WO2012090712A1 - Organic light-emitting device - Google Patents
Organic light-emitting device Download PDFInfo
- Publication number
- WO2012090712A1 WO2012090712A1 PCT/JP2011/078974 JP2011078974W WO2012090712A1 WO 2012090712 A1 WO2012090712 A1 WO 2012090712A1 JP 2011078974 W JP2011078974 W JP 2011078974W WO 2012090712 A1 WO2012090712 A1 WO 2012090712A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- organic light
- insulating layer
- transparent electrode
- light emitting
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 83
- 239000011347 resin Substances 0.000 claims description 34
- 229920005989 resin Polymers 0.000 claims description 34
- 238000000149 argon plasma sintering Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 239000010954 inorganic particle Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
- H05B33/24—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/26—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
- H05B33/28—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/852—Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/856—Arrangements for extracting light from the devices comprising reflective means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
Definitions
- the present invention relates to an organic light emitting device.
- a light-emitting element that realizes thinness, high efficiency, and long life, it is a light-emitting element that includes an organic light-emitting layer on a substrate, and a first electrode and a second electrode that sandwich the organic light-emitting layer.
- the second electrode is formed on the opposite side of the organic light emitting layer from the substrate, and is generated between the second electrode and the organic light emitting layer at the time of film formation rather than the second electrode.
- a light-emitting element having a buffer layer mainly composed of an oxide containing less oxygen and further using the substrate as a metal substrate.
- An object of the present invention is to provide a highly efficient organic light emitting device.
- the features of the present invention for solving the above-described problems are as follows. (1) It has a first substrate, a reflective layer, a first insulating layer, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a second substrate, and light from the organic light emitting layer is extracted. In the direction, the first substrate, the reflective layer, the first insulating layer, the first transparent electrode, the organic light emitting layer, the second transparent electrode, and the second substrate are arranged in this order, and the reflective layer is a flat plate An uneven portion is formed on the light extraction side of the first insulating layer, and the uneven portion is formed on the first transparent electrode, the organic light emitting layer, and the second transparent electrode corresponding to the uneven portion of the first insulating layer.
- a second insulating layer is formed between the second transparent electrode and the second substrate, a second insulating layer is formed in the recess of the second transparent electrode, The organic light emitting device in which the convex portion of the second transparent electrode is in contact with the second substrate.
- the area of the convex portion of the first insulating layer is larger than the area of the concave portion of the first insulating layer in the in-plane direction of the reflective layer.
- An organic light-emitting device in which a concave portion of one insulating layer is surrounded by a convex portion of a first insulating layer.
- the concavo-convex portion of the first insulating layer is composed of a concave portion, a convex portion and a tapered portion, and the width of the convex portion of the first insulating layer is the first in the in-plane direction of the reflective layer.
- the width of the convex portion of the first insulating layer is 10 ⁇ m or more and 100 ⁇ m or less, and the width of the concave portion of the first insulating layer is 10 ⁇ m or more and 100 ⁇ m or less.
- the film thickness of the convex part of the layer is 1 ⁇ m or more and 6 ⁇ m or less, the film thickness of the concave part of the first insulating layer is 0.5 ⁇ m or more and 1 ⁇ m or less, and the angle formed between the tapered part of the first insulating layer and the reflective layer is An organic light emitting device having an angle of 20 degrees to 70 degrees.
- the refractive index of the first transparent electrode is higher than the refractive index of the first insulating layer, and the refractive index of the second transparent electrode is higher than the refractive index of the second insulating layer.
- the refractive index of the first transparent electrode is higher than the refractive index of the first insulating layer, and the refractive index of the second transparent electrode is higher than the refractive index of the resin layer.
- a light scattering layer is formed on the light extraction side of the second substrate, a transparent layer is provided between the second substrate and the resin layer, and the light of the transparent layer is extracted.
- the concavo-convex portion of the first insulating layer is composed of a concave portion, a convex portion and a tapered portion, and the area of the convex portion of the first insulating layer is the first in the in-plane direction of the reflective layer.
- the surface area of the organic light emitting layer is larger than the area of the concave portion of the insulating layer, and the organic light emitting layer has a concave portion, a convex portion, and a tapered portion, and emits light from the organic light emitting layer convex portion, the organic light emitting layer concave portion, and the organic light emitting layer tapered portion.
- the present invention can provide a highly efficient organic light-emitting device. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
- FIG. 1 is a partial cross-sectional view showing a configuration of an embodiment of an organic light-emitting device of the present invention.
- the organic light emitting device of the present embodiment includes a first substrate 1, a reflective layer 2, a first insulating layer 3, a first transparent electrode 4, an organic light emitting layer 5, a second transparent electrode 6, and a second substrate 7. And a second insulating layer 8.
- Light is extracted in the direction indicated by the arrow in FIG.
- the transparent electrodes 6 and the second substrate 7 are arranged in this order.
- Each layer (reflective layer 2 and first insulating layer 3, first insulating layer 3 and first transparent electrode 4, first transparent electrode 4 and organic light emitting layer 5, organic light emitting layer 5 and second transparent electrode 6)
- the second transparent electrode 6 and the second insulating layer 8, the second insulating layer 8 and the second substrate 7) may be in contact with each other, and another layer may be interposed between the layers.
- the reflective layer 2 is a flat plate and is formed across a plurality of uneven portions described later.
- the size of the reflective layer 2 is about 2 mm ⁇ 2 mm.
- the area of the reflective layer 2 may be larger than 2 mm ⁇ 2 mm.
- the direction in which light from the organic light emitting layer 5 is extracted is defined as the in-plane normal direction of the reflective layer 2. In the in-plane normal direction of the reflective layer 2, the surface of the first insulating layer 3 on the side from which light is extracted is an uneven portion.
- the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 also have uneven portions.
- a first insulating layer 3 is present between the concave portion of the first transparent electrode 4 and the reflective layer 2.
- a second insulating layer 8 is formed on the concavo-convex portion on the side from which light is extracted in the second transparent electrode 6.
- the convex portions of the second transparent electrode 6 formed corresponding to the concave and convex portions of the first insulating layer 3 are in contact with the second substrate 7.
- the second insulating layer 8 is not formed between the convex portion of the second transparent electrode 6 and the second substrate 7, but the second so as to cover the concave and convex portion of the second transparent electrode 6.
- the insulating layer 8 may be formed.
- the portion where the second insulating layer 8 is formed may be used as the second transparent electrode 6, and the surface of the second transparent electrode 6 on the side from which light is extracted may be flattened.
- the organic light emitting device of this embodiment is of a so-called bottom emission type, and has a second insulating layer 8, a second transparent electrode 6, an organic light emitting layer 5, a first transparent electrode 4, a first transparent electrode 4 on a second substrate 7.
- a single insulating layer 3 and a reflective layer 2 are sequentially formed and sealed by the first substrate 1.
- a gap 9 is formed between the first substrate 1 and the reflective layer 2.
- the thickness of the gap 9 in the in-plane normal direction of the reflective layer 2 is preferably several ⁇ m or more and 5 mm or less.
- FIG. 2A is a top view showing uneven portions of the first insulating layer 3, the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 of one embodiment of the organic light emitting device of the present invention.
- FIG. 2B is a diagram showing a cross-sectional shape of AA ′ in FIG.
- an organic light emitting device according to an embodiment of the present invention has a plurality of convex portions 100, concave portions 101, and concave and convex portions formed of a tapered portion 102 connecting the convex portions 100 and the concave portions 101.
- FIG.2 (b) although the convex part 100 is substantially square, a rectangle may be sufficient.
- FIG.2 (b) although the convex part 100 is substantially square, a rectangle may be sufficient. As shown in FIG.
- the convex portion 100 is formed in a substantially square shape, so that the distance until the light emitted from the convex portion 100 reaches the tapered portion 102 is the same as the horizontal direction in FIG. ) Is substantially the same in the vertical direction, and the loss due to absorption is the same in the horizontal direction in FIG. 2A and in the vertical direction in FIG. 2A, and the symmetry of light is improved.
- the two tapered portions 102 formed on the left and right with respect to the center of the recess 101 are symmetric, but may be asymmetric.
- the convex portion 100, the concave portion 101, and the tapered portion 102 are the convex portion 100, the concave portion 101, and the tapered portion 102 in the first insulating layer 3 unless otherwise specified.
- the width of the convex portion 100, the width of the concave portion 101, and the width of the tapered portion 102 in the in-plane direction of the reflective layer 2 are defined as indicated by a dotted line portion in FIG.
- the width of the convex portion 100 in the in-plane direction of the reflective layer 2 is desirably larger than the width of the concave portion 101.
- the width of the concave portion 101 in the in-plane direction of the reflective layer 2 is desirably larger than the width of the tapered portion 102.
- the area of the convex part 100 in the in-plane direction of the reflective layer 2 is larger than the area of the concave part 101, but even if the area of the concave part 101 is the same as the area of the convex part 100, You may make it larger than the area of the convex part 100.
- FIG. 3 is a perspective view showing a schematic configuration of an organic light emitting device according to an embodiment of the present invention. Since the first lead portion 40 and the second lead portion 60 are provided, the area of the second substrate 7 is made larger than the area of the first substrate 1 in the in-plane direction of the reflective layer 2. The first lead portion 40 formed on the second substrate 7 is electrically connected to the first transparent electrode 4. The second lead portion 60 formed on the second substrate 7 is electrically connected to the second transparent electrode 6. Each drawer part is connected to a wiring member such as a flexible printed circuit board (FPC) (not shown), and the wiring member is connected to a power source, a switch or the like, so that it can be turned on / off and brightness can be controlled. A light emitting device can be realized.
- FPC flexible printed circuit board
- the first substrate 1 and the second substrate 7 are preferably made of a material having a high transmittance in the wavelength range (380 nm to 780 nm) of light to be extracted and hardly transmitting moisture.
- a material having a high transmittance in the wavelength range (380 nm to 780 nm) of light to be extracted and hardly transmitting moisture for example, glass, quartz, resin, etc. can be used.
- the thickness of the substrate is not limited, but a thickness of about several tens of ⁇ m to several mm is easy to handle in the manufacturing process.
- a thin substrate having a thickness of 500 ⁇ m or less has flexibility, and the range of applications and designs of the organic light emitting device can be expanded.
- substrate on the side which takes out light (1st board
- the reflective layer 2 is preferably made of a material having a high reflectance in the wavelength range of light to be extracted. This is because there is little absorption loss when the light emitted from the organic light emitting layer 5 and incident on the reflective layer 2 is reflected in the light extraction direction.
- a metal material can be used as the reflective layer 2.
- a material having a low electric resistance is preferable. For example, silver, aluminum, magnesium, or an alloy thereof, or a lithium compound such as lithium fluoride or lithium oxide may be used.
- the first insulating layer 3 and the second insulating layer 8 are preferably made of a material having a high transmittance in the wavelength range of light to be extracted.
- organic materials such as acrylic resin, benzocyclobutene resin, polyimide resin, and inorganic materials such as SiO 2 , SiN, Al 2 O 3 , and AlN can be used.
- the refractive index of these materials is lower than the refractive index of the first transparent electrode 4 or the second transparent electrode 6, the interface between the first transparent electrode 4 and the first insulating layer 3 or the second transparent electrode 6. The light incident at a large angle with respect to the normal line of the interface of the second insulating layer 8 is totally reflected.
- the refractive index of the first insulating layer 3 and the refractive index of the second insulating layer 8 be 1.45 or more and 1.55 or less.
- the concavo-convex portion can be formed by applying a photosensitive organic material (photoresist) by spin coating, for example, heating, exposing through a photomask, developing, and heating.
- the thickness of the second insulating layer 8 (from the recess of the second transparent electrode 6 and the interface of the second insulating layer 8 to the interface of the second insulating layer 8 and the second substrate 7)
- the length is preferably in the range of 0.5 ⁇ m to 5 ⁇ m.
- the width of the convex part 100 of the concavo-convex part is preferably 10 ⁇ m to 100 ⁇ m, and the width of the concave part 101 is preferably 10 ⁇ m to 100 ⁇ m because of easy manufacture.
- the width of the convex portion 100 and the concave portion 101 is larger than 100 ⁇ m, light is absorbed by the reflective layer 2 while traveling through the convex portion 100, and the light reaching the tapered portion 102 decreases.
- the angle of the tapered portion 102 connected to the concavo-convex portion can be obtained in a range of 20 degrees or more and 70 degrees or less depending on manufacturing conditions.
- the width of the tapered portion 102 is preferably 0.2 ⁇ m or more and 14 ⁇ m or less because it is easy to manufacture.
- the thickness of the insulating layer 3 corresponding to the convex portion 100 is desirably 1 ⁇ m or more and 6 ⁇ m or less.
- the film thickness of the first insulating layer 3 between the concave portion of the first transparent electrode 4 corresponding to the concave portion 101 and the reflective layer 2 is preferably 0.5 ⁇ m or more and 1 ⁇ m or less.
- the first transparent electrode 4 and the second transparent electrode 6 are preferably made of a material having a high transmittance and a low electrical resistance in the light emission region of light to be extracted.
- a material having a high transmittance and a low electrical resistance in the light emission region of light to be extracted For example, indium zinc oxide (IZO), indium tin oxide (ITO), or the like may be used.
- the film thickness is preferably about several tens of nm to several hundreds of nm, specifically, in the range of 50 nm to 200 nm. It is desirable that the refractive index of the first transparent electrode 4 and the refractive index of the second transparent electrode 6 be 1.8 or more and 2.1 or less.
- the organic light-emitting layer 5 uses a material that emits light in a desired color by applying a predetermined voltage between the first transparent electrode 4 and the second transparent electrode 6 and passing a current.
- a material that can function as an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, or the like can be used.
- the organic light emitting layer 5 is not limited to low molecular materials, polymer materials, fluorescent light emitting materials, and phosphorescent light emitting materials.
- the luminescent color of the organic light emitting layer 5 can select any color according to the use.
- a structure in which a plurality of different light emitting layers are stacked, or a dye having a different emission color may be doped in one light emitting layer.
- the thickness of the organic light emitting layer 5 is preferably in the range of 100 nm to 1 ⁇ m.
- the refractive index of the organic light emitting layer 5 is desirably 1.75 or more and 1.85 or less.
- the organic light-emitting device of the present invention can be formed using each of the materials described above for each component.
- the glass substrate is used for the first substrate 1, the silver is used for the reflective layer 2, and the first transparent electrode 4 is used.
- the present invention utilizes IZO, acrylic resin for the first insulating layer 3, fluorescent light emitting material for the organic light emitting layer 5, IZO for the second transparent electrode 6, and a glass substrate having a refractive index of 1.5 for the second substrate 7.
- An organic light emitting device can be formed.
- the refractive index of the first transparent electrode 4, the organic light emitting layer 5 and the second transparent electrode 6 is about 1.8 to 2.0, whereas the glass of the second substrate 7
- the refractive index of acrylic resin is as low as about 1.5.
- Light incident at a large angle (57 degrees or more in the configuration of this paragraph) with respect to each normal repeats total reflection at each interface, and the first transparent electrode 4, the organic light emitting layer 5, the second transparent electrode 6 is guided. After that, it reaches the taper part 102 connecting the concavo-convex parts, and the direction of total reflection is changed by the taper part 102 and reflected on the surface of the reflective layer 2 and taken out to the second substrate 7 or deviates from the total reflection condition.
- the light can enter the second substrate 7.
- the total thickness of the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 is at most several hundred nm, whereas the uneven portion has a width of, for example, 10 ⁇ m. That is all. Therefore, light that is actually guided through the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 (light that travels substantially in the horizontal direction on the paper surface) is repeatedly reflected many times, and the tapered portion 102. To reach. In the present embodiment, with the above-described configuration, the light reaches the tapered portion 102 by total reflection due to the difference in the refractive index of the interface. Therefore, an organic light-emitting device having no absorption loss due to reflection, that is, high light utilization efficiency can be realized. On the other hand, in the configuration in which the conventional reflective layer 2 is also provided on the convex portion, the loss of guided light due to metal absorption is large when the reflection is repeated many times.
- all of the convex portion 100, the concave portion 101, and the tapered portion 102 of the concave and convex portions are light emitting portions, so that it is compared with a conventional organic light emitting device having no concave and convex portions. This corresponds to substantially increasing the light emitting area. Therefore, it can be used for applications that require a greater amount of light, or can be driven at a lower current density even if the amount of light is the same as before, which contributes to a longer life of the organic light emitting device.
- FIG. 5 is a partial cross-sectional view showing the configuration of an embodiment of the organic light-emitting device of the present invention.
- the organic light emitting device of the present embodiment includes a first substrate 1, a reflective layer 2, a first insulating layer 3, a first transparent electrode 4, an organic light emitting layer 5, a second transparent electrode 6, and a second substrate 7. And a resin layer 10.
- the organic light emitting device of this example extracts light in the direction indicated by the arrow in the figure, and in the direction in which light is extracted, the first substrate 1, the reflective layer 2, the first insulating layer 3, and the first The transparent electrode 4, the organic light emitting layer 5, the second transparent electrode 6, and the second substrate 7 are arranged in this order.
- the reflection layer 2 is a flat plate and is formed across a plurality of uneven portions. Corresponding to the uneven portions of the first insulating layer 3, the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 also have uneven portions. The uneven portion of the second transparent electrode 6 is covered with the resin layer 10.
- the resin layer 10 may be a void.
- the resin layer 10 may be formed on the uneven portion of the second transparent electrode 6 in the same manner as the second insulating layer 8. In that case, the second transparent electrode 6 is in contact with the second substrate 7.
- Each layer (reflective layer 2 and first insulating layer 3, first insulating layer 3 and first transparent electrode 4, first transparent electrode 4 and organic light emitting layer 5, organic light emitting layer 5 and second transparent electrode 6)
- the second transparent electrode 6 and the resin layer 10, the resin layer 10 and the second substrate 7) may be in contact with each other, and another layer may be interposed between the layers.
- the organic light emitting device of this embodiment is a so-called top emission type, and includes a reflective layer 2, a first insulating layer 3, a first transparent electrode 4, an organic light emitting layer 5, and a second transparent on the first substrate 1.
- the electrode 6 and the resin layer 10 can be sequentially formed and sealed with the second substrate 7. Since the organic light emitting layer 5 is formed after the first insulating layer 3 is formed, damage to the organic light emitting layer 5 due to UV light necessary for patterning the first insulating layer 3 can be suppressed.
- FIG. 6 is a perspective view showing a schematic configuration of the organic light-emitting device of this example.
- the area of the first substrate 1 is made larger than the area of the second substrate 7 in the in-plane direction of the reflective layer 2.
- the first lead portion 40 formed on the first substrate 1 is electrically connected to the first transparent electrode 4.
- the second lead portion 60 formed on the first substrate 1 is electrically connected to the second transparent electrode 6.
- Each drawer part is connected to a wiring member such as a flexible printed circuit board (FPC) (not shown), and the wiring member is connected to a power source, a switch or the like, so that it can be turned on / off and brightness can be controlled.
- FPC flexible printed circuit board
- the reflective layer 2 is a flat plate
- the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 are also uneven portions corresponding to the uneven portions of the first insulating layer 3. have.
- the convex portion has a structure in which the reflective layer 2 and the first transparent electrode 4 are separated. Therefore, the light guided through the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 has no loss due to light absorption when guided by the conventional metal reflecting surface. Thus, an organic light emitting device with improved light utilization efficiency can be realized.
- the resin layer 10 is produced by curing the resin with heat or UV light. It is desirable to make the refractive index of the second transparent electrode 6 higher than the refractive index of the resin layer 10. Compared with the case where the resin layer 10 is not present, that is, a void, the resin layer 10 has a high refractive index, and therefore has an effect of extracting light from the second transparent electrode 6. In combination, it is possible to provide an organic light emitting device with higher light utilization efficiency.
- the resin layer 10 is preferably made of a material having a high transmittance in the wavelength range of light to be extracted, and various materials can be used.
- Resin layer 10 is prepared by dispersing inorganic particles having a high refractive index in a binder.
- a binder an acrylic or silicone resin having tackiness and tackiness can be used.
- a resin obtained by polymerizing monomers such as 2-ethylhexyl acrylate, butyl acrylate, 2-methoxyethyl acrylate, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, ethyl acrylate, methyl acrylate alone or by copolymerizing several kinds thereof.
- the inorganic particles may be any particles that have less absorption with respect to the wavelength of light and have a higher refractive index than the binder.
- the wavelength of light used is visible light (380 nm or more and 780 nm or less)
- high refractive index reffractive index of 1.6 or more and 2.6 or less
- titanium oxide, zirconium oxide, tin oxide, and barium titanate as inorganic particles.
- a metal oxide having high transparency in the visible light region is preferable.
- an adhesive resin when used, it is possible to take a process in which the resin layer 10 is previously formed on the second substrate 7 and bonded.
- inorganic particles are bonded to a polymer with a silane coupling agent polymer to produce adhesive particles, and the adhesive particles are dispersed in a binder to produce the resin layer 10.
- the polymer include polyacrylic acid, polyvinyl alcohol, polyaspartic acid, polyglutamic acid, alginic acid, polyvinyl sulfonic acid, polystyrene sulfonic acid, and amylose.
- silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (aminoethyl) -3.
- -Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, etc. are conceivable.
- FIG. 7 and 8 are partial cross-sectional views showing the configuration of the organic light emitting device according to one embodiment of the present invention.
- FIG. 7 shows a so-called bottom emission type and
- FIG. 8 shows a top emission type organic light emitting device.
- the reflective layer 2 is electrically connected to the first transparent electrode 4 as shown in FIGS.
- the wiring resistance of the first transparent electrode 4 is higher than the wiring resistance of the reflective layer 2, the voltage caused by the wiring resistance of the first transparent electrode 4 is away from the first lead portion 40. This causes uneven brightness in the surface due to the descent.
- FIGS. 7 and 8 show a configuration in which the entire surface of each concave portion of the concave and convex portions of the first transparent electrode 4 is electrically connected to the reflective layer 2.
- the configuration is not limited to this as long as it is electrically connected.
- the first transparent electrode 4 may be partly connected to a part of the recess, or the first transparent electrode 4 may be electrically connected to the other part of the recess.
- the concave portion of the first transparent electrode 4 is in contact with the reflective layer 2, so that the reflection of light guided by the concave portion of the first transparent electrode 4 is not total reflection.
- the above-described effects of the present invention are maintained in the convex portion of the transparent electrode 4. Further, by making the area of the concave portion of the first transparent electrode 4 smaller than the convex portion of the first transparent electrode 4, the influence can be reduced.
- FIGS. 9 and 11 are top views showing the uneven portions of the organic light emitting device according to one embodiment of the present invention.
- FIG. 10 is a top view showing the concavo-convex portion of the organic light emitting device of one embodiment of the present invention.
- the straight line drawn on the convex part 130 different from is configured to be non-perpendicular.
- the convex portions 110 of the first insulating layer 3 are staggered.
- the deviation width between the convex portion 110 and the convex portion 120 is not less than one half of the width of the convex portion 110 in the in-plane direction of the reflective layer 2 and not more than the width of the convex portion 110.
- the deviation width between the convex part 110 and the convex part 120 is 10 ⁇ m or more.
- the concave portion 101 emits light and the concave portion 101 is indicated by an arrow in the figure.
- the light guided along the x-direction does not reach any convex part (tapered part), and therefore cannot escape from total reflection and cannot be extracted.
- the present embodiment shown in FIG. 9 at least light guided in the direction of the arrow (x direction) is incident on the adjacent convex portions 120 and 130 (tapered portion), and the angle of light travel can be changed. Contributes as extraction light. Therefore, with the configuration shown in this embodiment, an organic light emitting device with higher light utilization efficiency can be realized.
- the shape and arrangement of the convex portions of the organic light emitting device of the present invention are not limited to these. Although not shown, even when the shape is not uniform or uniform, light extraction can be enhanced in any case if there is some effect if the centers of adjacent convex portions are shifted.
- the convex part 100 of the first insulating layer 3 has a close-packed structure in the in-plane direction of the reflective layer 2.
- the close-packed structure in FIG. 11 may be a circle inscribed in a hexagonal shape.
- FIG. 12A is a top view showing the concavo-convex portion of the organic light emitting device of one embodiment of the present invention
- FIG. 12B is a diagram showing the cross-sectional shape of BB ′ in FIG. .
- the recess 101 is surrounded by the protrusion 100 in the in-plane direction of the reflective layer 2.
- the concave portion 101 is formed in a lattice shape, whereas in FIG. 12A, the concave portion 101 is formed in a dot shape.
- the area of the convex part 100 is larger than the area of the concave part 101.
- FIG. 13 is a partial cross-sectional view showing a configuration of an organic light emitting device according to an embodiment of the present invention.
- a concavo-convex structure transparent layer 11 is provided between the second substrate 7 and the resin layer 10, and the light from the second substrate 7 is extracted from the side.
- the light scattering layer 12 is provided.
- the refractive index of the resin layer 10 is higher than the refractive index of the concavo-convex structure transparent layer 11.
- Concavities and convexities are formed on the surface of the concave-convex structure transparent layer 11 opposite to the side from which light is extracted.
- the uneven portion of the uneven structure transparent layer 11 is embedded in the resin layer 10.
- An example of the concavo-convex portion of the concavo-convex structure transparent layer 11 is a weight. Specifically, a conical shape, a quadrangular pyramid shape, a hexagonal pyramid shape, and the like are conceivable. In the case where the concavo-convex structure transparent layer 11 has a pyramid shape, it is desirable that the apex angle of the portion having the pyramid shape is 70 degrees to 85 degrees. In addition, it is desirable that the concavo-convex structure transparent layer 11 has a high transmittance in the wavelength range of light to be extracted, and the refractive index is 1.5 or more and 1.6 or less.
- the shape of the concavo-convex structure transparent layer 11 may be formed of a resin, or the glass substrate may be processed and integrated with the second substrate 7 to form the concavo-convex structure transparent layer 11.
- the light scattering layer 12 has an acrylic resin as a base material and fine particles of zirconium oxide dispersed therein. It is desirable that the substrate is transparent and has adhesiveness. Further, the refractive index of the base material of the light scattering layer 12 is preferably close to the refractive index of glass, and more preferably the same. “The same refractive index” means the same degree that the effect of the present embodiment can be achieved, and does not require strict coincidence. Specifically, the refractive index difference between the two may be within 0.1, and is preferably within 0.05. As the base material of the light scattering layer 12, an epoxy resin, PET, or the like can be used in addition to the acrylic resin. As the fine particle material, titanium oxide, barium titanate, aluminum oxide or the like can be used in addition to zirconium oxide. One kind of the above materials may be included as the fine particles, or two or more kinds may be included.
- the effect of total reflection at the interface between the conventional resin layer 10 and the second substrate 7 and the interface between the second substrate 7 and the air (external) can be reduced, which is more effective.
- the light emitted from the organic light emitting layer 5 can be extracted to the outside.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Provided is a highly efficient organic light-emitting device. The organic light-emitting device comprises a first substrate (1), a reflective layer (2), a first insulating layer (3), a first transparent electrode (4), an organic light-emitting layer (5), a second transparent electrode (6) and a second substrate (7), wherein the first substrate, the reflective layer, the first insulating layer, the first transparent electrode, the organic light-emitting layer, the second transparent electrode and the second substrate are arranged in this order when observed in the direction on which light from the organic light-emitting layer is extracted, the reflective layer has a flat-plate-like shape, the first insulating layer has a concave-convex part formed on the light-extracting side thereof, and a concave-convex part is formed on each of the first transparent electrode, the organic light-emitting layer and the second transparent electrode so as to correspond to the concave-convex part of the first insulating layer.
Description
本発明は有機発光装置に関する。
The present invention relates to an organic light emitting device.
薄型,高効率、かつ長寿命を実現する発光素子として、基板上に有機発光層と、該有機発光層を挟む第1の電極と第2の電極とを有して構成される発光素子であって、前記第2の電極は前記有機発光層の前記基板とは反対側に形成され、前記第2の電極と前記有機発光層との間に、前記第2の電極よりも成膜時に分解生成する酸素が少ない酸化物を主成分とする緩衝層を有し、さらに前記基板を金属基板とする発光素子が知られている。
As a light-emitting element that realizes thinness, high efficiency, and long life, it is a light-emitting element that includes an organic light-emitting layer on a substrate, and a first electrode and a second electrode that sandwich the organic light-emitting layer. The second electrode is formed on the opposite side of the organic light emitting layer from the substrate, and is generated between the second electrode and the organic light emitting layer at the time of film formation rather than the second electrode. There is known a light-emitting element having a buffer layer mainly composed of an oxide containing less oxygen and further using the substrate as a metal substrate.
反射板に凹凸があると、例えば、反射板の凸部での導波光が反射を繰り返し、光が減衰するという課題がある。本発明の目的は、高効率の有機発光装置を提供することである。
If the reflecting plate has irregularities, for example, there is a problem that light guided by the convex portions of the reflecting plate is repeatedly reflected and light is attenuated. An object of the present invention is to provide a highly efficient organic light emitting device.
上記課題を解決するための本発明の特徴は以下の通りである。(1)第一の基板,反射層,第一の絶縁層,第一の透明電極,有機発光層,第二の透明電極および第二の基板を有し、有機発光層からの光が取り出される方向に向かって、第一の基板,反射層,第一の絶縁層,第一の透明電極,有機発光層,第二の透明電極および第二の基板の順に配置され、反射層は平板であり、第一の絶縁層の光が取り出される側には凹凸部が形成され、第一の絶縁層の凹凸部に対応して第一の透明電極,有機発光層および第二の透明電極に凹凸部が形成される有機発光装置。(2)上記(1)において、第二の透明電極と第二の基板との間に第二の絶縁層が形成され、第二の透明電極の凹部に第二の絶縁層が形成され、第二の透明電極の凸部は第二の基板と接する有機発光装置。(3)上記(1)において、第二の透明電極と第二の基板との間に樹脂層が形成され、第二の透明電極の凹凸部は樹脂層で覆われる有機発光装置。(4)上記(1)において、反射層と第一の透明電極とが電気的に接続されている有機発光装置。(5)上記(4)において、反射層と第一の透明電極とが接している有機発光装置。(6)上記(1)において、反射層の面内方向において、第一の絶縁層の凸部は千鳥配置となる有機発光装置。(7)上記(6)において、反射層の面内方向において、第一の絶縁層の凸部および第一の絶縁層の凸部に隣接する凸部のずれ幅は10μm以上である有機発光装置。(8)上記(1)において、反射層の面内方向において、第一の絶縁層の凸部は最密充填構造となる有機発光装置。(9)上記(1)において、反射層の面内方向において、第一の絶縁層の凸部の面積は第一の絶縁層の凹部の面積よりも大きく、反射層の面内方向において、第一の絶縁層の凹部が第一の絶縁層の凸部に囲まれている有機発光装置。(10)上記(1)において、第一の絶縁層の凹凸部は、凹部,凸部およびテーパ部からなり、反射層の面内方向において、第一の絶縁層の凸部の幅は第一の絶縁層の凹部の幅よりも大きく、第一の絶縁層の凸部の幅は10μm以上100μm以下であり、第一の絶縁層の凹部の幅は10μm以上100μm以下であり、第一の絶縁層の凸部の膜厚は1μm以上6μm以下であり、第一の絶縁層の凹部の膜厚は0.5μm以上1μm以下であり、第一の絶縁層のテーパ部と反射層のなす角度は20度以上70度以下である有機発光装置。(11)上記(2)において、第一の透明電極の屈折率は第一の絶縁層の屈折率よりも高く、第二の透明電極の屈折率は第二の絶縁層の屈折率よりも高いことを特徴とする有機発光装置。(12)上記(3)において、第一の透明電極の屈折率は第一の絶縁層の屈折率よりも高く、第二の透明電極の屈折率は樹脂層の屈折率よりも高いことを特徴とする有機発光装置。(13)上記(1)において、第二の基板の光が取り出される側に光散乱層が形成され、第二の基板のおよび樹脂層の間に透明層が設けられ、透明層の光が取り出される側と反対側の表面に凹凸が形成されていることを特徴とする有機発光装置。(14)上記(1)において、第一の絶縁層の凹凸部は、凹部,凸部およびテーパ部からなり、反射層の面内方向において、第一の絶縁層の凸部の面積は第一の絶縁層の凹部の面積より大きく、有機発光層の凹凸部は、凹部,凸部およびテーパ部からなり、有機発光層の凸部、有機発光層の凹部および有機発光層のテーパ部から発光することを特徴とする有機発光装置。
The features of the present invention for solving the above-described problems are as follows. (1) It has a first substrate, a reflective layer, a first insulating layer, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a second substrate, and light from the organic light emitting layer is extracted. In the direction, the first substrate, the reflective layer, the first insulating layer, the first transparent electrode, the organic light emitting layer, the second transparent electrode, and the second substrate are arranged in this order, and the reflective layer is a flat plate An uneven portion is formed on the light extraction side of the first insulating layer, and the uneven portion is formed on the first transparent electrode, the organic light emitting layer, and the second transparent electrode corresponding to the uneven portion of the first insulating layer. An organic light emitting device in which is formed. (2) In the above (1), a second insulating layer is formed between the second transparent electrode and the second substrate, a second insulating layer is formed in the recess of the second transparent electrode, The organic light emitting device in which the convex portion of the second transparent electrode is in contact with the second substrate. (3) The organic light-emitting device according to (1), wherein a resin layer is formed between the second transparent electrode and the second substrate, and the concavo-convex portion of the second transparent electrode is covered with the resin layer. (4) The organic light emitting device according to (1), wherein the reflective layer and the first transparent electrode are electrically connected. (5) The organic light emitting device according to (4), wherein the reflective layer is in contact with the first transparent electrode. (6) The organic light emitting device according to (1), wherein the convex portions of the first insulating layer are arranged in a staggered manner in the in-plane direction of the reflective layer. (7) The organic light emitting device according to (6), wherein in the in-plane direction of the reflective layer, the deviation width between the convex portion of the first insulating layer and the convex portion adjacent to the convex portion of the first insulating layer is 10 μm or more. . (8) In the above (1), the convex portion of the first insulating layer has a close-packed structure in the in-plane direction of the reflective layer. (9) In the above (1), the area of the convex portion of the first insulating layer is larger than the area of the concave portion of the first insulating layer in the in-plane direction of the reflective layer. An organic light-emitting device in which a concave portion of one insulating layer is surrounded by a convex portion of a first insulating layer. (10) In the above (1), the concavo-convex portion of the first insulating layer is composed of a concave portion, a convex portion and a tapered portion, and the width of the convex portion of the first insulating layer is the first in the in-plane direction of the reflective layer. The width of the convex portion of the first insulating layer is 10 μm or more and 100 μm or less, and the width of the concave portion of the first insulating layer is 10 μm or more and 100 μm or less. The film thickness of the convex part of the layer is 1 μm or more and 6 μm or less, the film thickness of the concave part of the first insulating layer is 0.5 μm or more and 1 μm or less, and the angle formed between the tapered part of the first insulating layer and the reflective layer is An organic light emitting device having an angle of 20 degrees to 70 degrees. (11) In the above (2), the refractive index of the first transparent electrode is higher than the refractive index of the first insulating layer, and the refractive index of the second transparent electrode is higher than the refractive index of the second insulating layer. An organic light emitting device characterized by that. (12) In the above (3), the refractive index of the first transparent electrode is higher than the refractive index of the first insulating layer, and the refractive index of the second transparent electrode is higher than the refractive index of the resin layer. An organic light emitting device. (13) In the above (1), a light scattering layer is formed on the light extraction side of the second substrate, a transparent layer is provided between the second substrate and the resin layer, and the light of the transparent layer is extracted. An organic light-emitting device, wherein irregularities are formed on the surface opposite to the side to be illuminated. (14) In the above (1), the concavo-convex portion of the first insulating layer is composed of a concave portion, a convex portion and a tapered portion, and the area of the convex portion of the first insulating layer is the first in the in-plane direction of the reflective layer. The surface area of the organic light emitting layer is larger than the area of the concave portion of the insulating layer, and the organic light emitting layer has a concave portion, a convex portion, and a tapered portion, and emits light from the organic light emitting layer convex portion, the organic light emitting layer concave portion, and the organic light emitting layer tapered portion. An organic light emitting device characterized by that.
本発明により、高効率の有機発光装置を提供できる。上記した以外の課題,構成及び効果は以下の実施形態の説明により明らかにされる。
The present invention can provide a highly efficient organic light-emitting device. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、図面等を用いて、本発明の実施形態について説明する。以下の実施例は本願発明の内容の具体例を示すものであり、本願発明がこれらの実施例に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、実施例を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following examples show specific examples of the contents of the present invention, and the present invention is not limited to these examples, but by those skilled in the art within the scope of the technical idea disclosed in this specification. Various changes and modifications are possible. Further, in all the drawings for explaining the embodiments, the same reference numerals are given to those having the same function, and repeated explanation thereof is omitted.
[実施例1]
図1は本発明の有機発光装置の一実施例の構成を示す一部断面図である。本実施例の有機発光装置は、第一の基板1,反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,第二の基板7および第二の絶縁層8を有する。図1中の矢印が示す方向に光が取り出される。図1では、有機発光層5からの光が取り出される方向に向かって、第一の基板1,反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,第二の基板7の順に配置されている。各層(反射層2と第一の絶縁層3、第一の絶縁層3と第一の透明電極4、第一の透明電極4と有機発光層5、有機発光層5と第二の透明電極6、第二の透明電極6と第二の絶縁層8、第二の絶縁層8と第二の基板7)は接していてもよく、各層の間に別の層を介在させてもよい。 [Example 1]
FIG. 1 is a partial cross-sectional view showing a configuration of an embodiment of an organic light-emitting device of the present invention. The organic light emitting device of the present embodiment includes afirst substrate 1, a reflective layer 2, a first insulating layer 3, a first transparent electrode 4, an organic light emitting layer 5, a second transparent electrode 6, and a second substrate 7. And a second insulating layer 8. Light is extracted in the direction indicated by the arrow in FIG. In FIG. 1, the first substrate 1, the reflective layer 2, the first insulating layer 3, the first transparent electrode 4, the organic light emitting layer 5, the second, in the direction in which light from the organic light emitting layer 5 is extracted. The transparent electrodes 6 and the second substrate 7 are arranged in this order. Each layer (reflective layer 2 and first insulating layer 3, first insulating layer 3 and first transparent electrode 4, first transparent electrode 4 and organic light emitting layer 5, organic light emitting layer 5 and second transparent electrode 6) The second transparent electrode 6 and the second insulating layer 8, the second insulating layer 8 and the second substrate 7) may be in contact with each other, and another layer may be interposed between the layers.
図1は本発明の有機発光装置の一実施例の構成を示す一部断面図である。本実施例の有機発光装置は、第一の基板1,反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,第二の基板7および第二の絶縁層8を有する。図1中の矢印が示す方向に光が取り出される。図1では、有機発光層5からの光が取り出される方向に向かって、第一の基板1,反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,第二の基板7の順に配置されている。各層(反射層2と第一の絶縁層3、第一の絶縁層3と第一の透明電極4、第一の透明電極4と有機発光層5、有機発光層5と第二の透明電極6、第二の透明電極6と第二の絶縁層8、第二の絶縁層8と第二の基板7)は接していてもよく、各層の間に別の層を介在させてもよい。 [Example 1]
FIG. 1 is a partial cross-sectional view showing a configuration of an embodiment of an organic light-emitting device of the present invention. The organic light emitting device of the present embodiment includes a
反射層2は平板であり、後述する複数の凹凸部に跨って形成されている。有機発光装置内に複数の分割された発光領域があり、分割された複数の発光領域が直列または並列に接続されている場合、反射層2の大きさは2mm×2mm程度である。なお、本実施例では反射層2が電極を兼ねていないので、反射層2の面積を2mm×2mmより大きくしてもよい。有機発光層5からの光が取り出される方向を反射層2の面内法線方向とする。反射層2の面内法線方向において、第一の絶縁層3の光が取り出される側の表面は凹凸部になっている。第一の絶縁層3の凹凸部に対応して第一の透明電極4,有機発光層5,第二の透明電極6も凹凸部を有している。第一の透明電極4の凹部および反射層2の間には第一の絶縁層3が存在している。第二の透明電極6における光が取り出される側の凹凸部に第二の絶縁層8が形成されている。第一の絶縁層3の凹凸部に対応して形成された第二の透明電極6の凸部は第二の基板7に接している。図1では、第二の透明電極6の凸部および第二の基板7の間に第二の絶縁層8は形成されていないが、第二の透明電極6の凹凸部を覆うように第二の絶縁層8を形成してもよい。第二の絶縁層8が形成されている部分を第二の透明電極6として、第二の透明電極6における光が取り出される側の表面を平坦にしてもよい。
The reflective layer 2 is a flat plate and is formed across a plurality of uneven portions described later. When there are a plurality of divided light emitting regions in the organic light emitting device and the plurality of divided light emitting regions are connected in series or in parallel, the size of the reflective layer 2 is about 2 mm × 2 mm. In the present embodiment, since the reflective layer 2 does not serve as an electrode, the area of the reflective layer 2 may be larger than 2 mm × 2 mm. The direction in which light from the organic light emitting layer 5 is extracted is defined as the in-plane normal direction of the reflective layer 2. In the in-plane normal direction of the reflective layer 2, the surface of the first insulating layer 3 on the side from which light is extracted is an uneven portion. Corresponding to the uneven portions of the first insulating layer 3, the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 also have uneven portions. A first insulating layer 3 is present between the concave portion of the first transparent electrode 4 and the reflective layer 2. A second insulating layer 8 is formed on the concavo-convex portion on the side from which light is extracted in the second transparent electrode 6. The convex portions of the second transparent electrode 6 formed corresponding to the concave and convex portions of the first insulating layer 3 are in contact with the second substrate 7. In FIG. 1, the second insulating layer 8 is not formed between the convex portion of the second transparent electrode 6 and the second substrate 7, but the second so as to cover the concave and convex portion of the second transparent electrode 6. The insulating layer 8 may be formed. The portion where the second insulating layer 8 is formed may be used as the second transparent electrode 6, and the surface of the second transparent electrode 6 on the side from which light is extracted may be flattened.
本実施例の有機発光装置は、いわゆるボトムエミッション型であり、第二の基板7上に第二の絶縁層8,第二の透明電極6,有機発光層5,第一の透明電極4,第一の絶縁層3,反射層2を順次形成し、第一の基板1で封止することで作製する。この際、第一の基板1と反射層2の間には空隙9が形成される。シール剤に含まれるビーズのサイズおよび乾燥材を入れるためのガラス基板1のくぼみを考慮して、反射層2の面内法線方向における空隙9の厚さは数μm以上5mm以下が望ましい。
The organic light emitting device of this embodiment is of a so-called bottom emission type, and has a second insulating layer 8, a second transparent electrode 6, an organic light emitting layer 5, a first transparent electrode 4, a first transparent electrode 4 on a second substrate 7. A single insulating layer 3 and a reflective layer 2 are sequentially formed and sealed by the first substrate 1. At this time, a gap 9 is formed between the first substrate 1 and the reflective layer 2. Considering the size of the beads contained in the sealant and the depression of the glass substrate 1 for containing the desiccant, the thickness of the gap 9 in the in-plane normal direction of the reflective layer 2 is preferably several μm or more and 5 mm or less.
図2(a)は本発明の有機発光装置の一実施例の第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6の凹凸部を示す上面図であり、図2(b)は図2(a)中A-A′の断面形状を示す図である。図に示すように、本発明の一実施例の有機発光装置は、その構成に複数の凸部100,凹部101および凸部100と凹部101をつなぐテーパ部102からなる凹凸部が形成されている。図2(b)において、凸部100は略正方形となっているが、矩形でもよい。図2(b)のように凸部100を略正方形にすることにより、凸部100で発光した光がテーパ部102に達するまでの距離が、図2(a)の左右方向と図2(a)の上下方向とでほぼ同じとなるため、吸収によるロスも図2(a)の左右方向と図2(a)の上下方向とで同じになり、光の対称性がよくなる。図2(b)において、凹部101の中心に対して左右に形成された二つのテーパ部102は対称となっているが、非対称であってもよい。以下の説明において、特に断りのない限り、凸部100,凹部101およびテーパ部102は第一の絶縁層3における凸部100,凹部101およびテーパ部102とする。
FIG. 2A is a top view showing uneven portions of the first insulating layer 3, the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 of one embodiment of the organic light emitting device of the present invention. FIG. 2B is a diagram showing a cross-sectional shape of AA ′ in FIG. As shown in the figure, an organic light emitting device according to an embodiment of the present invention has a plurality of convex portions 100, concave portions 101, and concave and convex portions formed of a tapered portion 102 connecting the convex portions 100 and the concave portions 101. . In FIG.2 (b), although the convex part 100 is substantially square, a rectangle may be sufficient. As shown in FIG. 2B, the convex portion 100 is formed in a substantially square shape, so that the distance until the light emitted from the convex portion 100 reaches the tapered portion 102 is the same as the horizontal direction in FIG. ) Is substantially the same in the vertical direction, and the loss due to absorption is the same in the horizontal direction in FIG. 2A and in the vertical direction in FIG. 2A, and the symmetry of light is improved. In FIG. 2B, the two tapered portions 102 formed on the left and right with respect to the center of the recess 101 are symmetric, but may be asymmetric. In the following description, the convex portion 100, the concave portion 101, and the tapered portion 102 are the convex portion 100, the concave portion 101, and the tapered portion 102 in the first insulating layer 3 unless otherwise specified.
反射層2の面内方向における凸部100の幅,凹部101の幅,テーパ部102の幅は図2(b)の点線部のように規定される。反射層2の面内方向における凸部100の幅は、凹部101の幅よりも大きくすることが望ましい。これにより、凸部100で発光した光の内、反射層2の面内方向に導波して凹部101に達することにより方向を変えられ正面に取り出される光を増加できる。また、凹部101で発光した光の内、凹部101の溝に沿って凹部101内を導波し、凸部100に当たらずになくなる光を抑制できる。反射層2の面内方向における凹部101の幅は、テーパ部102の幅よりも大きくすることが望ましい。図2(a)では、反射層2の面内方向において、凸部100の面積は凹部101の面積よりも大きくなっているが、凹部101の面積を凸部100の面積と同じにしても、凸部100の面積よりも大きくしてもよい。
The width of the convex portion 100, the width of the concave portion 101, and the width of the tapered portion 102 in the in-plane direction of the reflective layer 2 are defined as indicated by a dotted line portion in FIG. The width of the convex portion 100 in the in-plane direction of the reflective layer 2 is desirably larger than the width of the concave portion 101. As a result, among the light emitted from the convex part 100, the light that is guided in the in-plane direction of the reflective layer 2 and reaches the concave part 101 can be changed in direction, and the light extracted to the front can be increased. In addition, among the light emitted from the concave portion 101, light that is guided through the concave portion 101 along the groove of the concave portion 101 and disappears without hitting the convex portion 100 can be suppressed. The width of the concave portion 101 in the in-plane direction of the reflective layer 2 is desirably larger than the width of the tapered portion 102. In FIG. 2A, in the in-plane direction of the reflective layer 2, the area of the convex part 100 is larger than the area of the concave part 101, but even if the area of the concave part 101 is the same as the area of the convex part 100, You may make it larger than the area of the convex part 100. FIG.
図3は本発明の一実施例の有機発光装置の概略構成を示す斜視図である。第一の引き出し部40および第二の引き出し部60を設けるため、反射層2の面内方向における第一の基板1の面積より第二の基板7の面積を大きくしている。第二の基板7上に形成された第一の引き出し部40は第一の透明電極4に電気的に接続されている。第二の基板7上に形成された第二の引き出し部60は第二の透明電極6に電気的に接続されている。各引き出し部は図示されていないフレキシブルプリント配線板(FPC)などの配線部材と接続し、さらに配線部材を電源やスイッチ等と接続することで、点灯,非点灯や明るさの制御が可能な有機発光装置が実現できる。
FIG. 3 is a perspective view showing a schematic configuration of an organic light emitting device according to an embodiment of the present invention. Since the first lead portion 40 and the second lead portion 60 are provided, the area of the second substrate 7 is made larger than the area of the first substrate 1 in the in-plane direction of the reflective layer 2. The first lead portion 40 formed on the second substrate 7 is electrically connected to the first transparent electrode 4. The second lead portion 60 formed on the second substrate 7 is electrically connected to the second transparent electrode 6. Each drawer part is connected to a wiring member such as a flexible printed circuit board (FPC) (not shown), and the wiring member is connected to a power source, a switch or the like, so that it can be turned on / off and brightness can be controlled. A light emitting device can be realized.
本実施例の有機発光装置の各構成部分は以下に説明する材質を利用可能である。
The materials described below can be used for each component of the organic light emitting device of this embodiment.
第一の基板1および第二の基板7には、取り出す光の波長領域(380nm以上780nm以下)において透過率が高く、また水分を透過しにくい材質であることが好ましい。例えばガラス,石英や樹脂等が利用可能である。透過率,透水性で問題がなければ基板の厚さに制約はないが数十μmから数mm程度の厚さが、製造プロセスにおいて扱いやすい。特に厚さが500μm以下の薄い基板では、フレキシブル性も併せ持ち、有機発光装置の用途やデザインの幅を広げられる。また光を取り出す側の基板と対向する基板では(本実施例においては第一の基板1)、光透過性はなくてもよく、前述以外にも鉄,ニッケル,アルミニウム,銅,クロム,マグネシウム,マンガン,モリブデン,コバルトやこれらから合成される合金等の金属やグラファイト,セラミック等を用いることができる。
The first substrate 1 and the second substrate 7 are preferably made of a material having a high transmittance in the wavelength range (380 nm to 780 nm) of light to be extracted and hardly transmitting moisture. For example, glass, quartz, resin, etc. can be used. If there is no problem with the transmittance and water permeability, the thickness of the substrate is not limited, but a thickness of about several tens of μm to several mm is easy to handle in the manufacturing process. In particular, a thin substrate having a thickness of 500 μm or less has flexibility, and the range of applications and designs of the organic light emitting device can be expanded. Moreover, in the board | substrate which opposes the board | substrate on the side which takes out light (1st board | substrate 1 in a present Example), it does not need to have a light transmittance, and other than the above, iron, nickel, aluminum, copper, chromium, magnesium, Metals such as manganese, molybdenum, cobalt, alloys synthesized from these, graphite, ceramics, and the like can be used.
反射層2には、取り出す光の波長領域において、反射率が高い材質が好ましい。これは有機発光層5で発光し反射層2に入射した光を光取り出し方向へ反射する際の吸収のロスが少ないためである。具体的には、反射層2として金属材料が挙げられる。また、後述するように、反射層2を配線として利用する場合、電気抵抗が低い材質が好ましい。例えば、銀,アルミニウム,マグネシウムやこれら合金、やフッ化リチウムや酸化リチウムといったリチウム化合物を用いてもよい。
The reflective layer 2 is preferably made of a material having a high reflectance in the wavelength range of light to be extracted. This is because there is little absorption loss when the light emitted from the organic light emitting layer 5 and incident on the reflective layer 2 is reflected in the light extraction direction. Specifically, a metal material can be used as the reflective layer 2. Further, as will be described later, when the reflective layer 2 is used as a wiring, a material having a low electric resistance is preferable. For example, silver, aluminum, magnesium, or an alloy thereof, or a lithium compound such as lithium fluoride or lithium oxide may be used.
第一の絶縁層3および第二の絶縁層8には、取り出す光の波長領域において透過率が高い材料が好ましい。例えば、アクリル系樹脂,ベンゾシクロブテン樹脂,ポリイミド系樹脂などの有機系の材料やSiO2,SiN,Al2O3,AlNなどの無機物を用いることができる。これら材質の屈折率が、第一の透明電極4または第二の透明電極6の屈折率よりも低い場合、第一の透明電極4および第一の絶縁層3の界面または第二の透明電極6および第二の絶縁層8の界面の法線に対して大きい角度で入射した光は全反射する。第一の絶縁層3の屈折率および第二の絶縁層8の屈折率を1.45以上1.55以下とすることが望ましい。凹凸部は例えばスピンコートにより光感光性の有機系の材料(フォトレジスト)を塗布し、加熱後、フォトマスクを介して露光後、現像,加熱することで形成できる。加工プロセスの観点から、第二の絶縁層8の膜厚(第二の透明電極6の凹部および第二の絶縁層8の界面から第二の絶縁層8および第二の基板7の界面までの長さ)は0.5μm以上5μm以下の範囲が望ましい。凹凸部の凸部100の幅は10μm以上100μm以下、凹部101の幅は10μm以上100μm以下が製造しやすく好適である。凸部100および凹部101の幅が100μmより大きいと、光が凸部100を進む間に反射層2で吸収され、テーパ部102に到達する光が減少する。凹凸部のつなぐテーパ部102の角度は作製条件により20度以上70度以下の範囲で得ることができる。テーパ部102の幅は、0.2μm以上14μm以下が製造しやすく好適である。凸部100に対応する絶縁層3の膜厚は、1μm以上6μm以下であることが望ましい。凹部101に対応する第一の透明電極4の凹部と反射層2の間における第一の絶縁層3の膜厚は、0.5μm以上1μm以下であることが望ましい。
The first insulating layer 3 and the second insulating layer 8 are preferably made of a material having a high transmittance in the wavelength range of light to be extracted. For example, organic materials such as acrylic resin, benzocyclobutene resin, polyimide resin, and inorganic materials such as SiO 2 , SiN, Al 2 O 3 , and AlN can be used. When the refractive index of these materials is lower than the refractive index of the first transparent electrode 4 or the second transparent electrode 6, the interface between the first transparent electrode 4 and the first insulating layer 3 or the second transparent electrode 6. The light incident at a large angle with respect to the normal line of the interface of the second insulating layer 8 is totally reflected. It is desirable that the refractive index of the first insulating layer 3 and the refractive index of the second insulating layer 8 be 1.45 or more and 1.55 or less. The concavo-convex portion can be formed by applying a photosensitive organic material (photoresist) by spin coating, for example, heating, exposing through a photomask, developing, and heating. From the viewpoint of the processing process, the thickness of the second insulating layer 8 (from the recess of the second transparent electrode 6 and the interface of the second insulating layer 8 to the interface of the second insulating layer 8 and the second substrate 7) The length is preferably in the range of 0.5 μm to 5 μm. The width of the convex part 100 of the concavo-convex part is preferably 10 μm to 100 μm, and the width of the concave part 101 is preferably 10 μm to 100 μm because of easy manufacture. When the width of the convex portion 100 and the concave portion 101 is larger than 100 μm, light is absorbed by the reflective layer 2 while traveling through the convex portion 100, and the light reaching the tapered portion 102 decreases. The angle of the tapered portion 102 connected to the concavo-convex portion can be obtained in a range of 20 degrees or more and 70 degrees or less depending on manufacturing conditions. The width of the tapered portion 102 is preferably 0.2 μm or more and 14 μm or less because it is easy to manufacture. The thickness of the insulating layer 3 corresponding to the convex portion 100 is desirably 1 μm or more and 6 μm or less. The film thickness of the first insulating layer 3 between the concave portion of the first transparent electrode 4 corresponding to the concave portion 101 and the reflective layer 2 is preferably 0.5 μm or more and 1 μm or less.
第一の透明電極4および第二の透明電極6には、取り出す光の発光領域において透過率が高く、また電気的抵抗の低い材質が好ましい。例えば、インジウム亜鉛酸化物(IZO)やインジウム錫酸化物(ITO)等を用いるとよい。配線抵抗と成膜時間の観点から、膜厚は数十nm~数百nm程度、具体的には、50nm以上200nm以下の範囲とするのが好ましい。第一の透明電極4の屈折率および第二の透明電極6の屈折率を1.8以上2.1以下とすることが望ましい。
The first transparent electrode 4 and the second transparent electrode 6 are preferably made of a material having a high transmittance and a low electrical resistance in the light emission region of light to be extracted. For example, indium zinc oxide (IZO), indium tin oxide (ITO), or the like may be used. From the viewpoint of wiring resistance and film formation time, the film thickness is preferably about several tens of nm to several hundreds of nm, specifically, in the range of 50 nm to 200 nm. It is desirable that the refractive index of the first transparent electrode 4 and the refractive index of the second transparent electrode 6 be 1.8 or more and 2.1 or less.
有機発光層5は第一の透明電極4および第二の透明電極6との間に所定の電圧を印加し、電流を流すことで所望の色で発光する材料を用いる。また、その機能が電子注入層,電子輸送層,発光層,正孔輸送層,正孔注入層などや兼用できる材料を用いることができる。有機発光層5は低分子材料や高分子材料,蛍光発光材料,燐光発光材料に限定するものではない。有機発光層5の発光色は用途に応じて任意の色を選択できる。また、白色発光が必要な場合、異なる複数の発光層を積層する構成や、一つの発光層に発光色の異なる色素をドーピングしてもよい。有機発光層5の膜厚は100nm以上1μm以下の範囲とするのが好ましい。有機発光層5の屈折率を1.75以上1.85以下とすることが望ましい。
The organic light-emitting layer 5 uses a material that emits light in a desired color by applying a predetermined voltage between the first transparent electrode 4 and the second transparent electrode 6 and passing a current. In addition, a material that can function as an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, or the like can be used. The organic light emitting layer 5 is not limited to low molecular materials, polymer materials, fluorescent light emitting materials, and phosphorescent light emitting materials. The luminescent color of the organic light emitting layer 5 can select any color according to the use. Further, when white light emission is required, a structure in which a plurality of different light emitting layers are stacked, or a dye having a different emission color may be doped in one light emitting layer. The thickness of the organic light emitting layer 5 is preferably in the range of 100 nm to 1 μm. The refractive index of the organic light emitting layer 5 is desirably 1.75 or more and 1.85 or less.
各構成部分に以上で説明した各材質を利用して本発明の有機発光装置が形成可能であり、たとえば、第一の基板1にガラス基板、反射層2に銀、第一の透明電極4にIZO、第一の絶縁層3にアクリル樹脂、有機発光層5に蛍光発光材料、第二の透明電極6にIZO、第二の基板7に屈折率1.5のガラス基板を利用して本発明の有機発光装置が形成可能である。本組み合わせでは、第一の透明電極4,有機発光層5および第二の透明電極6の屈折率は約1.8から2.0程度であるのに対して、第二の基板7のガラスとアクリル樹脂の屈折率は約1.5と低い。そのため、図4に示すように有機発光層5で発光した光の内、第一の透明電極4および第一の絶縁層3の界面や第二の透明電極6および第二の基板7の界面の各法線に対して大きな角度(本段落の構成では57度以上)で入射した光は、それぞれの界面で全反射を繰り返し、第一の透明電極4,有機発光層5,第二の透明電極6の間を導波する。その後、凹凸部をつなぐテーパ部102に到達し、テーパ部102で全反射の方向が変えられ、反射層2の表面で反射されて第二の基板7へ取り出される、あるいは、全反射条件から外れて第二の基板7へ入射することが可能となる。一方、第一の透明電極4および第一の絶縁層3の界面や第二の透明電極6および第二の基板7の界面の各法線に対して小さい角度で入射した光(本段落の構成では56度以下)は、直接第二の基板7へ取り出される、あるいは、反射層2の表面で反射されて第二の基板7へ取り出される。以上により、有機発光層5の凸部、有機発光層5の凹部および有機発光層5のテーパ部いずれからも光が第二の基板7へ取り出される。
The organic light-emitting device of the present invention can be formed using each of the materials described above for each component. For example, the glass substrate is used for the first substrate 1, the silver is used for the reflective layer 2, and the first transparent electrode 4 is used. The present invention utilizes IZO, acrylic resin for the first insulating layer 3, fluorescent light emitting material for the organic light emitting layer 5, IZO for the second transparent electrode 6, and a glass substrate having a refractive index of 1.5 for the second substrate 7. An organic light emitting device can be formed. In this combination, the refractive index of the first transparent electrode 4, the organic light emitting layer 5 and the second transparent electrode 6 is about 1.8 to 2.0, whereas the glass of the second substrate 7 The refractive index of acrylic resin is as low as about 1.5. Therefore, of the light emitted from the organic light emitting layer 5 as shown in FIG. 4, the interface between the first transparent electrode 4 and the first insulating layer 3 and the interface between the second transparent electrode 6 and the second substrate 7. Light incident at a large angle (57 degrees or more in the configuration of this paragraph) with respect to each normal repeats total reflection at each interface, and the first transparent electrode 4, the organic light emitting layer 5, the second transparent electrode 6 is guided. After that, it reaches the taper part 102 connecting the concavo-convex parts, and the direction of total reflection is changed by the taper part 102 and reflected on the surface of the reflective layer 2 and taken out to the second substrate 7 or deviates from the total reflection condition. Thus, the light can enter the second substrate 7. On the other hand, light incident at a small angle with respect to the normal lines of the interface between the first transparent electrode 4 and the first insulating layer 3 and the interface between the second transparent electrode 6 and the second substrate 7 (configuration in this paragraph) Then, it is taken out directly to the second substrate 7 or reflected by the surface of the reflective layer 2 and taken out to the second substrate 7. As described above, light is extracted from the convex portion of the organic light emitting layer 5, the concave portion of the organic light emitting layer 5, and the tapered portion of the organic light emitting layer 5 to the second substrate 7.
本実施例では第一の透明電極4,有機発光層5,第二の透明電極6の膜厚の合計は高々数百nmであるのに対して、凹凸部は例えば凸部100の幅は10μm以上ある。そのため、実際に第一の透明電極4,有機発光層5,第二の透明電極6を導波する光(紙面の概略左右方向に進む光)は、多数回の反射を繰り返してそのテーパ部102に到達する。本実施例では前述の構成により、界面の屈折率差に起因した全反射によりテーパ部102に光を到達させるため、反射による吸収ロスがない、すなわち光利用効率の高い有機発光装置が実現できる。一方、従来の反射層2が凸部にもある構成では、多数回の反射を繰り返すと金属の吸収による導波光のロスが大きい。
In this embodiment, the total thickness of the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 is at most several hundred nm, whereas the uneven portion has a width of, for example, 10 μm. That is all. Therefore, light that is actually guided through the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 (light that travels substantially in the horizontal direction on the paper surface) is repeatedly reflected many times, and the tapered portion 102. To reach. In the present embodiment, with the above-described configuration, the light reaches the tapered portion 102 by total reflection due to the difference in the refractive index of the interface. Therefore, an organic light-emitting device having no absorption loss due to reflection, that is, high light utilization efficiency can be realized. On the other hand, in the configuration in which the conventional reflective layer 2 is also provided on the convex portion, the loss of guided light due to metal absorption is large when the reflection is repeated many times.
また、本実施例では、前述の効果のほかに、凹凸部の凸部100,凹部101,テーパ部102のいずれも発光部となることから、従来の凹凸部を持たない有機発光装置と比較して、発光面積を実質増大させていることに相当する。そのため、光量がより必要な用途へ利用することや、光量は従来と同等でも、より低い電流密度を駆動可能であり、有機発光装置の長寿命化に寄与する。
Further, in this embodiment, in addition to the above-described effects, all of the convex portion 100, the concave portion 101, and the tapered portion 102 of the concave and convex portions are light emitting portions, so that it is compared with a conventional organic light emitting device having no concave and convex portions. This corresponds to substantially increasing the light emitting area. Therefore, it can be used for applications that require a greater amount of light, or can be driven at a lower current density even if the amount of light is the same as before, which contributes to a longer life of the organic light emitting device.
[実施例2]
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図5は、本発明の有機発光装置の一実施例の構成を示す一部断面図である。本実施例の有機発光装置は、第一の基板1,反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,第二の基板7および樹脂層10を有する。本実施例の有機発光装置は、図中の矢印が示す方向に光を取り出すものであり、光が取り出される方向において、第一の基板1,反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,第二の基板7の順に配置されている。 [Example 2]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. FIG. 5 is a partial cross-sectional view showing the configuration of an embodiment of the organic light-emitting device of the present invention. The organic light emitting device of the present embodiment includes afirst substrate 1, a reflective layer 2, a first insulating layer 3, a first transparent electrode 4, an organic light emitting layer 5, a second transparent electrode 6, and a second substrate 7. And a resin layer 10. The organic light emitting device of this example extracts light in the direction indicated by the arrow in the figure, and in the direction in which light is extracted, the first substrate 1, the reflective layer 2, the first insulating layer 3, and the first The transparent electrode 4, the organic light emitting layer 5, the second transparent electrode 6, and the second substrate 7 are arranged in this order.
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図5は、本発明の有機発光装置の一実施例の構成を示す一部断面図である。本実施例の有機発光装置は、第一の基板1,反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,第二の基板7および樹脂層10を有する。本実施例の有機発光装置は、図中の矢印が示す方向に光を取り出すものであり、光が取り出される方向において、第一の基板1,反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,第二の基板7の順に配置されている。 [Example 2]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. FIG. 5 is a partial cross-sectional view showing the configuration of an embodiment of the organic light-emitting device of the present invention. The organic light emitting device of the present embodiment includes a
反射層2は平板であり、複数の凹凸部に跨って形成されている。第一の絶縁層3の凹凸部に対応して第一の透明電極4,有機発光層5,第二の透明電極6も凹凸部を有している。第二の透明電極6の凹凸部は樹脂層10で覆われている。樹脂層10は空隙としてもよい。樹脂層10を第二の絶縁層8と同様に第二の透明電極6の凹凸部に形成してもよい。その場合、第二の透明電極6は第二の基板7に接することになる。各層(反射層2と第一の絶縁層3、第一の絶縁層3と第一の透明電極4、第一の透明電極4と有機発光層5、有機発光層5と第二の透明電極6、第二の透明電極6と樹脂層10、樹脂層10と第二の基板7)は接していてもよく、各層の間に別の層を介在させてもよい。
The reflection layer 2 is a flat plate and is formed across a plurality of uneven portions. Corresponding to the uneven portions of the first insulating layer 3, the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 also have uneven portions. The uneven portion of the second transparent electrode 6 is covered with the resin layer 10. The resin layer 10 may be a void. The resin layer 10 may be formed on the uneven portion of the second transparent electrode 6 in the same manner as the second insulating layer 8. In that case, the second transparent electrode 6 is in contact with the second substrate 7. Each layer (reflective layer 2 and first insulating layer 3, first insulating layer 3 and first transparent electrode 4, first transparent electrode 4 and organic light emitting layer 5, organic light emitting layer 5 and second transparent electrode 6) The second transparent electrode 6 and the resin layer 10, the resin layer 10 and the second substrate 7) may be in contact with each other, and another layer may be interposed between the layers.
本実施例の有機発光装置は、いわゆるトップエミッション型であり、第一の基板1上に反射層2,第一の絶縁層3,第一の透明電極4,有機発光層5,第二の透明電極6,樹脂層10を順次形成し、第二の基板7で封止することで作製可能である。第一の絶縁層3を作成した後に有機発光層5を作製するため、第一の絶縁層3のパターニング時に必要なUV光による有機発光層5へのダメージを抑制できる。
The organic light emitting device of this embodiment is a so-called top emission type, and includes a reflective layer 2, a first insulating layer 3, a first transparent electrode 4, an organic light emitting layer 5, and a second transparent on the first substrate 1. The electrode 6 and the resin layer 10 can be sequentially formed and sealed with the second substrate 7. Since the organic light emitting layer 5 is formed after the first insulating layer 3 is formed, damage to the organic light emitting layer 5 due to UV light necessary for patterning the first insulating layer 3 can be suppressed.
図6は、本実施例の有機発光装置の概略構成を示す斜視図である。反射層2の面内方向における第二の基板7の面積より第一の基板1の面積を大きくしている。第一の基板1上に形成された第一の引き出し部40は第一の透明電極4に電気的に接続されている。第一の基板1上に形成された第二の引き出し部60は第二の透明電極6に電気的に接続されている。各引き出し部は図示されていないフレキシブルプリント配線板(FPC)などの配線部材と接続し、さらに配線部材を電源やスイッチ等と接続することで、点灯,非点灯や明るさの制御が可能な有機発光装置が実現できる。
FIG. 6 is a perspective view showing a schematic configuration of the organic light-emitting device of this example. The area of the first substrate 1 is made larger than the area of the second substrate 7 in the in-plane direction of the reflective layer 2. The first lead portion 40 formed on the first substrate 1 is electrically connected to the first transparent electrode 4. The second lead portion 60 formed on the first substrate 1 is electrically connected to the second transparent electrode 6. Each drawer part is connected to a wiring member such as a flexible printed circuit board (FPC) (not shown), and the wiring member is connected to a power source, a switch or the like, so that it can be turned on / off and brightness can be controlled. A light emitting device can be realized.
本実施例では前述のように反射層2は平板であり、第一の絶縁層3の凹凸部に対応して第一の透明電極4,有機発光層5,第二の透明電極6も凹凸部を有している。換言すると、凸部において、反射層2と第一の透明電極4が分離されている構造を有している。そのため、第一の透明電極4,有機発光層5,第二の透明電極6を導波する光は従来の金属反射面による導波の際の光の吸収によるロスがないため、テーパ部102に達することができ、光利用効率を高めた有機発光装置が実現できる。
In this embodiment, as described above, the reflective layer 2 is a flat plate, and the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 are also uneven portions corresponding to the uneven portions of the first insulating layer 3. have. In other words, the convex portion has a structure in which the reflective layer 2 and the first transparent electrode 4 are separated. Therefore, the light guided through the first transparent electrode 4, the organic light emitting layer 5, and the second transparent electrode 6 has no loss due to light absorption when guided by the conventional metal reflecting surface. Thus, an organic light emitting device with improved light utilization efficiency can be realized.
次に、樹脂層10の効果について説明する。樹脂層10は樹脂を熱やUV光によって硬化させることで作製される。第二の透明電極6の屈折率を樹脂層10の屈折率よりも高くすることが望ましい。樹脂層10が存在しない、すなわち空隙である場合と比較して、樹脂層10の屈折率が高いため第二の透明電極6からの光を取り出す効果があり、また、後述するように光取り出し機能と組み合わせて、より光利用効率を高めた有機発光装置を提供できる。
Next, the effect of the resin layer 10 will be described. The resin layer 10 is produced by curing the resin with heat or UV light. It is desirable to make the refractive index of the second transparent electrode 6 higher than the refractive index of the resin layer 10. Compared with the case where the resin layer 10 is not present, that is, a void, the resin layer 10 has a high refractive index, and therefore has an effect of extracting light from the second transparent electrode 6. In combination, it is possible to provide an organic light emitting device with higher light utilization efficiency.
樹脂層10は取り出す光の波長領域において透過率が高い材料が好ましく、各種材料を利用可能である。屈折率の高い無機粒子をバインダ中に分散させて樹脂層10を作製する。バインダとしては、アクリル系,シリコーン系などの粘着性,タックを有する樹脂が利用できる。具体的には、2-エチルヘキシルアクリレート,ブチルアクリレート,2-メトキシエチルアクリレート,酢酸ビニル,アクリロニトリル,スチレン,メチルメタクリレート,エチルアクリレート,メチルアクリレート等のモノマーを単独で重合あるいは数種を共重合させた樹脂,付加反応型シリコーン,過酸化物シリコーンやエポキシ等が挙げられる。これらは単独で用いてもよく、2種以上を混合あるいは共重合して用いてもよい。無機粒子としては、光の波長に対して吸収が少なく、バインダよりも屈折率が高いものであればよい。特に、使用する光の波長が可視光(380nm以上780nm以下)の場合、無機粒子として酸化チタン、酸化ジリコニウム,酸化スズ,チタン酸バリウムなどの高屈折率(屈折率1.6以上2.6以下)で、可視光域で透明性の高い金属酸化物が好ましい。
The resin layer 10 is preferably made of a material having a high transmittance in the wavelength range of light to be extracted, and various materials can be used. Resin layer 10 is prepared by dispersing inorganic particles having a high refractive index in a binder. As the binder, an acrylic or silicone resin having tackiness and tackiness can be used. Specifically, a resin obtained by polymerizing monomers such as 2-ethylhexyl acrylate, butyl acrylate, 2-methoxyethyl acrylate, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, ethyl acrylate, methyl acrylate alone or by copolymerizing several kinds thereof. , Addition reaction type silicone, peroxide silicone, epoxy and the like. These may be used alone or in combination of two or more. The inorganic particles may be any particles that have less absorption with respect to the wavelength of light and have a higher refractive index than the binder. In particular, when the wavelength of light used is visible light (380 nm or more and 780 nm or less), high refractive index (refractive index of 1.6 or more and 2.6 or less) such as titanium oxide, zirconium oxide, tin oxide, and barium titanate as inorganic particles. ) And a metal oxide having high transparency in the visible light region is preferable.
また、粘着性を有する樹脂を利用すると第二の基板7上にあらかじめ樹脂層10を形成し、貼り合わせるプロセスを採ることも可能である。例えば、シランカップリング剤高分子で無機粒子を高分子と結合させて粘着粒子を作製し、粘着粒子をバインダ中に分散させて樹脂層10を作製する。高分子としては、ポリアクリル酸,ポリビニルアルコール,ポリアスパラギン酸,ポリグルタミン酸,アルギン酸,ポリビニルスルホン酸,ポリスチレンスルホン酸,アミロースなどが挙げられる。シランカップリング剤としてはN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシランなどが考えられる。
Further, when an adhesive resin is used, it is possible to take a process in which the resin layer 10 is previously formed on the second substrate 7 and bonded. For example, inorganic particles are bonded to a polymer with a silane coupling agent polymer to produce adhesive particles, and the adhesive particles are dispersed in a binder to produce the resin layer 10. Examples of the polymer include polyacrylic acid, polyvinyl alcohol, polyaspartic acid, polyglutamic acid, alginic acid, polyvinyl sulfonic acid, polystyrene sulfonic acid, and amylose. Examples of silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (aminoethyl) -3. -Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, etc. are conceivable.
[実施例3]
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図7,図8は本発明の一実施例の有機発光装置の構成を示す一部断面図である。図7はいわゆるボトムエミッション型、図8はトップエミッション型の有機発光装置である。 [Example 3]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. 7 and 8 are partial cross-sectional views showing the configuration of the organic light emitting device according to one embodiment of the present invention. FIG. 7 shows a so-called bottom emission type and FIG. 8 shows a top emission type organic light emitting device.
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図7,図8は本発明の一実施例の有機発光装置の構成を示す一部断面図である。図7はいわゆるボトムエミッション型、図8はトップエミッション型の有機発光装置である。 [Example 3]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. 7 and 8 are partial cross-sectional views showing the configuration of the organic light emitting device according to one embodiment of the present invention. FIG. 7 shows a so-called bottom emission type and FIG. 8 shows a top emission type organic light emitting device.
本実施例では、図7,図8に示すように反射層2が第一の透明電極4と電気的に接続された構成になっている。一般に、第一の透明電極4の配線抵抗は反射層2の配線抵抗に対して高いため、第一の引き出し部40から距離が離れた所では第一の透明電極4の配線抵抗に起因する電圧降下による面内の輝度むらの要因になる。本実施例のように配線抵抗の低い反射層2と第一の透明電極4を電気的に接続することで、輝度むらを抑えることができる。図7および図8では、第一の透明電極4の凹凸部の各凹部全面において反射層2と電気的に接続されている構成を示したが、電気的に接続されていればこれに限定されるものではなく、第一の透明電極4の凹部の一部分が電気的に接続されている場合や、第一の透明電極4の凹部それ以外の部分で電気的に接続されていてもよい。
In this embodiment, the reflective layer 2 is electrically connected to the first transparent electrode 4 as shown in FIGS. In general, since the wiring resistance of the first transparent electrode 4 is higher than the wiring resistance of the reflective layer 2, the voltage caused by the wiring resistance of the first transparent electrode 4 is away from the first lead portion 40. This causes uneven brightness in the surface due to the descent. By electrically connecting the reflective layer 2 having a low wiring resistance and the first transparent electrode 4 as in this embodiment, luminance unevenness can be suppressed. FIGS. 7 and 8 show a configuration in which the entire surface of each concave portion of the concave and convex portions of the first transparent electrode 4 is electrically connected to the reflective layer 2. However, the configuration is not limited to this as long as it is electrically connected. Instead, the first transparent electrode 4 may be partly connected to a part of the recess, or the first transparent electrode 4 may be electrically connected to the other part of the recess.
また、本実施例では、第一の透明電極4の凹部は反射層2と接する構造となるため、第一の透明電極4の凹部で導波する光の反射は全反射ではないが、第一の透明電極4の凸部においては前述の本発明の効果は保持される。また、第一の透明電極4の凹部の面積を第一の透明電極4の凸部より小さくすることで、その影響を低減できる。
In the present embodiment, the concave portion of the first transparent electrode 4 is in contact with the reflective layer 2, so that the reflection of light guided by the concave portion of the first transparent electrode 4 is not total reflection. The above-described effects of the present invention are maintained in the convex portion of the transparent electrode 4. Further, by making the area of the concave portion of the first transparent electrode 4 smaller than the convex portion of the first transparent electrode 4, the influence can be reduced.
[実施例4]
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図9,図11は本発明の一実施例の有機発光装置の凹凸部を示す上面図である。図10は本発明の一実施例の有機発光装置の凹凸部を示す上面図である。図9,図11に示すように、ある凸部110の中心から凸部110に隣接する凸部120の中心へ引いた直線と前述の凸部110の中心から凸部110に隣接する凸部120とは異なる凸部130に引いた直線が非直行となる構成になっている。換言すると、反射層2の面内方向において、第一の絶縁層3の凸部110は千鳥配置となっている。その場合、凸部110および凸部120のずれ幅は、反射層2の面内方向における凸部110の幅の2分の1以上凸部110の幅以下であることが望ましい。また、凸部110および凸部120のずれ幅を10μm以上とすることが望ましい。 [Example 4]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. 9 and 11 are top views showing the uneven portions of the organic light emitting device according to one embodiment of the present invention. FIG. 10 is a top view showing the concavo-convex portion of the organic light emitting device of one embodiment of the present invention. As shown in FIGS. 9 and 11, a straight line drawn from the center of a certainconvex portion 110 to the center of the convex portion 120 adjacent to the convex portion 110 and the convex portion 120 adjacent to the convex portion 110 from the center of the convex portion 110 described above. The straight line drawn on the convex part 130 different from is configured to be non-perpendicular. In other words, in the in-plane direction of the reflective layer 2, the convex portions 110 of the first insulating layer 3 are staggered. In that case, it is desirable that the deviation width between the convex portion 110 and the convex portion 120 is not less than one half of the width of the convex portion 110 in the in-plane direction of the reflective layer 2 and not more than the width of the convex portion 110. Moreover, it is desirable that the deviation width between the convex part 110 and the convex part 120 is 10 μm or more.
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図9,図11は本発明の一実施例の有機発光装置の凹凸部を示す上面図である。図10は本発明の一実施例の有機発光装置の凹凸部を示す上面図である。図9,図11に示すように、ある凸部110の中心から凸部110に隣接する凸部120の中心へ引いた直線と前述の凸部110の中心から凸部110に隣接する凸部120とは異なる凸部130に引いた直線が非直行となる構成になっている。換言すると、反射層2の面内方向において、第一の絶縁層3の凸部110は千鳥配置となっている。その場合、凸部110および凸部120のずれ幅は、反射層2の面内方向における凸部110の幅の2分の1以上凸部110の幅以下であることが望ましい。また、凸部110および凸部120のずれ幅を10μm以上とすることが望ましい。 [Example 4]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. 9 and 11 are top views showing the uneven portions of the organic light emitting device according to one embodiment of the present invention. FIG. 10 is a top view showing the concavo-convex portion of the organic light emitting device of one embodiment of the present invention. As shown in FIGS. 9 and 11, a straight line drawn from the center of a certain
図10に示した隣接する凸部110,凸部120および凸部130を結んだ2本の直線が直交している実施例と比較すると、例えば凹部101で発光し凹部101を図中の矢印に沿ってx方向へ導波する光は、いずれの凸部(テーパ部)にも到達しないため、全反射から抜け出せず光は取り出せない。一方、図9に示した本実施例では、少なくとも図中矢印(x方向)へ導波した光は、隣接した凸部120,130(テーパ部)に入射し光の進む角度を変えられるため、取り出し光として寄与する。そのため、本実施例に示す構成では、より光利用効率を高めた有機発光装置を実現できる。本発明の有機発光装置の凸部の形状や配置はこれらに限るものではない。また、図示されていないが、形状が均一、一様ではない場合においても、隣接する凸部の中心がずれていれば効果の多少はあるが何れも光取り出しを高められる。
Compared with the example in which the two straight lines connecting the adjacent convex portions 110, 120, and 130 shown in FIG. 10 are orthogonal to each other, for example, the concave portion 101 emits light and the concave portion 101 is indicated by an arrow in the figure. The light guided along the x-direction does not reach any convex part (tapered part), and therefore cannot escape from total reflection and cannot be extracted. On the other hand, in the present embodiment shown in FIG. 9, at least light guided in the direction of the arrow (x direction) is incident on the adjacent convex portions 120 and 130 (tapered portion), and the angle of light travel can be changed. Contributes as extraction light. Therefore, with the configuration shown in this embodiment, an organic light emitting device with higher light utilization efficiency can be realized. The shape and arrangement of the convex portions of the organic light emitting device of the present invention are not limited to these. Although not shown, even when the shape is not uniform or uniform, light extraction can be enhanced in any case if there is some effect if the centers of adjacent convex portions are shifted.
また、図11のように凸部100を例えば六角形状にして配列した場合、凸部100の一辺の長さより長い直線を、凹部101に沿ってとれない構成となっている。換言すると、反射層2の面内方向において、第一の絶縁層3の凸部100は最密充填構造となっている。図11の最密充填構造を六角形状に内接する円にしてもよい。本構成では、凹部101で発光し、何れの方向に進む光も必ず凸部100(テーパ部)に到達し取り出しに寄与する光となるため、より効率の高い有機発光装置を実現できる。
Further, as shown in FIG. 11, when the convex portions 100 are arranged in a hexagonal shape, for example, a straight line longer than the length of one side of the convex portion 100 cannot be taken along the concave portion 101. In other words, the convex part 100 of the first insulating layer 3 has a close-packed structure in the in-plane direction of the reflective layer 2. The close-packed structure in FIG. 11 may be a circle inscribed in a hexagonal shape. In this configuration, since light emitted from the concave portion 101 and traveling in any direction always reaches the convex portion 100 (tapered portion) and contributes to extraction, a more efficient organic light emitting device can be realized.
[実施例5]
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図12(a)は本発明の一実施例の有機発光装置の凹凸部を示す上面図であり、図12(b)は図12(a)のB-B′の断面形状を示す図である。 [Example 5]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. FIG. 12A is a top view showing the concavo-convex portion of the organic light emitting device of one embodiment of the present invention, and FIG. 12B is a diagram showing the cross-sectional shape of BB ′ in FIG. .
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図12(a)は本発明の一実施例の有機発光装置の凹凸部を示す上面図であり、図12(b)は図12(a)のB-B′の断面形状を示す図である。 [Example 5]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. FIG. 12A is a top view showing the concavo-convex portion of the organic light emitting device of one embodiment of the present invention, and FIG. 12B is a diagram showing the cross-sectional shape of BB ′ in FIG. .
本実施例では、図12(a)に示すように、凹部101は反射層2面内方向において周囲を凸部100に囲まれた構成になっている。図10では凹部101が格子状に形成されているのに対して、図12(a)では凹部101がドット状に形成されている。反射層2の面内方向において、凸部100の面積が凹部101の面積よりも大きい。このような構成にすると、凹部101で発光した光の内反射層2の面内方向に伝搬する光は、凸部100に入射することで光の方向が変えられ、取り出されるため、凹部101で発光した光を効果的に取り出すことが可能になる。
In this embodiment, as shown in FIG. 12 (a), the recess 101 is surrounded by the protrusion 100 in the in-plane direction of the reflective layer 2. In FIG. 10, the concave portion 101 is formed in a lattice shape, whereas in FIG. 12A, the concave portion 101 is formed in a dot shape. In the in-plane direction of the reflective layer 2, the area of the convex part 100 is larger than the area of the concave part 101. With such a configuration, the light propagating in the in-plane direction of the inner reflection layer 2 of the light emitted from the concave portion 101 is extracted by being incident on the convex portion 100, so that the direction of the light is changed and extracted. The emitted light can be extracted effectively.
[実施例6]
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図13は本発明の一実施例の有機発光装置の構成を示す一部断面図である。 [Example 6]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. FIG. 13 is a partial cross-sectional view showing a configuration of an organic light emitting device according to an embodiment of the present invention.
本発明の有機発光装置の他の実施例について前述の実施例と特に異なる部分に関して説明する。図13は本発明の一実施例の有機発光装置の構成を示す一部断面図である。 [Example 6]
Another embodiment of the organic light-emitting device of the present invention will be described with respect to parts that are particularly different from the above-described embodiment. FIG. 13 is a partial cross-sectional view showing a configuration of an organic light emitting device according to an embodiment of the present invention.
図13に示すように、実施例2に示した構成に対して、第二の基板7および樹脂層10の間に凹凸構造透明層11を設け、第二の基板7の光が取り出される側に光散乱層12を設けた構成となっている。このとき、樹脂層10の屈折率は凹凸構造透明層11の屈折率よりも高くなっている。凹凸構造透明層11の光が取り出される側と反対側の表面に凹凸が形成されている。樹脂層10に凹凸構造透明層11の凹凸部が埋め込まれている。
As shown in FIG. 13, with respect to the configuration shown in Example 2, a concavo-convex structure transparent layer 11 is provided between the second substrate 7 and the resin layer 10, and the light from the second substrate 7 is extracted from the side. The light scattering layer 12 is provided. At this time, the refractive index of the resin layer 10 is higher than the refractive index of the concavo-convex structure transparent layer 11. Concavities and convexities are formed on the surface of the concave-convex structure transparent layer 11 opposite to the side from which light is extracted. The uneven portion of the uneven structure transparent layer 11 is embedded in the resin layer 10.
凹凸構造透明層11の凹凸部として一例を挙げると、例えば錘状が挙げられる。具体的には、円錐状,四角錐状,六角錐状などが考えられる。凹凸構造透明層11が錘状の場合、錘状となる部分その頂角は70度以上85度以下となることが望ましい。また、凹凸構造透明層11は取り出す光の波長領域において透過率が高く、屈折率は1.5以上1.6以下であることが望ましい。樹脂で凹凸構造透明層11の形状を形成してもよいし、ガラス基板を加工して、例えば第二の基板7と一体化して凹凸構造透明層11を形成してもよい。
An example of the concavo-convex portion of the concavo-convex structure transparent layer 11 is a weight. Specifically, a conical shape, a quadrangular pyramid shape, a hexagonal pyramid shape, and the like are conceivable. In the case where the concavo-convex structure transparent layer 11 has a pyramid shape, it is desirable that the apex angle of the portion having the pyramid shape is 70 degrees to 85 degrees. In addition, it is desirable that the concavo-convex structure transparent layer 11 has a high transmittance in the wavelength range of light to be extracted, and the refractive index is 1.5 or more and 1.6 or less. The shape of the concavo-convex structure transparent layer 11 may be formed of a resin, or the glass substrate may be processed and integrated with the second substrate 7 to form the concavo-convex structure transparent layer 11.
光散乱層12は、アクリル樹脂を基材として、酸化ジリコニウムの微粒子が分散されている。基材は、透明であり、接着性を有していることが望ましい。また、光散乱層12の基材の屈折率はガラスの屈折率と近い方が望ましく、同じであることがさらに望ましい。「屈折率が同じ」とは本実施例の効果を達成できる程度の同じを意味しており、厳密な一致を要求するものではない。具体的には、両者の屈折率差が0.1以内であればよく、0.05以内であれば望ましい。光散乱層12の基材として、アクリル樹脂の他にエポキシ樹脂,PETなどを用いることができる。微粒子の材料には酸化ジリコニウムの他酸化チタン,チタン酸バリウムや酸化アルミニウムなどを用いることができる。微粒子として上記の材料を一種類含めてもよく、二種類以上含めてもよい。
The light scattering layer 12 has an acrylic resin as a base material and fine particles of zirconium oxide dispersed therein. It is desirable that the substrate is transparent and has adhesiveness. Further, the refractive index of the base material of the light scattering layer 12 is preferably close to the refractive index of glass, and more preferably the same. “The same refractive index” means the same degree that the effect of the present embodiment can be achieved, and does not require strict coincidence. Specifically, the refractive index difference between the two may be within 0.1, and is preferably within 0.05. As the base material of the light scattering layer 12, an epoxy resin, PET, or the like can be used in addition to the acrylic resin. As the fine particle material, titanium oxide, barium titanate, aluminum oxide or the like can be used in addition to zirconium oxide. One kind of the above materials may be included as the fine particles, or two or more kinds may be included.
本実施例のような構成とすることで、従来の樹脂層10および第二の基板7の界面や第二の基板7および空気(外部)の界面による全反射の効果を低減でき、より効果的に有機発光層5で発光した光を外部へ取り出すことができる。
By adopting the configuration as in the present embodiment, the effect of total reflection at the interface between the conventional resin layer 10 and the second substrate 7 and the interface between the second substrate 7 and the air (external) can be reduced, which is more effective. In addition, the light emitted from the organic light emitting layer 5 can be extracted to the outside.
1 第一の基板
2 反射層
3 第一の絶縁層
4 第一の透明電極
5 有機発光層
6 第二の透明電極
7 第二の基板
8 第二の絶縁層
9 空隙
10 樹脂層
11 凹凸構造透明層
12 光散乱層
40 第一の引き出し部
60 第二の引き出し部
100,110,120,130 凸部
101 凹部
102 テーパ部 DESCRIPTION OFSYMBOLS 1 1st board | substrate 2 Reflective layer 3 1st insulating layer 4 1st transparent electrode 5 Organic light emitting layer 6 2nd transparent electrode 7 2nd board | substrate 8 2nd insulating layer 9 Void 10 Resin layer 11 Uneven structure transparent Layer 12 Light scattering layer 40 First lead part 60 Second lead part 100, 110, 120, 130 Convex part 101 Concave part 102 Tapered part
2 反射層
3 第一の絶縁層
4 第一の透明電極
5 有機発光層
6 第二の透明電極
7 第二の基板
8 第二の絶縁層
9 空隙
10 樹脂層
11 凹凸構造透明層
12 光散乱層
40 第一の引き出し部
60 第二の引き出し部
100,110,120,130 凸部
101 凹部
102 テーパ部 DESCRIPTION OF
Claims (14)
- 第一の基板,反射層,第一の絶縁層,第一の透明電極,有機発光層,第二の透明電極および第二の基板を有し、
前記有機発光層からの光が取り出される方向に向かって、前記第一の基板,前記反射層,前記第一の絶縁層,前記第一の透明電極,前記有機発光層,前記第二の透明電極および前記第二の基板の順に配置され、
前記反射層は平板であり、
前記第一の絶縁層の光が取り出される側には凹凸部が形成され、
前記第一の絶縁層の凹凸部に対応して前記第一の透明電極,前記有機発光層および前記第二の透明電極に凹凸部が形成される有機発光装置。 Having a first substrate, a reflective layer, a first insulating layer, a first transparent electrode, an organic light emitting layer, a second transparent electrode and a second substrate;
The first substrate, the reflective layer, the first insulating layer, the first transparent electrode, the organic light emitting layer, and the second transparent electrode in a direction in which light from the organic light emitting layer is extracted. And arranged in the order of the second substrate,
The reflective layer is a flat plate,
An uneven portion is formed on the side of the first insulating layer from which light is extracted,
An organic light emitting device in which an uneven portion is formed in the first transparent electrode, the organic light emitting layer, and the second transparent electrode corresponding to the uneven portion of the first insulating layer. - 請求項1において、
前記第二の透明電極と第二の基板との間に第二の絶縁層が形成され、
前記第二の透明電極の凹部に前記第二の絶縁層が形成され、
前記第二の透明電極の凸部は前記第二の基板と接する有機発光装置。 In claim 1,
A second insulating layer is formed between the second transparent electrode and the second substrate;
The second insulating layer is formed in the recess of the second transparent electrode;
The convex portion of the second transparent electrode is an organic light emitting device in contact with the second substrate. - 請求項1において、
前記第二の透明電極と第二の基板との間に樹脂層が形成され、
前記第二の透明電極の凹凸部は前記樹脂層で覆われる有機発光装置。 In claim 1,
A resin layer is formed between the second transparent electrode and the second substrate;
The organic light-emitting device in which the uneven portion of the second transparent electrode is covered with the resin layer. - 請求項1において、
前記反射層と前記第一の透明電極とが電気的に接続されている有機発光装置。 In claim 1,
An organic light emitting device in which the reflective layer and the first transparent electrode are electrically connected. - 請求項4において、
前記反射層と前記第一の透明電極とが接している有機発光装置。 In claim 4,
An organic light emitting device in which the reflective layer is in contact with the first transparent electrode. - 請求項1において、
前記反射層の面内方向において、前記第一の絶縁層の凸部は千鳥配置となる有機発光装置。 In claim 1,
An organic light emitting device in which the convex portions of the first insulating layer are arranged in a staggered manner in the in-plane direction of the reflective layer. - 請求項6において、
前記反射層の面内方向において、前記第一の絶縁層の凸部および前記第一の絶縁層の凸部に隣接する凸部のずれ幅は10μm以上である有機発光装置。 In claim 6,
The organic light-emitting device in which, in the in-plane direction of the reflective layer, a deviation width between the convex portion of the first insulating layer and the convex portion adjacent to the convex portion of the first insulating layer is 10 μm or more. - 請求項1において、
前記反射層の面内方向において、前記第一の絶縁層の凸部は最密充填構造となる有機発光装置。 In claim 1,
An organic light-emitting device in which a convex portion of the first insulating layer has a close-packed structure in an in-plane direction of the reflective layer. - 請求項1において、
前記反射層の面内方向において、前記第一の絶縁層の凸部の面積は前記第一の絶縁層の凹部の面積よりも大きく、
前記反射層の面内方向において、前記第一の絶縁層の凹部が前記第一の絶縁層の凸部に囲まれている有機発光装置。 In claim 1,
In the in-plane direction of the reflective layer, the area of the convex portion of the first insulating layer is larger than the area of the concave portion of the first insulating layer,
An organic light-emitting device in which a concave portion of the first insulating layer is surrounded by a convex portion of the first insulating layer in an in-plane direction of the reflective layer. - 請求項1において、
前記第一の絶縁層の凹凸部は、凹部,凸部およびテーパ部からなり、
前記反射層の面内方向において、前記第一の絶縁層の凸部の幅は前記第一の絶縁層の凹部の幅よりも大きく、
前記第一の絶縁層の凸部の幅は10μm以上100μm以下であり、
前記第一の絶縁層の凹部の幅は10μm以上100μm以下であり、
前記第一の絶縁層の凸部の膜厚は1μm以上6μm以下であり、
前記第一の絶縁層の凹部の膜厚は0.5μm以上1μm以下であり、
前記第一の絶縁層のテーパ部と前記反射層のなす角度は20度以上70度以下である有機発光装置。 In claim 1,
The concavo-convex portion of the first insulating layer includes a concave portion, a convex portion, and a tapered portion,
In the in-plane direction of the reflective layer, the width of the convex portion of the first insulating layer is larger than the width of the concave portion of the first insulating layer,
The width of the convex portion of the first insulating layer is 10 μm or more and 100 μm or less,
The width of the concave portion of the first insulating layer is 10 μm or more and 100 μm or less,
The film thickness of the convex portion of the first insulating layer is 1 μm or more and 6 μm or less,
The thickness of the concave portion of the first insulating layer is 0.5 μm or more and 1 μm or less,
An organic light-emitting device in which an angle formed between the tapered portion of the first insulating layer and the reflective layer is 20 degrees or greater and 70 degrees or less. - 請求項2において、
前記第一の透明電極の屈折率は前記第一の絶縁層の屈折率よりも高く、
前記第二の透明電極の屈折率は前記第二の絶縁層の屈折率よりも高いことを特徴とする有機発光装置。 In claim 2,
The refractive index of the first transparent electrode is higher than the refractive index of the first insulating layer,
2. The organic light emitting device according to claim 1, wherein a refractive index of the second transparent electrode is higher than a refractive index of the second insulating layer. - 請求項3において、
前記第一の透明電極の屈折率は前記第一の絶縁層の屈折率よりも高く、
前記第二の透明電極の屈折率は前記樹脂層の屈折率よりも高いことを特徴とする有機発光装置。 In claim 3,
The refractive index of the first transparent electrode is higher than the refractive index of the first insulating layer,
The organic light-emitting device, wherein the refractive index of the second transparent electrode is higher than the refractive index of the resin layer. - 請求項1において、
前記第二の基板の光が取り出される側に光散乱層が形成され、
前記第二の基板のおよび前記樹脂層の間に透明層が設けられ、
前記透明層の光が取り出される側と反対側の表面に凹凸が形成されていることを特徴とする有機発光装置。 In claim 1,
A light scattering layer is formed on the second substrate where light is extracted;
A transparent layer is provided between the second substrate and the resin layer;
The organic light-emitting device is characterized in that irregularities are formed on the surface of the transparent layer opposite to the side from which light is extracted. - 請求項1において、
前記第一の絶縁層の凹凸部は、凹部,凸部およびテーパ部からなり、
前記反射層の面内方向において、前記第一の絶縁層の凸部の面積は前記第一の絶縁層の凹部の面積より大きく、
前記有機発光層の凹凸部は、凹部,凸部およびテーパ部からなり、
前記有機発光層の凸部、前記有機発光層の凹部および前記有機発光層のテーパ部から発光することを特徴とする有機発光装置。 In claim 1,
The concavo-convex portion of the first insulating layer includes a concave portion, a convex portion, and a tapered portion,
In the in-plane direction of the reflective layer, the area of the convex portion of the first insulating layer is larger than the area of the concave portion of the first insulating layer,
The concavo-convex portion of the organic light emitting layer includes a concave portion, a convex portion, and a tapered portion,
The organic light emitting device emits light from a convex portion of the organic light emitting layer, a concave portion of the organic light emitting layer, and a tapered portion of the organic light emitting layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010289092A JP2012138226A (en) | 2010-12-27 | 2010-12-27 | Organic light-emitting device |
JP2010-289092 | 2010-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090712A1 true WO2012090712A1 (en) | 2012-07-05 |
Family
ID=46382825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078974 WO2012090712A1 (en) | 2010-12-27 | 2011-12-14 | Organic light-emitting device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012138226A (en) |
WO (1) | WO2012090712A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014084049A1 (en) * | 2012-11-27 | 2014-06-05 | 昭和電工株式会社 | Organic el element, and image display device and lighting device equipped with same |
CN104241541A (en) * | 2014-09-15 | 2014-12-24 | 京东方科技集团股份有限公司 | Organic electroluminescence device and display device |
CN109256447A (en) * | 2017-07-13 | 2019-01-22 | 三星电子株式会社 | Luminescent device, the packaging part including the luminescent device and its manufacturing method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6179310B2 (en) | 2013-09-20 | 2017-08-16 | セイコーエプソン株式会社 | LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE |
JP6410171B2 (en) * | 2014-07-23 | 2018-10-24 | パナソニックIpマネジメント株式会社 | display |
WO2017126590A1 (en) * | 2016-01-19 | 2017-07-27 | 王子ホールディングス株式会社 | Light emitting element, method for manufacturing light emitting element, display device, and illuminating device |
CN108231841A (en) * | 2017-12-29 | 2018-06-29 | 深圳市华星光电技术有限公司 | OLED display device and preparation method |
CN114122292A (en) * | 2021-11-15 | 2022-03-01 | 惠州华星光电显示有限公司 | OLED display panel and electronic equipment |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5485055A (en) * | 1994-07-11 | 1996-01-16 | Alliedsignal Inc. | Active matrix electroluminescent display having increased brightness and method for making the display |
JPH09115667A (en) * | 1995-10-13 | 1997-05-02 | Sony Corp | Optical element |
JPH10199677A (en) * | 1997-01-16 | 1998-07-31 | Denso Corp | Manufacture of element |
JP2000040584A (en) * | 1998-07-23 | 2000-02-08 | Toppan Printing Co Ltd | Organic electroluminescence display element |
JP2003257662A (en) * | 2002-03-04 | 2003-09-12 | Sanyo Electric Co Ltd | Electroluminescence display device and its manufacturing method |
JP2004265852A (en) * | 2002-09-30 | 2004-09-24 | Toyota Industries Corp | El device, manufacturing method of same, and liquid crystal display device using el device |
JP2005062400A (en) * | 2003-08-11 | 2005-03-10 | Toshiba Matsushita Display Technology Co Ltd | Flat display device and method for manufacturing the same |
WO2005107327A1 (en) * | 2004-04-30 | 2005-11-10 | Sanyo Electric Co., Ltd. | Light-emitting display |
US7071617B2 (en) * | 2003-05-16 | 2006-07-04 | Kabushiki Kaisha Toyota Jidoshokki | Light-emitting apparatus and method for forming the same |
JP2007165331A (en) * | 2000-10-18 | 2007-06-28 | Sharp Corp | Light-emitting type display element |
JP2010182582A (en) * | 2009-02-06 | 2010-08-19 | Seiko Epson Corp | Organic electroluminescent device, and electronic equipment |
JP2010182449A (en) * | 2009-02-03 | 2010-08-19 | Fujifilm Corp | Organic electroluminescent display device |
JP2010217649A (en) * | 2009-03-18 | 2010-09-30 | Seiko Epson Corp | Display device and electronic apparatus |
-
2010
- 2010-12-27 JP JP2010289092A patent/JP2012138226A/en active Pending
-
2011
- 2011-12-14 WO PCT/JP2011/078974 patent/WO2012090712A1/en active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5485055A (en) * | 1994-07-11 | 1996-01-16 | Alliedsignal Inc. | Active matrix electroluminescent display having increased brightness and method for making the display |
JPH09115667A (en) * | 1995-10-13 | 1997-05-02 | Sony Corp | Optical element |
JPH10199677A (en) * | 1997-01-16 | 1998-07-31 | Denso Corp | Manufacture of element |
JP2000040584A (en) * | 1998-07-23 | 2000-02-08 | Toppan Printing Co Ltd | Organic electroluminescence display element |
JP2007165331A (en) * | 2000-10-18 | 2007-06-28 | Sharp Corp | Light-emitting type display element |
JP2003257662A (en) * | 2002-03-04 | 2003-09-12 | Sanyo Electric Co Ltd | Electroluminescence display device and its manufacturing method |
JP2004265852A (en) * | 2002-09-30 | 2004-09-24 | Toyota Industries Corp | El device, manufacturing method of same, and liquid crystal display device using el device |
US7071617B2 (en) * | 2003-05-16 | 2006-07-04 | Kabushiki Kaisha Toyota Jidoshokki | Light-emitting apparatus and method for forming the same |
JP2005062400A (en) * | 2003-08-11 | 2005-03-10 | Toshiba Matsushita Display Technology Co Ltd | Flat display device and method for manufacturing the same |
WO2005107327A1 (en) * | 2004-04-30 | 2005-11-10 | Sanyo Electric Co., Ltd. | Light-emitting display |
JP2010182449A (en) * | 2009-02-03 | 2010-08-19 | Fujifilm Corp | Organic electroluminescent display device |
JP2010182582A (en) * | 2009-02-06 | 2010-08-19 | Seiko Epson Corp | Organic electroluminescent device, and electronic equipment |
JP2010217649A (en) * | 2009-03-18 | 2010-09-30 | Seiko Epson Corp | Display device and electronic apparatus |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014084049A1 (en) * | 2012-11-27 | 2014-06-05 | 昭和電工株式会社 | Organic el element, and image display device and lighting device equipped with same |
CN104241541A (en) * | 2014-09-15 | 2014-12-24 | 京东方科技集团股份有限公司 | Organic electroluminescence device and display device |
US10193103B2 (en) | 2014-09-15 | 2019-01-29 | Boe Technology Group Co., Ltd. | Organic light emitting device having protrusion formed of transparent material and display apparatus |
CN109256447A (en) * | 2017-07-13 | 2019-01-22 | 三星电子株式会社 | Luminescent device, the packaging part including the luminescent device and its manufacturing method |
CN109256447B (en) * | 2017-07-13 | 2023-11-24 | 三星电子株式会社 | Light emitting device, package including the same, and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2012138226A (en) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012090712A1 (en) | Organic light-emitting device | |
KR102295584B1 (en) | In-cell type touch panel integrated organic light emitting display apparatus | |
JP2004241130A (en) | Luminescent display panel and its manufacturing method | |
JP6226279B2 (en) | Organic electroluminescence device | |
CN110875438A (en) | Light emitting display device | |
JP2009526360A5 (en) | ||
TWI695364B (en) | Organic light emitting diode display device | |
US7982398B2 (en) | Backlight unit and liquid crystal display device including the same | |
JP2006164808A (en) | Light emitting element, lighting system and display device having it | |
JP2007234578A (en) | Surface emitter, display device, and light control member | |
JP2003059641A (en) | Electroluminescent element | |
CN112259571B (en) | Flexible backboard and display device | |
WO2014069565A1 (en) | Organic el element, and image display device and illumination device provided with same | |
JP2002006776A (en) | Image display device | |
JP6413266B2 (en) | EL element, illumination device, display device, liquid crystal display device, and method of manufacturing EL element | |
CN104600093A (en) | Display panel | |
JP2007149591A (en) | Surface emitting body and display device | |
WO2015083484A1 (en) | Planar light-emitting unit | |
JP2007273254A (en) | Organic el display device and its manufacturing method | |
JP6079133B2 (en) | ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE HAVING THE SAME | |
JP5177899B2 (en) | Organic EL light source | |
WO2004112434A1 (en) | El device, process for manufacturing the same, and liquid crystal display employing el device | |
KR101104453B1 (en) | Organic electro-luminescent device and fabricating method for the same | |
JP2011187239A (en) | Lighting system equipped with surface light source element and it | |
TWI831383B (en) | Light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11852294 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11852294 Country of ref document: EP Kind code of ref document: A1 |