WO2013172519A1 - 무선 전력 전송에서의 자기 에너지 빔포밍 방법 및 장치 - Google Patents

무선 전력 전송에서의 자기 에너지 빔포밍 방법 및 장치 Download PDF

Info

Publication number
WO2013172519A1
WO2013172519A1 PCT/KR2012/009270 KR2012009270W WO2013172519A1 WO 2013172519 A1 WO2013172519 A1 WO 2013172519A1 KR 2012009270 W KR2012009270 W KR 2012009270W WO 2013172519 A1 WO2013172519 A1 WO 2013172519A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
transmission
transmitted
wireless
antennas
Prior art date
Application number
PCT/KR2012/009270
Other languages
English (en)
French (fr)
Inventor
임용석
임승옥
서경학
원윤재
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2013172519A1 publication Critical patent/WO2013172519A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • H04B5/26
    • H04B5/79

Definitions

  • the present invention relates to a wireless power transmission method and apparatus, and more particularly, to a magnetic energy beamforming method and apparatus for wireless power transmission that can concentrate magnetic energy in a specific direction.
  • a wireless charging system using magnetic induction is used as a wireless power transmission technology for wirelessly transmitting energy.
  • the magnetic induction method of inducing current through a magnetic field from one coil to another is very sensitive to the distance and relative position between the coils, so that the transmission efficiency drops rapidly even if the distance between the two coils is slightly dropped or twisted. Accordingly, this magnetic induction charging system can only be used in a short distance of several cm or less.
  • US Patent 7,741,735 discloses a non-radiative energy transfer method based on the attenuation wave coupling of the resonant field. This is because two resonators with the same frequency do not affect other non-resonators around them, but they tend to couple with each other and are introduced as a technology that can transfer energy over a long distance compared to conventional electromagnetic induction. .
  • the wireless charging method using resonance can transmit energy to a far distance than the conventional electromagnetic induction method, there is still a limitation of distance, and if the distance is far, there is a problem that the charging efficiency is sharply lowered. In technology, increasing transmission distance and transmission efficiency is a major problem.
  • the present invention has been made in the technical background as described above, and an object thereof is to provide a magnetic energy beamforming method and apparatus capable of increasing transmission distance and transmission efficiency in wireless power transmission.
  • Another object of the present invention is to provide a magnetic energy beamforming method and apparatus for wireless power transmission that can concentrate magnetic energy in a specific direction.
  • the present invention transmits wireless energy using two transmission antennas arranged to vertically cross each other.
  • the wireless power transmitter is a wireless power transmitter that transmits wireless power in a self-resonant manner, and includes first and second transmission antennas disposed to vertically cross each other, and the first and second antennas.
  • Two first and second inverters / amplifiers respectively, connected to two transmit antennas and configured to supply wireless power transmitted through the first and second transmit antennas, respectively, and through the first and second transmit antennas.
  • the phase of the wireless power supplied through the first and second inverters / amplifiers may be adjusted such that the phase difference of the transmitted wireless power has a constant value.
  • the phase difference between the wireless powers transmitted through the first and second transmission antennas may be 0, thereby extending the wireless power transmission distance of the wireless power transmitter.
  • first and second inverters / amplifiers may have outputs of the same magnitude.
  • a wireless power transmission apparatus includes first and second transmission antennas disposed to vertically intersect with each other, and the first and second transmission antennas, respectively, and the first and second transmissions.
  • First and second inverters / amplifiers for supplying wireless power transmitted through the antenna, respectively, wherein the phase difference of the wireless power transmitted through the first and second transmission antennas has a constant value. 2 Controls the output power of the transmitted wireless power by adjusting the phase of the wireless power supplied through the inverter / amplifier.
  • a wireless power transmission apparatus includes first and second transmission antennas disposed to vertically cross each other, and are connected to the first and second transmission antennas, respectively. And first and second inverters / amplifiers for supplying wireless power transmitted through the transmission antenna, respectively, wherein the phase difference of the wireless power transmitted through the first and second transmission antennas has a constant value.
  • the impedance matching between the wireless power transmitter and the wireless charger that receives the wireless power from the wireless power transmitter may be controlled by adjusting a phase of the wireless power supplied through the second inverter / amplifier.
  • magnetic energy can be concentrated in a specific direction by using two transmission antennas disposed to cross each other so that transmission distance and transmission efficiency can be increased in wireless power transmission. Therefore, in the wireless power transmitter using the magnetic energy forming according to the embodiment of the present invention, the burden for transmitting the same power is relatively reduced compared to the wireless power transmitter having one inverter / AMP and a transmission antenna.
  • the shadow area can be improved and desired various types of magnetic energy fields can be obtained.
  • FIG. 1 is a diagram illustrating a magnetic energy field of a magnetic resonance antenna used in wireless power transmission.
  • FIG. 2 is a block diagram schematically showing the overall configuration of a wireless power transmission system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration of a wireless power transmitter and a wireless charger of a wireless power transfer system according to an embodiment of the present invention.
  • 4A to 4C illustrate examples of magnetic energy transmitted in a specific direction by magnetic energy beamforming according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the effect of combining the transmission energy by the two antennas used in the wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a region where magnetic energy is transmitted and a shaded region where magnetic energy is not transmitted when one transmitting antenna is used.
  • FIG. 7 is a diagram illustrating a region in which magnetic energy is transmitted when two transmitting antennas perpendicular to each other are used.
  • 8A to 8C illustrate an example in which a shaded area is improved by magnetic energy beamforming according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a magnetic energy field of a magnetic resonance antenna used in wireless power transmission.
  • a magnetic energy field is mainly formed at the front and the rear of the transmission antenna 10, and the magnetic energy fields formed at the front and the rear are symmetrical. This is due to the resonance characteristics of the magnetic resonance antenna.
  • FIG. 2 is a block diagram schematically showing the overall configuration of a wireless power transmission system according to an embodiment of the present invention.
  • the wireless power transmission system is located at a distance apart from the wireless power transmitter 100 for wirelessly supplying power and the wireless power transmitter 100. It is configured to include a wireless charger 200 that is wirelessly powered from the wireless power transmission apparatus 100.
  • Magnetic resonance is a method of maximizing the wireless transmission efficiency of energy by the resonance between the transmitting antenna and the receiving antenna.
  • a resonance channel is formed between the wireless power transmitter 100 and the wireless charger 200 to form a resonant channel and transmit wireless power therethrough.
  • the wireless power transmitter 100 may receive information of the wireless charger 200 including identification information, type, location, or state of charge of the charger through magnetic field communication with the wireless charger 200. Power may be transmitted to the wireless charger 200 based on the same charging information.
  • the wireless power transmission apparatus 100 may be implemented as a fixed type or a mobile type.
  • the wireless power transmission device 100 may be installed in a furniture such as a ceiling or a table indoors.
  • the wireless power transmission apparatus 100 may be installed inside a moving object such as a vehicle, a train, and a subway.
  • the wireless power transmitter 100 may be implemented as a separate mobile apparatus or may be implemented as part of another digital device such as a cover of a notebook computer. .
  • the wireless charger 200 may include all digital devices including batteries such as various mobile terminals, digital cameras, laptop computers, and the like, such as sensors and measuring instruments that are not easily accessible, such as underground, underwater, or inside a building. It may be an electronic device.
  • the wireless power transmission system may include two or more wireless chargers, in which case one wireless power transmitter 100 ) Can transfer power to more than one wireless charger.
  • the apparatus 100 for transmitting power wirelessly includes two transmitting antennas 110 and 120, and the two transmitting antennas 110 and 120 are connected to an inverter / AMP and transmit wireless power in a self-resonant manner. Meanwhile, as shown in FIGS. 3A to 3C, the two transmit antennas 110 and 120 are disposed to vertically cross each other.
  • the wireless power transmitter 100 and the wireless charger 200 may achieve efficient wireless charging using magnetic field communication.
  • FIG. 3 is a block diagram illustrating a configuration of a wireless power transmitter and a wireless charger of a wireless power transfer system according to an embodiment of the present invention.
  • the wireless power transmission apparatus 100 of the wireless power transmission system receives power from an external power supply, and the wireless power transmission apparatus 100 and the wireless charger ( Power conversion unit 150 for converting to AC power having a resonant frequency band between 200, magnetic field communication modem 130 to perform a magnetic field communication with the wireless charger 200 using a magnetic field communication protocol, power conversion unit ( Transmission antennas 110 and 120, power converter 150, and magnetic field communication for transmitting AC power from the magnetic field 150 and data from the magnetic field communication modem 130 to the wireless charger 200 using the magnetic resonance induction method. And a controller 140 for controlling the components of the wireless power transmitter 100 including the modem 130.
  • Wireless charger 200 of the wireless power transmission system the receiving antenna 210 for receiving power and data from the wireless power transmission apparatus 100 using the magnetic resonance induction method, magnetic field communication protocol Wireless communication including a magnetic field communication modem 230 to perform magnetic field communication with the wireless power transmission apparatus 100, a power management unit 250 for managing power reception, a power management unit 250 and a magnetic field communication modem 230
  • the controller 240 controls the components of the charger 200 and a battery 260 that is charged using the received power.
  • 4A to 4C illustrate examples of magnetic energy transmitted in a specific direction by magnetic energy beamforming according to an embodiment of the present invention.
  • the intensity of the magnetic energy transmitted in both directions is adjusted to be 2: 8, by adjusting the phases of the two transmitting antennas 110 and 120 to have a difference of 0 degrees, 180 degrees, and 90 degrees. You can see that it changes to 8: 2 and 5: 5.
  • the phases of the two transmitting antennas 110 and 120 have a difference of 90 degrees, the direction of magnetic energy is formed in all directions unlike in the case of FIG. 1 using only one transmitting antenna. It can be seen that.
  • the wireless power transmission distance can be extended and the efficiency of wireless power transmission can be increased.
  • Inverter / AMP exists in a general wireless power transmitter
  • two wireless power transmitters may be placed in the wireless power transmitter. Inverters / AMPs exist. In this case, when the phases of the two transmitting antennas are the same, energy may be combined without loss.
  • the burden for transmitting the same power is relatively reduced compared to the wireless power transmitter having one inverter / AMP and a transmission antenna.
  • FIG. 5 is a graph showing the effect of combining the transmission energy by the two antennas used in the wireless power transmission apparatus according to an embodiment of the present invention.
  • the synthesized magnetic energy when transmitting magnetic energy of the same phase by using two transmitting antennas of the same standard, the synthesized magnetic energy may double in size in the same phase and transmit twice the power.
  • the phases of the wireless power supplied through the first and second inverters / amplifiers are adjusted so that the phase difference of the wireless power transmitted through the two transmission antennas has a constant value.
  • the output power of the transmitting end can be controlled.
  • the wireless power transmission apparatus by controlling the phase of the two transmitting antennas to vary the transmission terminal impedance, it is possible to perform impedance matching between the transmitting terminal and the receiving terminal for optimal power transmission.
  • the magnetic energy beamforming technology of adjusting the phase by vertically crossing two magnetic resonance antennas as in the embodiment of the present invention, it is possible to form a magnetic energy field in all areas around the wireless power transmitter. It can improve the shadow area where power is not transmitted.
  • FIG. 6 is a diagram illustrating a region where magnetic energy is transmitted and a shaded region where magnetic energy is not transmitted when one transmitting antenna is used as shown in FIG. 1.
  • the wireless power transmission apparatus can improve such a shadow area.
  • FIG. 7 is a diagram illustrating a region in which magnetic energy is transmitted when two transmitting antennas perpendicular to each other are used as in the embodiment of the present invention.
  • 8A to 8C illustrate an example in which a shaded area is improved by magnetic energy beamforming in the wireless power transmission apparatus according to the embodiment of the present invention.
  • the shadow area can be improved and desired various types of magnetic energy fields can be obtained. It can be seen that.

Abstract

서로 수직교차하도록 배치된 두 개의 송신 안테나를 이용하여 무선 에너지를 전송한다. 본 발명의 무선 전력 전송 장치는, 서로 수직으로 교차하도록 배치된 제1 및 제2 송신 안테나와, 제1 및 제2 송신 안테나와 각각 연결되어 있으며, 제1 및 제2 송신 안테나를 통해 각각 송신되는 무선 전력을 공급하기 위한 제1 및 제2 인버터/앰프를 포함하며, 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 일정한 값을 갖도록 제1 및 제2 인버터/앰프를 통해 공급되는 무선 전력의 위상을 조절한다. 이에 따라 특정 방향으로 자기 에너지를 집중시킬 수 있으므로 무선 전력 전송 거리와 전송 효율을 증가시킬 수 있으며, 동일한 전력을 송신하기 위한 부담이 하나의 Inverter/AMP와 송신 안테나를 갖는 경우에 비해 감소한다. 또한, 음영 지역이 개선되고 원하는 다양한 형태의 자기 에너지 필드를 얻을 수 있다.

Description

무선 전력 전송에서의 자기 에너지 빔포밍 방법 및 장치
본 발명은 무선 전력 전송 방법 및 장치에 관한 것으로서, 더 구체적으로는 특정 방향으로 자기 에너지를 집중시킬 수 있는 무선 전력 전송을 위한 자기 에너지 빔포밍 방법 및 장치에 관한 것이다.
무선으로 에너지를 전달하는 무선 전력 전송 기술로서 자기유도 현상을 이용한 무선 충전 시스템이 사용되고 있다.
예컨대, 전동칫솔 또는 무선 면도기 등이 전자기 유도의 원리로 충전되며, 최근에는 전자기 유도를 이용하여 휴대전화나 PDA, MP3 플레이어, 노트북 컴퓨터와 같은 휴대기기를 충전할 수 있는 무선충전제품들이 출시되고 있다.
그러나, 하나의 코일에서 다른 코일로 자기장을 통해 전류를 유도하는 자기유도 방식은 코일 사이의 거리 및 상대적 위치에 매우 민감하여 두 코일 사이의 거리가 약간 떨어지거나 틀어져도 전송 효율이 급속히 떨어진다. 이에 따라 이러한 자기유도 방식의 충전 시스템은 수 cm 이하의 근거리에서만 사용할 수 있다는 약점이 있다.
한편, 미국특허 7,741,735호에서는 공진장의 감쇄파 결합에 기반을 둔 비방사형 에너지 전달 방식을 개시하고 있다. 이는 두 개의 동일한 주파수를 갖는 공진체가 주위의 다른 비공진체와는 영향을 미치지 않지만 서로 커플링하려는 경향을 가지는 점을 이용한 것으로 기존의 전자기 유도에 비하여 먼 거리까지 에너지를 전달할 수 있는 기술로서 소개되고 있다.
공진을 이용한 무선 충전 방식은 기존의 전자기 유도 방식에 비하여 먼 거리까지 에너지를 전달할 수는 있지만 여전히 거리의 한계가 존재하며, 거리가 멀어질 경우 충전 효율이 급격히 저하되는 문제점이 있어, 공진 방식 무선 충전 기술에 있어서도 전송 거리 및 전송 효율의 증가가 주요한 과제이다.
본 발명은 상술한 바와 같은 기술적 배경에서 안출된 것으로서, 무선 전력 전송에 있어서 전송 거리와 전송 효율을 증가시킬 수 있는 자기 에너지 빔포밍 방법 및 장치를 제공하는 것을 그 과제로 한다.
본 발명의 다른 과제는 특정 방향으로 자기 에너지를 집중시킬 수 있는 무선 전력 전송을 위한 자기 에너지 빔포밍 방법 및 장치를 제공하고자 하는 것이다.
이와 같은 과제를 해결하기 위하여 본 발명에서는 서로 수직교차하도록 배치된 두 개의 송신 안테나를 이용하여 무선 에너지를 전송한다.
즉, 본 발명의 일면에 따른 무선 전력 전송 장치는, 자기 공진 방식으로 무선 전력을 송신하는 무선 전력 전송 장치로서, 서로 수직으로 교차하도록 배치된 제1 및 제2 송신 안테나와, 상기 제1 및 제2 송신 안테나와 각각 연결되어 있으며, 상기 제1 및 제2 송신 안테나를 통해 각각 송신되는 무선 전력을 공급하기 위한 제1 및 제2 인버터/앰프를 포함하며, 상기 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 일정한 값을 갖도록 상기 제1 및 제2 인버터/앰프를 통해 공급되는 무선 전력의 위상을 조절할 수 있는 것을 특징으로 한다.
여기에서, 상기 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 0이 되도록 하여, 상기 무선 전력 전송 장치의 무선 전력 전송 거리를 확장할 수 있다.
또한, 상기 제1 및 제2 인버터/앰프는 동일한 크기의 출력을 갖도록 할 수 있다.
본 발명의 다른 면에 따른 무선 전력 전송 장치는, 서로 수직으로 교차하도록 배치된 제1 및 제2 송신 안테나와, 상기 제1 및 제2 송신 안테나와 각각 연결되어 있으며, 상기 제1 및 제2 송신 안테나를 통해 각각 송신되는 무선 전력을 공급하기 위한 제1 및 제2 인버터/앰프를 포함하며, 상기 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 일정한 값을 갖도록 상기 제1 및 제2 인버터/앰프를 통해 공급되는 무선 전력의 위상을 조절하여 송신되는 무선 전력의 출력 파워를 제어한다.
본 발명의 또 다른 면에 따른 무선 전력 전송 장치는, 서로 수직으로 교차하도록 배치된 제1 및 제2 송신 안테나와, 상기 제1 및 제2 송신 안테나와 각각 연결되어 있으며, 상기 제1 및 제2 송신 안테나를 통해 각각 송신되는 무선 전력을 공급하기 위한 제1 및 제2 인버터/앰프를 포함하며, 상기 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 일정한 값을 갖도록 상기 제1 및 제2 인버터/앰프를 통해 공급되는 무선 전력의 위상을 조절하여 상기 무선 전력 전송 장치와 상기 무선 전력 전송 장치로부터 무선 전력을 수신하는 무선 충전기기 사이의 임피던스 매칭을 제어할 수 있다.
본 발명에 따르면, 서로 수직교차하도록 배치된 두 개의 송신 안테나를 이용하여 특정 방향으로 자기 에너지를 집중시킬 수 있으므로 무선 전력 전송에 있어서 전송 거리와 전송 효율을 증가시킬 수 있다. 따라서, 본 발명의 실시예에 따른 자기 에너지 포밍을 이용한 무선 전력 전송 장치에서는 동일한 전력을 송신하기 위한 부담이 하나의 Inverter/AMP와 송신 안테나를 갖는 무선 전력 전송 장치에 비해 상대적으로 감소한다.
또한, 두 개의 송신 안테나를 서로 수직으로 교차하도록 배치하고 두 송신 안테나로부터 전달되는 자기 에너지의 위상을 조절함으로써 음영 지역이 개선되고 원하는 다양한 형태의 자기 에너지 필드를 얻을 수 있게 된다.
도 1은 무선 전력 전송에서 사용되는 자기 공진 안테나의 자기 에너지 필드를 나타내는 도면이다.
도 2는 본 발명의 실시예에 따른 무선 전력 전송 시스템의 전체 구성을 개략적으로 나타낸 블록도이다.
도 3은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 무선 전력 전송 장치와 무선 충전기기의 구성을 나타내는 블록도이다.
도 4a 내지 도 4c는 본 발명의 실시예에 따른 자기 에너지 빔포밍에 의하여 특정 방향으로 송신되는 자기 에너지의 양을 나타내는 예이다.
도 5는 본 발명의 실시예에 따른 무선 전력 전송 장치에서 사용하는 두 개의 안테나에 의한 송신 에너지의 합성 효과를 나타내는 그래프이다.
도 6은 하나의 송신 안테나를 사용한 경우에 자기 에너지가 전달되는 영역과 자기 에너지가 전달되지 않는 음영 지역을 표시한 도면이다.
도 7은 서로 수직 교차하는 두 개의 송신 안테나를 사용한 경우에 자기 에너지가 전달되는 영역을 표시한 도면이다.
도 8a 내지 도 8c는 본 발명의 실시예에 따른 자기 에너지 빔포밍에 의하여 음영지역이 개선되는 것을 나타내는 예이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
이하에서, 첨부한 도면을 참고로 하여 본 발명의 실시예에 따른 무선 전력 전송을 위한 자기 에너지 빔포밍 방법 및 장치에 대하여 상세히 설명하기로 한다.
도 1은 무선 전력 전송에서 사용되는 자기 공진 안테나의 자기 에너지 필드를 나타내는 도면이다.
도 1에 나타난 바와 같이, 자기공진을 이용한 무선 전력 전송에서는 송신 안테나(10)의 앞쪽과 뒤쪽으로 자기 에너지 필드가 주로 형성되고, 또한 앞쪽과 뒤쪽으로 형성되는 자기 에너지 필드는 대칭적이다. 이는 자기공진 안테나의 공진 특성에 기인하는 것이다.
도 2는 본 발명의 실시예에 따른 무선 전력 전송 시스템의 전체 구성을 개략적으로 나타낸 블록도이다.
도 2에 나타난 바와 같이, 본 발명의 실시예에 따른 무선 전력 전송 시스템은 무선으로 전력을 공급하는 무선 전력 전송 장치(100)와, 무선 전력 전송 장치(100)와 소정의 거리만큼 떨어진 곳에 위치하며 무선 전력 전송 장치(100)로부터 무선으로 전력을 공급받는 무선 충전기기(200)를 포함하여 구성된다.
자기공진 방식은 송신 안테나와 수신 안테나 사이의 공진에 의하여 에너지의 무선 전송 효율을 극대화시키는 방법이다. 이를 위하여 무선 전력 전송 장치(100)와 무선 충전기기(200) 사이의 공진 주파수를 맞추어 공진 채널을 형성하고 이를 통하여 무선 전력을 송신한다.
무선 전력 전송 장치(100)는 무선 충전기기(200)와 자기장 통신을 통해 충전기기의 식별정보, 종류, 위치, 또는 충전상태를 포함하는 무선 충전기기(200)의 정보를 수신할 수 있으며, 이와 같은 충전 정보를 바탕으로 무선 충전기기(200)로 전력을 전송할 수 있다.
무선 전력 전송 장치(100)는 고정형 또는 이동형으로 구현될 수 있으며, 고정형으로 구현될 경우 실내에서는 천장이나 테이블 등의 가구 등에 설치될 수 있고, 실외에서는 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치될 수 있으며, 무선 전력 전송 장치(100)가 차량이나 기차, 지하철과 같은 이동체의 내부에 설치될 수도 있다. 무선 전력 전송 장치(100)가 이동형으로 구현되는 경우에는, 무선 전력 전송 장치(100) 자체가 별도의 이동형 장치로 구현될 수도 있고, 노트북 컴퓨터의 덮개 등과 같이 다른 디지털 기기의 일부로서 구현될 수도 있다.
무선 충전기기(200)는 각종 모바일 단말기, 디지털 카메라, 노트북 컴퓨터 등 배터리를 구비하는 모든 디지털 기기를 포함할 수 있으며, 지중, 수중, 건물 내부 등 접근이 용이하지 않은 곳에 배치되는 센서 및 계측기 등의 전자기기가 될 수도 있다.
또한, 도면 상에는 하나의 무선 충전기기(200)만이 도시되어 있으나, 본 발명의 실시예에 따른 무선 전력 전송 시스템은 두 개 이상의 무선 충전기기를 포함할 수 있으며, 이 때 하나의 무선 전력 전송 장치(100)가 두 개 이상의 무선 충전기기로 전력을 전송할 수 있다.
무선 전력 전송 장치(100)는 두 개의 송신 안테나(110, 120)를 포함하고 있으며, 두 개의 송신 안테나(110, 120)는 각각 Inverter/AMP와 연결되어 자기 공진 방식으로 무선 전력을 송신한다. 한편, 도 3a 내지 도 3c에 나타난 바와 같이, 두 개의 송신 안테나(110, 120)는 서로 수직 교차하도록 배치된다.
한편, 본 발명의 일 실시예에 따른 무선 전력 전송 시스템에서는 무선 전력 전송 장치(100)와 무선 충전기기(200)가 자기장 통신을 이용하여 효율적인 무선 충전을 달성할 수 있다.
도 3은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 무선 전력 전송 장치와 무선 충전기기의 구성을 나타내는 블록도이다.
도 3에 나타난 바와 같이, 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 무선 전력 전송 장치(100)는, 외부의 전력 공급원으로부터 전력을 공급받아 무선 전력 전송 장치(100)와 무선 충전기기(200) 간의 공진 주파수 대역을 갖는 AC 전력으로 변환하는 전력 변환부(150), 자기장 통신 프로토콜을 이용하여 무선 충전기기(200)와의 자기장 통신을 수행하도록 하는 자기장 통신 모뎀(130), 전력 변환부(150)로부터의 AC 전력과 자기장 통신 모뎀(130)으로부터의 데이터를 자기공진유도 방식을 이용하여 무선 충전기기(200)로 송신하는 송신 안테나(110, 120), 전력 변환부(150) 및 자기장 통신 모뎀(130)을 비롯한 무선 전력 전송 장치(100)의 구성요소들을 제어하는 제어부(140)를 포함한다.
본 발명의 실시예에 따른 무선 전력 전송 시스템의 무선 충전기기(200)는, 무선 전력 전송 장치(100)로부터 자기공진유도 방식을 이용하여 전력과 데이터를 수신하는 수신 안테나(210), 자기장 통신 프로토콜을 이용하여 무선 전력 전송 장치(100)와의 자기장 통신을 수행하도록 하는 자기장 통신 모뎀(230), 전력 수신을 관리하는 전력 관리부(250), 전력 관리부(250) 및 자기장 통신 모뎀(230)을 비롯한 무선 충전기기(200)의 구성요소들을 제어하는 제어부(240), 수신된 전력을 이용하여 충전되는 배터리(260)를 포함한다.
도 4a 내지 도 4c는 본 발명의 실시예에 따른 자기 에너지 빔포밍에 의하여 특정 방향으로 송신되는 자기 에너지의 양을 나타내는 예이다.
도 4a 내지 도 4c에 나타난 바와 같이, 두 개의 송신 안테나(110, 120)의 위상을 0도, 180도, 90도의 차이를 갖도록 조정함에 따라 양 방향으로 전달되는 자기 에너지의 세기가 2:8, 8:2, 5:5로 변화함을 알 수 있다. 또한 도 4c에 나타난 바와 같이, 두 개의 송신 안테나(110, 120)의 위상이 90도의 차이를 갖는 경우에는, 하나의 송신 안테나만을 사용하는 도 1의 경우와 달리 자기 에너지의 방향이 전방향으로 형성되는 것을 알 수 있다.
이와 같이, 두 개의 송신 안테나(110, 120)를 통해 송신되는 자기 에너지의 위상을 조절함으로써 무선 전력의 전송 방향과 세기를 조절할 수 있게 된다.
즉, 자기 에너지를 원하는 특정 방향으로 집중할 수 있을 뿐만 아니라 수신측 상황에 따라 전송하는 에너지의 양도 제어할 수 있다. 이와 같이 원하는 방향으로 자기 에너지를 집중하여 전송하면 무선 전력 전송 거리를 확장시키고 무선 전력 전송의 효율을 증가하는 효과를 얻을 수 있다.
또한, 일반적 무선 전력 전송 송신기에는 하나의 Inverter/AMP가 존재하지만, 본 발명의 실시예에 따른 무선 전력 전송 장치에서와 같이 자기 에너지 포밍을 위하여 두 개의 송신 안테나를 이용하는 경우, 무선 전력 전송 장치 내에 두 개의 Inverter/AMP가 존재한다. 이때, 두 개의 송신 안테나의 위상을 동일하게 할 경우 에너지가 손실 없이 합성되는 효과를 가질 수도 있다.
따라서, 본 발명의 실시예에 따른 자기 에너지 포밍을 이용한 무선 전력 전송 장치에서는 동일한 전력을 송신하기 위한 부담이 하나의 Inverter/AMP와 송신 안테나를 갖는 무선 전력 전송 장치에 비해 상대적으로 감소하게 된다.
도 5는 본 발명의 실시예에 따른 무선 전력 전송 장치에서 사용하는 두 개의 안테나에 의한 송신 에너지의 합성 효과를 나타내는 그래프이다.
도 5에 나타난 바와 같이, 동일한 규격의 송신 안테나 두 개를 이용하여 동일한 위상의 자기 에너지를 전송할 경우, 합성된 자기 에너지는 동일한 위상에 크기가 두 배로 되어 두 배의 전력을 송신할 수 있다.
즉, 본 발명의 실시예에 따른 무선 전력 전송 장치에서는, 두 개의 송신 안테나를 통해 송신되는 무선 전력의 위상차가 일정한 값을 갖도록 상기 제1 및 제2 인버터/앰프를 통해 공급되는 무선 전력의 위상을 제어하여 송신단의 출력 파워를 제어할 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 전송 장치에서는, 두 개의 송신 안테나의 위상을 제어하여 송신단 임피던스를 가변시켜서 최적의 전력 전송을 위하여 송신단과 수신단 사이의 임피던스 매칭을 할 수 있다.
뿐만 아니라, 본 발명의 실시예에서와 같이 두 개의 자기 공진 안테나를 수직교차하여 위상을 조절하는 자기에너지 빔포밍 기술을 이용하면, 무선 전력 전송 장치 주위의 모든 영역에 자기 에너지 필드 형성이 가능하여 무선전력이 전달되지 않는 음영지역을 개선할 수 있다.
도 6은 도 1에 도시된 것과 같이 하나의 송신 안테나를 사용한 경우에 자기 에너지가 전달되는 영역과 자기 에너지가 전달되지 않는 음영 지역을 표시한 도면이다.
도 6에 나타난 바와 같이, 송신 안테나의 앞쪽과 뒤쪽으로 대부분의 무선 전력이 전송되고, 송신 안테나의 위쪽과 아래쪽으로는 무선 전력이 전송되지 않아 음영 지역이 발생한다.
이에 비하여 본 발명의 실시예에 따른 무선 전력 전송 장치에서는 이와 같은 음영 지역을 개선할 수 있다.
도 7은 본 발명의 실시예에서와 같이 서로 수직 교차하는 두 개의 송신 안테나를 사용한 경우에 자기 에너지가 전달되는 영역을 표시한 도면이다.
도 7에 나타난 바와 같이, 두 개의 송신 안테나를 서로 수직으로 교차하도록 배치함으로써 송신 안테나가 교차하는 영역 모두에 자기 에너지가 전달되어 음영 지역이 거의 발생하지 않음을 알 수 있다.
도 8a 내지 도 8c는 본 발명의 실시예에 따른 무선 전력 전송 장치에서 자기 에너지 빔포밍에 의하여 음영지역이 개선되는 것을 나타내는 예이다.
도 8a 내지 도 8c에 나타난 바와 같이, 두 개의 송신 안테나를 서로 수직으로 교차하도록 배치하고 두 송신 안테나로부터 전달되는 자기 에너지의 위상을 조절함으로써 음영 지역이 개선되고 원하는 다양한 형태의 자기 에너지 필드를 얻을 수 있음을 알 수 있다.
이상에서 바람직한 실시예를 기준으로 본 발명을 설명하였지만, 본 발명의 장치 및 방법은 반드시 상술된 실시예에 제한되는 것은 아니며 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서, 첨부된 특허청구의 범위는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.

Claims (5)

  1. 자기 공진 방식으로 무선 전력을 송신하는 무선 전력 전송 장치로서,
    서로 수직으로 교차하도록 배치된 제1 및 제2 송신 안테나와,
    상기 제1 및 제2 송신 안테나와 각각 연결되어 있으며, 상기 제1 및 제2 송신 안테나를 통해 각각 송신되는 무선 전력을 공급하기 위한 제1 및 제2 인버터/앰프를 포함하며,
    상기 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 일정한 값을 갖도록 상기 제1 및 제2 인버터/앰프를 통해 공급되는 무선 전력의 위상을 조절할 수 있는 무선 전력 전송 장치.
  2. 제 1 항에 있어서,
    상기 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 0이 되도록 하여, 상기 무선 전력 전송 장치의 무선 전력 전송 거리를 확장하는 무선 전력 전송 장치.
  3. 제 1 항에 있어서,
    상기 제1 및 제2 인버터/앰프는 동일한 크기의 출력을 갖는 무선 전력 전송 장치.
  4. 자기 공진 방식으로 무선 전력을 송신하는 무선 전력 전송 장치로서,
    서로 수직으로 교차하도록 배치된 제1 및 제2 송신 안테나와,
    상기 제1 및 제2 송신 안테나와 각각 연결되어 있으며, 상기 제1 및 제2 송신 안테나를 통해 각각 송신되는 무선 전력을 공급하기 위한 제1 및 제2 인버터/앰프를 포함하며,
    상기 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 일정한 값을 갖도록 상기 제1 및 제2 인버터/앰프를 통해 공급되는 무선 전력의 위상을 조절하여 송신되는 무선 전력의 출력 파워를 제어하는 무선 전력 전송 장치.
  5. 자기 공진 방식으로 무선 전력을 송신하는 무선 전력 전송 장치로서,
    서로 수직으로 교차하도록 배치된 제1 및 제2 송신 안테나와,
    상기 제1 및 제2 송신 안테나와 각각 연결되어 있으며, 상기 제1 및 제2 송신 안테나를 통해 각각 송신되는 무선 전력을 공급하기 위한 제1 및 제2 인버터/앰프를 포함하며,
    상기 제1 및 제2 송신 안테나를 통해 송신되는 무선 전력의 위상차가 일정한 값을 갖도록 상기 제1 및 제2 인버터/앰프를 통해 공급되는 무선 전력의 위상을 조절하여 상기 무선 전력 전송 장치와 상기 무선 전력 전송 장치로부터 무선 전력을 수신하는 무선 충전기기 사이의 임피던스 매칭을 제어하는 무선 전력 전송 장치.
PCT/KR2012/009270 2012-05-14 2012-11-06 무선 전력 전송에서의 자기 에너지 빔포밍 방법 및 장치 WO2013172519A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0050996 2012-05-14
KR1020120050996A KR101341510B1 (ko) 2012-05-14 2012-05-14 무선 전력 전송을 위한 자기 에너지 빔포밍 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2013172519A1 true WO2013172519A1 (ko) 2013-11-21

Family

ID=49583908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009270 WO2013172519A1 (ko) 2012-05-14 2012-11-06 무선 전력 전송에서의 자기 에너지 빔포밍 방법 및 장치

Country Status (2)

Country Link
KR (1) KR101341510B1 (ko)
WO (1) WO2013172519A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634867B1 (ko) * 2014-08-19 2016-06-30 홍익대학교 산학협력단 빔조향 공진기
KR102582542B1 (ko) 2015-12-16 2023-09-25 삼성메디슨 주식회사 초음파 프로브 및 초음파 프로브 충전 방법
WO2018208130A1 (ko) * 2017-05-11 2018-11-15 전자부품연구원 협업 무선 전력 전송 시스템 및 방법
US10790711B2 (en) 2017-12-21 2020-09-29 Korea Advanced Institute Of Science And Technology Magnetic field generating apparatus having cannon shape and magnetic field generation method thereof
KR101970916B1 (ko) * 2017-12-21 2019-08-13 한국과학기술원 대포 형상을 가지는 자기장 발생 장치 및 그것의 자기장 발생 방법
KR101916636B1 (ko) 2018-06-29 2018-11-07 경희대학교 산학협력단 수신기 위치를 확인하여 무선전력을 전송하는 무선전력 전송 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060107146A (ko) * 2005-04-07 2006-10-13 엘에스전선 주식회사 무선 충전기
KR20100047303A (ko) * 2007-08-28 2010-05-07 액세스 비지니스 그룹 인터내셔날 엘엘씨 유도전력 공급 장치
JP2011087457A (ja) * 2009-10-14 2011-04-28 Panasonic Corp 電池パックを備えた電動機械および電源システム
WO2011077488A1 (ja) * 2009-12-24 2011-06-30 株式会社 東芝 無線電力伝送装置
KR20120019033A (ko) * 2010-08-24 2012-03-06 삼성전자주식회사 방사형 무선 전력 전송 및 수신 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060107146A (ko) * 2005-04-07 2006-10-13 엘에스전선 주식회사 무선 충전기
KR20100047303A (ko) * 2007-08-28 2010-05-07 액세스 비지니스 그룹 인터내셔날 엘엘씨 유도전력 공급 장치
JP2011087457A (ja) * 2009-10-14 2011-04-28 Panasonic Corp 電池パックを備えた電動機械および電源システム
WO2011077488A1 (ja) * 2009-12-24 2011-06-30 株式会社 東芝 無線電力伝送装置
KR20120019033A (ko) * 2010-08-24 2012-03-06 삼성전자주식회사 방사형 무선 전력 전송 및 수신 장치

Also Published As

Publication number Publication date
KR20130127228A (ko) 2013-11-22
KR101341510B1 (ko) 2013-12-13

Similar Documents

Publication Publication Date Title
WO2013172519A1 (ko) 무선 전력 전송에서의 자기 에너지 빔포밍 방법 및 장치
EP2630718B1 (en) Wireless charging method and apparatus
US9548796B2 (en) Wireless power transceiver system
WO2012169794A2 (en) Method of performing bidirectional communication between transmitter and receiver in wireless power transmission/reception system, the transmitter, and the receiver
WO2013069951A1 (en) Wireless power transmission and receiving system capable of multi charge
WO2012091209A1 (ko) 자기공진유도 방식을 이용한 멀티노드 무선 전력 전송 시스템 및 무선 충전기기
KR101350309B1 (ko) 특정 무선 충전기기로 송신전력을 집중할 수 있는 무선 전력전송 장치 및 방법
WO2013125849A1 (en) Wireless charging apparatus and method
KR20130024320A (ko) 태양전지 모듈을 이용한 무선 전력 전송 시스템
WO2013151259A1 (en) Device and system for wireless power transmission using transmission coil array
CN102510118A (zh) 无线充电系统
KR102608558B1 (ko) 전력 중계 장치 및 시스템
CN103427862A (zh) 无线收发器与无线收发系统
WO2012169729A1 (en) Wireless power transmitter, wireless power receiver and wireless power transmission method
WO2012091208A1 (ko) 배터리 정보 기반 멀티노드 무선 전력 전송 시스템 및 그 충전 방법
KR20120078676A (ko) 멀티노드 무선충전 스위칭 명령 전송 방법
WO2018208130A1 (ko) 협업 무선 전력 전송 시스템 및 방법
CN107370252A (zh) 无线互充装置及无线充电装置
KR20130127227A (ko) 무선 전력 전송을 위한 능동형 에너지 중계기 및 이를 이용한 무선 전력 전송 방법 및 시스템
EP2761634A1 (en) Wireless power repeater and wireless power transmitter
WO2012102419A1 (ko) 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼 및 그 에너지 전송부
WO2016064254A1 (ko) 무선 전력 송신 장치 및 무선 전력 전송 시스템
WO2014065469A1 (ko) 무선전력 송수신기를 포함하는 모바일 단말기 및 무선 충전 시스템
WO2016140463A1 (ko) 무선 전력 송수신 장치
WO2012091207A1 (ko) 자기공진유도 방식을 이용한 멀티노드 무선 전력 전송 시스템 및 그 충전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876741

Country of ref document: EP

Kind code of ref document: A1