通過層61の第1電極層62が位置する面とは反対側の面の全面には、光取出層66が設けられている。光取出層66には、具体的には、微粒子分散タイプの拡散層が用いられている。この拡散層には、たとえば、株式会社きもと製の拡散フィルム「ライトアップ(登録商標)100NSH」を用いた。この「ライトアップ(登録商標)100NSH」は、100μmのPET基材に、拡散ビーズを分散させた拡散層が積層された構成である。 A light extraction layer 66 is provided on the entire surface of the light passage layer 61 opposite to the surface on which the first electrode layer 62 is located. Specifically, a fine particle dispersion type diffusion layer is used for the light extraction layer 66. For this diffusion layer, for example, a diffusion film “Light Up (registered trademark) 100NSH” manufactured by Kimoto Co., Ltd. was used. This “Light-Up (registered trademark) 100NSH” has a configuration in which a diffusion layer in which diffusion beads are dispersed is laminated on a 100 μm PET base material.
 光取出層66に拡散層を用いた場合であっても、上記実施の形態1における面発光素子4の場合と同様の効果が得られ、この面発光素子6の構造では、光通過層61の内部の光の内約76%が空気に出射された。発光面積の一辺の長さは約50mm、光通過層61の厚さは約5mmであることから、光通過層41の厚さを発光面積の一辺の長さで割った比(厚さ比)では、5/50=0.1となる。 Even when a diffusion layer is used for the light extraction layer 66, the same effect as that of the surface light-emitting element 4 in the first embodiment can be obtained. About 76% of the internal light was emitted to the air. Since the length of one side of the light emitting area is about 50 mm and the thickness of the light passing layer 61 is about 5 mm, the ratio of the thickness of the light passing layer 41 divided by the length of one side of the light emitting area (thickness ratio) Then, 5/50 = 0.1.
 (実施の形態4:面発光素子7)
 図13および図14を参照して、実施の形態4における面発光素子7について説明する。図13は、本実施の形態における面発光素子7の断面図で、図14中のXIII-XIII線矢視断面である。図14は、本実施の形態における面発光素子7の平面図である。
(Embodiment 4: Surface light emitting element 7)
With reference to FIG. 13 and FIG. 14, the surface light emitting element 7 in the fourth embodiment will be described. FIG. 13 is a cross-sectional view of the surface light emitting device 7 in the present embodiment, and is a cross-sectional view taken along line XIII-XIII in FIG. FIG. 14 is a plan view of the surface light-emitting element 7 in the present embodiment.
 この面発光素子7は、平面視において矩形形状を有している。なお、平面形状は、矩形形状に限定はされない。この面発光素子7は、光を発生する発光層73と、この発光層73の一方側の面(表面)に設けられ、発光層73から発生した光の通過が可能である第1電極層(光透過性電極)72と、発光層73の他方側の面(裏面)に設けられる第2電極層(裏面電極)74とを備える。 The surface light emitting element 7 has a rectangular shape in plan view. The planar shape is not limited to a rectangular shape. This surface light emitting element 7 is provided with a light emitting layer 73 that generates light and a first electrode layer (provided on one surface (front surface) of the light emitting layer 73, through which light generated from the light emitting layer 73 can pass. A light transmissive electrode) 72 and a second electrode layer (back surface electrode) 74 provided on the other side surface (back surface) of the light emitting layer 73.
 第1電極層72の発光層73が位置する面とは反対側の面には、発光層73から発生した光の通過が可能である光通過層71が設けられている。 On the surface of the first electrode layer 72 opposite to the surface on which the light emitting layer 73 is located, a light passing layer 71 capable of passing light generated from the light emitting layer 73 is provided.
 光通過層71の側面は、光通過層71の光取り出し効率を高めるため、第1電極層72側から図示において上方側に向かうにしたがって第1電極層72の側面よりも外側に広がる傾斜面75を含む。この傾斜面75には、光反射処理が施されている。なお、光反射処理を施さない場合もある。この面発光素子7においては、傾斜面75の傾斜角度(α)は45度である。 In order to increase the light extraction efficiency of the light passage layer 71, the side surface of the light passage layer 71 has an inclined surface 75 that spreads outward from the side surface of the first electrode layer 72 from the first electrode layer 72 side toward the upper side in the drawing. including. The inclined surface 75 is subjected to light reflection processing. In some cases, the light reflection process is not performed. In the surface light emitting element 7, the inclined angle (α) of the inclined surface 75 is 45 degrees.
 発光層73、第1電極層72、第2電極層74、および光通過層71の使用材料、層厚さは、上記面発光素子4と同じである。 The materials used and the layer thicknesses of the light emitting layer 73, the first electrode layer 72, the second electrode layer 74, and the light passage layer 71 are the same as those of the surface light emitting element 4.
 発光層73、第1電極層72、および第2電極層74は、一辺が約50mmの正四角形である。光通過層71は、第1電極層72とは反対側の面において、一辺が約60mmの正四角形である。 The light emitting layer 73, the first electrode layer 72, and the second electrode layer 74 are regular squares having a side of about 50 mm. The light passage layer 71 is a regular square having a side of about 60 mm on the surface opposite to the first electrode layer 72.
 光通過層71の第1電極層72が位置する面とは反対側の面には、光取出層76が設けられている。光取出層76には、上記面発光素子6と同様の、微粒子分散タイプの拡散層が用いられている。 A light extraction layer 76 is provided on the surface of the light passage layer 71 opposite to the surface on which the first electrode layer 72 is located. For the light extraction layer 76, a fine particle dispersion type diffusion layer similar to the surface light emitting element 6 is used.
 上記面発光素子6の構成と、本実施の形態における面発光素子7の構成とを比較すると、光取出層76が設けられる領域が異なっている。本実施の形態における面発光素子7においては、光取出層76は、発光層73を覆う位置に設けられ、傾斜面75が対向する位置には、光取出層76は設けられていない。 When the structure of the surface light emitting element 6 is compared with the structure of the surface light emitting element 7 in the present embodiment, the region where the light extraction layer 76 is provided is different. In the surface light emitting element 7 in the present embodiment, the light extraction layer 76 is provided at a position covering the light emitting layer 73, and the light extraction layer 76 is not provided at a position where the inclined surface 75 faces.
 このように光取出層76が設けられる領域を制限することで、発光層73に対向する領域での光取り出しは、光取出層76にて実施する。傾斜面75において反射した光のほとんどは、光通過層71に対して垂直方向に進むため、光散乱効果を有する光取出層76は設置しない方が、さらなる光取り出し効率の向上を期待することができる。 Thus, by limiting the region where the light extraction layer 76 is provided, the light extraction in the region facing the light emitting layer 73 is performed by the light extraction layer 76. Since most of the light reflected on the inclined surface 75 travels in a direction perpendicular to the light passage layer 71, it is expected that the light extraction efficiency will be further improved if the light extraction layer 76 having a light scattering effect is not provided. it can.
 この面発光素子7の構造では、光通過層71の内部の光の内約82%が空気に出射された。発光面積の一辺の長さは約50mm、光通過層51の厚さは約5mmであることから、光通過層71の厚さを発光面積の一辺の長さで割った比(厚さ比)では、5/50=0.1となる。 In the structure of the surface light emitting element 7, about 82% of the light inside the light passage layer 71 was emitted to the air. Since the length of one side of the light emitting area is about 50 mm and the thickness of the light passing layer 51 is about 5 mm, the ratio of the thickness of the light passing layer 71 divided by the length of one side of the light emitting area (thickness ratio) Then, 5/50 = 0.1.
 (実施の形態5:面発光素子8)
 図15および図16を参照して、実施の形態5における面発光素子8について説明する。図15は、本実施の形態における面発光素子8の断面図で、図16中のXV-XV線矢視断面である。図16は、本実施の形態における面発光素子8の平面図である。
(Embodiment 5: Surface light emitting element 8)
With reference to FIG. 15 and FIG. 16, the surface light-emitting element 8 in Embodiment 5 is demonstrated. FIG. 15 is a cross-sectional view of the surface light-emitting element 8 in the present embodiment, and is a cross-sectional view taken along line XV-XV in FIG. FIG. 16 is a plan view of the surface light-emitting element 8 in the present embodiment.
 この面発光素子8は、平面視において矩形形状を有している。なお、平面形状は、矩形形状に限定はされない。この面発光素子8は、光を発生する発光層83と、この発光層83の一方側の面(表面)に設けられ、発光層83から発生した光の通過が可能である第1電極層(光透過性電極)82と、発光層83の他方側の面(裏面)に設けられる第2電極層(裏面電極)84とを備える。 The surface light emitting element 8 has a rectangular shape in plan view. The planar shape is not limited to a rectangular shape. The surface light-emitting element 8 includes a light-emitting layer 83 that generates light, and a first electrode layer (provided on one surface (front surface) of the light-emitting layer 83, through which light generated from the light-emitting layer 83 can pass. A light transmissive electrode) 82 and a second electrode layer (back electrode) 84 provided on the other surface (back surface) of the light emitting layer 83.
 第1電極層82の発光層83が位置する面とは反対側の面には、発光層83から発生した光の通過が可能である光通過層81が設けられている。光通過層81の第1電極層82側の面は、第1電極層82の側面よりも外側に向けて大きく張り出すように設けられている。 On the surface of the first electrode layer 82 opposite to the surface on which the light emitting layer 83 is located, a light passing layer 81 capable of passing light generated from the light emitting layer 83 is provided. The surface of the light passage layer 81 on the first electrode layer 82 side is provided so as to protrude outward more than the side surface of the first electrode layer 82.
 光通過層81の側面は、光通過層81の光取り出し効率を高めるため、第1電極層82側から図示において上方側に向かうにしたがって第1電極層82の側面よりも外側に広がる傾斜面85を含む。この傾斜面85および第1電極層82の側面よりも外側に向けて大きく張り出す面には、光反射処理が施されている。なお、光反射処理を施さない場合もある。この面発光素子8においては、傾斜面85の傾斜角度(α)は45度である。 In order to increase the light extraction efficiency of the light passage layer 81, the side surface of the light passage layer 81 has an inclined surface 85 that spreads outward from the side surface of the first electrode layer 82 from the first electrode layer 82 side toward the upper side in the drawing. including. A light reflection process is performed on the surface that protrudes more outward than the side surfaces of the inclined surface 85 and the first electrode layer 82. In some cases, the light reflection process is not performed. In this surface light emitting element 8, the inclination angle (α) of the inclined surface 85 is 45 degrees.
 発光層83、第1電極層82、第2電極層84、および光通過層81の使用材料、層厚さは、上記面発光素子4と同じである。 The materials and layer thicknesses of the light emitting layer 83, the first electrode layer 82, the second electrode layer 84, and the light passage layer 81 are the same as those of the surface light emitting element 4.
 発光層83、第1電極層82、および第2電極層84は、一辺が約50mmの正四角形である。光通過層81の第1電極層82側の面は、一辺が約56mmの正四角形である。光通過層81の第1電極層82側とは反対側の面は、一辺が約66mmの正四角形である。 The light emitting layer 83, the first electrode layer 82, and the second electrode layer 84 are regular squares having a side of about 50 mm. The surface of the light passing layer 81 on the first electrode layer 82 side is a regular square having a side of about 56 mm. The surface of the light transmission layer 81 opposite to the first electrode layer 82 side is a regular square having a side of about 66 mm.
 光通過層81の第1電極層82が位置する面とは反対側の面には、凹凸形状の光取出層86が設けられている。光取出層86には、上記面発光素子4および5と同様のマイクロレンズアレイが用いられている。 An uneven light extraction layer 86 is provided on the surface of the light passage layer 81 opposite to the surface on which the first electrode layer 82 is located. For the light extraction layer 86, a microlens array similar to the surface light emitting elements 4 and 5 is used.
 上記面発光素子5の構成と、本実施の形態における面発光素子8の構成とを比較すると、光通過層81の第1電極層82側の面は、第1電極層82の側面よりも外側に向けて大きく張り出すように設けられている点にある。この張り出した部分においても、光反射効果により、光取り出し効率の向上を期待することができる。 When the configuration of the surface light emitting element 5 is compared with the configuration of the surface light emitting element 8 in the present embodiment, the surface of the light passing layer 81 on the first electrode layer 82 side is outside the side surface of the first electrode layer 82. It is in the point which is provided so that it may protrude greatly toward. Even in the protruding portion, it is possible to expect an improvement in light extraction efficiency due to the light reflection effect.
 この面発光素子8の構造では、光通過層81の内部の光の内約82%が空気に出射された。発光面積の一辺の長さは約50mm、光通過層51の厚さは約5mmであることから、光通過層81の厚さを発光面積の一辺の長さで割った比(厚さ比)では、5/50=0.1となる。 In the structure of the surface light emitting element 8, about 82% of the light inside the light passage layer 81 was emitted to the air. Since the length of one side of the light emitting area is about 50 mm and the thickness of the light passing layer 51 is about 5 mm, the ratio of the thickness of the light passing layer 81 divided by the length of one side of the light emitting area (thickness ratio) Then, 5/50 = 0.1.
 (実施の形態6:面発光素子9)
 図17および図18を参照して、実施の形態6における面発光素子9について説明する。図17は、本実施の形態における面発光素子9の断面図で、図18中のXVII-XVII線矢視断面である。図18は、本実施の形態における面発光素子9の平面図である。
(Embodiment 6: Surface light emitting element 9)
With reference to FIG. 17 and FIG. 18, the surface light emitting element 9 in the sixth embodiment will be described. FIG. 17 is a cross-sectional view of the surface light emitting device 9 in the present embodiment, and is a cross-sectional view taken along line XVII-XVII in FIG. FIG. 18 is a plan view of the surface light emitting element 9 in the present embodiment.
 この面発光素子9は、平面視において矩形形状を有している。なお、平面形状は、矩形形状に限定はされない。この面発光素子9は、光を発生する発光層93と、この発光層93の一方側の面(表面)に設けられ、発光層93から発生した光の通過が可能である第1電極層(光透過性電極)92と、発光層93の他方側の面(裏面)に設けられる第2電極層(裏面電極)94とを備える。 The surface light emitting element 9 has a rectangular shape in plan view. The planar shape is not limited to a rectangular shape. The surface light-emitting element 9 includes a light-emitting layer 93 that generates light, and a first electrode layer (provided on one surface (front surface) of the light-emitting layer 93, through which light generated from the light-emitting layer 93 can pass. A light-transmitting electrode) 92 and a second electrode layer (back electrode) 94 provided on the other surface (back surface) of the light emitting layer 93.
 第1電極層92の発光層93が位置する面とは反対側の面には、発光層83から発生した光の通過が可能である第1光通過層91および第2光通過層91aが設けられている。第1電極層92側に位置する第2光通過層91aは、第1電極層82の側面よりも外側に向けて大きく張り出すように設けられている。第1光通過層91の第2光通過層91a側の面は、第1電極層92と同様の形状を有している。 A first light passage layer 91 and a second light passage layer 91a through which light generated from the light emitting layer 83 can pass are provided on the surface of the first electrode layer 92 opposite to the surface on which the light emitting layer 93 is located. It has been. The second light passage layer 91a located on the first electrode layer 92 side is provided so as to protrude largely outward from the side surface of the first electrode layer 82. The surface of the first light passage layer 91 on the second light passage layer 91 a side has the same shape as the first electrode layer 92.
 第1光通過層91の側面は、第1光通過層91の光取り出し効率を高めるため、第1電極層92側から図示において上方側に向かうにしたがって第1電極層92の側面よりも外側に広がる傾斜面95を含む。この傾斜面95および第1電極層92の側面よりも外側に向けて大きく張り出す面には、光反射処理が施されている。なお、光反射処理を施さない場合もある。この面発光素子9においては、傾斜面95の傾斜角度(α)は45度である。 In order to increase the light extraction efficiency of the first light passage layer 91, the side surface of the first light passage layer 91 is more outward than the side surface of the first electrode layer 92 from the first electrode layer 92 side toward the upper side in the drawing. An expanding inclined surface 95 is included. A light reflection process is performed on the inclined surface 95 and the surface that protrudes more outward than the side surface of the first electrode layer 92. In some cases, the light reflection process is not performed. In the surface light emitting element 9, the inclination angle (α) of the inclined surface 95 is 45 degrees.
 発光層93、第1電極層92、および第2電極層94の使用材料、層厚さは、上記面発光素子4と同じである。第1光通過層91および第2光通過層91aの使用材料上記面発光素子4と同じである。第1光通過層91の層厚さは、約5mm程度であり、第2光通過層91aの層厚さは、約0.7mm程度である。 The materials used and the layer thicknesses of the light emitting layer 93, the first electrode layer 92, and the second electrode layer 94 are the same as those of the surface light emitting element 4. Materials used for the first light passage layer 91 and the second light passage layer 91a are the same as those of the surface light emitting element 4. The layer thickness of the first light passage layer 91 is about 5 mm, and the layer thickness of the second light passage layer 91a is about 0.7 mm.
 発光層93、第1電極層92、および第2電極層94は、一辺が約50mmの正四角形である。第1光通過層91の第1電極層92側の面は、一辺が約50mmの正四角形である。第1光通過層91の第1電極層92側とは反対側の面は、一辺が約60mmの正四角形である。 The light emitting layer 93, the first electrode layer 92, and the second electrode layer 94 are regular squares having a side of about 50 mm. The surface of the first light passage layer 91 on the first electrode layer 92 side is a regular square having a side of about 50 mm. The surface of the first light passage layer 91 opposite to the first electrode layer 92 side is a regular square having a side of about 60 mm.
 第1光通過層91の第1電極層92が位置する面とは反対側の面には、凹凸形状の光取出層96が設けられている。光取出層96には、上記面発光素子4および5と同様のマイクロレンズアレイが用いられている。 An uneven light extraction layer 96 is provided on the surface of the first light passage layer 91 opposite to the surface on which the first electrode layer 92 is located. For the light extraction layer 96, the same microlens array as that of the surface light emitting elements 4 and 5 is used.
 また、本実施の形態の面発光素子9は、実施の形態2の面発光素子5の構成と同様に、光取出層96は、発光層93を覆う位置に設けられている。 Further, in the surface light emitting element 9 of the present embodiment, the light extraction layer 96 is provided at a position covering the light emitting layer 93 in the same manner as the structure of the surface light emitting element 5 of the second embodiment.
 本実施の形態においては、光通過層が第1光通過層91と第2光通過層91aとの2層構造になっている。面発光素子を形成する時の光通過層(第1光通過層91)の層厚さが薄い場合でも、別部材として光学密着させた光通過層(第2光通過層91a)を用いることで、実効的な光通過層の層厚さを厚くすることが可能である。 In the present embodiment, the light passage layer has a two-layer structure of a first light passage layer 91 and a second light passage layer 91a. Even when the layer thickness of the light passage layer (first light passage layer 91) when forming the surface light emitting device is thin, the light passage layer (second light passage layer 91a) optically adhered as a separate member is used. It is possible to increase the effective layer thickness of the light passage layer.
 また、第1光通過層91および第2光通過層91aが、発光層93の発光面積よりも大きな面積を有する場合でも、第1光通過層91の第1電極層92側の面を発光面積に合わせ、発光部面積よりも大きな部分にて傾斜面を設けることで、製造上およびコスト的に有利な薄い一般に用いられている基板(第2光通過層91a)と、光取り出しのための厚く斜面を有する基板(第1光通過層91)とを組み合わせることが可能となる。 Further, even when the first light passage layer 91 and the second light passage layer 91a have an area larger than the light emission area of the light emitting layer 93, the surface of the first light passage layer 91 on the first electrode layer 92 side has a light emission area. Accordingly, by providing an inclined surface in a portion larger than the area of the light emitting portion, a thin commonly used substrate (second light passage layer 91a) advantageous in terms of manufacturing and cost, and a thickness for light extraction are provided. It becomes possible to combine with the board | substrate (1st light passage layer 91) which has a slope.
 この面発光素子9の構造では、光通過層81の内部の光の内約83%が空気に出射された。発光面積の一辺の長さは約50mm、光通過層51の厚さは約5mmであることから、光通過層(第1光通過層91+第2光通過層91a)の厚さを発光面積の一辺の長さで割った比(厚さ比)では、5.7/50=0.114となる。 In the structure of the surface light emitting element 9, about 83% of the light inside the light passage layer 81 was emitted to the air. Since the length of one side of the light emitting area is about 50 mm and the thickness of the light passage layer 51 is about 5 mm, the thickness of the light passage layer (the first light passage layer 91 + the second light passage layer 91a) is set to the light emission area. The ratio (thickness ratio) divided by the length of one side is 5.7 / 50 = 0.114.
 図19に、関連技術1-3および実施の形態1-6における面発光素子1-9の光取り出し効率を一覧にして示す。関連技術1-3における面発光素子1-3の光取り出し効率は、40%台から60%台であるが、実施の形態1-6における面発光素子4-9の光取り出し効率は、70%台から80%台に向上している。 FIG. 19 shows a list of light extraction efficiencies of the surface emitting element 1-9 in the related art 1-3 and the embodiment 1-6. The light extraction efficiency of the surface light emitting element 1-3 in Related Art 1-3 is in the range of 40% to 60%, but the light extraction efficiency of the surface light emitting element 4-9 in Embodiment 1-6 is 70%. It has improved from 80 to 80%.
 以上、本発明の各実施の形態における面発光素子について説明したが、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 The surface light emitting device in each embodiment of the present invention has been described above. However, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. Therefore, the scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,2,3,4,5,6,7,8,9 面発光素子、11,21,31,41,51,61,71,81 光通過層、12,22,32,42,52,62,72,82,92 第1電極層、13,23,33,43,53,63,73,83,93 発光層、14,24,34,44,54,64,74,84,94 第2電極層、25,45,55,65,75,85,95 傾斜面、36,46,56,66,76,86,96 光取出層、91 第1光通過層、91a 第2光通過層。 1,2,3,4,5,6,7,8,9 surface light emitting element, 11,21,31,41,51,61,71,81 light passing layer, 12,22,32,42,52, 62, 72, 82, 92 1st electrode layer, 13, 23, 33, 43, 53, 63, 73, 83, 93 Light emitting layer, 14, 24, 34, 44, 54, 64, 74, 84, 94th 2 electrode layer, 25, 45, 55, 65, 75, 85, 95 inclined surface, 36, 46, 56, 66, 76, 86, 96 light extraction layer, 91 first light passage layer, 91a second light passage layer .

Claims (6)

  1.  光を発生する発光層と、
     前記発光層の一方側の面に設けられ、前記発光層から発生した光の通過が可能である第1電極層と、
     前記発光層の他方側の面に設けられる第2電極層と、
     前記第1電極層の前記発光層が位置する面とは反対側の面に設けられ、前記発光層から発生した光の通過が可能である光通過層と、
     前記光通過層の前記第1電極層が位置する面とは反対側の面に設けられ、前記光通過層からの光の取り出し効率を高める光取出層と、を備え、
     前記光通過層の側面は、前記第1電極層側から前記光取出層側に向かうにしたがって前記第1電極層の側面よりも外側に広がる傾斜面を含む、面発光素子。
    A light emitting layer for generating light;
    A first electrode layer provided on one surface of the light emitting layer and capable of passing light generated from the light emitting layer;
    A second electrode layer provided on the other surface of the light emitting layer;
    A light-passing layer provided on the surface of the first electrode layer opposite to the surface on which the light-emitting layer is located, and capable of passing light generated from the light-emitting layer;
    A light extraction layer provided on a surface opposite to the surface on which the first electrode layer of the light passage layer is located, and increasing the light extraction efficiency from the light passage layer,
    The side surface of the said light passage layer is a surface emitting element containing the inclined surface which spreads outside the side surface of the said 1st electrode layer as it goes to the said light extraction layer side from the said 1st electrode layer side.
  2.  前記光取出層側から前記発光層を見た場合に、前記光取出層は、少なくとも前記発光層を覆う位置に設けられている、請求項1に記載の面発光素子。 The surface light emitting device according to claim 1, wherein when the light emitting layer is viewed from the light extraction layer side, the light extraction layer is provided at a position covering at least the light emission layer.
  3.  前記光取出層側から前記発光層を見た場合に、前記傾斜面が対向する位置には、前記光取出層は設けられていない、請求項2に記載の面発光素子。 The surface light emitting device according to claim 2, wherein the light extraction layer is not provided at a position where the inclined surface faces when the light emitting layer is viewed from the light extraction layer side.
  4.  前記傾斜面には、光反射処理が施されている、請求項1から3のいずれかに記載の面発光素子。 4. The surface light emitting device according to claim 1, wherein the inclined surface is subjected to a light reflection process.
  5.  前記光取出層の前記光通過層が位置する面とは反対側の面は、凹凸形状である、請求項1から4のいずれかに記載の面発光素子。 The surface light emitting device according to any one of claims 1 to 4, wherein a surface of the light extraction layer opposite to a surface on which the light passage layer is located has an uneven shape.
  6.  前記光取出層は、光拡散層である、請求項1から4のいずれかに記載の面発光素子。 The surface light emitting device according to any one of claims 1 to 4, wherein the light extraction layer is a light diffusion layer.
PCT/JP2013/060018 2012-05-24 2013-04-02 Surface-emitting element WO2013175868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012118588 2012-05-24
JP2012-118588 2012-05-24

Publications (1)

Publication Number Publication Date
WO2013175868A1 true WO2013175868A1 (en) 2013-11-28

Family

ID=49623572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060018 WO2013175868A1 (en) 2012-05-24 2013-04-02 Surface-emitting element

Country Status (1)

Country Link
WO (1) WO2013175868A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073492A (en) * 2016-10-25 2018-05-10 株式会社ギバル Organic EL module and organic EL lighting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195588A (en) * 1985-02-25 1986-08-29 松下電工株式会社 Electroluminescence element
JP2004119211A (en) * 2002-09-26 2004-04-15 Toyota Industries Corp Transparent substrate for el element, and el device as well as liquid crystal display device
JP2004200148A (en) * 2002-12-18 2004-07-15 General Electric Co <Ge> Lighting device for extracting light from flat light source
JP2005158665A (en) * 2003-11-24 2005-06-16 Toyota Industries Corp Lighting system
JP2005327686A (en) * 2004-05-17 2005-11-24 Nippon Zeon Co Ltd Electroluminescent element, and lighting system and display device using the element
JP2011129387A (en) * 2009-12-18 2011-06-30 Nitto Denko Corp Organic light emitting diode and light emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195588A (en) * 1985-02-25 1986-08-29 松下電工株式会社 Electroluminescence element
JP2004119211A (en) * 2002-09-26 2004-04-15 Toyota Industries Corp Transparent substrate for el element, and el device as well as liquid crystal display device
JP2004200148A (en) * 2002-12-18 2004-07-15 General Electric Co <Ge> Lighting device for extracting light from flat light source
JP2005158665A (en) * 2003-11-24 2005-06-16 Toyota Industries Corp Lighting system
JP2005327686A (en) * 2004-05-17 2005-11-24 Nippon Zeon Co Ltd Electroluminescent element, and lighting system and display device using the element
JP2011129387A (en) * 2009-12-18 2011-06-30 Nitto Denko Corp Organic light emitting diode and light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073492A (en) * 2016-10-25 2018-05-10 株式会社ギバル Organic EL module and organic EL lighting device

Similar Documents

Publication Publication Date Title
US8987767B2 (en) Light emitting device having improved light extraction efficiency
JP5125717B2 (en) Organic electroluminescence light emitting device and liquid crystal display device
JP6226279B2 (en) Organic electroluminescence device
CN104752478B (en) Organic LED display device
WO2012090712A1 (en) Organic light-emitting device
WO2012002259A1 (en) Surface light source device and lighting apparatus
JP2006210119A (en) Light emitting device
JP2006351211A (en) Surface emitting light source and liquid crystal display
JP5481825B2 (en) EL element and display device
JP5854173B2 (en) Surface emitting unit
JP5921481B2 (en) Double-sided display device
JP2016085797A (en) Surface light emitting module
JP6477493B2 (en) Surface emitting unit
WO2013175868A1 (en) Surface-emitting element
WO2015079912A1 (en) Planar light-emitting unit
JP5891962B2 (en) Surface emitter
JP2018527725A (en) Organic light emitting device
JP2013246932A (en) Surface light emitting element and lighting device using the same
EP2280434A2 (en) Organic EL Light Source
JP2016201323A (en) Light emitting device and display device
WO2010058755A1 (en) Surface light source element, and image display device and illuminating device using the surface light source element
JP2015230841A (en) Surface light emitting unit
JP5673295B2 (en) Light emitting device and lighting apparatus
WO2016084472A1 (en) Surface light-emitting module
JP2017091868A (en) Planar light-emitting module and lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP