WO2013172382A1 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
WO2013172382A1
WO2013172382A1 PCT/JP2013/063565 JP2013063565W WO2013172382A1 WO 2013172382 A1 WO2013172382 A1 WO 2013172382A1 JP 2013063565 W JP2013063565 W JP 2013063565W WO 2013172382 A1 WO2013172382 A1 WO 2013172382A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
optical
thin film
reflectance
Prior art date
Application number
PCT/JP2013/063565
Other languages
French (fr)
Japanese (ja)
Inventor
秀一朗 川岸
照夫 山下
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201380024718.8A priority Critical patent/CN104321670B/en
Priority to JP2014515654A priority patent/JP5883505B2/en
Publication of WO2013172382A1 publication Critical patent/WO2013172382A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to an optical element.
  • An optical element such as an optical glass lens is coated with an optical thin film on the surface to be an optical surface in order to obtain desired optical characteristics.
  • an optical thin film a single-layer film or a multilayer film is known in recent years, and an optical thin film having a multilayer structure including an aluminum oxide (Al 2 O 3 ) layer may be used (see, for example, Patent Document 1). .
  • the optical thin film including the aluminum oxide layer may cause uneven color on the surface of the optical element when the optical surface of the optical element is coated.
  • This color unevenness is caused by locally non-uniform film quality (film refractive index, film density, etc.) of the optical thin film in the plane of the optical surface. Occurrence of color unevenness is a factor that lowers the product yield due to non-uniformity of optical characteristics (for example, reflectance and coat color quality (color)) of the optical thin film. Therefore, it is desired to prevent the occurrence of color unevenness.
  • An object of the present invention is to provide an optical element provided with an optical thin film having a uniform and dense film quality in which color unevenness does not occur even if the optical thin film includes an aluminum oxide layer.
  • the present invention has been devised to achieve the above object.
  • the inventors of the present application first examined the cause of color unevenness.
  • color unevenness is caused by the aluminum oxide layer taking in moisture or the like during or after film formation. This can be said to be clear from the verification result of the shift amount (the wavelength shift, in other words, the change amount of the spectral characteristics at normal temperature and at the time of heating) whose details will be described later.
  • the present invention has been made based on the above-described new knowledge and idea by the present inventors. That is, the inventors of the present application have arrived at the problem solving means described below based on the above-described new knowledge and idea.
  • An optical element includes an optical thin film.
  • the optical thin film includes an aluminum oxide layer having an optical thin film coefficient in a range of 0.010 or more and 2.00 or less, which is defined on the basis of an optical film thickness and a center wavelength. In the same wavelength, the shift amount between the first reflectance at normal temperature and the second reflectance at heating is 0.50% or less.
  • an optical thin film including an aluminum oxide layer can provide an optical element including an optical thin film having a uniform and fine film quality that does not cause color unevenness.
  • the optical thin film formed on the optical surface of the optical element is formed of a single layer film.
  • the optical thin film formed on the optical surface of the optical element is formed of a multilayer film.
  • the center wavelength band will be described by taking the wavelength band of visible light as an example, the wavelength region is 400 nm to 700 nm, and the center wavelength ⁇ 0 is 550 nm.
  • the optical thin film coefficient can be in the range of 0.010 to 2.00.
  • “numerical value to numerical value” includes values at both ends unless otherwise specified.
  • An optical element is an element that performs some kind of optical processing on light (particularly visible light), and specifically includes optical devices such as lenses, prisms, mirrors, filters, light guides, and diffraction elements.
  • FIG. 1 is a cross-sectional view of an essential part showing a configuration example of an optical element to which the present invention is applied. As shown in FIG. 1, in the optical element 1, an optical surface 5 of an optical element substrate 10 that is an element substrate is coated with an optical thin film 20.
  • the optical element substrate 10 is made of an optical glass material, and an optical functional surface such as a spherical surface, an aspherical surface, a plane, or a diffraction grating is formed on the surface of the optical element substrate 10 as an optical surface 5.
  • an optical functional surface such as a spherical surface, an aspherical surface, a plane, or a diffraction grating is formed on the surface of the optical element substrate 10 as an optical surface 5.
  • the optical glass material of the optical element substrate 10 for example, M-TAFD305, M-LAC130, M-BACD12, M-FDS2, M-FD80, M-TAFD307, M-FCD1, M-FCD500, M-PCD4 M-TAF101, E-FDS1, E-FDS2, TAFD30, TAFD35, TAF1, FCD100, FCD505, BACD5 (manufactured by HOYA Corporation) and the like can be used.
  • the optical thin film 20 has a function of assisting the optical action (optical characteristics) of the optical element 1, and specifically has a function of reducing (preventing) reflection of light on the lens surface.
  • the layer located on the side in contact with the optical surface 5 of the optical element substrate 10 is a layer (hereinafter referred to as “aluminum oxide layer”) 21 formed of aluminum oxide (alumina).
  • the aluminum oxide layer 21 is formed by a film forming process in which film constituent particles are deposited with ion energy of 10 eV or more.
  • ion beam assisted deposition Ion-beam Assisted Deposition, hereinafter referred to as “IAD”
  • IAD ion beam assisted deposition
  • this aluminum oxide layer 21 is used as the optical thin film 20
  • the relationship between the wavelength of light and the reflectance of light is measured in a wavelength region of 400 nm to 700 nm before and after heat treatment up to a predetermined temperature at which moisture can be removed. It has a film structure in which the maximum change in light reflectance is 0.50% or less.
  • the “before the heat treatment” means before the optical thin film 20 is heated (that is, when the optical thin film 20 is at room temperature), and “after the heat treatment” means that the optical thin film 20 is heated.
  • the heating time is shown.
  • the “maximum change in light reflectance” refers to the first reflectance R1 at normal temperature and the second reflectance R2 at heating at the same wavelength in the wavelength region of 400 nm to 700 nm.
  • the aluminum oxide layer 21 has a first reflectance R1 at a normal temperature and a second reflectance R2 at the time of heating at the same wavelength in a wavelength region of 400 nm to 700 nm.
  • the film structure has a shift amount ⁇ R of 0.30% or less.
  • “normal temperature” means 25 ° C.
  • “heating” means, for example, the case of heating to 150 ° C.
  • the refractive index n of the aluminum oxide layer 21 is 1.64 or more and 1.70 or less. The details of the film forming procedure for forming the aluminum oxide layer 21 and the layer structure of the aluminum oxide layer 21 will be described later.
  • the optical thin film 20 is formed by depositing thin film particles on the optical surface 5 of the optical element substrate 10 of the optical element 1.
  • the aluminum oxide layer 21 is formed by using ion beam assisted deposition (hereinafter, abbreviated as “IAD”) to form the film-constituting particles into an optical element with an ion energy of 10 eV or more. It is formed by a film forming process for depositing on the optical surface 5 of the substrate 10.
  • IAD ion beam assisted deposition
  • the IAD irradiates the film-forming object with gas ions (and the same amount of electrons for neutralization) with an ion gun during vacuum deposition, and uses the kinetic energy to This is a film forming process to be deposited.
  • the ion energy to be irradiated can be increased, and a uniform and dense film quality film can be obtained.
  • the “uniform and dense film quality” in the case where the optical thin film 20 is formed of one aluminum oxide layer is a predetermined value that can remove moisture with respect to the relationship between the wavelength of light and the reflectance of light.
  • the “uniform and dense film quality” in the case where the optical thin film 20 is formed from a multilayer film including an aluminum oxide layer is the first reflectance at normal temperature in the same wavelength region of 400 nm to 700 nm. It is defined as having a film structure in which the shift amount ⁇ R between R1 and the second reflectance R2 during heating is 0.30%. Note that color unevenness does not occur if the film has the “uniform and dense film quality” referred to here.
  • the IAD film forming conditions in the film forming process of the first embodiment are as follows.
  • the ion gun used for IAD is a thermionic excitation type ion gun
  • a mixed gas of oxygen and argon is used as the introduction gas in the film forming chamber
  • the introduction gas flow rate is set to oxygen: 0 to 200 SCCM ( Standard Cubic Centimeter per Minutes) and Argon: At least one of 0 to 200 SCCM is increased from 0 SCCM.
  • the voltage and current applied to the filament of the ion gun are set to filament voltage: 10 to 100 V and filament current: 15 to 150 A, respectively.
  • the voltage and current applied to the anode of the ion gun are set to an anode voltage of 10 to 500 V and an anode current of 1 to 30 A, respectively.
  • the film forming rate is set to 0.01 to 1.50 nm / sec.
  • thermoelectron excitation type ion gun by increasing the number of filaments that are thermoelectron generating members constituting the ion gun, film-constituting particles are deposited with ion energy of 10 eV or more, and a uniform and dense film quality layer is formed. Can be formed.
  • the output of the ion gun includes the voltage applied to the acceleration electrode of the ion gun, and the current with an acceleration voltage of 10 to 1500 V, acceleration current: 10 to 1500 mA.
  • RF radio frequency
  • the output of the ion gun includes the voltage applied to the acceleration electrode of the ion gun, and the current with an acceleration voltage of 10 to 1500 V, acceleration current: 10 to 1500 mA.
  • a positive voltage is applied between the electrode and the ground.
  • the voltage and current applied to the suppressor electrode of the ion gun are set to suppressor voltage: 0 to 1000 V and suppressor current: 10 to 100 mA, respectively.
  • suppressors a voltage between the electrode and ground is applied to-.
  • Other conditions are the same as in the case of the above-described thermionic ion gun.
  • film constituent particles of the aluminum oxide layer 21 are deposited on the optical surface 5 of the optical element substrate 10 with ion energy of 10 eV or more (specifically, for example, about 1000 eV). Therefore, a uniform and dense film-like aluminum oxide layer 21 is formed on the optical surface 5 of the optical element substrate 10.
  • the oxide film which comprises a layer should just be desired film quality, and the composition is not specifically limited.
  • various oxide films such as a silicon oxide film and a tantalum oxide film described below.
  • the layer numbers are assigned in order from the optical surface 5 side of the lens substrate 10. Further, the refractive index of each layer is n, the physical film thickness is d, the optical film thickness is nd, the optical thin film coefficient is x, and the center wavelength is ⁇ 0 .
  • the optical film thickness nd is represented by the product of the refractive index n and the physical film thickness d.
  • optical thin film coefficient x is expressed by the following equation (1) and is defined based on the optical film thickness nd and the center wavelength ⁇ 0 .
  • Optical thin film coefficient x nd ⁇ (1 / ( ⁇ 0/4)) ⁇ Equation (1)
  • the optical thin film coefficient x of the aluminum oxide layer which is defined based on the optical film thickness nd and the center wavelength ⁇ 0 and contains aluminum oxide as a main component is set in the range of 0.010 or more and 2.000 or less.
  • the center wavelength ⁇ 0 is described as 550 nm, but can be set to 500 nm, 1000 nm, 2000 nm, or the like.
  • the physical thickness d of the aluminum oxide layer can be set in the range of 8.0 nm or more and 500.0 nm or less.
  • “4” is used as a value for dividing the center wavelength ⁇ 0 , but is not limited thereto. For example, it can be an integer such as “2” or “6”.
  • Example 1 Specifically, in Example 1, the following optical thin film 20 was formed. Table 1 shows the film configuration of the optical thin film 20 according to Example 1. Table 2 shows film forming conditions of the optical thin film 20 according to the first embodiment.
  • M-TAFD305 manufactured by HOYA Co., Ltd.
  • An optical thin film 20 having a single layer structure was formed on the optical surface 5 of the optical element substrate 10.
  • the optical thin film 20 is an Al 2 O 3 layer 21 having a physical film thickness of 92.91 nm.
  • the Al 2 O 3 layer 21 was subjected to film formation under the following film formation conditions in order to deposit film constituent particles with an ion energy of 90 eV. That is, in the film forming process for forming the Al 2 O 3 layer 21, a thermoelectron excitation type ion gun is used as the ion gun, and the voltage applied to the anode and the current are set to an anode voltage of 90 V and an anode current of 15 A, respectively. did. The voltage and current applied to the filament were filament voltage: 55 V and filament current: 90 A, respectively.
  • a mixed gas of oxygen (O 2 ) and argon (Ar) was used as the introduced gas in the film formation chamber, the O 2 gas flow rate was set to 35 SCCM, and the Ar gas flow rate was set to 5 SCCM. Moreover, the temperature of the optical element base material 10 which is a film formation target was set to 250 ° C. The evaporation rate (film formation rate) of Al 2 O 3 was set to 0.10 nm / sec.
  • FIG. 2 is an explanatory diagram in which the relationship between the light wavelength and the light reflectance of the optical thin film 20 (aluminum oxide layer 21) in Example 1 is plotted on a two-dimensional coordinate plane.
  • the wavelength of light and the reflectance of light for the aluminum oxide layer 21 at room temperature and when heated to 150 ° C. which is an example of a predetermined temperature at which moisture can be removed, are shown.
  • the relationship is plotted on a two-dimensional coordinate plane in which the horizontal axis is the wavelength of light (unit: nm) and the vertical axis is the reflectance of light (unit:%).
  • FIG. 2 shows a specific example of the relationship between the wavelength of light and the reflectance of the aluminum oxide layer 21 obtained by performing IAD under the conditions described in the first embodiment.
  • the reflectances R1 and R2 indicate the reflectance at normal temperature and the reflectance at the time of heating, respectively, at a predetermined wavelength.
  • Table 3 shows (A) reflectivity R1 at room temperature, (B) reflectivity R2 at heating, and shift amount ⁇ R at the wavelengths 400 nm, 500 nm, 600 nm, and 700 nm in FIG. (A difference between the reflectance R1 at normal temperature and the reflectance R2 at the time of heating is expressed in absolute value). Further, the two right-hand columns of Table 3 show the maximum shift amount ⁇ Rmax and minimum shift amount ⁇ Rmin at wavelengths of 400 nm to 700 nm in FIG. 2 and the wavelengths at ⁇ Rmax and ⁇ Rmin, respectively.
  • the aluminum oxide layer 21 has a plot position on the two-dimensional coordinate plane regarding the relationship between the wavelength of light and the reflectance at normal temperature and when heated. It turns out that there is almost no change. In other words, the plot positions are closer to each other, and it can be seen that the change in reflectance is extremely small between room temperature and heating.
  • the reflectance shift amount ⁇ R at normal temperature and during heating is specifically as follows.
  • the reflectance shift (change) amount ⁇ R is greatest when the wavelength is 415 nm.
  • the reflectivity R1 at normal temperature is 6.893%, whereas the reflectivity R2 at heating is 6.951%, and the difference between them (the amount of shift ⁇ R in reflectivity between normal temperature and heating) Is 0.058%.
  • the shift amount ⁇ R is the smallest when the wavelengths are 433 nm, 665 nm, and 666 nm, and the shift amount ⁇ R is 0.014%.
  • the shift amount ⁇ R also belongs to the range of the minimum value 0.014% to the maximum value 0.058% for other wavelengths. That is, in the wavelength band of 400 nm or more and 700 nm or less, the shift amount ⁇ R is 0.058 or less, which is extremely small.
  • the reason why the shift amount ⁇ R is extremely small is that the aluminum oxide layer 21 has a uniform and dense film quality.
  • the aluminum oxide layer 21 has a uniform and dense film quality at least in the wavelength region of 400 nm to 700 nm, which is the visible region, and no color unevenness occurred. Moreover, if it is the optical thin film 20 in Example 1, it can be said that an antireflection function can fully be exhibited in a visible region.
  • the optical thin film 20 formed in Example 1 is a single layer film comprised by the aluminum oxide layer, and it is more preferable to make shift amount (DELTA) R into 0.10% or less.
  • FIG. 3 is an explanatory diagram of Comparative Example 1 that is a comparison target with Example 1 of the present invention.
  • FIG. 3 shows the wavelength and reflection of light when an aluminum oxide layer formed on the optical surface 5 of the optical element substrate 10 is formed by vacuum deposition. A specific example of the relationship with the rate is shown.
  • M-BACD12 manufactured by HOYA Corporation
  • HOYA Corporation which is a glass mold lens glass type
  • Comparative Example 1 the following optical thin film was formed.
  • Table 4 shows the film configuration of the optical thin film according to Comparative Example 1.
  • Table 5 shows the film forming conditions of the optical thin film according to Comparative Example 1.
  • the optical thin film is an Al 2 O 3 layer having a physical thickness of 84.41 nm formed by vacuum deposition.
  • the Al 2 O 3 layer was subjected to film formation under the film formation conditions shown in Table 5 in order to deposit Al 2 O 3 . That is, in the Al 2 O 3 layer deposition process, oxygen (O 2 ) gas was used as the introduced gas in the deposition process chamber, and the O 2 gas flow rate was 15 SCCM. Moreover, the temperature of the optical element base material 10 which is a film formation target was set to 250 ° C. Moreover, the evaporation rate (film formation rate) of Al 2 O 3 was set to 0.80 nm / sec.
  • the shift (change) amount of the reflectance at normal temperature and heating in FIG. 3 is as shown in Table 6 and below.
  • Table 6 on the left side of Table 6, (A) reflectivity R1 (not shown) at normal temperature and (B) reflectivity R2 (not shown) at the wavelengths of 400 nm, 500 nm, 600 nm, and 700 nm in FIG. )
  • the shift amount ⁇ R (the absolute value of the difference between the reflectance at normal temperature and the reflectance at the time of heating).
  • the rightmost column of Table 6 shows the maximum shift amount ⁇ Rmax at wavelengths of 400 nm to 700 nm in FIG. 3 and the wavelength at ⁇ Rmax.
  • the reflectance shift amount ⁇ R is greatest when the wavelengths are 489 nm and 502 nm.
  • the reflectance at normal temperature is 7.293%, whereas the reflectance at heating is 6.786%, and the difference (shift in reflectance between normal temperature and heating)
  • the amount ⁇ R) is 0.507%.
  • the reflectance at normal temperature is 7.349%, whereas the reflectance at heating is 6.842%, and the difference (reflection between normal temperature and heating)
  • the rate shift amount ⁇ R) is 0.507%. That is, in the wavelength band of 400 nm or more and 700 nm or less, the maximum amount of reflectance shift ⁇ R between the room temperature and the time of heating exceeds 0.50%.
  • the shift amount ⁇ R is large because the formed aluminum oxide layer is porous, and moisture and the like at normal temperature (that is, before treatment for removing moisture). This is thought to be due to the removal of moisture and the like that was taken in during the heating. In other words, since the maximum value of the shift amount ⁇ R exceeds 0.50%, such an aluminum oxide layer is not uniform and dense film quality.
  • the maximum value of the reflectance shift amount ⁇ R during normal temperature and heating in the wavelength region of 400 nm to 700 nm is 0.50% or less (preferably 0 .30% or less, more preferably 0.10% or less), it can be said that the aluminum oxide layer 21 has a uniform and dense film quality.
  • the optical thin film 20 formed on the optical surface 5 of the optical element substrate 10 is formed of a multilayer film.
  • the first embodiment and the second embodiment include many common parts. Therefore, in the following description of the second embodiment, parts different from the first embodiment will be mainly described.
  • FIG. 4 is a cross-sectional view of an essential part showing a configuration example of an optical element as an example of the optical element 1 to which Embodiment 2 of the present invention is applied.
  • the optical thin film 20 shown in FIG. 4 has an antireflection film function
  • the optical element substrate 10 is an optical glass lens.
  • the optical thin film 20 has an eight-layer structure including first to eighth layers formed in order from the optical surface 5 side of the optical element substrate 10 so as to obtain an antireflection function.
  • the optical thin film 20 may be comprised from m layers (m is an integer greater than or equal to 2) other than eight layers.
  • the second layer to the seventh layer formed so as to overlap the aluminum oxide layer 21 as the first layer are a low refractive index material layer and a high refractive index material layer. And a repetitive structure portion in which and are alternately stacked. More specifically, the second layer, the fourth layer, and the sixth layer are the low refractive index material layers 22, 24, and 26.
  • the third layer, the fifth layer, and the seventh layer are the high refractive index material layers 23, 25, and 27.
  • silicon oxide having a refractive index n of 1.45 to 1.50 can be used.
  • tantalum oxide having a refractive index n of 2.00 to 2.35 can be used.
  • the layer structure of the repetitive structure portion mentioned here is only one specific example.
  • the low refractive index material layer and the high refractive index material layer as described above are not composed of 3 layers each for 6 layers in total, but 4 layers each for 8 layers in total. As such, it may have another layer structure.
  • aluminum oxide, magnesium fluoride, aluminum fluoride, yttrium fluoride, neodymium fluoride, or the like is used instead of silicon oxide as described above. It doesn't matter.
  • each layer from the second layer to the eighth layer may use a mixed material obtained by mixing these materials in an appropriate ratio.
  • the eighth layer located on the outer surface side is a layer 28 formed of magnesium fluoride.
  • the eighth layer is formed of another low refractive index material such as silicon oxide, aluminum fluoride, yttrium fluoride, or neodymium fluoride as long as it functions as a protective film. It does not matter.
  • the optical thin film 20 is formed in order from the first layer to the eighth layer on the optical surface 5 of the optical element substrate 10 of the optical element 1.
  • the second layer forming step for forming the second layer After the aluminum oxide layer 21 is formed in the first layer forming step, the second layer forming step for forming the second layer, the third layer forming step for forming the third layer, and the fourth A fourth layer forming step for forming a layer, a fifth layer forming step for forming a fifth layer, a sixth layer forming step for forming a sixth layer, and a seventh layer for forming a seventh layer A film forming process and an eighth layer film forming process for forming the eighth layer are sequentially performed.
  • the second layer to the eighth layer can be formed by IAD as in the case of the film forming step of the first embodiment described above.
  • the second layer film forming step to the eighth layer film forming step are not necessarily performed by IAD, and may be formed by, for example, vacuum deposition.
  • the details of the second layer film forming step to the eighth layer film forming step may be performed using a known technique, and thus the description thereof is omitted here.
  • the film can be formed under the above-described film forming conditions and the conditions specifically shown below.
  • the optical thin film 20 for coating the optical surface 5 of the optical element substrate 10 of the optical element 1 is formed by sequentially performing the first layer forming process to the eighth layer forming process as described above.
  • FIGS. 5 and 7 to 9 are explanatory diagrams for Embodiments 2 to 5 of the present invention.
  • FIG. 6 is an explanatory diagram for Comparative Example 2.
  • the oxide film which comprises each layer should just be desired film quality, and the composition is not specifically limited.
  • various oxide films such as a silicon oxide film and a tantalum oxide film described below.
  • Example 2 Specifically, in Example 2, the optical thin film 20 shown in Table 7 was formed. Table 7 shows the film configuration of the optical thin film 20 according to Example 2. Table 8 shows the film forming conditions of the optical thin film 20 according to Example 2.
  • Example 2 M-LAC130 (manufactured by HOYA Corporation), which is a glass type for glass mold lenses, was used for the optical element substrate 10. Then, an optical thin film 20 having an eight-layer structure was formed on the optical surface 5 of the optical element substrate 10. That is, the first layer in the optical thin film 20 is an Al 2 O 3 layer 21 having a physical thickness of 10.00 nm formed by IAD.
  • the second to seventh layers are a SiO 2 layer 22 having a physical thickness of 4.20 nm, a Ta 2 O 5 layer 23 having a physical thickness of 28.44 nm, a SiO 2 layer 24 having a physical thickness of 16.45 nm, Repetitive structure in which a Ta 2 O 5 layer 25 having a physical thickness of 74.71 nm, a SiO 2 layer 26 having a physical thickness of 15.04 nm, and a Ta 2 O 5 layer 27 having a physical thickness of 30.86 nm are sequentially stacked. Part.
  • the second to seventh layers constituting this repetitive structure are also formed by IAD.
  • the eighth layer serving as the outermost surface layer of the optical thin film 20 is an MgF 2 layer 28 having a physical thickness of 97.74 nm formed by vapor deposition.
  • the optical thin film 20 is a multilayer film 21 to 28 formed by laminating a plurality of film forming materials, and the multilayer films 21 to 28 are silicon oxide layers 22, 24, 26 formed of silicon oxide. And tantalum oxide layers 23, 25, 27 formed of tantalum oxide.
  • the Al 2 O 3 layer 21 was subjected to film formation under the following film formation conditions in order to deposit film constituent particles with ion energy of 90 eV. That is, in the first layer deposition step for depositing the Al 2 O 3 layer 21, a thermoelectron excitation type ion gun is used as the ion gun, and the voltage applied to the anode and the current are anode voltage: 90 V and anode current, respectively. : 18A. The voltage and current applied to the filament were filament voltage: 55 V and filament current: 90 A, respectively. Furthermore, a mixed gas of O 2 and Ar was used as the introduced gas in the film formation chamber, the O 2 gas flow rate was 40 SCCM, and the Ar gas flow rate was 10 SCCM.
  • the temperature of the optical element base material 10 which is a film formation target was set to 250 ° C.
  • the evaporation rate (film formation rate) of Al 2 O 3 was set to 0.10 nm / sec.
  • the evaporation rate (deposition rate) of SiO 2 is 0.30 nm / sec
  • the evaporation rate (deposition rate) of Ta 2 O 5 is 0.50 nm / sec
  • the evaporation rate (deposition rate) of MgF 2 is 0. 80 nm / sec.
  • FIG. 5 is an explanatory diagram in which a specific example of the relationship between the light wavelength and the light reflectance of the optical thin film in Example 2 of the present invention is plotted on a two-dimensional coordinate plane.
  • the reflectances R1 and R2 indicate the reflectance R1 at normal temperature and the reflectance R2 at the time of heating at a predetermined wavelength.
  • the absolute value of the difference between the reflectance R1 at normal temperature and the reflectance R2 at the time of heating is described as the shift amount ⁇ R.
  • Table 9 shows five columns on the left side of Table 9, (A) reflectivity R1 at normal temperature, (B) reflectivity R2 at heating, and shift amount ⁇ R at wavelengths of 400 nm, 500 nm, 600 nm, and 700 nm in FIG. (A difference between the reflectance R1 at normal temperature and the reflectance R2 at the time of heating is expressed in absolute value).
  • the right two columns of Table 9 show the maximum shift amount ⁇ Rmax and minimum shift amount ⁇ Rmin at wavelengths of 400 nm to 700 nm in FIG. 5 and the wavelengths at ⁇ Rmax and ⁇ Rmin, respectively.
  • the aluminum oxide layer 21 has a plot position on the two-dimensional coordinate plane regarding the relationship between the wavelength of light and the reflectance at normal temperature and when heated. It can be seen that there has been little change. That is, the plot positions are closer to each other, and it can be seen that the shift amounts ⁇ R of the reflectances R1 and R2 during normal temperature and during heating are extremely small. In addition, it can be seen that in the wavelength band of 400 nm to 700 nm, the reflectance is 0.50% or less and it has an antireflection function.
  • the shift amount of the reflectance during normal temperature and heating in FIG. 5 is as follows. Focusing on the wavelength band of 400 nm or more and 700 nm or less, which is the visible range, the reflectance shift amount is the largest when the wavelength is 400 nm.
  • the reflectance R1 at the normal temperature is 0.222%, whereas the reflectance R2 at the heating is 0.278%, and the difference (the reflectance shift amount ⁇ R between the normal temperature and the heating). Is 0.056%.
  • the shift amount ⁇ R is the smallest when the wavelengths are 670 nm and 680 nm, and the difference in reflectance between room temperature and heating is 0%.
  • the difference in reflectance between room temperature and heating also falls within the range of the minimum value 0% to the maximum value 0.056% for other wavelengths. That is, in the wavelength band of 400 nm or more and 700 nm or less, the shift amount ⁇ R of the reflectances R1 and R2 at normal temperature and heating is 0.30% or less, and the aluminum oxide layer 21 can be said to have a uniform and dense film quality. . In the optical thin film 20 in Example 2, no color unevenness occurred. It can also be said that the antireflection function can be sufficiently exerted in the visible region.
  • Comparative Example 2 the following optical thin film having an antireflection function was formed.
  • Table 10 shows the film configuration of the optical thin film according to Comparative Example 2.
  • Table 11 shows the film forming conditions of the optical thin film according to Comparative Example 2.
  • FIG. 6 is an explanatory diagram of Comparative Example 2 that is a comparison target with Example 2 of the present invention.
  • the following optical thin film was formed using the vacuum deposition method.
  • M-BACD12 manufactured by HOYA Corporation
  • HOYA Corporation which is a glass mold lens glass type
  • an optical thin film having a four-layer structure having an antireflection function was formed on the optical surface 5 of the optical element substrate 10.
  • the first to fourth layers in the optical thin film are an Al 2 O 3 layer having a physical film thickness of 59.66 nm, an Al 2 O 3 layer having a physical film thickness of 91.84 nm, and a physical film thickness of 115.58 nm.
  • the first to fourth layers constituting the repetitive structure are formed under the following conditions.
  • the gas flow rate of O 2 which is the introduced gas in the film forming chamber, is 15 SCCM for the first Al 2 O 3 layer and the third ZrO 2 + TiO 2 layer, respectively, and the second Al 2 O 3 layer.
  • the layer was 13 SCCM.
  • the temperature of the optical element base material 10 which is a film formation target was set to 250 ° C.
  • the evaporation rate (film formation rate) of Al 2 O 3 , ZrO 2 + TiO 2 , and MgF 2 is 0.80 nm / sec.
  • FIG. 6 shows the result of measuring the relationship between the wavelength of light and the reflectance of the optical thin film formed under the above conditions.
  • Table 12 shows five columns on the left side of Table 12, (A) reflectivity R1 at room temperature at wavelengths of 400 nm, 500 nm, 600 nm, and 700 nm in FIG. 6 (not shown in FIG. 6), and (B) reflection at the time of heating.
  • the ratio R2 (not shown in FIG. 6) and the shift amount ⁇ R (the difference between the reflectance R1 at normal temperature and the reflectance R2 at the time of heating are expressed in absolute values) are shown.
  • the rightmost column of Table 12 shows the maximum shift amount ⁇ Rmax at wavelengths of 400 nm to 700 nm in FIG. 6 and the wavelength at ⁇ Rmax.
  • the shift amount ⁇ R of the reflectance at the normal temperature and at the time of heating in FIG. 6 is as follows. In the visible wavelength range of 400 nm to 700 nm, the reflectance shift amount ⁇ R is greatest when the wavelength is 400 nm. When the wavelength is 400 nm, the reflectance R1 at room temperature is 0.350%, whereas the reflectance R2 at heating is 0%, and the difference (shift amount ⁇ R) is 0.350%. It has become.
  • the shift amount ⁇ R has a large maximum value exceeding 0.30%, and cannot be said to be uniform and dense film quality.
  • the optical thin film 20 in Comparative Example 2 color unevenness is observed, and it cannot be said that the antireflection function can be sufficiently exhibited in the visible region.
  • Example 3 to Example 5 Next, Examples 3 to 5 will be described.
  • the description already given in the second embodiment is omitted, and the contents different from the second embodiment are described.
  • common descriptions are described first.
  • the results of the heat treatment as in Examples 1 and 2 are not shown. However, since the inventors did not cause color unevenness in the examples shown below, We believe that the invention can be applied.
  • M-LAC130 manufactured by HOYA Corporation was used for the optical element substrate 10.
  • Tables 13, 15, and 17 show the film configuration of the optical thin film 20 according to each example.
  • Tables 14, 16, and 18 show film forming conditions of the optical thin film 20 according to each example.
  • FIG. 7 to FIG. 9 are explanatory diagrams in which one specific example of the relationship between the light wavelength and the light reflectance of the optical thin film in each embodiment is plotted on a two-dimensional coordinate plane.
  • the optical thin film 20 in Embodiments 3 to 5 has an antireflection function.
  • the description of what is repeated in each table is omitted.
  • Example 3 In Example 3, the physical film thickness d of the aluminum oxide layer of the first layer is changed, and in addition to the first layer, the third layer and the fifth layer are composed of the aluminum oxide layer. Further, the second , fourth, and sixth layers were made of Ta 2 O 5 without using SiO 2 as a film constituent material.
  • the aluminum oxide layer 21 may be formed not only in the first layer but also in the third layer and the fifth layer, and the physical film thickness d may be changed.
  • Example 4 the first aluminum oxide layer is formed by IAD using an RF excitation electron gun. Further, the number of layers of the optical thin film 20 is changed from 8 layers to 10 layers.
  • the relationship between the wavelength of light and the reflectance of light was measured, and the result shown in FIG. 8 was obtained. According to the measurement results shown in the figure, it can be seen that the reflectance is kept low at least in the wavelength region of 400 nm to 700 nm which is the visible region. Moreover, in the optical thin film 20 in Example 4, the color nonuniformity was not confirmed.
  • the aluminum oxide layer 21 may be a high-frequency discharge excitation electron gun as long as it is a film forming process in which film constituent particles are deposited with an ion energy of 10 eV or more.
  • the number of layers of the optical thin film 20 is not limited to eight and may be a plurality of layers.
  • Example 5 In Example 5, while the physical film thickness d of the first aluminum oxide layer 21 is increased, the number of layers of the optical thin film 20 is changed from 8 layers to 10 layers.
  • the aluminum oxide layer 21 may be increased in physical thickness d.
  • the aluminum oxide layer 21 is formed by IAD, which is a film forming process in which film constituent particles are deposited with an ion energy of 10 eV or more, and the aluminum oxide layer 21 has a uniform film quality. It has become. That is, the aluminum oxide layer 21 has a shift amount ⁇ R of 0.30% between the first reflectance R1 at normal temperature and the second reflectance R2 at the time of heating at the same wavelength in the wavelength region of 400 nm to 700 nm. It has the following film structure.
  • the aluminum oxide layer 21 in the first and second embodiments has a uniform and dense film quality with little room for taking up moisture and the like, it is effective to take up moisture and the like that cause color unevenness. Can be prevented. Therefore, even when the aluminum oxide layer 21 is positioned so as to be in contact with the optical surface 5 of the optical element substrate 10 or when the aluminum oxide layer 21 is formed in the second to mth layers, the product of the optical element 1 Color unevenness that may cause a decrease in yield does not occur. Therefore, it is possible to correct non-uniformity of optical characteristics (for example, refractive index n and light transmittance) in the surface of the optical surface 5 due to color unevenness. That is, according to the present embodiment, even if the optical thin film includes the aluminum oxide layer 21, the optical thin film 20 in which color unevenness does not occur can be obtained.
  • optical characteristics for example, refractive index n and light transmittance
  • the refractive index n of the aluminum oxide layer 21 is 1.64 or more.
  • a high refractive index of 1.70 or less can be realized. That is, such a high refractive index is obtained because the aluminum oxide layer 21 has a uniform film quality. Therefore, by realizing such an aluminum oxide layer 21 having a high refractive index, it is possible to avoid the occurrence of color unevenness that may cause a decrease in product yield of the optical element 1.
  • the film forming process for forming the aluminum oxide layer 21 may be a film forming process using a technique other than IAD, such as sputtering, as long as the film constituent particles are deposited with an ion energy of 10 eV or more. I do not care.
  • the film forming process for forming each layer may be a film forming process in which film constituent particles are deposited with an ion energy of 10 eV or more for at least an aluminum oxide layer, and other layers are not particularly limited. Absent.
  • the optical thin film 20 may be formed separately from the optical element substrate 10 of the optical element 1 instead of the film forming procedure described in the above embodiment. In that case, the optical thin film 20 formed separately from the optical element substrate 10 is applied to the optical surface 5 of the optical element substrate 10 to coat the optical surface 5.
  • the optical element is an optical glass lens
  • the optical surface 5 of the lens substrate of the optical glass lens is coated with an antireflection film as an example.
  • the present invention can be applied to an optical element other than the optical glass lens, for example, an optical element such as a spherical glass lens, an aspheric glass lens, an optical filter, or a diffraction grating, as in the above-described embodiment.
  • the wavelength band of visible light is taken as an example of the center wavelength band, and the wavelength region is 400 nm to 700 nm (center wavelength ⁇ 0 is 550 nm), but the present invention is not limited to this.
  • the center wavelength band can be set within a range of 200 nm to 2000 nm, and can be set as a visible light region within a range of 380 nm to 780 nm, and preferably set within a range of 400 nm to 700 nm. it can.
  • the center wavelength band can be set in a range (ultraviolet region) of 200 nm or more and 380 nm or less.
  • the central wavelength band can be set in a range (infrared region) of 780 nm or more and 2000 nm or less.
  • the center wavelength ⁇ 0 can be set as appropriate within the set wavelength band.
  • the center wavelength ⁇ 0 can be set to 550 nm. preferable.
  • Example 1 a calculation example of the optical thin film coefficient x in Example 1 is shown using the above-described formula (1).
  • the optical thin film 20 has been described as an example.
  • the present invention is not limited to this.
  • the present invention can be applied to optical thin films such as IR cut filters and UV cut filters.
  • the shift amount ⁇ R is 0.50% or less.
  • the shift amount ⁇ R may be 0.30% or less, and preferably 0.20% or less. More preferably, the shift amount ⁇ R can be set to 0.10% or less, and can also be set to 0.070% or less.
  • the shift amount ⁇ R is 0.30% or less.
  • the shift amount ⁇ R may be 0.20% or less, and preferably 0.15% or less. More preferably, the shift amount ⁇ R can be set to 0.10% or less, and can also be set to 0.070% or less.
  • the following conditions and apparatus were used for the film density of the aluminum oxide layer 21 formed to have a physical film thickness of 89 nm on the flat glass substrate 10 under the film forming conditions of Example 1 described above. Measured.
  • the film density was measured by a high-resolution Rutherford backscattering analysis method using a high-resolution RBS (Rutherford Backscattering Spectrometry) analyzer (manufactured by Kobe Steel, Ltd.).
  • RBS Rutherford Backscattering Spectrometry
  • the film density was 2.93 g / cm 3 .
  • the aluminum oxide layer is provided in the first layer, but the present invention is not limited thereto.
  • the aluminum oxide layer can be disposed in any of the second to mth layers.
  • the present invention is not limited to this.
  • Two aluminum oxide layers may be provided on the second and fourth layers, or four or more layers may be provided.
  • the aluminum oxide layer can be provided continuously with the second and third layers, for example.
  • the optical element 1 includes an optical thin film 20 as shown in FIGS. 1 and 4.
  • the optical thin film 20 includes an aluminum oxide layer 21 having an optical thin film coefficient in the range of 0.010 or more and 2.00 or less defined based on the optical film thickness nd and the center wavelength ⁇ 0.
  • the shift amount ⁇ R between the first reflectance R1 at normal temperature and the second reflectance R2 at the time of heating is 0.50% or less at the same wavelength in the central wavelength band.
  • the optical film thickness is defined based on the refractive index n and the physical film thickness d, and the refractive index n is in the range of 1.64 to 1.70.
  • the physical film thickness d is in the range of not less than 8.0 nm and not more than 500.0 nm.
  • the optical thin film 20 is a single layer film composed of the aluminum oxide layer 21, and the shift amount ⁇ R is 0.10% or less.
  • the optical thin film 20 is a multilayer film 21 to 28 formed by laminating a plurality of film forming materials, and the multilayer films 21 to 28) are silicon oxide layers formed of silicon oxide ( 22, 24, 26) and a tantalum oxide layer (23, 25, 27) formed of tantalum oxide.
  • the optical thin film 20 has a multilayer structure in which multilayer films (21 to 28) are laminated as shown in FIG.
  • the first layer 21 disposed on the surface 5 and in contact with the optical surface 5 of the multilayer films (21 to 28) is formed by a film forming process for depositing film constituting particles with an ion energy of 10 eV or more.
  • the aluminum oxide layer 21 has a relationship between the wavelength of light and the reflectance of light in a wavelength region of 400 nm to 700 nm before and after heat treatment up to a predetermined temperature at which moisture can be removed. It has a film structure in which the maximum change in light reflectance is 0.50% or less.
  • the aluminum oxide layer 21 has a refractive index n of 1.64 or more and 1.70 or less.
  • the multilayer films (21 to 28) include, in addition to the aluminum oxide layer 21, a low refractive index material layer (22, 24, and 26) and a high refractive index material layer (23, 25, and 27) and a repeating structure portion alternately stacked.
  • the optical surface 5 of the element substrate 10 is coated with an optical thin film 20, and the optical thin film 20 is formed of a multilayer film (21 to 28).
  • the first layer 21 on the side in contact with the optical surface 5 of the multilayer films (21 to 28) is deposited by a film forming process in which film constituent particles are deposited with an ion energy of 10 eV or more.
  • the aluminum oxide layer 21 is formed, and the aluminum oxide layer 21 has a wavelength of 400 nm to 700 nm before and after heat treatment up to a predetermined temperature at which moisture can be removed with respect to the relationship between the wavelength of light and the reflectance of light. It has a film structure in which the maximum change in the reflectance of light in the region is 0.50% or less.
  • the optical element 1 is made of an optical glass lens.
  • the method of manufacturing the optical thin film 20 according to the embodiment of the present invention has a multilayer structure in which multilayer films (21 to 27) are laminated, and the element base material of the optical element 1 10 is a method of manufacturing an optical thin film 20 that is used by being disposed on the optical surface 5, and an aluminum oxide layer 21 is used as the first layer 21 on the side in contact with the optical surface 5 of the multilayer films (21 to 27).
  • the film structure is such that the maximum change in the reflectance of light in the wavelength region of 400 nm to 700 nm is 0.50% or less before and after heat treatment up to a predetermined temperature at which moisture can be removed. ing.
  • the manufacturing method of the optical element 1 according to the embodiment of the present invention is a manufacturing method of the optical element 1 in which the optical surface 5 of the element base 10 is coated with an optical thin film 20 as shown in FIG.
  • the aluminum oxide layer 21 formed in the single-layer film forming step has a relationship between the wavelength of light and the reflectance of light in a wavelength region of 400 nm to 700 nm before and after heat treatment up to a predetermined temperature at which moisture can be removed. Kicking the maximum value of the change in reflectance of the light is 0.50% or less, and has a film structure.

Abstract

An optical element (1) is provided with an optical film (20). The optical film (20) is provided with an aluminum oxide layer (21) which comprises aluminum oxide as the main component and which has an optical film factor (x) of 0.010 to 2.00 as defined on the basis of optical thickness (nd) and central wavelength (λ0). Further, the optical film (20) exhibits a shift of 0.50 % or less between the first reflectance (R1) at ordinary temperature and the second reflectance (R2) at the time of heating, both reflectances being measured at the same wavelength in the central wavelength bandwidth.

Description

光学素子Optical element
 本発明は、光学素子に関する。 The present invention relates to an optical element.
 光学ガラスレンズ等の光学素子は、所望の光学特性を得るために、光学面となる表面が光学薄膜によってコーティング(coating)される。光学薄膜としては、近年、単層膜、又は、多層膜のものが知られ、酸化アルミニウム(Al)層を含む多層構造の光学薄膜が用いられることがある(例えば特許文献1参照)。 An optical element such as an optical glass lens is coated with an optical thin film on the surface to be an optical surface in order to obtain desired optical characteristics. As an optical thin film, a single-layer film or a multilayer film is known in recent years, and an optical thin film having a multilayer structure including an aluminum oxide (Al 2 O 3 ) layer may be used (see, for example, Patent Document 1). .
特開平9-159803号公報JP-A-9-159803
 しかしながら、酸化アルミニウム層を含む光学薄膜は、光学素子の光学面をコーティングした場合に、光学素子の表面に色ムラが発生することがある。この色ムラは、光学面の面内における光学薄膜の膜質(膜の屈折率や膜密度など)が局所的に不均一になることから生じる。色ムラの発生は、光学薄膜の光学特性(例えば反射率やコート色品質(色味))の不均一性による製品歩留まりを低下させる要因となる。そのため、色ムラについては、その発生を未然に防止することが望まれる。 However, the optical thin film including the aluminum oxide layer may cause uneven color on the surface of the optical element when the optical surface of the optical element is coated. This color unevenness is caused by locally non-uniform film quality (film refractive index, film density, etc.) of the optical thin film in the plane of the optical surface. Occurrence of color unevenness is a factor that lowers the product yield due to non-uniformity of optical characteristics (for example, reflectance and coat color quality (color)) of the optical thin film. Therefore, it is desired to prevent the occurrence of color unevenness.
 この発明の目的は、酸化アルミニウム層を含む光学薄膜であっても、色ムラが発生することのない均一かつ緻密な膜質の光学薄膜を備えた光学素子を提供することである。 An object of the present invention is to provide an optical element provided with an optical thin film having a uniform and dense film quality in which color unevenness does not occur even if the optical thin film includes an aluminum oxide layer.
 本発明は、上記目的を達成するために案出されたものである。
 上記目的達成のために、本願発明者らは、先ず、色ムラの発生要因について検討した。その結果、色ムラの発生は、酸化アルミニウム層が、成膜中または成膜後に水分等を取り込んでしまうことが原因である。このことは、詳細を後述するシフト量(波長シフト、換言すれば、常温時と加熱時の分光特性の変化量)についての検証結果からも明らかと言える。
The present invention has been devised to achieve the above object.
In order to achieve the above object, the inventors of the present application first examined the cause of color unevenness. As a result, color unevenness is caused by the aluminum oxide layer taking in moisture or the like during or after film formation. This can be said to be clear from the verification result of the shift amount (the wavelength shift, in other words, the change amount of the spectral characteristics at normal temperature and at the time of heating) whose details will be described later.
 そして、このような知見に基づき、本願発明者らは、さらに鋭意検討を重ねた結果、均一かつ緻密な膜質の酸化アルミニウム層を実現できれば、色ムラの発生要因となる水分等の取り込みを防止できるのではないかとの着想を得た。 Based on such knowledge, the inventors of the present application have made further studies and as a result, if an aluminum oxide layer having a uniform and dense film quality can be realized, it is possible to prevent the intake of moisture and the like that cause color unevenness. I got the idea that it might be.
 本発明は、上述した本願発明者らによる新たな知見および着想に基づいてなされたものである。つまり、本願発明者らは、上述した新たな知見および着想に基づき、以下に述べる課題解決手段に想到した。 The present invention has been made based on the above-described new knowledge and idea by the present inventors. That is, the inventors of the present application have arrived at the problem solving means described below based on the above-described new knowledge and idea.
 本発明の一形態に係る光学素子は、光学薄膜を備えている。光学薄膜は、酸化アルミニウムを主成分とし、光学的膜厚及び中心波長に基づいて規定される、0.010以上2.00以下の範囲の光学薄膜係数を有する酸化アルミニウム層を備え、中心波長帯域の同一波長において、常温時における第1の反射率と、加熱時における第2の反射率とのシフト量が0.50%以下である。 An optical element according to an embodiment of the present invention includes an optical thin film. The optical thin film includes an aluminum oxide layer having an optical thin film coefficient in a range of 0.010 or more and 2.00 or less, which is defined on the basis of an optical film thickness and a center wavelength. In the same wavelength, the shift amount between the first reflectance at normal temperature and the second reflectance at heating is 0.50% or less.
 本発明によれば、酸化アルミニウム層を含む光学薄膜であっても、色ムラが発生することのない均一かつ緻密な膜質の光学薄膜を備える光学素子を得ることができる。 According to the present invention, even an optical thin film including an aluminum oxide layer can provide an optical element including an optical thin film having a uniform and fine film quality that does not cause color unevenness.
本発明の実施形態1が適用された光学素子の構成例を示す要部断面図である。It is principal part sectional drawing which shows the structural example of the optical element to which Embodiment 1 of this invention was applied. 本発明の実施例1における光学薄膜(酸化アルミニウム層)の光の波長と光の反射率との関係の一具体例を二次元座標平面上にプロットした説明図である。It is explanatory drawing which plotted on the two-dimensional coordinate plane the specific example of the relationship between the wavelength of the light of the optical thin film (aluminum oxide layer) in Example 1 of this invention, and the reflectance of light. 本発明の実施例1との比較対象となる比較例1についての説明図である。It is explanatory drawing about the comparative example 1 used as the comparison object with Example 1 of this invention. 本発明の実施形態2が適用された光学素子の構成例を示す要部断面図である。It is principal part sectional drawing which shows the structural example of the optical element to which Embodiment 2 of this invention was applied. 本発明の実施例2における光学薄膜の光の波長と光の反射率との関係の一具体例を二次元座標平面上にプロットした説明図である。It is explanatory drawing which plotted on the two-dimensional coordinate plane the specific example of the relationship between the wavelength of the light of the optical thin film in Example 2 of this invention, and the reflectance of light. 本発明の実施例2との比較対象となる比較例2についての説明図である。It is explanatory drawing about the comparative example 2 used as the comparison object with Example 2 of this invention. 本発明の実施例3における光学薄膜の光の波長と光の反射率との関係の一具体例を二次元座標平面上にプロットした説明図である。It is explanatory drawing which plotted on the two-dimensional coordinate plane one specific example of the relationship between the wavelength of the light of the optical thin film in Example 3 of this invention, and the reflectance of light. 本発明の実施例4における光学薄膜の光の波長と光の反射率との関係の一具体例を二次元座標平面上にプロットした説明図である。It is explanatory drawing which plotted on the two-dimensional coordinate plane one specific example of the relationship between the wavelength of the light of the optical thin film in Example 4 of this invention, and the reflectance of light. 本発明の実施例5における光学薄膜の光の波長と光の反射率との関係の一具体例を二次元座標平面上にプロットした説明図である。It is explanatory drawing which plotted on the two-dimensional coordinate plane one specific example of the relationship between the wavelength of the light of the optical thin film in Example 5 of this invention, and the reflectance of light.
 以下、本発明の実施形態1及び2を図面に基づいて説明する。
 ここでは、各実施形態について、以下の順序で項分けをして説明を行う。
 1.光学素子の全体構成
 2.光学薄膜の構成
 3.成膜手順
Embodiments 1 and 2 of the present invention will be described below with reference to the drawings.
Here, each embodiment will be described in the following order.
1. 1. Overall configuration of optical element 2. Configuration of optical thin film Deposition procedure
 また、実施形態1及び2について、共通に下記の説明をする。
 4.実施形態1及び2の効果
 5.変形例
In addition, the following description is common to the first and second embodiments.
4). 4. Effects of Embodiments 1 and 2 Modified example
 実施形態1では、光学素子の光学面上に構成された光学薄膜が、単層膜により構成されている。また、後述の実施形態2では、光学素子の光学面上に構成された光学薄膜が、多層膜により構成されている。 In Embodiment 1, the optical thin film formed on the optical surface of the optical element is formed of a single layer film. In Embodiment 2 described later, the optical thin film formed on the optical surface of the optical element is formed of a multilayer film.
 また、以下の実施形態において、中心波長帯域を、可視光の波長帯域を一例に挙げ、波長領域を400nm以上700nm以下、中心波長λを550nmとして説明する。また、光学薄膜係数は、0.010~2.00の範囲を取り得るものとして説明する。なお、波長領域以外の数値に関する記載において、特段の断りがない限り、「数値~数値」は、両端の値を含む。 In the following embodiments, the center wavelength band will be described by taking the wavelength band of visible light as an example, the wavelength region is 400 nm to 700 nm, and the center wavelength λ 0 is 550 nm. In the following description, the optical thin film coefficient can be in the range of 0.010 to 2.00. In the description regarding numerical values other than those in the wavelength region, “numerical value to numerical value” includes values at both ends unless otherwise specified.
実施形態1 Embodiment 1
<1.光学素子の全体構成>
 先ず、光学素子の全体構成について説明する。
<1. Overall configuration of optical element>
First, the overall configuration of the optical element will be described.
 光学素子とは、光(特に可視光)に対して何らかの光学的な処理を行う素子であり、具体的にはレンズ、プリズム、ミラー、フィルター、ライトガイド、回折素子等の光学デバイスが該当する。 An optical element is an element that performs some kind of optical processing on light (particularly visible light), and specifically includes optical devices such as lenses, prisms, mirrors, filters, light guides, and diffraction elements.
 図1は、本発明が適用された光学素子の構成例を示す要部断面図である。
 図1に示すように光学素子1は、素子基材である光学素子基材10の光学面5が、光学薄膜20によってコーティングされている。
FIG. 1 is a cross-sectional view of an essential part showing a configuration example of an optical element to which the present invention is applied.
As shown in FIG. 1, in the optical element 1, an optical surface 5 of an optical element substrate 10 that is an element substrate is coated with an optical thin film 20.
 光学素子基材10は、光学ガラス材からなり、光学素子基材10の表面に光学面5となる、球面または非球面、平面、回折格子などの光学機能面が形成されている。また、光学素子基材10の光学ガラス材として、例えば、M-TAFD305、M-LAC130、M-BACD12、M-FDS2、M-FD80、M-TAFD307、M-FCD1、M-FCD500、M-PCD4、M-TAF101、E-FDS1、E-FDS2、TAFD30、TAFD35、TAF1、FCD100、FCD505、BACD5(HOYA株式会社製)などを用いることができる。 The optical element substrate 10 is made of an optical glass material, and an optical functional surface such as a spherical surface, an aspherical surface, a plane, or a diffraction grating is formed on the surface of the optical element substrate 10 as an optical surface 5. Further, as the optical glass material of the optical element substrate 10, for example, M-TAFD305, M-LAC130, M-BACD12, M-FDS2, M-FD80, M-TAFD307, M-FCD1, M-FCD500, M-PCD4 M-TAF101, E-FDS1, E-FDS2, TAFD30, TAFD35, TAF1, FCD100, FCD505, BACD5 (manufactured by HOYA Corporation) and the like can be used.
<2.光学薄膜の構成>
 次に、光学素子1の光学素子基材10の光学面5に形成される光学薄膜20について説明する。
<2. Configuration of optical thin film>
Next, the optical thin film 20 formed on the optical surface 5 of the optical element substrate 10 of the optical element 1 will be described.
 光学薄膜20は、光学素子1の光学作用(光学特性)を補助する機能を有し、具体的にはレンズ表面での光の反射を低減(防止)させる機能を有する。 The optical thin film 20 has a function of assisting the optical action (optical characteristics) of the optical element 1, and specifically has a function of reducing (preventing) reflection of light on the lens surface.
 光学素子基材10の光学面5に接する側に位置する層は、酸化アルミニウム(アルミナ)によって形成された層(以下、「酸化アルミニウム層」という。)21である。ただし、本実施形態1において酸化アルミニウム層21は、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理によって形成される。具体的には、後述するイオンビームアシスト蒸着(Ion-beam Assisted Deposition、以下「IAD」と略す)を用いる。この酸化アルミニウム層21は、光学薄膜20として用いると、光の波長と光の反射率との関係について、水分を除去可能な所定温度までの加熱処理の前後で、400nm以上700nm以下の波長領域における光の反射率の変化の最大値が0.50%以下となる膜構造を有する。 The layer located on the side in contact with the optical surface 5 of the optical element substrate 10 is a layer (hereinafter referred to as “aluminum oxide layer”) 21 formed of aluminum oxide (alumina). However, in the first embodiment, the aluminum oxide layer 21 is formed by a film forming process in which film constituent particles are deposited with ion energy of 10 eV or more. Specifically, ion beam assisted deposition (Ion-beam Assisted Deposition, hereinafter referred to as “IAD”), which will be described later, is used. When this aluminum oxide layer 21 is used as the optical thin film 20, the relationship between the wavelength of light and the reflectance of light is measured in a wavelength region of 400 nm to 700 nm before and after heat treatment up to a predetermined temperature at which moisture can be removed. It has a film structure in which the maximum change in light reflectance is 0.50% or less.
 ここで、「加熱処理の前」とは、光学薄膜20を加熱する前(つまり、光学薄膜20が常温時である場合)を示し、「加熱処理の後」とは、光学薄膜20を加熱しているときの加熱時を示す。また、「光の反射率の変化の最大値」とは、400nm以上700nm以下の波長領域の同一波長において、常温時における第1の反射率R1と、加熱時における第2の反射率R2との差の絶対値(以下、シフト量ΔR(=|R1-R2|)と記載する)を示す。 Here, “before the heat treatment” means before the optical thin film 20 is heated (that is, when the optical thin film 20 is at room temperature), and “after the heat treatment” means that the optical thin film 20 is heated. The heating time is shown. In addition, the “maximum change in light reflectance” refers to the first reflectance R1 at normal temperature and the second reflectance R2 at heating at the same wavelength in the wavelength region of 400 nm to 700 nm. An absolute value of the difference (hereinafter referred to as a shift amount ΔR (= | R1-R2 |)) is shown.
 また、本実施形態の好ましい態様として、酸化アルミニウム層21は、400nm以上700nm以下の波長領域の同一波長において、常温時における第1の反射率R1と、加熱時における第2の反射率R2とのシフト量ΔRが0.30%以下となる膜構造を有する。なお、以下の説明においては、常温時とは、25℃を意味し、加熱時とは、一例として、150℃に加熱したときを意味する。 Moreover, as a preferable aspect of the present embodiment, the aluminum oxide layer 21 has a first reflectance R1 at a normal temperature and a second reflectance R2 at the time of heating at the same wavelength in a wavelength region of 400 nm to 700 nm. The film structure has a shift amount ΔR of 0.30% or less. In the following description, “normal temperature” means 25 ° C., and “heating” means, for example, the case of heating to 150 ° C.
 また、本実施形態の態様として、酸化アルミニウム層21の屈折率nが1.64以上1.70以下となっている。なお、酸化アルミニウム層21を形成する成膜手順、酸化アルミニウム層21の層構造等については、その詳細を後述する。 Further, as an aspect of this embodiment, the refractive index n of the aluminum oxide layer 21 is 1.64 or more and 1.70 or less. The details of the film forming procedure for forming the aluminum oxide layer 21 and the layer structure of the aluminum oxide layer 21 will be described later.
<3.成膜手順>
 次に、上述した構成の光学薄膜20の成膜手順について説明する。
 光学薄膜20は、光学素子1の光学素子基材10の光学面5上に、薄膜成粒子を成膜させることによって形成する。
<3. Deposition procedure>
Next, a film forming procedure of the optical thin film 20 having the above-described configuration will be described.
The optical thin film 20 is formed by depositing thin film particles on the optical surface 5 of the optical element substrate 10 of the optical element 1.
(成膜工程)
 酸化アルミニウム層21を形成する成膜工程について、詳しく説明する。
(Film formation process)
The film forming process for forming the aluminum oxide layer 21 will be described in detail.
(酸化アルミニウム層の成膜手法)
 本実施形態1の成膜工程では、酸化アルミニウム層21は、イオンビームアシスト蒸着(Ion-beam Assisted Deposition、以下「IAD」と略す)を用いて、10eV以上のイオンエネルギーで膜構成粒子を光学素子基材10の光学面5上に堆積させる成膜処理により形成される。
(Aluminum oxide layer deposition method)
In the film forming process of the first embodiment, the aluminum oxide layer 21 is formed by using ion beam assisted deposition (hereinafter, abbreviated as “IAD”) to form the film-constituting particles into an optical element with an ion energy of 10 eV or more. It is formed by a film forming process for depositing on the optical surface 5 of the substrate 10.
 ここで、IADは、真空蒸着中にイオン銃でガスイオン(および中和のための同量の電子)を被成膜物に対して照射し、その運動エネルギーを利用しつつ、膜構成粒子を堆積させる成膜処理である。このようなIADによれば、照射するイオンエネルギーを大きくすることができ、均一かつ緻密な膜質の膜を得ることができる。なお、ここで、光学薄膜20が、酸化アルミニウム層1層から形成される場合における「均一かつ緻密な膜質」とは、光の波長と光の反射率との関係について、水分を除去可能な所定温度までの加熱処理の前後で、400nm~700nmの波長領域における光の反射率の変化の最大値が0.50%以下となる膜構造を有しているものと定義する。また、光学薄膜20が、酸化アルミニウム層を含む多層膜から形成される場合における「均一かつ緻密な膜質」とは、400nm以上700nm以下の波長領域の同一波長において、常温時における第1の反射率R1と、加熱時における第2の反射率R2とのシフト量ΔRが0.30%となる膜構造を有しているものと定義する。なお、ここでいう「均一かつ緻密な膜質」を有する膜であれば、色ムラは発生しない。 Here, the IAD irradiates the film-forming object with gas ions (and the same amount of electrons for neutralization) with an ion gun during vacuum deposition, and uses the kinetic energy to This is a film forming process to be deposited. According to such IAD, the ion energy to be irradiated can be increased, and a uniform and dense film quality film can be obtained. Here, the “uniform and dense film quality” in the case where the optical thin film 20 is formed of one aluminum oxide layer is a predetermined value that can remove moisture with respect to the relationship between the wavelength of light and the reflectance of light. It is defined as having a film structure in which the maximum value of the change in the reflectance of light in the wavelength region of 400 nm to 700 nm is 0.50% or less before and after the heat treatment up to the temperature. The “uniform and dense film quality” in the case where the optical thin film 20 is formed from a multilayer film including an aluminum oxide layer is the first reflectance at normal temperature in the same wavelength region of 400 nm to 700 nm. It is defined as having a film structure in which the shift amount ΔR between R1 and the second reflectance R2 during heating is 0.30%. Note that color unevenness does not occur if the film has the “uniform and dense film quality” referred to here.
(酸化アルミニウム層の成膜条件)
 本実施形態1の成膜工程におけるIADの成膜条件は、以下の通りである。
(Conditions for aluminum oxide layer formation)
The IAD film forming conditions in the film forming process of the first embodiment are as follows.
 例えば、IADに用いるイオン銃が熱電子励起型イオン銃の場合には、成膜処理室内の導入ガスとして酸素とアルゴンの混合ガスを用いるとともに、その導入ガス流量については、酸素:0~200SCCM(Standard Cubic Centimeter per Minutes)およびアルゴン:0~200SCCMの少なくとも何れか一方を0SCCMより多くする。イオン銃の出力については、イオン銃のフィラメントに印加する電圧、および、電流をそれぞれフィラメント電圧:10~100V、フィラメント電流:15~150Aとする。さらに、イオン銃のアノードに印加する電圧、および、電流をそれぞれアノード電圧:10~500V、アノード電流1~30Aとする。また、成膜レートについては、0.01~1.50nm/secにする。 For example, when the ion gun used for IAD is a thermionic excitation type ion gun, a mixed gas of oxygen and argon is used as the introduction gas in the film forming chamber, and the introduction gas flow rate is set to oxygen: 0 to 200 SCCM ( Standard Cubic Centimeter per Minutes) and Argon: At least one of 0 to 200 SCCM is increased from 0 SCCM. Regarding the output of the ion gun, the voltage and current applied to the filament of the ion gun are set to filament voltage: 10 to 100 V and filament current: 15 to 150 A, respectively. Furthermore, the voltage and current applied to the anode of the ion gun are set to an anode voltage of 10 to 500 V and an anode current of 1 to 30 A, respectively. The film forming rate is set to 0.01 to 1.50 nm / sec.
 本実施形態1においては、熱電子励起型のイオン銃を備える薄膜形成装置を使用している(不図示)。この熱電子励起型のイオン銃は、イオン銃を構成する熱電子発生部材であるフィラメントの本数を増やすことにより、10eV以上のイオンエネルギーで膜構成粒子を堆積させ、均一かつ緻密な膜質の層を形成することができる。 In the first embodiment, a thin film forming apparatus including a thermionic excitation type ion gun is used (not shown). In this thermoelectron excitation type ion gun, by increasing the number of filaments that are thermoelectron generating members constituting the ion gun, film-constituting particles are deposited with ion energy of 10 eV or more, and a uniform and dense film quality layer is formed. Can be formed.
 また、例えば、IADに用いるイオン銃が高周波(RF)励起型イオン銃の場合には、イオン銃の出力については、イオン銃の加速電極に印加する電圧、および、電流をそれぞれ加速電圧:10~1500V、加速電流:10~1500mAとする。なお、加速電極に対しては、電極およびアース間を+に印加する。また、イオン銃のサプレッサー電極に印加する電圧、および、電流をそれぞれサプレッサー電圧:0~1000V、サプレッサー電流:10~100mAとする。なお、サプレッサーに対しては、電極およびアース間を-に印加する。また、そのほかは、上述した熱電子イオン銃の場合と同じ条件である。 Further, for example, when the ion gun used for IAD is a radio frequency (RF) excitation type ion gun, the output of the ion gun includes the voltage applied to the acceleration electrode of the ion gun, and the current with an acceleration voltage of 10 to 1500 V, acceleration current: 10 to 1500 mA. For the acceleration electrode, a positive voltage is applied between the electrode and the ground. The voltage and current applied to the suppressor electrode of the ion gun are set to suppressor voltage: 0 to 1000 V and suppressor current: 10 to 100 mA, respectively. For suppressors, a voltage between the electrode and ground is applied to-. Other conditions are the same as in the case of the above-described thermionic ion gun.
(酸化アルミニウム層の膜質)
 このような条件で成膜すると、光学素子基材10の光学面5には、10eV以上(具体的には、例えば1000eV程度)のイオンエネルギーで酸化アルミニウム層21の膜構成粒子が堆積される。そのため、光学素子基材10の光学面5上には、均一かつ緻密な膜質の酸化アルミニウム層21が形成される。
(Film quality of aluminum oxide layer)
When film formation is performed under such conditions, film constituent particles of the aluminum oxide layer 21 are deposited on the optical surface 5 of the optical element substrate 10 with ion energy of 10 eV or more (specifically, for example, about 1000 eV). Therefore, a uniform and dense film-like aluminum oxide layer 21 is formed on the optical surface 5 of the optical element substrate 10.
 次に、実施例を挙げて、本発明の実施形態を具体的に説明する。ただし、本発明が、以下の実施例に限定されないことは勿論である。 Next, the embodiment of the present invention will be specifically described with reference to examples. However, it is needless to say that the present invention is not limited to the following examples.
 また、層を構成する酸化物膜は、所望の膜質であればよく、その組成は特に限定されるものではない。酸化アルミニウム膜の組成については、化学量論組成である酸化アルミニウム(Al)を含むものが安定であるため、以下の説明においてはAl層として記載するが、Alに限定されるものではなく、組成をAlとした場合、例えば、y/x=1~2程度のものが存在していてもよい。以下で説明される酸化珪素膜、酸化タンタル膜などの各種酸化物膜についても同様のことが言える。 Moreover, the oxide film which comprises a layer should just be desired film quality, and the composition is not specifically limited. The composition of the aluminum oxide film, those containing aluminum oxide which is stoichiometric composition (Al 2 O 3) is a stable, although described as the Al 2 O 3 layer in the following description, Al 2 O 3 When the composition is Al x O y , for example, y / x = 1 to 2 may be present. The same applies to various oxide films such as a silicon oxide film and a tantalum oxide film described below.
 また、以下の説明において、層の番号は、レンズ基板10の光学面5側から順に付す。また、各層の屈折率をn、物理的膜厚をd、光学的膜厚をnd、光学薄膜係数をx、中心波長をλと、それぞれ示す。なお、光学的膜厚ndは、屈折率nと物理的膜厚dとの積で表される。 In the following description, the layer numbers are assigned in order from the optical surface 5 side of the lens substrate 10. Further, the refractive index of each layer is n, the physical film thickness is d, the optical film thickness is nd, the optical thin film coefficient is x, and the center wavelength is λ 0 . The optical film thickness nd is represented by the product of the refractive index n and the physical film thickness d.
 なお、光学薄膜係数xは、次式(1)により表され、光学的膜厚nd及び中心波長λに基づいて規定される。
 光学薄膜係数x = nd×(1/(λ/4))・・・式(1)
The optical thin film coefficient x is expressed by the following equation (1) and is defined based on the optical film thickness nd and the center wavelength λ 0 .
Optical thin film coefficient x = nd × (1 / ( λ 0/4)) ··· Equation (1)
 また、光学的膜厚nd及び中心波長λに基づいて規定され、酸化アルミニウムを主成分とする酸化アルミニウム層の光学薄膜係数xは、0.010以上2.000以下の範囲で設定される。また、中心波長λは、550nmとして説明するが、500nm、1000nmや2000nmなどに設定することができる。また、酸化アルミニウム層の物理的膜厚dは、8.0nm以上500.0nm以下の範囲で設定することができる。なお、上記式(1)及び以下の説明において、中心波長λを除する値として、「4」を用いているが、これに限られない。例えば、「2」や「6」などの整数とすることができる。 Further, the optical thin film coefficient x of the aluminum oxide layer which is defined based on the optical film thickness nd and the center wavelength λ 0 and contains aluminum oxide as a main component is set in the range of 0.010 or more and 2.000 or less. The center wavelength λ 0 is described as 550 nm, but can be set to 500 nm, 1000 nm, 2000 nm, or the like. The physical thickness d of the aluminum oxide layer can be set in the range of 8.0 nm or more and 500.0 nm or less. In the above formula (1) and the following description, “4” is used as a value for dividing the center wavelength λ 0 , but is not limited thereto. For example, it can be an integer such as “2” or “6”.
(実施例1)
 具体的に、実施例1では、以下のような光学薄膜20を形成した。
 表1は、実施例1に係る光学薄膜20の膜構成を示している。また、表2は、実施例1に係る光学薄膜20の膜形成条件を示している。
Example 1
Specifically, in Example 1, the following optical thin film 20 was formed.
Table 1 shows the film configuration of the optical thin film 20 according to Example 1. Table 2 shows film forming conditions of the optical thin film 20 according to the first embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 光学素子基材10は、ガラスモールドレンズ用硝種であるM-TAFD305(HOYA株式会社製)を用いた。そして、その光学素子基材10の光学面5上には、単層構造の光学薄膜20を形成した。光学薄膜20は、物理的膜厚92.91nmのAl層21である。 As the optical element substrate 10, M-TAFD305 (manufactured by HOYA Co., Ltd.), which is a glass mold lens glass type, was used. An optical thin film 20 having a single layer structure was formed on the optical surface 5 of the optical element substrate 10. The optical thin film 20 is an Al 2 O 3 layer 21 having a physical film thickness of 92.91 nm.
 Al層21は、90eVのイオンエネルギーで膜構成粒子を堆積させるべく、以下のような成膜条件で成膜処理した。すなわち、Al層21を成膜する成膜工程では、イオン銃として熱電子励起型イオン銃を用い、アノードに印加する電圧、および、電流をそれぞれアノード電圧:90V、アノード電流:15Aとした。また、フィラメントに印加する電圧、および、電流をそれぞれフィラメント電圧:55V、フィラメント電流:90Aとした。また、成膜処理室内の導入ガスとして酸素(O)とアルゴン(Ar)の混合ガスを用い、Oのガス流量を35SCCM、Arのガス流量を5SCCMとした。また、成膜処理対象物である光学素子基材10の温度を250℃とした。また、Alの蒸発速度(成膜レート)を0.10nm/secとした。 The Al 2 O 3 layer 21 was subjected to film formation under the following film formation conditions in order to deposit film constituent particles with an ion energy of 90 eV. That is, in the film forming process for forming the Al 2 O 3 layer 21, a thermoelectron excitation type ion gun is used as the ion gun, and the voltage applied to the anode and the current are set to an anode voltage of 90 V and an anode current of 15 A, respectively. did. The voltage and current applied to the filament were filament voltage: 55 V and filament current: 90 A, respectively. Further, a mixed gas of oxygen (O 2 ) and argon (Ar) was used as the introduced gas in the film formation chamber, the O 2 gas flow rate was set to 35 SCCM, and the Ar gas flow rate was set to 5 SCCM. Moreover, the temperature of the optical element base material 10 which is a film formation target was set to 250 ° C. The evaporation rate (film formation rate) of Al 2 O 3 was set to 0.10 nm / sec.
 以上のような成膜条件で光学薄膜20(酸化アルミニウム層21により構成される単層膜)について、光の波長と光の反射率との関係を測定したところ、図2に示す結果が得られた。 When the relationship between the wavelength of light and the reflectance of light was measured for the optical thin film 20 (single layer film composed of the aluminum oxide layer 21) under the above film forming conditions, the result shown in FIG. 2 was obtained. It was.
 図2は、実施例1における光学薄膜20(酸化アルミニウム層21)の光の波長と光の反射率との関係を二次元座標平面上にプロットした説明図である。図2では、酸化アルミニウム層21に対して、常温時、及び、水分を除去可能な所定温度の一例である150℃まで加熱している時のそれぞれについて、光の波長と光の反射率との関係を、横軸が光の波長(単位:nm)、縦軸が光の反射率(単位:%)である二次元座標平面上にプロットしている。 FIG. 2 is an explanatory diagram in which the relationship between the light wavelength and the light reflectance of the optical thin film 20 (aluminum oxide layer 21) in Example 1 is plotted on a two-dimensional coordinate plane. In FIG. 2, the wavelength of light and the reflectance of light for the aluminum oxide layer 21 at room temperature and when heated to 150 ° C., which is an example of a predetermined temperature at which moisture can be removed, are shown. The relationship is plotted on a two-dimensional coordinate plane in which the horizontal axis is the wavelength of light (unit: nm) and the vertical axis is the reflectance of light (unit:%).
 なお、図2は、本実施形態1で説明した条件でIADを行って得られた酸化アルミニウム層21について、光の波長と反射率との関係の一具体例を示している。また、図2の一部拡大図では、反射率R1及びR2は、所定の同一波長における常温時の反射率と加熱時の反射率をそれぞれ示している。 FIG. 2 shows a specific example of the relationship between the wavelength of light and the reflectance of the aluminum oxide layer 21 obtained by performing IAD under the conditions described in the first embodiment. In the partially enlarged view of FIG. 2, the reflectances R1 and R2 indicate the reflectance at normal temperature and the reflectance at the time of heating, respectively, at a predetermined wavelength.
 また、表3は、表3の左側5列に図2における波長400nm、500nm、600nm、700nmにおける(A)常温時における反射率R1と、(B)加熱時における反射率R2と、シフト量ΔR(常温時における反射率R1と加熱時における反射率R2との差を絶対値で表したもの)を示している。また、表3の右側2列に図2における波長400nm~700nmの最大シフト量ΔRmax及び最小シフト量ΔRminと、ΔRmax及びΔRminのときの波長をそれぞれ示している。 Table 3 shows (A) reflectivity R1 at room temperature, (B) reflectivity R2 at heating, and shift amount ΔR at the wavelengths 400 nm, 500 nm, 600 nm, and 700 nm in FIG. (A difference between the reflectance R1 at normal temperature and the reflectance R2 at the time of heating is expressed in absolute value). Further, the two right-hand columns of Table 3 show the maximum shift amount ΔRmax and minimum shift amount ΔRmin at wavelengths of 400 nm to 700 nm in FIG. 2 and the wavelengths at ΔRmax and ΔRmin, respectively.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図2,表3に示した内容からも明らかなように、酸化アルミニウム層21は、光の波長と反射率との関係についての二次元座標平面上へのプロット位置が、常温時と加熱時とではほとんど変化していないことがわかる。つまり、それぞれのプロット位置が重なる程に近寄っており、常温時と加熱時とで反射率の変化が極めて小さいことがわかる。 As is apparent from the contents shown in FIGS. 2 and 3, the aluminum oxide layer 21 has a plot position on the two-dimensional coordinate plane regarding the relationship between the wavelength of light and the reflectance at normal temperature and when heated. It turns out that there is almost no change. In other words, the plot positions are closer to each other, and it can be seen that the change in reflectance is extremely small between room temperature and heating.
 図2における常温時と加熱時での反射率のシフト(変化)量ΔRは、具体的には以下のとおりである。 Referring to FIG. 2, the reflectance shift amount ΔR at normal temperature and during heating is specifically as follows.
 可視域である400nm以上700nm以下の波長帯域において、反射率のシフト(変化)量ΔRは、波長が415nmのときが最も大きい。そして、常温時の反射率R1が6.893%であるのに対して、加熱時の反射率R2が6.951%であり、その差(常温時と加熱時の反射率のシフト量ΔR)が0.058%となっている。また、シフト量ΔRが最も小さいのは、波長が433nm、665nmおよび666nmのときで、シフト量ΔRが0.014%となっている。このような波長帯域においては、その他の波長についても、シフト量ΔRが最小値0.014%~最大値0.058%の範囲内に属している。つまり、400nm以上700nm以下の波長帯域において、シフト量ΔRが0.058以下であり、極めて小さく抑えられている。 In the visible wavelength range of 400 nm to 700 nm, the reflectance shift (change) amount ΔR is greatest when the wavelength is 415 nm. The reflectivity R1 at normal temperature is 6.893%, whereas the reflectivity R2 at heating is 6.951%, and the difference between them (the amount of shift ΔR in reflectivity between normal temperature and heating) Is 0.058%. The shift amount ΔR is the smallest when the wavelengths are 433 nm, 665 nm, and 666 nm, and the shift amount ΔR is 0.014%. In such a wavelength band, the shift amount ΔR also belongs to the range of the minimum value 0.014% to the maximum value 0.058% for other wavelengths. That is, in the wavelength band of 400 nm or more and 700 nm or less, the shift amount ΔR is 0.058 or less, which is extremely small.
 このように、シフト量ΔRが極めて小さいのは、酸化アルミニウム層21が均一かつ緻密な膜質を有しているからである。 Thus, the reason why the shift amount ΔR is extremely small is that the aluminum oxide layer 21 has a uniform and dense film quality.
 図2、表3に示す測定結果によれば、少なくとも可視領域である400nm以上700nm以下の波長領域において、酸化アルミニウム層21は均一かつ緻密な膜質であり、色ムラは発生しなかった。また、実施例1における光学薄膜20であれば、可視領域において十分に反射防止機能が発揮され得ると言える。なお、実施例1において形成した光学薄膜20は、酸化アルミニウム層により構成される単層膜であり、シフト量ΔRを0.10%以下にすることがより好ましい。 According to the measurement results shown in FIG. 2 and Table 3, the aluminum oxide layer 21 has a uniform and dense film quality at least in the wavelength region of 400 nm to 700 nm, which is the visible region, and no color unevenness occurred. Moreover, if it is the optical thin film 20 in Example 1, it can be said that an antireflection function can fully be exhibited in a visible region. In addition, the optical thin film 20 formed in Example 1 is a single layer film comprised by the aluminum oxide layer, and it is more preferable to make shift amount (DELTA) R into 0.10% or less.
(比較例1)
 図3は、本発明の実施例1との比較対象となる比較例1についての説明図である。また、図3は、図2に示した内容との比較のため、真空蒸着によって光学素子基材10の光学面5上に構成された酸化アルミニウム層を成膜した場合について、光の波長と反射率との関係の一具体例を示している。
 光学素子基材10には、ガラスモールドレンズ用硝種であるM-BACD12(HOYA株式会社製)を用いた。そして、その光学素子基材10の光学面5上には、単層膜からなる光学薄膜を形成した。
(Comparative Example 1)
FIG. 3 is an explanatory diagram of Comparative Example 1 that is a comparison target with Example 1 of the present invention. For comparison with the contents shown in FIG. 2, FIG. 3 shows the wavelength and reflection of light when an aluminum oxide layer formed on the optical surface 5 of the optical element substrate 10 is formed by vacuum deposition. A specific example of the relationship with the rate is shown.
As the optical element substrate 10, M-BACD12 (manufactured by HOYA Corporation), which is a glass mold lens glass type, was used. Then, an optical thin film made of a single layer film was formed on the optical surface 5 of the optical element substrate 10.
 具体的に、比較例1では、以下のような光学薄膜を形成した。
 表4は、比較例1に係る光学薄膜の膜構成を示している。また、表5は、比較例1に係る光学薄膜の膜形成条件を示している。
Specifically, in Comparative Example 1, the following optical thin film was formed.
Table 4 shows the film configuration of the optical thin film according to Comparative Example 1. Table 5 shows the film forming conditions of the optical thin film according to Comparative Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 光学薄膜は、真空蒸着によって成膜された物理的膜厚84.41nmのAl層である。また、Al層は、Alを蒸着させるべく、表5に示される成膜条件で成膜処理した。すなわち、Al層の成膜工程では、成膜処理室内の導入ガスとして酸素(O)ガスを用い、Oのガス流量を15SCCMとした。また、成膜処理対象物である光学素子基材10の温度を250℃とした。また、Alの蒸発速度(成膜レート)を0.80nm/secとした。 The optical thin film is an Al 2 O 3 layer having a physical thickness of 84.41 nm formed by vacuum deposition. The Al 2 O 3 layer was subjected to film formation under the film formation conditions shown in Table 5 in order to deposit Al 2 O 3 . That is, in the Al 2 O 3 layer deposition process, oxygen (O 2 ) gas was used as the introduced gas in the deposition process chamber, and the O 2 gas flow rate was 15 SCCM. Moreover, the temperature of the optical element base material 10 which is a film formation target was set to 250 ° C. Moreover, the evaporation rate (film formation rate) of Al 2 O 3 was set to 0.80 nm / sec.
 以上のような成膜条件で光学薄膜(酸化アルミニウム層により構成される単層膜)について、光の波長と光の反射率との関係を測定したところ、図3に示す結果が得られた。 When the relationship between the wavelength of light and the reflectance of light was measured for the optical thin film (single layer film composed of an aluminum oxide layer) under the above film forming conditions, the result shown in FIG. 3 was obtained.
 図3に示した光の波長と反射率との関係は、二次元座標平面上へのプロット位置が、常温時と加熱時とで、大きく異なっていることがわかる。図3における常温時と加熱時での反射率のシフト(変化)量は、具体的には表6及び以下のとおりである。なお、表6は、表6の左側に図3における波長400nm、500nm、600nm、700nmにおける(A)常温時における反射率R1(不図示)と、(B)加熱時における反射率R2(不図示)と、シフト量ΔR(常温時における反射率と加熱時における反射率との差を絶対値で表したもの)を示している。また、表6の一番右側の列に図3における波長400nm~700nmの最大シフト量ΔRmaxと、ΔRmaxのときの波長を示している。 3 shows that the relationship between the wavelength of light and the reflectance shown in FIG. 3 is greatly different between the plot position on the two-dimensional coordinate plane at normal temperature and when heated. Specifically, the shift (change) amount of the reflectance at normal temperature and heating in FIG. 3 is as shown in Table 6 and below. In Table 6, on the left side of Table 6, (A) reflectivity R1 (not shown) at normal temperature and (B) reflectivity R2 (not shown) at the wavelengths of 400 nm, 500 nm, 600 nm, and 700 nm in FIG. ) And the shift amount ΔR (the absolute value of the difference between the reflectance at normal temperature and the reflectance at the time of heating). The rightmost column of Table 6 shows the maximum shift amount ΔRmax at wavelengths of 400 nm to 700 nm in FIG. 3 and the wavelength at ΔRmax.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 可視域である400nm以上700nm以下の波長帯域において、反射率のシフト量ΔRは、波長が489nmおよび502nmのときが最も大きい。波長が489nmのときは、常温時の反射率が7.293%であるのに対して、加熱時の反射率が6.786%であり、その差(常温時と加熱時の反射率のシフト量ΔR)が0.507%となっている。また、波長が502nmのときは、常温時の反射率が7.349%であるのに対して、加熱時の反射率が6.842%であり、その差(常温時と加熱時での反射率のシフト量ΔR)が0.507%となっている。
 つまり、400nm以上700nm以下の波長帯域において、常温時と加熱時での反射率のシフト量ΔRは、その最大値が0.50%を超えるものとなっている。
In the visible wavelength range of 400 nm to 700 nm, the reflectance shift amount ΔR is greatest when the wavelengths are 489 nm and 502 nm. When the wavelength is 489 nm, the reflectance at normal temperature is 7.293%, whereas the reflectance at heating is 6.786%, and the difference (shift in reflectance between normal temperature and heating) The amount ΔR) is 0.507%. Further, when the wavelength is 502 nm, the reflectance at normal temperature is 7.349%, whereas the reflectance at heating is 6.842%, and the difference (reflection between normal temperature and heating) The rate shift amount ΔR) is 0.507%.
That is, in the wavelength band of 400 nm or more and 700 nm or less, the maximum amount of reflectance shift ΔR between the room temperature and the time of heating exceeds 0.50%.
 このように、真空蒸着による酸化アルミニウム層の場合、シフト量ΔRが大きいのは、形成された酸化アルミニウム層が多孔質であり、常温時(すなわち水分を除去するための処理の前)は水分等を取り込んでいるが、その加熱時には取り込んでいた水分等が除去されるためと考えられる。換言すると、シフト量ΔRの最大値が0.50%を超えるため、このような酸化アルミニウム層は、均一かつ緻密な膜質ではない。 As described above, in the case of an aluminum oxide layer formed by vacuum deposition, the shift amount ΔR is large because the formed aluminum oxide layer is porous, and moisture and the like at normal temperature (that is, before treatment for removing moisture). This is thought to be due to the removal of moisture and the like that was taken in during the heating. In other words, since the maximum value of the shift amount ΔR exceeds 0.50%, such an aluminum oxide layer is not uniform and dense film quality.
 以上に示した図2,3の内容を総合的に勘案すると、400nm以上700nm以下の波長領域における常温時と加熱時の反射率のシフト量ΔRの最大値が0.50%以下(好ましくは0.30%以下、より好ましくは0.10%以下)であれば、酸化アルミニウム層21は、均一かつ緻密な膜質であると言える。 Considering the above-described contents of FIGS. 2 and 3 comprehensively, the maximum value of the reflectance shift amount ΔR during normal temperature and heating in the wavelength region of 400 nm to 700 nm is 0.50% or less (preferably 0 .30% or less, more preferably 0.10% or less), it can be said that the aluminum oxide layer 21 has a uniform and dense film quality.
実施形態2 Embodiment 2
 次に、実施形態2を説明する。実施形態2では、上述したように、光学素子基材10の光学面5上に構成された光学薄膜20が、多層膜で構成されている。実施形態1と実施形態2とは、共通部分を多く含む。そのため、以下の実施形態2の説明では、実施形態1と異なる部分を重点的に説明する。 Next, Embodiment 2 will be described. In the second embodiment, as described above, the optical thin film 20 formed on the optical surface 5 of the optical element substrate 10 is formed of a multilayer film. The first embodiment and the second embodiment include many common parts. Therefore, in the following description of the second embodiment, parts different from the first embodiment will be mainly described.
<1.光学素子の全体構成>
 光学素子の全体構成は、実施形態1と同じである。
<1. Overall configuration of optical element>
The overall configuration of the optical element is the same as that of the first embodiment.
<2.光学薄膜の構成> <2. Configuration of optical thin film>
 次に、図4に示されている光学素子1の光学素子基材10の光学面5に形成される光学薄膜20(多層膜)の構成について説明する。図4は、本発明の実施形態2が適用された光学素子1の例として光学素子の構成例を示す要部断面図である。図4に示されている光学薄膜20は、反射防止膜機能を有するものであり、光学素子基材10は、光学ガラスレンズである。また、光学薄膜20は、反射防止機能が得られるように光学素子基材10の光学面5の側から順に形成された第1層から第8層までを含む8層構造で構成されている。なお、光学薄膜20は、8層以外のm層(mは2以上の整数)から構成されてもよい。 Next, the configuration of the optical thin film 20 (multilayer film) formed on the optical surface 5 of the optical element substrate 10 of the optical element 1 shown in FIG. 4 will be described. FIG. 4 is a cross-sectional view of an essential part showing a configuration example of an optical element as an example of the optical element 1 to which Embodiment 2 of the present invention is applied. The optical thin film 20 shown in FIG. 4 has an antireflection film function, and the optical element substrate 10 is an optical glass lens. The optical thin film 20 has an eight-layer structure including first to eighth layers formed in order from the optical surface 5 side of the optical element substrate 10 so as to obtain an antireflection function. In addition, the optical thin film 20 may be comprised from m layers (m is an integer greater than or equal to 2) other than eight layers.
(第1層)
 第1層の構成については、実施形態1と同じである。
(First layer)
The configuration of the first layer is the same as that of the first embodiment.
(第2層~第7層)
 第1層から第8層までの多層膜のうち、第1層である酸化アルミニウム層21に重ねて形成される第2層から第7層までは、低屈折率材料層と高屈折率材料層とが交互に積層された繰り返し構造部となっている。さらに詳しくは、第2層、第4層および第6層が低屈折率材料層22,24及び26となっている。また、第3層、第5層および第7層が高屈折率材料層23,25及び27となっている。低屈折率材料層22,24及び26の形成材料としては、例えば屈折率nが1.45~1.50である酸化ケイ素を用いることができる。また、高屈折率材料層23,25及び27の形成材料としては、例えば屈折率nが2.00~2.35である酸化タンタルを用いることができる。
(2nd to 7th layers)
Of the multilayer films from the first layer to the eighth layer, the second layer to the seventh layer formed so as to overlap the aluminum oxide layer 21 as the first layer are a low refractive index material layer and a high refractive index material layer. And a repetitive structure portion in which and are alternately stacked. More specifically, the second layer, the fourth layer, and the sixth layer are the low refractive index material layers 22, 24, and 26. The third layer, the fifth layer, and the seventh layer are the high refractive index material layers 23, 25, and 27. As a material for forming the low refractive index material layers 22, 24 and 26, for example, silicon oxide having a refractive index n of 1.45 to 1.50 can be used. As a material for forming the high refractive index material layers 23, 25 and 27, for example, tantalum oxide having a refractive index n of 2.00 to 2.35 can be used.
 なお、ここで挙げた繰り返し構造部の層構造は、単なる一具体例に過ぎない。例えば、繰り返し構造部を構成する層数については、上述したような低屈折率材料層と高屈折率材料層がそれぞれ3層ずつ計6層ではなく、それぞれを4層ずつ計8層とするといったように、他の層構造のものであっても構わない。また、例えば、低屈折率材料層22,24及び26の形成材料については、上述したような酸化ケイ素ではなく、酸化アルミニウム、フッ化マグネシウム、フッ化アルミニウム、フッ化イットリウム、フッ化ネオジウム等を用いても構わない。さらに、例えば、高屈折率材料層23,25及び27の形成材料については、上述したような酸化タンタルではなく、酸化チタン、酸化ニオブ、酸化ジルコニウム、酸化パラジウム、酸化亜鉛等を用いても構わない。また、第2層から第8層の各層は、これらの材料を適量な割合で混合した混合材料を用いても構わない。 Note that the layer structure of the repetitive structure portion mentioned here is only one specific example. For example, regarding the number of layers constituting the repetitive structure portion, the low refractive index material layer and the high refractive index material layer as described above are not composed of 3 layers each for 6 layers in total, but 4 layers each for 8 layers in total. As such, it may have another layer structure. Further, for example, as a material for forming the low refractive index material layers 22, 24 and 26, aluminum oxide, magnesium fluoride, aluminum fluoride, yttrium fluoride, neodymium fluoride, or the like is used instead of silicon oxide as described above. It doesn't matter. Furthermore, for example, as a material for forming the high refractive index material layers 23, 25, and 27, titanium oxide, niobium oxide, zirconium oxide, palladium oxide, zinc oxide, or the like may be used instead of tantalum oxide as described above. . In addition, each layer from the second layer to the eighth layer may use a mixed material obtained by mixing these materials in an appropriate ratio.
(第8層)
 第1層から第8層までの多層膜のうち、外表面の側に位置する第8層は、フッ化マグネシウムによって形成された層28である。なお、第8層は、保護膜としての機能を果たすものであれば、例えば酸化珪素、フッ化アルミニウム、フッ化イットリウム、フッ化ネオジウムのような、他の低屈折率材料によって形成されたものであっても構わない。
(8th layer)
Of the multilayer films from the first layer to the eighth layer, the eighth layer located on the outer surface side is a layer 28 formed of magnesium fluoride. The eighth layer is formed of another low refractive index material such as silicon oxide, aluminum fluoride, yttrium fluoride, or neodymium fluoride as long as it functions as a protective film. It does not matter.
<3.成膜手順>
 次に、上述した構成の光学薄膜20の成膜手順について説明する。
 光学薄膜20は、光学素子1の光学素子基材10の光学面5上に、第1層から第8層までを順に成膜する。
<3. Deposition procedure>
Next, a film forming procedure of the optical thin film 20 having the above-described configuration will be described.
The optical thin film 20 is formed in order from the first layer to the eighth layer on the optical surface 5 of the optical element substrate 10 of the optical element 1.
(第1層成膜工程)
 第1層成膜工程は、実施形態1と同じであるため、説明を省略する。
(First layer deposition process)
Since the first layer film forming step is the same as that of the first embodiment, the description thereof is omitted.
(第2層成膜工程~第8層成膜工程)
 第1層成膜工程で酸化アルミニウム層21を成膜した後は、次いで、第2層を成膜する第2層成膜工程、第3層を成膜する第3層成膜工程、第4層を成膜する第4層成膜工程、第5層を成膜する第5層成膜工程、第6層を成膜する第6層成膜工程、第7層を成膜する第7層成膜工程、および、第8層を成膜する第8層成膜工程を順に経る。
(2nd layer deposition process to 8th layer deposition process)
After the aluminum oxide layer 21 is formed in the first layer forming step, the second layer forming step for forming the second layer, the third layer forming step for forming the third layer, and the fourth A fourth layer forming step for forming a layer, a fifth layer forming step for forming a fifth layer, a sixth layer forming step for forming a sixth layer, and a seventh layer for forming a seventh layer A film forming process and an eighth layer film forming process for forming the eighth layer are sequentially performed.
 第2層成膜工程~第8層成膜工程では、上述した実施形態1の成膜工程の場合と同様に、IADによって、第2層~第8層を成膜することができる。ただし、第2層成膜工程~第8層成膜工程は、必ずしもIADによって行う必要はなく、例えば真空蒸着により成膜しても構わない。 In the second layer film forming step to the eighth layer film forming step, the second layer to the eighth layer can be formed by IAD as in the case of the film forming step of the first embodiment described above. However, the second layer film forming step to the eighth layer film forming step are not necessarily performed by IAD, and may be formed by, for example, vacuum deposition.
 なお、第2層成膜工程~第8層成膜工程の詳細については、公知技術を利用して行えばよいため、ここではその説明を省略する。また、第2層成膜工程~第m層成膜工程にIADを用いる場合には、上述の成膜条件及び以下に具体的に示す条件により成膜することができる。 Note that the details of the second layer film forming step to the eighth layer film forming step may be performed using a known technique, and thus the description thereof is omitted here. In addition, when IAD is used in the second layer forming process to the m-th layer forming process, the film can be formed under the above-described film forming conditions and the conditions specifically shown below.
 以上のような第1層成膜工程~第8層成膜工程を順に経ることで、光学素子1の光学素子基材10の光学面5をコーティングする光学薄膜20が成膜される。 The optical thin film 20 for coating the optical surface 5 of the optical element substrate 10 of the optical element 1 is formed by sequentially performing the first layer forming process to the eighth layer forming process as described above.
 次に、実施例を挙げて、本発明の実施形態2を具体的に説明する。ただし、本発明が、以下の実施例に限定されないことは勿論である。
 図5、図7~9は、本発明の実施例2~実施例5についての説明図である。また、図6は、比較例2についての説明図である。
Next, the second embodiment of the present invention will be specifically described with reference to examples. However, it is needless to say that the present invention is not limited to the following examples.
FIGS. 5 and 7 to 9 are explanatory diagrams for Embodiments 2 to 5 of the present invention. FIG. 6 is an explanatory diagram for Comparative Example 2.
 また、各層を構成する酸化物膜は、所望の膜質であればよく、その組成は特に限定されるものではない。アルミニウム酸化膜の組成については、化学量論組成である酸化アルミニウム(Al)を含むものが安定であるため、以下の説明においてはAl層として記載するが、Alに限定されるものではなく、組成をAlとした場合、例えば、y/x=1~2程度のものが存在していてもよい。以下で説明される酸化珪素膜、酸化タンタル膜などの各種酸化物膜についても同様のことが言える。 Moreover, the oxide film which comprises each layer should just be desired film quality, and the composition is not specifically limited. The composition of the aluminum oxide film, since those containing aluminum oxide which is stoichiometric composition (Al 2 O 3) is a stable, although described as the Al 2 O 3 layer in the following description, Al 2 O 3 When the composition is Al x O y , for example, y / x = 1 to 2 may exist. The same applies to various oxide films such as a silicon oxide film and a tantalum oxide film described below.
(実施例2)
 具体的に、実施例2では、表7に示される光学薄膜20を形成した。
 表7は、実施例2に係る光学薄膜20の膜構成を示している。また、表8は、実施例2に係る光学薄膜20の膜形成条件を示している。
(Example 2)
Specifically, in Example 2, the optical thin film 20 shown in Table 7 was formed.
Table 7 shows the film configuration of the optical thin film 20 according to Example 2. Table 8 shows the film forming conditions of the optical thin film 20 according to Example 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例2では、光学素子基材10に、ガラスモールドレンズ用硝種であるM-LAC130(HOYA株式会社製)を用いた。そして、その光学素子基材10の光学面5上には、8層構造の光学薄膜20を形成した。すなわち、光学薄膜20における第1層は、IADによって成膜された物理的膜厚10.00nmのAl層21である。 In Example 2, M-LAC130 (manufactured by HOYA Corporation), which is a glass type for glass mold lenses, was used for the optical element substrate 10. Then, an optical thin film 20 having an eight-layer structure was formed on the optical surface 5 of the optical element substrate 10. That is, the first layer in the optical thin film 20 is an Al 2 O 3 layer 21 having a physical thickness of 10.00 nm formed by IAD.
 第2層~第7層は、物理的膜厚4.20nmのSiO層22、物理的膜厚28.44nmのTa層23、物理的膜厚16.45nmのSiO層24、物理的膜厚74.71nmのTa層25、物理的膜厚15.04nmのSiO層26、物理的膜厚30.86nmのTa層27が順に積層されてなる繰り返し構造部である。この繰り返し構造部を構成する第2層~第7層についても、IADによって成膜されている。 The second to seventh layers are a SiO 2 layer 22 having a physical thickness of 4.20 nm, a Ta 2 O 5 layer 23 having a physical thickness of 28.44 nm, a SiO 2 layer 24 having a physical thickness of 16.45 nm, Repetitive structure in which a Ta 2 O 5 layer 25 having a physical thickness of 74.71 nm, a SiO 2 layer 26 having a physical thickness of 15.04 nm, and a Ta 2 O 5 layer 27 having a physical thickness of 30.86 nm are sequentially stacked. Part. The second to seventh layers constituting this repetitive structure are also formed by IAD.
 光学薄膜20の最表面層となる第8層は、蒸着によって製膜された物理的膜厚97.74nmのMgF層28である。 The eighth layer serving as the outermost surface layer of the optical thin film 20 is an MgF 2 layer 28 having a physical thickness of 97.74 nm formed by vapor deposition.
 このように、光学薄膜20は、複数の成膜材料を積層して形成される多層膜21~28であり、多層膜21~28は、酸化シリコンにより形成される酸化シリコン層22,24,26と、酸化タンタルにより形成される酸化タンタル層23,25,27とを含む。 Thus, the optical thin film 20 is a multilayer film 21 to 28 formed by laminating a plurality of film forming materials, and the multilayer films 21 to 28 are silicon oxide layers 22, 24, 26 formed of silicon oxide. And tantalum oxide layers 23, 25, 27 formed of tantalum oxide.
 これら多層膜のうち、Al層21は、90eVのイオンエネルギーで膜構成粒子を堆積させるべく、以下のような成膜条件で成膜処理した。すなわち、Al層21を成膜する第1層成膜工程では、イオン銃として熱電子励起型イオン銃を用い、アノードに印加する電圧、および、電流をそれぞれアノード電圧:90V、アノード電流:18Aとした。また、フィラメントに印加する電圧、および、電流をそれぞれフィラメント電圧:55V、フィラメント電流:90Aとした。さらにまた、成膜処理室内の導入ガスとしてOとArの混合ガスを用い、Oのガス流量を40SCCM、Arのガス流量を10SCCMとした。また、成膜処理対象物である光学素子基材10の温度を250℃とした。また、Alの蒸発速度(成膜レート)を0.10nm/secとした。因みに、SiOの蒸発速度(成膜レート)は0.30nm/sec、Taの蒸発速度(成膜レート)は0.50nm/sec、MgFの蒸発速度(成膜レート)は0.80nm/secである。 Among these multilayer films, the Al 2 O 3 layer 21 was subjected to film formation under the following film formation conditions in order to deposit film constituent particles with ion energy of 90 eV. That is, in the first layer deposition step for depositing the Al 2 O 3 layer 21, a thermoelectron excitation type ion gun is used as the ion gun, and the voltage applied to the anode and the current are anode voltage: 90 V and anode current, respectively. : 18A. The voltage and current applied to the filament were filament voltage: 55 V and filament current: 90 A, respectively. Furthermore, a mixed gas of O 2 and Ar was used as the introduced gas in the film formation chamber, the O 2 gas flow rate was 40 SCCM, and the Ar gas flow rate was 10 SCCM. Moreover, the temperature of the optical element base material 10 which is a film formation target was set to 250 ° C. The evaporation rate (film formation rate) of Al 2 O 3 was set to 0.10 nm / sec. Incidentally, the evaporation rate (deposition rate) of SiO 2 is 0.30 nm / sec, the evaporation rate (deposition rate) of Ta 2 O 5 is 0.50 nm / sec, and the evaporation rate (deposition rate) of MgF 2 is 0. 80 nm / sec.
 以上のような成膜条件で成膜した光学薄膜20について、光の波長と光の反射率との関係を測定したところ、図5に示す結果が得られた。 When the relationship between the light wavelength and the light reflectance was measured for the optical thin film 20 formed under the above film forming conditions, the result shown in FIG. 5 was obtained.
 図5は、本発明の実施例2における光学薄膜の光の波長と光の反射率との関係の一具体例を二次元座標平面上にプロットした説明図である。なお、図5の一部拡大図では、反射率R1及びR2は、所定の同一波長における常温時の反射率R1と加熱時の反射率R2をそれぞれ示している。また、以下の説明において、常温時の反射率R1と加熱時の反射率R2の差の絶対値を、シフト量ΔRとして記載する。 FIG. 5 is an explanatory diagram in which a specific example of the relationship between the light wavelength and the light reflectance of the optical thin film in Example 2 of the present invention is plotted on a two-dimensional coordinate plane. In the partially enlarged view of FIG. 5, the reflectances R1 and R2 indicate the reflectance R1 at normal temperature and the reflectance R2 at the time of heating at a predetermined wavelength. In the following description, the absolute value of the difference between the reflectance R1 at normal temperature and the reflectance R2 at the time of heating is described as the shift amount ΔR.
 また、表9は、表9の左側5列に図5における波長400nm、500nm、600nm、700nmにおける(A)常温時における反射率R1と、(B)加熱時における反射率R2と、シフト量ΔR(常温時における反射率R1と加熱時における反射率R2との差を絶対値で表したもの)を示している。また、表9の右側2列に図5における波長400nm~700nmの最大シフト量ΔRmax及び最小シフト量ΔRminと、ΔRmax及びΔRminのときの波長をそれぞれ示している。 Table 9 shows five columns on the left side of Table 9, (A) reflectivity R1 at normal temperature, (B) reflectivity R2 at heating, and shift amount ΔR at wavelengths of 400 nm, 500 nm, 600 nm, and 700 nm in FIG. (A difference between the reflectance R1 at normal temperature and the reflectance R2 at the time of heating is expressed in absolute value). The right two columns of Table 9 show the maximum shift amount ΔRmax and minimum shift amount ΔRmin at wavelengths of 400 nm to 700 nm in FIG. 5 and the wavelengths at ΔRmax and ΔRmin, respectively.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図5、表9に示した内容からも明らかなように、酸化アルミニウム層21は、光の波長と反射率との関係についての二次元座標平面上へのプロット位置が、常温時と加熱時でほとんど変化していないことがわかる。つまり、それぞれのプロット位置が重なる程に近寄っており、常温時と加熱時の反射率R1、R2のシフト量ΔRが極めて小さいことがわかる。また、波長400nm以上700nm以下の波長帯域において、反射率は、0.50%以下で反射防止機能を有することがわかる。 As is clear from the contents shown in FIG. 5 and Table 9, the aluminum oxide layer 21 has a plot position on the two-dimensional coordinate plane regarding the relationship between the wavelength of light and the reflectance at normal temperature and when heated. It can be seen that there has been little change. That is, the plot positions are closer to each other, and it can be seen that the shift amounts ΔR of the reflectances R1 and R2 during normal temperature and during heating are extremely small. In addition, it can be seen that in the wavelength band of 400 nm to 700 nm, the reflectance is 0.50% or less and it has an antireflection function.
 図5における常温時と加熱時の反射率のシフト量は、具体的には以下のとおりである。可視域である400nm以上700nm以下の波長帯域に着目において、反射率のシフト量は、波長が400nmのときが最も大きい。そして、常温時の反射率R1が0.222%であるのに対して、加熱時の反射率R2が0.278%であり、その差(常温時と加熱時の反射率のシフト量ΔR)が0.056%となっている。また、シフト量ΔRが最も小さいのは、波長が670nmおよび680nmのときで、常温時と加熱時の反射率の差が0%となっている。400nm以上700nm以下の波長帯域においては、その他の波長についても、常温時と加熱時の反射率の差が最小値0%~最大値0.056%の範囲内に属している。つまり、400nm以上700nm以下の波長帯域においては、常温時と加熱時の反射率R1、R2のシフト量ΔRが0.30%以下であり、酸化アルミニウム層21は均一かつ緻密な膜質であると言える。実施例2における光学薄膜20においては、色ムラは発生していなかった。また、可視領域において十分に反射防止機能が発揮され得ると言える。 Specifically, the shift amount of the reflectance during normal temperature and heating in FIG. 5 is as follows. Focusing on the wavelength band of 400 nm or more and 700 nm or less, which is the visible range, the reflectance shift amount is the largest when the wavelength is 400 nm. The reflectance R1 at the normal temperature is 0.222%, whereas the reflectance R2 at the heating is 0.278%, and the difference (the reflectance shift amount ΔR between the normal temperature and the heating). Is 0.056%. The shift amount ΔR is the smallest when the wavelengths are 670 nm and 680 nm, and the difference in reflectance between room temperature and heating is 0%. In the wavelength band of 400 nm or more and 700 nm or less, the difference in reflectance between room temperature and heating also falls within the range of the minimum value 0% to the maximum value 0.056% for other wavelengths. That is, in the wavelength band of 400 nm or more and 700 nm or less, the shift amount ΔR of the reflectances R1 and R2 at normal temperature and heating is 0.30% or less, and the aluminum oxide layer 21 can be said to have a uniform and dense film quality. . In the optical thin film 20 in Example 2, no color unevenness occurred. It can also be said that the antireflection function can be sufficiently exerted in the visible region.
(比較例2) (Comparative Example 2)
 具体的に、比較例2では、反射防止機能を有する、以下のような光学薄膜を形成した。
 表10は、比較例2に係る光学薄膜の膜構成を示している。また、表11は、比較例2に係る光学薄膜の膜形成条件を示している。
Specifically, in Comparative Example 2, the following optical thin film having an antireflection function was formed.
Table 10 shows the film configuration of the optical thin film according to Comparative Example 2. Table 11 shows the film forming conditions of the optical thin film according to Comparative Example 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 ここで、上述した実施例2との比較のために、比較例2について説明する。図6は、本発明の実施例2との比較対象となる比較例2についての説明図である。比較例2では、真空蒸着法を用いつつ、以下のような光学薄膜を形成した。 Here, Comparative Example 2 will be described for comparison with Example 2 described above. FIG. 6 is an explanatory diagram of Comparative Example 2 that is a comparison target with Example 2 of the present invention. In Comparative Example 2, the following optical thin film was formed using the vacuum deposition method.
 光学素子1の光学素子基材10には、ガラスモールドレンズ用硝種であるM-BACD12(HOYA株式会社製)を用いた。そして、その光学素子基材10の光学面5上には、反射防止機能を有する、4層構造の光学薄膜を形成した。 For the optical element substrate 10 of the optical element 1, M-BACD12 (manufactured by HOYA Corporation), which is a glass mold lens glass type, was used. Then, an optical thin film having a four-layer structure having an antireflection function was formed on the optical surface 5 of the optical element substrate 10.
 すなわち、光学薄膜における第1層~第4層は、物理的膜厚59.66nmのAl層、物理的膜厚91.84nmのAl層、物理的膜厚115.58nmのZrO+TiO層、物理的膜厚89.43nmのMgF層が順に積層されてなる繰り返し構造部である。この繰り返し構造部を構成する第1層~第4層については、以下の条件で成膜している。 That is, the first to fourth layers in the optical thin film are an Al 2 O 3 layer having a physical film thickness of 59.66 nm, an Al 2 O 3 layer having a physical film thickness of 91.84 nm, and a physical film thickness of 115.58 nm. This is a repetitive structure portion in which a ZrO 2 + TiO 2 layer and a MgF 2 layer having a physical thickness of 89.43 nm are sequentially laminated. The first to fourth layers constituting the repetitive structure are formed under the following conditions.
 成膜処理室内の導入ガスであるOのガス流量を、それぞれ第1層のAl層及び第3層のZrO+TiO層のときは、15SCCM、第2層のAl層のときは13SCCMとした。また、成膜処理対象物である光学素子基材10の温度を250℃とした。また、Al、ZrO+TiO、MgFの蒸発速度(成膜レート)は、それぞれ0.80nm/secである。 The gas flow rate of O 2 , which is the introduced gas in the film forming chamber, is 15 SCCM for the first Al 2 O 3 layer and the third ZrO 2 + TiO 2 layer, respectively, and the second Al 2 O 3 layer. The layer was 13 SCCM. Moreover, the temperature of the optical element base material 10 which is a film formation target was set to 250 ° C. Moreover, the evaporation rate (film formation rate) of Al 2 O 3 , ZrO 2 + TiO 2 , and MgF 2 is 0.80 nm / sec.
 図6は、以上のような条件で成膜した光学薄膜について、光の波長と光の反射率との関係を測定した結果を示している。また、表12は、表12の左側5列に図6における波長400nm、500nm、600nm、700nmにおける(A)常温時における反射率R1(図6において不図示)と、(B)加熱時における反射率R2(図6において不図示)と、シフト量ΔR(常温時における反射率R1と加熱時における反射率R2との差を絶対値で表したもの)を示している。また、表12の一番右列に図6における波長400nm~700nmの最大シフト量ΔRmaxと、ΔRmaxのときの波長を示している。 FIG. 6 shows the result of measuring the relationship between the wavelength of light and the reflectance of the optical thin film formed under the above conditions. Table 12 shows five columns on the left side of Table 12, (A) reflectivity R1 at room temperature at wavelengths of 400 nm, 500 nm, 600 nm, and 700 nm in FIG. 6 (not shown in FIG. 6), and (B) reflection at the time of heating. The ratio R2 (not shown in FIG. 6) and the shift amount ΔR (the difference between the reflectance R1 at normal temperature and the reflectance R2 at the time of heating are expressed in absolute values) are shown. The rightmost column of Table 12 shows the maximum shift amount ΔRmax at wavelengths of 400 nm to 700 nm in FIG. 6 and the wavelength at ΔRmax.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図6や表12に示した光の波長と反射率との関係は、二次元座標平面上へのプロット位置が、常温時と加熱時で、大きく異なっていることがわかる。図6における常温時と加熱時の反射率のシフト量ΔRは、具体的には以下のとおりである。可視域である400nm以上700nm以下の波長帯域において、反射率のシフト量ΔRは、波長が400nmのときが最も大きい。波長が400nmのときは、常温時の反射率R1が0.350%であるのに対して、加熱時の反射率R2が0%であり、その差(シフト量ΔR)が0.350%となっている。つまり、400nm以上700nm以下の波長帯域において、シフト量ΔRは、その最大値が0.30%を超える大きなものとなっており、均一かつ緻密な膜質とは言えない。比較例2における光学薄膜20には、色ムラの発生が見られ、可視領域において十分に反射防止機能が発揮され得ると言えない。 The relationship between the wavelength of light and the reflectance shown in FIG. 6 and Table 12 shows that the plot position on the two-dimensional coordinate plane is greatly different between normal temperature and heating. Specifically, the shift amount ΔR of the reflectance at the normal temperature and at the time of heating in FIG. 6 is as follows. In the visible wavelength range of 400 nm to 700 nm, the reflectance shift amount ΔR is greatest when the wavelength is 400 nm. When the wavelength is 400 nm, the reflectance R1 at room temperature is 0.350%, whereas the reflectance R2 at heating is 0%, and the difference (shift amount ΔR) is 0.350%. It has become. That is, in the wavelength band of 400 nm or more and 700 nm or less, the shift amount ΔR has a large maximum value exceeding 0.30%, and cannot be said to be uniform and dense film quality. In the optical thin film 20 in Comparative Example 2, color unevenness is observed, and it cannot be said that the antireflection function can be sufficiently exhibited in the visible region.
(実施例3~実施例5)
 次に、実施例3~実施例5について説明する。実施例3~実施例5においては、実施例2ですでに説明した内容については、説明を省略し、実施例2と相違する内容について記載する。
 実施例3~実施例5において、共通する説明を先に記載する。実施例3~実施例5においては、実施例1及び2のような加熱処理の結果について示していないが、発明者らは、以下に示す実施例においても色ムラが発生しなかったことから本発明を適用することができると考える。
(Example 3 to Example 5)
Next, Examples 3 to 5 will be described. In the third to fifth embodiments, the description already given in the second embodiment is omitted, and the contents different from the second embodiment are described.
In the third to fifth embodiments, common descriptions are described first. In Examples 3 to 5, the results of the heat treatment as in Examples 1 and 2 are not shown. However, since the inventors did not cause color unevenness in the examples shown below, We believe that the invention can be applied.
 実施例3~実施例5では、光学素子基材10に、M-LAC130(HOYA株式会社製)を用いた。また、表13,15,17は、各実施例に係る光学薄膜20の膜構成を示している。また、表14,16,18は、各実施例に係る光学薄膜20の膜形成条件を示している。図7~図9は、各実施例における光学薄膜の光の波長と光の反射率との関係の一具体例を二次元座標平面上にプロットした説明図である。また、上述の実施例と同様に、実施例3~実施例5における光学薄膜20は、反射防止機能を有する。なお、各表においても繰り返しになるものは説明を省略する。 In Examples 3 to 5, M-LAC130 (manufactured by HOYA Corporation) was used for the optical element substrate 10. Tables 13, 15, and 17 show the film configuration of the optical thin film 20 according to each example. Tables 14, 16, and 18 show film forming conditions of the optical thin film 20 according to each example. FIG. 7 to FIG. 9 are explanatory diagrams in which one specific example of the relationship between the light wavelength and the light reflectance of the optical thin film in each embodiment is plotted on a two-dimensional coordinate plane. Similarly to the above-described embodiment, the optical thin film 20 in Embodiments 3 to 5 has an antireflection function. In addition, the description of what is repeated in each table is omitted.
(実施例3)
 実施例3では、第1層の酸化アルミニウム層の物理的膜厚dを変更し、第1層に加え、第3層及び第5層を酸化アルミニウム層により構成している。また、膜構成材料として、SiOを用いず、Taにより第2,4,6層を構成した。
(Example 3)
In Example 3, the physical film thickness d of the aluminum oxide layer of the first layer is changed, and in addition to the first layer, the third layer and the fifth layer are composed of the aluminum oxide layer. Further, the second , fourth, and sixth layers were made of Ta 2 O 5 without using SiO 2 as a film constituent material.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 以上のような成膜条件で成膜して得られた光学薄膜20について、光の波長と光の反射率との関係を測定したところ、図7に示す結果が得られた。図7に示す測定結果によれば、少なくとも可視領域である400nm以上700nm以下の波長領域においては反射率が低く抑えられていることがわかる。また、実施例3における光学薄膜20において、色ムラは確認されなかった。 When the relationship between the wavelength of light and the reflectance of light was measured for the optical thin film 20 obtained by film formation under the above film formation conditions, the result shown in FIG. 7 was obtained. According to the measurement results shown in FIG. 7, it can be seen that the reflectance is kept low at least in the visible wavelength range of 400 nm to 700 nm. Moreover, in the optical thin film 20 in Example 3, no color unevenness was confirmed.
 また、この結果から、酸化アルミニウム層21は、第1層だけでなく、第3層及び第5層に形成してもよく、物理的膜厚dを変更してよいことが言える。 Also, from this result, it can be said that the aluminum oxide layer 21 may be formed not only in the first layer but also in the third layer and the fifth layer, and the physical film thickness d may be changed.
(実施例4)
 実施例4では、第1層の酸化アルミニウム層を、RF励起型電子銃を用いたIADにより成膜している。また、光学薄膜20の層数を、8層から10層に変更している。
(Example 4)
In Example 4, the first aluminum oxide layer is formed by IAD using an RF excitation electron gun. Further, the number of layers of the optical thin film 20 is changed from 8 layers to 10 layers.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 以上のような成膜条件で成膜して得られた光学薄膜20について、光の波長と光の反射率との関係を測定したところ、図8に示す結果が得られた。図例に示す測定結果によれば、少なくとも可視領域である400nm以上700nm以下の波長領域においては反射率が低く抑えられていることがわかる。また、実施例4における光学薄膜20において、色ムラは確認されなかった。 With respect to the optical thin film 20 obtained by film formation under the above film formation conditions, the relationship between the wavelength of light and the reflectance of light was measured, and the result shown in FIG. 8 was obtained. According to the measurement results shown in the figure, it can be seen that the reflectance is kept low at least in the wavelength region of 400 nm to 700 nm which is the visible region. Moreover, in the optical thin film 20 in Example 4, the color nonuniformity was not confirmed.
 また、この結果から、酸化アルミニウム層21は、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理であれば、高周波放電励起型電子銃であってもよいことが言える。また、光学薄膜20の層数は、8層に限られず、複数層であってもよいことが確認された。 Also, from this result, it can be said that the aluminum oxide layer 21 may be a high-frequency discharge excitation electron gun as long as it is a film forming process in which film constituent particles are deposited with an ion energy of 10 eV or more. Moreover, it was confirmed that the number of layers of the optical thin film 20 is not limited to eight and may be a plurality of layers.
(実施例5)
 実施例5では、第1層の酸化アルミニウム層21の物理的膜厚dを厚く形成するとともに、光学薄膜20の層数を、8層から10層に変更している。
(Example 5)
In Example 5, while the physical film thickness d of the first aluminum oxide layer 21 is increased, the number of layers of the optical thin film 20 is changed from 8 layers to 10 layers.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 以上のような成膜条件で成膜して得られた光学薄膜20について、光の波長と光の反射率との関係を測定したところ、図9に示す結果が得られた。図例に示す測定結果によれば、少なくとも可視領域である400nm以上700nm以下の波長領域においては反射率が低く抑えられていることがわかる。また、実施例5における光学薄膜20において、色ムラは確認されなかった。 When the relationship between the wavelength of light and the reflectance of light was measured for the optical thin film 20 obtained by film formation under the above film formation conditions, the result shown in FIG. 9 was obtained. According to the measurement results shown in the figure, it can be seen that the reflectance is kept low at least in the wavelength region of 400 nm to 700 nm which is the visible region. Moreover, in the optical thin film 20 in Example 5, the color nonuniformity was not confirmed.
 また、この結果から、酸化アルミニウム層21は、物理的膜厚dを厚くしてもよいと言える。 Also, from this result, it can be said that the aluminum oxide layer 21 may be increased in physical thickness d.
(まとめ)
 以上に挙げた実施例1~5と、比較例1及び2の結果を勘案すると、実施例1~5におけるAl層21を含む光学薄膜20であれば、Al層21が均一かつ緻密な膜質であるため、光学素子基材10の光学面5をコーティングする場合であっても、色ムラが発生することなく、良好な反射防止機能を実現することが可能となる。
(Summary)
Considering the results of Examples 1 to 5 described above and Comparative Examples 1 and 2, if the optical thin film 20 includes the Al 2 O 3 layer 21 in Examples 1 to 5, the Al 2 O 3 layer 21 is Since the film quality is uniform and dense, even when the optical surface 5 of the optical element substrate 10 is coated, it is possible to realize a good antireflection function without causing color unevenness.
<4.実施形態1及び2の効果>
 実施形態1及び2で説明した光学薄膜20によれば、以下に述べる効果が得られる。
<4. Effect of Embodiments 1 and 2>
According to the optical thin film 20 described in the first and second embodiments, the following effects can be obtained.
 実施形態1及び2によれば、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理であるIADによって酸化アルミニウム層21が形成されており、その酸化アルミニウム層21が、均一な膜質を有したものとなっている。すなわち、酸化アルミニウム層21は、400nm以上700nm以下の波長領域の同一波長において、常温時における第1の反射率R1と、加熱時における第2の反射率R2とのシフト量ΔRが0.30%以下となる膜構造を有している。 According to Embodiments 1 and 2, the aluminum oxide layer 21 is formed by IAD, which is a film forming process in which film constituent particles are deposited with an ion energy of 10 eV or more, and the aluminum oxide layer 21 has a uniform film quality. It has become. That is, the aluminum oxide layer 21 has a shift amount ΔR of 0.30% between the first reflectance R1 at normal temperature and the second reflectance R2 at the time of heating at the same wavelength in the wavelength region of 400 nm to 700 nm. It has the following film structure.
 そのため、実施形態1及び2における酸化アルミニウム層21は、水分等を取り込む余地が殆ど無い、均一かつ緻密な膜質を有していることから、色ムラの発生要因となる水分等の取り込みを有効に防止することができる。したがって、光学素子基材10の光学面5と接するように酸化アルミニウム層21を位置させる場合や酸化アルミニウム層21を第2層~第m層に形成する場合であっても、光学素子1の製品歩留まり低下等を招く要因となり得る色ムラが発生することがない。そのため、色ムラに起因する光学面5の面内における光学特性(例えば屈折率nや光透過率)の不均一さを是正することができる。つまり、本実施形態によれば、酸化アルミニウム層21を含む光学薄膜であっても、色ムラが発生することない光学薄膜20を得ることができる。 Therefore, since the aluminum oxide layer 21 in the first and second embodiments has a uniform and dense film quality with little room for taking up moisture and the like, it is effective to take up moisture and the like that cause color unevenness. Can be prevented. Therefore, even when the aluminum oxide layer 21 is positioned so as to be in contact with the optical surface 5 of the optical element substrate 10 or when the aluminum oxide layer 21 is formed in the second to mth layers, the product of the optical element 1 Color unevenness that may cause a decrease in yield does not occur. Therefore, it is possible to correct non-uniformity of optical characteristics (for example, refractive index n and light transmittance) in the surface of the optical surface 5 due to color unevenness. That is, according to the present embodiment, even if the optical thin film includes the aluminum oxide layer 21, the optical thin film 20 in which color unevenness does not occur can be obtained.
 また、実施形態1及び2によれば、IADでの形成によって酸化アルミニウム層21が「均一かつ緻密な膜質」を有することになるので、その酸化アルミニウム層21の屈折率nについて、1.64以上1.70以下という高い屈折率を実現可能である。つまり、このような高い屈折率は、酸化アルミニウム層21が均一な膜質を有した膜構造だから得られるものである。したがって、このような高い屈折率の酸化アルミニウム層21を実現することによっても、光学素子1の製品歩留まり低下等を招く要因となり得る色ムラの発生を回避することができる。 Further, according to the first and second embodiments, since the aluminum oxide layer 21 has “uniform and dense film quality” by the formation by IAD, the refractive index n of the aluminum oxide layer 21 is 1.64 or more. A high refractive index of 1.70 or less can be realized. That is, such a high refractive index is obtained because the aluminum oxide layer 21 has a uniform film quality. Therefore, by realizing such an aluminum oxide layer 21 having a high refractive index, it is possible to avoid the occurrence of color unevenness that may cause a decrease in product yield of the optical element 1.
<5.変形例>
 以上に実施形態1及び2を説明したが、上述した開示内容は、本発明の例示的な実施形態を示すものである。すなわち、本発明の技術的範囲は、上述の例示的な実施形態に限定されるものではない。
<5. Modification>
Although Embodiments 1 and 2 have been described above, the disclosure content described above shows exemplary embodiments of the present invention. That is, the technical scope of the present invention is not limited to the exemplary embodiments described above.
 上述の実施形態では、酸化アルミニウム層21の形成にあたり、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理として、IADを行う場合を例に挙げている。ただし、酸化アルミニウム層21を形成するための成膜処理は、10eV以上のイオンエネルギーで膜構成粒子を堆積させるものであれば、例えばスパッタリングのようにIAD以外の手法による成膜処理であっても構わない。 In the above-described embodiment, the case where IAD is performed as an example of the film forming process for depositing the film constituent particles with the ion energy of 10 eV or more in forming the aluminum oxide layer 21 is described. However, the film forming process for forming the aluminum oxide layer 21 may be a film forming process using a technique other than IAD, such as sputtering, as long as the film constituent particles are deposited with an ion energy of 10 eV or more. I do not care.
 また、上述の実施形態2では、光学薄膜20を構成する第2層~第m層の各層について、IADを利用して形成する場合を例に挙げている。ただし、各層を形成するための成膜処理は、少なくとも酸化アルミニウム層について、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理であればよく、他の層については特に限定されるものではない。 In the second embodiment, the case where the second to mth layers constituting the optical thin film 20 are formed using IAD is taken as an example. However, the film forming process for forming each layer may be a film forming process in which film constituent particles are deposited with an ion energy of 10 eV or more for at least an aluminum oxide layer, and other layers are not particularly limited. Absent.
 また、上述の実施形態2では、光学薄膜20の成膜手順として、第1層から第8層又は第10層までを順に成膜する場合を例に挙げている。ただし、光学薄膜20は、上述の実施形態で説明した成膜手順ではなく、光学素子1の光学素子基材10とは別体で形成されたものであってもよい。その場合に、光学素子基材10と別体で形成された光学薄膜20は、光学素子基材10の光学面5に貼り付けられることで、光学面5をコーティングすることになる。 Further, in the above-described second embodiment, the case where the first to eighth layers or the tenth layer are sequentially formed as an example of the film forming procedure of the optical thin film 20 is described. However, the optical thin film 20 may be formed separately from the optical element substrate 10 of the optical element 1 instead of the film forming procedure described in the above embodiment. In that case, the optical thin film 20 formed separately from the optical element substrate 10 is applied to the optical surface 5 of the optical element substrate 10 to coat the optical surface 5.
 また、上述の実施形態1及び2では、光学素子が光学ガラスレンズであり、その光学ガラスレンズのレンズ基材の光学面5を反射防止膜でコーティングする場合を例に挙げている。ただし、光学ガラスレンズ以外の例えば、球面ガラスレンズや非球面ガラスレンズ、光学フィルター、回折格子などの光学素子であっても、上述の実施形態の場合と同様に本発明を適用することができる。 In the first and second embodiments, the optical element is an optical glass lens, and the optical surface 5 of the lens substrate of the optical glass lens is coated with an antireflection film as an example. However, the present invention can be applied to an optical element other than the optical glass lens, for example, an optical element such as a spherical glass lens, an aspheric glass lens, an optical filter, or a diffraction grating, as in the above-described embodiment.
 また、上述の実施形態1及び2では、中心波長帯域として可視光の波長帯域を一例に挙げ、波長領域を400nm以上700nm以下(中心波長λは550nm)として説明したが、これに限られない。例えば、中心波長帯域は、200nm以上2000nm以下の範囲内において設定することができ、可視光領域として、380nm以上780nm以下の範囲に設定でき、好ましくは、400nm以上700nm以下の範囲に設定することができる。また、この他に、中心波長帯域は、200nm以上380nm以下の範囲(紫外領域)に設定することができる。また、中心波長帯域は、780nm以上2000nm以下の範囲(赤外領域)に設定することができる。なお、中心波長λは、設定した波長帯域の範囲内において適宜設定することができ、中心波長帯域を400nm以上700nm以下の範囲とした場合は、中心波長λを、550nmに設定することが好ましい。 In the first and second embodiments described above, the wavelength band of visible light is taken as an example of the center wavelength band, and the wavelength region is 400 nm to 700 nm (center wavelength λ 0 is 550 nm), but the present invention is not limited to this. . For example, the center wavelength band can be set within a range of 200 nm to 2000 nm, and can be set as a visible light region within a range of 380 nm to 780 nm, and preferably set within a range of 400 nm to 700 nm. it can. In addition, the center wavelength band can be set in a range (ultraviolet region) of 200 nm or more and 380 nm or less. The central wavelength band can be set in a range (infrared region) of 780 nm or more and 2000 nm or less. The center wavelength λ 0 can be set as appropriate within the set wavelength band. When the center wavelength band is in the range of 400 nm to 700 nm, the center wavelength λ 0 can be set to 550 nm. preferable.
 また、上述した式(1)を用いて、実施例1における光学薄膜係数xの算出例を示す。 In addition, a calculation example of the optical thin film coefficient x in Example 1 is shown using the above-described formula (1).
(実施例1の場合の算出例)
 式(1)及び表1より、実施例1における光学薄膜係数xの算出例を示す。
 1.波長帯域を400nm以上700nm以下と設定し、設定した波長帯域における中心波長λを550nmとする。
 2.次に、屈折率n及び物理的膜厚dを規定する。実施例1においては、n=1.6745、d=92.91となる。
 3.上記1,2において規定した数値を上記式(1)に代入し、光学薄膜係数xの値(x=1.131)を得る。
(Calculation example in the case of Example 1)
From Formula (1) and Table 1, an example of calculating the optical thin film coefficient x in Example 1 is shown.
1. The wavelength band is set to 400 nm to 700 nm, and the center wavelength λ 0 in the set wavelength band is set to 550 nm.
2. Next, the refractive index n and the physical film thickness d are defined. In the first embodiment, n = 1.6745 and d = 92.91.
3. The numerical values defined in the above 1 and 2 are substituted into the above equation (1) to obtain the value of the optical thin film coefficient x (x = 1.131).
 また、上述の実施形態1及び2では、光学薄膜20を例に説明したが、これに限られない。本願発明は、IRカットフィルタ、UVカットフィルタなどの光学薄膜に適用することができる。 In the first and second embodiments described above, the optical thin film 20 has been described as an example. However, the present invention is not limited to this. The present invention can be applied to optical thin films such as IR cut filters and UV cut filters.
 また、上述の実施形態1では、シフト量ΔRが、0.50%以下である例について説明したが、これに限られない。シフト量ΔRは、0.30%以下としてもよく、また、好ましくは、0.20%以下としてもよい。さらに好ましくは、シフト量ΔRを0.10%以下とすることができ、0.070%以下とすることもできる。 In the above-described first embodiment, the example in which the shift amount ΔR is 0.50% or less has been described. However, the present invention is not limited to this. The shift amount ΔR may be 0.30% or less, and preferably 0.20% or less. More preferably, the shift amount ΔR can be set to 0.10% or less, and can also be set to 0.070% or less.
 また、上述の実施形態2では、シフト量ΔRが、0.30%以下である例について説明したが、これに限られない。シフト量ΔRは、0.20%以下としてもよく、また、好ましくは、0.15%以下としてもよい。さらに好ましくは、シフト量ΔRを0.10%以下とすることができ、0.070%以下とすることもできる。 In the above-described second embodiment, the example in which the shift amount ΔR is 0.30% or less has been described. However, the present invention is not limited to this. The shift amount ΔR may be 0.20% or less, and preferably 0.15% or less. More preferably, the shift amount ΔR can be set to 0.10% or less, and can also be set to 0.070% or less.
 また、上述の実施例1の成膜条件により、平板状のガラス基板10上に物理的膜厚が89nmとなるように成膜した酸化アルミニウム層21の膜密度について、以下の条件、装置を用いて測定した。 Moreover, the following conditions and apparatus were used for the film density of the aluminum oxide layer 21 formed to have a physical film thickness of 89 nm on the flat glass substrate 10 under the film forming conditions of Example 1 described above. Measured.
 膜密度は、高分解能ラザフォード後方散乱分析法により、高分解能RBS(Rutherford Backscattering Spectrometry)分析装置(株式会社神戸製鋼所社製)を用いて測定した。 The film density was measured by a high-resolution Rutherford backscattering analysis method using a high-resolution RBS (Rutherford Backscattering Spectrometry) analyzer (manufactured by Kobe Steel, Ltd.).
 このようにして得られた酸化アルミニウム層21の膜密度を測定した結果、膜密度は、2.93g/cmであった。 As a result of measuring the film density of the aluminum oxide layer 21 thus obtained, the film density was 2.93 g / cm 3 .
 また、上述の実施例2~5において、酸化アルミニウム層を第1層に設ける例について説明したが、これに限られない。酸化アルミニウム層は、第2層~第m層のいずれの層に配置することができる。 Further, in Examples 2 to 5 described above, the example in which the aluminum oxide layer is provided in the first layer has been described, but the present invention is not limited thereto. The aluminum oxide layer can be disposed in any of the second to mth layers.
 また、上述の実施例3において、酸化アルミニウム層を第1,3,5層に3層設ける例について説明したが、これに限られない。酸化アルミニウム層は、第2,4層に2層設けてもよく、4層以上設けてもよい。また、酸化アルミニウム層は、例えば、第2,3層と連続して設けることができる。 Moreover, in the above-described third embodiment, an example in which three aluminum oxide layers are provided in the first, third, and fifth layers has been described. However, the present invention is not limited to this. Two aluminum oxide layers may be provided on the second and fourth layers, or four or more layers may be provided. The aluminum oxide layer can be provided continuously with the second and third layers, for example.
 最後に、本発明の実施形態1及び2を、図等を用いて総括する。 Finally, Embodiments 1 and 2 of the present invention will be summarized using drawings and the like.
 本発明の実施形態にかかる光学素子1は、図1及び図4に示されているように、光学薄膜20を備えている。光学薄膜20は、酸化アルミニウムを主成分とし、光学的膜厚nd及び中心波長λに基づいて規定される、0.010以上2.00以下の範囲の光学薄膜係数を有する酸化アルミニウム層21を備え、中心波長帯域の同一波長において、常温時における第1の反射率R1と、加熱時における第2の反射率R2とのシフト量ΔRが0.50%以下である。 The optical element 1 according to the embodiment of the present invention includes an optical thin film 20 as shown in FIGS. 1 and 4. The optical thin film 20 includes an aluminum oxide layer 21 having an optical thin film coefficient in the range of 0.010 or more and 2.00 or less defined based on the optical film thickness nd and the center wavelength λ 0. The shift amount ΔR between the first reflectance R1 at normal temperature and the second reflectance R2 at the time of heating is 0.50% or less at the same wavelength in the central wavelength band.
 また、好ましくは、光学的膜厚は、屈折率n及び物理的膜厚dに基づいて規定され、屈折率nは、1.64~1.70の範囲である、 Also preferably, the optical film thickness is defined based on the refractive index n and the physical film thickness d, and the refractive index n is in the range of 1.64 to 1.70.
 また、更に、好ましくは、物理的膜厚dは、8.0nm以上500.0nm以下の範囲である。 Still more preferably, the physical film thickness d is in the range of not less than 8.0 nm and not more than 500.0 nm.
 また、更に、好ましくは、光学薄膜20は、酸化アルミニウム層21により構成される単層膜であり、シフト量ΔRは、0.10%以下である。 Still more preferably, the optical thin film 20 is a single layer film composed of the aluminum oxide layer 21, and the shift amount ΔR is 0.10% or less.
 また、更に、好ましくは、光学薄膜20は、複数の成膜材料を積層して形成される多層膜21~28であり、多層膜21~28)は、酸化シリコンにより形成される酸化シリコン層(22,24,26)と、酸化タンタルにより形成される酸化タンタル層(23,25,27)とを含む。 Still more preferably, the optical thin film 20 is a multilayer film 21 to 28 formed by laminating a plurality of film forming materials, and the multilayer films 21 to 28) are silicon oxide layers formed of silicon oxide ( 22, 24, 26) and a tantalum oxide layer (23, 25, 27) formed of tantalum oxide.
 また、別の他の局面では以下のように捉えることができる。本発明の実施形態にかかる光学薄膜20は、図4に示されているように、多層膜(21~28)が積層されてなる多層構造を有し、光学素子1の素子基材10の光学面5に配されて用いられ、多層膜(21~28)のうちの光学面5に接する側の第1層21が、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理によって形成された酸化アルミニウム層21であり、酸化アルミニウム層21は、光の波長と光の反射率との関係について、水分を除去可能な所定温度までの加熱処理の前後で、400nm以上700nm以下の波長領域における光の反射率の変化の最大値が0.50%以下となる膜構造を有している。 Also, in another aspect, it can be grasped as follows. The optical thin film 20 according to the embodiment of the present invention has a multilayer structure in which multilayer films (21 to 28) are laminated as shown in FIG. The first layer 21 disposed on the surface 5 and in contact with the optical surface 5 of the multilayer films (21 to 28) is formed by a film forming process for depositing film constituting particles with an ion energy of 10 eV or more. The aluminum oxide layer 21 has a relationship between the wavelength of light and the reflectance of light in a wavelength region of 400 nm to 700 nm before and after heat treatment up to a predetermined temperature at which moisture can be removed. It has a film structure in which the maximum change in light reflectance is 0.50% or less.
 また、好ましくは、酸化アルミニウム層21は、屈折率nが1.64以上1.70以下である。 Also preferably, the aluminum oxide layer 21 has a refractive index n of 1.64 or more and 1.70 or less.
 また、更に、好ましくは、多層膜(21~28)は、酸化アルミニウム層21の他に、低屈折率材料層(22,24、及び26)と、高屈折率材料層(23,25、及び27)とが交互に積層された繰り返し構造部を有する。 Furthermore, preferably, the multilayer films (21 to 28) include, in addition to the aluminum oxide layer 21, a low refractive index material layer (22, 24, and 26) and a high refractive index material layer (23, 25, and 27) and a repeating structure portion alternately stacked.
 また、別の他の局面では以下のように捉えることができる。本発明の実施形態にかかる光学素子1は、図4に示されているように、素子基材10の光学面5が光学薄膜20によってコーティングされ、光学薄膜20は、多層膜(21~28)が積層されてなる多層構造を有するとともに、多層膜(21~28)のうちの光学面5に接する側の第1層21が、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理によって形成された酸化アルミニウム層21であり、酸化アルミニウム層21は、光の波長と光の反射率との関係について、水分を除去可能な所定温度までの加熱処理の前後で、400nm以上700nm以下の波長領域における光の反射率の変化の最大値が0.50%以下となる膜構造を有している。 Also, in another aspect, it can be grasped as follows. In the optical element 1 according to the embodiment of the present invention, as shown in FIG. 4, the optical surface 5 of the element substrate 10 is coated with an optical thin film 20, and the optical thin film 20 is formed of a multilayer film (21 to 28). The first layer 21 on the side in contact with the optical surface 5 of the multilayer films (21 to 28) is deposited by a film forming process in which film constituent particles are deposited with an ion energy of 10 eV or more. The aluminum oxide layer 21 is formed, and the aluminum oxide layer 21 has a wavelength of 400 nm to 700 nm before and after heat treatment up to a predetermined temperature at which moisture can be removed with respect to the relationship between the wavelength of light and the reflectance of light. It has a film structure in which the maximum change in the reflectance of light in the region is 0.50% or less.
 また、好ましくは、光学素子1は、光学ガラスレンズからなる。 Also preferably, the optical element 1 is made of an optical glass lens.
 また、別の他の局面では以下のように捉えることができる。本発明の実施形態にかかる光学薄膜20の製造方法は、図4に示されているように、多層膜(21~27)が積層されてなる多層構造を有し、光学素子1の素子基材10の光学面5に配されて用いられる光学薄膜20の製造方法であって、多層膜(21~27)のうちの光学面5に接する側の第1層21として、酸化アルミニウム層21を、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理によって形成する第1層成膜工程を備え、第1層成膜工程で形成する酸化アルミニウム層21は、光の波長と光の反射率との関係について、水分を除去可能な所定温度までの加熱処理の前後で、400nm以上700nm以下の波長領域における光の反射率の変化の最大値が0.50%以下となる膜構造を有している。 Also, in another aspect, it can be grasped as follows. As shown in FIG. 4, the method of manufacturing the optical thin film 20 according to the embodiment of the present invention has a multilayer structure in which multilayer films (21 to 27) are laminated, and the element base material of the optical element 1 10 is a method of manufacturing an optical thin film 20 that is used by being disposed on the optical surface 5, and an aluminum oxide layer 21 is used as the first layer 21 on the side in contact with the optical surface 5 of the multilayer films (21 to 27). A first layer film forming step formed by a film forming process for depositing film constituent particles with an ion energy of 10 eV or more, and the aluminum oxide layer 21 formed in the first layer film forming step has a light wavelength and a light reflectance. The film structure is such that the maximum change in the reflectance of light in the wavelength region of 400 nm to 700 nm is 0.50% or less before and after heat treatment up to a predetermined temperature at which moisture can be removed. ing.
 また、別の他の局面では以下のように捉えることができる。本発明の実施形態にかかる光学素子1の製造方法は、図4に示されているように、素子基材10の光学面5が光学薄膜20によってコーティングされてなる光学素子1の製造方法であって、多層膜(21~28)が積層されてなる多層構造を有する光学薄膜20を光学面5に形成する光学薄膜成膜工程を備え、光学薄膜成膜工程は、多層膜(21~28)のうちの光学面5に接する側の第1層21として、酸化アルミニウム層21を、10eV以上のイオンエネルギーで膜構成粒子を堆積させる成膜処理によって形成する第1層成膜工程を含み、第1層成膜工程で形成する酸化アルミニウム層21は、光の波長と光の反射率との関係について、水分を除去可能な所定温度までの加熱処理の前後で、400nm以上700nm以下の波長領域における前記光の反射率の変化の最大値が0.50%以下となる、膜構造を有している。 Also, in another aspect, it can be grasped as follows. The manufacturing method of the optical element 1 according to the embodiment of the present invention is a manufacturing method of the optical element 1 in which the optical surface 5 of the element base 10 is coated with an optical thin film 20 as shown in FIG. An optical thin film forming step for forming an optical thin film 20 having a multilayer structure in which the multilayer films (21 to 28) are laminated on the optical surface 5, the optical thin film forming step including the multilayer films (21 to 28). A first layer film forming step of forming an aluminum oxide layer 21 by a film forming process for depositing film constituent particles with an ion energy of 10 eV or more as the first layer 21 on the side in contact with the optical surface 5 of the first layer 21; The aluminum oxide layer 21 formed in the single-layer film forming step has a relationship between the wavelength of light and the reflectance of light in a wavelength region of 400 nm to 700 nm before and after heat treatment up to a predetermined temperature at which moisture can be removed. Kicking the maximum value of the change in reflectance of the light is 0.50% or less, and has a film structure.
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内の全ての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1…光学素子
 5…光学面
 10…光学素子基材
 20…光学薄膜
 21…酸化アルミニウム層
 22,24,26…低屈折率材料層
 23,25,27…高屈折率材料層
 n…屈折率
 d…物理的膜厚
 x…光学薄膜係数
 λ…中心波長
 R1…第1の反射率
 R2…第2の反射率
 ΔR…シフト量。
DESCRIPTION OF SYMBOLS 1 ... Optical element 5 ... Optical surface 10 ... Optical element base material 20 ... Optical thin film 21 ... Aluminum oxide layer 22, 24, 26 ... Low refractive index material layer 23, 25, 27 ... High refractive index material layer n ... Refractive index d ... Physical film thickness x ... Optical thin film coefficient λ 0 ... Center wavelength R1 ... First reflectance R2 ... Second reflectance ΔR ... Shift amount.

Claims (5)

  1.  光学薄膜を備える光学素子であって、
     前記光学薄膜は、
     酸化アルミニウムを主成分とし、光学的膜厚及び中心波長に基づいて規定される、0.010以上2.00以下の範囲の光学薄膜係数を有する酸化アルミニウム層を備え、
     中心波長帯域の同一波長において、常温時における第1の反射率と、加熱時における第2の反射率とのシフト量が0.50%以下である、光学素子。
    An optical element comprising an optical thin film,
    The optical thin film is
    An aluminum oxide layer having an optical thin film coefficient in a range of 0.010 or more and 2.00 or less, which is mainly composed of aluminum oxide and defined based on an optical film thickness and a center wavelength,
    An optical element in which the shift amount between the first reflectance at normal temperature and the second reflectance at heating is 0.50% or less at the same wavelength in the central wavelength band.
  2.  前記光学的膜厚は、屈折率及び物理的膜厚に基づいて規定され、
     前記屈折率は、1.64以上1.70以下の範囲である、
     請求の範囲第1項に記載の光学素子。
    The optical film thickness is defined based on refractive index and physical film thickness,
    The refractive index is in the range of 1.64 or more and 1.70 or less,
    The optical element according to claim 1.
  3.  前記物理的膜厚は、8.0nm以上500.0nm以下の範囲である、
     請求の範囲第2項に記載の光学素子。
    The physical film thickness is in the range of not less than 8.0 nm and not more than 500.0 nm.
    The optical element according to claim 2.
  4.  前記光学薄膜は、前記酸化アルミニウム層により構成される単層膜であり、
     前記シフト量は、0.10%以下である、
     請求の範囲第1項~第3項のいずれか1項に記載の光学素子。
    The optical thin film is a single layer film composed of the aluminum oxide layer,
    The shift amount is 0.10% or less.
    The optical element according to any one of claims 1 to 3.
  5.  前記光学薄膜は、
     複数の成膜材料を積層して形成される多層膜であり、
     前記多層膜は、
     酸化シリコンにより形成される酸化シリコン層と、
     酸化タンタルにより形成される酸化タンタル層と、を含む、
     請求の範囲第1項~第3項のいずれか1項に記載の光学素子。
     
     
    The optical thin film is
    A multilayer film formed by laminating a plurality of film forming materials,
    The multilayer film is
    A silicon oxide layer formed of silicon oxide;
    A tantalum oxide layer formed of tantalum oxide,
    The optical element according to any one of claims 1 to 3.

PCT/JP2013/063565 2012-05-15 2013-05-15 Optical element WO2013172382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380024718.8A CN104321670B (en) 2012-05-15 2013-05-15 Optical element
JP2014515654A JP5883505B2 (en) 2012-05-15 2013-05-15 Optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012111390 2012-05-15
JP2012-111390 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013172382A1 true WO2013172382A1 (en) 2013-11-21

Family

ID=49583786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063565 WO2013172382A1 (en) 2012-05-15 2013-05-15 Optical element

Country Status (4)

Country Link
JP (1) JP5883505B2 (en)
CN (1) CN104321670B (en)
TW (1) TWI588517B (en)
WO (1) WO2013172382A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068096A (en) * 2015-09-30 2017-04-06 株式会社トプコン Antireflection film, optical element, and ophthalmic device
CN110392745A (en) * 2017-02-03 2019-10-29 法国爱奥尼亚公司 The method of antireflection and scratch-resistant processing in synthetic sapphire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102642282B1 (en) * 2017-07-12 2024-02-28 호야 가부시키가이샤 Light guide plate and image display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055207A (en) * 2000-05-29 2002-02-20 Konica Corp Optical component and optical device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581783B2 (en) * 1998-02-24 2004-10-27 日本板硝子株式会社 Glass article coated with conductive anti-reflective coating
US6410173B1 (en) * 1998-11-30 2002-06-25 Denglas Technologies, Llc Antireflection coatings and other multilayer optical coatings for heat-treatable inorganic substrates and methods for making same
JP3128554B2 (en) * 1999-02-17 2001-01-29 工業技術院長 Method for forming oxide optical thin film and apparatus for forming oxide optical thin film
WO2005029142A1 (en) * 2003-09-22 2005-03-31 Murakami Corporation Silver mirror and method for preparation thereof
JP2007147667A (en) * 2005-11-24 2007-06-14 Optorun Co Ltd Silver mirror
US7692855B2 (en) * 2006-06-28 2010-04-06 Essilor International Compagnie Generale D'optique Optical article having a temperature-resistant anti-reflection coating with optimized thickness ratio of low index and high index layers
US7465681B2 (en) * 2006-08-25 2008-12-16 Corning Incorporated Method for producing smooth, dense optical films
JP2009145644A (en) * 2007-12-14 2009-07-02 Olympus Corp Reflection preventing film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055207A (en) * 2000-05-29 2002-02-20 Konica Corp Optical component and optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068096A (en) * 2015-09-30 2017-04-06 株式会社トプコン Antireflection film, optical element, and ophthalmic device
CN110392745A (en) * 2017-02-03 2019-10-29 法国爱奥尼亚公司 The method of antireflection and scratch-resistant processing in synthetic sapphire

Also Published As

Publication number Publication date
TW201400850A (en) 2014-01-01
JPWO2013172382A1 (en) 2016-01-12
JP5883505B2 (en) 2016-03-15
CN104321670B (en) 2016-01-06
CN104321670A (en) 2015-01-28
TWI588517B (en) 2017-06-21

Similar Documents

Publication Publication Date Title
US20210396919A1 (en) Optical filter and sensor system
JP4854552B2 (en) Antireflection film and optical component having the same
JP4178190B2 (en) Optical element having multilayer film and method for producing the same
JP4462273B2 (en) Optical article and manufacturing method thereof
KR102187048B1 (en) Infrared band pass filter
CN106574985A (en) Anti-reflection film and optical member provided with anti-reflection film
JP5883505B2 (en) Optical element
JP6995491B2 (en) Manufacturing method of optical thin film, optical element, optical element
JP6944623B2 (en) Manufacturing method of ND filter
JP2016218335A (en) Glass member with optical multi-layer film
JP4804830B2 (en) Multilayer film forming method and film forming apparatus
WO2021024834A1 (en) Antireflection film-equipped optical member and production method therefor
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JP3979814B2 (en) Optical thin film manufacturing method
JP7162867B2 (en) ND filter and its manufacturing method
JP6989289B2 (en) Lens with hydrophilic antireflection film and its manufacturing method
US20200041694A1 (en) Thin film forming method and porous thin film
JP7378114B2 (en) ND filter
JP2018101132A (en) Antireflective film and optical element having the same
JP7117081B2 (en) Dust-proof lens and manufacturing method thereof
JP2022036766A (en) Nd filter and manufacturing method for nd filter
Ockenfuss Metal-oxide Ultraviolet Narrow-band-pass Filter at 214 nm
JP2002040236A (en) Multilayered optical thin film
JPH05249303A (en) Optical parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791091

Country of ref document: EP

Kind code of ref document: A1