WO2013174079A1 - 一种电动汽车双向滑行器 - Google Patents

一种电动汽车双向滑行器 Download PDF

Info

Publication number
WO2013174079A1
WO2013174079A1 PCT/CN2012/079362 CN2012079362W WO2013174079A1 WO 2013174079 A1 WO2013174079 A1 WO 2013174079A1 CN 2012079362 W CN2012079362 W CN 2012079362W WO 2013174079 A1 WO2013174079 A1 WO 2013174079A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
converter
glide
rotating shaft
electric vehicle
Prior art date
Application number
PCT/CN2012/079362
Other languages
English (en)
French (fr)
Inventor
郭社星
Original Assignee
Guo Shexing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guo Shexing filed Critical Guo Shexing
Priority to JP2015600025U priority Critical patent/JP3198069U/ja
Publication of WO2013174079A1 publication Critical patent/WO2013174079A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/064Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
    • F16D41/066Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical
    • F16D41/067Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical and the members being distributed by a separate cage encircling the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/04Automatic clutches actuated entirely mechanically controlled by angular speed
    • F16D43/14Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D2041/0608Races with a regular polygon shape

Definitions

  • the invention relates to a glider, in particular to an electric vehicle two-way glider.
  • the electric vehicle is powered by the vehicle power supply. It has the characteristics of environmental protection and energy saving. However, due to the limitation of the vehicle power supply capacity, its driving speed and mileage after charging have certain defects, and it has to be charged frequently, which not only aggravates the rechargeable power supply of the vehicle. The service life, at the same time, also brings inconvenience to the user's life.
  • the present invention provides an electric vehicle two-way glider.
  • an electric vehicle two-way glider comprising a rotating shaft, a sliding converter, a circular sliding central control ring and a glider seat, wherein the sliding converter is fixed at one end of the rotating shaft, The other end of the shaft is connected to the output shaft of the motor, the glider seat and the electric steam
  • the driving shaft connection of the rear axle of the vehicle the sliding central control ring and the sliding converter are all disposed in the sliding seat, the sliding central control ring is arranged around the sliding converter, and the sliding central control ring and the sliding converter and the sliding seat
  • the inner wall of the sliding control ring is not evenly spaced;
  • the positioning window is provided at equal intervals on the circumferential surface of the sliding central control ring, and a cylindrical locking post is arranged in the positioning window hole, and the axial direction of the locking column is parallel to the axial direction of the rotating shaft;
  • the sliding converter has a positive octagonal prism shape, and eight sides of the sliding converter are opposite to the inner wall surface of the sliding seat, and the positioning holes on the sliding central control ring are set to eight, and the eight positioning holes are arranged
  • the locking posts respectively correspond to the eight sides of the sliding converter;
  • the circumferential surface of the locking cylinder is provided with a limiting groove surrounding the circumference thereof, and the outer circumferential surface of the sliding central control ring is provided with a corresponding cutting corresponding to the limiting groove a circular return spring disposed in the limiting groove and the slot, and pressing the lock cylinder on the side of the sliding converter;
  • the eight sides of the sliding converter have two symmetric settings
  • the inclined raceway surface, the top of the inclined raceway surface is connected with the side edge of the sliding converter;
  • the bottoms of the two inclined raceway surfaces on the same side of the sliding converter are connected by the positioning shallow groove;
  • the locking column moves along the inclined rolling surface of one side against the rotating direction of the rotating shaft due to inertia and centrifugal action, and is caught between the inclined rolling surface and the inner wall of the sliding seat, thereby driving the sliding seat to rotate and driving the electric motor.
  • the locking post is pulled back to the positioning shallow groove along the inclined rolling surface to be separated from the sliding seat to realize the sliding of the electric vehicle;
  • the rotating shaft and the sliding converter are integrated;
  • the adjacent sides of the sliding converter are connected by a curved surface or a plane transition;
  • the inclined angle of the inclined raceway surface of the sliding converter is 2-4°;
  • the radius of curvature of the shallow groove positioned on the sliding converter is greater than the radius of curvature of the lock cylinder.
  • the rotating shaft of the two-way glider is connected to the output shaft of the motor, and the slewing seat is connected to the rear axle of the electric vehicle.
  • the sliding converter is a positive octagonal prism
  • the eight sides of the octagonal prism have two symmetrically arranged inclined raceways, and the top of the inclined raceway surface is connected to the side edge of the sliding converter;
  • the bottoms of the two inclined raceways on one side are connected by the positioning shallow groove.
  • the initial position of the lock cylinder is located in the shallow groove. Regardless of whether the motor rotates or reverses, the lock cylinder is removed from the original position due to the centrifugal force. Locking between the inclined raceway surface and the inner wall of the glider seat, and transmitting the power of the motor to the rear axle through the rotating shaft and the glider seat;
  • the idling is idling, and the power is not transmitted to the motor through the lock cylinder; at the same time, since the two are not in contact, the internal resistance of the two-way glider is reduced, so that the electric vehicle has a longer sliding distance.
  • the lock cylinder is a cylinder, which ensures that the two sides can be rolled, so that the motor can be locked when the motor rotates forward or reverse, and then the power is output from the rotating shaft to the glider seat;
  • the function is to keep the displacement of the lock cylinder synchronized.
  • the function of the return spring not only ensures that the lock cylinder is located in the shallow groove on the side wall of the sliding converter when the motor is not rotating, but also when the motor stops rotating, the lock cylinder is rolled from the tilt. The position where the road surface and the inner wall of the glider seat are stuck is pulled back to the original position, and the contact with the glider seat is released, and the transmission path of the power from the glider seat to the rotating shaft is cut off.
  • the two-way clutch realizes that the power can be sequentially passed through the rotating shaft, regardless of whether the motor is rotating forward or reverse, by the inclined raceway surface on the side of the sliding horn of the positive octagonal prism, the positioning shallow groove and the cylindrical locking post.
  • the glider seat is transmitted to the rear axle and drives the electric vehicle to run.
  • the lock cylinder is automatically pulled back to the original position by the return spring, and is disengaged from the inner wall of the glider seat, thereby automatically switching to the gliding mode, and at the same time, the The frictional resistance inside the two-way clutch makes the electric vehicle's sliding distance farther and extends the mileage.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • FIG. 2 is a schematic structural view of a rotating shaft of the present invention
  • 3 is a schematic structural view of a sliding converter according to the present invention
  • FIG. 4 is a schematic structural view of a sliding central control ring in the present invention.
  • Figure 5 is a cross-sectional view of the sliding central control ring of the present invention.
  • Figure 6 is a schematic structural view of a glider seat of the present invention.
  • Figure 7 is a cross-sectional view of the aligner seat of the present invention.
  • Figure 8 is a schematic structural view of a lock cylinder according to the present invention.
  • Reference numerals 1, rotating shaft, 2, locking column, 3, sliding central control ring, 4, glider seat, 5, return spring, 101, sliding converter, 102, inclined raceway surface, 103, positioning shallow groove 104, the top of the inclined raceway surface, 201, the limit groove, 301, the positioning window hole, 302, the groove.
  • an electric vehicle two-way glider includes a rotating shaft 1, a sliding converter 101, a circular sliding central control ring 3 and a glider seat 4, and the sliding converter 101 is fixed at one end of the rotating shaft 1, and two The integral structure, the other end of the rotating shaft 1 is connected with the output shaft of the motor, and the sliding seat 4 is connected with the driving shaft of the rear axle of the electric vehicle; the sliding central control ring 3 and the sliding converter 101 are both disposed in the sliding seat 4, the sliding central control ring 3 is disposed around the sliding converter 101, and the sliding central control ring 3 is not in contact with the sliding converter 101 and the inner wall of the glider base 4; the circumferential spacing of the sliding central control ring 3 is equally spaced.
  • the positioning window 301 is provided with a cylindrical locking post 2, and the axial direction of the locking post 2 is parallel to the axial direction of the rotating shaft 1;
  • the sliding converter 101 has a positive octagonal prism shape, the eight sides of the sliding converter 101 are opposite to the inner wall surface of the skating pedestal 4, and the adjacent sides of the sliding converter 101 are connected by a curved surface or a plane transition;
  • the positioning holes 301 on the sliding central control ring 3 are set to eight, and the locking posts 2 disposed in the eight positioning windows 301 respectively correspond to the eight sides of the sliding converter 101;
  • Surrounding the limit groove 201 of the circumference thereof, the outer circumferential surface of the sliding central control ring 3 is provided with a limit a groove 302 corresponding to the groove 201; a circular return spring 5 is disposed in the limiting groove 201 and the slit 302, and presses the lock cylinder 2 on the side of the sliding converter 101;
  • the eight sides of the converter 101 have two symmetrically disposed inclined raceway faces 102.
  • the inclined raceway faces 102 have an inclination angle of 2-4°, and the inclined raceway face tops 104 are connected to the side edges of the slide converter 101;
  • the bottoms of the two inclined raceways on the same side of the sliding converter 101 are connected by the positioning shallow groove 103, and the radius of curvature of the positioning shallow groove 103 is larger than the radius of curvature of the lock cylinder 2;
  • the locking column 2 moves along the inclined rolling surface of one side against the rotating direction of the rotating shaft due to inertia and centrifugal action, and is caught between the inclined rolling surface and the inner wall of the skating seat 4, thereby driving the slewing seat 4 Rotation, driving the electric vehicle to run;
  • the lock cylinder 2 is pulled back to the positioning shallow groove 103 along the inclined raceway surface by the return spring 5, thereby being disengaged from the runner seat 4, thereby achieving the sliding of the electric vehicle.
  • the motor drives the rotating shaft 1 and the sliding converter 101 to rotate, and the locking post 2 is pulled away from the original position by the inertia and is stuck on the inclined rolling surface 102 of the sliding converter 101 and the inner wall of the sliding seat 4 In the formed gap, at this time, the skating cradle 4, the lock cylinder 2, and the coasting converter 101 sequentially contact the power transmission line, and transmit power to the glider base 4 and the electric vehicle rear axle connected thereto, thereby driving the electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Seats For Vehicles (AREA)

Abstract

一种电动汽车双向滑行器,包括转轴、滑行转换器、滑行中控环、锁柱和滑行器座,滑行转换器为正八棱柱形,八个侧面均有两个对称设置的倾斜滚道面,倾斜滚道面底部通过定位浅槽过渡连接;转轴旋转时,锁柱由于惯性及离心作用卡在倾斜滚道与滑行器座内壁之间,从而带动滑行器座旋转,驱动电动汽车运行;转轴停止转动时,锁柱被回位簧沿倾斜滚道拉回定位浅槽,与滑行器座脱离,实现电动汽车的滑行。本发明通过回位簧将锁柱自动拉回原位,与滑行器座内壁脱离接触,实现自动切换到滑行模式,同时,减掉了该双向离合器内部的摩擦阻力,使得电动汽车的滑行距离更远,延长了行驶里程。

Description

一种电动汽车双向滑行器
技术领域
本发明涉及到一种滑行器, 具体的说是一种电动汽车双向滑行器。
背景技术
电动汽车以车载电源为动力, 具有环保节能等特点, 但受车载电源容量 的限制, 其行驶速度和充电后的行驶里程均有一定的缺陷, 不得不频繁充电, 不仅加剧了车载可充电电源的使用寿命, 同时, 也给使用者的生活带来了不 便。
电动汽车在平路上正常行驶时, 往往只需要很少的电力提供即能在惯性 的作用下保持原速度行驶, 但在实际情况下, 一直保持在较大额度的电力提 供, 浪费了车载电源的电能; 而在电动汽车下坡时, 只需借助于自身重力和 惯性, 利用单向离合器即可实现滑行行走, 由于现有技术的单向离合器的滚 珠与外圈之间接触, 使得电动汽车在滑行时单向离合器的阻力增大, 缩短了 滑行距离。
现有技术中存在着单向传动的离合器, 传递动力时, 转轴、 滚珠以及外 壳接触, 从而传递动力; 当外壳转动、 转轴不转时, 需要手动操作使滚珠与 外壳脱离接触, 结构复杂, 需要及时操控才能实现滑行。
发明内容
为了解决现有单向离合器由于内部阻力导致的滑行距离短的问题或者人 工操控才能实现滑行的问题, 本发明提供了一种电动汽车双向滑行器。
本发明为解决上述技术问题采用的技术方案为: 一种电动汽车双向滑行 器, 包括转轴、 滑行转换器、 圆环形的滑行中控环和滑行器座, 滑行转换器 固定在转轴的一端, 转轴的另一端与电机的输出轴连接, 滑行器座与电动汽 车的后桥的驱动轴连接; 所述滑行中控环和滑行转换器均设置在滑行器座内, 滑行中控环环绕滑行转换器设置, 并且滑行中控环与滑行转换器以及滑行器 座的内壁均不接触; 在滑行中控环的圆周面上等间距设有定位窗孔, 定位窗 孔内设有圆柱形的锁柱, 锁柱的轴向与转轴的轴向平行;
所述滑行转换器为正八棱柱形, 滑行转换器的八个侧面与滑行器座的内 壁面相对, 所述滑行中控环上的定位窗孔设置为八个, 八个定位窗孔内设置 的锁柱分别对应于滑行转换器的八个侧面; 在锁柱的圆周面上设有环绕其一 周的限位凹槽, 滑行中控环的外圆周面上设有与限位凹槽对应的切槽; 一个 圆环形的回位簧设置在限位凹槽和切槽内, 并将锁柱压在滑行转换器的侧面 上; 所述滑行转换器的八个侧面均有两个对称设置的倾斜滚道面, 倾斜滚道 面顶部与滑行转换器的侧棱连接; 滑行转换器同一个侧面上的两个倾斜滚道 面底部通过定位浅槽过渡连接;
转轴旋转时, 锁柱由于惯性及离心作用沿一侧的倾斜滚道面逆着转轴旋 转方向运动, 并卡在倾斜滚道面与滑行器座内壁之间, 从而带动滑行器座旋 转, 驱动电动汽车运行; 转轴停止转动时, 锁柱被回位簧沿倾斜滚道面拉回 定位浅槽, 从而与滑行器座脱离, 实现电动汽车的滑行;
所述转轴与滑行转换器为一体结构;
所述滑行转换器相邻的两侧面之间通过弧面或平面过渡衔接;
所述滑行转换器上倾斜滚道面的倾斜角为 2-4° ;
所述滑行转换器上定位浅槽的曲率半径大于锁柱的曲率半径。
该双向滑行器的转轴与电机的输出轴连接, 滑行器座与电动汽车的后桥 连接。 由于滑行转换器为正八棱柱, 正八棱柱的八个侧面均有两个对称设置 的倾斜滚道面, 倾斜滚道面的顶部与滑行转换器的侧棱连接; 滑行转换器同 一个侧面上的两个倾斜滚道面底部通过定位浅槽过渡连接, 锁柱的初始位置 在定位浅槽内, 无论电机正转或反转, 锁柱由于离心力的作用被甩离原位, 卡在倾斜滚道面与滑行器座内壁之间并锁紧, 将电机的动力通过转轴、 滑行 器座传递给后桥;
下坡时, 电机停止, 锁柱在回位簧的弹性拉力作用下返回定位浅槽, 此 时, 锁柱与滑行器座的内壁之间不接触, 使得电动汽车在滑行时, 后桥带动 滑行器座空转, 不会将动力通过锁柱传递给电机; 同时由于两者不接触, 减 小了该双向滑行器的内部阻力, 从而使电动汽车的滑行距离更远。
该双向滑行器中, 锁柱为圆柱体, 保证了向两侧均可以滚动, 使得无论 电机正转或反转时均能锁紧, 进而使动力从转轴输出给滑行器座; 滑行中控 环的作用是保持锁柱的位移同步, 回位簧的作用不仅保证锁柱在电机不转时 处于滑行转换器侧壁上的定位浅槽内, 而且在电机停止转动时, 将锁柱从倾 斜滚道面与滑行器座内壁卡死的位置拉回原位, 脱离与滑行器座的接触, 切 断动力从滑行器座向转轴的传递路径。
有益效果: 本发明中, 该双向离合器通过正八棱柱的滑行转换器侧面上 的倾斜滚道面、 定位浅槽和圆柱形锁柱实现了不论电机正转或反转均能将动 力依次通过转轴、 滑行器座传递给后桥并驱动电动汽车运行, 转轴停止后通 过回位簧将锁柱自动拉回原位, 与滑行器座内壁脱离接触, 实现自动切换到 滑行模式, 同时, 减掉了该双向离合器内部的摩擦阻力, 使得电动汽车的滑 行距离更远, 延长了行驶里程。
附图说明
图 1为本发明的整体结构示意图;
图 2为本发明中转轴的结构示意图; 图 3为本发明中滑行转换器的结构示意图;
图 4为本发明中滑行中控环的结构示意图;
图 5为本发明中滑行中控环的剖视图;
图 6为本发明中滑行器座的结构示意图;
图 7为本发明中滑行器座的剖视图;
图 8为本发明中锁柱的结构示意图;
附图标记: 1、 转轴, 2、 锁柱, 3、 滑行中控环, 4、 滑行器座, 5、 回位 簧, 101、 滑行转换器, 102、 倾斜滚道面, 103、 定位浅槽, 104、 倾斜滚道 面顶部, 201、 限位凹槽, 301、 定位窗孔, 302、 切槽。
具体实施方式
如图所示, 一种电动汽车双向滑行器, 包括转轴 1、 滑行转换器 101、 圆 环形的滑行中控环 3和滑行器座 4, 滑行转换器 101固定在转轴 1的一端, 且 两者为一体结构, 转轴 1 的另一端与电机的输出轴连接, 滑行器座 4与电动 汽车的后桥的驱动轴连接; 所述滑行中控环 3和滑行转换器 101均设置在滑 行器座 4内, 滑行中控环 3环绕滑行转换器 101设置, 并且滑行中控环 3与 滑行转换器 101 以及滑行器座 4的内壁均不接触; 在滑行中控环 3的圆周面 上等间距设有定位窗孔 301, 定位窗孔 301内设有圆柱形的锁柱 2, 锁柱 2的 轴向与转轴 1的轴向平行;
其中, 滑行转换器 101为正八棱柱形, 滑行转换器 101 的八个侧面与滑 行器座 4的内壁面相对, 滑行转换器 101相邻的两侧面之间通过弧面或平面 过渡衔接; 所述滑行中控环 3上的定位窗孔 301设置为八个, 八个定位窗孔 301内设置的锁柱 2分别对应于滑行转换器 101的八个侧面;在锁柱 2的圆周 面上设有环绕其一周的限位凹槽 201,滑行中控环 3的外圆周面上设有与限位 凹槽 201对应的切槽 302;—个圆环形的回位簧 5设置在限位凹槽 201和切槽 302内, 并将锁柱 2压在滑行转换器 101的侧面上; 所述滑行转换器 101的八 个侧面均有两个对称设置的倾斜滚道面 102, 倾斜滚道面 102的倾斜角为 2-4 ° , 倾斜滚道面顶部 104与滑行转换器 101的侧棱连接; 滑行转换器 101同 一个侧面上的两个倾斜滚道面底部通过定位浅槽 103过渡连接,定位浅槽 103 的曲率半径大于锁柱 2的曲率半径;
转轴 1旋转时, 锁柱 2由于惯性及离心作用沿一侧的倾斜滚道面逆着转 轴旋转方向运动, 并卡在倾斜滚道面与滑行器座 4 内壁之间, 从而带动滑行 器座 4旋转, 驱动电动汽车运行; 转轴 1停止转动时, 锁柱 2被回位簧 5沿 倾斜滚道面拉回定位浅槽 103,从而与滑行器座 4脱离,实现电动汽车的滑行。
本发明中, 锁柱 2处于初始位置定位浅槽 103内时, 锁柱 2与滑行器座 4 内壁之间有间隙, 此时, 若电动汽车处于滑行状态时, 电机和转轴 1 均不转 动, 电动汽车的后桥带动滑行器座 4转动, 由于滑行器座 4与锁柱 2、 滑行转 换器 101均不接触, 因此, 不能将动力传输给转轴;
电动汽车正常行驶时, 电机带动转轴 1和滑行转换器 101转动, 锁柱 2 在惯性作用下被甩离原位并卡死在滑行转换器 101上的倾斜滚道面 102与滑 行器座 4内壁形成的间隙内, 此时, 滑行器座 4、 锁柱 2以及滑行转换器 101 依次接触构成动力传输线路, 将动力传输给滑行器座 4 以及与此连接的电动 汽车后桥, 进而驱动电动汽车行驶; 当切断电机后, 转轴 1及滑行转换器 101 停止转动, 锁柱 2在回位簧 5的作用下被拉回起始位置定位浅槽 103, 使得滑 行器座 4与锁柱 2和滑行转换器 101脱离接触, 防止电动汽车在滑行时后桥 将转动传递给转轴 1。

Claims

权利要求书
1、 一种电动汽车双向滑行器, 包括转轴 (1)、 滑行转换器 (101)、 圆环形的 滑行中控环 (3) 和滑行器座 (4), 滑行转换器 (101) 固定在转轴 (1) 的一 端, 转轴 (1) 的另一端与电机的输出轴连接, 滑行器座 (4) 与电动汽车的 后桥的驱动轴连接; 所述滑行中控环 (3) 和滑行转换器 (101) 均设置在滑 行器座 (4) 内, 滑行中控环 (3) 环绕滑行转换器 (101) 设置, 并且滑行中 控环 (3) 与滑行转换器 (101) 以及滑行器座 (4) 的内壁均不接触; 在滑行 中控环 (3) 的圆周面上等间距设有定位窗孔 (301), 定位窗孔 (301) 内设 有圆柱形的锁柱 (2), 锁柱 (2) 的轴向与转轴 (1) 的轴向平行, 其特征在 于:
所述滑行转换器 (101) 为正八棱柱形, 滑行转换器 (101) 的八个侧面 与滑行器座 (4) 的内壁面相对, 所述滑行中控环 (3) 上的定位窗孔 (301) 设置为八个, 八个定位窗孔 (301) 内设置的锁柱 (2) 分别对应于滑行转换 器 (101) 的八个侧面; 在锁柱 (2) 的圆周面上设有环绕其一周的限位凹槽 (201), 滑行中控环 (3) 的外圆周面上设有与限位凹槽 (201) 对应的切槽 (302); 一个圆环形的回位簧(5)设置在限位凹槽(201)和切槽(302) 内, 并将锁柱 (2) 压在滑行转换器 (101) 的侧面上; 所述滑行转换器 (101) 的 八个侧面均有两个对称设置的倾斜滚道面 (102), 倾斜滚道面顶部 (104) 与 滑行转换器 (101) 的侧棱连接; 滑行转换器 (101) 同一个侧面上的两个倾 斜滚道面底部通过定位浅槽 (103) 过渡连接;
转轴 (1) 旋转时, 锁柱 (2) 由于惯性及离心作用沿一侧的倾斜滚道逆 着转轴旋转方向运动, 并卡在倾斜滚道面与滑行器座 (4) 内壁之间, 从而带 动滑行器座(4)旋转, 驱动电动汽车运行; 转轴 (1)停止转动时, 锁柱(2) 被回位簧 (5) 沿倾斜滚道面拉回定位浅槽 (103), 从而与滑行器座 (4) 脱 离, 实现电动汽车的滑行。
2、 根据权利要求 1所述的一种电动汽车双向滑行器, 其特征在于: 所述转轴 (1) 与滑行转换器 (101) 为一体结构。
3、 根据权利要求 1所述的一种电动汽车双向滑行器, 其特征在于: 所述滑行 转换器 (101) 相邻的两侧面之间通过弧面或平面过渡衔接。
4、 根据权利要求 1所述的一种电动汽车双向滑行器, 其特征在于: 所述滑行 转换器 (101) 上倾斜滚道面 (102) 的倾斜角为 2-4° 。
5、 根据权利要求 1所述的一种电动汽车双向滑行器, 其特征在于: 所述滑行 转换器 (101) 上定位浅槽 (103) 的曲率半径大于锁柱 (2) 的曲率半径。
PCT/CN2012/079362 2012-05-25 2012-07-30 一种电动汽车双向滑行器 WO2013174079A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015600025U JP3198069U (ja) 2012-05-25 2012-07-30 電気自動車の双方向スライド装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210165906.X 2012-05-25
CN201220239549.2 2012-05-25
CN201210165906 2012-05-25
CN201220239549 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013174079A1 true WO2013174079A1 (zh) 2013-11-28

Family

ID=49623048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079362 WO2013174079A1 (zh) 2012-05-25 2012-07-30 一种电动汽车双向滑行器

Country Status (2)

Country Link
JP (1) JP3198069U (zh)
WO (1) WO2013174079A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107178567A (zh) * 2016-03-11 2017-09-19 立多禄工业股份有限公司 正、反转能够自动变向的双向超越离合器
CN113260561A (zh) * 2018-12-21 2021-08-13 Ca科技系统公司 滑行离合器及具有这种滑行离合器的多速齿轮系统
CN115111286A (zh) * 2022-06-30 2022-09-27 沈阳卓越汽车科技有限公司 一种车辆滑行节能离合器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388779A (en) * 1966-03-15 1968-06-18 Eaton Yale & Towne Drive differential with two-way overrunning clutch and temperature compensating operator
US3414096A (en) * 1966-06-17 1968-12-03 Dana Corp Automatic and manual means for hub clutch
US5927456A (en) * 1996-11-01 1999-07-27 Ntn Corporation Two-way over-running clutch assembly
CN2419091Y (zh) * 1999-12-07 2001-02-14 李秀先 汽车滑行可控节能器
CN1353255A (zh) * 2000-11-14 2002-06-12 廖白光 离合器结构
CN2550254Y (zh) * 2002-03-27 2003-05-14 刘作才 一种双向离合式摩托车节能从动链轮
CN201033529Y (zh) * 2007-05-14 2008-03-12 林伯祥 一种新型的电动车传动机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388779A (en) * 1966-03-15 1968-06-18 Eaton Yale & Towne Drive differential with two-way overrunning clutch and temperature compensating operator
US3414096A (en) * 1966-06-17 1968-12-03 Dana Corp Automatic and manual means for hub clutch
US5927456A (en) * 1996-11-01 1999-07-27 Ntn Corporation Two-way over-running clutch assembly
CN2419091Y (zh) * 1999-12-07 2001-02-14 李秀先 汽车滑行可控节能器
CN1353255A (zh) * 2000-11-14 2002-06-12 廖白光 离合器结构
CN2550254Y (zh) * 2002-03-27 2003-05-14 刘作才 一种双向离合式摩托车节能从动链轮
CN201033529Y (zh) * 2007-05-14 2008-03-12 林伯祥 一种新型的电动车传动机构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107178567A (zh) * 2016-03-11 2017-09-19 立多禄工业股份有限公司 正、反转能够自动变向的双向超越离合器
CN113260561A (zh) * 2018-12-21 2021-08-13 Ca科技系统公司 滑行离合器及具有这种滑行离合器的多速齿轮系统
CN115111286A (zh) * 2022-06-30 2022-09-27 沈阳卓越汽车科技有限公司 一种车辆滑行节能离合器

Also Published As

Publication number Publication date
JP3198069U (ja) 2015-06-18

Similar Documents

Publication Publication Date Title
US10047803B2 (en) Power transmitting apparatus
WO2018040284A1 (zh) 一种电动推杆
WO2013174079A1 (zh) 一种电动汽车双向滑行器
TWI653160B (zh) 飛輪機構
CN206054568U (zh) 一种电动推杆的离合装置
CN201407322Y (zh) 非道路机动车用单向离合式无级变速装置
CN103072494B (zh) 一种双驱动电动汽车的控制系统
CN103935238A (zh) 电动汽车和用于电动汽车的电驱动系统
CN211127453U (zh) 一种双边驱动变档轮毂
CN211550333U (zh) 一种电机驱动湿式离合器及汽车
CN210265588U (zh) 一种可以自动分离的转向驱动齿轮箱
CN202187646U (zh) 用于开门机中的离合传动装置
CN104787025B (zh) 一种汽车无动力滑行控制装置及其控制系统和控制方法
CN208619607U (zh) 一种电控两挡变速器
CN105952812A (zh) 非接触式滚柱超越离合器
CN206145016U (zh) 一种电动推杆
CN112228470B (zh) 一种超越离合器
CN204916034U (zh) 一种节能电动车轮
CN210074989U (zh) 一种电动车用动力驱动装置
CN207814338U (zh) 自行车飞轮
CN1353255A (zh) 离合器结构
CN215737488U (zh) 玻璃转盘自动驱动装置
CN202118211U (zh) 无级变速机动车主动轮节能助力装置
CN202883958U (zh) 棘轮式单向皮带轮
CN201908970U (zh) 一种集手动和电动于一体的机械式离合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015600025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877456

Country of ref document: EP

Kind code of ref document: A1