WO2013172300A1 - Honeycomb structure inspection method, honeycomb structure manufacturing method and honeycomb structure inspection device - Google Patents

Honeycomb structure inspection method, honeycomb structure manufacturing method and honeycomb structure inspection device Download PDF

Info

Publication number
WO2013172300A1
WO2013172300A1 PCT/JP2013/063287 JP2013063287W WO2013172300A1 WO 2013172300 A1 WO2013172300 A1 WO 2013172300A1 JP 2013063287 W JP2013063287 W JP 2013063287W WO 2013172300 A1 WO2013172300 A1 WO 2013172300A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
face
honeycomb
shape
irradiation
Prior art date
Application number
PCT/JP2013/063287
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 齊藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013172300A1 publication Critical patent/WO2013172300A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded

Definitions

  • One embodiment of the present invention relates to a honeycomb structure inspection method, a honeycomb structure manufacturing method, and a honeycomb structure inspection apparatus, and relates to a honeycomb structure inspection method for inspecting an outer shape of a honeycomb structure, and a honeycomb structure manufacturing
  • the present invention relates to a method and an inspection apparatus for a honeycomb structure.
  • Patent Document 1 discloses a method for inspecting a honeycomb structure including a columnar honeycomb fired body in which a large number of cells are arranged in parallel in the longitudinal direction with cell walls interposed therebetween.
  • a contact-type measuring instrument is prepared that includes a reference surface, a rail that is provided perpendicular to the reference surface, and a probe that includes a probe that moves along the rail.
  • one end surface of the honeycomb structure is brought into contact with the reference surface, and the probe is brought into contact with the other end surface of the honeycomb structure by moving the measuring element in a direction approaching the reference surface. The shape of the structure in the longitudinal direction is measured.
  • Patent Document 2 a laser light irradiation unit that irradiates laser light in a planar shape and all of the laser light emitted from the laser light irradiation unit are received, and the received laser light
  • a method for manufacturing a honeycomb structure in which the appearance of the honeycomb structure is inspected using a dimension measuring device including a light receiving unit that detects an electric signal of a level corresponding to the strength.
  • One embodiment of the present invention has been made in view of the above problems, and provides a honeycomb structure inspection method and a honeycomb structure inspection apparatus that can efficiently inspect a honeycomb structure in a non-contact manner. With the goal.
  • One embodiment of the present invention is a method for inspecting a honeycomb structure in which cells that are a plurality of through-holes are opened on an end face of a cylindrical body, and an irradiation step of irradiating the surface of the honeycomb structure with light, and The light receiving process for receiving the reflected light of the light irradiated to the honeycomb structure in the irradiation process, and the honeycomb structure from the relationship between the irradiation angle of the light irradiated to the honeycomb structure in the irradiation process and the light receiving angle of the reflected light received in the light receiving process Calculating a shape data relating to the shape of the body.
  • the inspection of the honeycomb structure is performed in a non-contact manner. Is possible. Therefore, it is possible to inspect the honeycomb structure in a soft state after extrusion and before drying. Further, since the surface of the honeycomb structure is irradiated while scanning with light, the honeycomb structure can be inspected more efficiently than the method of Patent Document 2. Therefore, according to the above configuration, the honeycomb structure can be inspected efficiently without contact.
  • the honeycomb structure has a label for specifying the reference position of the honeycomb structure on the surface, and further includes a position specifying step for specifying the reference position of the honeycomb structure using the label before the irradiation step. Can do.
  • the irradiation step or the light receiving step can be performed a plurality of times by changing the irradiation position on the honeycomb structure.
  • shape data of a wide range of honeycomb structures can be calculated.
  • the shape data the end face diameter of the cylinder, the average diameter of the cross section in the diameter direction of the cylinder, the diameter of the arbitrary cross section in the diameter direction of the cylinder, the cylindricity indicating the distortion of the side shape of the cylinder , Roundness of the cross-sectional shape in the diameter direction of the cylinder, perpendicularity between the axial section of the cylinder and the section parallel to the end face of the cylinder, the cylinder axis and the end face of the cylinder based on the side of the cylinder
  • the perpendicularity between the cylinder axis with respect to the side of the cylinder and the cross section parallel to the end face of the cylinder, the cylinder axis with respect to one end face of the cylinder, and the other end face of the cylinder Perpendicularity, perpendicularity between the cylinder axis relative to one end face of the cylinder and the cross section parallel to the other end face of the cylinder, straightness defining the side of
  • the shape of the honeycomb structure can be inspected in detail using various indicators.
  • reference data regarding the shape of the honeycomb structure can be acquired, and an error of the shape data with respect to the reference data can be calculated.
  • the manufactured honeycomb structure can be inspected for obvious defects.
  • an analysis process for recording and analyzing shape data can be further provided.
  • the shape of the manufactured honeycomb structure can be inspected in more detail.
  • honeycomb structure a green honeycomb molded body obtained by extruding a ceramic composition can be used.
  • the honeycomb structure in a soft state after extrusion and before drying can be inspected.
  • honeycomb structure a molded body obtained by drying the green honeycomb molded body or a fired molded body obtained by firing the molded body can be used.
  • the shape of the honeycomb structure in a cured state after drying can be inspected.
  • a method for manufacturing a honeycomb structure includes an extrusion molding process for manufacturing a green molded body by extruding a ceramic composition, and a drying process for manufacturing a dry body by drying the green honeycomb molded body. And a cutting step for cutting the dried body so as to have a design length by shrinkage due to firing, a sealing step for sealing the dried body after cutting to produce a sealing body, and a firing step for firing the sealing body.
  • An inspection apparatus for a honeycomb structure is an inspection apparatus used for inspecting a cylindrical honeycomb structure in which cells that are a plurality of through holes are opened on an end surface.
  • An irradiating unit for irradiating the surface of the light while scanning the light, a light receiving unit for receiving reflected light of the light irradiated to the honeycomb structure by the irradiating unit, and an irradiation angle of the light irradiated to the honeycomb structure by the irradiating unit;
  • a calculation unit that calculates shape data related to the shape of the honeycomb structure from a relationship with a light receiving angle of reflected light received by the light receiving unit.
  • the honeycomb structure inspection apparatus may further include a reference position specifying unit that specifies the reference position of the honeycomb structure.
  • the reference position specifying unit can have a label for specifying the reference position of the honeycomb structure on the pedestal on which the honeycomb structure is placed.
  • the honeycomb structure can be easily aligned by combining the label printed on the honeycomb structure with the label printed on the pedestal.
  • honeycomb structure inspection apparatus may further include a pedestal that can rotate while the honeycomb structure is placed thereon.
  • the honeycomb structure in a wide range can be inspected by rotating the base and inspecting the honeycomb structure a plurality of times or repeatedly.
  • the honeycomb structure can be efficiently inspected in a non-contact manner.
  • FIG. 1 is a perspective view showing an outline of an inspection apparatus for a honeycomb structure according to an embodiment of the present invention.
  • A is a perspective view of the honeycomb structure before sealing
  • (b) is the elements on larger scale of (a). It is a honeycomb structure provided with a through hole having another cross-sectional shape
  • (a) is a perspective view of the honeycomb structure before sealing
  • (b) is a partially enlarged view of (a).
  • (A) to (d) are diagrams obtained by color mapping the shape data of the honeycomb structure obtained by the apparatus of FIG. 1 after each manufacturing process.
  • FIG. 2 is a diagram in which shape data of a honeycomb structure obtained by the apparatus of FIG.
  • FIGS. 6A and 6B are diagrams showing the color mapping diagrams of FIGS. 6A and 6B from the opposite side surface. It is a flowchart which shows the procedure of the color mapping which concerns on this embodiment. It is a flowchart which shows the procedure of the dimension measurement which concerns on this embodiment. It is a perspective view for demonstrating the inspection method of the honeycomb structure which concerns on embodiment of this invention. It is a perspective view for demonstrating the process following FIG. FIG. 12 is a perspective view for explaining a process following the process in FIG. 11.
  • FIG. 20 is a schematic diagram of an operation screen following FIG. 19. It is a schematic diagram of the operation screen following FIG.
  • FIGS. 1 and (b) are schematic diagrams of an operation screen for measuring the perpendicularity between a cylinder axis based on the side surface of the cylinder and a cross section parallel to the end face of the cylinder. It is a schematic diagram of the operation screen for measuring roundness. It is a schematic diagram of the operation screen following FIG. It is a schematic diagram of the operation screen for measuring cylindricity. It is a schematic diagram of the operation screen following FIG. It is a schematic diagram of the operation screen for measuring the length of the axial direction of a cylinder. It is a schematic diagram of the operation screen for measuring parallelism. It is a schematic diagram of the operation screen for measuring upper surface flatness. It is a schematic diagram of the operation screen for measuring lower surface flatness.
  • the honeycomb structure inspection apparatus of the present embodiment is for inspecting the outer appearance of the honeycomb structure used for a diesel particulate filter or the like and the presence or absence of surface defects.
  • This honeycomb structure inspection apparatus scans a honeycomb structure to be inspected and calculates shape data related to the shape of the honeycomb structure.
  • the inspection apparatus detects cracks or chips on the surface of the honeycomb structure by measuring an error between the reference shape of the honeycomb structure and the shape of the honeycomb structure to be inspected.
  • the inspection apparatus displays the degree of error from the reference shape of the honeycomb structure based on the data obtained by the inspection apparatus for the honeycomb structure in color shading and performs color mapping, or actually inspects the honeycomb to be inspected.
  • the dimensions of the structure can be measured.
  • Information regarding the reference shape of the honeycomb structure is stored in advance in the inspection apparatus as CAD (computer aided design) data.
  • the honeycomb structure inspection apparatus 10 of the present embodiment includes a dimension measurement apparatus 20.
  • the dimension measuring apparatus 20 includes an irradiation unit 22 that irradiates the surface of the cylindrical honeycomb structure 70 with light Ri, which is laser light, and reflected light Ro of the light that the irradiation unit 22 irradiates the honeycomb structure.
  • Shape data relating to the shape of the honeycomb structure 70 from the relationship between the light receiving portion 24 that receives the light and the irradiation angle of the light Ri irradiated to the honeycomb structure 70 by the irradiation portion 22 and the light reception angle of the reflected light Ro received by the light receiving portion 24
  • a calculating unit 26 for calculating.
  • the honeycomb structure inspection apparatus 10 includes a pedestal 30 that can be rotated with the honeycomb structure 70 mounted thereon, and a rotator 32 is attached to the pedestal 30.
  • a plurality of marks 34 are attached to the pedestal 30 so as to surround a region where the honeycomb structure 70 is placed, and the relative position of the honeycomb structure 70 with respect to the mark 34 is determined based on the positional relationship between the marks 34 and the honeycomb structure 70.
  • the position can be specified.
  • As the mark 34 a piece of paper or a plastic film having a sticky adhesive applied to the back surface can be used.
  • a pedestal label 36 is affixed to the pedestal 30, and a structural body label 38 is affixed to the honeycomb structure 70, and the honeycomb structure 70 is aligned with the positions of the pedestal label 36 and the structural body label 38. By mounting, the reference position of the honeycomb structure 70 can be specified.
  • a personal computer (not shown) is connected to the dimension measuring device 20. The shape data obtained by the dimension measuring device 20 is processed by a personal computer.
  • the honeycomb structure 70 to be inspected will be described.
  • the honeycomb structure 70 according to the present embodiment has, for example, an upper surface 71a, a lower surface 71b, and a side surface 71c, and a plurality of through holes (cells) 70a are formed on the upper surface 71a and the lower surface 71b. It is the cylindrical body arrange
  • Each through hole 70a is separated by a partition wall 70b, and the thickness of the partition wall 70b can be, for example, 0.15 to 0.76 mm.
  • the external shape of the green honeycomb molded body 70 is not limited to a cylindrical body, but is an elliptical column or a rectangular column (for example, a regular polygonal column such as a triangular column, a quadrangular column, a hexagonal column, an octagonal column, a triangular column other than a regular polygonal column, or a rectangular column.
  • a regular polygonal column such as a triangular column, a quadrangular column, a hexagonal column, an octagonal column, a triangular column other than a regular polygonal column, or a rectangular column.
  • the honeycomb structure 70 is a cylindrical body will be described.
  • the axial direction of the honeycomb structure 70 is a direction parallel to the direction in which the through holes 70a are arranged
  • the radial direction is a direction orthogonal to the axial direction.
  • the cross-sectional shape of the through hole 70a of the honeycomb structure 70 is not particularly limited, and may be, for example, a polygon such as a circle, an ellipse, a rectangle, a triangle, and a hexagon other than a square as shown in FIG. Can be mentioned. Further, in the through hole 70a, those having different diameters and those having different cross-sectional shapes may be mixed. As shown in FIG. 2 (b), when the cross-sectional shape of the through hole 70a is a square, the plurality of through holes 70a are arranged in a square shape in the honeycomb structure 70 as viewed from the end face, that is, the central axis of the through hole 70a. Are arranged at the vertices of the square.
  • the square size of the cross section of the through hole 70a can be set to, for example, 0.8 to 2.5 mm on a side.
  • examples of the honeycomb structure 70 having through holes having other cross-sectional shapes include a honeycomb structure 70 having a plurality of through holes 72a and 72b having different cross-sectional shapes as shown in FIG.
  • the plurality of through holes 72 a and 72 b are partitioned by a partition wall 72 that extends substantially parallel to the central axis of the green honeycomb molded body 70.
  • the through-hole 72a has a regular hexagonal cross-sectional shape
  • the through-hole 72b has a flat hexagonal cross-sectional shape and is formed so as to surround the through-hole 72a.
  • the thickness of the partition wall 72 (cell wall thickness) can be 0.8 mm or less, 0.5 mm or less, 0.1 mm or more, and 0.2 mm or more.
  • the length of the honeycomb structure 70 in the direction in which the through holes 70a extend is not particularly limited, but may be 40 to 350 mm, for example.
  • the outer diameter of the honeycomb structure 70 is not particularly limited, but may be, for example, 10 to 320 mm.
  • the honeycomb structure 70 is a green honeycomb molded body (unfired molded body) or a porous ceramic (fired body) obtained by firing the green honeycomb molded body, which becomes porous ceramic as described above by firing later. .
  • FIG. 4 is a flowchart of the method for manufacturing a honeycomb structure according to the embodiment of the present invention.
  • the manufacturing method according to this embodiment includes an extrusion process (S1) in which a ceramic composition is extruded to produce a green molded body, and a green honeycomb molded body is dried to produce a dried body.
  • the manufacturing method according to the present embodiment includes a first inspection step (S2) using the inspection apparatus 10 between the extrusion step (S1) and the drying step (S3), and the drying step (S3) and precision cutting.
  • a second inspection step (S4) using the inspection apparatus 10 is provided between the step (S5).
  • the manufacturing method according to the present embodiment includes a third inspection step (S6) using the inspection apparatus 10 between the precision cutting step (S5) and the sealing step (S7), and the firing step (S8).
  • a fourth inspection step (S9) using the inspection apparatus 10 is provided later.
  • an inorganic compound source powder that is a ceramic raw material, an organic binder, a solvent, and additives to be added as necessary are prepared.
  • the inorganic compound source powder includes an aluminum source powder and a titanium source powder.
  • the inorganic compound source powder can further include a magnesium source powder and / or a silicon source powder.
  • organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • the additive include a pore-forming agent, a lubricant and a plasticizer, a dispersant, and a solvent.
  • the prepared raw materials are mixed by a kneader or the like to obtain a raw material mixture, and the obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the cross-sectional shape of the partition wall (extrusion molding step: S1).
  • a first inspection process is performed on the extruded honeycomb structure 70 by the inspection apparatus 10 (S2).
  • the molded body is dried (drying step: S3).
  • a second inspection step is performed on the honeycomb structure 70 using the inspection device 10 (second inspection step: S4).
  • the dried body is cut so as to have a designed length by shrinkage due to firing (precision cutting step: S5).
  • a third inspection process is performed on the cut body by the inspection apparatus 10 (S6).
  • the through hole 70a of the honeycomb structure 70 is sealed (sealing step: S7).
  • the sealing step only the plurality of through holes 70a that are not adjacent to each other vertically and horizontally among the plurality of squarely arranged through holes 70a in FIG. 2B are sealed with the sealing material.
  • the honeycomb structure 70 with the through-holes 70a sealed is fired to obtain a fired body (firing step: S8), and the fired body is subjected to a fourth inspection step by the inspection apparatus 10 (S9).
  • FIG. 5 shows color mapping of the shape data of the honeycomb structure 70 obtained by the honeycomb structure inspection apparatus 10 as described later.
  • the figures arranged in the upper and lower directions in FIG. 5 have the relationship shown from the opposite side surfaces.
  • FIG. 5 (a) is a green honeycomb molded body before drying in which the raw material mixture is extruded from an extruder, and (b) is a molded body obtained by drying the extruded green honeycomb molded body. ) Is a green honeycomb formed body after cutting the formed body into a desired length, and (d) is a fired body obtained by firing the green honeycomb formed body after cutting.
  • the shape of the honeycomb structure 70 in each manufacturing process becomes smaller due to the shrinkage of the green honeycomb formed body due to evaporation of moisture after drying. Further, as shown in FIGS. 5C and 5D, the green honeycomb molded body shrinks and becomes small even after firing.
  • an error from the reference shape of the honeycomb structure 70 is displayed by the shade of the color that the color bar 90 indicates as a reference.
  • a portion where the color of the side surface 71c in (a) and (c) is light and close to the reference point 91 is a flat portion having no error from the reference shape of the honeycomb structure, and (a) and In (b), the dark portion such as the upper surface 71a is a portion that is more concave than the reference shape of the honeycomb structure.
  • the part where the color of the front surface of the side surface 71c in (b) is changed and the part where the color of the central part of the upper surface 71a in (d) is darker are more convex than the reference shape of the honeycomb structure. It is a place.
  • FIG. 6 and 7 show the honeycomb structure 70 as an extruded green honeycomb molded body before drying (FIGS. 6 and 7 (a)) and a green honeycomb molded body dried (FIGS. 6 and 7 ( The shape data of b)) is converted into color mapping.
  • FIG. 6 and FIG. 7 are shape data when the same honeycomb structure 70 is viewed from the opposite side.
  • the molded body has a concave upper surface 71a than the green honeycomb molded body before drying. Further, on the side surface 71c of FIG. 7, there is a recess A that is darker than the surrounding portion and is recessed from the reference shape.
  • the honeycomb structure 70 is roughly cut during extrusion molding, the honeycomb structure 70 is placed on a cradle with the side surface 71c of the honeycomb structure 70 facing down. For this reason, in the honeycomb structure 70 before being dried by extrusion shown in FIG. 7, the trace of the cradle that supported the honeycomb structure 70 remains as a recess A.
  • the inspection method according to the present embodiment includes a first inspection process, a second inspection process, a third inspection process, and a fourth inspection process.
  • the first inspection step the green honeycomb formed body before drying, in which the raw material mixture is extruded from the extruder, is inspected, and in the second inspection step, the dried body after the drying step is inspected.
  • the third inspection step the dried body after the precision cutting step is inspected, and in the fourth inspection step, the fired body after firing is inspected.
  • FIG. 8 is a flowchart showing a color mapping procedure.
  • the degree of error from the reference data can be expressed in shades of color, and portions where the error from the reference data is large are displayed in dark colors, and the error is small. As it becomes, it is displayed in a light color. That is, when color mapping is performed, if there is a portion displayed in a dark color, it becomes a material for determining that the honeycomb structure 70 has a defect.
  • FIG. 9 is a flowchart showing a procedure for measuring dimensions.
  • the dimensions of the honeycomb structure 70 to be inspected are measured based on the shape data of the honeycomb structure 70 obtained by the inspection apparatus 10.
  • the color mapping procedure will be described in detail with reference to FIGS. 10 to 16, and the dimension measurement procedure will be described in detail with reference to FIGS.
  • Color mapping In color mapping, first, as shown in FIG. 10, a dimension measuring device 20 and a pedestal 30 are prepared. A plurality of marks 34 are pasted on the pedestal 30. Next, as shown in FIG. 11, the honeycomb structure 70 is placed on the pedestal 30 while being aligned (S11). When the honeycomb structure 70 is placed, the positions of the pedestal label 36 of the pedestal 30 and the structure label 38 of the honeycomb structure 70 are aligned. The reference position is determined by this alignment.
  • the honeycomb structure 70 to be inspected is scanned (S12).
  • the scanning of the honeycomb structure 70 is performed through an irradiation process, a light receiving process, and a calculation process.
  • the irradiation unit 22 irradiates the surface of the honeycomb structure 70 while scanning the light (irradiation process), and receives the reflected light Ro of the irradiation light Ri irradiated to the honeycomb structure. 24 receives light (light receiving step).
  • the calculation unit 26 of the dimension measuring apparatus 20 uses the relationship between the irradiation angle of the irradiation light Ri irradiated by the irradiation unit 22 and the reception angle of the reflected light Ro received by the light receiving unit 24 to obtain shape data relating to the shape of the honeycomb structure 70. Is calculated (calculation step).
  • Calculation of shape data related to the shape of the honeycomb structure 70 is performed according to the following procedure. First, the distance L between the irradiation unit 22 and the light receiving unit 24, the irradiation angle ⁇ i that is an angle formed by the straight line connecting the irradiation unit 22 and the light receiving unit 24 and the irradiation light Ri, and the reflected light Ro to the light receiving unit 24. The value of the light receiving angle ⁇ o is acquired. Next, using these values, the absolute coordinates of the light reflection position on the surface of the honeycomb structure 70 are calculated from the congruent conditions of the triangle.
  • the reflection positions of the plurality of light in the scanned range are respectively calculated, a cylindrical shape through which the calculated plurality of absolute coordinate point groups smoothly passes is obtained by the least square method, and is drawn as a diagram on the screen.
  • the diagram drawn on the screen by such a procedure is the shape data (scan data) of the honeycomb structure 70 obtained by the honeycomb structure inspection apparatus 10.
  • the scanning of the honeycomb structure 70 is performed four times by changing the irradiation position on the honeycomb structure 70 by 90 degrees, and the entire shape data of the honeycomb structure 70 is acquired by four times of scanning.
  • the irradiation position can be changed by rotating the pedestal 30 by the rotating unit 32.
  • Color mapping can be performed by operating a personal computer using dedicated software. 13 to 16 are operation screens displayed on a monitor of a personal computer when color mapping is performed.
  • the reference data 70S is read by automatic processing of the started software (S13).
  • the outline of the reference data 70S is drawn on the monitor of the personal computer based on the CAD data of the reference data 70S previously stored in the personal computer.
  • the shape data (scan data) of the honeycomb structure 70 obtained by the honeycomb structure inspection apparatus 10 is read by automatic processing of software, and as shown in FIG.
  • the reference data 70S shown in FIG. 6 and the color-mapped scan data are displayed in a superimposed manner.
  • the coordinates of the reference data 70S and the scan data are matched (S14). This coordinate alignment process is performed based on the obtained reference position in the alignment step (S11).
  • an image that has been color mapped by automatic software processing is displayed (S15).
  • the color-mapped image displays an error from the reference shape by shading.
  • the color-mapped image of the other honeycomb structure 70 obtained by each of the four scannings is displayed in a small size in the box B as shown in FIG. Then, a color-mapped image of the selected honeycomb structure 70 can be displayed in a large size by selecting an image to be viewed by an operation by a personal computer.
  • the honeycomb structure 70 is aligned (S21) and scanned (S22).
  • the reference data 70S is read by automatic software processing (S23), and the coordinate alignment between the reference data 70S and the scan data is performed (S24).
  • the coordinate alignment is performed by selecting a corresponding portion of the reference data 70S and the scan data when the side surface 71c of the honeycomb structure 70 is viewed from the side by an input operation to a personal computer.
  • coordinates are matched by associating three points, that is, the central part of the upper side and the lower side and the right part of the lower side.
  • the columnar dimension of the honeycomb structure 70 is measured (S25).
  • the dimension items the diameter, cylindricity, roundness, squareness, straightness, end face parallelism, flatness, the axial length of the cylinder, and the like can be measured.
  • the diameter of the cylindrical body and the length in the axial direction of the cylindrical body are measured at a plurality of locations of the honeycomb structure 70, and then the average value is used as the final measurement value.
  • the cylindricity, the roundness, the squareness, the straightness, the end face parallelism, and the flatness are measured at a plurality of locations of the honeycomb structure 70, and the maximum values are used as final measurement values.
  • the tolerance is an allowable range of an error in the measurement value of each measurement item, and it is determined whether or not the shape of the honeycomb structure manufactured by comparing the measurement value and the tolerance is within an allowable range as a product. it can.
  • Each dimension measurement can be displayed on a cylindrical body drawn by a diagram or dot diagram, but can also be displayed on a color mapped image.
  • a first cross section 70s1 and a second cross section 70s2 are prepared, and a temporary cylindrical shaft 70p0 is created based on an orthogonal portion between the first cross section 70s1 and the second cross section 70s2.
  • a cross section obtained by passing the temporary cylindrical shaft 70p0 and dividing the cylindrical body into 12 at equal intervals is prepared as a cross section in the axial direction of the honeycomb structure 70, and the honeycomb structure with respect to the upper surface 71a which is the reference surface
  • the squareness of each cross section in the axial direction of the body 70 is calculated.
  • the angle of each cross section in the axial direction with respect to the upper surface 71a is 90 degrees
  • the perpendicularity is measured by measuring the error of the angle of each cross section in the axial direction with respect to the upper surface 71a with respect to the reference data 70S. Is called.
  • the first side is displayed on the color-mapped image shown in FIG. A case where the perpendicularity with respect to 70c and the second side 70d is calculated will be described.
  • an upper reference surface 71A extending at the same height as the upper surface 71a, which is a reference surface, and a bottom reference surface 71B extending including the lower surface 71b are displayed. Is done.
  • the first side 70c is shifted by “0.55 mm” in the radial direction as compared with the corresponding reference data 70S side, and the second side 70d is compared with the corresponding reference data 70S side.
  • the tolerance input by the operation by the personal computer is “0.30 mm”
  • the maximum value of the squareness is larger than the inputted tolerance, and the squareness is larger than the tolerance. large.
  • the operation screen of the personal computer extends including the upper reference surface 71A and the lower surface 71b extending at the same height as the upper surface 71a as the reference surface.
  • An existing bottom reference plane 71B is prepared.
  • a circular center which is a set of points equidistant (same height) from the upper reference surface 71A on the side surface of the honeycomb structure 70 is obtained.
  • a plurality of centers are obtained for each distance from the upper reference plane 71A.
  • a cylinder axis 70p1 with respect to the side surface of the honeycomb structure 70 is obtained by obtaining a straight line passing through the closest distance from each center obtained for each distance from the upper reference surface 71A by the least square method.
  • a perpendicular 70v passing through the center of the upper surface 71a and extending perpendicularly to the upper surface 71a and a cross-section 71r cut by an arbitrary surface 71R parallel to the upper reference surface 71A are created.
  • the distance t1 (unit: mm) between the point 71v where the perpendicular 70v intersects with the arbitrary surface 71R and the point 71p1 where the cylindrical axis 70p1 relative to the side surface intersects with the arbitrary surface 71R is based on the side surface of the honeycomb structure 70. It is calculated as the squareness between the cylindrical axis and the cross section parallel to the end face of the honeycomb structure 70.
  • the distance t1 becomes an error compared with the reference data 70S.
  • a distance t2 (unit mm) between a point 72v where the perpendicular 70v intersects the bottom reference plane 71B and a point 72p1 where the cylindrical axis 70p1 intersects the bottom reference plane 71B is defined on the side surface of the honeycomb structure 70. It is calculated as the squareness between the cylinder axis as a reference and the end face of the honeycomb structure 70. In the reference data 70S, since the point 72v and the point 72p1 coincide with each other, the distance t2 becomes an error compared with the reference data 70S. The squareness measurement results obtained in this way are similar to those obtained when the squareness of the axial section of the honeycomb structure 70 and the diameter section of the honeycomb structure 70 is measured. Is displayed. In FIG. 22A, for convenience of explaining the perpendicularity, the columnar axis 70p1 of the honeycomb structure 70 is not perpendicular to the upper surface 71a and the lower surface 71b.
  • a perpendicular 70v passing through the center of the upper surface 71a and extending perpendicularly to the upper surface 71a and a cross section 71r cut by an arbitrary surface 71R parallel to the upper reference surface 71A are created.
  • a distance t1 (unit: mm) between a point 71v where the perpendicular 70v intersects with the arbitrary surface 71R and a point 71p2 where the cylindrical axis 70p2 perpendicular to the lower surface 71b intersects with the arbitrary surface 71R is one end surface of the honeycomb structure 70. Is calculated as a square angle between the cylindrical axis with reference to the cross section parallel to the other end face of the honeycomb structure 70. In the reference data 70S, since the point 71v and the point 71p2 coincide, the distance t1 becomes an error compared with the reference data 70S.
  • a distance t2 (unit: mm) between a point 72v where the perpendicular 70v intersects the bottom reference plane 71B and a point 72p2 where the cylindrical axis 70p2 intersects the bottom reference plane 71B is expressed as one of the honeycomb structures 70. This is calculated as the squareness between the cylindrical axis with respect to the end face and the other end face of the honeycomb structure 70.
  • the distance t2 becomes an error compared with the reference data 70S.
  • the squareness measurement results obtained in this way are similar to those obtained when the squareness of the axial section of the honeycomb structure 70 and the diameter section of the honeycomb structure 70 is measured. Is displayed.
  • the upper surface 71a of the honeycomb structure 70 is not horizontal for the convenience of explaining the perpendicularity.
  • the distortion of the cross-sectional shape in the diameter direction of the cylindrical body of the honeycomb structure 70 can be grasped.
  • the cross-sectional shape in the diameter direction of the cylindrical body is a perfect circle
  • the roundness is measured by determining the error of the radius in each cross section between the scan data and the reference data 70S, as well as the minimum in each surface. This is done by measuring the error from the perfect circle obtained by the square method. This measurement is automatically performed on the operation screen of the personal computer according to the following procedure.
  • a cylindrical body cross section 70e is prepared in which the cylindrical body is cut into ten rounds at equal intervals in the axial direction.
  • the number of cross sections in the diameter direction of the cylindrical body may be 10 or more or 10 or less.
  • ten reference surfaces 71E that are parallel to the bottom reference surface 71B of the cylindrical body that is the installation surface are prepared at equal intervals, and the cylinders are arranged along the respective reference surfaces 71E. Obtained by cutting the body. Then, a radius error (unit: mm) in each of the cross sections 70e of the scan data with respect to the reference data 70S is obtained, and the maximum value thereof is obtained.
  • the roundness of the cross section 70e and the cross section 70f obtained based on the reference surface 71E and the reference surface 71F is calculated will be described with reference to FIG.
  • the reference surface 71E and the reference surface 71F are selected.
  • the roundness of the cross section 70e and the cross section 70f is displayed on the operation screen.
  • the roundness of the cross section 70e is “0.145 mm”
  • the roundness of the cross section 70f is “0.063 mm”.
  • the roundness of the cross section 70e and the cross section 70f is within the allowable range. Therefore, in the example shown in FIG. 24, the maximum roundness is smaller than the tolerance, and the roundness is smaller than the tolerance.
  • the diameter of the end face of the cylindrical body is measured using the cross-sections 70e of the 10 cylindrical bodies prepared when calculating the roundness. After obtaining the diameters of the cross-sections of the 10 cylinders, the average value is the measured value of the final cylinder diameter (average diameter).
  • a semi-cylinder 70g is prepared which passes through the cylinder axis 70p1 obtained as described above and includes a radius 70t.
  • the reference data 70S when the cylindrical axis 70p1 of the reference data 70S and the scan data are aligned on the operation screen.
  • the error of the radius 70t with respect to is displayed as cylindricity.
  • the cylindricity is obtained by using a plurality of other semi-cylinders passing through the cylinder axis 70p1 and including a radius different from the radius 70t to obtain a plurality of cylindricity, and the maximum value is a measured value of the cylindricity of the final cylinder.
  • the procedure for measuring the axial length will be described with reference to FIG. As shown in FIG. 27, first, an upper reference surface 71A in which the upper surface 71a and the upper surface 71a of the cylindrical body extend, and a bottom reference surface 71B that includes the lower surface 71b and the lower surface 71b are shown on the operation screen. . Next, the length between the upper reference surface 71A and the bottom reference surface 71B is obtained. In the example shown in FIG. 27, the axial length is “152.4394 mm”. This operation is repeated several times to obtain a plurality of axial lengths, and the average value is taken as the final measured axial length of the cylinder.
  • End face parallelism The procedure for measuring the end face parallelism will be described with reference to FIG.
  • the end faces of the cylindrical bodies are parallel to each other, and the measurement of the end face parallelism measures an error of scan data with respect to the reference data 70S.
  • the procedure is as follows. First, an upper reference surface 71A in which the upper surface 71a and the upper surface 71a of the cylindrical body are extended, and a bottom reference surface 71B in which the lower surface 71b and the lower surface 71b are extended are displayed on the operation screen. To display.
  • the parallelism is “0.0432 mm”.
  • the upper surface is a surface facing upward in the manufacturing process of the honeycomb structure 70.
  • an upper reference surface 71in extending the upper surface 70in and the upper surface 70in of the cylindrical body and a lower reference surface 71out extending the lower surface 70out and the lower surface 70out are displayed on the operation screen.
  • the difference between the largest convex portion and the largest concave portion on the upper surface 70 in of the scan data is calculated as the upper surface flatness.
  • the upper surface flatness is “0.1123 mm”.
  • the cylindricity is obtained by the method described above.
  • the cylindricity is displayed on an image that has been color-mapped together with the upper surface flatness.
  • the procedure for measuring the lower surface flatness will be described with reference to FIG.
  • the lower surface here is a surface facing downward in the manufacturing process of the honeycomb structure 70, that is, a surface installed on the manufacturing apparatus.
  • FIG. 30 displays a color mapping image that is upside down from the example of FIG.
  • the lower surface flatness is calculated as a difference between the largest convex portion and the largest concave portion on the lower surface 70out.
  • the upper surface flatness is “1.1644 mm”.
  • an analysis process for recording and analyzing the shape data of the honeycomb structure 70 in order to determine whether the product is to be passed to the next process or to be recycled or discarded. Can further be provided.
  • the analysis step can be performed using a personal computer (not shown) separate from the dimension measuring device 20. According to this structure, after inspecting the shape of the manufactured honeycomb structure 70 in more detail, it can be determined whether the product is an acceptable product, recycled, or discarded.
  • the inspection method according to the present embodiment is an inspection method for a honeycomb structure 70 having a cylindrical body in which a plurality of through holes (cells) 70a are arranged substantially parallel to an upper surface 71a and a lower surface 71b.
  • data relating to the shape of the honeycomb structure 70 is calculated from the relationship between the irradiation angle of the irradiation light Ri irradiated to the honeycomb structure 70 in the irradiation process and the reception angle of the reflected light Ro received in the light reception process.
  • the honeycomb structure 70 can be inspected in a non-contact manner. Therefore, the green molded body in a soft state after extrusion molding and before drying can be inspected. Further, since the surface of the honeycomb structure 70 is irradiated while scanning light, the honeycomb structure 70 can be inspected more efficiently than the method of Patent Document 2. Therefore, according to the above configuration, the honeycomb structure 70 can be inspected efficiently without contact.
  • the honeycomb structure has the mark 34 for specifying the reference position of the honeycomb structure 70 on the surface of the honeycomb structure 70, and the mark 34 is used before the irradiation process.
  • a position specifying step for specifying the reference position is further provided. According to this configuration, even when a symmetric cylindrical honeycomb structure 70 is inspected, it is possible to accurately grasp which part of the honeycomb structure 70 is shape data.
  • the scanning (irradiation process, light receiving process and calculation process) of the honeycomb structure 70 is performed a total of four times by changing the irradiation position on the honeycomb structure by 90 degrees. According to this configuration, the entire shape data of the honeycomb structure can be acquired by four times of scanning.
  • reference data 70S regarding the shape of the honeycomb structure is acquired, and an error of the shape data with respect to the reference data 70S is calculated. According to this configuration, for example, it is possible to inspect whether or not the shape of the manufactured honeycomb structure 70 is within an allowable range as a product.
  • a green honeycomb molded body in which a ceramic composition is extruded is used as the honeycomb structure.
  • the honeycomb structure in a soft state after extrusion molding and before drying can be inspected.
  • honeycomb structure a green body formed by drying a green honeycomb formed body or a fired formed body obtained by firing the formed body is used. According to this configuration, the shape of the honeycomb structure in a cured state after drying can be inspected.
  • the method for manufacturing a honeycomb structure according to the present embodiment includes a first inspection step between the extrusion step (S1) and the drying step (S3), and includes a drying step (S3) and a precision cutting step (S5).
  • a second inspection step (S4) is provided in between.
  • the manufacturing method of the honeycomb structure according to the present embodiment includes a third inspection step (S6) between the precision cutting step (S5) and the sealing step (S7). For this reason, it can be avoided that an intermediate body that is already defective in the course of manufacturing the honeycomb structure 70 is advanced to a subsequent process or that a defective product is manufactured.
  • the honeycomb structure inspection apparatus includes a mark 34, a pedestal label 36, and a structure label 38 as reference position specifying portions for specifying the reference position of the honeycomb structure. According to this configuration, the honeycomb structure can be easily aligned by combining the base label 36 and the structure label 38.
  • the honeycomb structure inspection apparatus includes a pedestal 30 that can rotate while the honeycomb structure is placed thereon. According to such a configuration, the honeycomb structure 70 in a wide range can be inspected by rotating the base 30 and inspecting the honeycomb structure 70 a plurality of times or repeatedly.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the relative position of the honeycomb structure 70 is specified by both the mark 34 and the pedestal label 36 and the structure label 38, but the mark 34 or the pedestal label 36 and The relative position of the honeycomb structure 70 may be specified using one of the structure labels 38.
  • the pedestal 30 that is rotatable with the honeycomb structure 70 placed thereon is provided, but the pedestal 30 may not be provided. In this case, the irradiation position of the light to the honeycomb structure 70 can be changed by changing the position of the dimension measuring device 20.
  • another additional pedestal may be placed on the pedestal 30 so as not to damage the end face of the honeycomb structure 70.
  • the shape of the additional pedestal is the shape of the honeycomb structure 70 to be placed. Cylindrical shape etc. can be selected according to.
  • a first inspection process is provided between the extrusion process (S1) and the drying process (S3), and the second process is performed between the drying process (S3) and the precision cutting process (S5).
  • An inspection step (S4) is provided.
  • the manufacturing method according to the present embodiment includes a third inspection step (S6) between the precision cutting step (S5) and the sealing step (S7), and a fourth inspection step (S9) after the firing step (S8).
  • the timing of each inspection process is not limited to the above timing. Further, in order to improve the inspection accuracy, each inspection process may be performed a plurality of times, and more inspection processes may be added between other processes. Further, in order to increase production efficiency, inspections other than the fourth inspection step may be omitted.
  • the honeycomb structure can be efficiently inspected in a non-contact manner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

In an inspection method for a honeycomb structure in which multiple through-holes are placed substantially parallel in a top surface and bottom surface, the following are contained: a shining step in which light is shone on the front surface of the honeycomb structure while scanning said front surface; a light-receiving step in which reflected light of the light shone on the honeycomb structure in the shining step is received; and a computation step in which shape data related to the shape of the honeycomb structure is computed. Said shape data is computed from the relationship between: the shining angle of the shining light that was shone on the honeycomb structure in the shining step; and the light-receiving angle of the reflected light that was received in the light receiving step.

Description

ハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置Honeycomb structure inspection method, honeycomb structure manufacturing method, and honeycomb structure inspection apparatus
 本発明の一実施形態は、ハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置に関し、ハニカム構造体の外形を検査するハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置に関する。 One embodiment of the present invention relates to a honeycomb structure inspection method, a honeycomb structure manufacturing method, and a honeycomb structure inspection apparatus, and relates to a honeycomb structure inspection method for inspecting an outer shape of a honeycomb structure, and a honeycomb structure manufacturing The present invention relates to a method and an inspection apparatus for a honeycomb structure.
 従来、ディーゼルパティキュレートフィルタ(Diesel particulate filter)として用いられるハニカムフィルタの欠陥検査方法が知られている。例えば、特許文献1には、多数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム焼成体からなるハニカム構造体の検査方法が開示されている。特許文献1の方法では、基準面と、当該基準面に垂直に設けられたレールと、当該レールに沿って移動する探針からなる測定子とを備えた接触式計測機を準備する。特許文献1の方法では、基準面にハニカム構造体の一方の端面を接触させ、測定子を基準面に近づける方向に移動せしめてハニカム構造体の他方の端面に探針を接触させることにより、ハニカム構造体の長手方向の形状を計測する。 Conventionally, a defect inspection method for a honeycomb filter used as a diesel particulate filter is known. For example, Patent Document 1 discloses a method for inspecting a honeycomb structure including a columnar honeycomb fired body in which a large number of cells are arranged in parallel in the longitudinal direction with cell walls interposed therebetween. In the method of Patent Document 1, a contact-type measuring instrument is prepared that includes a reference surface, a rail that is provided perpendicular to the reference surface, and a probe that includes a probe that moves along the rail. In the method of Patent Document 1, one end surface of the honeycomb structure is brought into contact with the reference surface, and the probe is brought into contact with the other end surface of the honeycomb structure by moving the measuring element in a direction approaching the reference surface. The shape of the structure in the longitudinal direction is measured.
 また、特許文献2には、レーザ光を面状に照射するレーザ光照射部と、当該レーザ光照射部から照射されたレーザ光のすべてを受光するようになっていると共に、受光したレーザ光の強度に応じたレベルの電気信号を検出する受光部とを備えた寸法測定装置を用いてハニカム構造体の外観を検査するハニカム構造体の製造方法が開示されている。 In Patent Document 2, a laser light irradiation unit that irradiates laser light in a planar shape and all of the laser light emitted from the laser light irradiation unit are received, and the received laser light There is disclosed a method for manufacturing a honeycomb structure in which the appearance of the honeycomb structure is inspected using a dimension measuring device including a light receiving unit that detects an electric signal of a level corresponding to the strength.
特開2007-256263号公報JP 2007-256263 A 特開2008-139042号公報JP 2008-139042 A
 しかしながら、上記特許文献1の方法では、検査項目によっては、測定子をハニカム構造体に接触させる必要があるため、検査工程においてハニカム構造体に欠陥を生じさせるおそれがある。特許文献2の方法では、ハニカム構造体に非接触の状態で検査が可能であるものの、一度にレーザ光が照射される狭い範囲の寸法データしか得られない。また、ハニカム構造体の側面と端面の測定を同時にすることができない。このため、ハニカム構造体全体の寸法を測定するためには、測定に時間がかかる。 However, in the method of Patent Document 1 described above, depending on the inspection item, it is necessary to bring the probe into contact with the honeycomb structure, which may cause defects in the honeycomb structure in the inspection process. In the method of Patent Document 2, although inspection can be performed in a non-contact state on the honeycomb structure, only dimensional data in a narrow range in which laser light is irradiated at a time can be obtained. In addition, the side surface and end surface of the honeycomb structure cannot be measured simultaneously. For this reason, it takes time to measure the dimensions of the entire honeycomb structure.
 本発明の一実施形態は上記課題に鑑みてなされたものであり、非接触で効率良くハニカム構造体の検査を行なうことができるハニカム構造体の検査方法及びハニカム構造体の検査装置を提供することを目的とする。 One embodiment of the present invention has been made in view of the above problems, and provides a honeycomb structure inspection method and a honeycomb structure inspection apparatus that can efficiently inspect a honeycomb structure in a non-contact manner. With the goal.
 本発明の一実施形態は、円柱体の端面に複数の貫通孔であるセルが開口したハニカム構造体の検査方法において、ハニカム構造体の表面に対して光を走査しながら照射する照射工程と、照射工程でハニカム構造体に照射した光の反射光を受光する受光工程と、照射工程でハニカム構造体に照射した光の照射角と受光工程で受光した反射光の受光角との関係からハニカム構造体の形状に関する形状データを算出する算出工程と、を含む。 One embodiment of the present invention is a method for inspecting a honeycomb structure in which cells that are a plurality of through-holes are opened on an end face of a cylindrical body, and an irradiation step of irradiating the surface of the honeycomb structure with light, and The light receiving process for receiving the reflected light of the light irradiated to the honeycomb structure in the irradiation process, and the honeycomb structure from the relationship between the irradiation angle of the light irradiated to the honeycomb structure in the irradiation process and the light receiving angle of the reflected light received in the light receiving process Calculating a shape data relating to the shape of the body.
 この検査方法では、照射工程でハニカム構造体に照射した光の照射角と受光工程で受光した反射光の受光角との関係からの形状に関するデータを算出するため、非接触でハニカム構造体の検査が可能である。よって、押出成形後、乾燥前の軟らかい状態のハニカム構造体を検査することができる。また、ハニカム構造体の表面に対して光を走査しながら照射するため、特許文献2の方法に比べて効率良くハニカム構造体の検査が可能である。よって、上記構成によれば、非接触で効率良くハニカム構造体の検査を行なうことができる。 In this inspection method, in order to calculate the shape data from the relationship between the irradiation angle of the light irradiated to the honeycomb structure in the irradiation process and the reception angle of the reflected light received in the light receiving process, the inspection of the honeycomb structure is performed in a non-contact manner. Is possible. Therefore, it is possible to inspect the honeycomb structure in a soft state after extrusion and before drying. Further, since the surface of the honeycomb structure is irradiated while scanning with light, the honeycomb structure can be inspected more efficiently than the method of Patent Document 2. Therefore, according to the above configuration, the honeycomb structure can be inspected efficiently without contact.
 この場合、ハニカム構造体は表面にハニカム構造体の基準位置を特定するラベルを有し、照射工程の前に、ラベルを用いてハニカム構造体の基準位置の特定を行う位置特定工程を更に備えることができる。 In this case, the honeycomb structure has a label for specifying the reference position of the honeycomb structure on the surface, and further includes a position specifying step for specifying the reference position of the honeycomb structure using the label before the irradiation step. Can do.
 この構成では、対称な円柱体のハニカム構造体を検査する場合であっても、ハニカム構造体のどの部分の形状データであるかを正確に把握することができる。 In this configuration, even when a symmetric cylindrical honeycomb structure is inspected, it is possible to accurately grasp which part of the honeycomb structure is shape data.
 また、照射工程又は受光工程は、ハニカム構造体に対する照射位置を変えて複数回行われることができる。この構成では、広い範囲のハニカム構造体の形状データを算出することができる。 Further, the irradiation step or the light receiving step can be performed a plurality of times by changing the irradiation position on the honeycomb structure. With this configuration, shape data of a wide range of honeycomb structures can be calculated.
 また、算出工程では、形状データとして、円柱体の端面直径、円柱体の直径方向の断面の平均直径、円柱体の直径方向の任意の断面の直径、円柱体の側面形状の歪みを示す円筒度、円柱体の直径方向における断面形状の真円度、円柱体の軸方向の断面と円柱体の端面に平行な断面との直角度、円柱体の側面を基準とした円柱軸と円柱体の端面との直角度、円柱体の側面を基準とした円柱軸と円柱体の端面と平行な断面との直角度、円柱体の一方の端面を基準とした円柱軸と円柱体の他方の端面との直角度、円柱体の一方の端面を基準とした円柱軸と円柱体の他方の端面と平行な断面との直角度、側面視における円柱体の側面を区画する真直度、端面の平面度、円柱体の端面同士の平行度を示す端面平行度、及び、円柱体の軸方向の長さのいずれか一つ以上を算出することができる。 In addition, in the calculation process, as the shape data, the end face diameter of the cylinder, the average diameter of the cross section in the diameter direction of the cylinder, the diameter of the arbitrary cross section in the diameter direction of the cylinder, the cylindricity indicating the distortion of the side shape of the cylinder , Roundness of the cross-sectional shape in the diameter direction of the cylinder, perpendicularity between the axial section of the cylinder and the section parallel to the end face of the cylinder, the cylinder axis and the end face of the cylinder based on the side of the cylinder The perpendicularity between the cylinder axis with respect to the side of the cylinder and the cross section parallel to the end face of the cylinder, the cylinder axis with respect to one end face of the cylinder, and the other end face of the cylinder Perpendicularity, perpendicularity between the cylinder axis relative to one end face of the cylinder and the cross section parallel to the other end face of the cylinder, straightness defining the side of the cylinder in side view, flatness of the end face, cylinder End face parallelism indicating the parallelism between the end faces of the body, and the axial length of the cylinder Re or can be calculated one or more.
 この構成では、ハニカム構造体の形状について様々な指標により詳細に検査することができる。 In this configuration, the shape of the honeycomb structure can be inspected in detail using various indicators.
 また、算出工程において、ハニカム構造体の形状に関する基準データを取得し、基準データに対する形状データの誤差を算出することができる。 Also, in the calculation step, reference data regarding the shape of the honeycomb structure can be acquired, and an error of the shape data with respect to the reference data can be calculated.
 この構成では、例えば、製造したハニカム構造体の形状が製品として許容範囲にあるか否かを検査することができる。 In this configuration, for example, it is possible to inspect whether the shape of the manufactured honeycomb structure is within an allowable range as a product.
 また、算出工程において、ハニカム構造体の表面の凹凸、ハニカム構造体の表面の割れ、ハニカム構造体表面の欠け又はセルの欠陥を検出することができる。 Further, in the calculation process, irregularities on the surface of the honeycomb structure, cracks on the surface of the honeycomb structure, chipping on the surface of the honeycomb structure, or cell defects can be detected.
 この構成では、製造したハニカム構造体に明らかな欠陥があるか検査することができる。 In this configuration, the manufactured honeycomb structure can be inspected for obvious defects.
 また、本発明の一実施形態において、形状データを記録して解析する解析工程を更に備えることができる。 Moreover, in one embodiment of the present invention, an analysis process for recording and analyzing shape data can be further provided.
 この構成では、製造したハニカム構造体の形状についてより詳細に検査することができる。 In this configuration, the shape of the manufactured honeycomb structure can be inspected in more detail.
 ハニカム構造体として、セラミックス組成物が押出成形されたグリーンハニカム成形体を用いることができる。 As the honeycomb structure, a green honeycomb molded body obtained by extruding a ceramic composition can be used.
 この構成では、押出成形後、乾燥前の軟らかい状態におけるハニカム構造体を検査することができる。 In this configuration, the honeycomb structure in a soft state after extrusion and before drying can be inspected.
 ハニカム構造体として、グリーンハニカム成形体を乾燥させた成形体、又は、成形体を焼成させた焼成成形体を用いることができる。 As the honeycomb structure, a molded body obtained by drying the green honeycomb molded body or a fired molded body obtained by firing the molded body can be used.
 この構成では、乾燥後の硬化した状態におけるハニカム構造体の形状を検査することができる。 In this configuration, the shape of the honeycomb structure in a cured state after drying can be inspected.
 本発明の一実施形態に係るハニカム構造体の製造方法は、セラミックス組成物を押出成形してグリーン成形体を製造する押出成形工程と、グリーンハニカム成形体を乾燥して乾燥体を製造する乾燥工程と、焼成による収縮により設計長さとなるように乾燥体を切断する切断工程と、切断後の乾燥体を封口させて封口体を製造する封口工程と、封口体を焼成させる焼成工程と、を備え、押出成形工程、乾燥工程、切断工程、封口工程、及び、焼成工程のうち、いずれかの工程の後に、上述したハニカム構造体の検査方法によってハニカム構造体についての検査を行う検査工程を備えることができる。 A method for manufacturing a honeycomb structure according to an embodiment of the present invention includes an extrusion molding process for manufacturing a green molded body by extruding a ceramic composition, and a drying process for manufacturing a dry body by drying the green honeycomb molded body. And a cutting step for cutting the dried body so as to have a design length by shrinkage due to firing, a sealing step for sealing the dried body after cutting to produce a sealing body, and a firing step for firing the sealing body. An inspection step of inspecting the honeycomb structure by the above-described inspection method of the honeycomb structure after any of the extrusion molding step, the drying step, the cutting step, the sealing step, and the firing step. Can do.
 この構成では、各工程の後にハニカム構造体を検査することで、既に欠陥がある中間体を後続の工程に進めることや、最終的に不良品が製造されることを回避できる。 In this configuration, by inspecting the honeycomb structure after each step, it is possible to avoid an intermediate body that has already been defective from proceeding to a subsequent step or finally producing a defective product.
 また、本発明の一実施形態に係るハニカム構造体の検査装置は、端面に複数の貫通孔であるセルが開口した円柱体のハニカム構造体の検査に用いられる検査装置であって、ハニカム構造体の表面に対して光を走査しながら照射する照射部と、照射部がハニカム構造体に照射した光の反射光を受光する受光部と、照射部がハニカム構造体に照射した光の照射角と受光部が受光した反射光の受光角との関係からハニカム構造体の形状に関する形状データを算出する算出部と、を備える。 An inspection apparatus for a honeycomb structure according to an embodiment of the present invention is an inspection apparatus used for inspecting a cylindrical honeycomb structure in which cells that are a plurality of through holes are opened on an end surface. An irradiating unit for irradiating the surface of the light while scanning the light, a light receiving unit for receiving reflected light of the light irradiated to the honeycomb structure by the irradiating unit, and an irradiation angle of the light irradiated to the honeycomb structure by the irradiating unit; A calculation unit that calculates shape data related to the shape of the honeycomb structure from a relationship with a light receiving angle of reflected light received by the light receiving unit.
 この本発明の一実施形態に係るハニカム構造体の検査装置は、ハニカム構造体の基準位置を特定する基準位置特定部を更に備えることができる。 The honeycomb structure inspection apparatus according to an embodiment of the present invention may further include a reference position specifying unit that specifies the reference position of the honeycomb structure.
 この場合、基準位置特定部として、ハニカム構造体が載置される台座に、ハニカム構造体の基準位置を特定するためのラベルを有することができる。 In this case, the reference position specifying unit can have a label for specifying the reference position of the honeycomb structure on the pedestal on which the honeycomb structure is placed.
 これらの構成では、ハニカム構造体に印字されているラベルと台座に印字されているラベルとを合わせることで簡単にハニカム構造体の位置合わせができる。 In these configurations, the honeycomb structure can be easily aligned by combining the label printed on the honeycomb structure with the label printed on the pedestal.
 また、本発明の一実施形態に係るハニカム構造体の検査装置は、ハニカム構造体を載置した状態で回転可能な台座を更に備えることができる。 In addition, the honeycomb structure inspection apparatus according to an embodiment of the present invention may further include a pedestal that can rotate while the honeycomb structure is placed thereon.
 この構成では、台座を回転させて、ハニカム構造体の検査を複数回又は繰り返すことで、広い範囲におけるハニカム構造体を検査することができる。 In this configuration, the honeycomb structure in a wide range can be inspected by rotating the base and inspecting the honeycomb structure a plurality of times or repeatedly.
 本発明の一実施形態のハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置によれば、非接触で効率良くハニカム構造体の検査を行なうことができる。 According to the honeycomb structure inspection method, honeycomb structure manufacturing method, and honeycomb structure inspection apparatus of one embodiment of the present invention, the honeycomb structure can be efficiently inspected in a non-contact manner.
本発明の実施形態に係るハニカム構造体の検査装置の概略を示した斜視図である。1 is a perspective view showing an outline of an inspection apparatus for a honeycomb structure according to an embodiment of the present invention. (a)は封口前のハニカム構造体の斜視図であり、(b)は(a)の部分拡大図である。(A) is a perspective view of the honeycomb structure before sealing, (b) is the elements on larger scale of (a). 他の断面形状を有する貫通孔を備えたハニカム構造体であり、(a)は封口前のハニカム構造体の斜視図であり、(b)は(a)の部分拡大図である。It is a honeycomb structure provided with a through hole having another cross-sectional shape, (a) is a perspective view of the honeycomb structure before sealing, and (b) is a partially enlarged view of (a). 本発明の実施形態に係るハニカム構造体の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the honeycomb structure which concerns on embodiment of this invention. (a)~(d)は図1の装置によって得られた、ハニカム構造体の形状データを製造工程後ごとにカラーマッピング化した図である。(A) to (d) are diagrams obtained by color mapping the shape data of the honeycomb structure obtained by the apparatus of FIG. 1 after each manufacturing process. 図1の装置によって得られた、ハニカム構造体の形状データをカラーマッピング化した図であり、(a)は押出成形後乾燥前のグリーンハニカム成形体の形状データを示し、(b)はグリーンハニカム成形体を乾燥した成形体の形状データで示した図である。FIG. 2 is a diagram in which shape data of a honeycomb structure obtained by the apparatus of FIG. 1 is color-mapped, (a) showing shape data of a green honeycomb molded body after extrusion and before drying, and (b) showing green honeycomb It is the figure shown with the shape data of the molded object which dried the molded object. (a)(b)はそれぞれ図6(a)(b)のカラーマッピング化した図を反対側の側面から示した図である。FIGS. 6A and 6B are diagrams showing the color mapping diagrams of FIGS. 6A and 6B from the opposite side surface. 本実施形態に係るカラーマッピングの手順を示すフローチャートである。It is a flowchart which shows the procedure of the color mapping which concerns on this embodiment. 本実施形態に係る寸法測定の手順を示すフローチャートである。It is a flowchart which shows the procedure of the dimension measurement which concerns on this embodiment. 本発明の実施形態に係るハニカム構造体の検査方法を説明するための斜視図である。It is a perspective view for demonstrating the inspection method of the honeycomb structure which concerns on embodiment of this invention. 図10に続く工程を説明するための斜視図である。It is a perspective view for demonstrating the process following FIG. 図11に続く工程を説明するための斜視図である。FIG. 12 is a perspective view for explaining a process following the process in FIG. 11. カラーマッピング化するための操作画面の模式図である。It is a schematic diagram of the operation screen for color mapping. 図13に続く操作画面の模式図である。It is a schematic diagram of the operation screen following FIG. 図14に続く操作画面の模式図である。It is a schematic diagram of the operation screen following FIG. 図15に続く操作画面の模式図である。It is a schematic diagram of the operation screen following FIG. ハニカム構造体の寸法測定を行うための操作画面の模式図である。It is a schematic diagram of the operation screen for performing the dimension measurement of a honeycomb structure. 図17に続く操作画面の模式図である。It is a schematic diagram of the operation screen following FIG. 円柱体の軸方向の断面と円柱体の直径方向の断面との直角度を測定するための操作画面の模式図である。It is a schematic diagram of the operation screen for measuring the perpendicularity of the cross section of the cylindrical body in the axial direction and the cross section of the cylindrical body in the diameter direction. 図19に続く操作画面の模式図である。FIG. 20 is a schematic diagram of an operation screen following FIG. 19. 図20に続く操作画面の模式図である。It is a schematic diagram of the operation screen following FIG. (a)(b)は、円柱体の側面を基準とした円柱軸と円柱体の端面と平行な断面との直角度を測定するための操作画面の模式図である。(A) and (b) are schematic diagrams of an operation screen for measuring the perpendicularity between a cylinder axis based on the side surface of the cylinder and a cross section parallel to the end face of the cylinder. 真円度を測定するための操作画面の模式図である。It is a schematic diagram of the operation screen for measuring roundness. 図23に続く操作画面の模式図である。It is a schematic diagram of the operation screen following FIG. 円筒度を測定するための操作画面の模式図である。It is a schematic diagram of the operation screen for measuring cylindricity. 図25に続く操作画面の模式図である。It is a schematic diagram of the operation screen following FIG. 円柱体の軸方向の長さを測定するための操作画面の模式図である。It is a schematic diagram of the operation screen for measuring the length of the axial direction of a cylinder. 平行度を測定するための操作画面の模式図である。It is a schematic diagram of the operation screen for measuring parallelism. 上面平面度を測定するための操作画面の模式図である。It is a schematic diagram of the operation screen for measuring upper surface flatness. 下面平面度を測定するための操作画面の模式図である。It is a schematic diagram of the operation screen for measuring lower surface flatness.
(ハニカム構造体の検査装置)
 以下、図面を参照しながら、本発明の実施形態について詳細に説明する。本実施形態のハニカム構造体の検査装置は、ディーゼルパティキュレートフィルタ等に用いられるハニカム構造体の外形や表面の欠陥の有無を検査するためのものである。このハニカム構造体の検査装置は、検査対象のハニカム構造体をスキャンして、ハニカム構造体の形状に関する形状データを算出する。また、検査装置は、ハニカム構造体の基準形状と、検査対象のハニカム構造の形状との誤差を測定することにより、ハニカム構造体の表面の割れや欠けなどを検出する。また、検査装置は、このハニカム構造体の検査装置によって得られるデータに基づき、ハニカム構造体の基準形状からの誤差の度合いを色の濃淡で表示してカラーマッピング化したり、実際に検査対象のハニカム構造体の寸法測定をすることができる。ハニカム構造体の基準形状に関する情報は、CAD(computer aided design)データとして予め検査装置に記憶されている。
(Honeycomb structure inspection equipment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The honeycomb structure inspection apparatus of the present embodiment is for inspecting the outer appearance of the honeycomb structure used for a diesel particulate filter or the like and the presence or absence of surface defects. This honeycomb structure inspection apparatus scans a honeycomb structure to be inspected and calculates shape data related to the shape of the honeycomb structure. In addition, the inspection apparatus detects cracks or chips on the surface of the honeycomb structure by measuring an error between the reference shape of the honeycomb structure and the shape of the honeycomb structure to be inspected. In addition, the inspection apparatus displays the degree of error from the reference shape of the honeycomb structure based on the data obtained by the inspection apparatus for the honeycomb structure in color shading and performs color mapping, or actually inspects the honeycomb to be inspected. The dimensions of the structure can be measured. Information regarding the reference shape of the honeycomb structure is stored in advance in the inspection apparatus as CAD (computer aided design) data.
 図1に示すように、本実施形態のハニカム構造体の検査装置10は、寸法測定装置20を備える。寸法測定装置20は、円柱状のハニカム構造体70の表面に対してレーザ光である光Riを走査しながら照射する照射部22と、照射部22がハニカム構造体に照射した光の反射光Roを受光する受光部24と、照射部22がハニカム構造体70に照射した光Riの照射角と受光部24が受光した反射光Roの受光角との関係からハニカム構造体70の形状に関する形状データを算出する算出部26とを有する。 As shown in FIG. 1, the honeycomb structure inspection apparatus 10 of the present embodiment includes a dimension measurement apparatus 20. The dimension measuring apparatus 20 includes an irradiation unit 22 that irradiates the surface of the cylindrical honeycomb structure 70 with light Ri, which is laser light, and reflected light Ro of the light that the irradiation unit 22 irradiates the honeycomb structure. Shape data relating to the shape of the honeycomb structure 70 from the relationship between the light receiving portion 24 that receives the light and the irradiation angle of the light Ri irradiated to the honeycomb structure 70 by the irradiation portion 22 and the light reception angle of the reflected light Ro received by the light receiving portion 24 And a calculating unit 26 for calculating.
 ハニカム構造体の検査装置10は、ハニカム構造体70を載置した状態で回転可能な台座30を備えており、台座30には、回転部32が取り付けられている。 The honeycomb structure inspection apparatus 10 includes a pedestal 30 that can be rotated with the honeycomb structure 70 mounted thereon, and a rotator 32 is attached to the pedestal 30.
 台座30には、ハニカム構造体70を載置する領域を囲むように複数のマーク34が貼り付けられており、マーク34とハニカム構造体70との位置関係からマーク34に対するハニカム構造体70の相対位置を特定することができる。マーク34としては、裏面に粘着性の接着剤が塗布された紙片やプラスチックフィルムを用いることができる。また、台座30に台座用ラベル36が貼られ、ハニカム構造体70に構造体用ラベル38が貼られており、台座用ラベル36と構造体用ラベル38との位置を合わせてハニカム構造体70を載置することで、ハニカム構造体70の基準位置を特定することができる。寸法測定装置20には不図示のパーソナルコンピュータが接続されている。寸法測定装置20により得られた形状データは、パーソナルコンピュータにより処理される。 A plurality of marks 34 are attached to the pedestal 30 so as to surround a region where the honeycomb structure 70 is placed, and the relative position of the honeycomb structure 70 with respect to the mark 34 is determined based on the positional relationship between the marks 34 and the honeycomb structure 70. The position can be specified. As the mark 34, a piece of paper or a plastic film having a sticky adhesive applied to the back surface can be used. A pedestal label 36 is affixed to the pedestal 30, and a structural body label 38 is affixed to the honeycomb structure 70, and the honeycomb structure 70 is aligned with the positions of the pedestal label 36 and the structural body label 38. By mounting, the reference position of the honeycomb structure 70 can be specified. A personal computer (not shown) is connected to the dimension measuring device 20. The shape data obtained by the dimension measuring device 20 is processed by a personal computer.
 ここで検査対象となるハニカム構造体70について説明する。図2(a)に示すように、本実施形態に係るハニカム構造体70は、例えば、上面71a、下面71b及び側面71cを有し、上面71a及び下面71bに複数の貫通孔(セル)70aが略平行に配置された円柱体である。各貫通孔70aは隔壁70bによって隔てられており、隔壁70bの厚みは、例えば、0.15~0.76mmとすることができる。なお、グリーンハニカム成形体70の外形形状は円柱体に限定されず、楕円柱、角柱(例えば三角柱、四角柱、六角柱、八角柱等の正多角柱や、正多角柱以外の三角柱、四角柱、六角柱、八角柱等)等であってもよいが、本実施形態においては、ハニカム構造体70が円柱体である場合について説明する。ここで、ハニカム構造体70の軸方向とは、貫通孔70aが配置されている方向と平行な方向であり、径方向とは、軸方向と直交する方向であるとする。 Here, the honeycomb structure 70 to be inspected will be described. As shown in FIG. 2A, the honeycomb structure 70 according to the present embodiment has, for example, an upper surface 71a, a lower surface 71b, and a side surface 71c, and a plurality of through holes (cells) 70a are formed on the upper surface 71a and the lower surface 71b. It is the cylindrical body arrange | positioned substantially parallel. Each through hole 70a is separated by a partition wall 70b, and the thickness of the partition wall 70b can be, for example, 0.15 to 0.76 mm. The external shape of the green honeycomb molded body 70 is not limited to a cylindrical body, but is an elliptical column or a rectangular column (for example, a regular polygonal column such as a triangular column, a quadrangular column, a hexagonal column, an octagonal column, a triangular column other than a regular polygonal column, or a rectangular column. In this embodiment, the case where the honeycomb structure 70 is a cylindrical body will be described. Here, the axial direction of the honeycomb structure 70 is a direction parallel to the direction in which the through holes 70a are arranged, and the radial direction is a direction orthogonal to the axial direction.
 ハニカム構造体70の貫通孔70aの断面形状は、特に限定されず、図2(b)に示すように正方形の他、例えば、円形、楕円形、長方形、三角形、六角形等の多角形等が挙げられる。また、貫通孔70aには、径の異なるもの、断面形状の異なるものが混在してもよい。図2(b)に示すように、貫通孔70aの断面形状が正方形の場合、複数の貫通孔70aは、ハニカム構造体70において、端面から見て、正方形配置、すなわち、貫通孔70aの中心軸が、正方形の頂点にそれぞれ位置するように配置されている。そして、貫通孔70aの断面の正方形のサイズは、例えば、一辺0.8~2.5mmとすることができる。 The cross-sectional shape of the through hole 70a of the honeycomb structure 70 is not particularly limited, and may be, for example, a polygon such as a circle, an ellipse, a rectangle, a triangle, and a hexagon other than a square as shown in FIG. Can be mentioned. Further, in the through hole 70a, those having different diameters and those having different cross-sectional shapes may be mixed. As shown in FIG. 2 (b), when the cross-sectional shape of the through hole 70a is a square, the plurality of through holes 70a are arranged in a square shape in the honeycomb structure 70 as viewed from the end face, that is, the central axis of the through hole 70a. Are arranged at the vertices of the square. The square size of the cross section of the through hole 70a can be set to, for example, 0.8 to 2.5 mm on a side.
 なお、他の断面形状を有する貫通孔を備えたハニカム構造体70としては、例えば、図3に示すような断面形状が異なる複数の貫通孔72a,72bを備えたハニカム構造体70が挙げられる。複数の貫通孔72a,72bは、グリーンハニカム成形体70の中心軸に略平行に延びる隔壁72により仕切られている。貫通孔72aは断面形状が正六角形であり、貫通孔72bは断面形状が扁平六角形であり貫通孔72aを囲むように形成されている。隔壁72の厚み(セル壁厚)は、0.8mm以下にでき、0.5mm以下にでき、0.1mm以上にでき、0.2mm以上にできる。 Note that examples of the honeycomb structure 70 having through holes having other cross-sectional shapes include a honeycomb structure 70 having a plurality of through holes 72a and 72b having different cross-sectional shapes as shown in FIG. The plurality of through holes 72 a and 72 b are partitioned by a partition wall 72 that extends substantially parallel to the central axis of the green honeycomb molded body 70. The through-hole 72a has a regular hexagonal cross-sectional shape, and the through-hole 72b has a flat hexagonal cross-sectional shape and is formed so as to surround the through-hole 72a. The thickness of the partition wall 72 (cell wall thickness) can be 0.8 mm or less, 0.5 mm or less, 0.1 mm or more, and 0.2 mm or more.
 また、ハニカム構造体70の貫通孔70aが延びる方向の長さは特に限定されないが、例えば、40~350mmとすることができる。また、ハニカム構造体70の外径も特に限定されないが、例えば、10~320mmとすることできる。 Further, the length of the honeycomb structure 70 in the direction in which the through holes 70a extend is not particularly limited, but may be 40 to 350 mm, for example. Further, the outer diameter of the honeycomb structure 70 is not particularly limited, but may be, for example, 10 to 320 mm.
 ハニカム構造体70は、後で焼成することにより上述のような多孔質のセラミクスとなるグリーンハニカム成形体(未焼成成形体)又はグリーンハニカム成形体を焼成した多孔質のセラミクス(焼成体)である。 The honeycomb structure 70 is a green honeycomb molded body (unfired molded body) or a porous ceramic (fired body) obtained by firing the green honeycomb molded body, which becomes porous ceramic as described above by firing later. .
(ハニカム構造体の製造方法)
 次に、本実施形態に係るハニカム構造体の製造方法について説明する。本実施形態に係る製造方法は、ハニカム構造体の検査装置10を用いてハニカム構造体70についての検査を行う検査工程を備える。図4は、本発明の実施形態に係るハニカム構造体の製造方法のフローチャートである。
(Manufacturing method of honeycomb structure)
Next, a method for manufacturing a honeycomb structure according to the present embodiment will be described. The manufacturing method according to the present embodiment includes an inspection process for inspecting the honeycomb structure 70 using the honeycomb structure inspection apparatus 10. FIG. 4 is a flowchart of the method for manufacturing a honeycomb structure according to the embodiment of the present invention.
 図4に示すように、本実施形態に係る製造方法は、セラミックス組成物を押出成形してグリーン成型体を製造する押出成形工程(S1)と、グリーンハニカム成形体を乾燥して乾燥体を製造する乾燥工程(S3)と、精密切断工程(S5)と、乾燥体の貫通孔70aを封口して封口体を製造する封口工程(S7)と、封口体を焼成させる焼成工程(S8)と、を備える。本実施形態に係る製造方法は、押出成形工程(S1)と乾燥工程(S3)との間に上記検査装置10を用いた第一検査工程(S2)を備え、乾燥工程(S3)と精密切断工程(S5)との間に上記検査装置10を用いた第二検査工程(S4)を備える。また、本実施形態に係る製造方法は、精密切断工程(S5)と封口工程(S7)との間に上記検査装置10を用いた第三検査工程(S6)を備え、焼成工程(S8)の後に上記検査装置10を用いた第四検査工程(S9)を備える。以下、本実施形態に係る製造方法について説明する。 As shown in FIG. 4, the manufacturing method according to this embodiment includes an extrusion process (S1) in which a ceramic composition is extruded to produce a green molded body, and a green honeycomb molded body is dried to produce a dried body. A drying step (S3), a precision cutting step (S5), a sealing step (S7) for sealing the through hole 70a of the dried body to produce a sealing body, a firing step (S8) for firing the sealing body, Is provided. The manufacturing method according to the present embodiment includes a first inspection step (S2) using the inspection apparatus 10 between the extrusion step (S1) and the drying step (S3), and the drying step (S3) and precision cutting. A second inspection step (S4) using the inspection apparatus 10 is provided between the step (S5). Moreover, the manufacturing method according to the present embodiment includes a third inspection step (S6) using the inspection apparatus 10 between the precision cutting step (S5) and the sealing step (S7), and the firing step (S8). A fourth inspection step (S9) using the inspection apparatus 10 is provided later. Hereinafter, the manufacturing method according to the present embodiment will be described.
 まず、セラミックス組成物を調製するために、セラミクス原料である無機化合物源粉末と、有機バインダと、溶媒と、必要に応じて添加される添加物を用意する。無機化合物源粉末は、アルミニウム源粉末、および、チタニウム源粉末を含む。無機化合物源粉末は、さらに、マグネシウム源粉末および/またはケイ素源粉末を含むことができる。 First, in order to prepare a ceramic composition, an inorganic compound source powder that is a ceramic raw material, an organic binder, a solvent, and additives to be added as necessary are prepared. The inorganic compound source powder includes an aluminum source powder and a titanium source powder. The inorganic compound source powder can further include a magnesium source powder and / or a silicon source powder.
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩を例示できる。添加物としては、例えば、造孔剤、潤滑剤および可塑剤、分散剤、溶媒が挙げられる。 Examples of the organic binder include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate. Examples of the additive include a pore-forming agent, a lubricant and a plasticizer, a dispersant, and a solvent.
 用意した原料を混練機等により混合して原料混合物を得、得られた原料混合物を隔壁の断面形状に対応する出口開口を有する押出機から押し出す(押出成形工程:S1)。次いで、押出成形したハニカム構造体70について上記検査装置10により第一検査工程を行う(S2)。その後、成形体を乾燥させる(乾燥工程:S3)。 The prepared raw materials are mixed by a kneader or the like to obtain a raw material mixture, and the obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the cross-sectional shape of the partition wall (extrusion molding step: S1). Next, a first inspection process is performed on the extruded honeycomb structure 70 by the inspection apparatus 10 (S2). Thereafter, the molded body is dried (drying step: S3).
 乾燥後、ハニカム構造体70に対して上記検査装置10を用いて第二検査工程を行う(第二検査工程:S4)。次いで、焼成による収縮により設計の長さとなるよう乾燥体を切断する(精密切断工程:S5)。この切断体について上記検査装置10により第三検査工程を行う(S6)。その後、ハニカム構造体70の貫通孔70aを封口する(封口工程:S7)。なお、封口工程では、図2の(b)の正方配置された複数の貫通孔70aのうち、互いに上下左右に隣接しない関係にある複数の貫通孔70aのみが封口材により封口する。ハニカム構造体70のもう一方の端面では、一方の端面が封口されていない貫通孔70aのみが同様に封口材により封口される。次いで、貫通孔70aを封口したハニカム構造体70を焼成して焼成体を得(焼成工程:S8)、この焼成体について上記検査装置10により第四検査工程を行う(S9)。 After drying, a second inspection step is performed on the honeycomb structure 70 using the inspection device 10 (second inspection step: S4). Next, the dried body is cut so as to have a designed length by shrinkage due to firing (precision cutting step: S5). A third inspection process is performed on the cut body by the inspection apparatus 10 (S6). Thereafter, the through hole 70a of the honeycomb structure 70 is sealed (sealing step: S7). In the sealing step, only the plurality of through holes 70a that are not adjacent to each other vertically and horizontally among the plurality of squarely arranged through holes 70a in FIG. 2B are sealed with the sealing material. At the other end face of the honeycomb structure 70, only the through hole 70a whose one end face is not sealed is similarly sealed by the sealing material. Next, the honeycomb structure 70 with the through-holes 70a sealed is fired to obtain a fired body (firing step: S8), and the fired body is subjected to a fourth inspection step by the inspection apparatus 10 (S9).
 図5は、ハニカム構造体の検査装置10によって得られるハニカム構造体70の形状データを後述するように、カラーマッピング化したものである。図5の上下に並んでいる図は、互いに反対側の側面から示した関係となっている。図5(a)は、原料混合物を押出機から押出成形された乾燥前のグリーンハニカム成形体であり、(b)は、押出成形されたグリーンハニカム成形体を乾燥した成形体であり、(c)は、成形体を所望の長さに切断した切断後のグリーンハニカム成形体であり、(d)は、切断後のグリーンハニカム成形体を焼成した焼成体である。 FIG. 5 shows color mapping of the shape data of the honeycomb structure 70 obtained by the honeycomb structure inspection apparatus 10 as described later. The figures arranged in the upper and lower directions in FIG. 5 have the relationship shown from the opposite side surfaces. FIG. 5 (a) is a green honeycomb molded body before drying in which the raw material mixture is extruded from an extruder, and (b) is a molded body obtained by drying the extruded green honeycomb molded body. ) Is a green honeycomb formed body after cutting the formed body into a desired length, and (d) is a fired body obtained by firing the green honeycomb formed body after cutting.
 図5(a)及び(b)に示すように、各製造過程におけるハニカム構造体70の形状は、乾燥後に水分の蒸発によってグリーンハニカム成形体が収縮して小さくなる。また、図5(c)及び(d)に示すように、焼成後においてもグリーンハニカム成形体が収縮して小さくなる。 As shown in FIGS. 5A and 5B, the shape of the honeycomb structure 70 in each manufacturing process becomes smaller due to the shrinkage of the green honeycomb formed body due to evaporation of moisture after drying. Further, as shown in FIGS. 5C and 5D, the green honeycomb molded body shrinks and becomes small even after firing.
 また、図5に示すように、カラーマッピングでは、ハニカム構造体70の基準形状との誤差をカラーバー90が基準を示す色の濃淡によって表示される。図5において、例えば、(a)及び(c)における側面71cなどの色が薄い、基準点91から近い箇所は、ハニカム構造体の基準形状と誤差がない平坦な箇所であり、(a)及び(b)における上面71aなどの色が濃いところはハニカム構造体の基準形状よりも凹となっている箇所である。また、(b)における側面71cの正面の一部色が変化している箇所や(d)における上面71aの中央部の色が濃いところは、ハニカム構造体の基準形状よりも凸となっている箇所である。 In addition, as shown in FIG. 5, in color mapping, an error from the reference shape of the honeycomb structure 70 is displayed by the shade of the color that the color bar 90 indicates as a reference. In FIG. 5, for example, a portion where the color of the side surface 71c in (a) and (c) is light and close to the reference point 91 is a flat portion having no error from the reference shape of the honeycomb structure, and (a) and In (b), the dark portion such as the upper surface 71a is a portion that is more concave than the reference shape of the honeycomb structure. Further, the part where the color of the front surface of the side surface 71c in (b) is changed and the part where the color of the central part of the upper surface 71a in (d) is darker are more convex than the reference shape of the honeycomb structure. It is a place.
 図6及び7は、ハニカム構造体70として、押出成形された乾燥前のグリーンハニカム成形体(図6及び7の(a))及びグリーンハニカム成形体を乾燥した成形体(図6及び7の(b))の形状データを、カラーマッピング化したものである。なお、図6と図7とは、同一のハニカム構造体70のサンプルをそれぞれ反対側の側面から見た場合における形状データである。 6 and 7 show the honeycomb structure 70 as an extruded green honeycomb molded body before drying (FIGS. 6 and 7 (a)) and a green honeycomb molded body dried (FIGS. 6 and 7 ( The shape data of b)) is converted into color mapping. FIG. 6 and FIG. 7 are shape data when the same honeycomb structure 70 is viewed from the opposite side.
 図6及び7に示すように、成形体は、乾燥前のグリーンハニカム成形体よりも上面71aが凹んでいることがわかる。また、図7の側面71cには、周りの部分よりも色が濃くなっており、基準形状よりも凹んでいる凹部Aが存在する。本実施形態におけるハニカム構造体の製造方法では、押出成形時においてハニカム構造体70を粗切断する際に、ハニカム構造体70の側面71cを下にして受け台上に設置される。このため、図7の押出成形された乾燥前におけるハニカム構造体70には、ハニカム構造体70を支えていた受け台の跡が凹部Aとして残っている。 As shown in FIGS. 6 and 7, it can be seen that the molded body has a concave upper surface 71a than the green honeycomb molded body before drying. Further, on the side surface 71c of FIG. 7, there is a recess A that is darker than the surrounding portion and is recessed from the reference shape. In the method for manufacturing a honeycomb structure in the present embodiment, when the honeycomb structure 70 is roughly cut during extrusion molding, the honeycomb structure 70 is placed on a cradle with the side surface 71c of the honeycomb structure 70 facing down. For this reason, in the honeycomb structure 70 before being dried by extrusion shown in FIG. 7, the trace of the cradle that supported the honeycomb structure 70 remains as a recess A.
 このように、ハニカム構造体70の各製造工程において、寸法及び形状に基準形状との誤差がみられるが、以下に示す本実施形態の検査方法により、それらを効率よく検出することができる。 As described above, in each manufacturing process of the honeycomb structure 70, there is an error in the size and shape from the reference shape, but these can be efficiently detected by the inspection method of the present embodiment shown below.
(ハニカム構造体の検査方法)
 次に、本実施形態に係る検査方法の手順について説明する。本実施形態に係る検査方法では、図4に示すように、第一検査工程、第二検査工程、第三検査工程及び第四検査工程を備える。第一検査工程では、原料混合物を押出機から押出成形された乾燥前のグリーンハニカム成形体を検査し、第二検査工程では、乾燥工程後の乾燥体を検査する。第三検査工程では、精密切断工程後の乾燥体を検査し、第四検査工程では、焼成後の焼成体を検査する。また、第一検査工程、第二検査工程及び第三検査工程では、カラーマッピング化によりハニカム構造体70の外形等を検査し、第四検査工程では、寸法測定を行うことによりハニカム構造体70外形等を検査する。図8は、カラーマッピング化の手順を示すフローチャートである。ハニカム構造体70の形状データをカラーマッピング化することにより、基準データからの誤差の度合いを色の濃淡で表すことができ、基準データからの誤差が大きい箇所は濃い色で表示され、誤差が小さくなるに従って薄い色で表示される。すなわち、カラーマッピング化した場合、濃い色で表示されている箇所があると、そのハニカム構造体70に欠陥があると判断する材料となる。
(Honeycomb structure inspection method)
Next, the procedure of the inspection method according to this embodiment will be described. As shown in FIG. 4, the inspection method according to the present embodiment includes a first inspection process, a second inspection process, a third inspection process, and a fourth inspection process. In the first inspection step, the green honeycomb formed body before drying, in which the raw material mixture is extruded from the extruder, is inspected, and in the second inspection step, the dried body after the drying step is inspected. In the third inspection step, the dried body after the precision cutting step is inspected, and in the fourth inspection step, the fired body after firing is inspected. In the first inspection step, the second inspection step, and the third inspection step, the outer shape and the like of the honeycomb structure 70 are inspected by color mapping, and in the fourth inspection step, the dimensions are measured to measure the outer shape of the honeycomb structure 70. Inspect etc. FIG. 8 is a flowchart showing a color mapping procedure. By color-mapping the shape data of the honeycomb structure 70, the degree of error from the reference data can be expressed in shades of color, and portions where the error from the reference data is large are displayed in dark colors, and the error is small. As it becomes, it is displayed in a light color. That is, when color mapping is performed, if there is a portion displayed in a dark color, it becomes a material for determining that the honeycomb structure 70 has a defect.
 図9は、寸法測定の手順を示すフローチャートである。第四検査工程では、検査装置10によって得られたハニカム構造体70の形状データに基づいて、検査対象のハニカム構造体70の寸法測定を行う。以下、図10~16を用いてカラーマッピング化の手順について詳細に説明し、図17~29を用いて寸法測定の手順について詳細に説明する。 FIG. 9 is a flowchart showing a procedure for measuring dimensions. In the fourth inspection step, the dimensions of the honeycomb structure 70 to be inspected are measured based on the shape data of the honeycomb structure 70 obtained by the inspection apparatus 10. Hereinafter, the color mapping procedure will be described in detail with reference to FIGS. 10 to 16, and the dimension measurement procedure will be described in detail with reference to FIGS.
(カラーマッピング)
 カラーマッピング化にあたっては、先ず、図10に示すように、寸法測定装置20と台座30を準備する。また、台座30上に、複数のマーク34を貼り付ける。次いで、図11に示すように、台座30の上にハニカム構造体70を位置合わせしながら載置する(S11)。ハニカム構造体70を載置する際、台座30の台座用ラベル36とハニカム構造体70の構造体用ラベル38の位置を合わせる。この位置合わせによって基準位置が決定される。
(Color mapping)
In color mapping, first, as shown in FIG. 10, a dimension measuring device 20 and a pedestal 30 are prepared. A plurality of marks 34 are pasted on the pedestal 30. Next, as shown in FIG. 11, the honeycomb structure 70 is placed on the pedestal 30 while being aligned (S11). When the honeycomb structure 70 is placed, the positions of the pedestal label 36 of the pedestal 30 and the structure label 38 of the honeycomb structure 70 are aligned. The reference position is determined by this alignment.
 次いで、検査対象となるハニカム構造体70のスキャニングを行う(S12)。ハニカム構造体70のスキャニングは、照射工程と受光工程と算出工程とを経て行われる。まず、図12に示すように、照射部22がハニカム構造体70の表面に対して光を走査しながら照射し(照射工程)、ハニカム構造体に照射した照射光Riの反射光Roを受光部24が受光する(受光工程)。その後、寸法測定装置20の算出部26が、照射部22が照射した照射光Riの照射角と受光部24が受光した反射光Roの受光角との関係からハニカム構造体70の形状に関する形状データを算出する(算出工程)。 Next, the honeycomb structure 70 to be inspected is scanned (S12). The scanning of the honeycomb structure 70 is performed through an irradiation process, a light receiving process, and a calculation process. First, as shown in FIG. 12, the irradiation unit 22 irradiates the surface of the honeycomb structure 70 while scanning the light (irradiation process), and receives the reflected light Ro of the irradiation light Ri irradiated to the honeycomb structure. 24 receives light (light receiving step). Thereafter, the calculation unit 26 of the dimension measuring apparatus 20 uses the relationship between the irradiation angle of the irradiation light Ri irradiated by the irradiation unit 22 and the reception angle of the reflected light Ro received by the light receiving unit 24 to obtain shape data relating to the shape of the honeycomb structure 70. Is calculated (calculation step).
 ハニカム構造体70の形状に関する形状データの算出は、以下の手順によって行われる。まず、照射部22と受光部24との間の距離L、照射部22と受光部24とを結んだ直線と照射光Riのなす角度である照射角θiおよび反射光Roの受光部24への受光角θoの値を取得する。次に、これらの値を用いて三角形の合同条件から、ハニカム構造体70の表面上の光の反射位置の絶対座標を算出する。次いで、スキャニングした範囲における複数の光の反射位置をそれぞれ算出し、算出した複数の絶対座標の点群が滑らかに通る円柱形状を最小二乗法により求め、画面上に線図として描画する。このような手順によって画面上に描画された線図を、ハニカム構造体の検査装置10によって得られたハニカム構造体70の形状データ(スキャンデータ)とする。 Calculation of shape data related to the shape of the honeycomb structure 70 is performed according to the following procedure. First, the distance L between the irradiation unit 22 and the light receiving unit 24, the irradiation angle θi that is an angle formed by the straight line connecting the irradiation unit 22 and the light receiving unit 24 and the irradiation light Ri, and the reflected light Ro to the light receiving unit 24. The value of the light receiving angle θo is acquired. Next, using these values, the absolute coordinates of the light reflection position on the surface of the honeycomb structure 70 are calculated from the congruent conditions of the triangle. Next, the reflection positions of the plurality of light in the scanned range are respectively calculated, a cylindrical shape through which the calculated plurality of absolute coordinate point groups smoothly passes is obtained by the least square method, and is drawn as a diagram on the screen. The diagram drawn on the screen by such a procedure is the shape data (scan data) of the honeycomb structure 70 obtained by the honeycomb structure inspection apparatus 10.
 ハニカム構造体70のスキャニングは、ハニカム構造体70に対する照射位置を90度ずつ変えて4回行われ、4回のスキャニングでハニカム構造体70の全体の形状データを取得する。照射位置は、回転部32により台座30を回転させて変えることができる。 The scanning of the honeycomb structure 70 is performed four times by changing the irradiation position on the honeycomb structure 70 by 90 degrees, and the entire shape data of the honeycomb structure 70 is acquired by four times of scanning. The irradiation position can be changed by rotating the pedestal 30 by the rotating unit 32.
 次いで、ハニカム構造体の検査装置10によって得られた形状データをカラーマッピング化する。カラーマッピング化にするにあたっては、専用のソフトウエアを用いてパーソナルコンピュータを操作することにより行うことができる。図13~16は、カラーマッピング化するにあたってパーソナルコンピュータのモニター上に映し出される操作画面である。 Next, the shape data obtained by the honeycomb structure inspection apparatus 10 is color mapped. Color mapping can be performed by operating a personal computer using dedicated software. 13 to 16 are operation screens displayed on a monitor of a personal computer when color mapping is performed.
 カラーマッピング化にあたっては、まず、専用のソフトウエアを立ち上げる。次いで、立ち上げたソフトウエアの自動処理により基準データ70Sが読み込まれる(S13)。基準データ70Sが読み込まれると、図13に示すように、予めパーソナルコンピュータに記憶されている基準データ70SのCADデータに基づいて、パーソナルコンピュータのモニター上に基準データ70Sの外形が描画される。 First, start up dedicated software for color mapping. Next, the reference data 70S is read by automatic processing of the started software (S13). When the reference data 70S is read, as shown in FIG. 13, the outline of the reference data 70S is drawn on the monitor of the personal computer based on the CAD data of the reference data 70S previously stored in the personal computer.
 基準データ70Sが読み込まれた後、ハニカム構造体の検査装置10によって得られたハニカム構造体70の形状データ(スキャンデータ)がソフトウエアの自動処理により読み込まれ、図14に示すように、線図で示された基準データ70Sとカラーマッピング化されたスキャンデータとが重ね合わせて表示される。この状態において、パーソナルコンピュータへの入力操作により操作画面中に表示されている基準データ70Sとスキャンデータとが選択されると、基準データ70Sとスキャンデータとの座標が合わせられる(S14)。この座標合わせの処理は、位置合わせの工程(S11)において、得られた基準位置に基づいて行われる。 After the reference data 70S is read, the shape data (scan data) of the honeycomb structure 70 obtained by the honeycomb structure inspection apparatus 10 is read by automatic processing of software, and as shown in FIG. The reference data 70S shown in FIG. 6 and the color-mapped scan data are displayed in a superimposed manner. In this state, when the reference data 70S and the scan data displayed on the operation screen are selected by the input operation to the personal computer, the coordinates of the reference data 70S and the scan data are matched (S14). This coordinate alignment process is performed based on the obtained reference position in the alignment step (S11).
 基準データ70Sとスキャンデータとの座標が合わせられると、ソフトウエアの自動処理によりカラーマッピング化した画像が表示される(S15)。カラーマッピング化した画像は、図15に示すように、基準形状との誤差が濃淡によって表示される。4回の各スキャニングで得られた他のハニカム構造体70のカラーマッピング化した画像は、図16に示されるように、ボックスBの中に小さく表示される。そして、パーソナルコンピュータによる操作によって閲覧したい画像を選択することで選択したハニカム構造体70のカラーマッピング化した画像を大きく表示させることができる。 When the coordinates of the reference data 70S and the scan data are matched, an image that has been color mapped by automatic software processing is displayed (S15). As shown in FIG. 15, the color-mapped image displays an error from the reference shape by shading. The color-mapped image of the other honeycomb structure 70 obtained by each of the four scannings is displayed in a small size in the box B as shown in FIG. Then, a color-mapped image of the selected honeycomb structure 70 can be displayed in a large size by selecting an image to be viewed by an operation by a personal computer.
 このように得られたカラーマッピング化した画像に基づき、次工程に進ませる合格品とするかリサイクル又は廃棄処分とするかの判定をする(S16)。すなわち、カラーマッピング化した画像において、基準形状との誤差がある基準値よりも小さかったら次工程に進ませる(S17)。一方、基準形状との誤差がある基準値よりも大きかったらリサイクル又は廃棄処分とする(S18)。カラーマッピング化した画像において、基準形状との誤差の大きさは、誤差が大きい場合に濃い色で表示され、小さい場合に薄い色で表示される。 Based on the color-mapped image obtained in this way, it is determined whether the product is to be passed to the next process, or to be recycled or discarded (S16). That is, in the color-mapped image, if the difference from the reference shape is smaller than the reference value, the process proceeds to the next process (S17). On the other hand, if the difference from the reference shape is larger than a reference value, it is recycled or disposed of (S18). In the color-mapped image, the magnitude of the error from the reference shape is displayed in a dark color when the error is large, and is displayed in a light color when the error is small.
(寸法測定)
 続いて、ハニカム構造体の検査装置10によって得られたハニカム構造体の形状データに基づき、ハニカム構造体を寸法測定する際の手順をついて説明する。カラーマッピング化と同様にハニカム構造体70の位置合わせ(S21)、及びスキャニング(S22)を行う。次いで、図17に示すように、基準データ70Sがソフトウエアの自動処理により読み込まれ(S23)、基準データ70Sとスキャンデータとの座標合わせが行われる(S24)。座標合わせは、図18に示すように、ハニカム構造体70の側面71cを側面視した際における基準データ70Sとスキャンデータとの対応する箇所をパーソナルコンピュータへの入力操作により選択することによって行われる。図18に示す例では、上辺と下辺の中央部と下辺の右部との3点が対応づけられて座標合わせがなされている。
(Dimension measurement)
Next, a procedure for measuring the dimensions of the honeycomb structure based on the shape data of the honeycomb structure obtained by the honeycomb structure inspection apparatus 10 will be described. Similar to the color mapping, the honeycomb structure 70 is aligned (S21) and scanned (S22). Next, as shown in FIG. 17, the reference data 70S is read by automatic software processing (S23), and the coordinate alignment between the reference data 70S and the scan data is performed (S24). As shown in FIG. 18, the coordinate alignment is performed by selecting a corresponding portion of the reference data 70S and the scan data when the side surface 71c of the honeycomb structure 70 is viewed from the side by an input operation to a personal computer. In the example shown in FIG. 18, coordinates are matched by associating three points, that is, the central part of the upper side and the lower side and the right part of the lower side.
 座標合わせが終わった後、ハニカム構造体70の円柱形状の寸法測定を行う(S25)。寸法項目として、円柱体の直径、円筒度、真円度、直角度、真直度、端面平行度、平面度及び、円柱体の軸方向の長さ等を測定することができる。 After the coordinate alignment is completed, the columnar dimension of the honeycomb structure 70 is measured (S25). As the dimension items, the diameter, cylindricity, roundness, squareness, straightness, end face parallelism, flatness, the axial length of the cylinder, and the like can be measured.
 上記測定項目のうち、円柱体の直径と円柱体の軸方向の長さは、ハニカム構造体70の複数の箇所について測定した後、その平均値を最終的な測定値とする。円筒度、真円度、直角度、真直度、端面平行度、及び平面度は、ハニカム構造体70の複数の箇所について測定した後、その最大値を最終的な測定値とする。これらの測定値は、予めパーソナルコンピュータにより入力した公差と比べられる。なお、公差とは、各測定項目の測定値の誤差の許容範囲であり、測定値と公差との比較により製造したハニカム構造体の形状が製品として許容範囲にあるか否かを判定することができる。 Among the measurement items described above, the diameter of the cylindrical body and the length in the axial direction of the cylindrical body are measured at a plurality of locations of the honeycomb structure 70, and then the average value is used as the final measurement value. The cylindricity, the roundness, the squareness, the straightness, the end face parallelism, and the flatness are measured at a plurality of locations of the honeycomb structure 70, and the maximum values are used as final measurement values. These measured values are compared with tolerances previously input by a personal computer. Incidentally, the tolerance is an allowable range of an error in the measurement value of each measurement item, and it is determined whether or not the shape of the honeycomb structure manufactured by comparing the measurement value and the tolerance is within an allowable range as a product. it can.
 本実施形態では、直角度、真円度、円柱体の直径、円筒度、円柱体の軸方向の長さ、端面平行度及び平面度をパーソナルコンピュータの操作画面上で求める手順を説明する。なお、各寸法測定は、線図又は点図により描画した円柱体上に表示することもできるが、カラーマッピング化された画像上に表示することもできる。 In the present embodiment, a procedure for obtaining a squareness, roundness, cylindrical diameter, cylindricity, axial length, cylindrical parallelism, and flatness on a personal computer operation screen will be described. Each dimension measurement can be displayed on a cylindrical body drawn by a diagram or dot diagram, but can also be displayed on a color mapped image.
(直角度)
 図19~21を用いて直角度を測定する手順を説明する。本実施形態で測定するのは、ハニカム構造体70の軸方向の断面とハニカム構造体70の直径方向の断面との直角度、ハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面との直角度、ハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面と平行な断面との直角度、ハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面との直角度、及びハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面と平行な断面との直角度である。この測定は、以下の手順によりパーソナルコンピュータの操作画面上で自動的に行われる。まず、図19~21を用いて、ハニカム構造体70の軸方向の断面とハニカム構造体70の直径方向の断面との直角度の測定方法の手順について説明した後、図22を用いて、ハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面との直角度、ハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面と平行な断面との直角度、ハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面との直角度、及びハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面と平行な断面との直角度の測定方法の手順を説明する。
(right angle)
The procedure for measuring the perpendicularity will be described with reference to FIGS. What is measured in the present embodiment is that the perpendicularity between the cross section in the axial direction of the honeycomb structure 70 and the cross section in the diametrical direction of the honeycomb structure 70, and the columnar axis and the honeycomb structure 70 based on the side surface of the honeycomb structure 70. The perpendicularity between the end face of the honeycomb structure 70 and the cross section parallel to the end face of the honeycomb structure 70, and the cylinder axis based on one end face of the honeycomb structure 70. The perpendicularity between the other end face of the honeycomb structure 70 and the perpendicularity between the cylindrical axis with reference to one end face of the honeycomb structure 70 and a cross section parallel to the other end face of the honeycomb structure 70. This measurement is automatically performed on the operation screen of the personal computer according to the following procedure. First, the procedure of the method for measuring the perpendicularity between the cross section in the axial direction of the honeycomb structure 70 and the cross section in the diameter direction of the honeycomb structure 70 will be described with reference to FIGS. The perpendicularity between the cylinder axis with respect to the side face of the structure 70 and the end face of the honeycomb structure 70, and the perpendicularity between the cylinder axis with respect to the side face of the honeycomb structure 70 and a cross section parallel to the end face of the honeycomb structure 70 The perpendicularity between the cylinder axis with respect to one end face of the honeycomb structure 70 and the other end face of the honeycomb structure 70 and the cylinder axis with respect to one end face of the honeycomb structure 70 and the honeycomb structure 70 The procedure of the method for measuring the perpendicularity between the other end face and the cross section parallel to the end face will be described.
 ハニカム構造体70の軸方向の断面とハニカム構造体70の直径方向の断面との直角度を測定するため、図19に示されるように、パーソナルコンピュータの操作画面上に互いに直交する軸方向の第一断面70s1及び第二断面70s2が用意され、第一断面70s1と第二断面70s2との直交部に基づいて仮の円柱軸70p0が作成される。 In order to measure the perpendicularity between the cross section in the axial direction of the honeycomb structure 70 and the cross section in the diametrical direction of the honeycomb structure 70, as shown in FIG. A first cross section 70s1 and a second cross section 70s2 are prepared, and a temporary cylindrical shaft 70p0 is created based on an orthogonal portion between the first cross section 70s1 and the second cross section 70s2.
 次いで、図20に示すように、仮の円柱軸70p0を通り、円柱体を等間隔に12分割した断面がハニカム構造体70の軸方向の断面として用意され、基準面である上面71aに対するハニカム構造体70の軸方向の各断面についての直角度がそれぞれ算出される。基準データ70Sでは、上面71aに対する軸方向の各断面の角度が90度であり、直角度の測定は、基準データ70Sとの上面71aに対する軸方向の各断面の角度の誤差を測定することにより行われる。具体的には、スキャンデータと基準データ70Sとの円柱体の上面71aを合わせた場合における、基準データ70Sと比較した各断面において互いに対向する高さ方向の二辺(第一辺70c,第二辺70d)の長さの誤差(単位mm)をハニカム構造体70の軸方向の断面とハニカム構造体70の直径方向の断面との直角度として算出する。このような方法により、12分割した断面における全ての高さ方向の辺(24辺)について直角度を求め、それらの最大値を最終的なハニカム構造体70の直角度の測定値とする。 Next, as shown in FIG. 20, a cross section obtained by passing the temporary cylindrical shaft 70p0 and dividing the cylindrical body into 12 at equal intervals is prepared as a cross section in the axial direction of the honeycomb structure 70, and the honeycomb structure with respect to the upper surface 71a which is the reference surface The squareness of each cross section in the axial direction of the body 70 is calculated. In the reference data 70S, the angle of each cross section in the axial direction with respect to the upper surface 71a is 90 degrees, and the perpendicularity is measured by measuring the error of the angle of each cross section in the axial direction with respect to the upper surface 71a with respect to the reference data 70S. Is called. Specifically, when the upper surface 71a of the cylindrical body of the scan data and the reference data 70S are combined, two sides in the height direction facing each other (first side 70c, second side) in each cross section compared with the reference data 70S. The error (unit mm) in the length of the side 70d) is calculated as the squareness between the axial cross section of the honeycomb structure 70 and the diametric cross section of the honeycomb structure 70. By such a method, the squareness is obtained for all the sides (24 sides) in the height direction in the 12-divided cross section, and the maximum value thereof is used as the measurement value of the squareness of the final honeycomb structure 70.
 本実施形態では、ハニカム構造体70の軸方向の断面とハニカム構造体70の直径方向の断面との直角度の算出の一例として、図21に示すカラーマッピング化された画像上に、第一辺70c及び第二辺70dについての直角度を算出する場合を説明する。図21に示されるように、パーソナルコンピュータの操作画面では、基準面である上面71aと同じ高さで延在する上基準面71Aと、下面71bを含んで延在する底基準面71Bとが表示される。その後、パーソナルコンピュータによる操作により直角度の公差が入力され、第一辺70c及び第二辺70dがそれぞれパーソナルコンピュータへの入力操作により選択される。このような手順により、操作画面上に、第一辺70c及び第二辺70dの直角度が表示される。 In the present embodiment, as an example of calculating the perpendicularity between the cross section in the axial direction of the honeycomb structure 70 and the cross section in the diametrical direction of the honeycomb structure 70, the first side is displayed on the color-mapped image shown in FIG. A case where the perpendicularity with respect to 70c and the second side 70d is calculated will be described. As shown in FIG. 21, on the operation screen of the personal computer, an upper reference surface 71A extending at the same height as the upper surface 71a, which is a reference surface, and a bottom reference surface 71B extending including the lower surface 71b are displayed. Is done. Thereafter, a square tolerance is input by an operation by the personal computer, and the first side 70c and the second side 70d are selected by an input operation to the personal computer. By such a procedure, the perpendicularity of the first side 70c and the second side 70d is displayed on the operation screen.
 図21に示される例では、第一辺70cが対応する基準データ70Sの辺と比較して径方向に「0.55mm」ずれており、第二辺70dが対応する基準データ70Sの辺と比較して径方向に「0.286mm」ずれていることがわかる。ここで、パーソナルコンピュータによる操作により入力した公差が「0.30mm」であった場合、図21に示される例では、直角度の最大値が入力した公差よりも大きく、直角度については公差よりも大きい。 In the example shown in FIG. 21, the first side 70c is shifted by “0.55 mm” in the radial direction as compared with the corresponding reference data 70S side, and the second side 70d is compared with the corresponding reference data 70S side. Thus, it can be seen that there is a deviation of “0.286 mm” in the radial direction. Here, when the tolerance input by the operation by the personal computer is “0.30 mm”, in the example shown in FIG. 21, the maximum value of the squareness is larger than the inputted tolerance, and the squareness is larger than the tolerance. large.
 次に、ハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面と平行な断面との直角度、ハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面との直角度、ハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面との直角度、及びハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面と平行な断面との直角度の測定手順について説明する。 Next, the perpendicularity between the cylinder axis with respect to the side surface of the honeycomb structure 70 and the cross section parallel to the end face of the honeycomb structure 70, the cylinder axis with respect to the side face of the honeycomb structure 70, and the end face of the honeycomb structure 70 , The perpendicularity between the cylindrical axis with respect to one end face of the honeycomb structure 70 and the other end face of the honeycomb structure 70, and the cylindrical axis with respect to one end face of the honeycomb structure 70 and the honeycomb A procedure for measuring the perpendicularity of the cross section parallel to the other end face of the structure 70 will be described.
 ハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面と平行な断面との直角度、及びハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面との直角度の測定においては、図22(a)に示すように、パーソナルコンピュータの操作画面では、基準面である上面71aと同じ高さで延在する上基準面71Aと、下面71bを含んで延在する底基準面71Bとが用意される。また、ハニカム構造体70の側面上において上基準面71Aから等距離(同じ高さ)にある点の集合である円形状の中心が求められる。この中心は、上基準面71Aからの距離それぞれについて複数個求められる。上基準面71Aからの距離それぞれについて求められた中心それぞれから最も近い距離を通過する直線を最小二乗法により求めることにより、ハニカム構造体70の側面を基準とした円柱軸70p1が求められる。 The perpendicularity between the cylinder axis based on the side surface of the honeycomb structure 70 and the cross section parallel to the end surface of the honeycomb structure 70, and the column axis based on the side surface of the honeycomb structure 70 and the end surface of the honeycomb structure 70 In the measurement of squareness, as shown in FIG. 22A, the operation screen of the personal computer extends including the upper reference surface 71A and the lower surface 71b extending at the same height as the upper surface 71a as the reference surface. An existing bottom reference plane 71B is prepared. In addition, a circular center which is a set of points equidistant (same height) from the upper reference surface 71A on the side surface of the honeycomb structure 70 is obtained. A plurality of centers are obtained for each distance from the upper reference plane 71A. A cylinder axis 70p1 with respect to the side surface of the honeycomb structure 70 is obtained by obtaining a straight line passing through the closest distance from each center obtained for each distance from the upper reference surface 71A by the least square method.
 その後、上面71aの中心を通り、上面71aに対して垂直に伸びる垂線70vと、上基準面71Aと平行になるような任意の面71Rで切った断面71rとが作成される。このとき、垂線70vが任意の面71Rで交わる点71vと、側面を基準とする円柱軸70p1が任意の面71Rで交わる点71p1との距離t1(単位mm)をハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面と平行な断面との直角度として算出する。基準データ70Sでは、点71vと点71p1は一致することから、距離t1が基準データ70Sと比較した誤差となる。 Thereafter, a perpendicular 70v passing through the center of the upper surface 71a and extending perpendicularly to the upper surface 71a and a cross-section 71r cut by an arbitrary surface 71R parallel to the upper reference surface 71A are created. At this time, the distance t1 (unit: mm) between the point 71v where the perpendicular 70v intersects with the arbitrary surface 71R and the point 71p1 where the cylindrical axis 70p1 relative to the side surface intersects with the arbitrary surface 71R is based on the side surface of the honeycomb structure 70. It is calculated as the squareness between the cylindrical axis and the cross section parallel to the end face of the honeycomb structure 70. In the reference data 70S, since the point 71v and the point 71p1 coincide, the distance t1 becomes an error compared with the reference data 70S.
 また、図22(a)において、垂線70vが底基準面71Bと交わる点72vと、円柱軸70p1が底基準面71Bで交わる点72p1との距離t2(単位mm)をハニカム構造体70の側面を基準とした円柱軸とハニカム構造体70の端面との直角度として算出する。基準データ70Sでは、点72vと点72p1は一致することから、距離t2が基準データ70Sと比較した誤差となる。このように得られた直角度の測定結果は、ハニカム構造体70の軸方向の断面とハニカム構造体70の直径方向の断面との直角度の測定時と同様に、カラーマッピング化された画像上に表示される。なお、図22(a)では、直角度を説明する都合上、ハニカム構造体70の円柱軸70p1が上面71a及び下面71bに対して垂直となっていない。 22A, a distance t2 (unit mm) between a point 72v where the perpendicular 70v intersects the bottom reference plane 71B and a point 72p1 where the cylindrical axis 70p1 intersects the bottom reference plane 71B is defined on the side surface of the honeycomb structure 70. It is calculated as the squareness between the cylinder axis as a reference and the end face of the honeycomb structure 70. In the reference data 70S, since the point 72v and the point 72p1 coincide with each other, the distance t2 becomes an error compared with the reference data 70S. The squareness measurement results obtained in this way are similar to those obtained when the squareness of the axial section of the honeycomb structure 70 and the diameter section of the honeycomb structure 70 is measured. Is displayed. In FIG. 22A, for convenience of explaining the perpendicularity, the columnar axis 70p1 of the honeycomb structure 70 is not perpendicular to the upper surface 71a and the lower surface 71b.
 ハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面との直角度、及びハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面と平行な断面との直角度の測定においては、図22(b)に示すように、パーソナルコンピュータの操作画面では、基準面である上面71aと同じ高さで延在する上基準面71Aと、下面71bを含んで延在する底基準面71Bとが用意される。その後、上面71aの中心を通り、上面71aに対して垂直に伸びる垂線70vと、上基準面71Aと平行になるような任意の面71Rで切った断面71rとが作成される。このとき、垂線70vが任意の面71Rで交わる点71vと、下面71bに垂直な円柱軸70p2が任意の面71Rで交わる点71p2との距離t1(単位mm)をハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面と平行な断面との直角度として算出する。基準データ70Sでは、点71vと点71p2は一致することから、距離t1が基準データ70Sと比較した誤差となる。 The perpendicularity between the cylinder axis with respect to one end face of the honeycomb structure 70 and the other end face of the honeycomb structure 70, and the cylinder axis with respect to one end face of the honeycomb structure 70 and the other of the honeycomb structure 70 In the measurement of the perpendicularity with the cross section parallel to the end face, as shown in FIG. 22B, on the operation screen of the personal computer, the upper reference surface 71A extending at the same height as the upper surface 71a which is the reference surface. And a bottom reference surface 71B extending including the lower surface 71b is prepared. Thereafter, a perpendicular 70v passing through the center of the upper surface 71a and extending perpendicularly to the upper surface 71a and a cross section 71r cut by an arbitrary surface 71R parallel to the upper reference surface 71A are created. At this time, a distance t1 (unit: mm) between a point 71v where the perpendicular 70v intersects with the arbitrary surface 71R and a point 71p2 where the cylindrical axis 70p2 perpendicular to the lower surface 71b intersects with the arbitrary surface 71R is one end surface of the honeycomb structure 70. Is calculated as a square angle between the cylindrical axis with reference to the cross section parallel to the other end face of the honeycomb structure 70. In the reference data 70S, since the point 71v and the point 71p2 coincide, the distance t1 becomes an error compared with the reference data 70S.
 また、図22(b)において、垂線70vが底基準面71Bと交わる点72vと、円柱軸70p2が底基準面71Bで交わる点72p2との距離t2(単位mm)をハニカム構造体70の一方の端面を基準とした円柱軸とハニカム構造体70の他方の端面との直角度として算出する。基準データ70Sでは、点72vと点72p2は一致することから、距離t2が基準データ70Sと比較した誤差となる。このように得られた直角度の測定結果は、ハニカム構造体70の軸方向の断面とハニカム構造体70の直径方向の断面との直角度の測定時と同様に、カラーマッピング化された画像上に表示される。なお、図22(b)では、直角度を説明する都合上、ハニカム構造体70の上面71aが水平となっていない。 22B, a distance t2 (unit: mm) between a point 72v where the perpendicular 70v intersects the bottom reference plane 71B and a point 72p2 where the cylindrical axis 70p2 intersects the bottom reference plane 71B is expressed as one of the honeycomb structures 70. This is calculated as the squareness between the cylindrical axis with respect to the end face and the other end face of the honeycomb structure 70. In the reference data 70S, since the point 72v and the point 72p2 coincide, the distance t2 becomes an error compared with the reference data 70S. The squareness measurement results obtained in this way are similar to those obtained when the squareness of the axial section of the honeycomb structure 70 and the diameter section of the honeycomb structure 70 is measured. Is displayed. In FIG. 22B, the upper surface 71a of the honeycomb structure 70 is not horizontal for the convenience of explaining the perpendicularity.
(真円度、直径)
 次に、図23及び24を用いて真円度を測定する手順を説明する。真円度を測定することにより、ハニカム構造体70の円柱体の直径方向における断面形状の歪みを把握することができる。基準データ70Sでは、円柱体の直径方向における断面形状が真円であり、真円度の測定は、スキャンデータと基準データ70Sとの各断面における半径の誤差を求める測定のほか、各面において最小二乗法にて求めた真円との誤差を測定することにより行われる。この測定は、以下の手順によりパーソナルコンピュータの操作画面上で自動的に行われる。
(Roundness, diameter)
Next, a procedure for measuring the roundness will be described with reference to FIGS. By measuring the roundness, the distortion of the cross-sectional shape in the diameter direction of the cylindrical body of the honeycomb structure 70 can be grasped. In the reference data 70S, the cross-sectional shape in the diameter direction of the cylindrical body is a perfect circle, and the roundness is measured by determining the error of the radius in each cross section between the scan data and the reference data 70S, as well as the minimum in each surface. This is done by measuring the error from the perfect circle obtained by the square method. This measurement is automatically performed on the operation screen of the personal computer according to the following procedure.
 まず、図23に示すように、円柱体を軸方向に等間隔に10箇所輪切りにした円柱体の断面70eが用意される。なお、円柱体の直径方向における断面数は10箇所以上、又は10箇所以下であってもよい。円柱体の断面70eのそれぞれは、設置面である円柱体の底基準面71Bに対して平行となるような10個の基準面71Eを等間隔に用意し、各基準面71Eに沿うように円柱体を輪切りすることによって得られる。そして、基準データ70Sに対するスキャンデータの断面70eそれぞれにおける半径の誤差(単位mm)を求め、それらの最大値を取得することにより求められる。 First, as shown in FIG. 23, a cylindrical body cross section 70e is prepared in which the cylindrical body is cut into ten rounds at equal intervals in the axial direction. The number of cross sections in the diameter direction of the cylindrical body may be 10 or more or 10 or less. For each of the cross sections 70e of the cylindrical body, ten reference surfaces 71E that are parallel to the bottom reference surface 71B of the cylindrical body that is the installation surface are prepared at equal intervals, and the cylinders are arranged along the respective reference surfaces 71E. Obtained by cutting the body. Then, a radius error (unit: mm) in each of the cross sections 70e of the scan data with respect to the reference data 70S is obtained, and the maximum value thereof is obtained.
 本実施形態では、図24を用いて、基準面71Eと基準面71Fに基づいて得られた断面70e及び断面70fの真円度を算出する場合を説明する。パーソナルコンピュータへの入力操作により真円度の公差が入力された後、基準面71Eと基準面71Fが選択される。このような手順により、図24に示されるように、操作画面上に、断面70e及び断面70fの真円度が表示される。図24に示される例では、断面70eの真円度が「0.145mm」であり、断面70fの真円度が「0.063mm」となる。例えば、パーソナルコンピュータによる操作により入力した公差が「0.30mm」であった場合、断面70e及び断面70fの真円度は許容範囲内である。よって、図24に示される例では、真円度の最大値が公差よりも小さく、真円度については公差よりも小さい。 In this embodiment, the case where the roundness of the cross section 70e and the cross section 70f obtained based on the reference surface 71E and the reference surface 71F is calculated will be described with reference to FIG. After tolerance of roundness is input by input operation to the personal computer, the reference surface 71E and the reference surface 71F are selected. By such a procedure, as shown in FIG. 24, the roundness of the cross section 70e and the cross section 70f is displayed on the operation screen. In the example shown in FIG. 24, the roundness of the cross section 70e is “0.145 mm”, and the roundness of the cross section 70f is “0.063 mm”. For example, when the tolerance input by the operation by the personal computer is “0.30 mm”, the roundness of the cross section 70e and the cross section 70f is within the allowable range. Therefore, in the example shown in FIG. 24, the maximum roundness is smaller than the tolerance, and the roundness is smaller than the tolerance.
 円柱体の端面の直径は、真円度を算出する際に用意した10個の円柱体の断面70eを用いて測定される。直径は、10個の円柱体の断面のそれぞれの直径を求めた後、その平均値を最終的な円柱体の直径(平均直径)の測定値とする。 The diameter of the end face of the cylindrical body is measured using the cross-sections 70e of the 10 cylindrical bodies prepared when calculating the roundness. After obtaining the diameters of the cross-sections of the 10 cylinders, the average value is the measured value of the final cylinder diameter (average diameter).
(円筒度)
 図25及び26を用いて円筒度を測定する手順を説明する。円筒度を測定することにより、ハニカム構造体70の円柱体の側面形状の歪みを把握することができる。基準データ70Sでは、円柱体の側面形状の歪みが全くないそのため、円筒度の測定は、基準データ70Sとのスキャンデータとの誤差を測定することにより行われる。この測定は、以下の手順によりパーソナルコンピュータの操作画面上で自動的に行われる。
(Cylindrical degree)
The procedure for measuring the cylindricity will be described with reference to FIGS. By measuring the cylindricity, the distortion of the side surface shape of the cylindrical body of the honeycomb structure 70 can be grasped. In the reference data 70S, there is no distortion of the side surface shape of the cylindrical body. Therefore, the cylindricity is measured by measuring an error between the reference data 70S and the scan data. This measurement is automatically performed on the operation screen of the personal computer according to the following procedure.
 まず、図25に示すように、上述のように求めた円柱軸70p1を通り半径70tを含むような半円柱70gが用意される。この状態で、パーソナルコンピュータへの操作により円筒度の公差を入力すると、図26に示すように、操作画面上に、基準データ70Sとスキャンデータとの円柱軸70p1を合わせた際における、基準データ70Sに対する半径70tの誤差が円筒度として表示される。円筒度は、円柱軸70p1を通り半径70tとは異なる半径を含むような別の半円柱を複数用いて、複数の円筒度を得、その最大値を最終的な円柱体の円筒度の測定値とする。 First, as shown in FIG. 25, a semi-cylinder 70g is prepared which passes through the cylinder axis 70p1 obtained as described above and includes a radius 70t. In this state, when the tolerance of cylindricity is input by operating the personal computer, as shown in FIG. 26, the reference data 70S when the cylindrical axis 70p1 of the reference data 70S and the scan data are aligned on the operation screen. The error of the radius 70t with respect to is displayed as cylindricity. The cylindricity is obtained by using a plurality of other semi-cylinders passing through the cylinder axis 70p1 and including a radius different from the radius 70t to obtain a plurality of cylindricity, and the maximum value is a measured value of the cylindricity of the final cylinder. And
(軸方向の長さ)
 図27を用いて軸方向の長さを測定する手順を説明する。図27に示すように、まず、円柱体の上面71a及び上面71aが延在した上基準面71Aと、下面71b及び下面71bを含んで延在した底基準面71Bとが操作画面上に示される。次いで、上基準面71Aと底基準面71Bとの間の長さが求められる。図27に示される例では、軸方向の長さが「152.4394mm」となる。この操作を何度か繰り返して複数の軸方向の長さを得て、その平均値を最終的な円柱体の軸方向の長さの測定値とする。
(Axial length)
The procedure for measuring the axial length will be described with reference to FIG. As shown in FIG. 27, first, an upper reference surface 71A in which the upper surface 71a and the upper surface 71a of the cylindrical body extend, and a bottom reference surface 71B that includes the lower surface 71b and the lower surface 71b are shown on the operation screen. . Next, the length between the upper reference surface 71A and the bottom reference surface 71B is obtained. In the example shown in FIG. 27, the axial length is “152.4394 mm”. This operation is repeated several times to obtain a plurality of axial lengths, and the average value is taken as the final measured axial length of the cylinder.
(端面平行度)
 図28を用いて端面平行度を測定する手順を説明する。基準データ70Sでは、円柱体の端面同士が平行であり、端面平行度の測定は、基準データ70Sとのスキャンデータの誤差を測定する。その手順は、図28に示すように、まず、円柱体の上面71a及び上面71aを延在させた上基準面71Aと、下面71b及び下面71bが延在した底基準面71Bとを操作画面上に表示させる。底基準面71Bを基準ターデム面とし、基準データを参照して公差を比較しつつ、底基準面71Bに対して上基準面71Aの軸方向における基準データ70Sとの誤差(単位mm)の最大値をハニカム構造体70の平行度として算出する。図28に示される例では、平行度が「0.0432mm」となる。
(End face parallelism)
The procedure for measuring the end face parallelism will be described with reference to FIG. In the reference data 70S, the end faces of the cylindrical bodies are parallel to each other, and the measurement of the end face parallelism measures an error of scan data with respect to the reference data 70S. As shown in FIG. 28, the procedure is as follows. First, an upper reference surface 71A in which the upper surface 71a and the upper surface 71a of the cylindrical body are extended, and a bottom reference surface 71B in which the lower surface 71b and the lower surface 71b are extended are displayed on the operation screen. To display. The maximum value of an error (unit: mm) with respect to the reference data 70S in the axial direction of the upper reference surface 71A with respect to the bottom reference surface 71B while comparing the tolerances with reference to the reference data with the bottom reference surface 71B as the reference terdem surface Is calculated as the parallelism of the honeycomb structure 70. In the example shown in FIG. 28, the parallelism is “0.0432 mm”.
(上面平面度)
 図29を用いて上面平面度を測定する手順を説明する。ここでいう上面とは、ハニカム構造体70の製造工程において上を向いている面である。図29に示すように、まず、円柱体の上面70in及び上面70inを延在させた上基準面71inと、下面70out及び下面70outを延在させた下基準面71outと、を操作画面上に表示させる。次いで、スキャンデータの上面70in上における最大の凸部と最大の凹部の差を上面平面度として算出する。図29に示される例では、上面平面度が「0.1123mm」となる。円筒度は、上述した方法で得られ、図29に示す例では、上面平面度と合わせてカラーマッピング化した画像上に表示されている。
(Top flatness)
The procedure for measuring the upper surface flatness will be described with reference to FIG. Here, the upper surface is a surface facing upward in the manufacturing process of the honeycomb structure 70. As shown in FIG. 29, first, an upper reference surface 71in extending the upper surface 70in and the upper surface 70in of the cylindrical body and a lower reference surface 71out extending the lower surface 70out and the lower surface 70out are displayed on the operation screen. Let Next, the difference between the largest convex portion and the largest concave portion on the upper surface 70 in of the scan data is calculated as the upper surface flatness. In the example shown in FIG. 29, the upper surface flatness is “0.1123 mm”. The cylindricity is obtained by the method described above. In the example shown in FIG. 29, the cylindricity is displayed on an image that has been color-mapped together with the upper surface flatness.
(下面平面度)
 図30を用いて下面平面度を測定する手順を説明する。下面平面度を測定することにより、ハニカム構造体70の下面における凹凸度を把握することができる。ここでいう下面とは、ハニカム構造体70の製造過程において下を向いている面、すなわち製造装置上に設置される面である。図30には、図29の例と上下が反転したカラーマッピング画像が表示されている。下面平面度は、下面70out上における最大の凸部と最大の凹部の差として算出される。図30に示される例では、上面平面度が「1.1644mm」となる。
(Lower surface flatness)
The procedure for measuring the lower surface flatness will be described with reference to FIG. By measuring the lower surface flatness, the degree of unevenness on the lower surface of the honeycomb structure 70 can be grasped. The lower surface here is a surface facing downward in the manufacturing process of the honeycomb structure 70, that is, a surface installed on the manufacturing apparatus. FIG. 30 displays a color mapping image that is upside down from the example of FIG. The lower surface flatness is calculated as a difference between the largest convex portion and the largest concave portion on the lower surface 70out. In the example shown in FIG. 30, the upper surface flatness is “1.1644 mm”.
 このようにハニカム構造体70の寸法測定を行った後、測定した測定値と公差との大小に基づいて次工程に進ませる合格品とするかリサイクル又は廃棄処分とするか判定する(S26)。すなわち、測定値が公差よりも小さい場合は次工程に進ませる(S27)。一方、測定値が公差よりも大きい場合はリサイクル又は廃棄処分とする(S28)。 After measuring the dimensions of the honeycomb structure 70 as described above, it is determined whether the product is a passed product to be advanced to the next process or recycled or discarded based on the measured value and the tolerance (S26). That is, when the measured value is smaller than the tolerance, the process proceeds to the next process (S27). On the other hand, if the measured value is larger than the tolerance, it is recycled or disposed of (S28).
 また、ハニカム構造体70の寸法測定を行った後、次工程に進ませる合格品とするかリサイクル又は廃棄処分とするか判定するため、ハニカム構造体70の形状データを記録して解析する解析工程をさらに備えることができる。解析工程は、寸法測定装置20とは別の図示しないパーソナルコンピュータを用いて行うことができる。この構成によれば、製造したハニカム構造体70の形状についてより詳細に検査したうえで、合格品とするかリサイクル又は廃棄処分とするか判定することができる。 In addition, after measuring the dimensions of the honeycomb structure 70, an analysis process for recording and analyzing the shape data of the honeycomb structure 70 in order to determine whether the product is to be passed to the next process or to be recycled or discarded. Can further be provided. The analysis step can be performed using a personal computer (not shown) separate from the dimension measuring device 20. According to this structure, after inspecting the shape of the manufactured honeycomb structure 70 in more detail, it can be determined whether the product is an acceptable product, recycled, or discarded.
 本実施形態に係る検査方法では、上面71a及び下面71bに複数の貫通孔(セル)70aが略平行に配置された円柱体のハニカム構造体70の検査方法であって、ハニカム構造体70の表面に対して光を走査しながら照射する照射工程と、照射工程でハニカム構造体70に照射した照射光Riの反射光Roを受光する受光工程と、照射工程でハニカム構造体70に照射した照射光Riの照射角と受光工程で受光した反射光Roの受光角との関係からハニカム構造体の形状に関する形状データを算出する算出工程と、を含む。 The inspection method according to the present embodiment is an inspection method for a honeycomb structure 70 having a cylindrical body in which a plurality of through holes (cells) 70a are arranged substantially parallel to an upper surface 71a and a lower surface 71b. An irradiation step of irradiating the honeycomb structure 70 with light, a light receiving step of receiving the reflected light Ro of the irradiation light Ri irradiated on the honeycomb structure 70 in the irradiation step, and an irradiation light irradiated on the honeycomb structure 70 in the irradiation step A calculation step of calculating shape data relating to the shape of the honeycomb structure from the relationship between the irradiation angle of Ri and the reception angle of the reflected light Ro received in the light reception step.
 この検査方法では、照射工程でハニカム構造体70に照射した照射光Riの照射角と受光工程で受光した反射光Roの受光角との関係からのハニカム構造体70の形状に関するデータを算出するため、非接触でハニカム構造体70の検査が可能である。よって、押出成形後、乾燥前の軟らかい状態のグリーン成形体を検査することができる。また、ハニカム構造体70の表面に対して光を走査しながら照射するため、特許文献2の方法に比べて効率良くハニカム構造体70の検査が可能である。よって、上記構成によれば、非接触で効率良くハニカム構造体70の検査を行なうことができる。 In this inspection method, data relating to the shape of the honeycomb structure 70 is calculated from the relationship between the irradiation angle of the irradiation light Ri irradiated to the honeycomb structure 70 in the irradiation process and the reception angle of the reflected light Ro received in the light reception process. The honeycomb structure 70 can be inspected in a non-contact manner. Therefore, the green molded body in a soft state after extrusion molding and before drying can be inspected. Further, since the surface of the honeycomb structure 70 is irradiated while scanning light, the honeycomb structure 70 can be inspected more efficiently than the method of Patent Document 2. Therefore, according to the above configuration, the honeycomb structure 70 can be inspected efficiently without contact.
 また、本実施形態に係る検査方法では、ハニカム構造体は70表面にハニカム構造体70の基準位置を特定するマーク34を有し、照射工程の前に、マーク34を用いてハニカム構造体70の基準位置の特定を行う位置特定工程を更に備えている。この構成によれば、対称な円柱体のハニカム構造体70を検査する場合であっても、ハニカム構造体70のどの部分の形状データであるかを正確に把握することができる。 Further, in the inspection method according to the present embodiment, the honeycomb structure has the mark 34 for specifying the reference position of the honeycomb structure 70 on the surface of the honeycomb structure 70, and the mark 34 is used before the irradiation process. A position specifying step for specifying the reference position is further provided. According to this configuration, even when a symmetric cylindrical honeycomb structure 70 is inspected, it is possible to accurately grasp which part of the honeycomb structure 70 is shape data.
 また、本実施形態に係る検査方法において、ハニカム構造体70のスキャニング(照射工程、受光工程及び算出工程)は、ハニカム構造体に対する照射位置を90度ずつ変えて計4回行われる。この構成によれば、4回のスキャニングによりハニカム構造体の全部の形状データを取得することができる。 Further, in the inspection method according to the present embodiment, the scanning (irradiation process, light receiving process and calculation process) of the honeycomb structure 70 is performed a total of four times by changing the irradiation position on the honeycomb structure by 90 degrees. According to this configuration, the entire shape data of the honeycomb structure can be acquired by four times of scanning.
 また、算出工程において、ハニカム構造体の形状に関する基準データ70Sを取得し、基準データ70Sに対する形状データの誤差を算出している。この構成によれば、例えば、製造したハニカム構造体70の形状が製品として許容範囲にあるか否かを検査することができる。 In the calculation step, reference data 70S regarding the shape of the honeycomb structure is acquired, and an error of the shape data with respect to the reference data 70S is calculated. According to this configuration, for example, it is possible to inspect whether or not the shape of the manufactured honeycomb structure 70 is within an allowable range as a product.
 本実施形態では、ハニカム構造体として、セラミックス組成物が押出成形されたグリーンハニカム成形体を用いている。この構成によれば、押出成形後、乾燥前の軟らかい状態におけるハニカム構造体を検査することができる。 In this embodiment, a green honeycomb molded body in which a ceramic composition is extruded is used as the honeycomb structure. According to this configuration, the honeycomb structure in a soft state after extrusion molding and before drying can be inspected.
 また、ハニカム構造体として、グリーンハニカム成形体を乾燥させた成形体、又は、成形体を焼成させた焼成成形体を用いている。この構成によれば、乾燥後の硬化した状態におけるハニカム構造体の形状を検査することができる。 Further, as the honeycomb structure, a green body formed by drying a green honeycomb formed body or a fired formed body obtained by firing the formed body is used. According to this configuration, the shape of the honeycomb structure in a cured state after drying can be inspected.
 本実施形態に係るハニカム構造体の製造方法は、押出成形工程(S1)と乾燥工程(S3)との間に第一検査工程を備え、乾燥工程(S3)と精密切断工程(S5)との間に第二検査工程(S4)を備える。また、本実施形態に係るハニカム構造体の製造方法は、精密切断工程(S5)と封口工程(S7)との間に第三検査工程(S6)を備えている。このため、ハニカム構造体70の製造の途中で既に欠陥がある中間体を後続の工程に進めることや、不良品が製造されることを回避できる。 The method for manufacturing a honeycomb structure according to the present embodiment includes a first inspection step between the extrusion step (S1) and the drying step (S3), and includes a drying step (S3) and a precision cutting step (S5). A second inspection step (S4) is provided in between. Moreover, the manufacturing method of the honeycomb structure according to the present embodiment includes a third inspection step (S6) between the precision cutting step (S5) and the sealing step (S7). For this reason, it can be avoided that an intermediate body that is already defective in the course of manufacturing the honeycomb structure 70 is advanced to a subsequent process or that a defective product is manufactured.
 本実施形態に係るハニカム構造体の検査装置は、ハニカム構造体の基準位置を特定する基準位置特定部としてマーク34と、台座用ラベル36及び構造体用ラベル38を備えている。この構成によれば、台座用ラベル36と構造体用ラベル38とを合わせることで簡単にハニカム構造体の位置合わせができる。 The honeycomb structure inspection apparatus according to the present embodiment includes a mark 34, a pedestal label 36, and a structure label 38 as reference position specifying portions for specifying the reference position of the honeycomb structure. According to this configuration, the honeycomb structure can be easily aligned by combining the base label 36 and the structure label 38.
 また、本実施形態に係るハニカム構造体の検査装置は、ハニカム構造体を載置した状態で回転可能な台座30を備えている。このような構成によれば、台座30を回転させて、ハニカム構造体70の検査を複数回又は繰り返すことで、広い範囲におけるハニカム構造体70を検査することができる。 Further, the honeycomb structure inspection apparatus according to the present embodiment includes a pedestal 30 that can rotate while the honeycomb structure is placed thereon. According to such a configuration, the honeycomb structure 70 in a wide range can be inspected by rotating the base 30 and inspecting the honeycomb structure 70 a plurality of times or repeatedly.
 本発明は上記実施形態に限定されずさまざまな変形形態が可能である。例えば、本実施形態に係る検査装置では、マーク34と、台座用ラベル36及び構造体用ラベル38の両方でハニカム構造体70の相対位置を特定していたが、マーク34又は台座用ラベル36及び構造体用ラベル38のどちらかを用いてハニカム構造体70の相対位置を特定してもよい。また、本実施形態に係る検査装置10では、ハニカム構造体70を載置した状態で回転可能な台座30を備えていたが、台座30を備えていなくてもよい。この場合、寸法測定装置20の位置を変えることでハニカム構造体70への光の照射位置を変えることができる。また、ハニカム構造体70の検査中に、ハニカム構造体70の端面を傷つけないよう台座30の上に更に別の追加台座を載せてもよく、追加台座の形状は、載せるハニカム構造体70の形状に合わせて円筒状等を選択することができる。 The present invention is not limited to the above embodiment, and various modifications are possible. For example, in the inspection apparatus according to the present embodiment, the relative position of the honeycomb structure 70 is specified by both the mark 34 and the pedestal label 36 and the structure label 38, but the mark 34 or the pedestal label 36 and The relative position of the honeycomb structure 70 may be specified using one of the structure labels 38. Moreover, in the inspection apparatus 10 according to the present embodiment, the pedestal 30 that is rotatable with the honeycomb structure 70 placed thereon is provided, but the pedestal 30 may not be provided. In this case, the irradiation position of the light to the honeycomb structure 70 can be changed by changing the position of the dimension measuring device 20. Further, during the inspection of the honeycomb structure 70, another additional pedestal may be placed on the pedestal 30 so as not to damage the end face of the honeycomb structure 70. The shape of the additional pedestal is the shape of the honeycomb structure 70 to be placed. Cylindrical shape etc. can be selected according to.
 本実施形態に係る製造方法では、押出成形工程(S1)と乾燥工程(S3)との間に第一検査工程を備え、乾燥工程(S3)と精密切断工程(S5)との間に第二検査工程(S4)を備えている。また、本実施形態に係る製造方法は、精密切断工程(S5)と封口工程(S7)との間に第三検査工程(S6)を備え、焼成工程(S8)の後に第四検査工程(S9)を備えていたが、これらの各検査工程のタイミングは上記タイミングに限られない。また、検査精度を向上させるため、各検査工程を複数回行っても構わず、さらに多くの検査工程をほかの工程間に追加してもよい。また、生産効率を高めるために、第四検査工程以外の検査は省略しても構わない。 In the manufacturing method according to the present embodiment, a first inspection process is provided between the extrusion process (S1) and the drying process (S3), and the second process is performed between the drying process (S3) and the precision cutting process (S5). An inspection step (S4) is provided. Moreover, the manufacturing method according to the present embodiment includes a third inspection step (S6) between the precision cutting step (S5) and the sealing step (S7), and a fourth inspection step (S9) after the firing step (S8). However, the timing of each inspection process is not limited to the above timing. Further, in order to improve the inspection accuracy, each inspection process may be performed a plurality of times, and more inspection processes may be added between other processes. Further, in order to increase production efficiency, inspections other than the fourth inspection step may be omitted.
 本発明の一実施形態のハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置によれば、非接触で効率良くハニカム構造体の検査を行なうことができる。 According to the honeycomb structure inspection method, honeycomb structure manufacturing method, and honeycomb structure inspection apparatus of one embodiment of the present invention, the honeycomb structure can be efficiently inspected in a non-contact manner.
10 検査装置
20 寸法測定装置
22 照射部
24 受光部
26 算出部
30 台座
34 マーク
36 台座用ラベル
38 構造体用ラベル
70 ハニカム構造体
70a 貫通孔
70b 隔壁
71a 上面
71b 下面
71c 側面
DESCRIPTION OF SYMBOLS 10 Inspection apparatus 20 Dimension measurement apparatus 22 Irradiation part 24 Light reception part 26 Calculation part 30 Pedestal 34 Mark 36 Pedestal label 38 Structure label 70 Honeycomb structure 70a Through-hole 70b Partition wall 71a Upper surface 71b Lower surface 71c Side surface

Claims (14)

  1.  円柱体の端面に複数の貫通孔であるセルが開口したハニカム構造体の検査方法において、
     前記ハニカム構造体の表面に対して光を走査しながら照射する照射工程と、
     前記照射工程で前記ハニカム構造体に照射した光の反射光を受光する受光工程と、
     前記照射工程で前記ハニカム構造体に照射した光の照射角と前記受光工程で受光した前記反射光の受光角との関係から前記ハニカム構造体の形状に関する形状データを算出する算出工程と、を含むハニカム構造体の検査方法。
    In the method for inspecting a honeycomb structure in which cells that are a plurality of through holes are opened on an end surface of a cylindrical body,
    An irradiation step of irradiating the surface of the honeycomb structure while scanning light;
    A light receiving step for receiving reflected light of the light irradiated on the honeycomb structure in the irradiation step;
    A calculation step of calculating shape data relating to the shape of the honeycomb structure from a relationship between an irradiation angle of light applied to the honeycomb structure in the irradiation step and a reception angle of the reflected light received in the light receiving step. Inspection method for honeycomb structure.
  2.  前記ハニカム構造体は表面に前記ハニカム構造体の基準位置を特定するラベルを有し、
     前記照射工程の前に、前記ラベルを用いて前記ハニカム構造体の前記基準位置の特定を行う位置特定工程を更に備える請求項1に記載のハニカム構造体の検査方法。
    The honeycomb structure has a label for specifying a reference position of the honeycomb structure on a surface;
    The method for inspecting a honeycomb structure according to claim 1, further comprising a position specifying step of specifying the reference position of the honeycomb structure using the label before the irradiation step.
  3.  前記照射工程又は前記受光工程は、前記ハニカム構造体に対する照射位置を変えて複数回行われる請求項1又は2に記載のハニカム構造体の検査方法。 The method for inspecting a honeycomb structure according to claim 1 or 2, wherein the irradiation step or the light receiving step is performed a plurality of times by changing an irradiation position on the honeycomb structure.
  4. 前記算出工程では、前記形状データとして、前記円柱体の前記端面の直径、前記円柱体の直径方向の断面の平均直径、前記円柱体の直径方向の任意の断面の直径、前記円柱体の側面形状の歪みを示す円筒度、前記円柱体の直径方向における断面形状の真円度、前記円柱体の軸方向の断面と前記円柱体の端面に平行な断面との直角度、前記円柱体の側面を基準とした円柱軸と前記円柱体の端面との直角度、前記円柱体の側面を基準とした円柱軸と前記円柱体の端面と平行な断面との直角度、前記円柱体の一方の端面を基準とした円柱軸と前記円柱体の他方の端面との直角度、前記円柱体の一方の端面を基準とした円柱軸と前記円柱体の他方の端面と平行な断面との直角度、側面視における前記円柱体の側面を区画する直線の歪みを示す真直度、前記端面の平面度、前記円柱体の前記端面同士の平行度を示す端面平行度、及び、前記円柱体の軸方向の長さのいずれか一つ以上を算出する請求項1~3のいずれか1項に記載のハニカム構造体の検査方法。 In the calculation step, as the shape data, the diameter of the end face of the cylindrical body, the average diameter of the cross section in the diameter direction of the cylindrical body, the diameter of an arbitrary cross section in the diameter direction of the cylindrical body, the side shape of the cylindrical body The degree of cylindricity, the roundness of the cross-sectional shape in the diameter direction of the cylindrical body, the perpendicularity between the axial cross section of the cylindrical body and the cross section parallel to the end face of the cylindrical body, and the side surface of the cylindrical body The perpendicularity between the cylinder axis as a reference and the end face of the cylinder, the perpendicularity between the cylinder axis as a reference and the cross section parallel to the end face of the cylinder, and one end face of the cylinder The perpendicularity between the cylinder axis as a reference and the other end face of the cylinder, the perpendicularity between the cylinder axis based on one end face of the cylinder and a cross section parallel to the other end face of the cylinder, side view Straightness indicating the distortion of a straight line defining the side surface of the cylindrical body in Any one or more of the flatness of the end face, the end face parallelism indicating the parallelism of the end faces of the cylindrical body, and the axial length of the cylindrical body are calculated. 2. A method for inspecting a honeycomb structure according to item 1.
  5.  前記算出工程において、前記ハニカム構造体の形状に関する基準データを取得し、前記基準データに対する前記形状データの誤差を算出する請求項1~4のいずれか1項に記載のハニカム構造体の検査方法。 The method for inspecting a honeycomb structure according to any one of claims 1 to 4, wherein in the calculation step, reference data relating to the shape of the honeycomb structure is acquired, and an error of the shape data with respect to the reference data is calculated.
  6.  前記算出工程において、前記ハニカム構造体の表面の凹凸、前記ハニカム構造体の表面の割れ、前記ハニカム構造体の表面の欠け又は前記セルの欠陥を検出する請求項1~5のいずれか1項に記載のハニカム構造体の検査方法。 6. The calculation step according to claim 1, wherein irregularities on the surface of the honeycomb structure, cracks on the surface of the honeycomb structure, chipping on the surface of the honeycomb structure, or defects in the cells are detected in the calculation step. The method for inspecting a honeycomb structure according to the description.
  7.  前記形状データを記録して解析する解析工程を更に備える請求項1~6のいずれか1項に記載のハニカム構造体の検査方法。 The honeycomb structure inspection method according to any one of claims 1 to 6, further comprising an analysis step of recording and analyzing the shape data.
  8.  前記ハニカム構造体として、セラミックス組成物が押出成形されたグリーンハニカム成形体を用いる請求項1~7のいずれか1項に記載のハニカム構造体の検査方法。 The method for inspecting a honeycomb structure according to any one of claims 1 to 7, wherein a green honeycomb molded body obtained by extruding a ceramic composition is used as the honeycomb structure.
  9.  前記ハニカム構造体として、グリーンハニカム成形体を乾燥させた成形体、又は、前記成形体を焼成させた焼成成形体を用いる請求項1~7のいずれか1項に記載のハニカム構造体の検査方法。 The method for inspecting a honeycomb structure according to any one of claims 1 to 7, wherein a formed body obtained by drying a green honeycomb formed body or a fired formed body obtained by firing the formed body is used as the honeycomb structure. .
  10.  セラミックス組成物を押出成形してグリーンハニカム成形体を製造する押出成形工程と、
     前記グリーンハニカム成形体を乾燥して乾燥体を製造する乾燥工程と、
     焼成による収縮により設計長さとなるように前記乾燥体を切断する切断工程と、
     前記切断後の乾燥体を封口させて封口体を製造する封口工程と、
     前記封口体を焼成させる焼成工程と、を備え、
     前記押出成形工程、前記乾燥工程、前記切断工程、前記封口工程、及び、前記焼成工程のいずれかの後に、請求項1~9のいずれか1項に記載のハニカム構造体の検査方法によって前記ハニカム構造体についての検査を行う検査工程を備えるハニカム構造体の製造方法。
    An extrusion process for producing a green honeycomb molded body by extruding a ceramic composition;
    A drying step of drying the green honeycomb molded body to produce a dried body;
    A cutting step of cutting the dried body so as to have a design length by shrinkage due to firing;
    A sealing step of manufacturing the sealing body by sealing the dried body after the cutting;
    A firing step of firing the sealing body,
    The honeycomb structure inspection method according to any one of claims 1 to 9, after any of the extrusion molding step, the drying step, the cutting step, the sealing step, and the firing step. A method for manufacturing a honeycomb structure, comprising an inspection process for inspecting a structure.
  11.  円柱体の端面に複数の貫通孔であるセルが開口したハニカム構造体の検査に用いられる検査装置であって、
     前記ハニカム構造体の表面に対して光を走査しながら照射する照射部と、
     前記照射部が前記ハニカム構造体に照射した光の反射光を受光する受光部と、
     前記照射部が前記ハニカム構造体に照射した光の照射角と前記受光部が受光した前記反射光の受光角との関係から前記ハニカム構造体の形状に関する形状データを算出する算出部と、
    を備えるハニカム構造体の検査装置。
    An inspection apparatus used for inspecting a honeycomb structure in which cells that are a plurality of through holes are opened on an end surface of a cylindrical body,
    An irradiation unit for irradiating the surface of the honeycomb structure while scanning light;
    A light receiving unit that receives reflected light of the light irradiated to the honeycomb structure by the irradiation unit;
    A calculation unit that calculates shape data relating to the shape of the honeycomb structure from a relationship between an irradiation angle of light irradiated to the honeycomb structure by the irradiation unit and a reception angle of the reflected light received by the light receiving unit;
    A honeycomb structure inspection apparatus comprising:
  12.  前記ハニカム構造体の基準位置を特定する基準位置特定部を更に備える請求項11に記載のハニカム構造体の検査装置。 The honeycomb structure inspection apparatus according to claim 11, further comprising a reference position specifying unit that specifies a reference position of the honeycomb structure.
  13.  前記基準位置特定部として、前記ハニカム構造体が載置される台座に、前記ハニカム構造体の前記基準位置を特定するためのラベルを有する請求項12に記載のハニカム構造体の検査装置。 The honeycomb structure inspection apparatus according to claim 12, wherein the reference position specifying unit has a label for specifying the reference position of the honeycomb structure on a pedestal on which the honeycomb structure is placed.
  14.  前記ハニカム構造体を載置した状態で回転可能な台座を更に備える請求項11~13のいずれか一項に記載のハニカム構造体の検査装置。 The honeycomb structure inspection apparatus according to any one of claims 11 to 13, further comprising a pedestal capable of rotating in a state where the honeycomb structure is placed.
PCT/JP2013/063287 2012-05-17 2013-05-13 Honeycomb structure inspection method, honeycomb structure manufacturing method and honeycomb structure inspection device WO2013172300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012113431A JP2013238569A (en) 2012-05-17 2012-05-17 Honeycomb structure inspection method, honeycomb structure manufacturing method and honeycomb structure inspection device
JP2012-113431 2012-05-17

Publications (1)

Publication Number Publication Date
WO2013172300A1 true WO2013172300A1 (en) 2013-11-21

Family

ID=49583705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063287 WO2013172300A1 (en) 2012-05-17 2013-05-13 Honeycomb structure inspection method, honeycomb structure manufacturing method and honeycomb structure inspection device

Country Status (2)

Country Link
JP (1) JP2013238569A (en)
WO (1) WO2013172300A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162780B2 (en) 2017-09-11 2021-11-02 The Yokohama Rubber Co., Ltd. Shape measuring device for hose connector fitting, shape measuring method for hose connector fitting and shape measuring program for hose connector fitting
CN117649031A (en) * 2024-01-30 2024-03-05 陕西雷诺贝尔铝业有限公司 Method and system for optimizing aluminum honeycomb panel preparation process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6926663B2 (en) * 2017-05-17 2021-08-25 株式会社リコー Inspection equipment
JP7347090B2 (en) * 2019-10-02 2023-09-20 株式会社大林組 Reinforcing bar estimation system, reinforcing bar estimation method, and reinforcing bar estimation program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450701A (en) * 1990-06-19 1992-02-19 Ngk Insulators Ltd Surface roughness measuring method for honeycomb and measuring prove used for same
JPH07260440A (en) * 1994-03-18 1995-10-13 Ngk Insulators Ltd Method and apparatus for measuring profile
JP2000266505A (en) * 1999-03-19 2000-09-29 Wakayama Prefecture Position deviation detecting method for work
JP2007256263A (en) * 2006-02-17 2007-10-04 Ibiden Co Ltd Method for inspecting honeycomb structure, and method for manufacturing honeycomb structure
JP2008139042A (en) * 2006-11-30 2008-06-19 Denso Corp Manufacturing method for honeycomb structure
JP2008241255A (en) * 2007-03-23 2008-10-09 Sumitomo Heavy Ind Ltd Method of detecting alignment mark position and laser machining device using method thereof
JP2009085741A (en) * 2007-09-28 2009-04-23 Nikon Corp Shape measuring apparatus and method
JP2012051366A (en) * 2010-08-04 2012-03-15 Sumitomo Chemical Co Ltd Cutting device, method for cutting workpiece, and method for producing honeycomb filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450701A (en) * 1990-06-19 1992-02-19 Ngk Insulators Ltd Surface roughness measuring method for honeycomb and measuring prove used for same
JPH07260440A (en) * 1994-03-18 1995-10-13 Ngk Insulators Ltd Method and apparatus for measuring profile
JP2000266505A (en) * 1999-03-19 2000-09-29 Wakayama Prefecture Position deviation detecting method for work
JP2007256263A (en) * 2006-02-17 2007-10-04 Ibiden Co Ltd Method for inspecting honeycomb structure, and method for manufacturing honeycomb structure
JP2008139042A (en) * 2006-11-30 2008-06-19 Denso Corp Manufacturing method for honeycomb structure
JP2008241255A (en) * 2007-03-23 2008-10-09 Sumitomo Heavy Ind Ltd Method of detecting alignment mark position and laser machining device using method thereof
JP2009085741A (en) * 2007-09-28 2009-04-23 Nikon Corp Shape measuring apparatus and method
JP2012051366A (en) * 2010-08-04 2012-03-15 Sumitomo Chemical Co Ltd Cutting device, method for cutting workpiece, and method for producing honeycomb filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162780B2 (en) 2017-09-11 2021-11-02 The Yokohama Rubber Co., Ltd. Shape measuring device for hose connector fitting, shape measuring method for hose connector fitting and shape measuring program for hose connector fitting
CN117649031A (en) * 2024-01-30 2024-03-05 陕西雷诺贝尔铝业有限公司 Method and system for optimizing aluminum honeycomb panel preparation process
CN117649031B (en) * 2024-01-30 2024-05-10 陕西雷诺贝尔铝业有限公司 Method and system for optimizing aluminum honeycomb panel preparation process

Also Published As

Publication number Publication date
JP2013238569A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
WO2013172300A1 (en) Honeycomb structure inspection method, honeycomb structure manufacturing method and honeycomb structure inspection device
US7684054B2 (en) Profile inspection system for threaded and axial components
JP4887919B2 (en) Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method
KR20170023825A (en) Examination apparatus and method for examining inner walls of a hollow body
Dury et al. Characterising 3D optical scanner measurement performance for precision engineering
WO2011064969A1 (en) Inspection apparatus, measurement method for three-dimensional shape, and production method for structure
CN105745523B (en) System and method for inspecting wound optical fiber
WO2009058247A1 (en) Laser scanning measurement systems and methods for surface shape measurement of hidden surfaces
CN113281343B (en) System and method for detecting defects of multilayer transparent material
CN110319779A (en) Rubber semi-products width dimensions on-line measuring device and detection method
WO2013008789A1 (en) Method for inspecting honeycomb structure, method for manufacturing honeycombed-structured body, and device for inspecting honeycomb structure
JP5059985B2 (en) Mold inspection method
US7283224B1 (en) Face lighting for edge location in catalytic converter inspection
JP5923054B2 (en) Shape inspection device
CN114240854A (en) Product detection method and detection device
JP2008139042A (en) Manufacturing method for honeycomb structure
Dury et al. 3D optical scanner dimensional verification facility at the NPL’s “national FreeForm centre”
Bračun et al. A method for surface quality assessment of die-castings based on laser triangulation
Sansoni et al. Design and development of a 3D system for the measurement of tube eccentricity
JP5193101B2 (en) Reference member for inspection master of optical 3D measuring machine
CN113414248A (en) Method and device for detecting workpiece forming process
CN204649430U (en) A kind of pedal support test board
TWM591613U (en) Floor squareness measuring instrument
CN110044264B (en) Detection device and working method thereof
CN109029200A (en) A kind of off-line checking method of Varying-thickness Automobile Plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791153

Country of ref document: EP

Kind code of ref document: A1