WO2013173606A1 - Breathable multi-component exhaust insulation system - Google Patents
Breathable multi-component exhaust insulation system Download PDFInfo
- Publication number
- WO2013173606A1 WO2013173606A1 PCT/US2013/041391 US2013041391W WO2013173606A1 WO 2013173606 A1 WO2013173606 A1 WO 2013173606A1 US 2013041391 W US2013041391 W US 2013041391W WO 2013173606 A1 WO2013173606 A1 WO 2013173606A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- insulation sleeve
- set forth
- sleeve set
- metal foil
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 239000011888 foil Substances 0.000 claims abstract description 26
- 239000011521 glass Substances 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000835 fiber Substances 0.000 claims abstract description 13
- 239000004744 fabric Substances 0.000 claims abstract description 12
- 239000003365 glass fiber Substances 0.000 claims abstract description 11
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 9
- 239000000919 ceramic Substances 0.000 claims abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 13
- 239000010935 stainless steel Substances 0.000 claims description 13
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 10
- 239000011152 fibreglass Substances 0.000 claims description 8
- 239000004677 Nylon Substances 0.000 claims description 7
- 239000004697 Polyetherimide Substances 0.000 claims description 7
- 229920001778 nylon Polymers 0.000 claims description 7
- 229920000728 polyester Polymers 0.000 claims description 7
- 229920001601 polyetherimide Polymers 0.000 claims description 7
- 229920006375 polyphtalamide Polymers 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 6
- 239000004954 Polyphthalamide Substances 0.000 claims description 6
- 229920002530 polyetherether ketone Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- -1 polypropylene Polymers 0.000 claims description 5
- 238000009958 sewing Methods 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 4
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920001169 thermoplastic Polymers 0.000 claims description 3
- 239000004416 thermosoftening plastic Substances 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229920003235 aromatic polyamide Polymers 0.000 claims 2
- 239000004760 aramid Substances 0.000 claims 1
- 229920005992 thermoplastic resin Polymers 0.000 claims 1
- 229920005989 resin Polymers 0.000 abstract description 4
- 239000011347 resin Substances 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000009940 knitting Methods 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229920013632 Ryton Polymers 0.000 description 2
- 239000004736 Ryton® Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229920004738 ULTEM® Polymers 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
- F16L59/029—Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/08—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/14—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
- F01N13/148—Multiple layers of insulating material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/18—Construction facilitating manufacture, assembly, or disassembly
- F01N13/1805—Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
- F01N13/1811—Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
- F01N13/1816—Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration the pipe sections being joined together by flexible tubular elements only, e.g. using bellows or strip-wound pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/08—Means for preventing radiation, e.g. with metal foil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/04—4 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/20—All layers being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
- B32B2262/0269—Aromatic polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/105—Ceramic fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/14—Mixture of at least two fibres made of different materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/12—Vehicles
Definitions
- the present invention relates generally to insulation for exhaust systems and other types of pipe systems that transport hot gases and other hot fluid materials. More specifically, the present invention relates to a multi-component sleeve that may be used, among other things, to fit exhaust systems on vehicles generally and large trucks in particular.
- Exhaust insulation systems are used to maintain high temperature of exhaust gases in order to provide more efficient and complete combustion of fuels, and to protect surrounding components from the high exhaust temperatures. Additionally, maintaining high exhaust temperatures tends to increase the velocity of the exhaust gases through the system, which allows the engine cylinder to more fully evacuate and aids in the emission control processes.
- insulating the exhaust system has been shown to improve the performance of the emission control system located in the exhaust stream system.
- U.S. Patent No. 6,610,928 discloses a sleeve for providing thermal insulation to elongated substrates, formed from a composite sheet having a tough, resilient reinforcing layer to which a metallic reflective layer is attached on one side and a fibrous, non-woven insulative layer is attached on the opposed side.
- the sleeve includes a seam, formed lengthwise along the sleeve in spaced relation to the reverse fold, defining a central space for receiving elongated substrates.
- U.S. Patent No. 6,978,643 is directed to a multilayer sleeve for insulating or protecting elongated substrates, wherein the sleeve is continuously knitted in different sections integrally joined end to end, the sections being formed of different filamentary members chosen for desired characteristics.
- the sleeves are formed into the multilayer configuration by reverse folding the sleeves inwardly to place one section coaxially within another.
- U.S. Patent No. 5,134,846 discloses a cover for insulating exhaust systems of internal combustion engines comprising a tubular shaped layer of insulating material circumscribingly engaging the exhaust system and a flexible metal sleeve for protecting the insulating material and holding the insulating material against the exhaust system.
- the cover is held in place by hose clamps or tie wraps.
- U.S. Patent No. 5,092,122 is directed to a means and method for insulating automotive exhaust pipes by sliding a flexible insulated tube over the exhaust pipe.
- the tube comprises concentrically arranged inner and outer corrugated stainless steel tubes, with the annulus between the corrugated tubes filled with refractory fiber insulation.
- U.S. Patent No. 5,617,900 includes a thermally insulative sleeve with a seamless, hollow flexibly resilient inner tubular member woven of strand material including at least one metal wire strand, a separate, integral, at least essentially unbroken, metal surface member applied over the inner tubular member extending along and at least essentially completely surrounding the inner tubular member and a flexible outer cover also woven of strand material extending along and completely around the inner tubular member and metal surfaced member securing the metal surface member with the inner tubular member and offering some degree of protection.
- the USPTO Customer # 52554 The USPTO Customer # 52554
- Atty. Ref.: AXI-001 inner tubular member may be knit from wire or from a combination of wire and glass fiber yarn, the latter providing some thermal insulative protection.
- U.S. Patent Application Publication No. 2002/0168488 discloses a protective sleeve for covering elongated substrates, wherein the sleeve is knitted from a combination of first and second filamentary fibers having different properties from one another.
- the filamentary members are plated so that the filamentary members with properties compatible with the substrate are positioned predominantly on the inner surface of the sleeve facing and engaging the substrate. Filament properties include heat resistance, high tensile strength, resistance to abrasion, chemical attack and damping capability.
- the sleeve includes ribs integrally knitted lengthwise along the sleeve to form insulating air pockets, and the ends of the sleeve are finished with welts to prevent unraveling.
- a breathable, multi-layer exhaust insulation system in accordance with one aspect of the invention, includes a multi-layer sleeve, wherein the first layer, which is positioned adjacent the exhaust system pipes, is a braided, knit or woven sleeve which may be constructed from high-temperature resistant materials such as e-glass, s-glass, silica or ceramic. Additional braided layers of material may be included, as well.
- An outside cover of material may be a circular knitted fabric that contains glass fibers, reinforcing fibers and resin-based fibers. The knitted fabric forms a tube on the outside of the insulating layers, which is made by knitting the tube or knitting a fabric and cutting and sewing the tube.
- the knitted tube may be formed from a core spun yarn, which includes a glass filament core and a high-melt fiber on the wrap along with stainless steel reinforcing fibers.
- the wrap can be made from resin type fibers including Poly ⁇ -phenylene sulfide) PPS (sold under the trade name Ryton), Polyetherimide (PEI) sold under the trade name Ultem, Polyether ether ketone (PEEK), Polysulfone (PES), Polyphthalamide (PPA), nylon, polyester, or polypropylene .
- a metal foil layer (or multiple metal foil layers) may be disposed between the braided insulation and the knit cover to improve insulation performance and reduce the rate of fluid adsorption into the insulation layers.
- the metal foil layer(s) may be made of aluminum, fiberglass reinforced aluminum, stainless steel, nickel, copper or tin, although any suitable metal foil may be used. Additionally, the metal foil layer(s) may be perforated or unperforated. The perforations enhance breathability of the insulating sleeve.
- the insulating sleeve includes a first layer of a braided silica sleeve adjacent the exhaust system pipes, then two layers of braided e-glass for insulation, and an outer layer of a PPS/glass cover treated with a fluorocarbon sewn into a tubular sleeve using a glass/stainless steel sewing thread and a safety lock stitch. Each end of the insulation is secured using a stainless steel band clamp or other suitable attachment means.
- a high-temperature film which is disposed about an outer side of the metal foil layer, in order to protect the metal foil layer from oxidation.
- Suitable high-temperature films may include polyimide (commonly referred to as "PI,” and commercially available under the trade name Kapton), PEI, PPS, PEEK, PPA, silicone, nylon, polyester or polypropolene.
- Figure 1 is a perspective view of one embodiment of a breathable multi-component insulation system in accordance with the present invention
- Figure 2 is a perspective cut-away view of one embodiment of a breathable multi- component insulation system in accordance with the present invention
- Figure 3 is a perspective cut-away view of another embodiment of a breathable multi- component insulation system in accordance with the present invention.
- Figure 4 is a perspective cut-away view of another embodiment of a breathable multi- component insulation system in accordance with the present invention.
- Figure 5 is a perspective cut-away view of another embodiment of a breathable multi- component insulation system in accordance with the present invention.
- Figure 6 is a perspective cut-away view of another embodiment of a breathable multi- component insulation system in accordance with the present invention.
- the present invention includes, in a first embodiment, a breathable, multi-layer exhaust insulation system, as shown in Figures 1-6.
- the exhaust insulation system includes a multi-layer sleeve 12, which can take one of several forms, and include a variety of components.
- the exhaust insulation system sleeve 12 is positioned about an outer side of a pipe 10, or the like.
- the inner layer 14 or layers of the sleeve may include a braided or knit material made from high-temperature resistant materials including, but not limited to e-glass, s-glass, silica or ceramic. Braiding is the preferred textile construction of the inner layer, due to the fact that it is possible to deliver thicker profiles than knitted materials.
- the inner layer of silica is about 1/16" thick and the glass layers are 0.2 inches thick.
- another advantage of using braided material is that stretching the braided layer along the length of the exhaust pipe upon installation tends to tighten the braided layer down around the pipe 10 or underlying layer along the straight and bent sections.
- a single braided layer may be used, or multiple braided layers may be used.
- the inner layer 14 of the sleeve 12, which comes into contact with the underlying exhaust pipe 10, is preferably made from this braided layer, although other textile constructions may be used, as desired.
- a metal foil layer 16 may be disposed on the outside of the braided layer(s), as shown in Figures 3 and 4.
- the metal foil may include perforations, as shown in Figure 4, in order to enhance breathability of the sleeve 12, which facilitates drying of the sleeve 12 after exposure to water or other liquid.
- the metal foil layer 16 may be formed from aluminum, USPTO Customer # 52554
- Atty. Ref. AXI-001 fiberglass reinforced aluminum, stainless steel, nickel, copper or tin, although it should be understood that any other suitable metal foil may be used, if such a layer is desired.
- the metal foil layer 16 serves to improve the insulation performance of the insulation sleeve 12 and to reduce the rate of fluid adsorption into the insulation layers. Additionally, it may be desirable to include a high-temperature film, which is disposed about an outer side of the metal foil layer 16, in order to protect the metal foil layer 16 from oxidation. Suitable high-temperature films may include polyimide (PI) (commercially available under the trade name Kapton), PEI, PPS, PEEK, PPA, silicone, nylon, polyester or polypropolene.
- PI polyimide
- a tape wrap 18 may be wrapped around the metal foil layer 16, as shown in Figure 5, primarily to prevent salt and other corrosive materials from penetrating through the insulative sleeve.
- a tape wrap 18 is sold by DuPont, under the tradename of KAPTONTM.
- An outer cover layer 20 is preferably a knitted tube that fits around the other, underlying layers.
- the outer cover layer 20 comprises a knitted fabric that includes glass fibers and resin-based fibers.
- Thermoplastic fibers may include polyester, nylon, PPS or ULTEMTM.
- the outer cover layer 20 knitted tube is preferably made from a core spun yarn, which includes a glass filament core and a high melt fiber wrapped around the glass filament core further twisted with a stainless steel yarn.
- the wrap may be made from PPS (Ryton).
- the outer cover layer 20 knitted tube may be disposed on the outside of the underlying insulating layers by knitting the tube around the underlying layers, or by knitting the tube and cutting and sewing the outer cover layer 20 knitted tube around the underlying layers of the sleeve. Additionally, the outer cover layer 20 may be treated with a fluorocarbon, such as Zonyl from Dupont, in order to reduce the penetration of fluids into the cover and the overall system.
- a fluorocarbon such as Zonyl from Dupont
- the inner layer 14 adjacent the exhaust pipe 10 is a braided silica sleeve.
- the next two layers 22, 24 outside of the inner braided silica layer are each preferably formed from braided e-glass for insulation.
- the outer cover layer 20 is a 3- dimensional, spacer fabric in which a single fabric is comprised of three layers or portions, an inner portion, middle portion and outer portion. The outer portion preferably includes
- the inner portion is preferably made from glass fibers and the middle portion is made from PPS/glass/stainless steel yarns.
- the outer cover layer 20 may be treated with a fluorocarbon, and may be sewn into a tubular sleeve, preferably by using a glass/stainless steel sewing thread and a safety lock stitch.
- Stainless steel band clamps 32 are the preferred means for affixing the exhaust insulation sleeve 12 to the pipe 10, although other attachment means may be used.
- another preferred embodiment includes a layer of fiberglass reinforced aluminum 34 disposed between the outer cover layer 20 and the underlying braided e-glass layer 24. Additionally, this layer of fiberglass reinforced aluminum may include a series of perforations 26 throughout that layer, in order to enhance the breathability of the sleeve.
- a tape wrap 18 such as the prior-mentioned DuPont product KAPTONTM, which is wrapped around the outside of the fiberglass reinforced aluminum layer set forth above, as shown in Figures 5 and 6.
- Atty. Ref.: AXI-001 the underlying braided layers
- an installer may optionally stretch them along the length of the section of pipe 10 in order to tighten them down to the pipe 20 or underlying layers.
- the outer cover layer 20 may then be slipped over the underlying layers.
- the system can also be preassembled and then slipped onto the pipe 10 as a single component.
- the outer cover layer 20 may be knitted and finished as a flat fabric and then cut and sewn into the correctly sized tube.
- the outer layer 20 may also be knit to the correct size diameter and used in this form.
- clamps 32 are applied to each end of the sleeve 12, in order to secure it to the pipe 10, and the entire apparatus is placed into an oven, preferably at about 560°F for one hour, for curing.
- the outer layer 20 becomes dimensionally stable and significantly stiffer as a result of the yarns fusing together and more durable after curing, although the entire system remains breathable.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Textile Engineering (AREA)
- Exhaust Silencers (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
Abstract
A breathable, multi-layer exhaust insulation system is provided. The system includes a multi-layer sleeve, wherein the first layer, which is positioned adjacent the exhaust system pipes, is a braided sleeve which may be constructed from high-temperature resistant materials such as e-glass, s-glass, silica or ceramic. Additional braided layers of material may be included, as well. An outside cover of material is preferably a circular knitted fabric that contains glass fibers and resin-based fibers. The knitted fabric forms a tube on the outside of the insulating layers, and may be formed from a core spun yarn, which includes a glass filament core and a high-melt fiber on the wrap. Optionally, the system may also include a perforated or unperforated metal foil layer and/or a tape wrap, and the various components may be configured as desired.
Description
USPTO Customer # 52554
Atty. Ref.: AXI-001
BREATHABLE MULTI-COMPONENT EXHAUST INSULATION SYSTEM
Inventor: Robert Jacque Goulet
BACKGROUND OF THE INVENTION
The present invention relates generally to insulation for exhaust systems and other types of pipe systems that transport hot gases and other hot fluid materials. More specifically, the present invention relates to a multi-component sleeve that may be used, among other things, to fit exhaust systems on vehicles generally and large trucks in particular.
Heretofore, various insulation systems have been used to insulate automotive and industrial exhaust systems. Exhaust insulation systems are used to maintain high temperature of exhaust gases in order to provide more efficient and complete combustion of fuels, and to protect surrounding components from the high exhaust temperatures. Additionally, maintaining high exhaust temperatures tends to increase the velocity of the exhaust gases through the system, which allows the engine cylinder to more fully evacuate and aids in the emission control processes. On large bore diesel trucks, insulating the exhaust system has been shown to improve the performance of the emission control system located in the exhaust stream system.
U.S. Patent No. 6,610,928 discloses a sleeve for providing thermal insulation to elongated substrates, formed from a composite sheet having a tough, resilient reinforcing layer to which a metallic reflective layer is attached on one side and a fibrous, non-woven insulative layer is attached on the opposed side. The sleeve includes a seam, formed lengthwise along the sleeve in spaced relation to the reverse fold, defining a central space for receiving elongated substrates.
USPTO Customer # 52554
Atty. Ref.: AXI-001
U.S. Patent No. 6,978,643 is directed to a multilayer sleeve for insulating or protecting elongated substrates, wherein the sleeve is continuously knitted in different sections integrally joined end to end, the sections being formed of different filamentary members chosen for desired characteristics. The sleeves are formed into the multilayer configuration by reverse folding the sleeves inwardly to place one section coaxially within another.
U.S. Patent No. 5,134,846 discloses a cover for insulating exhaust systems of internal combustion engines comprising a tubular shaped layer of insulating material circumscribingly engaging the exhaust system and a flexible metal sleeve for protecting the insulating material and holding the insulating material against the exhaust system. The cover is held in place by hose clamps or tie wraps.
U.S. Patent No. 5,092,122 is directed to a means and method for insulating automotive exhaust pipes by sliding a flexible insulated tube over the exhaust pipe. The tube comprises concentrically arranged inner and outer corrugated stainless steel tubes, with the annulus between the corrugated tubes filled with refractory fiber insulation.
U.S. Patent No. 5,617,900 includes a thermally insulative sleeve with a seamless, hollow flexibly resilient inner tubular member woven of strand material including at least one metal wire strand, a separate, integral, at least essentially unbroken, metal surface member applied over the inner tubular member extending along and at least essentially completely surrounding the inner tubular member and a flexible outer cover also woven of strand material extending along and completely around the inner tubular member and metal surfaced member securing the metal surface member with the inner tubular member and offering some degree of protection. The
USPTO Customer # 52554
Atty. Ref.: AXI-001 inner tubular member may be knit from wire or from a combination of wire and glass fiber yarn, the latter providing some thermal insulative protection.
U.S. Patent Application Publication No. 2002/0168488 discloses a protective sleeve for covering elongated substrates, wherein the sleeve is knitted from a combination of first and second filamentary fibers having different properties from one another. The filamentary members are plated so that the filamentary members with properties compatible with the substrate are positioned predominantly on the inner surface of the sleeve facing and engaging the substrate. Filament properties include heat resistance, high tensile strength, resistance to abrasion, chemical attack and damping capability. The sleeve includes ribs integrally knitted lengthwise along the sleeve to form insulating air pockets, and the ends of the sleeve are finished with welts to prevent unraveling.
Unfortunately, many of these prior art exhaust insulation sleeves suffer from various drawbacks. Some are expensive to manufacture and difficult to install on exhaust systems. Some require specialized tooling for each distinct pipe geometry. Many do not provide sufficient breathability, so that when the insulation is exposed to water and rain, the water soaks into the insulation and does not dry quickly, which leads to rust and corrosion within the exhaust system. Because these type systems are subject to large temperature fluctuations, sometimes more than a 1000° F, from start-up to upper operating temperatures and fluctuations within operating temperatures, there is a need for insulating systems to breathe to some degree. Further, particularly in colder climates and coastal climates, salt from the roads can infiltrate the insulation system and accelerate corrosion of the system. Moreover, many of the insulation sleeves and systems are made from materials that do not maintain their structural integrity over time due to wear and tear, and further degrade from the exposure to high temperatures associated
USPTO Customer # 52554
Atty. Ref.: AXI-001 with exhaust systems. Therefore, it would be desirable to provide a breathable, tough, resilient insulating system that can withstand the rigors of exposure to high temperatures, salt, water, and general wear and tear, which is inexpensive and easy to manufacture and install.
USPTO Customer # 52554
Atty. Ref.: AXI-001
BRIEF SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, a breathable, multi-layer exhaust insulation system is provided. In one aspect of the invention, the system includes a multi-layer sleeve, wherein the first layer, which is positioned adjacent the exhaust system pipes, is a braided, knit or woven sleeve which may be constructed from high-temperature resistant materials such as e-glass, s-glass, silica or ceramic. Additional braided layers of material may be included, as well. An outside cover of material may be a circular knitted fabric that contains glass fibers, reinforcing fibers and resin-based fibers. The knitted fabric forms a tube on the outside of the insulating layers, which is made by knitting the tube or knitting a fabric and cutting and sewing the tube. The knitted tube may be formed from a core spun yarn, which includes a glass filament core and a high-melt fiber on the wrap along with stainless steel reinforcing fibers. The wrap can be made from resin type fibers including Poly^-phenylene sulfide) PPS (sold under the trade name Ryton), Polyetherimide (PEI) sold under the trade name Ultem, Polyether ether ketone (PEEK), Polysulfone (PES), Polyphthalamide (PPA), nylon, polyester, or polypropylene .
Optionally, a metal foil layer (or multiple metal foil layers) may be disposed between the braided insulation and the knit cover to improve insulation performance and reduce the rate of fluid adsorption into the insulation layers. The metal foil layer(s) may be made of aluminum, fiberglass reinforced aluminum, stainless steel, nickel, copper or tin, although any suitable metal foil may be used. Additionally, the metal foil layer(s) may be perforated or unperforated. The perforations enhance breathability of the insulating sleeve.
USPTO Customer # 52554
Atty. Ref.: AXI-001
In one preferred embodiment of the present invention, the insulating sleeve includes a first layer of a braided silica sleeve adjacent the exhaust system pipes, then two layers of braided e-glass for insulation, and an outer layer of a PPS/glass cover treated with a fluorocarbon sewn into a tubular sleeve using a glass/stainless steel sewing thread and a safety lock stitch. Each end of the insulation is secured using a stainless steel band clamp or other suitable attachment means.
Additionally, it may be desirable to include a high-temperature film, which is disposed about an outer side of the metal foil layer, in order to protect the metal foil layer from oxidation. Suitable high-temperature films may include polyimide (commonly referred to as "PI," and commercially available under the trade name Kapton), PEI, PPS, PEEK, PPA, silicone, nylon, polyester or polypropolene.
USPTO Customer # 52554
Atty. Ref.: AXI-001
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
Figure 1 is a perspective view of one embodiment of a breathable multi-component insulation system in accordance with the present invention;
Figure 2 is a perspective cut-away view of one embodiment of a breathable multi- component insulation system in accordance with the present invention;
Figure 3 is a perspective cut-away view of another embodiment of a breathable multi- component insulation system in accordance with the present invention;
Figure 4 is a perspective cut-away view of another embodiment of a breathable multi- component insulation system in accordance with the present invention;
Figure 5 is a perspective cut-away view of another embodiment of a breathable multi- component insulation system in accordance with the present invention; and
Figure 6 is a perspective cut-away view of another embodiment of a breathable multi- component insulation system in accordance with the present invention.
USPTO Customer # 52554
Atty. Ref.: AXI-001
DETAILED DESCRIPTION OF THE INVENTION
The present invention includes, in a first embodiment, a breathable, multi-layer exhaust insulation system, as shown in Figures 1-6. The exhaust insulation system includes a multi-layer sleeve 12, which can take one of several forms, and include a variety of components. The exhaust insulation system sleeve 12 is positioned about an outer side of a pipe 10, or the like.
Component layers
The inner layer 14 or layers of the sleeve may include a braided or knit material made from high-temperature resistant materials including, but not limited to e-glass, s-glass, silica or ceramic. Braiding is the preferred textile construction of the inner layer, due to the fact that it is possible to deliver thicker profiles than knitted materials. In one preferred embodiment, the inner layer of silica is about 1/16" thick and the glass layers are 0.2 inches thick. Further, another advantage of using braided material is that stretching the braided layer along the length of the exhaust pipe upon installation tends to tighten the braided layer down around the pipe 10 or underlying layer along the straight and bent sections. Depending upon the application and specification of the desired insulating sleeve 12, a single braided layer may be used, or multiple braided layers may be used. Additionally, the inner layer 14 of the sleeve 12, which comes into contact with the underlying exhaust pipe 10, is preferably made from this braided layer, although other textile constructions may be used, as desired.
Optionally, a metal foil layer 16 may be disposed on the outside of the braided layer(s), as shown in Figures 3 and 4. The metal foil may include perforations, as shown in Figure 4, in order to enhance breathability of the sleeve 12, which facilitates drying of the sleeve 12 after exposure to water or other liquid. The metal foil layer 16 may be formed from aluminum,
USPTO Customer # 52554
Atty. Ref.: AXI-001 fiberglass reinforced aluminum, stainless steel, nickel, copper or tin, although it should be understood that any other suitable metal foil may be used, if such a layer is desired. The metal foil layer 16 serves to improve the insulation performance of the insulation sleeve 12 and to reduce the rate of fluid adsorption into the insulation layers. Additionally, it may be desirable to include a high-temperature film, which is disposed about an outer side of the metal foil layer 16, in order to protect the metal foil layer 16 from oxidation. Suitable high-temperature films may include polyimide (PI) (commercially available under the trade name Kapton), PEI, PPS, PEEK, PPA, silicone, nylon, polyester or polypropolene. Optionally, a tape wrap 18 may be wrapped around the metal foil layer 16, as shown in Figure 5, primarily to prevent salt and other corrosive materials from penetrating through the insulative sleeve. One example of a tape wrap 18 is sold by DuPont, under the tradename of KAPTON™.
An outer cover layer 20 is preferably a knitted tube that fits around the other, underlying layers. Generally, the outer cover layer 20 comprises a knitted fabric that includes glass fibers and resin-based fibers. Thermoplastic fibers may include polyester, nylon, PPS or ULTEM™. The outer cover layer 20 knitted tube is preferably made from a core spun yarn, which includes a glass filament core and a high melt fiber wrapped around the glass filament core further twisted with a stainless steel yarn. The wrap may be made from PPS (Ryton). The outer cover layer 20 knitted tube may be disposed on the outside of the underlying insulating layers by knitting the tube around the underlying layers, or by knitting the tube and cutting and sewing the outer cover layer 20 knitted tube around the underlying layers of the sleeve. Additionally, the outer cover layer 20 may be treated with a fluorocarbon, such as Zonyl from Dupont, in order to reduce the penetration of fluids into the cover and the overall system.
Preferred Construction
USPTO Customer # 52554
Atty. Ref.: AXI-001
In one preferred embodiment, the inner layer 14 adjacent the exhaust pipe 10 is a braided silica sleeve. The next two layers 22, 24 outside of the inner braided silica layer are each preferably formed from braided e-glass for insulation. The outer cover layer 20 is a 3- dimensional, spacer fabric in which a single fabric is comprised of three layers or portions, an inner portion, middle portion and outer portion. The outer portion preferably includes
PPS/glass and stainless steel yarn. The inner portion is preferably made from glass fibers and the middle portion is made from PPS/glass/stainless steel yarns. The outer cover layer 20 may be treated with a fluorocarbon, and may be sewn into a tubular sleeve, preferably by using a glass/stainless steel sewing thread and a safety lock stitch. Stainless steel band clamps 32 are the preferred means for affixing the exhaust insulation sleeve 12 to the pipe 10, although other attachment means may be used.
Alternatively, another preferred embodiment includes a layer of fiberglass reinforced aluminum 34 disposed between the outer cover layer 20 and the underlying braided e-glass layer 24. Additionally, this layer of fiberglass reinforced aluminum may include a series of perforations 26 throughout that layer, in order to enhance the breathability of the sleeve. One other alternative embodiment includes the use of a tape wrap 18, such as the prior-mentioned DuPont product KAPTON™, which is wrapped around the outside of the fiberglass reinforced aluminum layer set forth above, as shown in Figures 5 and 6.
Installation
To install the sleeve 12 on a section of exhaust pipe 10, the layers are added by sliding the inner layer 14 onto the pipe, then sliding the next layer 22 over the underlying layer 14, and continuing in this fashion until the only remaining layer to install is the outer cover layer 20. For
USPTO Customer # 52554
Atty. Ref.: AXI-001 the underlying braided layers, an installer may optionally stretch them along the length of the section of pipe 10 in order to tighten them down to the pipe 20 or underlying layers. The outer cover layer 20 may then be slipped over the underlying layers. The system can also be preassembled and then slipped onto the pipe 10 as a single component. The outer cover layer 20 may be knitted and finished as a flat fabric and then cut and sewn into the correctly sized tube. The outer layer 20 may also be knit to the correct size diameter and used in this form. Then the clamps 32 are applied to each end of the sleeve 12, in order to secure it to the pipe 10, and the entire apparatus is placed into an oven, preferably at about 560°F for one hour, for curing. The outer layer 20 becomes dimensionally stable and significantly stiffer as a result of the yarns fusing together and more durable after curing, although the entire system remains breathable.
Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein. All features disclosed in this specification may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Claims
1. A breathable, multi-component exhaust insulation sleeve, said insulation sleeve comprising: an inner layer comprising a braided or knit fabric made from a first high-temperature resistant material; and an outer cover layer comprising a circular knitted fabric including glass fibers and thermoplastic resin-based fibers; wherein said insulation sleeve may be disposed about an outer surface of a section of pipe used to transport exhaust gases.
2. The insulation sleeve set forth in claim 1 , wherein said inner layer is made from material selected from the group consisting of e-glass, s-glass, silica, basalt and ceramic.
3. The insulation sleeve set forth in claim 1 , wherein said outer cover layer is made from a core spun yarn having a glass filament core and a thermoplastic fiber wrapped around said glass filament core.
USPTO Customer # 52554
Atty. Ref.: AXI-001
4. The insulation sleeve set forth in claim 3, wherein said thermoplastic fiber is selected from the group consisting of Poly^-phenylene sulfide), Polyetherimide, Polyether ether ketone, Polysulfone, Polyphthalamide, nylon, polyester, and polypropylene.
5. The insulation sleeve set forth in claim 1, further including at least one middle layer disposed between said inner layer and said outer layer.
6. The insulation sleeve set forth in claim 5, wherein said middle layer is a metal foil layer.
7. The insulation sleeve set forth in claim 6, wherein said metal foil layer includes a series of perforations.
8. The insulation sleeve set forth in claim 6, wherein said metal foil layer is made from a material selected from the group consisting of aluminum, fiberglass reinforced aluminum, stainless steel, nickel, copper and tin.
9. The insulation sleeve set forth in claim 6, wherein said metal foil layer is over- wrapped with a high-temperature tape made from materials selected from the group consisting of fiberglass, PPS, PEI, PI, PPA, nylon, polyester and polypropylene.
USPTO Customer # 52554
Atty. Ref.: AXI-001
10. The insulation sleeve set forth in claim 6, wherein said metal foil layer includes a film disposed on at least one side of said metal foil layer, wherein said film is manufactured from material selected from the group consisting of Poly^-phenylene sulfide), Polyetherimide, Polyether ether ketone, Polysulfone, Polyphthalamide, nylon, polyester and polypropylene
11. The insulation sleeve set forth in claim 1 , wherein said outer cover layer is treated with a fluorocarbon.
12. The insulation sleeve set forth in claim 1, wherein said inner layer is formed from braided silica, and wherein said sleeve further comprises at least one layer of braided fabric including e-glass fibers.
13. The insulation sleeve set forth in claim 12, wherein said outer cover layer is formed from PPS/glass fibers.
14. The insulation sleeve set forth in claim 13, wherein said outer cover layer is sewn into a tubular sleeve using a high temperature sewing thread made from material selected from the group consisting of glass/stainless steel, meta aramid and para-aramid.
15. The insulation sleeve set forth in claim 14, wherein said outer cover layer is sewn into said tubular sleeve with a safety lock stitch.
USPTO Customer # 52554
Atty. Ref.: AXI-001
16. The insulation sleeve set forth in claim 12, further including a second layer of said braided e-glass fibers, which is disposed about the outside of said at least one layer of said braided e-glass fibers.
17. The insulation sleeve set forth in claim 16, further including a metal foil layer disposed about the outer surface of said second layer of said braided e-glass fibers.
18. The insulation sleeve set forth in claim 17, wherein said metal foil layer comprises fiberglass reinforced aluminum.
19. The insulation sleeve set forth in claim 18, wherein said metal foil layer includes a series of perforations.
20. The insulation sleeve set forth in claim 17, further including a tape wrap disposed about an outer surface of said metal foil layer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2912854A CA2912854C (en) | 2012-05-18 | 2013-05-16 | Breathable multi-component exhaust insulation system |
ES13791680T ES2717281T3 (en) | 2012-05-18 | 2013-05-16 | Breathable multi-component exhaust system |
EP13791680.5A EP3077638B1 (en) | 2012-05-18 | 2013-05-16 | Breathable multi-component exhaust insulation system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/475,501 | 2012-05-18 | ||
US13/475,501 US9976687B2 (en) | 2012-05-18 | 2012-05-18 | Breathable multi-component exhaust insulation system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013173606A1 true WO2013173606A1 (en) | 2013-11-21 |
Family
ID=49580305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/041391 WO2013173606A1 (en) | 2012-05-18 | 2013-05-16 | Breathable multi-component exhaust insulation system |
Country Status (5)
Country | Link |
---|---|
US (4) | US9976687B2 (en) |
EP (1) | EP3077638B1 (en) |
CA (1) | CA2912854C (en) |
ES (1) | ES2717281T3 (en) |
WO (1) | WO2013173606A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110475952A (en) * | 2017-02-09 | 2019-11-19 | 费德罗-莫格尔动力系公司 | It is heat-insulated, durable, reflection to curl up casing and its building method |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2533645B (en) * | 2014-12-24 | 2017-09-20 | Subsea 7 Ltd | Insulating inserts for field joints of coated rigid pipelines |
US9976687B2 (en) * | 2012-05-18 | 2018-05-22 | Saprex, Llc | Breathable multi-component exhaust insulation system |
US9388515B2 (en) | 2012-09-28 | 2016-07-12 | Saprex, Llc | Heat curable composite textile |
US20140096859A1 (en) * | 2012-10-06 | 2014-04-10 | Darrick C. Melton | Muffler insulator for motocycles |
US10053801B2 (en) | 2014-01-28 | 2018-08-21 | Inman Mills | Sheath and core yarn for thermoplastic composite |
WO2015166438A1 (en) * | 2014-04-30 | 2015-11-05 | Reyngoud Benjamin Peter | Tubes for high temperature industrial application and methods for producing same |
EP3137663B1 (en) * | 2014-05-01 | 2023-04-19 | Federal-Mogul Powertrain LLC | Micro-perforated reflective textile sleeve and method of construction thereof |
WO2016011242A1 (en) | 2014-07-16 | 2016-01-21 | Federal-Mogul Powertrain, Inc. | Wrappable abrasion resistant, reflective thermal protective textile sleeve and method of construction thereof |
US9789747B2 (en) * | 2014-07-31 | 2017-10-17 | The Boeing Company | Systems and methods for duct protection of a vehicle |
DE102015016977A1 (en) * | 2015-12-24 | 2017-06-29 | Audi Ag | Method and device for improving an exhaust gas behavior of an internal combustion engine |
WO2017181197A1 (en) | 2016-04-15 | 2017-10-19 | Saprex, Llc | Composite insulation system |
US10982355B2 (en) | 2016-07-25 | 2021-04-20 | Federal-Mogul Powertrain Llc | Knit tubular protective sleeve and method of construction thereof |
RU2746507C2 (en) * | 2016-11-18 | 2021-04-14 | САПРЕКС, ЭлЭлСи | Insulation system from composite material |
US11318420B1 (en) | 2017-02-22 | 2022-05-03 | The United States Of America As Represented By The Secretary Of The Navy | Modular thermal insulating enclosure for desalinating seawater |
WO2018187579A1 (en) * | 2017-04-05 | 2018-10-11 | Zephyros, Inc. | Thermal insulator and tie rope for thermal insulator for high temperature areas |
US20190226751A1 (en) * | 2018-01-25 | 2019-07-25 | Zoppas Industries De Mexico S.A., De C.V. | Sheathed Fiberglass Heater Wire |
CN108758103A (en) * | 2018-05-23 | 2018-11-06 | 珠海新源热力有限公司 | A kind of thermal insulation steam pipeline |
CN112639350A (en) * | 2018-08-28 | 2021-04-09 | 三菱电机株式会社 | Piping with sound absorbing member, refrigeration cycle device, and method for attaching sound absorbing member |
US20210003061A1 (en) * | 2019-07-01 | 2021-01-07 | John Merrett | Multi-layer exhaust insulation system and method |
JP7454927B2 (en) | 2019-08-08 | 2024-03-25 | ニチアス株式会社 | Heat insulation cover for flexible pipes, method for manufacturing heat insulation pipes and heat insulation covers for flexible pipes |
WO2021076774A1 (en) * | 2019-10-15 | 2021-04-22 | Saprex, Llc | Exhaust insulation system |
US20210235549A1 (en) * | 2020-01-27 | 2021-07-29 | Lexmark International, Inc. | Thin-walled tube heater for fluid |
WO2023077044A1 (en) * | 2021-10-28 | 2023-05-04 | Federal-Mogul Powertrain Llc | Multilayer sleeve having thermally insulative, fire suppressive, and electromagnetic reflective properties for electric vehicle coolant tube and method of construction |
CN114823012B (en) * | 2022-05-27 | 2023-03-14 | 江苏天邦绝缘材料科技股份有限公司 | Novel high temperature resistant glass fiber insulation sleeve |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3092530A (en) | 1959-09-21 | 1963-06-04 | Walter A Plummer | Heat protective sheathing |
US5615711A (en) | 1995-07-11 | 1997-04-01 | Lewis; Harvey S. | Screen encased exhaust hose |
WO1997032067A1 (en) | 1996-02-27 | 1997-09-04 | Bentley-Harris Inc. | Thermally protective sleeving |
US20020168488A1 (en) | 2001-04-16 | 2002-11-14 | Gladfelter Harry F. | Knitted multi-property protective sleeve |
US20070131299A1 (en) | 2005-12-14 | 2007-06-14 | Superior Air Ducts | Insulated duct wrap |
US20070251595A1 (en) | 2006-05-01 | 2007-11-01 | Ming-Ming Chen | Basalt continuous filament insulating and fire-resistant material and sleeves and methods of construction thereof |
US20100154917A1 (en) | 2006-08-10 | 2010-06-24 | Shawcor Ltd. | Thermally insulated pipe for use at very high temperatures |
US20100154916A1 (en) | 2008-12-22 | 2010-06-24 | Shawcor Ltd. | Wrappable styrenic pipe insulations |
US20110000572A1 (en) | 2005-02-28 | 2011-01-06 | Parker-Hannifin Corporation | Fire protective hose assembly |
Family Cites Families (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1717215A (en) | 1927-09-10 | 1929-06-11 | Narrow Fabric Co | Method of manufacturing elastic lace braid |
US2148164A (en) | 1938-03-23 | 1939-02-21 | American Cystoscope Makers Inc | Braiding machine |
US2688895A (en) | 1951-05-10 | 1954-09-14 | Garlock Packing Co | Insulating pipe-covering tape |
US2924546A (en) | 1952-05-28 | 1960-02-09 | Cordo Chemical Corp | Method of repairing a rigid hollow article |
US3053715A (en) | 1958-03-17 | 1962-09-11 | Johns Manville Fiber Glass Inc | High temperature pipe insulation and method of making same |
US3312250A (en) | 1963-06-06 | 1967-04-04 | Minnesota Mining & Mfg | Insulating sleeves |
US3616123A (en) | 1968-01-29 | 1971-10-26 | Johns Manville | Helicoid laminate comprising several continuous tiered strips |
US3652375A (en) | 1969-11-25 | 1972-03-28 | Smith Inland A O | Plastic article having ultraviolet reflective properties |
US4054710A (en) | 1973-07-16 | 1977-10-18 | Johns-Manville Corporation | Laminated insulation blanket |
US3828119A (en) | 1973-09-21 | 1974-08-06 | Gen Electric | High temperature resistant electrical conductor, and method of producing same |
US4026381A (en) | 1975-09-15 | 1977-05-31 | Hallamore Inc. | Exhaust system cover assembly |
US4282284A (en) | 1978-08-04 | 1981-08-04 | Textured Products, Inc. | Flame and heat resistant electrical insulating tape |
FR2446336A1 (en) | 1979-01-10 | 1980-08-08 | Payen & Cie L | NOVEL TYPE OF GUIP TEXTILE YARN AND METHOD FOR OBTAINING SAME |
US4428999A (en) * | 1981-08-20 | 1984-01-31 | Textured Products | Refractory coated and vapor barrier coated flame resistant insulating fabric composition |
FR2569237B1 (en) | 1984-08-14 | 1987-01-09 | Aerospatiale | ABLATION AND VIBRATION RESISTANT THERMAL PROTECTION DEVICE AND MANUFACTURING METHOD |
GB2166512B (en) | 1984-11-05 | 1988-06-15 | Eurosil Limited | High temperature fluid flow conduits |
IT1217998B (en) | 1988-02-02 | 1990-03-30 | Alfa Lancia Ind | INSULATION DEVICE FOR THE EXHAUST SYSTEM OF A C.I.MOTOR |
CH675984A5 (en) | 1988-03-08 | 1990-11-30 | Matec Holding | Heat-shaped laminar items - consist of fibre-reinforced plastics with porous and non-porous covering and intermediate layers |
US4870887A (en) | 1988-03-18 | 1989-10-03 | The Bentley-Harris Manufacturing Company | Braided sleeve |
US5134846A (en) | 1989-11-22 | 1992-08-04 | Thermo-Tec High Performance Automotive Inc. | Insulated exhaust cover |
US5092122A (en) | 1990-07-26 | 1992-03-03 | Manville Corporation | Means and method for insulating automotive exhaust pipe |
US5256459A (en) | 1991-05-03 | 1993-10-26 | American Roller Company | Wound printing sleeve |
US5413149A (en) | 1991-11-05 | 1995-05-09 | The Bentley-Harris Manufacturing Company | Shaped fabric products and methods of making same |
CN2120185U (en) | 1992-03-04 | 1992-10-28 | 重庆市中区长江复合材料制品厂 | Heat insulation cylinder for dissipative muffler |
US5274196A (en) | 1992-05-04 | 1993-12-28 | Martin Weinberg | Fiberglass cloth resin tape insulation |
US5556677A (en) | 1994-01-07 | 1996-09-17 | Composite Development Corporation | Composite shaft structure and manufacture |
US5549947A (en) | 1994-01-07 | 1996-08-27 | Composite Development Corporation | Composite shaft structure and manufacture |
JP2921327B2 (en) | 1993-05-14 | 1999-07-19 | ヤマハ株式会社 | Prepreg ribbon and prepreg for fiber reinforced thermoplastic resin |
US5343895A (en) | 1993-06-07 | 1994-09-06 | King Michael G | Heat resistive sleeve assembly |
US5617900A (en) | 1993-07-20 | 1997-04-08 | Davlyn Manufacturing Co., Inc. | Multilayer flexibility resilient thermal shielding sleeves |
JP2660806B2 (en) | 1994-03-28 | 1997-10-08 | 川崎重工業株式会社 | Scarf |
US5712010A (en) | 1994-04-06 | 1998-01-27 | Vitrica, S.A. De C.V. | Braided sleeving with rib strands |
US5795835A (en) | 1995-08-28 | 1998-08-18 | The Tensar Corporation | Bonded composite knitted structural textiles |
KR19990082344A (en) | 1996-02-06 | 1999-11-25 | 존 안토니 크룩스 | Heat reflective sleeve |
US5660899A (en) | 1996-02-21 | 1997-08-26 | Safe-T-Quip Corporation | Convoluted heat-reflective, protective sleeving |
US6250193B1 (en) | 1996-12-02 | 2001-06-26 | A & P Technology, Inc. | Braided structure with elastic bias strands |
US5849379A (en) * | 1997-01-06 | 1998-12-15 | Bentley-Harris Inc. | Wrappable sleeve |
US5985385A (en) | 1997-05-23 | 1999-11-16 | No Fire Technologies, Inc. | Fire and heat protection wrap for conduits, cable trays, other electrical transmission lines and gas and oil pipelines |
US5972512A (en) | 1998-02-16 | 1999-10-26 | Dow Corning Corporation | Silicone resin composites for fire resistance applications and method for fabricating same |
US5974784A (en) | 1998-10-12 | 1999-11-02 | Nu-Chem, Inc. | Insulative shield, particularly for automotive exhaust components |
GB2365096B (en) | 1999-05-26 | 2003-04-09 | Thermotite As | Steel pipe with heat insulation for deep-sea pipelines and method of producing it |
US6527015B2 (en) | 1999-07-02 | 2003-03-04 | F. Glenn Lively | Insulated pipe |
US6276401B1 (en) | 1999-12-20 | 2001-08-21 | Fred D. Wilson | High temperature composite pipe wrapping system |
JP4423740B2 (en) | 2000-04-03 | 2010-03-03 | 横浜ゴム株式会社 | Insulated pipe for air bleed duct and method of manufacturing the same |
US7007720B1 (en) | 2000-04-04 | 2006-03-07 | Lacks Industries, Inc. | Exhaust tip |
US6572723B1 (en) | 2000-06-30 | 2003-06-03 | Owens Corning Fiberglas Technology, Inc. | Process for forming a multilayer, multidensity composite insulator |
US6769455B2 (en) * | 2001-02-20 | 2004-08-03 | Certainteed Corporation | Moisture repellent air duct products |
AR034969A1 (en) | 2001-08-06 | 2004-03-24 | Federal Mogul Powertrain Inc | THERMALLY INSULATING SHIRT |
WO2003054069A1 (en) | 2001-12-21 | 2003-07-03 | Henkel Teroson Gmbh | Expandable epoxy resin-based systems modified with thermoplastic polymers |
WO2004037533A2 (en) | 2002-05-15 | 2004-05-06 | Cabot Corporation | Heat resistant insulation composite, and method for preparing the same |
MXPA05000198A (en) | 2002-06-20 | 2005-06-06 | Federal Mogul Powertrain Inc | Multiple layer insulating sleeve. |
US7152633B2 (en) * | 2003-09-17 | 2006-12-26 | Thermo-Tec | Heat shield |
JP2005163830A (en) | 2003-11-28 | 2005-06-23 | Daido Steel Co Ltd | Tube, and method for manufacturing it |
US7410550B2 (en) | 2003-12-11 | 2008-08-12 | Sherwin Michael J | Flexible insulating sleeve |
FR2865262B1 (en) | 2004-01-20 | 2006-11-24 | Gaz Transport & Technigaz | THERMALLY INSULATED DRIVING |
NL1025685C2 (en) | 2004-03-10 | 2004-12-30 | L Sim B V | Motorcycle exhaust with decorative outer layer, includes gastight thermal insulation layer and outer layer of resin reinforced with glass fabric |
US8141592B2 (en) | 2004-12-03 | 2012-03-27 | Illinois Tool Works Inc. | System and method for pipe repair |
US7500494B2 (en) | 2004-12-03 | 2009-03-10 | Illinois Tool Works Inc. | System and method for pipe repair |
US8329291B2 (en) | 2005-01-31 | 2012-12-11 | Timberline Tool, L.L.C. | Multi-layered composite system and method |
US7951852B2 (en) | 2005-04-07 | 2011-05-31 | Isp Investments Inc. | Free-flowing composition of a biocide and a processing additive therewith for incorporation into a polymer or plastic matrix product |
US20070049148A1 (en) | 2005-08-31 | 2007-03-01 | Chien Hung K | Thermoplastic complex yarn with thermoforming function and thermoplastic fabric therewith |
FR2891865B1 (en) | 2005-10-07 | 2008-01-18 | Cera | SCREEN FOR THERMAL AND ACOUSTIC PROTECTION OF A VEHICLE COMPONENT |
US7733224B2 (en) * | 2006-06-30 | 2010-06-08 | Bao Tran | Mesh network personal emergency response appliance |
US7544890B2 (en) | 2005-11-22 | 2009-06-09 | Pratt & Whitney Canada Corp. | Insulated article and method of making same |
WO2007146568A2 (en) | 2006-06-15 | 2007-12-21 | 3M Innovative Properties Company | Insulated double-walled exhaust system component and method of making the same |
GB0623195D0 (en) * | 2006-11-21 | 2006-12-27 | Yorkshire Building Services Wh | Thermal insulation quilt |
CN101119042A (en) | 2007-07-11 | 2008-02-06 | 郝跟进 | Fiberglass insulating tube with multi-layer ring shaped braiding structure |
US7694420B2 (en) * | 2007-07-19 | 2010-04-13 | John Mezzalingua Associates, Inc. | Coaxial cable preparation tool and method of use thereof |
FR2921391B1 (en) | 2007-09-24 | 2010-08-13 | Arkema France | PROCESS FOR PREPARING COMPOSITE MATERIALS |
US7810609B2 (en) | 2007-09-26 | 2010-10-12 | Chrysler Group Llc | Muffler |
US20090197044A1 (en) * | 2008-02-04 | 2009-08-06 | Pelzer Acoustic Products, Llc | Absorptive Heat Shield |
US8325227B2 (en) * | 2008-07-15 | 2012-12-04 | Aptina Imaging Corporation | Method and apparatus for low cost motion detection |
WO2010121143A2 (en) | 2009-04-16 | 2010-10-21 | Chevron U.S.A. Inc. | Structural components for oil, gas, exploration, refining and petrochemical applications |
KR20120036905A (en) | 2009-06-12 | 2012-04-18 | 페더럴-모걸 파워트레인, 인코포레이티드 | Textile sleeve with high temperature abrasion resistant coating and methods of assembly, construction and curing thereof |
WO2011025902A1 (en) * | 2009-08-27 | 2011-03-03 | Whitford Corporation | Method for improving impact damage resistance to textile articles, and articles made therefrom |
CN102030987B (en) | 2009-09-30 | 2013-12-04 | E.I.内穆尔杜邦公司 | Corrosion-resistant film and product containing same |
WO2011070353A2 (en) | 2009-12-07 | 2011-06-16 | Smart Pipe Company, Lp | Systems and methods for making pipe, and method of installing the pipe in a pipeline |
DE102010028433A1 (en) | 2010-04-30 | 2011-11-03 | Deutsche Institute Für Textil- Und Faserforschung Denkendorf | Hybrid yarn for the production of molded parts |
RU2618674C2 (en) | 2010-09-17 | 2017-05-10 | 3М Инновейтив Пропертиз Компани | Fibre-reinforced, nanoparticle-filled heat-shrinking polymer-composite wires and cables and methods |
CN103228973A (en) * | 2010-09-30 | 2013-07-31 | 费德罗-莫格尔动力系公司 | Knit sleeve with knit barrier extension having a barrier therein and method of construction |
JP5847403B2 (en) | 2011-03-01 | 2016-01-20 | 株式会社ブリヂストン | Manufacturing method of composite pipe |
NL2006335C2 (en) | 2011-03-03 | 2012-09-04 | Airborne Composites Tubulars B V | Method for manufacturing continuous composite tube, apparatus for manufacturing continuous composite tube. |
BR112014007033A2 (en) | 2011-09-22 | 2017-04-11 | 3M Innovative Properties Co | thermally insulated components for use with exhaust system |
US9217357B2 (en) * | 2011-10-20 | 2015-12-22 | Ruth Latham | Method of producing an insulated exhaust device |
WO2013172971A1 (en) | 2012-05-14 | 2013-11-21 | Federal-Mogul Powertrain, Inc. | Thermal textile sleeve having an outer robust metallic layer |
US9976687B2 (en) * | 2012-05-18 | 2018-05-22 | Saprex, Llc | Breathable multi-component exhaust insulation system |
US9388515B2 (en) * | 2012-09-28 | 2016-07-12 | Saprex, Llc | Heat curable composite textile |
JP3183361U (en) | 2013-02-25 | 2013-05-16 | 株式会社シー・エス・シー | Pipe protection cover |
WO2017181197A1 (en) | 2016-04-15 | 2017-10-19 | Saprex, Llc | Composite insulation system |
US10982355B2 (en) * | 2016-07-25 | 2021-04-20 | Federal-Mogul Powertrain Llc | Knit tubular protective sleeve and method of construction thereof |
US20200217443A1 (en) * | 2019-01-08 | 2020-07-09 | Nelson Global Products, Inc. | Insulated tubular exhaust apparatus and methods |
-
2012
- 2012-05-18 US US13/475,501 patent/US9976687B2/en active Active
-
2013
- 2013-05-16 EP EP13791680.5A patent/EP3077638B1/en active Active
- 2013-05-16 CA CA2912854A patent/CA2912854C/en active Active
- 2013-05-16 WO PCT/US2013/041391 patent/WO2013173606A1/en active Application Filing
- 2013-05-16 ES ES13791680T patent/ES2717281T3/en active Active
-
2018
- 2018-05-21 US US15/985,135 patent/US10295109B2/en active Active
-
2019
- 2019-05-15 US US16/413,520 patent/US10591104B2/en active Active
-
2020
- 2020-03-13 US US16/818,395 patent/US11698161B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3092530A (en) | 1959-09-21 | 1963-06-04 | Walter A Plummer | Heat protective sheathing |
US5615711A (en) | 1995-07-11 | 1997-04-01 | Lewis; Harvey S. | Screen encased exhaust hose |
WO1997032067A1 (en) | 1996-02-27 | 1997-09-04 | Bentley-Harris Inc. | Thermally protective sleeving |
US20020168488A1 (en) | 2001-04-16 | 2002-11-14 | Gladfelter Harry F. | Knitted multi-property protective sleeve |
US20110000572A1 (en) | 2005-02-28 | 2011-01-06 | Parker-Hannifin Corporation | Fire protective hose assembly |
US20070131299A1 (en) | 2005-12-14 | 2007-06-14 | Superior Air Ducts | Insulated duct wrap |
US20070251595A1 (en) | 2006-05-01 | 2007-11-01 | Ming-Ming Chen | Basalt continuous filament insulating and fire-resistant material and sleeves and methods of construction thereof |
US20100154917A1 (en) | 2006-08-10 | 2010-06-24 | Shawcor Ltd. | Thermally insulated pipe for use at very high temperatures |
US20100154916A1 (en) | 2008-12-22 | 2010-06-24 | Shawcor Ltd. | Wrappable styrenic pipe insulations |
Non-Patent Citations (1)
Title |
---|
See also references of EP3077638A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110475952A (en) * | 2017-02-09 | 2019-11-19 | 费德罗-莫格尔动力系公司 | It is heat-insulated, durable, reflection to curl up casing and its building method |
CN110475952B (en) * | 2017-02-09 | 2022-03-22 | 费德罗-莫格尔动力系公司 | Thermally insulated, durable, reflective convoluted sleeve and method of construction thereof |
Also Published As
Publication number | Publication date |
---|---|
CA2912854C (en) | 2020-03-24 |
EP3077638A4 (en) | 2017-09-27 |
US20180266618A1 (en) | 2018-09-20 |
US10295109B2 (en) | 2019-05-21 |
EP3077638B1 (en) | 2019-02-27 |
US10591104B2 (en) | 2020-03-17 |
US20200217444A1 (en) | 2020-07-09 |
US9976687B2 (en) | 2018-05-22 |
CA2912854A1 (en) | 2013-11-21 |
US20130306186A1 (en) | 2013-11-21 |
EP3077638A1 (en) | 2016-10-12 |
ES2717281T3 (en) | 2019-06-20 |
US11698161B2 (en) | 2023-07-11 |
US20190264858A1 (en) | 2019-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11698161B2 (en) | Breathable multi-component exhaust insulation system | |
US11339509B2 (en) | Multi-material integrated knit thermal protection for industrial and vehicle applications | |
US20230407535A1 (en) | Single-layer ceramic-based knit fabric for high temperature bulb seals | |
EP2016260B1 (en) | Insulating sleeve with wire mesh and wire cloth | |
US10982355B2 (en) | Knit tubular protective sleeve and method of construction thereof | |
US10690271B2 (en) | Transfer hose, in particular for use at high temperatures | |
CA2871743C (en) | Flame resistant hose reinforced with fiberglass cord fabric | |
CN110475952B (en) | Thermally insulated, durable, reflective convoluted sleeve and method of construction thereof | |
WO2011146813A9 (en) | High-temperature flexible composite hose | |
US20170191585A1 (en) | Reinforced thermoplastic ducts and their manufacture | |
US20180051605A1 (en) | Conduit for maintaining temperature of fluid | |
RU2216682C2 (en) | Heat-insulating hose for pipes (versions) | |
US20240110659A1 (en) | Knit tubular thermal sleeve with wrappable cover and method of construction thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13791680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013791680 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013791680 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2912854 Country of ref document: CA |