WO2013172229A1 - Conductive pattern, conductive circuit, and method for producing conductive pattern - Google Patents

Conductive pattern, conductive circuit, and method for producing conductive pattern Download PDF

Info

Publication number
WO2013172229A1
WO2013172229A1 PCT/JP2013/062910 JP2013062910W WO2013172229A1 WO 2013172229 A1 WO2013172229 A1 WO 2013172229A1 JP 2013062910 W JP2013062910 W JP 2013062910W WO 2013172229 A1 WO2013172229 A1 WO 2013172229A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
primer
coating film
conductive pattern
group
Prior art date
Application number
PCT/JP2013/062910
Other languages
French (fr)
Japanese (ja)
Inventor
公恵 斉藤
白髪 潤
村川 昭
亘 冨士川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2014514965A priority Critical patent/JPWO2013172229A1/en
Publication of WO2013172229A1 publication Critical patent/WO2013172229A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating

Definitions

  • the present invention relates to a laminate of a conductive pattern or the like that can be used for manufacturing an electromagnetic wave shield, an integrated circuit, an organic transistor, or the like.
  • the conductive pattern that can be used for the electronic circuit is to apply (print) conductive ink containing a conductive material such as silver on the surface of the support by various printing methods, and to heat as necessary. Can be manufactured by.
  • the conductive ink is directly applied to the surface of various supports, the conductive ink is difficult to adhere to the surface of the support, and thus easily peels off, and finally the disconnection of an electronic circuit or the like obtained Etc. may be caused.
  • the support made of polyimide resin or polyethylene terephthalate resin is relatively flexible, it can be used for the production of a foldable flexible device. For this reason, they are easy to peel off when bent, and as a result, there is a case where the finally obtained electronic circuit or the like is disconnected.
  • the conductive pattern obtained by the above method may not be sufficient in terms of the adhesion between the ink receiving layer and the conductive ink
  • the conductive pattern obtained by peeling of the conductive substance contained in the conductive ink may be used. There was a case of causing a decline in sex.
  • the printed matter obtained by printing etc. using a conductive ink in order to contact the conductive substances contained in a conductive ink and to provide electroconductivity. are often heated at a relatively high temperature.
  • the ink receiving layer such as the latex layer described in Document 1
  • the adhesion at the interface between the ink receiving layer and the support is not easily affected.
  • the conductive pattern is lost (such as cracks).
  • the support is deformed due to the influence of the high heat, which may cause an increase in resistance value (decrease in conductivity) of the conductive pattern.
  • the problem to be solved by the present invention is that the conductive material has excellent adhesion so that it does not peel from the primer layer (X) with time, and has low resistance and excellent conductivity. Is to provide a pattern.
  • the present inventors combined a fluid (a) having a specific composition and a specific primer (x) that forms a primer layer (X) capable of receiving the fluid (a). It has been found that the problem can be solved when used.
  • the present invention applies a primer to a part or all of the surface of the support, and then applies the following general formula (I) to a part or all of the surface of the coating film (x) formed using the primer.
  • the support obtained by applying the fluid (a) containing the polyhydric alcohol (a1) containing the diol (a1-1) having the structure represented by (2) and the conductive substance (a2) and then heating.
  • a conductive pattern in which a body, a primer layer (X) formed by heating the coating film (x), and a layer (Y) containing the conductive substance (a2) are laminated
  • the conductive film (x) relates to a conductive pattern characterized in that it absorbs 20% by mass to 500% by mass with respect to the mass of the coated film (x) in an environment of 25 ° C. is there.
  • the conductive pattern of the present invention has excellent adhesion at a level that does not cause peeling of the conductive substance (a2) over time, and has excellent conductivity.
  • formation of an electronic circuit Organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed circuit boards, non-contact IC cards and other layers constituting RFID, etc., formation of peripheral wiring, plasma display electromagnetic wave shielding wiring, integrated circuits, organic transistors It can be used in new fields such as manufacturing, generally referred to as the printed electronics field.
  • a primer is applied to a part or all of the surface of the support, and then a part or all of the surface of the coating film (x) formed using the primer is represented by the following general formula. Obtained by applying a fluid (a) containing a polyhydric alcohol (a1) containing a diol (a1-1) having the structure represented by (I) and a conductive substance (a2) and then heating.
  • a fluid (a) containing a polyhydric alcohol (a1) containing a diol (a1-1) having the structure represented by (I) and a conductive substance (a2) and then heating.
  • a conductive pattern in which a support, a primer layer (X) formed by heating the coating film (x), and a layer (Y) containing the conductive substance (a2) are laminated.
  • the coating film (x) absorbs 20 mass% to 500 mass% of ethanol in an environment of 25 ° C. with respect to the mass of the coating film (x) before applying the fluid (a). It is characterized by
  • the conductive pattern of the present invention comprises at least a support, a primer layer (X), and a layer (Y) containing a conductive substance (a2).
  • the primer layer (X) is formed by heating a coating film (x) formed using a primer described later.
  • the primer layer (X) adheres the support to the conductive material (a2) such as silver contained in the fluid (a) such as conductive ink.
  • the coating film (x) which is a precursor of the primer layer (X) and is formed using a primer, is in contact with the fluid (a) when the fluid (a) contacts the surface.
  • the conductive material (a2) contained in the fluid (a) is supported on the surface of the coating film (x), whereby the support and the conductive material ( Adhesion with a2) is improved.
  • a conductive pattern including a layer (Y) made of the conductive substance (a2) supported on the surface of the primer layer (X) is formed.
  • the primer layer (X) may be provided on a part or all of the surface of the support, or may be provided on one side or both sides of the support.
  • the conductive pattern has a primer layer (X) on the entire surface of the support, and a layer containing the conductive substance (a2) only in a necessary portion of the primer layer (X) ( Those having Y) can be used.
  • the electroconductive pattern in which the said primer layer (X) was provided only in the part in which the said layer (Y) is provided among the surfaces of a support body may be sufficient.
  • the thickness is preferably approximately 0.01 ⁇ m to 300 ⁇ m, and more preferably 0.05 ⁇ m to 20 ⁇ m.
  • the layer (Y) is a layer composed of the conductive substance (a2) contained in the fluid (a), and has a role as a conductive layer or a plating nucleus layer.
  • the layer (Y) is a conductive ink containing silver as the fluid (a)
  • the layer (Y) is formed on a conductive layer or a plating nucleus layer composed of silver contained in the conductive ink. It corresponds to a printed image or pattern made of silver.
  • the layer (Y) is mainly composed of the conductive substance (a2), but other components contained in the fluid (a), for example, the diol (a1-1) represented by the general formula (I)
  • the polyhydric alcohol (a1) etc. may remain in the layer (Y).
  • the layer (Y) may be a layer provided on the entire surface of the primer layer (X), or may be a layer provided on a part of the surface of the primer layer (X). .
  • the layer (Y) present on a part of the surface of the primer layer (X) refers to a fine line-shaped layer formed on the surface of the primer layer (X).
  • the thin line layer is suitable when the conductive pattern of the present invention is used as an electric circuit or the like.
  • the width (line width) of the thin-line layer (pattern) is about 0.01 ⁇ m to 200 ⁇ m, preferably about 0.01 ⁇ m to 150 ⁇ m, from the viewpoint of increasing the density of the conductive pattern.
  • the layer (Y) preferably has a thickness of 0.01 ⁇ m to 100 ⁇ m in order to form a conductive pattern having low resistance and excellent conductivity.
  • the thickness (height) is preferably in the range of 0.1 ⁇ m to 50 ⁇ m.
  • the support which comprises the electroconductive pattern of this invention is demonstrated.
  • the support used in the present invention include acrylic resins such as polyimide resin, polyamideimide resin, polyamide resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and poly (meth) methyl acrylate.
  • ABS acrylonitrile-butadiene-styrene
  • a synthetic fiber such as polyester fiber, polyamide fiber or aramid fiber; a natural fiber such as cotton or hemp can be used.
  • the fibers may be processed in advance.
  • the support generally used as a support in forming a conductive pattern such as a circuit board, from polyimide resin, polyethylene terephthalate, polyethylene naphthalate, glass, cellulose nanofiber, etc. It is preferable to use a support.
  • the support when used for applications that require flexibility, it is possible to use a material that is relatively flexible and capable of being bent. It is preferable for obtaining a final product. Specifically, it is preferable to use a film or sheet-like support formed by uniaxial stretching or the like.
  • the film or sheet-like support examples include a polyethylene terephthalate film, a polyimide film, and a polyethylene naphthalate film.
  • the support preferably has a thickness of about 1 ⁇ m to 2,000 ⁇ m from the viewpoint of reducing the weight and thickness of the conductive pattern and the final product in which it is used, and about 1 ⁇ m to 200 ⁇ m. More preferably, it is a thickness.
  • the laminate is required to be relatively flexible, it is preferable to use a laminate having a thickness of about 1 ⁇ m to 80 ⁇ m.
  • the conductive pattern of the invention is the thickness of the constituent parts other than the support, specifically, the total of the primer layer (X) and the layer (Y).
  • the thickness is preferably in the range of 0.01 ⁇ m to 300 ⁇ m, more preferably 0.05 ⁇ m to 80 ⁇ m.
  • the fluid (a) used for production of the conductive pattern of the present invention includes a polyhydric alcohol (a1) containing a diol (a1-1) having a structure represented by the following general formula (I), a conductive substance (a2), and a solvent if necessary. It contains an additive.
  • the fluid (a) has a viscosity measured at about 23 ° C. with an E-type viscometer (TVE-22LT, manufactured by Toki Sangyo Co., Ltd.) of 0.1 mPa ⁇ s to 500,000 mPa ⁇ s.
  • the liquid is preferably 0.5 mPa ⁇ s to 10,000 mPa ⁇ s, more preferably a liquid or viscous liquid.
  • the fluid (a) When the fluid (a) is applied (printed) to a desired position by an inkjet printing method, an offset printing method, a gravure printing method, a flexographic printing method, or the like, which will be described later, it is approximately 5 mPa ⁇ s to 1,000 mPa ⁇ It is preferable to use a fluid adjusted to a viscosity in the range of s.
  • the fluid (a) include a conductive ink and a plating nucleating agent that can be used when plating is performed.
  • the diol (a1-1) As the polyhydric alcohol (a1) containing the diol (a1-1) used in the fluid (a), the diol (a1-1) is essential, and other polyhydric alcohols are included as necessary. Can be used.
  • the diol (a1-1) can improve the temporal stability of the fluid (a).
  • the diol (a1-1) improves the adhesion and conductivity of the conductive pattern of the present invention by using in combination with the coating film (x) that can form the primer layer (X). be able to.
  • the diol (a1-1) can also improve the discharge stability of the fluid (a) when the fluid (a) is discharged by an ink jet method.
  • R in the general formula (I) is a hydrogen atom or an alkyl group
  • the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. And more preferably 1 to 3 alkyl groups.
  • the layer (Y) formed by the conductive material (a2) contained in the fluid (a) is at a level that does not cause peeling from the primer layer (X).
  • R in the general formula (I) is a hydrogen atom in order to obtain a conductive pattern having better adhesion, no cracks in the depicted conductive pattern, and even better conductivity 1,3-butylene glycol or isoprene glycol in which R is an alkyl group is preferably used.
  • the diol (a1-1) is preferably contained in the range of 5% by mass to 60% by mass and more preferably in the range of 15% by mass to 50% by mass with respect to the total amount of the fluid (a). Preferably, it is contained in the range of 20% by mass to 40% by mass in order to improve the discharge stability of the fluid (a) and form a wiring pattern having excellent conductivity.
  • polyhydric alcohols that can be used in combination with the diol (a1-1)
  • conventionally known polyhydric alcohols can be used, such as 2-ethyl-1,3-hexanediol, ethylene glycol, and the like.
  • Diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin and the like can be used.
  • a transition metal or a compound thereof can be used as the conductive substance (a2).
  • an ionic transition metal for example, it is preferable to use a transition metal such as copper, silver, gold, nickel, palladium, platinum, cobalt, and to use copper, silver, gold, or the like. Further, it is more preferable because a conductive pattern having a low electric resistance and strong against corrosion can be formed, and it is more preferable to use silver.
  • the conductive material (a2) is a metal particle composed of a transition metal as described above, and the surface is formed by an oxide or an organic substance of the transition metal.
  • One or more types of coated ones can be used.
  • the transition metal oxide is usually in an inactive (insulating) state, even if a fluid containing it is simply applied to the surface of the support, it may not exhibit conductivity. Many. Therefore, when the fluid containing the oxide is applied to the surface of the support, the transition metal is exposed and activated by treating the surface with a reducing agent such as dimethylaminoborane. It is possible to form a layer having conductivity.
  • examples of the metal whose surface is coated with the organic substance include those in which a metal is contained in resin particles (organic substance) formed by an emulsion polymerization method or the like. Like the transition metal oxides, these are usually in an inactive (insulating) state. Therefore, even if a fluid containing the same is simply applied to the surface of the support, it exhibits conductivity. Often not. Therefore, when a fluid containing a metal surface-coated with the organic material is applied to the surface of the support, the transition metal is exposed by irradiating the surface with a laser or the like and removing the organic material. Thus, a layer having activity (conductivity) can be formed.
  • a particulate material having an average particle diameter of about 1 nm to 100 nm is preferably used, and a material having an average particle diameter of 1 nm to 50 nm is preferably used.
  • the “average particle size” is a volume average value measured by a dynamic light scattering method after diluting the conductive substance (a2) with a dispersion good solvent. For this measurement, Nanotrac UPA-150 manufactured by Microtrac can be used.
  • the conductive substance (a2) is preferably contained in the range of 5% by mass to 90% by mass with respect to the total amount of the fluid (a) used in the present invention. More preferably, it is contained in the range of 10% by mass to 60% by mass, and particularly preferably in the range of 20% by mass to 40% by mass.
  • the fluid preferably contains a solvent from the viewpoint of improving ease of application and the like.
  • a solvent an organic solvent or an aqueous medium can be used.
  • an aqueous medium such as distilled water, ion-exchanged water, pure water, and ultrapure water
  • organic solvents such as alcohol, ether, ester, and ketone
  • Examples of the alcohol include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, and tetradecanol.
  • the fluid (a) may be, if necessary, a ketone solvent such as acetone, cyclohexanone, methyl ethyl ketone, ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3- Ester solvents such as methyl-butyl acetate, hydrocarbon solvents such as toluene, octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, trimethylbenzenecyclohexane, mineral spirit, solvent A solvent such as naphtha can also be used in combination.
  • a ketone solvent such as acetone, cyclohexanone, methyl ethyl ketone, ethyl acetate, buty
  • the fluid (a) of the present invention can be produced, for example, by mixing the polyhydric alcohol (a1), the conductive substance (a2) and, if necessary, the solvent. Among them, by producing a composition containing the conductive substance (a2) and the solvent, and then mixing the composition and the polyhydric alcohol (a1) containing the diol (a1-1) It is more preferable to improve the dispersion stability of the conductive substance and prevent the occurrence of cracks in the layer (Y).
  • composition containing the conductive substance (a2) and the solvent a dispersion in which the conductive substance (a2) is dispersed in a solvent such as the aqueous medium or the organic solvent can be used.
  • the dispersion can be produced by mixing and stirring the conductive substance (a2) and the solvent.
  • SW1000 manufactured by Bando Chemical Co., Ltd.
  • Silk Auto A-1 manufactured by Mitsubishi Materials Corporation
  • MDot-SLP manufactured by Mitsuboshi Belting Co., Ltd.
  • an apparatus such as a mixer, a disper, a bead mill, or an ultrasonic homogenizer can be used.
  • the fluid (a) used in the present invention further improves the dispersion stability of the conductive substance (a2) in the solvent, and also on the surface of the coating film (x) of the fluid (a).
  • a surfactant, an antifoaming agent, a rheology adjusting agent and the like may be contained.
  • the fluid (a) from the viewpoint of removing impurities and the like after being manufactured by the above-described method, a fluid filtered using a micropore filter or the like, or a material processed using a centrifugal separator or the like is used. You can also
  • the primer forms a coating film (x) that can carry the conductive substance (a2) contained in the fluid (a) and can form the conductive pattern layer (Y) of the present invention. is there.
  • any primer can be used as long as it can form a coating film (x) capable of absorbing ethanol in an environment of 25 ° C. by 20 mass% to 500 mass% with respect to the mass of the coating film (x). Things can also be used.
  • the primer capable of forming the coating film (x) those containing various resins and solvents can be used.
  • the resin examples include urethane resin (x1), vinyl resin (x2), urethane-vinyl composite resin (x3), phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyimide resin, A fluororesin or the like can be used.
  • the resin examples include a urethane resin having a polycarbonate structure as the urethane resin (x1), a urethane resin having an aliphatic polyester structure, an acrylic resin having a structural unit derived from methyl methacrylate as the vinyl resin (x2), and
  • the use of one or more resins (x-1) selected from the group consisting of urethane-acrylic composite resins as the urethane-vinyl composite resin (x3) results in a coating film (x ) Is preferable, and it is more preferable to use a urethane-acrylic composite resin.
  • the primer it is preferable to use a primer containing 10% by mass to 70% by mass of the resin with respect to the whole primer, in order to maintain ease of application and the like, and it contains 10% by mass to 50% by mass. It is more preferable to use one.
  • solvent that can be used for the primer various organic solvents and aqueous media can be used.
  • organic solvent for example, toluene, ethyl acetate, methyl ethyl ketone and the like can be used.
  • aqueous medium include water, organic solvents miscible with water, and mixtures thereof.
  • organic solvent miscible with water examples include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve; ketones such as acetone and methyl ethyl ketone; and polymers such as ethylene glycol, diethylene glycol, and propylene glycol.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve
  • ketones such as acetone and methyl ethyl ketone
  • polymers such as ethylene glycol, diethylene glycol, and propylene glycol.
  • alkylene glycols alkyl ethers of polyalkylene glycols
  • lactams such as N-methyl-2-pyrrolidone.
  • only water may be used, or a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used.
  • the primer it is preferable to use a primer containing 25% by mass to 90% by mass of the solvent with respect to the whole primer, in order to maintain ease of application, etc., and it contains 50% by mass to 85% by mass. It is more preferable to use one.
  • a resin having a hydrophilic group is used as the resin in order to impart good water dispersibility to the primer and improve its storage stability.
  • hydrophilic group examples include an anionic group, a cationic group, and a nonionic group.
  • anionic group for example, a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and the like can be used.
  • a sulfonate group it is preferable to use in order to impart good water dispersibility.
  • Examples of basic compounds that can be used for neutralizing the anionic group include organic amines such as ammonia, triethylamine, pyridine, and morpholine; alkanolamines such as monoethanolamine; metal bases including sodium, potassium, lithium, calcium, and the like Compounds and the like.
  • organic amines such as ammonia, triethylamine, pyridine, and morpholine
  • alkanolamines such as monoethanolamine
  • metal bases including sodium, potassium, lithium, calcium, and the like Compounds and the like.
  • the carboxylate group or sulfonate group When used as the anionic group, they are present in the range of 50 mmol / kg to 2,000 mmol / kg with respect to the whole resin, so that the resin has good water dispersion stability. It is preferable for maintaining the property.
  • a tertiary amino group etc. can be used, for example.
  • the acid that can be used for neutralizing part or all of the tertiary amino group include organic acids such as acetic acid, propionic acid, lactic acid, and maleic acid; organic acids such as sulfonic acid and methanesulfonic acid. Sulfonic acid; inorganic acids such as hydrochloric acid, sulfuric acid, orthophosphoric acid and orthophosphorous acid can be used alone or in combination of two or more.
  • organic acids such as acetic acid, propionic acid, lactic acid, maleic acid, or the like because the chlorine and sulfur may slightly inhibit the conductivity and the like.
  • nonionic group for example, polyoxyalkylene groups such as polyoxyethylene group, poly (oxyethylene-oxypropylene) group, and polyoxyethylene-polyoxypropylene group can be used.
  • polyoxyalkylene groups such as polyoxyethylene group, poly (oxyethylene-oxypropylene) group, and polyoxyethylene-polyoxypropylene group
  • urethane resin (x1) that can be used as the resin contained in the primer, a urethane resin obtained by reacting a polyol, a polyisocyanate, and, if necessary, a chain extender can be used.
  • a urethane resin which has a polycarbonate structure and the urethane resin which has an aliphatic polyester structure from a viewpoint of forming the coating film (x) provided with the absorptivity of the said predetermined
  • the polycarbonate structure and the aliphatic polyester structure are structures derived from a polyol used for producing the urethane resin.
  • the urethane resin having the polycarbonate structure can be produced by using a resin containing a polycarbonate polyol described later as the polyol.
  • the urethane resin which has the said aliphatic polyester structure can be manufactured by using what contains the aliphatic polyester polyol mentioned later as the said polyol.
  • polystyrene resin (x1) As the polyol that can be used for the production of the urethane resin (x1), as described above, polycarbonate polyol, aliphatic polyester polyol, and the like can be used. Moreover, as said polyol, another polyol can be combined and used as needed.
  • polycarbonate polyol for example, those obtained by reacting a carbonate with a polyol, or those obtained by reacting phosgene with bisphenol A or the like can be used.
  • carbonate ester methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.
  • polyol that can react with the carbonate ester examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-Butanediol, 1,2-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 2,5-hexanediol, 1,6-hexanediol, 1,7-heptane Diol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 3-methyl-1,5-pentanediol, 2- Ethyl-1,3-hexanediol, 2-methyl-1,3-
  • aliphatic polyester polyol examples include an aliphatic polyester polyol obtained by esterification reaction of a low molecular weight polyol and a polycarboxylic acid; a ring-opening polymerization reaction of a cyclic ester compound such as ⁇ -caprolactone or ⁇ -butyrolactone. Aliphatic polyesters obtained as above; these copolyesters can be used.
  • Examples of the low molecular weight polyol that can be used in the production of the polyester polyol include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 3- Methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane and the like can be used alone or in combination of two or more thereof.
  • Ethylene glycol 1,2-propanediol
  • 1,3-butanediol or 1,4-butanediol in combination with 3-methyl-1,5-pentanediol or neopentyl glycol.
  • polycarboxylic acid examples include succinic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, azelaic acid and anhydrides or ester-forming derivatives thereof, and aliphatic polycarboxylic acids such as adipic acid can be used. It is preferable to use it.
  • the polycarbonate polyol and aliphatic polyester polyol preferably have a number average molecular weight of 500 to 4,000, more preferably 500 to 2,000.
  • polyol that can be used in the production of the urethane resin (x1)
  • other polyols can be used in combination with the above-described ones as necessary.
  • Examples of the other polyol include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, and the like are acrylic polyols having a hydroxyl group introduced into an acrylic copolymer, and copolymers of butadiene having a hydroxyl group in the molecule.
  • Polybutadiene polyol, hydrogenated polybutadiene polyol, partially saponified product of ethylene-vinyl acetate copolymer, and the like can be used as appropriate.
  • a polyol having a hydrophilic group As the urethane resin (x1), it is preferable to use a polyol having a hydrophilic group as the other polyol.
  • polyol having a hydrophilic group examples include a polyol having a carboxyl group such as 2,2-dimethylolpropionic acid, 2,2′-dimethylolbutanoic acid, 2,2-dimethylolvaleric acid, and the like; 5-sulfoisophthalic acid Polyols having a sulfonic acid group such as sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid can be used.
  • polyol having a hydrophilic group a polyester polyol having a hydrophilic group obtained by reacting the above-described polyol having a low molecular weight hydrophilic group with various polycarboxylic acids such as adipic acid is used. You can also
  • Examples of the polyisocyanate that can react with the polyol to form a urethane resin include 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene.
  • Polyisocyanates having an aromatic structure such as diisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or aliphatic cyclic structures Po It is possible to use the isocyanate.
  • aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or aliphatic cyclic structures Po It is possible to use the isocyanate
  • chain extender that can be used when producing the urethane resin
  • polyamine, hydrazine compounds, and other compounds having active hydrogen atoms can be used.
  • polyamine examples include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'- Diamines such as dimethyl-4,4′-dicyclohexylmethanediamine, 1,4-cyclohexanediamine; N-hydroxymethylaminoethylamine, N-hydroxyethylaminoethylamine, N-hydroxypropylaminopropylamine, N-ethylaminoethylamine, N -Methylaminopropylamine, diethylenetriamine, dipropylenetriamine, triethylenetetramine, etc. can be used, preferably ethylenediamine.
  • hydrazine compound examples include hydrazine, N, N′-dimethylhydrazine, 1,6-hexamethylenebishydrazine, succinic acid dihydrazide, adipic acid dihydrazide, glutaric acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide, ⁇ -semicarbazide propion Acid hydrazide, 3-semicarbazide-propyl-carbazate, semicarbazide-3-semicarbazide methyl-3,5,5-trimethylcyclohexane can be used.
  • Examples of the other active hydrogen-containing compounds include ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, Glycols such as saccharose, methylene glycol, glycerin, sorbitol; phenols such as bisphenol A, 4,4′-dihydroxydiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenylsulfone, hydrogenated bisphenol A, hydroquinone, Water or the like can be used.
  • the chain extender is preferably used, for example, in such a range that the equivalent ratio between the amino group of the polyamine and the isocyanate group is 1.9 or less (equivalent ratio), and 0.3 to 1 (equivalent ratio) It is more preferable to use in the range.
  • the urethane resin (x1) is produced, for example, by reacting the polyol, the polyisocyanate, and, if necessary, the chain extender by a conventionally known method in the absence of a solvent or in the presence of an organic solvent. can do.
  • reaction temperature 50 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C.
  • reaction temperature 50 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C.
  • reaction temperature 50 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C.
  • the primer containing the water dispersion of the said urethane resin (x1) manufactures a urethane resin (x1) by making the said polyol, the said polyisocyanate, and a chain extender react as needed by the above-mentioned method. If necessary, after neutralizing a part or all of hydrophilic groups such as anionic groups of the urethane resin (x1), it is mixed with an aqueous medium used as a solvent for the primer. Thus, a primer composed of an aqueous dispersion of urethane resin (x1) in which urethane resin (x1) is dispersed or partially dissolved in an aqueous medium can be obtained.
  • a urethane prepolymer having an isocyanate group at the terminal is produced, and if necessary, the anionic group possessed by the urethane prepolymer.
  • the urethane resin (x1) is mixed with an aqueous medium and, if necessary, chain-extended using the chain extender, whereby the urethane resin (x1) becomes an aqueous medium.
  • a primer composed of an aqueous dispersion of urethane resin (x1) dispersed or dissolved therein can be obtained.
  • the reaction between the polyisocyanate and the polyol is preferably performed, for example, in a range where the equivalent ratio of the isocyanate group of the polyisocyanate and the hydroxyl group of the polyol [isocyanate group / hydroxyl group] is 0.9 to 2.
  • an organic solvent can also be used as a solvent as above-mentioned.
  • the organic solvent include ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and dioxane; acetic esters such as ethyl acetate and butyl acetate; nitriles such as acetonitrile; amides such as dimethylformamide and N-methylpyrrolidone. Can do.
  • the organic solvent is preferably removed by distillation or the like after the production of the urethane resin (x1). However, when the primer containing the urethane resin (x1) and the organic solvent is used, the organic solvent used when the urethane resin (x1) is produced is used as the primer solvent. May be.
  • the urethane resin (x1) it is preferable to use a resin having a weight average molecular weight of 5,000 to 500,000 in order to form a conductive pattern having excellent adhesion and excellent conductivity. 20,000 to 100,000 are more preferable.
  • urethane resin (x1) those having various functional groups can be used as necessary.
  • the functional group include crosslinkable functional groups such as an alkoxysilyl group, a silanol group, a hydroxyl group, and an amino group.
  • the crosslinkable functional group is suitable for forming a pattern (layer (Y)) having excellent durability by forming a crosslinked structure in the primer layer (X) carrying the fluid (a). is there.
  • the alkoxysilyl group and silanol group can be introduced into the urethane resin by using ⁇ -aminopropyltriethoxysilane or the like when the urethane resin (x1) is produced.
  • the urethane resin (x1) is used in combination with a crosslinking agent (D) described later, one having a functional group capable of reacting with the functional group of the crosslinking agent (D) can be used.
  • a functional group although depending on the selection of the crosslinking agent (D) to be used in combination, for example, when a crosslinking agent such as a blocked isocyanate compound is used, a hydroxyl group or an amino group can be used.
  • the vinyl resin (x2) that can be used for the resin contained in the primer a monomer polymer having a polymerizable unsaturated double bond can be used.
  • a monomer polymer having a polymerizable unsaturated double bond can be used.
  • polyethylene, polypropylene, polybutadiene, ethylene-propylene copolymer, natural rubber, synthetic isopropylene rubber, ethylene-vinyl acetate copolymer, acrylic resin, etc. can be used, and a structure derived from methyl methacrylate. It is preferable to use an acrylic resin having units.
  • acrylic resin a polymer or copolymer obtained by polymerizing a (meth) acrylic monomer can be used.
  • a (meth) acryl monomer points out any one or both of an acrylic monomer and a methacryl monomer.
  • acrylic resin it is preferable to use an acrylic resin having a structural unit derived from methyl (meth) acrylate from the viewpoint of forming the coating film (x) having the predetermined ethanol absorption rate.
  • the acrylic resin can be produced, for example, by polymerizing various (meth) acrylic monomers described later.
  • Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and (meth) acrylic acid t.
  • methyl methacrylate is preferably used for forming a coating film (x) having a predetermined ethanol absorption rate, such as heat in a heating step or the like in producing a conductive pattern. Regardless of the influence, it is preferable to use the methyl methacrylate in order to provide excellent adhesion between the primer layer (X) and the support. Also, a fine line having a width of about 0.01 ⁇ m to 200 ⁇ m, preferably about 0.01 ⁇ m to 150 ⁇ m, which is required when forming a conductive pattern such as an electronic circuit, is printed without causing bleeding (thin line). The use of the methyl methacrylate is more preferable in order to enable improvement of the property.
  • the methyl (meth) acrylate is preferably 10% by mass to 70% by mass, more preferably 30% by mass to 65% by mass with respect to the total amount of the (meth) acrylic monomer mixture, and
  • the acrylic acid alkyl ester having an alkyl group having 2 to 12 carbon atoms, preferably the acrylic acid alkyl ester having an alkyl group having 3 to 8 carbon atoms is the total amount of the (meth) acrylic monomer mixture. Is preferably 20% by mass to 80% by mass, and more preferably 35% by mass to 70% by mass.
  • (meth) acrylic monomers that can be used for producing the acrylic resin include, in addition to those described above, acrylic acid, methacrylic acid, ⁇ -carboxyethyl (meth) acrylate, 2- (meth) Carboxyl groups such as acryloylpropionic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid half ester, maleic acid half ester, maleic anhydride, itaconic anhydride, ⁇ - (meth) acryloyloxyethyl hydrogen succinate, etc.
  • the vinyl monomer can be used.
  • the vinyl monomer having a carboxyl group may be neutralized with ammonia, potassium hydroxide or the like.
  • the acrylic resin includes at least one amide group selected from the group consisting of a methylolamide group and an alkoxymethylamide group, an amide group other than the above, a hydroxyl group, a glycidyl group,
  • the body can be used.
  • Examples of the vinyl monomer having one or more amide groups selected from the group consisting of a methylolamide group and an alkoxymethylamide group that can be used for the (meth) acrylic monomer having a crosslinkable functional group include N- Methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-methoxyethoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meta ) Acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethoxymethyl-N-methoxymethyl (meth) acrylamide, N, N'-dimethylol (Meth) acrylamide, N-ethoxymethyl-N-propoxymethyl (meth) acrylamide, N, N′
  • Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl (meth) acrylamide can provide a level of durability that can prevent peeling of the conductive material (a2) in the plating process. It is preferable when forming the electroconductive pattern provided with.
  • Examples of the (meth) acrylic monomer having a crosslinkable functional group include those other than those described above, for example, a vinyl monomer having an amide group such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, (Meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid 2-hydroxybutyl, (meth) acrylic acid 4-hydroxybutyl, (meth) acrylic acid 6-hydroxyhexyl, (meth) acrylic acid (4-hydroxymethyl) Cyclohexyl) methyl, glycerol (meth) acrylate, polyethylene glycol (meth) acrylate, vinyl monomers having a hydroxyl group such as N-hydroxyethyl (meth) acrylamide: glycidyl (meth) acrylate, allyl (meth) acrylate Polymerizable monomers having a glycidyl group such as glycidyl ether; Polymerizable monomers having an amino group such as aminoethyl
  • the (meth) acrylic monomer having a crosslinkable functional group can be used in the range of 0% by mass to 50% by mass with respect to the total amount of the (meth) acrylic monomer mixture.
  • the (meth) acrylic monomer having the amide group has a (meth) acrylic group for introducing a self-crosslinking reactive methylolamide group. It is preferably used in the range of 0.1% by mass to 50% by mass and more preferably in the range of 1% by mass to 30% by mass with respect to the total amount of the monomer mixture.
  • the (meth) acryl monomer having another amide group and the (meth) acryl monomer having a hydroxyl group used in combination with the self-crosslinking reactive methylolamide group are the (meth) acryl monomer.
  • the total amount is preferably 0.1 to 30% by mass, and more preferably 1 to 20% by mass.
  • the (meth) acrylic monomer having a hydroxyl group and the (meth) acrylic monomer having an acid group are used as a crosslinking agent ( Depending on the type of D), etc., it is preferably used in a range of approximately 0.05% by mass to 50% by mass with respect to the total amount of the (meth) acrylic monomer mixture, preferably 0.05% by mass to 30%. It is preferably used in the range of mass%, more preferably 0.1 mass% to 10 mass%.
  • the acrylic resin when the acrylic resin is produced, together with the (meth) acrylic monomer, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl versatate, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, amyl Vinyl ether, hexyl vinyl ether, (meth) acrylonitrile, styrene, ⁇ -methylstyrene, vinyl toluene, vinyl anisole, ⁇ -halostyrene, vinyl naphthalene, divinyl styrene, isoprene, chloroprene, butadiene, ethylene, tetrafluoroethylene, vinylidene fluoride, N -Vinylpyrrolidone, polyethylene glycol mono (meth) acrylate, glycerol mono (meth) acrylate, vinyl sulfonic acid, styrene sulfonic acid, Allyl s
  • the acrylic resin can be produced by polymerizing a mixture of various vinyl monomers as described above by a conventionally known method, but produces a conductive pattern having excellent adhesion and excellent conductivity. In addition, it is preferable to apply an emulsion polymerization method.
  • emulsion polymerization method for example, water, a (meth) acrylic monomer mixture, a polymerization initiator, and if necessary, a chain transfer agent, an emulsifier, a dispersion stabilizer, and the like are collectively supplied into a reaction vessel.
  • a pre-emulsion method that drops and polymerizes in a reaction vessel can be applied.
  • the reaction temperature of the emulsion polymerization method varies depending on the type of the (meth) acrylic monomer and the polymerization initiator used, but is about 30 ° C. to 90 ° C., for example, and the reaction time is about 1 hour to 10 hours, for example. preferable.
  • polymerization initiator examples include persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, organic peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide, hydrogen peroxide Radical polymerization using only these peroxides, or aspercolic acid, erythorbic acid, sodium erythorbate, metal salts of formaldehyde sulfoxylate, sodium thiosulfate, sodium bisulfite, Polymerization can also be achieved by a redox polymerization initiator system combined with a reducing agent such as ferric chloride, and 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-amidinopropane) It is also possible to use an azo initiator such as dihydrochloride, and these compounds can be used alone. Well it may be used in combination of two or more.
  • persulfates such as
  • anionic surfactant examples include sulfates of higher alcohols and salts thereof, alkylbenzene sulfonates, polyoxyethylene alkylphenyl sulfonates, polyoxyethylene alkyl diphenyl ether sulfonates, and polyoxyethylene alkyl ethers.
  • non-ionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl phenyl ether.
  • Ethylene diphenyl ether, polyoxyethylene-polyoxypropylene block copolymer, acetylenic diol surfactant and the like can be used.
  • cationic surfactant for example, an alkyl ammonium salt or the like can be used.
  • alkyl (amido) betaine alkyldimethylamine oxide and the like can be used.
  • emulsifier in addition to the above surfactants, fluorine surfactants, silicone surfactants, emulsifiers having a polymerizable unsaturated group generally called “reactive emulsifier” in the molecule, etc. Can also be used.
  • Examples of the reactive emulsifier include “Latemul S-180” (manufactured by Kao Corporation) having a sulfonic acid group and a salt thereof, and “Eleminol JS-2, RS-30” (manufactured by Sanyo Chemical Industries).
  • lauryl mercaptan or the like can be used, and it is 0% by mass to the total amount of the (meth) acrylic monomer mixture. It is preferably used in the range of 1% by mass, and more preferably in the range of 0% by mass to 0.5% by mass.
  • urethane-vinyl composite resin (x3) that can be used as the resin contained in the primer
  • urethane resin (x3-1) and vinyl polymer (x3-2) form composite resin particles in an aqueous medium. Can be dispersed.
  • the composite resin particles include those in which a part or all of the vinyl polymer (x3-2) is contained in the resin particles formed by the urethane resin (x3-1). It is preferable to form core-shell type composite resin particles composed of the vinyl polymer (x3-2) as the core layer and the urethane resin having the hydrophilic group as the shell layer. In particular, when forming a conductive pattern, it is preferable to use the core-shell type composite resin particles that do not require the use of a surfactant or the like that can lower the electrical characteristics. As the composite resin particles, it is preferable that the vinyl polymer (x3-2) is almost completely covered with the urethane resin (x3-1), but this is not essential and the effect of the present invention is impaired. A part of the vinyl polymer (x3-2) may be present on the outermost part of the composite resin particle as long as it does not exist.
  • the vinyl polymer (x3-2) is more hydrophilic than the urethane resin (x3-1)
  • the vinyl polymer (x3- In the resin particles formed in 2) a part or all of the urethane resin (x3-1) may be present to form composite resin particles.
  • the urethane resin (x3-1) and the vinyl polymer (x3-2) may form a covalent bond, but preferably do not form a bond.
  • urethane-vinyl composite resin (x3) it is preferable to use a urethane-acrylic composite resin in which the vinyl polymer (x3-2) is an acrylic resin.
  • the composite resin particles preferably have an average particle diameter in the range of 5 nm to 100 nm from the viewpoint of maintaining good water dispersion stability.
  • the average particle diameter here refers to an average particle diameter on a volume basis measured by a dynamic light scattering method, as will be described later in Examples.
  • the urethane resin (x3-1) constituting the urethane-vinyl composite resin the same resin as the urethane resin (x1) can be used.
  • the urethane resin (x3-1) constituting the urethane-vinyl composite resin includes, for example, a urethane resin having a polyether structure and an aromatic polyester structure other than those exemplified as the urethane resin (x1). Urethane resin can also be used.
  • Examples of the polyol, polyisocyanate, and chain extender that can be used in the production of the urethane resin (x3-1) include those exemplified as those that can be used in the production of the urethane resin (x1). The same agent can be used.
  • the urethane resin which has the said polyether structure can be manufactured by using what contains the polyether polyol mentioned later as the said polyol.
  • the polyether polyol for example, one obtained by addition polymerization of alkylene oxide using one or more compounds having two or more active hydrogen atoms as an initiator can be used.
  • the initiator examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerin, Trimethylolethane, trimethylolpropane and the like can be used.
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran.
  • an aromatic polyester polyol can also be used as the polyol.
  • aromatic polyester polyol for example, those obtained by an esterification reaction of a low molecular weight polyol and an aromatic polycarboxylic acid can be used.
  • Examples of the low molecular weight polyol that can be used in the production of the aromatic polyester polyol include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 3-Methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, etc. can be used alone or in combination of two or more thereof.
  • Ethylene glycol 1,2-propane It is preferable to use a combination of diol, 1,3-butanediol, 1,4-butanediol, or the like, and 3-methyl-1,5-pentanediol, neopentyl glycol, or the like.
  • aromatic polycarboxylic acid for example, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, and anhydrides or esterified products thereof can be used.
  • polyether polyol and the aromatic polyester polyol those having a number average molecular weight of 500 to 4,000 are preferably used, more preferably 500 to 2,000.
  • the vinyl polymer (x3-2) constituting the urethane-vinyl composite resin it is possible to use a polymer having a glass transition temperature of 10 ° C. to 70 ° C. It is preferable for forming (x) and improving the adhesion with the conductive substance (a2) contained in the fluid (a) and the conductivity of the resulting conductive pattern.
  • the glass transition temperature of the vinyl polymer (x3-2) is a value determined by calculation mainly based on the composition of the vinyl monomer used for the production of the vinyl polymer (x3-2). is there. Specifically, the vinyl polymer (x3-2) having the predetermined glass transition temperature can be obtained by using a combination of the vinyl polymer (x3-2) described later.
  • a coating film (x) having the predetermined ethanol absorption rate is formed, and the conductive polymer (a2) contained in the fluid (a) is formed.
  • the upper limit of the weight average molecular weight of the vinyl polymer (x3-2) is not particularly limited, but is preferably approximately 10 million or less, and preferably 5 million or less.
  • the vinyl polymer (x3-2) may have various functional groups as necessary.
  • the functional group include an amide group, a hydroxyl group, a glycidyl group, an amino group, a silyl group, and aziridinyl.
  • the same polymer as the vinyl polymer (x2) can be used.
  • examples of the (meth) vinyl monomer that can be used for the production of the vinyl polymer (x3-2) include the vinyl monomers exemplified as those that can be used for the production of the vinyl resin (x2).
  • the same as the (meth) acrylic monomer can be used.
  • the vinyl polymer (x3-2) it is preferable to use the same acrylic resin having a structural unit derived from methyl methacrylate exemplified as usable for the vinyl resin (x2).
  • urethane-vinyl composite resin (x3) for example, an aqueous dispersion of the urethane resin (x3-1) is produced by reacting the polyisocyanate, a polyol and, if necessary, a chain extender and dispersing in water. And the step (W) of polymerizing the (meth) acrylic monomer in the aqueous dispersion to produce a vinyl polymer (x3-2).
  • the urethane resin (x3-1) is reacted by reacting the polyisocyanate with a polyol in the absence of a solvent, in an organic solvent, or in the presence of a reactive diluent such as a (meth) acrylic monomer. And then neutralizing part or all of the hydrophilic group of the urethane resin (x3-1) with a basic compound, if necessary, and further reacting with a chain extender as necessary. And dispersing it in an aqueous medium to produce an aqueous dispersion of urethane resin (x3-1).
  • a vinyl monomer such as the (meth) acrylic monomer is supplied into the aqueous dispersion of the urethane resin (x3-1) obtained above, and within the urethane resin (x3-1) particles.
  • the vinyl monomer is radically polymerized to produce a vinyl resin (x3-2).
  • the production of the urethane resin (x3-1) is performed in the presence of a vinyl monomer, the production of the urethane resin (x3-1) is followed by supplying a polymerization initiator and the like.
  • a vinyl resin (x3-2) is produced by radical polymerization of a vinyl monomer such as a (meth) acrylic monomer.
  • the urethane resin (x3-1) has a high viscosity and is not excellent in workability
  • a normal organic material such as methyl ethyl ketone, N-methylpyrrolidone, acetone, dipropylene glycol dimethyl ether or the like is used.
  • Solvents and reactive diluents can be used.
  • a vinyl monomer such as a (meth) acrylic monomer that can be used in the production of the vinyl polymer (x3-2) as the reactive diluent. It is preferable for improving the production efficiency.
  • resins that can be used for the primer for example, phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyimide resin, fluorine resin, etc. can be used. it can.
  • the above-mentioned resins may be used in appropriate combination.
  • two or more of the urethane resin (x1), vinyl resin (x2), and urethane-vinyl composite resin (x3) can be used in appropriate combination.
  • the urethane resin (x1) a urethane resin having a polyether structure and a urethane resin having a polycarbonate structure can be used in combination.
  • the primer may be a combination of the urethane resin (x1) and the vinyl resin (x2).
  • those having a crosslinkable functional group can be used as described above.
  • the crosslinkable functional group forms a crosslink structure in the primer layer (X) carrying the fluid (a), thereby causing a pattern (layer (excellent in adhesion and conductivity) without causing bleeding or the like.
  • Y) can be used suitably.
  • the coating film (x) formed using the primer may have a crosslinked structure before the fluid (a) is applied (printed) on a part or all of the surface thereof, It is necessary to adjust the ethanol absorption rate to fall within the range of 20% by mass to 500% by mass.
  • the coating layer (x) does not have a crosslinked structure before the fluid (a) is applied (printed) to the surface thereof, and after the fluid (a) is applied, the primer layer You may form the primer layer which has a crosslinked structure as (X).
  • crosslinkable functional group examples include an alkoxysilyl group and a silanol group, as well as an amino group and a hydroxyl group.
  • the alkoxysilyl group and the silanol group are hydrolyzed and condensed in an aqueous medium that is a solvent for the primer to form a crosslinked structure.
  • the coating film (x) having already formed the crosslinked structure is formed before applying the fluid (a).
  • the crosslinkable functional group is heated to approximately 100 ° C. or higher, preferably 120 ° C. or higher to cause a crosslink reaction between the crosslinkable functional groups or a cross-linking agent (D) described later to form the crosslink structure.
  • a crosslink reaction between the crosslinkable functional groups or a cross-linking agent (D) described later to form the crosslink structure.
  • one or more thermally crosslinkable functional groups selected from the group consisting of a methylolamide group and an alkoxymethylamide group.
  • alkoxymethylamide group examples include an amide group formed by bonding a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group or the like to a nitrogen atom, and among them, a methylolamide group and It is preferable to use one having at least one selected from the group consisting of alkoxymethylamide groups in order to greatly improve the durability of the primer layer (X) and the adhesion to various supports.
  • a primer including a resin having a functional group capable of undergoing a crosslinking reaction by heating to about 100 ° C. or more, preferably about 120 ° C. as described above, when the primer is applied to the support surface and dried.
  • the temperature is preferably less than 100 ° C.
  • the primer layer After applying (printing) the fluid (a) to the coating film not having the crosslinked structure, the primer layer is heated at a temperature of 100 ° C. or higher, or by heating separately from the heating step.
  • a primer layer having a crosslinked structure is formed as (X).
  • the primer layer (X) is exposed to a plating agent made of a strong alkali or strongly acidic substance in the plating process described later. Even in such a case, it is possible to form a conductive pattern having extremely excellent durability without causing peeling of the primer layer (X) from the support.
  • the phrase “substantially has no cross-linked structure” includes an embodiment in which the cross-linked structure is not formed at all, and within about 5% of the number of functional groups capable of forming the cross-linked structure is partially cross-linked. Refers to the structure formed.
  • the crosslinkable functional group is preferably present in a total range of 0.005 equivalent / kg to 1.5 equivalent / kg with respect to the total amount of resin used in the primer.
  • the said primer is a range which does not impair the effect of this invention, A crosslinking agent (D) as needed, A pH adjuster, a film formation adjuvant, a leveling agent, a thickener, a water repellent, a defoaming agent You may use suitably well-known things, such as an agent.
  • crosslinking agent (D) examples include a metal chelate compound, a polyamine compound, an aziridine compound, a metal salt compound, and an isocyanate compound, which can react at a relatively low temperature of about 25 ° C. to less than 100 ° C. to form a crosslinked structure. Reacts at a relatively high temperature of about 100 ° C. or higher, such as one or more selected from the group consisting of a thermal crosslinking agent (d1-1), a melamine compound, an epoxy compound, an oxazoline compound, a carbodiimide compound, and a blocked isocyanate compound.
  • a thermal crosslinking agent (d1-2) capable of forming a crosslinked structure and various photocrosslinking agents can be used.
  • the primer containing the thermal crosslinking agent (d1-1) is, for example, applied to the surface of a support, dried at a relatively low temperature, and then applied (printed) to a temperature of less than 100 ° C.
  • the primer containing the thermal cross-linking agent (d1-2) forms a cross-linked structure by, for example, applying it to the surface of a support and drying at a low temperature of room temperature (25 ° C.) to less than about 100 ° C.
  • the coating film (x) is produced and then the fluid (a) is applied, it is heated at a temperature of, for example, 150 ° C. or higher, preferably 200 ° C. or higher to form a cross-linked structure.
  • a temperature of, for example, 150 ° C. or higher, preferably 200 ° C. or higher it is possible to obtain a conductive pattern having exceptionally excellent durability that does not cause peeling of the conductive material.
  • thermal crosslinking agent (d1-1) instead of the thermal crosslinking agent (d1-2) as the crosslinking agent.
  • Examples of the metal chelate compound that can be used for the thermal crosslinking agent (d1-1) include acetylacetone, which is a polyvalent metal such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium, and zirconium. Coordination compounds, acetoacetate coordination compounds and the like can be used, and it is preferable to use acetylacetone aluminum which is an acetylacetone coordination compound of aluminum.
  • a polyamine compound that can be used for the thermal crosslinking agent (d1-1) for example, a tertiary amine such as triethylamine, triethylenediamine, dimethylethanolamine or the like can be used.
  • Examples of the aziridine compound that can be used in the thermal crosslinking agent (d1-1) include 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate] and 1,6-hexamethylenediethylene urea. Diphenylmethane-bis-4,4′-N, N′-diethyleneurea and the like can be used.
  • Examples of the metal base compound that can be used as the crosslinking agent (d1-1) include aluminum sulfate, aluminum alum, aluminum sulfite, aluminum thiosulfate, polyaluminum chloride, aluminum nitrate nonahydrate, and aluminum chloride hexahydrate. Products, water-soluble metal salts such as titanium tetrachloride, tetraisopropyl titanate, titanium acetylacetonate, and titanium lactate can be used.
  • isocyanate compounds that can be used in the thermal crosslinking agent (d1-1) include tolylene diisocyanate, hydrogenated tolylene diisocyanate, triphenylmethane triisocyanate, methylene bis (4-phenylmethane) triisocyanate, isophorone diisocyanate, hexamethylene.
  • Polyisocyanates such as diisocyanates and xylylene diisocyanates; isocyanurate-type polyisocyanate compounds obtained by using them; adducts composed of these with trimethylolpropane; and the like, the polyisocyanate compound and a polyol such as trimethylolpropane are reacted.
  • Urethanes having a polyisocyanate group obtained in the above manner can be used.
  • hexamethylene diisocyanate nurate, adduct of hexamethylene diisocyanate and trimethylolpropane, adduct of tolylene diisocyanate and trimethylol propane, adduct of xylylene diisocyanate and trimethylol propane, etc. are used. It is preferable.
  • Examples of the melamine compound that can be used in the thermal crosslinking agent (d1-2) include hexamethoxymethyl melamine, hexaethoxymethyl melamine, hexapropoxymethyl melamine, hexabutoxymethyl melamine, hexapentyloxymethyl melamine, and hexahexyloxy. Methylmelamine or a mixed etherified melamine obtained by combining these two types can be used. Of these, trimethoxymethyl melamine and hexamethoxymethyl melamine are preferably used. Examples of commercially available products include Becamine M-3, APM, J-101 (manufactured by DIC Corporation), and the like. The melamine compound can form a crosslinked structure by a self-crosslinking reaction.
  • a catalyst such as an organic amine salt may be used to promote the self-crosslinking reaction.
  • catalyst ACX, 376 etc. can be used.
  • the catalyst is preferably in the range of approximately 0.01% by mass to 10% by mass with respect to the total amount of the melamine compound.
  • Examples of the epoxy compound that can be used for the thermal crosslinking agent (d1-2) include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether, cyclohexanediol diglycidyl ether, and glycerin diglycidyl ether.
  • Polyglycidyl ethers of aliphatic polyhydric alcohols such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether; polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, etc.
  • polyalkylene glycols 1,3-bis (N, N ′ Polyglycidylamines such as diglycidylaminoethyl) cyclohexane; polyglycidyl esters of polycarboxylic acids [succinic acid, adipic acid, butanetricarboxylic acid, maleic acid, phthalic acid, terephthalic acid, isophthalic acid, benzenetricarboxylic acid, etc.]; bisphenol A Bisphenol A-based epoxy resins such as ethylene oxide adducts of bisphenol A and epichlorohydrin condensates, phenol novolak resins, various vinyl (co) polymers having an epoxy group in the side chain, etc. it can.
  • polyglycidylamines such as 1,3-bis (N, N′-diglycidylaminoethyl) cyclohexane and polyglycidyl ethers of aliphatic polyhydric alcohols such as glycerin diglycidyl ether.
  • Examples of the epoxy compound include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, and ⁇ -glycidoxypropyl other than those described above.
  • a silane compound having a glycidyl group such as ⁇ -glycidoxypropyltriisopropenyloxysilane can also be used.
  • Examples of the oxazoline compound that can be used for the thermal crosslinking agent (d1-2) include 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- (2-oxazoline), 2 , 2'-ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline), 2,2'- Hexamethylene-bis- (2-oxazoline), 2,2'-octamethylene-bis- (2-oxazoline), 2,2'-ethylene-bis- (4,4'-dimethyl-2-oxazoline), 2 , 2'-p-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (4,4'- Dimethyl-2-oxa Phosphorus), bis - (2-oxazolinyl sulfony
  • oxazoline compound for example, a polymer having an oxazoline group obtained by polymerizing a combination of the following addition polymerizable oxazoline and other monomers as necessary can be used.
  • Examples of the addition polymerizable oxazoline include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline. , 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, etc., alone or in combination Can do. Of these, the use of 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • carbodiimide compound that can be used for the thermal crosslinking agent (d1-2) examples include poly [phenylenebis (dimethylmethylene) carbodiimide], poly (methyl-1,3-phenylenecarbodiimide), and the like. .
  • Carbodilite V-01, V-02, V-03, V-04, V-05, V-06 manufactured by Nisshinbo Co., Ltd.
  • UCARLINK XL-29SE, XL-29MP Union Carbide Corp.
  • the blocked isocyanate compound that can be used in the thermal crosslinking agent (d1-2) a part or all of the isocyanate groups of the isocyanate compound exemplified as the thermal crosslinking agent (d1-1) are formed by a blocking agent. What was sealed can be used.
  • the blocking agent examples include phenol, cresol, 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, methyl acetoacetate, Ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetanilide, acetic acid amide, ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, succinimide, maleic imide, imidazole, 2-methylimidazole, urea, thiourea, Ethyleneurea, formamide oxime, acetaldoxime, acetone oxime, methyl ethyl ketoxime, methyl isobutyl ketoxime, cyclohexa N'okishimu,
  • Elastolon BN-69 (Daiichi Kogyo Seiyaku Co., Ltd.) or the like can be used as a water-dispersed commercial product.
  • the crosslinking agent (D) it is preferable to use a resin having a group capable of reacting with the crosslinking functional group of the crosslinking agent (D) as the resin contained in the primer.
  • a resin having a group capable of reacting with the crosslinking functional group of the crosslinking agent (D) as the resin contained in the primer.
  • the (block) isocyanate compound, the melamine compound, the oxazoline compound, and the carbodiimide compound as a crosslinking agent and a resin having a hydroxyl group or a carboxyl group as the resin.
  • crosslinking agent (D) varies depending on the type and the like, it is usually preferable to use in the range of 0.01% by mass to 60% by mass with respect to 100 parts by mass of the total resin contained in the primer. More preferably, it is used in the range of 1% by mass to 10% by mass, and in the range of 0.1% by mass to 5% by mass is excellent in adhesion and conductivity and excellent in the durability. It is preferable because a conductive pattern can be formed.
  • crosslinking agent (D) is added and used in advance before the primer of the present invention is applied or impregnated on the surface of the support.
  • the additive various fillers such as inorganic particles can be used.
  • the amount of the filler used in the primer of the present invention is preferably as small as possible, and more preferably 5% by mass or less based on the total amount of the primer of the present invention.
  • the amount of the additive used is not particularly limited as long as the effect of the present invention is not impaired, but is preferably in the range of 0.01% by mass to 40% by mass with respect to the total amount of solids in the primer. .
  • a primer is applied to part or all of the surface of the support, and then the fluid is applied to part or all of the surface of the coating film (x) formed using the primer. It can manufacture by heating after apply
  • the coating film (x) forms the primer layer (X) by being heated after the fluid (a) is applied.
  • the said coating film (x) can be formed by the method of apply
  • the primer that can be applied to part or all of the surface of the support to form the coating film (x) can form the primer layer (X) of the conductive pattern of the present invention.
  • Examples of a method for applying the primer to the surface of the support include a gravure method, a coating method, a screen method, a roller method, a rotary method, a spray method, a spin coater method, and an ink jet method.
  • a method for removing the solvent contained in the primer for example, a method of drying using a dryer and volatilizing the solvent is common.
  • the drying temperature may be set to a temperature that can volatilize the solvent and does not adversely affect the support.
  • the coating amount of the primer on the support is preferably in the range where the film thickness of the coating film (x) is 0.01 ⁇ m to 300 ⁇ m from the viewpoint of imparting excellent adhesion and conductivity. A range of 0.05 ⁇ m to 20 ⁇ m is more preferable.
  • the film thickness of the coating film (x) obtained by the above method may be used in a range where the thickness of the primer layer (X) constituting the finally obtained conductive pattern is 0.01 ⁇ m to 300 ⁇ m. Is preferred.
  • the coating film (x) is a coating film capable of absorbing 20% by mass to 500% by mass with respect to the mass of the coating film (x) in an environment of 25 ° C. Indispensable to resolve.
  • the mass ratio of ethanol absorbed by the coating film (x) to the mass of the coating film (x) [absorption rate of ethanol] is a value obtained by measurement by the following method.
  • the primer is applied to the surface of the release paper using an applicator, dried, and then the release paper is removed to form a coating film having a length of 3 cm, a width of 3 cm, and a thickness of 50 ⁇ m.
  • the coating film is immersed in 30 g of ethanol adjusted to 25 ° C. in an environment of 25 ° C.
  • the coating film was taken out from the ethanol, and it was placed on a stack of three becots, on which three becots were stacked, Further, leave it on for 10 seconds with a weight of 500 g.
  • the mass of the coating film is measured, and the mass of ethanol absorbed in the coating film after the immersion is determined.
  • the mass ratio obtained by dividing the mass of ethanol absorbed in the coating film after immersion by the mass of the coating film before immersion and multiplying by 100 was defined as the ethanol absorption rate.
  • the ethanol absorptivity is less than 20% by mass, specifically, when the fluid (a) is applied to a coating film of 10% by mass, the decrease in conductivity and adhesion May cause decreased sex. Specifically, since the solvent contained in the fluid (a) is not easily absorbed by the coating film (x), the adhesion between the coating film (x) and the conductive pattern may be deteriorated.
  • the ethanol absorptivity is preferably in the range of 20% by mass to 300% by mass and more preferably in the range of 20% by mass to 200% by mass from the viewpoint of imparting even better adhesion and conductivity. Is more preferable, and the range of 45% by mass to 190% by mass is more preferable.
  • the coating film (x) having the predetermined absorption rate it is not only necessary to use the coating film (x) having the predetermined absorption rate, but a pattern is formed using the predetermined fluid (a) on the coating film (x).
  • the problem can be solved only by printing.
  • the primer layer (X) constituting the conductive pattern does not necessarily have the predetermined absorption rate. It is essential to solve the above-mentioned problems that the coating film (x) before the heating and before the fluid (a) is applied has the predetermined absorption rate. .
  • the coating film (x) is appropriately dissolved by the solvent contained in the fluid (a) and absorbs the solvent, whereby a conductive substance (a2) such as a metal contained in the fluid (a). Therefore, it is possible to contribute to obtaining a conductive pattern without bleeding. Further, by using the coating film (x), it is possible to form a transparent primer layer as compared with a conventionally known porous type receiving layer.
  • Examples of the method for applying the fluid (a) to part or all of the surface of the coating film (x) include a reverse printing method such as a letterpress reverse printing method, an ink jet printing method, a screen printing method, and an offset printing method.
  • a reverse printing method such as a letterpress reverse printing method, an ink jet printing method, a screen printing method, and an offset printing method.
  • the conductive ink is directly or inverted on the receiving substrate.
  • Examples include a printing method.
  • the fluid (a) is applied (printed) in the form of a thin wire of about 0.01 ⁇ m to 100 ⁇ m, which is required when realizing high density electronic circuits, etc.
  • an ink jet printing method is adopted. It is preferable to do.
  • an ink jet printer As the ink jet printing method, what is generally called an ink jet printer can be used. Specific examples include Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), and the like.
  • the conductive material (a2) such as metal contained in the fluid (a) is in close contact and joined. It is preferable to be heated.
  • the heating is preferably performed in the range of approximately 80 ° C. to 300 ° C. for approximately 2 minutes to 200 minutes.
  • the said heating may be performed in air
  • the conductive pattern of the present invention can form a pattern with excellent adhesion and conductivity even when heated at a relatively low temperature of about 80 ° C. to 120 ° C.
  • the heating step can be performed using, for example, an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwaves, or the like.
  • the fluid (a) is applied by using the crosslinking agent (d1-2).
  • the crosslinked structure is formed after coating (printing) by passing through the heating step.
  • the heating temperature varies depending on the type of the crosslinking agent (D) used, the combination of the crosslinkable functional groups, etc., but is generally in the range of 80 ° C. to 300 ° C. It is preferably 100 ° C to 300 ° C, particularly preferably 120 ° C to 300 ° C.
  • the upper limit of the temperature is preferably 150 ° C. or less, more preferably 120 ° C. or less.
  • a conductive pattern is formed by a conductive material such as a metal contained in the fluid (a).
  • a conductive material such as a metal contained in the fluid (a).
  • Such conductive patterns include the formation of electronic circuits using silver ink or the like, organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed boards, formation of RFID, peripheral wiring formation, plasma display It can be made suitable also in the field of printed electronics such as wiring of an electromagnetic wave shield.
  • the conductive pattern was plated with a metal such as copper in order to form a highly reliable wiring pattern capable of maintaining good conductivity without causing disconnection or the like over a long period of time. Things can be used.
  • a part or all of the surface of the support has a coating film (x) formed using the primer, and the surface of the coating film (x)
  • the plating nucleating agent as the fluid (a) to a part or all of the coating nuclei
  • the plating nuclei are supported on the surface of the coating film (x), and a heating step or the like is performed as necessary.
  • a plating layer (Z) which consists of an electroplating process, an electroless-plating process, or the plating film formed by performing an electroplating process after the said electroless-plating process is mentioned.
  • the electroless plating treatment step is included in the electroless plating solution by bringing the electroless plating solution into contact with the surface of a plating nucleus such as palladium or silver supported on the primer layer (X).
  • a metal such as copper is deposited to form an electroless plating layer (coating) made of a metal coating.
  • a solution containing a conductive substance made of a metal such as copper, nickel, chromium, cobalt, tin, a reducing agent, and a solvent such as an aqueous medium or an organic solvent is used.
  • reducing agent for example, dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like can be used.
  • monocarboxylic acids such as acetic acid and formic acid
  • dicarboxylic acids such as malonic acid, succinic acid, adipic acid, maleic acid, fumaric acid
  • malic acid lactic acid, glycolic acid Hydroxycarboxylic acids such as gluconic acid and citric acid
  • amino acids such as glycine, alanine, arginine, aspartic acid and glutamic acid
  • aminopolycarboxylic acids such as iminodiacetic acid, nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid
  • the organic acid may contain a complexing agent such as an organic acid, a soluble salt of these organic acids (sodium salt, potassium salt, ammonium salt, etc.), an amine such as ethylenediamine, diethylenetriamine, and triethylenetetramine.
  • the temperature of the electroless plating solution when the electroless plating solution is brought into contact with the surface of the primer layer (X) carrying the plating nucleus in the plating nucleating agent is generally in the range of 20 ° C to 98 ° C. It is preferable.
  • the electrolytic plating treatment step is performed by bringing an electrolytic plating solution into contact with, for example, the surface of the primer layer (X) carrying the plating nucleus or the surface of the electroless plating layer (coating) formed by the electroless treatment.
  • the surface of the primer layer (X) placed on the negative electrode or the electroless plating layer (coating) formed by the electroless treatment is obtained by energizing the electroplating solution. And forming an electrolytic plating film (metal film).
  • a solution containing a conductive substance made of a metal such as copper, nickel, chromium, cobalt, tin, sulfuric acid, and an aqueous medium can be used.
  • the temperature of the electrolytic plating solution when the electrolytic plating solution is brought into contact with the surface of the primer layer (X) carrying the plating nuclei in the plating nucleating agent is generally in the range of 20 ° C to 98 ° C. Is preferred.
  • the primer layer with respect to the support is formed in the plating step for the primer layer (X) in which the crosslinked structure is formed.
  • (X) does not cause peeling.
  • the primer layer (X) is not peeled off, and therefore can be used very suitably for the production of the conductive pattern.
  • Such conductive patterns include, for example, formation of electronic circuits using silver ink, organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed circuit boards, layers constituting RFID, etc., peripheral wiring It can be suitably used for forming and forming a conductive pattern, more specifically, a circuit board in manufacturing an electromagnetic wave shield wiring of a plasma display.
  • coating (printing) fluid (a) such as electroconductive ink or a plating nucleating agent among the electroconductive patterns obtained by the said method
  • a crosslinked structure is formed in the said primer layer (X).
  • the conductive pattern subjected to the plating treatment can form a highly reliable wiring pattern capable of maintaining good conductivity without causing disconnection or the like over a long period of time.
  • CCL Copper Clad Laminate
  • FPC flexible printed circuit board
  • TAB automatic tape bonding
  • COF chip-on-film
  • PWB printed wiring board
  • Preparation Example 1 Preparation of Primer 1 In a reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel, 115 parts by mass of deionized water, Latemul E-118B (manufactured by Kao Corporation: effective (25% by mass of component) 4 parts by mass was added, and the temperature was raised to 75 ° C. while blowing nitrogen.
  • Latemul E-118B manufactured by Kao Corporation: effective (25% by mass of component
  • a vinyl monomer mixture consisting of 60 parts by weight of methyl methacrylate, 3 parts by weight of methacrylic acid and 37 parts by weight of n-butyl acrylate and Aqualon KH-1025 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: 25 parts by mass of active ingredient)
  • a part (5 parts by mass) of a monomer pre-emulsion obtained by mixing 4 parts by mass and 15 parts by mass of deionized water was added, followed by 0.1 parts by mass of potassium persulfate. The polymerization was carried out for 60 minutes while maintaining the temperature in the reaction vessel at 75 ° C.
  • the temperature in the reaction vessel was cooled to 40 ° C., and aqueous ammonia (active ingredient 10% by mass) was used so that the pH of the aqueous dispersion in the reaction vessel was 8.5.
  • primer 1 was prepared by using deionized water so that the non-volatile content was 30% by mass and then filtering with a 200 mesh filter cloth.
  • a polyester polyol P (several number) obtained by reacting neopentyl glycol, 1,4-butanediol and adipic acid in a four-necked flask equipped with a thermometer, a stirring device, a reflux condenser, and a dropping device. 1070 parts by mass and 770 parts by mass of ethyl acetate were added, and the temperature was raised to 70 ° C. with stirring. After stirring and mixing them, 281 parts by mass of dicyclohexylmethane diisocyanate and 0.2 parts by mass of stannous octylate were added and reacted at 70 ° C. for 2 hours.
  • Primer 2 having a non-volatile content of 30% by mass was prepared by subjecting this aqueous dispersion to distillation under reduced pressure.
  • aqueous dispersion of urethane resin (L-1) was obtained.
  • the urethane resin (L-1) obtained here had an acid value of 30 and a weight average molecular weight of 53,000.
  • the temperature in the reaction vessel was cooled to 40 ° C., then deionized water was used so that the non-volatile content was 20% by mass, and then filtered with a 200 mesh filter cloth to prepare Primer 3.
  • the temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content was 20% by mass, followed by filtration with a 200 mesh filter cloth to prepare Primer 4.
  • the temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content became 20% by mass, followed by filtering with a 200 mesh filter cloth to prepare Primer 5.
  • urethane resin (L-2) was obtained.
  • the urethane resin (L-2) obtained here had an acid value of 30 and a weight average molecular weight of 88,000.
  • An aqueous dispersion of urethane-acrylic composite resin constituted was obtained.
  • the temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content was 20% by mass, followed by filtration with a 200 mesh filter cloth to prepare primer 6.
  • Preparation Example 7 Preparation of primer 7 for comparative example In a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, ethylene glycol, 1,4-butanediol, isophthalic acid, terephthalic acid Polyester polyol S having an aromatic structure obtained by reacting (hydroxyl equivalent 840 g / equivalent) 64 parts by mass, 1,4-cyclohexanedimethanol 6 parts by mass, 2,2-dimethylolpropionic acid 7 parts by mass, and 47 parts by mass of dicyclohexylmethane diisocyanate was mixed with 80 parts by mass of methyl ethyl ketone, and reacted under conditions of a temperature of 80 ° C. in the reaction vessel to obtain an organic solvent solution of a urethane prepolymer having an isocyanate group at the terminal.
  • aqueous solution of urethane resin (L-3) having a nonvolatile content of 35% by mass and a pH of 8 is obtained by adding 7 parts by mass of a 20% by mass ethylenediamine aqueous solution and subjecting it to chain extension reaction.
  • a comparative primer 7 comprising a liquid was obtained.
  • the weight average molecular weight of the urethane resin (L-3) was 50,000.
  • the primer 7 for comparative example is obtained. Prepared.
  • Preparation Example 8 Preparation of Primer 8 for Comparative Example First, 100 parts by mass of polyethylene glycol having a number average molecular weight of 600 in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, By reacting 17.6 parts by mass of 2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol, and 106.2 parts by mass of dicyclohexylmethane diisocyanate in 178 parts by mass of methyl ethyl ketone, isocyanate is terminated at the end. An organic solvent solution of a urethane prepolymer having a group was obtained.
  • aqueous dispersion of urethane resin (L-4) was obtained.
  • the urethane resin (L-4) obtained here had an acid value of 30 and a weight average molecular weight of 30,000.
  • a monomer mixture containing 100 parts by mass of ethyl acrylate and 20 parts by mass of an aqueous ammonium persulfate solution (non-volatile content 0.5% by mass) were stirred from a separate dropping funnel. While maintaining the temperature in the reaction vessel at 80 ⁇ 2 ° C., polymerization was carried out dropwise over 120 minutes.
  • An aqueous dispersion of urethane-acrylic composite resin constituted was obtained.
  • the temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content was 20.0% by mass, followed by filtration with a 200 mesh filter cloth. 8 was prepared.
  • the said ethanol absorption rate is a mass ratio of the ethanol which the said coating film absorbs with respect to the mass of the coating film obtained using the said primer.
  • the primer was applied to the surface of the release paper using an applicator, dried, and then the release paper was removed to prepare a coating film having a length of 3 cm, a width of 3 cm, and a thickness of 50 ⁇ m.
  • the coating film was immersed in 30 g of ethanol adjusted to 25 ° C. in an environment of 25 ° C.
  • the coating film was taken out from the ethanol, and it was placed on a stack of three becots, on which three becots were stacked, Furthermore, it was left to stand for 10 seconds with a weight of 500 g placed thereon.
  • the mass of the coating film after the immersion was determined by measuring the mass of the coating film.
  • the mass ratio obtained by dividing the mass of ethanol absorbed in the coating film after immersion by the mass of the coating film before immersion and multiplying by 100 was defined as the ethanol absorption rate.
  • fluid (a-1) By dispersing 30 parts by mass of silver particles having an average particle diameter of 30 nm in a mixed solvent consisting of 30 parts by mass of 1,3-butylene glycol, 37 parts by mass of ion-exchanged water and 3 parts by mass of glycerin, and filtering with a micropore filter, A fluid (a-1) which is a conductive ink was prepared.
  • fluid (a-2) By dispersing 30 parts by mass of silver particles having an average particle diameter of 30 nm in a mixed solvent consisting of 15 parts by mass of 1,3-butylene glycol, 40 parts by mass of ion-exchanged water, and 15 parts by mass of glycerin, and filtering through a micropore filter. Then, a fluid (a-2) which is a conductive ink was prepared.
  • fluid (a′-1) By dispersing 60 parts by mass of silver particles having an average particle diameter of 30 nm in a mixed solvent consisting of 37 parts by mass of ion-exchanged water and 3 parts by mass of glycerin and filtering with a micropore filter, a fluid (a ′ -1) was prepared.
  • Example 1 ⁇ Production of Conductive Pattern>
  • the primer 1 obtained above was placed on the entire surface of one side of a support made of a polyimide film (Kapton 200H manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m) so that the thickness of the coating film after drying would be 3 ⁇ m. It was applied using a coater. Subsequently, the receiving base material (1) in which the coating film formed on the surface of the said support body was obtained by drying for 3 minutes at 70 degreeC using a hot air dryer.
  • a polyimide film Kerpton 200H manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m
  • the fluid (a-1) and the fluid (a-2) are applied to the surface of the coating film formed using the primer constituting the receiving substrate (1) obtained above, by an inkjet printer (Konica).
  • Konica inkjet printer
  • a rectangular area (area) of 3 cm in length and 1 cm in width was printed with a film thickness of 0.5 ⁇ m, respectively.
  • Two types of conductive patterns were obtained by drying for 30 minutes at 120 ° C.
  • the fluid (a-3) is 3 cm long using a screen plate of a metal mesh 250.
  • a conductive pattern was obtained by printing a rectangular range (area) 1 cm wide and printing at a film thickness of 1 ⁇ m and then drying at 120 ° C. for 30 minutes.
  • Example 2 ⁇ Production of Conductive Pattern> Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 2 was used instead of primer 1.
  • the primer layer constituting the conductive pattern and the coating film forming the primer layer had a crosslinked structure.
  • Example 3 Provide of Conductive Pattern> Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 3 was used instead of primer 1.
  • Example 4 ⁇ Production of Conductive Pattern> Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 4 was used instead of primer 1.
  • the primer layer constituting the conductive pattern had a crosslinked structure formed after application of the fluid.
  • Example 5 Provide of Conductive Pattern> Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 5 was used instead of primer 1.
  • the primer layer constituting the conductive pattern had a crosslinked structure formed after application of the fluid.
  • Example 6 Provide of Conductive Pattern> Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 6 was used instead of primer 1.
  • the primer layer constituting the conductive pattern and the coating film forming the primer layer had a crosslinked structure.
  • Comparative Example 1 ⁇ Production of Conductive Pattern> Three types of conductive patterns were obtained in the same manner as in Example 1 except that the primer 7 for comparative example was used instead of the primer 1.
  • Comparative Example 2 ⁇ Production of Conductive Pattern (2 ')> Three types of conductive patterns were obtained in the same manner as in Example 1 except that the primer 8 for comparative example was used instead of the primer 1.
  • Comparative Example 3 ⁇ Production of Conductive Pattern> One type of conductivity is obtained in the same manner as in Example 3 except that the fluid (a′-1) is used instead of the fluid (a-1) to the fluid (a-3). Got a pattern.
  • a cellophane adhesive tape (manufactured by Nichiban Co., Ltd., CT405AP-24, 24 mm) was pressure-bonded to the surface of the conductive layer constituting the conductive pattern obtained by the above method, and then the cellophane adhesive tape was peeled off. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesiveness was evaluated based on the presence or absence of the adhering matter.
  • A indicates that the conductive layer constituting the conductive pattern was not attached at all, and a small portion of the conductive layer was observed.
  • B indicates that no disconnection occurs in the wire portion), and
  • C indicates that the conductive layer in the range of about 30% to 50% of the entire conductive layer adheres to the adhesive surface and the disconnection occurs.
  • What volume resistivity is less than 5 ⁇ 10 -6 ⁇ ⁇ cm "A”, 5 ⁇ 10 -6 or 9 ⁇ 10 -6 ⁇ ⁇ less than cm "B what is sufficient available levels “C”, a level that is 9 ⁇ 10 ⁇ 6 or more and less than 5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm and that can be used, and “C” that is 5 ⁇ 10 ⁇ 5 or more and less than 9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm Was evaluated as “E” when it was “D”, 9 ⁇ 10 ⁇ 5 or more and difficult to use practically.
  • Example 1 [Method for evaluating adhesion after electroless plating]
  • the conductive patterns obtained in Example 1 and Comparative Examples 1 to 3 were immersed in a catalyst bath (OPC-SALM / OPC-80 manufactured by Okuno Pharmaceutical Co., Ltd.) for 5 minutes and then washed with water.
  • a catalyst bath OPC-SALM / OPC-80 manufactured by Okuno Pharmaceutical Co., Ltd.
  • a plating layer having a thickness of 8 ⁇ m was formed by immersing in a company-made ATS ad-copper and washing with water.
  • the cellophane adhesive tape manufactured by Nichiban Co., Ltd., CT405AP-24, 24 mm
  • the cellophane adhesive tape is applied to the surface of the plating structure. And peeled in the direction of 90 degrees. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesiveness was evaluated based on the presence or absence of the adhering matter.
  • the adhesive surface of the peeled cellophane pressure-sensitive adhesive tape is “A” where no deposits are seen, and is supported by either the plating layer or the conductive layer in a range of less than about 5% of the adhesive tape application area.
  • “B” peels off the body and adheres to the adhesive tape, and either the plating layer or the conductive layer peels off from the support within a range of about 5% to less than 50% of the adhesive tape application area.
  • “C” indicates that the material adheres to the tape
  • “D” indicates that either the plating layer or the conductive layer peels off from the support within a range of about 50% or more of the adhesive tape application area, and adheres to the adhesive tape. It was evaluated.
  • Example 1 The surface (conductive layer) of the conductive pattern obtained in Example 1 and Comparative Examples 1 to 3 is set as a cathode, phosphorous copper is set as an anode, and current density is 2 A using an electroplating solution containing copper sulfate. By performing electroplating at / dm 2 for 15 minutes, a copper plating layer having a thickness of 8 ⁇ m was laminated on the surface of the conductive layer.
  • the cellophane adhesive tape manufactured by Nichiban Co., Ltd., CT405AP-24, 24 mm
  • the cellophane adhesive tape is applied to the surface of the plating structure. Peeled in the direction of 90 degrees. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesiveness was evaluated based on the presence or absence of the adhering matter.
  • the adhesive surface of the peeled cellophane pressure-sensitive adhesive tape is “A” where no deposits are seen, and is supported by either the plating layer or the conductive layer in a range of less than about 5% of the adhesive tape application area. Either the plating layer or the conductive layer is peeled off from the support within the range of about 5% or more and less than 50% of the adhesive area of the “B” pressure-sensitive adhesive tape. “C” is attached to the adhesive, and “D” is attached to the adhesive tape when either the plating layer or the conductive layer is peeled off from the support in a range of about 50% or more of the adhesive tape sticking area. evaluated.
  • the conductive pattern described in Example 1 produced by printing on a receiving substrate provided with a primer layer having an ethanol absorption rate of 26% by mass using a fluid containing 1,3-butylene glycol is the primer layer Have good adhesion to the conductive layer and excellent conductivity.
  • the conductive pattern described in Example 2 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate provided with a primer layer having an ethanol absorption rate of 28% by mass is the primer layer It was excellent in adhesion between the conductive layer and the conductive layer, and also excellent in conductivity.
  • the conductive patterns described in Examples 3 and 4 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate having an ethanol absorption rate of 180% by mass and 174% by mass are primers It was particularly excellent in terms of adhesion between the layer and the conductive layer and conductivity.
  • the conductive patterns described in Examples 5 and 6 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate having an ethanol absorption rate of 50% by mass and 21% by mass are the primers It was particularly excellent in terms of adhesion between the layer and the conductive layer, and the conductivity was also excellent.
  • the conductive pattern described in Comparative Example 1 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate provided with a primer layer having an ethanol absorption rate of 1% by mass, In terms of adhesion between the primer layer and the conductive layer, it was not practically sufficient, and was insufficient in terms of conductivity.
  • the conductive pattern described in Comparative Example 2 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate provided with a primer layer having an ethanol absorption rate of 550% by mass is the primer layer In terms of adhesion and conductivity between the conductive layer and the conductive layer, it was not practically sufficient.
  • the conductive material according to Comparative Example 3 produced by printing using a fluid (a′-1) containing no 1,3-butylene glycol on a receiving substrate provided with a primer layer having an ethanol absorption rate of 180% by mass.
  • the nature pattern was not practically sufficient in terms of adhesion between the primer layer and the conductive layer and conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

The present invention addresses the problem of providing a conductive pattern which has low resistance and excellent conductivity, while having excellent adhesion enough to prevent separation of a conductive substance from the conductive pattern. The present invention relates to a conductive pattern, which is obtained by applying a primer onto a supporting body, and then applying a fluid (a) containing a polyhydric alcohol (a1) that contains a predetermined diol (a1-1) and a conductive substance (a2) onto the surface of a coating film (x) that is formed using the primer and heating the applied fluid, and in which the supporting body, a primer layer (X) that is formed by heating the coating film (x) and a layer (Y) containing the conductive substance (a2) are laminated. The coating film (x) absorbs 20-500% by mass of ethanol relative to the mass of the coating film (x).

Description

導電性パターン、導電回路及び導電性パターンの製造方法Conductive pattern, conductive circuit, and method of manufacturing conductive pattern
 本発明は、電磁波シールド、集積回路、有機トランジスタ等の製造に使用可能な導電性パターン等の積層体に関するものである。 The present invention relates to a laminate of a conductive pattern or the like that can be used for manufacturing an electromagnetic wave shield, an integrated circuit, an organic transistor, or the like.
 電子機器の高性能化、小型化、薄型化にともなって、それに使用される電子回路や集積回路の高密度化や薄型化が、近年、強く求められている。 In recent years, with increasing performance, size, and thickness of electronic devices, there has been a strong demand for higher density and thickness of electronic circuits and integrated circuits used therefor.
 前記電子回路等に使用可能な導電性パターンは、例えば銀等の導電性物質を含有する導電性インクを、各種印刷方式によって支持体表面に塗布(印刷)し、必要に応じて加熱等することによって製造することができる。 The conductive pattern that can be used for the electronic circuit, for example, is to apply (print) conductive ink containing a conductive material such as silver on the surface of the support by various printing methods, and to heat as necessary. Can be manufactured by.
 しかし、前記導電性インクを各種支持体の表面に、直接、塗布しても、前記導電性インクが前記支持体表面に密着しにくいため容易に剥離し、最終的に得られる電子回路等の断線等を引き起こす場合があった。とりわけ、ポリイミド樹脂やポリエチレンテレフタレート樹脂からなる支持体は比較的柔軟であるため、折り曲げ可能なフレキシブルデバイスの生産に使用できるものの、前記ポリイミド樹脂等からなる支持体には、特にインク等が密着しにくいため、折り曲げた際にそれらが剥離しやすく、その結果、最終的に得られる電子回路等の断線を引き起こす場合があった。 However, even if the conductive ink is directly applied to the surface of various supports, the conductive ink is difficult to adhere to the surface of the support, and thus easily peels off, and finally the disconnection of an electronic circuit or the like obtained Etc. may be caused. In particular, since the support made of polyimide resin or polyethylene terephthalate resin is relatively flexible, it can be used for the production of a foldable flexible device. For this reason, they are easy to peel off when bent, and as a result, there is a case where the finally obtained electronic circuit or the like is disconnected.
 前記問題を解決する方法としては、例えば支持体表面にラテックス層を設けたインク受容基材に、導電性インクを用いて、所定の方法によりパターンを描画することによって導電性パターンを作製する方法が知られ、前記ラテックス層としてアクリル樹脂を使用できることが知られている(特許文献1参照。)。 As a method for solving the above problem, for example, there is a method of producing a conductive pattern by drawing a pattern by a predetermined method using a conductive ink on an ink receiving substrate provided with a latex layer on the support surface. It is known that an acrylic resin can be used as the latex layer (see Patent Document 1).
 しかし、前記方法で得られた導電性パターンは、前記インク受容層と導電性インクとの密着性の点で未だ十分でない場合があるため、導電性インク中に含まれる導電性物質の剥離による導電性の低下を引き起こす場合があった。 However, since the conductive pattern obtained by the above method may not be sufficient in terms of the adhesion between the ink receiving layer and the conductive ink, the conductive pattern obtained by peeling of the conductive substance contained in the conductive ink may be used. There was a case of causing a decline in sex.
 また、前記導電性パターンを製造する際には、通常、導電性インク中に含まれる導電性物質同士を接触させ導電性を付与するために、導電性インクを用いて印刷等して得た印刷物を、比較的高温で加熱する場合が多い。 Moreover, when manufacturing the said conductive pattern, normally the printed matter obtained by printing etc. using a conductive ink in order to contact the conductive substances contained in a conductive ink and to provide electroconductivity. Are often heated at a relatively high temperature.
 しかし、前記文献1に記載されたラテックス層のようなインク受容層は、前記加熱工程で受けた高熱の影響によって変形や劣化等しやすいため、インク受容層と前記支持体との界面の密着性の低下を引き起こし、導電性パターンの欠損(クラック等)を引き起こす場合があった。また、前記支持体としてプラスチック基材を用いる場合には、前記高熱の影響によって支持体が変形し、それが導電性パターンの抵抗値の向上(導電性の低下)を引き起こす場合があった。 However, since the ink receiving layer such as the latex layer described in Document 1 is easily deformed or deteriorated due to the influence of high heat received in the heating step, the adhesion at the interface between the ink receiving layer and the support is not easily affected. In some cases, the conductive pattern is lost (such as cracks). Further, when a plastic substrate is used as the support, the support is deformed due to the influence of the high heat, which may cause an increase in resistance value (decrease in conductivity) of the conductive pattern.
 一方で、従来知られる導電性インクとその受容層とを用い、比較的低温で加熱することによって導電性パターンを製造しても、導電性物質間の融着が不十分であったり、支持体と受容層との密着性や、導電層と受容層との密着性が十分に発現せず、その結果、導電性の低下等を引き起こす場合があった。 On the other hand, even if a conductive pattern is produced by using a conventionally known conductive ink and its receiving layer and heating at a relatively low temperature, the bonding between the conductive materials is insufficient, or the support In some cases, the adhesiveness between the adhesive layer and the receiving layer and the adhesiveness between the conductive layer and the receiving layer are not sufficiently exhibited, and as a result, a decrease in electrical conductivity is caused.
 以上のように、産業界からは、前記密着性の低下や導電性の低下を引き起こすことのない導電性パターンが求められていた。 As described above, the industry has demanded a conductive pattern that does not cause a decrease in adhesion or conductivity.
特開2009-49124号公報JP 2009-49124 A
 本発明が解決しようとする課題は、導電性物質がプライマー層(X)から経時的に剥離することがないレベルの優れた密着性を有し、かつ、低抵抗で導電性に優れた導電性パターンを提供することである。 The problem to be solved by the present invention is that the conductive material has excellent adhesion so that it does not peel from the primer layer (X) with time, and has low resistance and excellent conductivity. Is to provide a pattern.
 本発明者等は、前記課題を検討すべく検討を進めた結果、特定組成の流動体(a)と、それを受容しうるプライマー層(X)を形成する特定のプライマー(x)とを組み合わせ使用した場合に、前記課題を解決できることを見出した。 As a result of studying the above problems, the present inventors combined a fluid (a) having a specific composition and a specific primer (x) that forms a primer layer (X) capable of receiving the fluid (a). It has been found that the problem can be solved when used.
 すなわち、本発明は、支持体の表面の一部または全部にプライマーを塗布し、次いで、前記プライマーを用いて形成された塗膜(x)の表面の一部または全部に、下記一般式(I)で示される構造を有するジオール(a1-1)を含む多価アルコール(a1)と導電性物質(a2)とを含有する流動体(a)を塗布した後、加熱することによって得られる、支持体と、前記塗膜(x)が加熱されることによって形成したプライマー層(X)と、前記導電性物質(a2)を含む層(Y)とが積層された導電性パターンであって、前記塗膜(x)が、25℃の環境下でエタノールを、前記塗膜(x)の質量に対して20質量%~500質量%吸収するものであることを特徴とする導電性パターンに関するものである。 That is, the present invention applies a primer to a part or all of the surface of the support, and then applies the following general formula (I) to a part or all of the surface of the coating film (x) formed using the primer. The support obtained by applying the fluid (a) containing the polyhydric alcohol (a1) containing the diol (a1-1) having the structure represented by (2) and the conductive substance (a2) and then heating. A conductive pattern in which a body, a primer layer (X) formed by heating the coating film (x), and a layer (Y) containing the conductive substance (a2) are laminated, The conductive film (x) relates to a conductive pattern characterized in that it absorbs 20% by mass to 500% by mass with respect to the mass of the coated film (x) in an environment of 25 ° C. is there.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(一般式(I)中のRは、水素原子またはアルキル基を表す。) (R in the general formula (I) represents a hydrogen atom or an alkyl group.)
 本発明の導電性パターンは、導電性物質(a2)の経時的な剥離を引き起こすことのないレベルの優れた密着性を有し、かつ優れた導電性を有することから、例えば電子回路の形成、有機太陽電池や電子書籍端末、有機EL、有機トランジスタ、フレキシブルプリント基板、非接触ICカード等のRFID等を構成する各層、周辺配線の形成、プラズマディスプレイの電磁波シールドの配線、集積回路、有機トランジスタの製造等の、一般にプリンテッド・エレクトロニクス分野といわれる新規分野で使用することができる。 The conductive pattern of the present invention has excellent adhesion at a level that does not cause peeling of the conductive substance (a2) over time, and has excellent conductivity. For example, formation of an electronic circuit, Organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed circuit boards, non-contact IC cards and other layers constituting RFID, etc., formation of peripheral wiring, plasma display electromagnetic wave shielding wiring, integrated circuits, organic transistors It can be used in new fields such as manufacturing, generally referred to as the printed electronics field.
 本発明の導電性パターンは、支持体の表面の一部または全部にプライマーを塗布し、次いで、前記プライマーを用いて形成された塗膜(x)の表面の一部または全部に、下記一般式(I)で示される構造を有するジオール(a1-1)を含む多価アルコール(a1)と導電性物質(a2)とを含有する流動体(a)を塗布した後、加熱することによって得られる、支持体と、前記塗膜(x)が加熱されることによって形成したプライマー層(X)と、前記導電性物質(a2)を含む層(Y)とが積層された導電性パターンであって、前記塗膜(x)が、25℃の環境下でエタノールを、前記流動体(a)を塗布する前の前記塗膜(x)の質量に対して20質量%~500質量%吸収するものであることを特徴とするものである。 In the conductive pattern of the present invention, a primer is applied to a part or all of the surface of the support, and then a part or all of the surface of the coating film (x) formed using the primer is represented by the following general formula. Obtained by applying a fluid (a) containing a polyhydric alcohol (a1) containing a diol (a1-1) having the structure represented by (I) and a conductive substance (a2) and then heating. A conductive pattern in which a support, a primer layer (X) formed by heating the coating film (x), and a layer (Y) containing the conductive substance (a2) are laminated. The coating film (x) absorbs 20 mass% to 500 mass% of ethanol in an environment of 25 ° C. with respect to the mass of the coating film (x) before applying the fluid (a). It is characterized by being.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(一般式(I)中のRは、水素原子またはアルキル基を表す。) (R in the general formula (I) represents a hydrogen atom or an alkyl group.)
 本発明の導電性パターンは、少なくとも、支持体と、プライマー層(X)と、導電性物質(a2)を含む層(Y)とから構成される。 The conductive pattern of the present invention comprises at least a support, a primer layer (X), and a layer (Y) containing a conductive substance (a2).
 はじめに、前記プライマー層(X)について説明する。 First, the primer layer (X) will be described.
 前記プライマー層(X)は、後述するプライマーを用いて形成された塗膜(x)を加熱等することによって形成される。 The primer layer (X) is formed by heating a coating film (x) formed using a primer described later.
 前記プライマー層(X)は、導電性インク等の前記流動体(a)に含まれる銀等の導電性物質(a2)と、前記支持体とを密着させる。具体的には、プライマーを用いて形成された、前記プライマー層(X)の前駆体である塗膜(x)は、その表面に前記流動体(a)が接触した際、前記流動体(a)中に含まれる溶媒を吸収し、前記塗膜(x)の表面に、前記流動体(a)に含まれる前記導電性物質(a2)を担持させることで、前記支持体と導電性物質(a2)との密着性を向上させる。その後、それを加熱等することによって、前記プライマー層(X)の表面に担持された前記導電性物質(a2)からなる層(Y)を備えた導電性パターンが形成される。 The primer layer (X) adheres the support to the conductive material (a2) such as silver contained in the fluid (a) such as conductive ink. Specifically, the coating film (x), which is a precursor of the primer layer (X) and is formed using a primer, is in contact with the fluid (a) when the fluid (a) contacts the surface. ) And the conductive material (a2) contained in the fluid (a) is supported on the surface of the coating film (x), whereby the support and the conductive material ( Adhesion with a2) is improved. After that, by heating or the like, a conductive pattern including a layer (Y) made of the conductive substance (a2) supported on the surface of the primer layer (X) is formed.
 前記プライマー層(X)は、前記支持体の表面の一部または全部に設けられてもよく、前記支持体の片面または両面に設けられてもよい。例えば、前記導電性パターンとしては、支持体の表面の全面にプライマー層(X)を有し、そのプライマー層(X)のうち必要な部分にのみ、前記導電性物質(a2)を含む層(Y)を有するものを使用することができる。また、支持体の表面のうち、前記層(Y)が設けられる部分にのみ、前記プライマー層(X)が設けられた導電性パターンであってもよい。 The primer layer (X) may be provided on a part or all of the surface of the support, or may be provided on one side or both sides of the support. For example, the conductive pattern has a primer layer (X) on the entire surface of the support, and a layer containing the conductive substance (a2) only in a necessary portion of the primer layer (X) ( Those having Y) can be used. Moreover, the electroconductive pattern in which the said primer layer (X) was provided only in the part in which the said layer (Y) is provided among the surfaces of a support body may be sufficient.
 前記プライマー層(X)は、本発明の導電性パターンを使用する用途等によって異なるが、折り曲げ可能なレベルの柔軟性を備えた支持体を使用した際に、その良好な柔軟性を維持する観点から、概ね0.01μm~300μmの厚さであることが好ましく、0.05μm~20μmの厚さであることがより好ましい。 Although the primer layer (X) varies depending on the use of the conductive pattern of the present invention, etc., the viewpoint of maintaining the good flexibility when a support having a bendable level of flexibility is used. Therefore, the thickness is preferably approximately 0.01 μm to 300 μm, and more preferably 0.05 μm to 20 μm.
 次に、本発明の導電性パターンを構成する層(Y)について説明する。 Next, the layer (Y) constituting the conductive pattern of the present invention will be described.
 前記層(Y)は、前記流動体(a)中に含まれる導電性物質(a2)によって構成される層であり、導電層またはめっき核層としての役割を有する。前記層(Y)は、例えば前記流動体(a)として銀を含有する導電性インクを用いた場合であれば、前記導電性インク中に含まれる銀によって構成される導電層やめっき核層に相当し、それは銀によって構成される印刷像やパターンに相当するものである。 The layer (Y) is a layer composed of the conductive substance (a2) contained in the fluid (a), and has a role as a conductive layer or a plating nucleus layer. For example, if the layer (Y) is a conductive ink containing silver as the fluid (a), the layer (Y) is formed on a conductive layer or a plating nucleus layer composed of silver contained in the conductive ink. It corresponds to a printed image or pattern made of silver.
 前記層(Y)は、主として前記導電性物質(a2)によって構成されるが、前記流動体(a)中に含まれる他の成分、例えば一般式(I)で示されるジオール(a1-1)等の多価アルコール(a1)等が、前記層(Y)中に残存していてもよい。 The layer (Y) is mainly composed of the conductive substance (a2), but other components contained in the fluid (a), for example, the diol (a1-1) represented by the general formula (I) The polyhydric alcohol (a1) etc. may remain in the layer (Y).
 前記層(Y)は、前記プライマー層(X)の表面全体に設けられた層であってもよく、また、前記プライマー層(X)の表面の一部に設けられた層であってもよい。前記プライマー層(X)の表面の一部に存在する前記層(Y)は、具体的には、前記プライマー層(X)の表面に画線され形成された細線状の層を指す。前記細線状の層は、本発明の導電性パターンを電気回路等として使用する場合に好適である。 The layer (Y) may be a layer provided on the entire surface of the primer layer (X), or may be a layer provided on a part of the surface of the primer layer (X). . Specifically, the layer (Y) present on a part of the surface of the primer layer (X) refers to a fine line-shaped layer formed on the surface of the primer layer (X). The thin line layer is suitable when the conductive pattern of the present invention is used as an electric circuit or the like.
 前記細線状の層(パターン)の幅(線幅)は、0.01μm~200μm程度、好ましくは0.01μm~150μm程度であることが、導電性パターンの高密度化等を図るうえで好ましい。 The width (line width) of the thin-line layer (pattern) is about 0.01 μm to 200 μm, preferably about 0.01 μm to 150 μm, from the viewpoint of increasing the density of the conductive pattern.
 前記層(Y)は、低抵抗で導電性に優れた導電性パターンを形成するうえで、0.01μm~100μmの厚さを有するものであることが好ましい。また、前記層(Y)が細線状のものである場合、その厚さ(高さ)は0.1μm~50μmの範囲であることが好ましい。 The layer (Y) preferably has a thickness of 0.01 μm to 100 μm in order to form a conductive pattern having low resistance and excellent conductivity. In addition, when the layer (Y) has a thin line shape, the thickness (height) is preferably in the range of 0.1 μm to 50 μm.
 次に、本発明の導電性パターンを構成する支持体について説明する。
 本発明で使用する支持体としては、例えばポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン(ABS)、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリウレタン、セルロースナノファイバー、シリコン、セラミックス、ガラス等からなる支持体、それらからなる多孔質の支持体、鋼板や銅等の金属からなる支持体等を使用することができる。
Next, the support which comprises the electroconductive pattern of this invention is demonstrated.
Examples of the support used in the present invention include acrylic resins such as polyimide resin, polyamideimide resin, polyamide resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and poly (meth) methyl acrylate. , Support made of polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene, polypropylene, polyurethane, cellulose nanofiber, silicon, ceramics, glass, etc., porous support made of them, steel plate and A support made of a metal such as copper can be used.
 また、前記支持体としては、例えば、ポリエステル繊維、ポリアミド繊維、アラミド繊維等の合成繊維;綿、麻等の天然繊維等からなるものを使用することができる。前記繊維には、予め加工が施されていてもよい。 Further, as the support, for example, a synthetic fiber such as polyester fiber, polyamide fiber or aramid fiber; a natural fiber such as cotton or hemp can be used. The fibers may be processed in advance.
 なかでも、前記支持体としては、一般に、回路基板等の導電性パターンを形成する際の支持体として使用されることの多い、ポリイミド樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ガラス、セルロースナノファイバー等からなる支持体を使用することが好ましい。 Among these, as the support, generally used as a support in forming a conductive pattern such as a circuit board, from polyimide resin, polyethylene terephthalate, polyethylene naphthalate, glass, cellulose nanofiber, etc. It is preferable to use a support.
 また、前記支持体としては、柔軟性が必要な用途等に使用される場合は、比較的柔軟で折り曲げ等が可能なものを使用することが、導電性パターンに柔軟性を付与し、折り曲げ可能な最終製品を得るうえで好ましい。具体的には、一軸延伸等することによって形成されたフィルムまたはシート状の支持体を使用することが好ましい。 In addition, when the support is used for applications that require flexibility, it is possible to use a material that is relatively flexible and capable of being bent. It is preferable for obtaining a final product. Specifically, it is preferable to use a film or sheet-like support formed by uniaxial stretching or the like.
 前記フィルムまたはシート状の支持体としては、例えばポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエチレンナフタレートフィルム等が挙げられる。 Examples of the film or sheet-like support include a polyethylene terephthalate film, a polyimide film, and a polyethylene naphthalate film.
 前記支持体としては、導電性パターン及びそれの使用される最終製品の軽量化及び薄型化を実現する観点から1μm~2,000μm程度の厚さのものであることが好ましく、1μm~200μm程度の厚さであることがより好ましい。前記積層体として比較的柔軟なものが求められる場合には、1μm~80μm程度の厚さのものを使用することが好ましい。 The support preferably has a thickness of about 1 μm to 2,000 μm from the viewpoint of reducing the weight and thickness of the conductive pattern and the final product in which it is used, and about 1 μm to 200 μm. More preferably, it is a thickness. When the laminate is required to be relatively flexible, it is preferable to use a laminate having a thickness of about 1 μm to 80 μm.
 前記支持体の表面の一部または全部に前記プライマー層(X)を有し、前記プライマー層(X)の一部または全部に、導電性物質(a2)とを含む層(Y)を有する本発明の導電性パターンは、電気回路等の薄型化を図るうえで、前記支持体以外の構成部分の厚さ、具体的には、前記プライマー層(X)と前記層(Y)との合計の厚さが、0.01μm~300μmの範囲とすることが好ましく、0.05μm~80μmとすることがより好ましい。 A book having the primer layer (X) on part or all of the surface of the support, and a layer (Y) containing a conductive substance (a2) on part or all of the primer layer (X). In order to reduce the thickness of an electric circuit or the like, the conductive pattern of the invention is the thickness of the constituent parts other than the support, specifically, the total of the primer layer (X) and the layer (Y). The thickness is preferably in the range of 0.01 μm to 300 μm, more preferably 0.05 μm to 80 μm.
 次に、本発明の導電性パターンの製造に使用する流動体(a)について説明する。
 前記流動体(a)は、下記一般式(I)で示される構造を有するジオール(a1-1)を含む多価アルコール(a1)と、導電性物質(a2)と、必要に応じて溶媒、添加剤とを含有するものである。
Next, the fluid (a) used for production of the conductive pattern of the present invention will be described.
The fluid (a) includes a polyhydric alcohol (a1) containing a diol (a1-1) having a structure represented by the following general formula (I), a conductive substance (a2), and a solvent if necessary. It contains an additive.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(一般式(I)中のRは、水素原子またはアルキル基を表す。) (R in the general formula (I) represents a hydrogen atom or an alkyl group.)
 具体的には、前記流動体(a)は、概ね23℃においてE型粘度計(TVE-22LT、東機産業株式会社製)で測定した粘度が0.1mPa・s~500,000mPa・sのものが好ましく、0.5mPa・s~10,000mPa・sである液状または粘稠液状のものであることがより好ましい。
 前記流動体(a)を、後述するインクジェット印刷法、オフセット印刷法、グラビア印刷、フレキソ印刷等の方法により、所望の位置に塗布(印刷)する際には、概ね5mPa・s~1,000mPa・sの範囲の粘度に調整された流動体を使用することが好ましい。
Specifically, the fluid (a) has a viscosity measured at about 23 ° C. with an E-type viscometer (TVE-22LT, manufactured by Toki Sangyo Co., Ltd.) of 0.1 mPa · s to 500,000 mPa · s. The liquid is preferably 0.5 mPa · s to 10,000 mPa · s, more preferably a liquid or viscous liquid.
When the fluid (a) is applied (printed) to a desired position by an inkjet printing method, an offset printing method, a gravure printing method, a flexographic printing method, or the like, which will be described later, it is approximately 5 mPa · s to 1,000 mPa · It is preferable to use a fluid adjusted to a viscosity in the range of s.
 前記流動体(a)としては、具体的には導電性インク、めっき処理を施す際に使用することのできるめっき核剤等が挙げられる。 Specific examples of the fluid (a) include a conductive ink and a plating nucleating agent that can be used when plating is performed.
 前記流動体(a)に使用する前記ジオール(a1-1)を含む多価アルコール(a1)としては、前記ジオール(a1-1)を必須とし、必要に応じてその他の多価アルコールを含むものを使用することができる。 As the polyhydric alcohol (a1) containing the diol (a1-1) used in the fluid (a), the diol (a1-1) is essential, and other polyhydric alcohols are included as necessary. Can be used.
 前記ジオール(a1-1)は、前記流動体(a)の経時安定性を向上することができる。また、前記ジオール(a1-1)は、前記プライマー層(X)を形成しうる前記塗膜(x)とを組み合わせ使用することによって、本発明の導電性パターンの密着性及び導電性を向上することができる。また、前記ジオール(a1-1)は、前記流動体(a)をインクジェット方式によって吐出等する際に、流動体(a)の吐出安定性を向上することもできる。 The diol (a1-1) can improve the temporal stability of the fluid (a). The diol (a1-1) improves the adhesion and conductivity of the conductive pattern of the present invention by using in combination with the coating film (x) that can form the primer layer (X). be able to. The diol (a1-1) can also improve the discharge stability of the fluid (a) when the fluid (a) is discharged by an ink jet method.
 前記ジオール(a1-1)としては、前記一般式(I)で示される化合物を使用する。前記一般式(I)中のRは、水素原子またはアルキル基であり、前記アルキル基としては、好ましくは炭素原子数1~10のアルキル基であり、より好ましくは1~5のアルキル基であり、さらに好ましくは1~3のアルキル基である。 As the diol (a1-1), the compound represented by the general formula (I) is used. R in the general formula (I) is a hydrogen atom or an alkyl group, and the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. And more preferably 1 to 3 alkyl groups.
 前記ジオール(a1-1)としては、前記流動体(a)中に含まれる導電性物質(a2)によって形成される層(Y)の、プライマー層(X)からの剥離を引き起こさないレベルのより一層優れた密着性を備え、描写された導電性パターンにクラックがなく、より一層優れた導電性を備えた導電性パターンを得るうえで、一般式(I)中のRが水素原子である1,3-ブチレングリコール、または、Rがアルキル基であるイソプレングリコール等を使用することが好ましい。 As the diol (a1-1), the layer (Y) formed by the conductive material (a2) contained in the fluid (a) is at a level that does not cause peeling from the primer layer (X). 1 in which R in the general formula (I) is a hydrogen atom in order to obtain a conductive pattern having better adhesion, no cracks in the depicted conductive pattern, and even better conductivity 1,3-butylene glycol or isoprene glycol in which R is an alkyl group is preferably used.
 前記ジオール(a1-1)は、前記流動体(a)全量に対して5質量%~60質量%の範囲で含まれることが好ましく、15質量%~50質量%の範囲で含まれることがより好ましく、20質量%~40質量%の範囲で含まれることが、前記流動体(a)の吐出安定性を向上し、導電性に優れる配線パターンを形成するうえでさらに好ましい。 The diol (a1-1) is preferably contained in the range of 5% by mass to 60% by mass and more preferably in the range of 15% by mass to 50% by mass with respect to the total amount of the fluid (a). Preferably, it is contained in the range of 20% by mass to 40% by mass in order to improve the discharge stability of the fluid (a) and form a wiring pattern having excellent conductivity.
 前記ジオール(a1-1)とともに組み合わせて使用することのできるその他の多価アルコールとしては、従来知られる多価アルコールを使用することができ、例えば2-エチル-1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン等を使用することができる。 As other polyhydric alcohols that can be used in combination with the diol (a1-1), conventionally known polyhydric alcohols can be used, such as 2-ethyl-1,3-hexanediol, ethylene glycol, and the like. Diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin and the like can be used.
 前記導電性物質(a2)としては、遷移金属またはその化合物を使用することができる。なかでもイオン性の遷移金属を使用することが好ましく、例えば銅、銀、金、ニッケル、パラジウム、白金、コバルト等の遷移金属を使用することが好ましく、銅、銀、金等を使用することが、電気抵抗が低く、腐食に強い導電性パターンを形成できるのでより好ましく、銀を使用することがさらに好ましい。 As the conductive substance (a2), a transition metal or a compound thereof can be used. Among them, it is preferable to use an ionic transition metal, for example, it is preferable to use a transition metal such as copper, silver, gold, nickel, palladium, platinum, cobalt, and to use copper, silver, gold, or the like. Further, it is more preferable because a conductive pattern having a low electric resistance and strong against corrosion can be formed, and it is more preferable to use silver.
 また、前記流動体(a)をめっき核剤に使用する場合には、前記導電性物質(a2)として前記したような遷移金属からなる金属粒子、それが前記遷移金属の酸化物または有機物によって表面被覆されたものを1種類以上使用することができる。 Further, when the fluid (a) is used as a plating nucleating agent, the conductive material (a2) is a metal particle composed of a transition metal as described above, and the surface is formed by an oxide or an organic substance of the transition metal. One or more types of coated ones can be used.
 なお、前記遷移金属の酸化物は、通常、不活性(絶縁)な状態であるため、それを含有する流動体を、単に支持体の表面に塗布等しても、導電性を示さない場合が多い。そのため、前記酸化物を含有する流動体を前記支持体の表面に塗布等した場合には、その表面を、ジメチルアミノボラン等の還元剤を用いて処理することによって、遷移金属が露出し活性(導電性)を備えた層を形成することが可能となる。 In addition, since the transition metal oxide is usually in an inactive (insulating) state, even if a fluid containing it is simply applied to the surface of the support, it may not exhibit conductivity. Many. Therefore, when the fluid containing the oxide is applied to the surface of the support, the transition metal is exposed and activated by treating the surface with a reducing agent such as dimethylaminoborane. It is possible to form a layer having conductivity.
 また、前記有機物によって表面被覆された金属としては、乳化重合法等によって形成した樹脂粒子(有機物)中に金属を内在させたものが挙げられる。これらは、前記遷移金属の酸化物と同様に、通常、不活性(絶縁)な状態であるため、それを含有する流動体を、単に支持体の表面に塗布等しても、導電性を示さない場合が多い。そのため、前記有機物によって表面被覆された金属を含有する流動体を前記支持体の表面に塗布等した場合には、その表面にレーザー等を照射し、前記有機物を除去することによって、遷移金属が露出し活性(導電性)を備えた層を形成することが可能となる。 Further, examples of the metal whose surface is coated with the organic substance include those in which a metal is contained in resin particles (organic substance) formed by an emulsion polymerization method or the like. Like the transition metal oxides, these are usually in an inactive (insulating) state. Therefore, even if a fluid containing the same is simply applied to the surface of the support, it exhibits conductivity. Often not. Therefore, when a fluid containing a metal surface-coated with the organic material is applied to the surface of the support, the transition metal is exposed by irradiating the surface with a laser or the like and removing the organic material. Thus, a layer having activity (conductivity) can be formed.
 前記導電性物質(a2)としては、概ね1nm~100nm程度の平均粒子径を有する粒子状のものを使用することが好ましく、1nm~50nmの平均粒子径を有するものを使用することが、マイクロメータオーダーの平均粒子径を有する導電性物質を用いる場合と比較して、微細な導電性パターンを形成でき、加熱後の抵抗値をより低減できることからより好ましい。なお、前記「平均粒子径」は、前記導電性物質(a2)を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製ナノトラックUPA-150を用いることができる。 As the conductive substance (a2), a particulate material having an average particle diameter of about 1 nm to 100 nm is preferably used, and a material having an average particle diameter of 1 nm to 50 nm is preferably used. Compared to the case of using a conductive material having an average particle diameter of the order, it is more preferable because a fine conductive pattern can be formed and the resistance value after heating can be further reduced. The “average particle size” is a volume average value measured by a dynamic light scattering method after diluting the conductive substance (a2) with a dispersion good solvent. For this measurement, Nanotrac UPA-150 manufactured by Microtrac can be used.
 前記導電性物質(a2)は、本発明で使用する流動体(a)の全量に対して、5質量%~90質量%の範囲で含まれることが好ましく、5質量%~85質量%の範囲で含まれることがより好ましく、10質量%~60質量%の範囲で含まれることがさらに好ましく、20質量%~40質量%の範囲で含まれることが特に好ましい。 The conductive substance (a2) is preferably contained in the range of 5% by mass to 90% by mass with respect to the total amount of the fluid (a) used in the present invention. More preferably, it is contained in the range of 10% by mass to 60% by mass, and particularly preferably in the range of 20% by mass to 40% by mass.
 また、前記流動体は、塗布のしやすさ等を向上する観点から溶媒を含有するものが好ましい。前記溶媒としては、有機溶剤、水性媒体を使用することができる。 In addition, the fluid preferably contains a solvent from the viewpoint of improving ease of application and the like. As the solvent, an organic solvent or an aqueous medium can be used.
 前記溶媒としては、例えば蒸留水、イオン交換水、純水、超純水等の水性媒体をはじめ、アルコール、エーテル、エステル、ケトン等の有機溶剤を使用することができる。 As the solvent, for example, an aqueous medium such as distilled water, ion-exchanged water, pure water, and ultrapure water, and organic solvents such as alcohol, ether, ester, and ketone can be used.
 前記アルコールとしては、例えばメタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等を使用することができる。 Examples of the alcohol include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, and tetradecanol. Nord, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl Ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tri Propylene glycol monobutyl ether or the like can be used.
 また、前記流動体(a)としては、前記したもののほかに、必要に応じて、アセトン、シクロヘキサノン、メチルエチルケトン等のケトン溶剤、酢酸エチル、酢酸ブチル、3―メトキシブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート等のエステル溶剤、トルエン、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、シクロオクタン、キシレン、メシチレン、エチルベンゼン、ドデシルベンゼン、テトラリン、トリメチルベンゼンシクロヘキサン等の炭化水素溶剤、ミネラルスピリット、ソルベントナフサ等の溶媒を併用することもできる。 In addition to the above-described fluid (a), the fluid (a) may be, if necessary, a ketone solvent such as acetone, cyclohexanone, methyl ethyl ketone, ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3- Ester solvents such as methyl-butyl acetate, hydrocarbon solvents such as toluene, octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, trimethylbenzenecyclohexane, mineral spirit, solvent A solvent such as naphtha can also be used in combination.
 本発明の流動体(a)は、例えば前記多価アルコール(a1)と前記導電性物質(a2)と必要に応じて前記溶媒とを混合することによって製造することができる。なかでも、前記導電性物質(a2)と前記溶媒とを含有する組成物を製造し、次いで、前記組成物と前記ジオール(a1-1)を含む多価アルコール(a1)とを混合することによって製造することが、導電性物質の分散安定性を向上し、前記層(Y)のクラック発生を防止するうえでより好ましい。 The fluid (a) of the present invention can be produced, for example, by mixing the polyhydric alcohol (a1), the conductive substance (a2) and, if necessary, the solvent. Among them, by producing a composition containing the conductive substance (a2) and the solvent, and then mixing the composition and the polyhydric alcohol (a1) containing the diol (a1-1) It is more preferable to improve the dispersion stability of the conductive substance and prevent the occurrence of cracks in the layer (Y).
 前記導電性物質(a2)と前記溶媒とを含有する組成物としては、前記水性媒体、有機溶剤等の溶媒中に、前記導電性物質(a2)が分散した分散体を使用することができる。 As the composition containing the conductive substance (a2) and the solvent, a dispersion in which the conductive substance (a2) is dispersed in a solvent such as the aqueous medium or the organic solvent can be used.
 前記分散体は、前記導電性物質(a2)と前記溶媒とを混合し、撹拌することによって製造することができる。前記分散体としては、具体的には、、SW1000(バンドー化学株式会社製)、シルクオートA-1(三菱マテリアル株式会社製)、MDot-SLP(三ツ星ベルト株式会社製)等を使用することができる。 The dispersion can be produced by mixing and stirring the conductive substance (a2) and the solvent. Specifically, as the dispersion, SW1000 (manufactured by Bando Chemical Co., Ltd.), Silk Auto A-1 (manufactured by Mitsubishi Materials Corporation), MDot-SLP (manufactured by Mitsuboshi Belting Co., Ltd.) or the like may be used. it can.
 前記分散体と、前記多価アルコール(a1)とを混合する際には、例えばミキサー、ディスパー、ビーズミル、超音波ホモジナイザー等の装置を用いることができる。 When mixing the dispersion and the polyhydric alcohol (a1), for example, an apparatus such as a mixer, a disper, a bead mill, or an ultrasonic homogenizer can be used.
 また、本発明に使用する流動体(a)は、前記溶媒中における導電性物質(a2)の分散安定性をより一層向上するとともに、前記流動体(a)の前記塗膜(x)表面への濡れ性等をより一層向上するうえで、界面活性剤、消泡剤、レオロジー調整剤等を含有してもよい。 In addition, the fluid (a) used in the present invention further improves the dispersion stability of the conductive substance (a2) in the solvent, and also on the surface of the coating film (x) of the fluid (a). In order to further improve the wettability and the like, a surfactant, an antifoaming agent, a rheology adjusting agent and the like may be contained.
 前記流動体(a)としては、前記方法で製造した後、不純物等を除去する観点から、必要に応じてミクロポアフィルター等を用いて濾過したもの、遠心分離器等を用いて処理したものを使用することもできる。 As the fluid (a), from the viewpoint of removing impurities and the like after being manufactured by the above-described method, a fluid filtered using a micropore filter or the like, or a material processed using a centrifugal separator or the like is used. You can also
 次に、本発明の導電性パターンを製造するうえで使用するプライマーについて説明する。 Next, the primer used in manufacturing the conductive pattern of the present invention will be described.
 前記プライマーは、前記流動体(a)に含まれる導電性物質(a2)を担持しうる塗膜(x)を形成するとともに、本発明の導電性パターンの層(Y)を形成しうるものである。 The primer forms a coating film (x) that can carry the conductive substance (a2) contained in the fluid (a) and can form the conductive pattern layer (Y) of the present invention. is there.
 前記プライマーとしては、25℃の環境下においてエタノールを、前記塗膜(x)の質量に対して20質量%~500質量%吸収可能な塗膜(x)を形成できるものであれば、いずれのものも使用することができる。 As the primer, any primer can be used as long as it can form a coating film (x) capable of absorbing ethanol in an environment of 25 ° C. by 20 mass% to 500 mass% with respect to the mass of the coating film (x). Things can also be used.
 前記塗膜(x)を形成可能なプライマーとしては、各種樹脂と溶媒とを含有するものを使用することができる。 As the primer capable of forming the coating film (x), those containing various resins and solvents can be used.
 前記樹脂としては、例えばウレタン樹脂(x1)、ビニル樹脂(x2)、ウレタン-ビニル複合樹脂(x3)、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリイミド樹脂、フッ素樹脂等を使用することができる。 Examples of the resin include urethane resin (x1), vinyl resin (x2), urethane-vinyl composite resin (x3), phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyimide resin, A fluororesin or the like can be used.
 前記樹脂としては、なかでも、ウレタン樹脂(x1)としてポリカーボネート構造を有するウレタン樹脂、脂肪族ポリエステル構造を有するウレタン樹脂、ビニル樹脂(x2)としてメタクリル酸メチル由来の構造単位を有するアクリル樹脂、及び、ウレタン-ビニル複合樹脂(x3)としてウレタン-アクリル複合樹脂からなる群より選ばれる1種以上の樹脂(x-1)を使用することが、前記所定のエタノールの吸収率を備えた塗膜(x)を形成するうえで好ましく、ウレタン-アクリル複合樹脂を使用することがより好ましい。 Examples of the resin include a urethane resin having a polycarbonate structure as the urethane resin (x1), a urethane resin having an aliphatic polyester structure, an acrylic resin having a structural unit derived from methyl methacrylate as the vinyl resin (x2), and The use of one or more resins (x-1) selected from the group consisting of urethane-acrylic composite resins as the urethane-vinyl composite resin (x3) results in a coating film (x ) Is preferable, and it is more preferable to use a urethane-acrylic composite resin.
 前記プライマーとしては、前記プライマー全体に対して前記樹脂を10質量%~70質量%含むものを使用することが、塗布のしやすさ等を維持するうえで好ましく、10質量%~50質量%含むものを使用することがより好ましい。 As the primer, it is preferable to use a primer containing 10% by mass to 70% by mass of the resin with respect to the whole primer, in order to maintain ease of application and the like, and it contains 10% by mass to 50% by mass. It is more preferable to use one.
 また、前記プライマーに使用可能な溶媒としては、各種有機溶剤、水性媒体を使用することができる。 Also, as the solvent that can be used for the primer, various organic solvents and aqueous media can be used.
 前記有機溶剤としては、例えばトルエン、酢酸エチル、メチルエチルケトン等を使用することができる。また、前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。 As the organic solvent, for example, toluene, ethyl acetate, methyl ethyl ketone and the like can be used. Examples of the aqueous medium include water, organic solvents miscible with water, and mixtures thereof.
 水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル-2-ピロリドン等のラクタム等が挙げられる。 Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve; ketones such as acetone and methyl ethyl ketone; and polymers such as ethylene glycol, diethylene glycol, and propylene glycol. Examples include alkylene glycols; alkyl ethers of polyalkylene glycols; and lactams such as N-methyl-2-pyrrolidone.
 本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。 In the present invention, only water may be used, or a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used.
 前記プライマーとしては、前記プライマー全体に対して前記溶媒を25質量%~90質量%含むものを使用することが、塗布のしやすさ等を維持するうえで好ましく、50質量%~85質量%含むものを使用することがより好ましい。 As the primer, it is preferable to use a primer containing 25% by mass to 90% by mass of the solvent with respect to the whole primer, in order to maintain ease of application, etc., and it contains 50% by mass to 85% by mass. It is more preferable to use one.
 前記溶媒として水性媒体を使用する場合には、前記樹脂として親水性基を有する樹脂を使用することが、プライマーに良好な水分散性を付与しその保存安定性を向上するうえで好ましい。 When an aqueous medium is used as the solvent, it is preferable to use a resin having a hydrophilic group as the resin in order to impart good water dispersibility to the primer and improve its storage stability.
 前記親水性基としては、例えばアニオン性基、カチオン性基、ノニオン性基が挙げられる。 Examples of the hydrophilic group include an anionic group, a cationic group, and a nonionic group.
 前記アニオン性基としては、例えばカルボキシル基、カルボキシレート基、スルホン酸基、スルホネート基等を使用することができ、なかでも、一部または全部が塩基性化合物等によって中和され形成したカルボキシレート基またはスルホネート基を使用することが、良好な水分散性を付与するうえで好ましい。 As the anionic group, for example, a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and the like can be used. Among them, a carboxylate group formed by neutralizing a part or all of them with a basic compound or the like. Alternatively, it is preferable to use a sulfonate group in order to impart good water dispersibility.
 前記アニオン性基の中和に使用可能な塩基性化合物としては、例えばアンモニア、トリエチルアミン、ピリジン、モルホリン等の有機アミン;モノエタノールアミン等のアルカノールアミン;ナトリウム、カリウム、リチウム、カルシウム等を含む金属塩基化合物等が挙げられる。導電性パターン等を形成する場合には、前記金属塩基化合物が導電性等を阻害しうる場合があるため、前記アンモニア、有機アミンまたはアルカノールアミンを使用することが好ましい。 Examples of basic compounds that can be used for neutralizing the anionic group include organic amines such as ammonia, triethylamine, pyridine, and morpholine; alkanolamines such as monoethanolamine; metal bases including sodium, potassium, lithium, calcium, and the like Compounds and the like. In the case of forming a conductive pattern or the like, it is preferable to use the ammonia, the organic amine, or the alkanolamine because the metal base compound may inhibit the conductivity or the like.
 前記アニオン性基として前記カルボキシレート基またはスルホネート基を使用する場合、それらは前記樹脂全体に対して50mmol/kg~2,000mmol/kgの範囲で存在することが、前記樹脂の良好な水分散安定性を維持するうえで好ましい。 When the carboxylate group or sulfonate group is used as the anionic group, they are present in the range of 50 mmol / kg to 2,000 mmol / kg with respect to the whole resin, so that the resin has good water dispersion stability. It is preferable for maintaining the property.
 また、前記カチオン性基としては、例えば3級アミノ基等を使用することができる。
 前記3級アミノ基の一部または全てを中和する際に使用することができる酸としては、例えば、酢酸、プロピオン酸、乳酸、マレイン酸等の有機酸;スルホン酸、メタンスルホン酸等の有機スルホン酸;塩酸、硫酸、オルトリン酸、オルト亜リン酸等の無機酸等を単独または2種以上を組み合わせて使用することができる。前記導電性パターン等を形成する場合に、前記塩素及び硫黄が導電性等を若干阻害しうる場合があるため、酢酸、プロピオン酸、乳酸、マレイン酸等を使用することが好ましい。
Moreover, as said cationic group, a tertiary amino group etc. can be used, for example.
Examples of the acid that can be used for neutralizing part or all of the tertiary amino group include organic acids such as acetic acid, propionic acid, lactic acid, and maleic acid; organic acids such as sulfonic acid and methanesulfonic acid. Sulfonic acid; inorganic acids such as hydrochloric acid, sulfuric acid, orthophosphoric acid and orthophosphorous acid can be used alone or in combination of two or more. When forming the conductive pattern or the like, it is preferable to use acetic acid, propionic acid, lactic acid, maleic acid, or the like because the chlorine and sulfur may slightly inhibit the conductivity and the like.
 また、前記ノニオン性基としては、例えばポリオキシエチレン基、ポリ(オキシエチレン-オキシプロピレン)基、及びポリオキシエチレン-ポリオキシプロピレン基等のポリオキシアルキレン基を使用することができる。なかでもオキシエチレン単位を有するポリオキシアルキレン基を使用することが、親水性をより一層向上させるうえで好ましい。 Further, as the nonionic group, for example, polyoxyalkylene groups such as polyoxyethylene group, poly (oxyethylene-oxypropylene) group, and polyoxyethylene-polyoxypropylene group can be used. Among these, it is preferable to use a polyoxyalkylene group having an oxyethylene unit in order to further improve the hydrophilicity.
 前記プライマーに含まれる樹脂として使用可能なウレタン樹脂(x1)としては、ポリオールとポリイソシアネートと、必要に応じて鎖伸長剤とを反応させることによって得られるウレタン樹脂を使用することができる。なかでも、前記所定のエタノールの吸収率を備えた塗膜(x)を形成する観点から、ポリカーボネート構造を有するウレタン樹脂、脂肪族ポリエステル構造を有するウレタン樹脂を使用することが好ましい。 As the urethane resin (x1) that can be used as the resin contained in the primer, a urethane resin obtained by reacting a polyol, a polyisocyanate, and, if necessary, a chain extender can be used. Especially, it is preferable to use the urethane resin which has a polycarbonate structure, and the urethane resin which has an aliphatic polyester structure from a viewpoint of forming the coating film (x) provided with the absorptivity of the said predetermined | prescribed ethanol.
 前記ポリカーボネート構造、脂肪族ポリエステル構造は、前記ウレタン樹脂の製造に使用するポリオール由来の構造であることが好ましい。具体的には、前記ポリカーボネート構造を有するウレタン樹脂は、前記ポリオールとして後述するポリカーボネートポリオールを含むものを使用することによって製造することができる。また、前記脂肪族ポリエステル構造を有するウレタン樹脂は、前記ポリオールとして後述する脂肪族ポリエステルポリオールを含むものを使用することによって製造することができる。 It is preferable that the polycarbonate structure and the aliphatic polyester structure are structures derived from a polyol used for producing the urethane resin. Specifically, the urethane resin having the polycarbonate structure can be produced by using a resin containing a polycarbonate polyol described later as the polyol. Moreover, the urethane resin which has the said aliphatic polyester structure can be manufactured by using what contains the aliphatic polyester polyol mentioned later as the said polyol.
 前記ウレタン樹脂(x1)の製造に使用可能なポリオールとしては、前記のとおりポリカーボネートポリオール、脂肪族ポリエステルポリオール等を使用することができる。また、前記ポリオールとしては、必要に応じてその他のポリオールを組み合わせ使用することができる。 As the polyol that can be used for the production of the urethane resin (x1), as described above, polycarbonate polyol, aliphatic polyester polyol, and the like can be used. Moreover, as said polyol, another polyol can be combined and used as needed.
 また、前記ポリカーボネートポリオールとしては、例えば炭酸エステルとポリオールとを反応させて得られるもの、ホスゲンとビスフェノールA等とを反応させて得られるものを使用することができる。 In addition, as the polycarbonate polyol, for example, those obtained by reacting a carbonate with a polyol, or those obtained by reacting phosgene with bisphenol A or the like can be used.
 前記炭酸エステルとしては、メチルカーボネート、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、シクロカーボネート、ジフェニルカーボネ-ト等を使用することできる。 As the carbonate ester, methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.
 前記炭酸エステルと反応しうるポリオールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,5-ヘキサンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,3-プロパンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチルプロパンジオール、2-メチル-1,8-オクタンジオール、ネオペンチルグリコール、ハイドロキノン、レゾルシン、ビスフェノール-A、ビスフェノール-F、4,4’-ビフェノール等の比較的低分子量のジヒドロキシ化合物等を使用することができる。 Examples of the polyol that can react with the carbonate ester include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,3- Butanediol, 1,2-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 2,5-hexanediol, 1,6-hexanediol, 1,7-heptane Diol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 3-methyl-1,5-pentanediol, 2- Ethyl-1,3-hexanediol, 2-methyl-1,3-pro Diol, 2-methyl-1,8-octanediol, 2-butyl-2-ethylpropanediol, 2-methyl-1,8-octanediol, neopentyl glycol, hydroquinone, resorcin, bisphenol-A, bisphenol-F, A relatively low molecular weight dihydroxy compound such as 4,4′-biphenol can be used.
 また、前記脂肪族ポリエステルポリオールとしては、例えば低分子量のポリオールとポリカルボン酸とをエステル化反応して得られる脂肪族ポリエステルポリオール;ε-カプロラクトンまたはγ-ブチロラクトン等の環状エステル化合物を開環重合反応して得られる脂肪族ポリエステル;これらの共重合ポリエステル等を使用することができる。 Examples of the aliphatic polyester polyol include an aliphatic polyester polyol obtained by esterification reaction of a low molecular weight polyol and a polycarboxylic acid; a ring-opening polymerization reaction of a cyclic ester compound such as ε-caprolactone or γ-butyrolactone. Aliphatic polyesters obtained as above; these copolyesters can be used.
 前記ポリエステルポリオールの製造に使用可能な低分子量のポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等を単独または2種以上併用して使用することができ、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオールまたは1,4-ブタンジオール等と、3-メチル-1,5-ペンタンジオールまたはネオペンチルグリコール等とを組み合わせ使用することが好ましい。 Examples of the low molecular weight polyol that can be used in the production of the polyester polyol include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 3- Methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane and the like can be used alone or in combination of two or more thereof. Ethylene glycol, 1,2-propanediol, It is preferable to use 1,3-butanediol or 1,4-butanediol in combination with 3-methyl-1,5-pentanediol or neopentyl glycol.
 前記ポリカルボン酸としては、例えばコハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸及びこれらの無水物またはエステル形成性誘導体を使用することができ、アジピン酸等の脂肪族ポリカルボン酸を使用することが好ましい。 Examples of the polycarboxylic acid include succinic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, azelaic acid and anhydrides or ester-forming derivatives thereof, and aliphatic polycarboxylic acids such as adipic acid can be used. It is preferable to use it.
 前記ポリカーボネートポリオール、脂肪族ポリエステルポリオールとしては、数平均分子量が500~4,000のものを使用することが好ましく、500~2,000のものを使用することがより好ましい。 The polycarbonate polyol and aliphatic polyester polyol preferably have a number average molecular weight of 500 to 4,000, more preferably 500 to 2,000.
 また、前記ウレタン樹脂(x1)の製造に使用可能なポリオールとしては、前記したもののほかに必要に応じて、その他のポリオールを併用することができる。 Further, as a polyol that can be used in the production of the urethane resin (x1), other polyols can be used in combination with the above-described ones as necessary.
 前記その他のポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等、アクリル共重合体に水酸基を導入したアクリルポリオール、分子内に水酸基を有するブタジエンの共重合体であるポリブタジエンポリオール、水添ポリブタジエンポリオール、エチレン-酢酸ビニル共重合体の部分鹸化物等を適宜使用することができる。 Examples of the other polyol include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, and the like are acrylic polyols having a hydroxyl group introduced into an acrylic copolymer, and copolymers of butadiene having a hydroxyl group in the molecule. Polybutadiene polyol, hydrogenated polybutadiene polyol, partially saponified product of ethylene-vinyl acetate copolymer, and the like can be used as appropriate.
 また、前記ウレタン樹脂(x1)として親水性基を有するウレタン樹脂を製造する場合には、前記その他のポリオールとして親水性基を有するポリオールを使用することが好ましい。 In the case of producing a urethane resin having a hydrophilic group as the urethane resin (x1), it is preferable to use a polyol having a hydrophilic group as the other polyol.
 前記親水性基を有するポリオールとしては、例えば2,2-ジメチロールプロピオン酸、2,2’-ジメチロールブタン酸、2,2-ジメチロール吉草酸等のカルボキシル基を有するポリオール;5-スルホイソフタル酸、スルホテレフタル酸、4-スルホフタル酸、5[4-スルホフェノキシ]イソフタル酸等のスルホン酸基を有するポリオールを使用することができる。また、前記親水性基を有するポリオールとしては、前記した低分子量の親水性基を有するポリオールと、例えばアジピン酸等の各種ポリカルボン酸とを反応させて得られる親水性基を有するポリエステルポリオールを使用することもできる。 Examples of the polyol having a hydrophilic group include a polyol having a carboxyl group such as 2,2-dimethylolpropionic acid, 2,2′-dimethylolbutanoic acid, 2,2-dimethylolvaleric acid, and the like; 5-sulfoisophthalic acid Polyols having a sulfonic acid group such as sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid can be used. In addition, as the polyol having a hydrophilic group, a polyester polyol having a hydrophilic group obtained by reacting the above-described polyol having a low molecular weight hydrophilic group with various polycarboxylic acids such as adipic acid is used. You can also
 前記ポリオールと反応しウレタン樹脂を生成しうるポリイソシアネートとしては、例えば4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族構造を有するポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ポリイソシアネートまたは脂肪族環式構造を有するポリイソシアネートを使用することができる。 Examples of the polyisocyanate that can react with the polyol to form a urethane resin include 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene. Polyisocyanates having an aromatic structure such as diisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or aliphatic cyclic structures Po It is possible to use the isocyanate.
 また、前記ウレタン樹脂を製造する際に使用できる鎖伸長剤としては、ポリアミン、ヒドラジン化合物、その他活性水素原子を有する化合物を使用することができる。 Also, as a chain extender that can be used when producing the urethane resin, polyamine, hydrazine compounds, and other compounds having active hydrogen atoms can be used.
 前記ポリアミンとしては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、1,4-シクロヘキサンジアミン等のジアミン;N-ヒドロキシメチルアミノエチルアミン、N-ヒドロキシエチルアミノエチルアミン、N-ヒドロキシプロピルアミノプロピルアミン、N-エチルアミノエチルアミン、N-メチルアミノプロピルアミン、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン等を使用することができ、エチレンジアミンを使用することが好ましい。 Examples of the polyamine include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'- Diamines such as dimethyl-4,4′-dicyclohexylmethanediamine, 1,4-cyclohexanediamine; N-hydroxymethylaminoethylamine, N-hydroxyethylaminoethylamine, N-hydroxypropylaminopropylamine, N-ethylaminoethylamine, N -Methylaminopropylamine, diethylenetriamine, dipropylenetriamine, triethylenetetramine, etc. can be used, preferably ethylenediamine.
 前記ヒドラジン化合物としては、例えばヒドラジン、N,N’-ジメチルヒドラジン、1,6-ヘキサメチレンビスヒドラジン、コハク酸ジヒドラジッド、アジピン酸ジヒドラジド、グルタル酸ジヒドラジド、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、β-セミカルバジドプロピオン酸ヒドラジド、3-セミカルバジッド-プロピル-カルバジン酸エステル、セミカルバジッド-3-セミカルバジドメチル-3,5,5-トリメチルシクロヘキサンを使用することができる。 Examples of the hydrazine compound include hydrazine, N, N′-dimethylhydrazine, 1,6-hexamethylenebishydrazine, succinic acid dihydrazide, adipic acid dihydrazide, glutaric acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide, β-semicarbazide propion Acid hydrazide, 3-semicarbazide-propyl-carbazate, semicarbazide-3-semicarbazide methyl-3,5,5-trimethylcyclohexane can be used.
 前記その他活性水素を有する化合物としては、例えば、エチレングリコール、ジエチレンリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサメチレングリコール、サッカロース、メチレングリコール、グリセリン、ソルビトール等のグリコール;ビスフェノールA、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、水素添加ビスフェノールA、ハイドロキノン等のフェノール、水等を使用することができる。 Examples of the other active hydrogen-containing compounds include ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, Glycols such as saccharose, methylene glycol, glycerin, sorbitol; phenols such as bisphenol A, 4,4′-dihydroxydiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenylsulfone, hydrogenated bisphenol A, hydroquinone, Water or the like can be used.
 前記鎖伸長剤は、例えば前記ポリアミンが有するアミノ基と、イソシアネート基との当量比が、1.9以下(当量比)となる範囲で使用することが好ましく、0.3~1(当量比)の範囲で使用することがより好ましい。 The chain extender is preferably used, for example, in such a range that the equivalent ratio between the amino group of the polyamine and the isocyanate group is 1.9 or less (equivalent ratio), and 0.3 to 1 (equivalent ratio) It is more preferable to use in the range.
 前記ウレタン樹脂(x1)は、例えば無溶剤下または有機溶剤の存在下で、前記ポリオールと前記ポリイソシアネートと、必要に応じて前記鎖伸長剤とを、従来知られた方法で反応させることによって製造することができる。 The urethane resin (x1) is produced, for example, by reacting the polyol, the polyisocyanate, and, if necessary, the chain extender by a conventionally known method in the absence of a solvent or in the presence of an organic solvent. can do.
 前記ポリオールと前記ポリイソシアネートとの反応は、急激な発熱や発泡等に十分に注意し、好ましくは50℃~120℃、より好ましくは80℃~100℃の反応温度で、前記ポリオールと前記ポリイソシアネートとを、一括混合、または、何れか一方を他方へ滴下等の方法で逐次供給し、1時間~15時間程度反応させる方法により行うことができる。 In the reaction of the polyol with the polyisocyanate, sufficient attention is paid to sudden heat generation and foaming, and the polyol and the polyisocyanate are preferably reacted at a reaction temperature of 50 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C. Can be carried out by batch mixing or by sequentially supplying either one to the other by dropping or the like and reacting for about 1 to 15 hours.
 また、前記ウレタン樹脂(x1)の水分散体を含有するプライマーは、前記ポリオールと前記ポリイソシアネートと、必要に応じて鎖伸長剤とを前記した方法により反応させることによってウレタン樹脂(x1)を製造し、必要に応じて、前記ウレタン樹脂(x1)の有するアニオン性基等の親水性基の一部または全てを中和等した後、それを、プライマーの溶媒として使用する水性媒体と混合することによって、ウレタン樹脂(x1)が水性媒体中に分散または一部が溶解したウレタン樹脂(x1)水分散体からなるプライマーを得ることができる。 Moreover, the primer containing the water dispersion of the said urethane resin (x1) manufactures a urethane resin (x1) by making the said polyol, the said polyisocyanate, and a chain extender react as needed by the above-mentioned method. If necessary, after neutralizing a part or all of hydrophilic groups such as anionic groups of the urethane resin (x1), it is mixed with an aqueous medium used as a solvent for the primer. Thus, a primer composed of an aqueous dispersion of urethane resin (x1) in which urethane resin (x1) is dispersed or partially dissolved in an aqueous medium can be obtained.
 より具体的には、前記ポリオールと前記ポリイソシアネートとを前記した方法により反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーを製造し、必要に応じて、前記ウレタンプレポリマーの有するアニオン性基等の親水性基の一部または全てを中和等した後、それを水性媒体と混合し、必要に応じて前記鎖伸長剤を用いて鎖伸長することによって、ウレタン樹脂(x1)が水性媒体中に分散または溶解したウレタン樹脂(x1)水分散体からなるプライマーを得ることができる。 More specifically, by reacting the polyol and the polyisocyanate by the method described above, a urethane prepolymer having an isocyanate group at the terminal is produced, and if necessary, the anionic group possessed by the urethane prepolymer. After neutralizing a part or all of the hydrophilic group such as an aqueous medium, the urethane resin (x1) is mixed with an aqueous medium and, if necessary, chain-extended using the chain extender, whereby the urethane resin (x1) becomes an aqueous medium. A primer composed of an aqueous dispersion of urethane resin (x1) dispersed or dissolved therein can be obtained.
 前記ポリイソシアネートと前記ポリオールとの反応は、例えば前記ポリイソシアネートの有するイソシアネート基と前記ポリオールの有する水酸基との当量割合〔イソシアネート基/水酸基〕が0.9~2となる範囲で行うことが好ましい。 The reaction between the polyisocyanate and the polyol is preferably performed, for example, in a range where the equivalent ratio of the isocyanate group of the polyisocyanate and the hydroxyl group of the polyol [isocyanate group / hydroxyl group] is 0.9 to 2.
 前記ウレタン樹脂(x1)を製造する際には、前記のとおり溶媒として有機溶剤を使用することもできる。前記有機溶剤としては、例えばアセトン、メチルエチルケトン等のケトン;テトラヒドロフラン、ジオキサン等のエーテル;酢酸エチル、酢酸ブチル等の酢酸エステル;アセトニトリル等のニトリル;ジメチルホルムアミド、N-メチルピロリドン等のアミドを使用することができる。
 前記有機溶剤は、前記ウレタン樹脂(x1)の製造後、蒸留法等によって除去することが好ましい。しかし、前記プライマーとして前記ウレタン樹脂(x1)と有機溶剤とを含有するものを使用する場合には、前記ウレタン樹脂(x1)を製造する際に使用した有機溶剤を、前記プライマーの溶媒として使用してもよい。
When manufacturing the said urethane resin (x1), an organic solvent can also be used as a solvent as above-mentioned. Examples of the organic solvent include ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and dioxane; acetic esters such as ethyl acetate and butyl acetate; nitriles such as acetonitrile; amides such as dimethylformamide and N-methylpyrrolidone. Can do.
The organic solvent is preferably removed by distillation or the like after the production of the urethane resin (x1). However, when the primer containing the urethane resin (x1) and the organic solvent is used, the organic solvent used when the urethane resin (x1) is produced is used as the primer solvent. May be.
 前記ウレタン樹脂(x1)としては、前記密着性に優れ、かつ導電性に優れた導電性パターンを形成するうえで、5,000~500,000の重量平均分子量を有するものを使用することが好ましく、20,000~100,000のものを使用することがより好ましい。 As the urethane resin (x1), it is preferable to use a resin having a weight average molecular weight of 5,000 to 500,000 in order to form a conductive pattern having excellent adhesion and excellent conductivity. 20,000 to 100,000 are more preferable.
 前記ウレタン樹脂(x1)としては、必要に応じて各種官能基を有するものを使用することができる。前記官能基としては、例えばアルコキシシリル基、シラノール基、水酸基、アミノ基等の架橋性官能基が挙げられる。 As the urethane resin (x1), those having various functional groups can be used as necessary. Examples of the functional group include crosslinkable functional groups such as an alkoxysilyl group, a silanol group, a hydroxyl group, and an amino group.
 前記架橋性官能基は、前記流動体(a)を担持するプライマー層(X)中に架橋構造を形成することで、耐久性に優れたパターン(層(Y))を形成するうえで好適である。 The crosslinkable functional group is suitable for forming a pattern (layer (Y)) having excellent durability by forming a crosslinked structure in the primer layer (X) carrying the fluid (a). is there.
 前記アルコキシシリル基、シラノール基は、前記ウレタン樹脂(x1)を製造する際にγ-アミノプロピルトリエトキシシラン等を使用することによって、前記ウレタン樹脂中に導入することができる。 The alkoxysilyl group and silanol group can be introduced into the urethane resin by using γ-aminopropyltriethoxysilane or the like when the urethane resin (x1) is produced.
 また、前記ウレタン樹脂(x1)を後述する架橋剤(D)と組み合わせ使用する場合には、前記架橋剤(D)の有する官能基と反応しうる官能基を有するものを使用することができる。前記官能基としては、組み合わせ使用する架橋剤(D)の選択にもよるが、例えばブロックイソシアネート化合物等の架橋剤を使用する場合には水酸基またはアミノ基等を使用することができる。 Further, when the urethane resin (x1) is used in combination with a crosslinking agent (D) described later, one having a functional group capable of reacting with the functional group of the crosslinking agent (D) can be used. As the functional group, although depending on the selection of the crosslinking agent (D) to be used in combination, for example, when a crosslinking agent such as a blocked isocyanate compound is used, a hydroxyl group or an amino group can be used.
 また、前記プライマーに含まれる樹脂に使用可能なビニル樹脂(x2)としては、重合性不飽和二重結合を有する単量体の重合体を使用することができる。具体的には、ポリエチレン、ポリプロピレン、ポリブタジエン、エチレン-プロピレン共重合体、天然ゴム、合成イソプロピレンゴム、エチレン-酢酸ビニル共重合体、アクリル樹脂等を使用することができ、メタクリル酸メチル由来の構造単位を有するアクリル樹脂を使用することが好ましい。 Also, as the vinyl resin (x2) that can be used for the resin contained in the primer, a monomer polymer having a polymerizable unsaturated double bond can be used. Specifically, polyethylene, polypropylene, polybutadiene, ethylene-propylene copolymer, natural rubber, synthetic isopropylene rubber, ethylene-vinyl acetate copolymer, acrylic resin, etc. can be used, and a structure derived from methyl methacrylate. It is preferable to use an acrylic resin having units.
 前記アクリル樹脂としては、(メタ)アクリル単量体を重合して得られる重合体または共重合体を使用することができる。なお、(メタ)アクリル単量体は、アクリル単量体及びメタクリル単量体のいずれか一方または両方を指す。 As the acrylic resin, a polymer or copolymer obtained by polymerizing a (meth) acrylic monomer can be used. In addition, a (meth) acryl monomer points out any one or both of an acrylic monomer and a methacryl monomer.
 前記アクリル樹脂としては、前記所定のエタノールの吸収率を備えた塗膜(x)を形成する観点から、(メタ)アクリル酸メチル由来の構造単位を有するアクリル樹脂を使用することが好ましい。 As the acrylic resin, it is preferable to use an acrylic resin having a structural unit derived from methyl (meth) acrylate from the viewpoint of forming the coating film (x) having the predetermined ethanol absorption rate.
 前記アクリル樹脂としては、例えば後述する各種の(メタ)アクリル単量体を重合することによって製造することができる。 The acrylic resin can be produced, for example, by polymerizing various (meth) acrylic monomers described later.
 前記(メタ)アクリル単量体としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステル;(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸2,2,3,3-ペンタフルオロプロピル、(メタ)アクリル酸パーフルオロシクロヘキシル、(メタ)アクリル酸2,2,3,3,-テトラフルオロプロピル、(メタ)アクリル酸β-(パーフルオロオクチル)エチル等の(メタ)アクリル酸アルキルエステルを使用することができる。 Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and (meth) acrylic acid t. -Butyl, 2-ethylhexyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, (meth) (Meth) acrylic acid esters such as stearyl acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate; (meth) acrylic acid 2, 2,2-trifluoroethyl, 2,2,3,3-pentafluoropropyl (meth) acrylate, (meth Use (meth) acrylic acid alkyl esters such as perfluorocyclohexyl acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, β- (perfluorooctyl) ethyl (meth) acrylate, etc. be able to.
 前記したなかでも、メタクリル酸メチルは、所定のエタノールの吸収率を備えた塗膜(x)を形成するうえで使用することが好ましく、導電性パターンを作製する際の加熱工程等における熱等の影響によらず、前記プライマー層(X)と前記支持体との優れた密着性を付与するうえで、前記メタクリル酸メチルを使用することが好ましい。また、電子回路等の導電性パターンを形成する際に求められる、概ね0.01μm~200μm程度、好ましくは0.01μm~150μm程度の幅からなる細線を、にじみを引き起こすことなく印刷すること(細線性の向上)を可能にするうえでも、前記メタクリル酸メチルを使用することがより好ましい。 Among the above, methyl methacrylate is preferably used for forming a coating film (x) having a predetermined ethanol absorption rate, such as heat in a heating step or the like in producing a conductive pattern. Regardless of the influence, it is preferable to use the methyl methacrylate in order to provide excellent adhesion between the primer layer (X) and the support. Also, a fine line having a width of about 0.01 μm to 200 μm, preferably about 0.01 μm to 150 μm, which is required when forming a conductive pattern such as an electronic circuit, is printed without causing bleeding (thin line). The use of the methyl methacrylate is more preferable in order to enable improvement of the property.
 また、前記メタクリル酸メチルとともに、炭素原子数2個~12個のアルキル基を有する(メタ)アクリル酸アルキルエステルを使用することが好ましく、炭素原子数3個~8個のアルキル基を有するアクリル酸アルキルエステルを使用することがより好ましく、アクリル酸n-ブチルを使用することが、前記所定のエタノールの吸収率を備えた塗膜(x)を形成し、前記密着性及び導電性のより一層の向上を図るうえで好ましい。また、前記流動体(a)のにじみ等がなく細線性に優れた導電性パターンを形成するうえでも好ましい。 Further, it is preferable to use (meth) acrylic acid alkyl ester having an alkyl group having 2 to 12 carbon atoms together with the methyl methacrylate, and acrylic acid having an alkyl group having 3 to 8 carbon atoms. It is more preferable to use an alkyl ester, and the use of n-butyl acrylate forms the coating film (x) having the predetermined ethanol absorption rate, and further improves the adhesion and conductivity. It is preferable for improvement. Moreover, it is preferable also when forming the electroconductive pattern excellent in fine-line property without the bleeding etc. of the said fluid (a).
 前記(メタ)アクリル酸メチルは、前記(メタ)アクリル単量体混合物の全量に対して、好ましくは10質量%~70質量%、より好ましくは30質量%~65質量%であり、かつ、前記炭素原子数2個~12個のアルキル基を有するアクリル酸アルキルエステル、好ましくは炭素原子数3個~8個のアルキル基を有するアクリル酸アルキルエステルは、前記(メタ)アクリル単量体混合物の全量に対して、好ましくは20質量%~80質量%、より好ましくは35質量%~70質量%である。 The methyl (meth) acrylate is preferably 10% by mass to 70% by mass, more preferably 30% by mass to 65% by mass with respect to the total amount of the (meth) acrylic monomer mixture, and The acrylic acid alkyl ester having an alkyl group having 2 to 12 carbon atoms, preferably the acrylic acid alkyl ester having an alkyl group having 3 to 8 carbon atoms is the total amount of the (meth) acrylic monomer mixture. Is preferably 20% by mass to 80% by mass, and more preferably 35% by mass to 70% by mass.
 また、前記アクリル樹脂を製造する際に使用可能な(メタ)アクリル単量体としては、前記したものの他に、アクリル酸、メタクリル酸、(メタ)アクリル酸β-カルボキシエチル、2-(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無水イタコン酸、β-(メタ)アクリロイルオキシエチルハイドロゲンサクシネート等のカルボキシル基を有するビニル単量体を使用することができる。前記カルボキシル基を有するビニル単量体は、アンモニア、水酸化カリウム等によって中和されていてもよい。 Further, (meth) acrylic monomers that can be used for producing the acrylic resin include, in addition to those described above, acrylic acid, methacrylic acid, β-carboxyethyl (meth) acrylate, 2- (meth) Carboxyl groups such as acryloylpropionic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid half ester, maleic acid half ester, maleic anhydride, itaconic anhydride, β- (meth) acryloyloxyethyl hydrogen succinate, etc. The vinyl monomer can be used. The vinyl monomer having a carboxyl group may be neutralized with ammonia, potassium hydroxide or the like.
 また、前記(メタ)アクリル単量体としては、前記アクリル樹脂に、メチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上のアミド基、前記以外のアミド基、水酸基、グリシジル基、アミノ基、シリル基、アジリジニル基、イソシアネート基、オキサゾリン基、シクロペンテニル基、アリル基、カルボニル基、アセトアセチル基等の前記架橋性官能基を導入する観点から、架橋性官能基を有するビニル単量体を使用することができる。 In addition, as the (meth) acrylic monomer, the acrylic resin includes at least one amide group selected from the group consisting of a methylolamide group and an alkoxymethylamide group, an amide group other than the above, a hydroxyl group, a glycidyl group, A vinyl monomer having a crosslinkable functional group from the viewpoint of introducing the crosslinkable functional group such as amino group, silyl group, aziridinyl group, isocyanate group, oxazoline group, cyclopentenyl group, allyl group, carbonyl group, acetoacetyl group, etc. The body can be used.
 前記架橋性官能基を有する(メタ)アクリル単量体に使用可能なメチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上のアミド基を有するビニル単量体としては、例えばN-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-メトキシエトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-イソプロポキシメチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、N-ペントキシメチル(メタ)アクリルアミド、N-エトキシメチル-N-メトキシメチル(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミド、N-エトキシメチル-N-プロポキシメチル(メタ)アクリルアミド、N,N’-ジプロポキシメチル(メタ)アクリルアミド、N-ブトキシメチル-N-プロポキシメチル(メタ)アクリルアミド、N,N-ジブトキシメチル(メタ)アクリルアミド、N-ブトキシメチル-N-メトキシメチル(メタ)アクリルアミド、N,N’-ジペントキシメチル(メタ)アクリルアミド、N-メトキシメチル-N-ペントキシメチル(メタ)アクリルアミド等を使用することができる。 Examples of the vinyl monomer having one or more amide groups selected from the group consisting of a methylolamide group and an alkoxymethylamide group that can be used for the (meth) acrylic monomer having a crosslinkable functional group include N- Methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-methoxyethoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meta ) Acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethoxymethyl-N-methoxymethyl (meth) acrylamide, N, N'-dimethylol (Meth) acrylamide, N-ethoxymethyl-N-propoxymethyl (meth) acrylamide, N, N′-dipropoxymethyl (meth) acrylamide, N-butoxymethyl-N-propoxymethyl (meth) acrylamide, N, N-di Butoxymethyl (meth) acrylamide, N-butoxymethyl-N-methoxymethyl (meth) acrylamide, N, N′-dipentoxymethyl (meth) acrylamide, N-methoxymethyl-N-pentoxymethyl (meth) acrylamide, etc. Can be used.
 なかでも、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミドを使用することが、めっき工程における導電性物質(a2)の剥離等を防止可能なレベルの耐久性等を備えた導電性パターンを形成するうえで好ましい。 Among them, the use of Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl (meth) acrylamide can provide a level of durability that can prevent peeling of the conductive material (a2) in the plating process. It is preferable when forming the electroconductive pattern provided with.
 前記架橋性官能基を有する(メタ)アクリル単量体としては、前記したもの以外にも、例えば(メタ)アクリルアミド等のアミド基を有するビニル単量体、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸(4-ヒドロキシメチルシクロヘキシル)メチル、(メタ)アクリル酸グリセロール、(メタ)アクリル酸ポリエチレングリコール、N-ヒドロキシエチル(メタ)アクリルアミド等の水酸基を有するビニル単量体:(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリルグリシジルエーテル等のグリシジル基を有する重合性単量体;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸N-モノアルキルアミノアルキル、(メタ)アクリル酸N,N-ジアルキルアミノアルキル等のアミノ基を有する重合性単量体;ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン、γ-(メタ)アクリロキシプロピルトリイソプロポキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン及びその塩酸塩のシリル基を有する重合性単量体;(メタ)アクリル酸2-アジリジニルエチル等のアジリジニル基を有する重合性単量体;(メタ)アクリロイルイソシアネート、(メタ)アクリロイルイソシアネートエチルのフェノール、それらのメチルエチルケトオキシム付加物等の(ブロック化)イソシアネート基を有する重合性単量体;2-イソプロペニル-2-オキサゾリン、2-ビニル-2-オキサゾリン等のオキサゾリン基を有する重合性単量体;(メタ)アクリル酸ジシクロペンテニル等のシクロペンテニル基を有する重合性単量体;(メタ)アクリル酸アリル等のアリル基を有する重合性単量体;アクロレイン、ジアセトン(メタ)アクリルアミド等のカルボニル基を有する重合性単量体等を使用することができる。 Examples of the (meth) acrylic monomer having a crosslinkable functional group include those other than those described above, for example, a vinyl monomer having an amide group such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, (Meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid 2-hydroxybutyl, (meth) acrylic acid 4-hydroxybutyl, (meth) acrylic acid 6-hydroxyhexyl, (meth) acrylic acid (4-hydroxymethyl) Cyclohexyl) methyl, glycerol (meth) acrylate, polyethylene glycol (meth) acrylate, vinyl monomers having a hydroxyl group such as N-hydroxyethyl (meth) acrylamide: glycidyl (meth) acrylate, allyl (meth) acrylate Polymerizable monomers having a glycidyl group such as glycidyl ether; Polymerizable monomers having an amino group such as aminoethyl acrylate, dimethylaminoethyl (meth) acrylate, N-monoalkylaminoalkyl (meth) acrylate, N, N-dialkylaminoalkyl (meth) acrylate; Vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, γ- ( (Meth) acryloxypropylmethyldimethoxysilane, γ- (meth) acryloxypropylmethyldiethoxysilane, γ- (meth) acryloxypropyltriisopropoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ- Aminopropyltrimethoxysila And a polymerizable monomer having a silyl group of a hydrochloride thereof; a polymerizable monomer having an aziridinyl group such as 2-aziridinylethyl (meth) acrylate; (meth) acryloyl isocyanate, (meth) acryloyl isocyanate ethyl Polymerizable monomers having an (blocked) isocyanate group such as phenol and their methyl ethyl ketoxime adducts; polymerizable monomers having an oxazoline group such as 2-isopropenyl-2-oxazoline and 2-vinyl-2-oxazoline Polymers having a cyclopentenyl group such as (meth) acrylate dicyclopentenyl; Polymerizable monomers having an allyl group such as allyl (meth) acrylate; Acrolein, diacetone (meth) acrylamide, etc. A polymerizable monomer having a carbonyl group can be used.
 前記架橋性官能基を有する(メタ)アクリル単量体は、前記(メタ)アクリル単量体混合物の全量に対して0質量%~50質量%の範囲で使用することができる。なお、前記架橋剤(D)として自己架橋反応するものを使用する場合には、前記架橋性官能基を有する(メタ)アクリル単量体を使用しなくてもよい。 The (meth) acrylic monomer having a crosslinkable functional group can be used in the range of 0% by mass to 50% by mass with respect to the total amount of the (meth) acrylic monomer mixture. In addition, when using what carries out a self-crosslinking reaction as said crosslinking agent (D), it is not necessary to use the (meth) acryl monomer which has the said crosslinkable functional group.
 前記架橋性官能基を有する(メタ)アクリル単量体のうち、前記アミド基を有する(メタ)アクリル単量体は、自己架橋反応性のメチロールアミド基等を導入するうえで、(メタ)アクリル単量体混合物の全量に対して0.1質量%~50質量%の範囲で使用することが好ましく、1質量%~30質量%の範囲で使用することがより好ましい。また、前記自己架橋反応性のメチロールアミド基と組み合わせて使用するその他のアミド基を有する(メタ)アクリル単量体及び水酸基を有する(メタ)アクリル単量体は、前記(メタ)アクリル単量体の全量に対して合計0.1質量%~30質量%の範囲で使用することが好ましく、1質量%~20質量%の範囲で使用することがより好ましい。 Among the (meth) acrylic monomers having the crosslinkable functional group, the (meth) acrylic monomer having the amide group has a (meth) acrylic group for introducing a self-crosslinking reactive methylolamide group. It is preferably used in the range of 0.1% by mass to 50% by mass and more preferably in the range of 1% by mass to 30% by mass with respect to the total amount of the monomer mixture. In addition, the (meth) acryl monomer having another amide group and the (meth) acryl monomer having a hydroxyl group used in combination with the self-crosslinking reactive methylolamide group are the (meth) acryl monomer. The total amount is preferably 0.1 to 30% by mass, and more preferably 1 to 20% by mass.
 また、前記架橋性官能基を有する(メタ)アクリル単量体のうち、前記水酸基を有する(メタ)アクリル単量体や酸基を有する(メタ)アクリル単量体は、組み合わせ使用する架橋剤(D)の種類等にもよるが、前記(メタ)アクリル単量体混合物の全量に対して概ね0.05質量%~50質量%の範囲で使用することが好ましく、0.05質量%~30質量%の範囲で使用することが好ましく、0.1質量%~10質量%で使用することがより好ましい。 In addition, among the (meth) acrylic monomers having the crosslinkable functional group, the (meth) acrylic monomer having a hydroxyl group and the (meth) acrylic monomer having an acid group are used as a crosslinking agent ( Depending on the type of D), etc., it is preferably used in a range of approximately 0.05% by mass to 50% by mass with respect to the total amount of the (meth) acrylic monomer mixture, preferably 0.05% by mass to 30%. It is preferably used in the range of mass%, more preferably 0.1 mass% to 10 mass%.
 また、前記アクリル樹脂を製造する際には、前記(メタ)アクリル単量体とともに、酢酸ビニル、プロピオン酸ビニル、ビニルブチラート、バーサチック酸ビニル、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、アミルビニルエーテル、ヘキシルビニルエーテル、(メタ)アクリロニトリル、スチレン、α-メチルスチレン、ビニルトルエン、ビニルアニソール、α-ハロスチレン、ビニルナフタリン、ジビニルスチレン、イソプレン、クロロプレン、ブタジエン、エチレン、テトラフルオロエチレン、フッ化ビニリデン、N-ビニルピロリドンや、ポリエチレングリコールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、2-メチルアリルスルホン酸、(メタ)アクリル酸2-スルホエチル、(メタ)アクリル酸2-スルホプロピル、「アデカリアソープPP-70、PPE-710」(株式会社ADEKA製)またはそれらの塩等を組み合わせ使用することもできる。 In addition, when the acrylic resin is produced, together with the (meth) acrylic monomer, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl versatate, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, amyl Vinyl ether, hexyl vinyl ether, (meth) acrylonitrile, styrene, α-methylstyrene, vinyl toluene, vinyl anisole, α-halostyrene, vinyl naphthalene, divinyl styrene, isoprene, chloroprene, butadiene, ethylene, tetrafluoroethylene, vinylidene fluoride, N -Vinylpyrrolidone, polyethylene glycol mono (meth) acrylate, glycerol mono (meth) acrylate, vinyl sulfonic acid, styrene sulfonic acid, Allyl sulfonic acid, 2-methylallyl sulfonic acid, 2-sulfoethyl (meth) acrylate, 2-sulfopropyl (meth) acrylate, “Adekalya soap PP-70, PPE-710” (manufactured by ADEKA Corporation) or those A combination of these can also be used.
 前記アクリル樹脂は、前記した各種ビニル単量体の混合物を、従来から知られている方法で重合することによって製造することができるが、密着性に優れ導電性に優れた導電性パターンを製造するうえで、乳化重合法を適用することが好ましい。 The acrylic resin can be produced by polymerizing a mixture of various vinyl monomers as described above by a conventionally known method, but produces a conductive pattern having excellent adhesion and excellent conductivity. In addition, it is preferable to apply an emulsion polymerization method.
 前記乳化重合法としては、例えば水と、(メタ)アクリル単量体混合物と、重合開始剤と、必要に応じて連鎖移動剤や乳化剤や分散安定剤等とを、反応容器中に一括供給、混合して重合する方法や、(メタ)アクリル単量体混合物を反応容器中に滴下し重合するモノマー滴下法や、(メタ)アクリル単量体混合物と乳化剤等と水とを予め混合したものを、反応容器中に滴下し重合するプレエマルジョン法等を適用することができる。 As the emulsion polymerization method, for example, water, a (meth) acrylic monomer mixture, a polymerization initiator, and if necessary, a chain transfer agent, an emulsifier, a dispersion stabilizer, and the like are collectively supplied into a reaction vessel. A method of mixing and polymerizing, a monomer dropping method in which a (meth) acrylic monomer mixture is dropped into a reaction vessel and polymerizing, a (meth) acrylic monomer mixture, an emulsifier and the like and water mixed in advance A pre-emulsion method that drops and polymerizes in a reaction vessel can be applied.
 前記乳化重合法の反応温度は、使用する(メタ)アクリル単量体及び重合開始剤の種類によって異なるが、例えば30℃~90℃程度、反応時間は例えば1時間~l0時間程度であることが好ましい。 The reaction temperature of the emulsion polymerization method varies depending on the type of the (meth) acrylic monomer and the polymerization initiator used, but is about 30 ° C. to 90 ° C., for example, and the reaction time is about 1 hour to 10 hours, for example. preferable.
 前記重合開始剤としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩、過酸化ベンゾイル、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物、過酸化水素等があり、これら過酸化物のみを用いてラジカル重合するか、或いは前記過酸化物と、アスコルビン酸、エリソルビン酸、エリソルビン酸ナトリウム、ホルムアルデヒドスルホキシラートの金属塩、チオ硫酸ナトリウム、重亜硫酸ナトリウム、塩化第二鉄等の還元剤とを併用したレドックス重合開始剤系によっても重合でき、また、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩等のアゾ系開始剤を使用することも可能であり、これら化合物は、単独使用でもよく2種以上を併用してもよい。 Examples of the polymerization initiator include persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, organic peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide, hydrogen peroxide Radical polymerization using only these peroxides, or aspercolic acid, erythorbic acid, sodium erythorbate, metal salts of formaldehyde sulfoxylate, sodium thiosulfate, sodium bisulfite, Polymerization can also be achieved by a redox polymerization initiator system combined with a reducing agent such as ferric chloride, and 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-amidinopropane) It is also possible to use an azo initiator such as dihydrochloride, and these compounds can be used alone. Well it may be used in combination of two or more.
 前記アクリル樹脂の製造に使用可能な乳化剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、両性イオン性界面活性剤等が挙げられる。 Examples of emulsifiers that can be used in the production of the acrylic resin include anionic surfactants, nonionic surfactants, cationic surfactants, and zwitterionic surfactants.
 前記陰イオン性界面活性剤としては、例えば、高級アルコールの硫酸エステル及びその塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルフェニルスルホン酸塩、ポリオキシエチレンアルキルジフェニルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルの硫酸ハーフエステル塩、アルキルジフェニルエーテルジスルホン酸塩、コハク酸ジアルキルエステルスルホン酸塩、等が挙げられ、非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンジフェニルエーテル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体、アセチレンジオール系界面活性剤等を使用することができる。 Examples of the anionic surfactant include sulfates of higher alcohols and salts thereof, alkylbenzene sulfonates, polyoxyethylene alkylphenyl sulfonates, polyoxyethylene alkyl diphenyl ether sulfonates, and polyoxyethylene alkyl ethers. Examples include non-ionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl phenyl ether. Ethylene diphenyl ether, polyoxyethylene-polyoxypropylene block copolymer, acetylenic diol surfactant and the like can be used.
 また、前記陽イオン性界面活性剤としては、例えば、アルキルアンモニウム塩等を使用することができる。 Further, as the cationic surfactant, for example, an alkyl ammonium salt or the like can be used.
 また、両性イオン性界面活性剤としては、例えば、アルキル(アミド)ベタイン、アルキルジメチルアミンオキシド等を使用することができる。 Further, as the zwitterionic surfactant, for example, alkyl (amido) betaine, alkyldimethylamine oxide and the like can be used.
 前記乳化剤としては、上記の界面活性剤の他に、フッ素系界面活性剤、シリコーン系界面活性剤、一般的に「反応性乳化剤」と称される重合性不飽和基を分子内に有する乳化剤等を使用することもできる。 As the emulsifier, in addition to the above surfactants, fluorine surfactants, silicone surfactants, emulsifiers having a polymerizable unsaturated group generally called “reactive emulsifier” in the molecule, etc. Can also be used.
 前記反応性乳化剤としては、例えば、スルホン酸基及びその塩を有する「ラテムルS-180」(花王(株)製)、「エレミノールJS-2、RS-30」(三洋化成工業(株)製)等;硫酸基及びその塩を有する「アクアロンHS-10、HS-20、KH-1025」(第一工業製薬(株)製)、「アデカリアソープSE-10、SE-20」((株)ADEKA製)等;リン酸基を有する「ニューフロンティアA-229E」(第一工業製薬(株)製)等;非イオン性親水基を有する「アクアロンRN-10、RN-20、RN-30、RN-50」(第一工業製薬(株)製)等を使用することができる。 Examples of the reactive emulsifier include “Latemul S-180” (manufactured by Kao Corporation) having a sulfonic acid group and a salt thereof, and “Eleminol JS-2, RS-30” (manufactured by Sanyo Chemical Industries). Etc .; “AQUALON HS-10, HS-20, KH-1025” (Daiichi Kogyo Seiyaku Co., Ltd.) having a sulfate group and a salt thereof, “ADEKA rear soap SE-10, SE-20” (Corporation) "New Frontier A-229E" (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) having a phosphate group, etc .; "Aqualon RN-10, RN-20, RN-30, having a nonionic hydrophilic group, etc." RN-50 "(Daiichi Kogyo Seiyaku Co., Ltd.) can be used.
 また、前記アクリル樹脂(x2-1)の製造に使用可能な連鎖移動剤としては、ラウリルメルカプタン等を使用することができ、前記(メタ)アクリル単量体混合物の全量に対して0質量%~1質量%の範囲で使用することが好ましく、0質量%~0.5質量%の範囲であることがより好ましい。 Further, as a chain transfer agent that can be used for the production of the acrylic resin (x2-1), lauryl mercaptan or the like can be used, and it is 0% by mass to the total amount of the (meth) acrylic monomer mixture. It is preferably used in the range of 1% by mass, and more preferably in the range of 0% by mass to 0.5% by mass.
 また、前記プライマーに含まれる樹脂として使用可能なウレタン-ビニル複合樹脂(x3)としては、ウレタン樹脂(x3-1)とビニル重合体(x3-2)とが複合樹脂粒子を形成し水性媒体中に分散等できるものが挙げられる。 In addition, as the urethane-vinyl composite resin (x3) that can be used as the resin contained in the primer, urethane resin (x3-1) and vinyl polymer (x3-2) form composite resin particles in an aqueous medium. Can be dispersed.
 前記複合樹脂粒子は、具体的には、前記ウレタン樹脂(x3-1)が形成する樹脂粒子内に前記ビニル重合体(x3-2)の一部または全部が内在したものが挙げられる。コア層としての前記ビニル重合体(x3-2)と、シェル層としての前記親水性基を有するウレタン樹脂とから構成されるコア・シェル型の複合樹脂粒子を形成することが好ましい。特に導電性パターンを形成する際においては、電気特性を低下させうる界面活性剤等を使用する必要がない前記コア・シェル型の複合樹脂粒子を使用することが好ましい。なお、前記複合樹脂粒子としては、前記ビニル重合体(x3-2)が前記ウレタン樹脂(x3-1)によってほぼ完全に覆われていることが好ましいが、必須ではなく、本発明の効果を損なわない範囲で、前記ビニル重合体(x3-2)の一部が前記複合樹脂粒子の最外部に存在してもよい。 Specific examples of the composite resin particles include those in which a part or all of the vinyl polymer (x3-2) is contained in the resin particles formed by the urethane resin (x3-1). It is preferable to form core-shell type composite resin particles composed of the vinyl polymer (x3-2) as the core layer and the urethane resin having the hydrophilic group as the shell layer. In particular, when forming a conductive pattern, it is preferable to use the core-shell type composite resin particles that do not require the use of a surfactant or the like that can lower the electrical characteristics. As the composite resin particles, it is preferable that the vinyl polymer (x3-2) is almost completely covered with the urethane resin (x3-1), but this is not essential and the effect of the present invention is impaired. A part of the vinyl polymer (x3-2) may be present on the outermost part of the composite resin particle as long as it does not exist.
 また、前記複合樹脂粒子としては、前記ビニル重合体(x3-2)の方が、前記ウレタン樹脂(x3-1)と比較してより親水性である場合には、前記ビニル重合体(x3-2)が形成した樹脂粒子内に、前記ウレタン樹脂(x3-1)の一部または全部が内在し複合樹脂粒子を形成したものであってもよい。 As the composite resin particles, when the vinyl polymer (x3-2) is more hydrophilic than the urethane resin (x3-1), the vinyl polymer (x3- In the resin particles formed in 2), a part or all of the urethane resin (x3-1) may be present to form composite resin particles.
 また、前記ウレタン樹脂(x3-1)と前記ビニル重合体(x3-2)とは、共有結合を形成していてもよいが、結合を形成していないことが好ましい。 The urethane resin (x3-1) and the vinyl polymer (x3-2) may form a covalent bond, but preferably do not form a bond.
 また、前記ウレタン-ビニル複合樹脂(x3)としては、前記ビニル重合体(x3-2)がアクリル樹脂であるウレタン-アクリル複合樹脂を使用することが好ましい。 Further, as the urethane-vinyl composite resin (x3), it is preferable to use a urethane-acrylic composite resin in which the vinyl polymer (x3-2) is an acrylic resin.
 また、前記複合樹脂粒子は、良好な水分散安定性を維持する観点から、5nm~100nmの範囲の平均粒子径であることが好ましい。ここで言う平均粒子径とは、後述する実施例でも述べるが、動的光散乱法により測定した体積基準での平均粒子径を指す。 The composite resin particles preferably have an average particle diameter in the range of 5 nm to 100 nm from the viewpoint of maintaining good water dispersion stability. The average particle diameter here refers to an average particle diameter on a volume basis measured by a dynamic light scattering method, as will be described later in Examples.
 前記ウレタン-ビニル複合樹脂を構成する前記ウレタン樹脂(x3-1)と前記ビニル重合体(x3-2)との質量割合は、[ウレタン樹脂(x3-1)/ビニル重合体(x3-2)]=90/10~10/90の範囲であることが好ましく、70/30~10/90の範囲であることがより好ましい。 The mass ratio of the urethane resin (x3-1) and the vinyl polymer (x3-2) constituting the urethane-vinyl composite resin is [urethane resin (x3-1) / vinyl polymer (x3-2)]. ] = 90/10 to 10/90 is preferable, and 70/30 to 10/90 is more preferable.
 前記ウレタン-ビニル複合樹脂を構成するウレタン樹脂(x3-1)としては、前記ウレタン樹脂(x1)と同様のものを使用することができる。また、前記ウレタン-ビニル複合樹脂を構成するウレタン樹脂(x3-1)としては、前記ウレタン樹脂(x1)として例示したもの以外に、例えば、ポリエーテル構造を有するウレタン樹脂、芳香族ポリエステル構造を有するウレタン樹脂を使用することもできる。 As the urethane resin (x3-1) constituting the urethane-vinyl composite resin, the same resin as the urethane resin (x1) can be used. The urethane resin (x3-1) constituting the urethane-vinyl composite resin includes, for example, a urethane resin having a polyether structure and an aromatic polyester structure other than those exemplified as the urethane resin (x1). Urethane resin can also be used.
 前記ウレタン樹脂(x3-1)の製造に使用可能なポリオール、ポリイソシアネート、鎖伸長剤としては、前記ウレタン樹脂(x1)を製造する際に使用可能なものとして例示したポリオール、ポリイソシアネート、鎖伸長剤と同様のものを使用することができる。 Examples of the polyol, polyisocyanate, and chain extender that can be used in the production of the urethane resin (x3-1) include those exemplified as those that can be used in the production of the urethane resin (x1). The same agent can be used.
 また、前記ポリエーテル構造を有するウレタン樹脂は、前記ポリオールとして後述するポリエーテルポリオールを含有するものを使用することによって製造することができる。
前記ポリエーテルポリオールとしては、例えば活性水素原子を2個以上有する化合物の1種または2種以上を開始剤として、アルキレンオキサイドを付加重合させたものを使用することができる。
Moreover, the urethane resin which has the said polyether structure can be manufactured by using what contains the polyether polyol mentioned later as the said polyol.
As the polyether polyol, for example, one obtained by addition polymerization of alkylene oxide using one or more compounds having two or more active hydrogen atoms as an initiator can be used.
 前記開始剤としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン等を使用することができる。 Examples of the initiator include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerin, Trimethylolethane, trimethylolpropane and the like can be used.
 前記アルキレンオキサイドとしては、例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラ
ン等を使用することができる。
Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran.
 また、前記芳香族ポリエステル構造を有するウレタン樹脂を使用する場合には、前記ポリオールとして芳香族ポリエステルポリオールを使用することもできる。 Further, when the urethane resin having the aromatic polyester structure is used, an aromatic polyester polyol can also be used as the polyol.
 前記芳香族ポリエステルポリオールとしては、例えば低分子量のポリオールと芳香族ポリカルボン酸とをエステル化反応して得られるもの等を使用することができる。 As the aromatic polyester polyol, for example, those obtained by an esterification reaction of a low molecular weight polyol and an aromatic polycarboxylic acid can be used.
 前記芳香族ポリエステルポリオールの製造に使用可能な低分子量のポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等を単独または2種以上併用して使用することができ、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオールまたは1,4-ブタンジオール等と、3-メチル-1,5-ペンタンジオールまたはネオペンチルグリコール等とを組み合わせ使用することが好ましい。 Examples of the low molecular weight polyol that can be used in the production of the aromatic polyester polyol include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 3-Methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, etc. can be used alone or in combination of two or more thereof. Ethylene glycol, 1,2-propane It is preferable to use a combination of diol, 1,3-butanediol, 1,4-butanediol, or the like, and 3-methyl-1,5-pentanediol, neopentyl glycol, or the like.
 前記芳香族ポリカルボン酸としては、例えばテレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸及びこれらの無水物またはエステル化物等を使用することができる。 As the aromatic polycarboxylic acid, for example, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, and anhydrides or esterified products thereof can be used.
 前記ポリエーテルポリオール、前記芳香族ポリエステルポリオールとしては、数平均分子量が500~4,000のものを使用することが好ましく、500~2,000のものを使用することがより好ましい。 As the polyether polyol and the aromatic polyester polyol, those having a number average molecular weight of 500 to 4,000 are preferably used, more preferably 500 to 2,000.
 前記ウレタン-ビニル複合樹脂を構成するビニル重合体(x3-2)としては、10℃~70℃のガラス転移温度を有するものを使用することが、前記所定のエタノールの吸収率を備えた塗膜(x)を形成し、前記流動体(a)に含まれる導電性物質(a2)との密着性、及び、得られる導電性パターンの導電性を向上するうえで好ましい。なお、前記ビニル重合体(x3-2)のガラス転移温度は、主に、該ビニル重合体(x3-2)の製造に使用するビニル単量体の組成に基づき、計算によって決定される値である。具体的には、後述するビニル重合体(x3-2)の組み合わせで使用することによって、前記所定のガラス転移温度を有するビニル重合体(x3-2)を得ることができる。 As the vinyl polymer (x3-2) constituting the urethane-vinyl composite resin, it is possible to use a polymer having a glass transition temperature of 10 ° C. to 70 ° C. It is preferable for forming (x) and improving the adhesion with the conductive substance (a2) contained in the fluid (a) and the conductivity of the resulting conductive pattern. The glass transition temperature of the vinyl polymer (x3-2) is a value determined by calculation mainly based on the composition of the vinyl monomer used for the production of the vinyl polymer (x3-2). is there. Specifically, the vinyl polymer (x3-2) having the predetermined glass transition temperature can be obtained by using a combination of the vinyl polymer (x3-2) described later.
 また、前記ビニル重合体(x3-2)としては、前記所定のエタノールの吸収率を備えた塗膜(x)を形成し、前記流動体(a)に含まれる導電性物質(a2)との密着性、及び、得られる導電性パターンの導電性を向上し、かつパターンの細線化を図るうえで、80万以上の重量平均分子量を有するものを使用することが好ましく、100万以上の重量平均分子量を有するものを使用することがより好ましい。 Further, as the vinyl polymer (x3-2), a coating film (x) having the predetermined ethanol absorption rate is formed, and the conductive polymer (a2) contained in the fluid (a) is formed. In order to improve adhesion and conductivity of the resulting conductive pattern and to make the pattern thin, it is preferable to use one having a weight average molecular weight of 800,000 or more, and a weight average of 1,000,000 or more. It is more preferable to use one having a molecular weight.
 前記ビニル重合体(x3-2)の重量平均分子量の上限値としては、特に限定されないが、概ね1000万以下であることが好ましく、500万以下であることが好ましい。 The upper limit of the weight average molecular weight of the vinyl polymer (x3-2) is not particularly limited, but is preferably approximately 10 million or less, and preferably 5 million or less.
 また、前記ビニル重合体(x3-2)としては、必要に応じて各種官能基を有していてもよく、前記官能基としては例えばアミド基、水酸基、グリシジル基、アミノ基、シリル基、アジリジニル基、イソシアネート基、オキサゾリン基、シクロペンテニル基、アリル基、カルボキシル基、アセトアセチル基等の架橋性官能基が挙げられる。 The vinyl polymer (x3-2) may have various functional groups as necessary. Examples of the functional group include an amide group, a hydroxyl group, a glycidyl group, an amino group, a silyl group, and aziridinyl. Groups, isocyanate groups, oxazoline groups, cyclopentenyl groups, allyl groups, carboxyl groups, acetoacetyl groups and other crosslinkable functional groups.
 前記ビニル重合体(x3-2)としては、前記ビニル重合体(x2)と同様のものを使用することができる。具体的には、前記ビニル重合体(x3-2)の製造に使用可能な(メタ)ビニル単量体としては、前記ビニル樹脂(x2)の製造に使用可能なものとして例示したビニル単量体、好ましくは(メタ)アクリル単量体と同様のものを使用することができる。なかでも、ビニル重合体(x3-2)としては、前記ビニル樹脂(x2)に使用可能なものとして例示したメタクリル酸メチル由来の構造単位を有するアクリル樹脂と同様のものを使用することが好ましい。 As the vinyl polymer (x3-2), the same polymer as the vinyl polymer (x2) can be used. Specifically, examples of the (meth) vinyl monomer that can be used for the production of the vinyl polymer (x3-2) include the vinyl monomers exemplified as those that can be used for the production of the vinyl resin (x2). Preferably, the same as the (meth) acrylic monomer can be used. Among these, as the vinyl polymer (x3-2), it is preferable to use the same acrylic resin having a structural unit derived from methyl methacrylate exemplified as usable for the vinyl resin (x2).
 前記ウレタン-ビニル複合樹脂(x3)は、例えば、前記ポリイソシアネートとポリオールと必要に応じて鎖伸長剤とを反応させ、水分散化することによってウレタン樹脂(x3-1)の水分散体を製造する工程(V)、及び、前記水分散体中で前記(メタ)アクリル単量体を重合しビニル重合体(x3-2)を製造する工程(W)により製造することができる。 For the urethane-vinyl composite resin (x3), for example, an aqueous dispersion of the urethane resin (x3-1) is produced by reacting the polyisocyanate, a polyol and, if necessary, a chain extender and dispersing in water. And the step (W) of polymerizing the (meth) acrylic monomer in the aqueous dispersion to produce a vinyl polymer (x3-2).
 具体的には、無溶剤下または有機溶剤下または(メタ)アクリル単量体等の反応性希釈剤の存在下で、前記ポリイソシアネートとポリオールとを反応させることによってウレタン樹脂(x3-1)を得、次いで、前記ウレタン樹脂(x3-1)の有する親水性基の一部または全部を、必要に応じて塩基性化合物等を用いて中和し、必要に応じて、更に鎖伸長剤と反応させ、それを水性媒体中に分散させることによって、ウレタン樹脂(x3-1)の水分散体を製造する。 Specifically, the urethane resin (x3-1) is reacted by reacting the polyisocyanate with a polyol in the absence of a solvent, in an organic solvent, or in the presence of a reactive diluent such as a (meth) acrylic monomer. And then neutralizing part or all of the hydrophilic group of the urethane resin (x3-1) with a basic compound, if necessary, and further reacting with a chain extender as necessary. And dispersing it in an aqueous medium to produce an aqueous dispersion of urethane resin (x3-1).
 次に、前記で得たウレタン樹脂(x3-1)の水分散体中に、前記(メタ)アクリル単量体等のビニル単量体を供給し、前記ウレタン樹脂(x3-1)粒子内で前記ビニル単量体をラジカル重合させビニル樹脂(x3-2)を製造する。また、前記ウレタン樹脂(x3-1)の製造をビニル単量体の存在下で行った場合には、前記ウレタン樹脂(x3-1)の製造後、重合開始剤等を供給することによって、前記(メタ)アクリル単量体等のビニル単量体をラジカル重合させビニル樹脂(x3-2)を製造する。 Next, a vinyl monomer such as the (meth) acrylic monomer is supplied into the aqueous dispersion of the urethane resin (x3-1) obtained above, and within the urethane resin (x3-1) particles. The vinyl monomer is radically polymerized to produce a vinyl resin (x3-2). Further, when the production of the urethane resin (x3-1) is performed in the presence of a vinyl monomer, the production of the urethane resin (x3-1) is followed by supplying a polymerization initiator and the like. A vinyl resin (x3-2) is produced by radical polymerization of a vinyl monomer such as a (meth) acrylic monomer.
 これにより、前記ウレタン樹脂(x3-1)粒子中に前記ビニル樹脂(x3-2)の一部または全部が内在した複合樹脂粒子が、水性媒体に分散したプライマーを製造することができる。 Thereby, it is possible to produce a primer in which composite resin particles in which part or all of the vinyl resin (x3-2) is contained in the urethane resin (x3-1) particles are dispersed in an aqueous medium.
 前記複合樹脂粒子を製造する際、前記ウレタン樹脂(x3-1)が高粘度であるため作業性に優れない場合には、メチルエチルケトン、N-メチルピロリドン、アセトン、ジプロピレングリコールジメチルエーテル等の通常の有機溶剤、反応性希釈剤を使用することができる。特に、前記反応性希釈剤として、前記ビニル重合体(x3-2)の製造に使用可能な(メタ)アクリル単量体等のビニル単量体を使用することが、脱溶剤工程の省略によるプライマーの生産効率の向上を図るうえで好ましい。 When the composite resin particles are produced, if the urethane resin (x3-1) has a high viscosity and is not excellent in workability, a normal organic material such as methyl ethyl ketone, N-methylpyrrolidone, acetone, dipropylene glycol dimethyl ether or the like is used. Solvents and reactive diluents can be used. In particular, it is possible to use a vinyl monomer such as a (meth) acrylic monomer that can be used in the production of the vinyl polymer (x3-2) as the reactive diluent. It is preferable for improving the production efficiency.
 また、前記プライマーに使用可能な樹脂としては、前記したもののほかに、例えばフェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリイミド樹脂、フッ素樹脂等を使用することができる。 In addition to the above-mentioned resins that can be used for the primer, for example, phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyimide resin, fluorine resin, etc. can be used. it can.
 前記プライマーに使用可能な樹脂としては、前記したものを適宜組み合わせ使用してもよい。例えば、前記ウレタン樹脂(x1)とビニル樹脂(x2)とウレタン-ビニル複合樹脂(x3)とのうちの2種以上を適宜組み合わせ使用することができる。また、前記ウレタン樹脂(x1)として、ポリエーテル構造を有するウレタン樹脂とポリカーボネート構造を有するウレタン樹脂とを組み合わせ使用することができる。 As the resin that can be used for the primer, the above-mentioned resins may be used in appropriate combination. For example, two or more of the urethane resin (x1), vinyl resin (x2), and urethane-vinyl composite resin (x3) can be used in appropriate combination. Further, as the urethane resin (x1), a urethane resin having a polyether structure and a urethane resin having a polycarbonate structure can be used in combination.
 前記プライマーとしては、前記ウレタン樹脂(x1)と前記ビニル樹脂(x2)とを組み合わせ使用することもできる。かかる組み合わせで使用する場合には、前記ウレタン樹脂(x1)と前記ビニル樹脂(x2)との質量割合が、[(x1)/(x2)]=90/10~10/90の範囲で使用することが好ましく、70/30~10/90となる範囲で使用することがより好ましい。 The primer may be a combination of the urethane resin (x1) and the vinyl resin (x2). When used in such a combination, the mass ratio of the urethane resin (x1) and the vinyl resin (x2) is in the range of [(x1) / (x2)] = 90/10 to 10/90. It is preferable to use in the range of 70/30 to 10/90.
 前記プライマーに含まれる樹脂としては、前記したとおり、架橋性官能基を有するものを使用することができる。 As the resin contained in the primer, those having a crosslinkable functional group can be used as described above.
 前記架橋性官能基は、前記流動体(a)を担持するプライマー層(X)中に架橋構造を形成することで、にじみ等を引き起こすことなく、密着性及び導電性に優れたパターン(層(Y))を形成するうえで好適に使用することができる。 The crosslinkable functional group forms a crosslink structure in the primer layer (X) carrying the fluid (a), thereby causing a pattern (layer (excellent in adhesion and conductivity) without causing bleeding or the like. Y)) can be used suitably.
 前記プライマーを用いて形成される塗膜(x)は、その表面の一部また全部に前記流動体(a)が塗布(印刷)される前に、架橋構造を有していてもよいが、エタノール吸収率が20質量%~500質量%の範囲に入るよう調整する必要がある。 The coating film (x) formed using the primer may have a crosslinked structure before the fluid (a) is applied (printed) on a part or all of the surface thereof, It is necessary to adjust the ethanol absorption rate to fall within the range of 20% by mass to 500% by mass.
 また、前記塗膜(x)、その表面に前記流動体(a)が塗布(印刷)される前に架橋構造を有しておらず、前記流動体(a)が塗布された後に、プライマー層(X)として架橋構造を有するプライマー層を形成してもよい。 In addition, the coating layer (x) does not have a crosslinked structure before the fluid (a) is applied (printed) to the surface thereof, and after the fluid (a) is applied, the primer layer You may form the primer layer which has a crosslinked structure as (X).
 前記架橋性官能基としては、例えばアルコキシシリル基及びシラノール基をはじめ、アミノ基及び水酸基が挙げられる。 Examples of the crosslinkable functional group include an alkoxysilyl group and a silanol group, as well as an amino group and a hydroxyl group.
 前記アルコキシシリル基及びシラノール基を有する樹脂を使用した場合、前記アルコキシシリル基及びシラノール基は、プライマーの溶媒である水性媒体中で加水分解縮合し、架橋構造を形成する。架橋構造の形成したプライマーを支持体表面に塗布し乾燥等することで、流動体(a)を塗布する前において、既に架橋構造の形成した塗膜(x)を形成する。 When the resin having the alkoxysilyl group and the silanol group is used, the alkoxysilyl group and the silanol group are hydrolyzed and condensed in an aqueous medium that is a solvent for the primer to form a crosslinked structure. By applying the primer having the crosslinked structure to the surface of the support and drying, the coating film (x) having already formed the crosslinked structure is formed before applying the fluid (a).
 また、前記架橋性官能基としては、概ね100℃以上、好ましくは120℃以上に加熱することによって架橋性官能基間または後述する架橋剤(D)等と架橋反応し、前記架橋構造を形成しうるものを使用することもでき、具体的には、メチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上の熱架橋性官能基を使用することが好ましい。 In addition, the crosslinkable functional group is heated to approximately 100 ° C. or higher, preferably 120 ° C. or higher to cause a crosslink reaction between the crosslinkable functional groups or a cross-linking agent (D) described later to form the crosslink structure. In particular, it is preferable to use one or more thermally crosslinkable functional groups selected from the group consisting of a methylolamide group and an alkoxymethylamide group.
 前記アルコキシメチルアミド基としては、具体的には、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等が窒素原子に結合し形成したアミド基が挙げられ、なかでも、メチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上を有するものを使用することが、プライマー層(X)の耐久性、各種支持体への密着性を大幅に向上するうえで好ましい。 Specific examples of the alkoxymethylamide group include an amide group formed by bonding a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group or the like to a nitrogen atom, and among them, a methylolamide group and It is preferable to use one having at least one selected from the group consisting of alkoxymethylamide groups in order to greatly improve the durability of the primer layer (X) and the adhesion to various supports.
 前記したような、概ね100℃以上、好ましくは120℃程度に加熱することによって架橋反応しうる官能基を備えた樹脂を含むプライマーを使用した場合、前記プライマーを支持体表面に塗布し乾燥する際の温度は、100℃未満であることが好ましい。これにより、前記塗膜(x)として実質的に架橋構造を有さない塗膜を形成することができる。 When using a primer including a resin having a functional group capable of undergoing a crosslinking reaction by heating to about 100 ° C. or more, preferably about 120 ° C. as described above, when the primer is applied to the support surface and dried. The temperature is preferably less than 100 ° C. Thereby, the coating film which does not have a crosslinked structure substantially as said coating film (x) can be formed.
 前記架橋構造を有さない塗膜に前記流動体(a)を塗布(印刷)した後に、100℃以上の温度で、加熱工程、または、前記加熱工程とは別に加熱等することによって、プライマー層(X)として架橋構造を備えたプライマー層を形成される。 After applying (printing) the fluid (a) to the coating film not having the crosslinked structure, the primer layer is heated at a temperature of 100 ° C. or higher, or by heating separately from the heating step. A primer layer having a crosslinked structure is formed as (X).
 このように、前記流動体(a)と塗布した後に、プライマー層(X)中に架橋構造を形成することによって、後述するめっき処理工程において、強アルカリまたは強酸性物質からなるめっき薬剤に晒された場合であっても、支持体からのプライマー層(X)の剥離を引き起こすことのない、格段に優れた耐久性を備えた導電性パターンを形成することができる。なお、前記「実質的に架橋構造を有さない」とは、前記架橋構造が全く形成されていない態様を含むとともに、前記架橋構造を形成しうる官能基数の約5%以内が部分的に架橋構造を形成したものを指す。 As described above, after coating with the fluid (a), by forming a crosslinked structure in the primer layer (X), the primer layer (X) is exposed to a plating agent made of a strong alkali or strongly acidic substance in the plating process described later. Even in such a case, it is possible to form a conductive pattern having extremely excellent durability without causing peeling of the primer layer (X) from the support. The phrase “substantially has no cross-linked structure” includes an embodiment in which the cross-linked structure is not formed at all, and within about 5% of the number of functional groups capable of forming the cross-linked structure is partially cross-linked. Refers to the structure formed.
 前記架橋性官能基は、前記プライマーに使用する樹脂の全量に対して、合計0.005当量/kg~1.5当量/kgの範囲で存在することが好ましい。 The crosslinkable functional group is preferably present in a total range of 0.005 equivalent / kg to 1.5 equivalent / kg with respect to the total amount of resin used in the primer.
 また、前記プライマーは、本発明の効果を損なわない範囲で、必要に応じて架橋剤(D)をはじめ、pH調整剤、被膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等公知のものを適宜添加して使用してもよい。 Moreover, the said primer is a range which does not impair the effect of this invention, A crosslinking agent (D) as needed, A pH adjuster, a film formation adjuvant, a leveling agent, a thickener, a water repellent, a defoaming agent You may use suitably well-known things, such as an agent.
 前記架橋剤(D)としては、例えば金属キレート化合物、ポリアミン化合物、アジリジン化合物、金属塩塩化合物、イソシアネート化合物等の、概ね25℃~100℃未満の比較的低温で反応し架橋構造を形成しうる熱架橋剤(d1-1)、メラミン系化合物、エポキシ系化合物、オキサゾリン化合物、カルボジイミド化合物、及び、ブロックイソシアネート化合物からなる群より選ばれる1種以上等の概ね100℃以上の比較的高温で反応し架橋構造を形成しうる熱架橋剤(d1-2)、各種光架橋剤を使用することができる。 Examples of the crosslinking agent (D) include a metal chelate compound, a polyamine compound, an aziridine compound, a metal salt compound, and an isocyanate compound, which can react at a relatively low temperature of about 25 ° C. to less than 100 ° C. to form a crosslinked structure. Reacts at a relatively high temperature of about 100 ° C. or higher, such as one or more selected from the group consisting of a thermal crosslinking agent (d1-1), a melamine compound, an epoxy compound, an oxazoline compound, a carbodiimide compound, and a blocked isocyanate compound. A thermal crosslinking agent (d1-2) capable of forming a crosslinked structure and various photocrosslinking agents can be used.
 前記熱架橋剤(d1-1)を含有するプライマーは、例えばそれを支持体表面に塗布し、比較的低温で乾燥し、次いで、前記流動体を塗布(印刷)した後に、100℃未満の温度に加温し架橋構造を形成することで、長期にわたる熱や外力の影響によらず導電性物質の欠落を防止可能なレベルの、格段に優れた耐久性を備えた導電性パターンを形成することができる。 The primer containing the thermal crosslinking agent (d1-1) is, for example, applied to the surface of a support, dried at a relatively low temperature, and then applied (printed) to a temperature of less than 100 ° C. By forming a cross-linked structure by heating to a conductive pattern, it is possible to form a conductive pattern with outstanding durability that can prevent the loss of conductive materials regardless of the effects of heat and external forces over a long period of time. Can do.
 一方、前記熱架橋剤(d1-2)を含有するプライマーは、例えばそれを支持体表面に塗布し、常温(25℃)~概ね100℃未満の低温で乾燥することで、架橋構造を形成していない塗膜(x)を製造し、次いで、前記流動体(a)を塗布した後に、例えば150℃以上、好ましくは200℃以上の温度で加熱し架橋構造を形成することで、長期間にわたる熱や外力等の影響によらず、導電性物質の剥離等を引き起こさないレベルの格段に優れた耐久性を備えた導電性パターンを得ることができる。 On the other hand, the primer containing the thermal cross-linking agent (d1-2) forms a cross-linked structure by, for example, applying it to the surface of a support and drying at a low temperature of room temperature (25 ° C.) to less than about 100 ° C. After the coating film (x) is produced and then the fluid (a) is applied, it is heated at a temperature of, for example, 150 ° C. or higher, preferably 200 ° C. or higher to form a cross-linked structure. Regardless of the influence of heat, external force, etc., it is possible to obtain a conductive pattern having exceptionally excellent durability that does not cause peeling of the conductive material.
 ただし、支持体として比較的熱に弱いポリエチレンテレフタレート等からなる支持体を用いる場合には、前記支持体の変形等を防止する観点から、概ね150℃以下、好ましくは120℃以下の温度で加熱することが好ましいため、前記架橋剤としては、前記熱架橋剤(d1-2)ではなく、前記熱架橋剤(d1-1)を使用することが好ましい。 However, when using a support made of polyethylene terephthalate or the like that is relatively heat-sensitive as a support, heating is performed at a temperature of approximately 150 ° C. or less, preferably 120 ° C. or less from the viewpoint of preventing deformation of the support. Therefore, it is preferable to use the thermal crosslinking agent (d1-1) instead of the thermal crosslinking agent (d1-2) as the crosslinking agent.
 前記熱架橋剤(d1-1)に使用可能な金属キレート化合物としては、例えばアルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、アンチモン、マグネシウム、バナジウム、クロム、ジルコニウム等の多価金属のアセチルアセトン配位化合物、アセト酢酸エステル配位化合物等を使用することができ、アルミニウムのアセチルアセトン配位化合物であるアセチルアセトンアルミニウムを使用することが好ましい。 Examples of the metal chelate compound that can be used for the thermal crosslinking agent (d1-1) include acetylacetone, which is a polyvalent metal such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium, and zirconium. Coordination compounds, acetoacetate coordination compounds and the like can be used, and it is preferable to use acetylacetone aluminum which is an acetylacetone coordination compound of aluminum.
 また、前記熱架橋剤(d1-1)に使用可能なポリアミン化合物としては、例えばトリエチルアミン、トリエチレンジアミン、ジメチルエタノールアミン等の3級アミンを使用することもできる。 In addition, as a polyamine compound that can be used for the thermal crosslinking agent (d1-1), for example, a tertiary amine such as triethylamine, triethylenediamine, dimethylethanolamine or the like can be used.
 また、前記熱架橋剤(d1-1)に使用可能なアジリジン化合物としては、例えば2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、1,6-ヘキサメチレンジエチレンウレア、ジフェニルメタン-ビス-4,4’-N,N’-ジエチレンウレア等を使用することができる。 Examples of the aziridine compound that can be used in the thermal crosslinking agent (d1-1) include 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate] and 1,6-hexamethylenediethylene urea. Diphenylmethane-bis-4,4′-N, N′-diethyleneurea and the like can be used.
 また、前記架橋剤(d1-1)として使用可能な金属塩基化合物としては、例えば硫酸アルミニウム、アルミニウムミョウバン、亜硫酸アルミニウム、チオ硫酸アルミニウム、ポリ塩化アルミニウム、硝酸アルミニウム九水和物、塩化アルミニウム六水和物、四塩化チタン、テトライソプロピルチタネート、チタンアセチルアセトネート、乳酸チタン等の水溶性金属塩を使用することができる。 Examples of the metal base compound that can be used as the crosslinking agent (d1-1) include aluminum sulfate, aluminum alum, aluminum sulfite, aluminum thiosulfate, polyaluminum chloride, aluminum nitrate nonahydrate, and aluminum chloride hexahydrate. Products, water-soluble metal salts such as titanium tetrachloride, tetraisopropyl titanate, titanium acetylacetonate, and titanium lactate can be used.
 前記熱架橋剤(d1-1)に使用可能なイソシアネート化合物としては、例えばトリレンジイソシアネート、水素化トリレンジイソシアネート、トリフェニルメタントリイソシアネート、メチレンビス(4-フェニルメタン)トリイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート等のポリイソシアネート;それらを用いて得られるイソシアヌレート型ポリイソシアネート化合物;それらとトリメチロールプロパン等とからなるアダクト体;前記ポリイソシアネート化合物とトリメチロールプロパン等のポリオールとを反応させて得られるポリイソシアネート基を有するウレタン等を使用することができる。なかでもヘキサメチレンジイソシアネートのヌレート体、ヘキサメチレンジイソシアネートとトリメチロールプロパン等とのアダクト体、トリレンジイソシアネートとトリメチロールプロパン等とのアダクト体、キシリレンジイソシアネートとトリメチロールプロパン等とのアダクト体を使用することが好ましい。 Examples of isocyanate compounds that can be used in the thermal crosslinking agent (d1-1) include tolylene diisocyanate, hydrogenated tolylene diisocyanate, triphenylmethane triisocyanate, methylene bis (4-phenylmethane) triisocyanate, isophorone diisocyanate, hexamethylene. Polyisocyanates such as diisocyanates and xylylene diisocyanates; isocyanurate-type polyisocyanate compounds obtained by using them; adducts composed of these with trimethylolpropane; and the like, the polyisocyanate compound and a polyol such as trimethylolpropane are reacted. Urethanes having a polyisocyanate group obtained in the above manner can be used. Among them, hexamethylene diisocyanate nurate, adduct of hexamethylene diisocyanate and trimethylolpropane, adduct of tolylene diisocyanate and trimethylol propane, adduct of xylylene diisocyanate and trimethylol propane, etc. are used. It is preferable.
 また、前記熱架橋剤(d1-2)に使用可能なメラミン化合物としては、例えばヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシメチルメラミン、ヘキサペンチルオキシメチルメラミン、ヘキサヘキシルオキシメチルメラミンあるいはこれらの2種を組み合わせた混合エーテル化メラミン等を使用することができる。なかでも、トリメトキシメチルメラミン、ヘキサメトキシメチルメラミンを使用することが好ましい。市販品としては、ベッカミン M-3、APM、J-101(DIC(株)製)等を使用することができる。前記メラミン化合物は、自己架橋反応することによって架橋構造を形成することができる。 Examples of the melamine compound that can be used in the thermal crosslinking agent (d1-2) include hexamethoxymethyl melamine, hexaethoxymethyl melamine, hexapropoxymethyl melamine, hexabutoxymethyl melamine, hexapentyloxymethyl melamine, and hexahexyloxy. Methylmelamine or a mixed etherified melamine obtained by combining these two types can be used. Of these, trimethoxymethyl melamine and hexamethoxymethyl melamine are preferably used. Examples of commercially available products include Becamine M-3, APM, J-101 (manufactured by DIC Corporation), and the like. The melamine compound can form a crosslinked structure by a self-crosslinking reaction.
 前記メラミン化合物を使用する場合には、その自己架橋反応を促進するうえで、有機アミン塩等の触媒を使用してもよい。市販品としては、キャタリスト ACX、376等を使用することができる。前記触媒は、前記メラミン化合物の全量に対して概ね0.01質量%~10質量%の範囲であることが好ましい。 When using the melamine compound, a catalyst such as an organic amine salt may be used to promote the self-crosslinking reaction. As a commercial item, catalyst ACX, 376 etc. can be used. The catalyst is preferably in the range of approximately 0.01% by mass to 10% by mass with respect to the total amount of the melamine compound.
 また、前記熱架橋剤(d1-2)に使用可能なエポキシ化合物としては、例えばエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ヘキサメチレングリコールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等の脂肪族多価アルコールのポリグリシジルエーテル;ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル等のポリアルキレングリコールのポリグリシジルエーテル;1,3-ビス(N,N’-ジグリシジルアミノエチル)シクロヘキサン等のポリグリシジルアミン;多価カルボン酸[蓚酸、アジピン酸、ブタントリカルボン酸、マレイン酸、フタル酸、テレフタル酸、イソフタル酸、ベンゼントリカルボン酸等]のポリグリシジルエステル;ビスフェノールAとエピクロルヒドリンの縮合物、ビスフェノールAとエピクロルヒドリンの縮合物のエチレンオキシド付加物等のビスフェノールA系エポキシ樹脂;フェノールノボラック樹脂;側鎖にエポキシ基を有する各種ビニル系(共)重合体等を使用することができる。なかでも1,3-ビス(N,N’-ジグリシジルアミノエチル)シクロヘキサン等のポリグリシジルアミン、グリセリンジグリシジルエーテル等の脂肪族多価アルコールのポリグリシジルエーテル、を使用することが好ましい。 Examples of the epoxy compound that can be used for the thermal crosslinking agent (d1-2) include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether, cyclohexanediol diglycidyl ether, and glycerin diglycidyl ether. Polyglycidyl ethers of aliphatic polyhydric alcohols such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether; polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, etc. Of polyalkylene glycols; 1,3-bis (N, N ′ Polyglycidylamines such as diglycidylaminoethyl) cyclohexane; polyglycidyl esters of polycarboxylic acids [succinic acid, adipic acid, butanetricarboxylic acid, maleic acid, phthalic acid, terephthalic acid, isophthalic acid, benzenetricarboxylic acid, etc.]; bisphenol A Bisphenol A-based epoxy resins such as ethylene oxide adducts of bisphenol A and epichlorohydrin condensates, phenol novolak resins, various vinyl (co) polymers having an epoxy group in the side chain, etc. it can. Among them, it is preferable to use polyglycidylamines such as 1,3-bis (N, N′-diglycidylaminoethyl) cyclohexane and polyglycidyl ethers of aliphatic polyhydric alcohols such as glycerin diglycidyl ether.
 また、前記エポキシ化合物としては、前記したものの他に例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシランもしくはγ-グリシドキシプロピルトリイソプロぺニルオキシシラン等のグリシジル基を有するシラン化合物を使用することもできる。 Examples of the epoxy compound include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, and γ-glycidoxypropyl other than those described above. Methyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethylmethyldiethoxysilane Alternatively, a silane compound having a glycidyl group such as γ-glycidoxypropyltriisopropenyloxysilane can also be used.
 また、前記熱架橋剤(d1-2)に使用可能なオキサゾリン化合物としては、例えば2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2,2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド等を使用することができる。 Examples of the oxazoline compound that can be used for the thermal crosslinking agent (d1-2) include 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- (2-oxazoline), 2 , 2'-ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline), 2,2'- Hexamethylene-bis- (2-oxazoline), 2,2'-octamethylene-bis- (2-oxazoline), 2,2'-ethylene-bis- (4,4'-dimethyl-2-oxazoline), 2 , 2'-p-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (4,4'- Dimethyl-2-oxa Phosphorus), bis - (2-oxazolinyl sulfonyl cyclohexane) sulfide, bis - (2-oxazolinyl sulfonyl norbornane) can be used sulfides.
 また、前記オキサゾリン化合物としては、例えば下記の付加重合性オキサゾリンと、必要に応じてその他の単量体とを組み合わせ重合して得られるオキサゾリン基を有する重合体を使用することもできる。 In addition, as the oxazoline compound, for example, a polymer having an oxazoline group obtained by polymerizing a combination of the following addition polymerizable oxazoline and other monomers as necessary can be used.
 前記付加重合性オキサゾリンとしては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を単独または2種以上組み合わせ使用することができる。なかでも、2-イソプロペニル-2-オキサゾリンを使用することが、工業的に入手し易いため好ましい。 Examples of the addition polymerizable oxazoline include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline. , 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, etc., alone or in combination Can do. Of these, the use of 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
 また、前記熱架橋剤(d1-2)に使用可能なカルボジイミド化合物としては、例えばポリ[フェニレンビス(ジメチルメチレン)カルボジイミド]、ポリ(メチル-1,3-フェニレンカルボジイミド)等を使用することができる。市販品では、カルボジライトV-01、V-02、V-03、V-04、V-05、V-06(日清紡(株)製)、UCARLINK XL-29SE、XL-29MP(ユニオンカーバイド(株)製)等を使用することができる。 Examples of the carbodiimide compound that can be used for the thermal crosslinking agent (d1-2) include poly [phenylenebis (dimethylmethylene) carbodiimide], poly (methyl-1,3-phenylenecarbodiimide), and the like. . Among the commercially available products, Carbodilite V-01, V-02, V-03, V-04, V-05, V-06 (manufactured by Nisshinbo Co., Ltd.), UCARLINK XL-29SE, XL-29MP (Union Carbide Corp.) Can be used.
 また、前記熱架橋剤(d1-2)に使用可能なブロックイソシアネート化合物としては、前記熱架橋剤(d1-1)として例示したイソシアネート化合物の有するイソシアネート基の一部または全部が、ブロック化剤によって封止されたものを使用することができる。 In addition, as the blocked isocyanate compound that can be used in the thermal crosslinking agent (d1-2), a part or all of the isocyanate groups of the isocyanate compound exemplified as the thermal crosslinking agent (d1-1) are formed by a blocking agent. What was sealed can be used.
 前記ブロック化剤としては、例えばフェノール、クレゾール、2-ヒドロキシピリジン、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ベンジルアルコール、メタノール、エタノール、n-ブタノール、イソブタノール、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン、ブチルメルカプタン、ドデシルメルカプタン、アセトアニリド、酢酸アミド、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、コハク酸イミド、マレイン酸イミド、イミダゾール、2-メチルイミダゾール、尿素、チオ尿素、エチレン尿素、ホルムアミドオキシム、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、シクロヘキサノンオキシム、ジフェニルアニリン、アニリン、カルバゾール、エチレンイミン、ポリエチレンイミン等を使用することができる。 Examples of the blocking agent include phenol, cresol, 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, methyl acetoacetate, Ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetanilide, acetic acid amide, ε-caprolactam, δ-valerolactam, γ-butyrolactam, succinimide, maleic imide, imidazole, 2-methylimidazole, urea, thiourea, Ethyleneurea, formamide oxime, acetaldoxime, acetone oxime, methyl ethyl ketoxime, methyl isobutyl ketoxime, cyclohexa N'okishimu, diphenyl aniline, can be used aniline, carbazole, ethyleneimine, polyethyleneimine and the like.
 前記ブロックイソシアネート化合物としては、水分散型の市販品としてエラストロン BN-69(第一工業製薬(株)製)等を使用することができる。 As the blocked isocyanate compound, Elastolon BN-69 (Daiichi Kogyo Seiyaku Co., Ltd.) or the like can be used as a water-dispersed commercial product.
 前記架橋剤(D)を使用する場合、前記プライマーに含まれる樹脂としては、前記架橋剤(D)の有する架橋性官能基と反応しうる基を有するものを使用することが好ましい。具体的には、前記(ブロック)イソシアネート化合物、メラミン化合物、オキサゾリン化合物、カルボジイミド化合物を架橋剤として使用するとともに、前記樹脂として水酸基またはカルボキシル基を有する樹脂を使用することが好ましい。 When using the crosslinking agent (D), it is preferable to use a resin having a group capable of reacting with the crosslinking functional group of the crosslinking agent (D) as the resin contained in the primer. Specifically, it is preferable to use the (block) isocyanate compound, the melamine compound, the oxazoline compound, and the carbodiimide compound as a crosslinking agent and a resin having a hydroxyl group or a carboxyl group as the resin.
 前記架橋剤(D)は、種類等によって異なるものの、通常、前記プライマーに含まれる樹脂の合計質量100質量部に対して0.01質量%~60質量%の範囲で使用することが好ましく、0.1質量%~10質量%の範囲で使用することがより好ましく、0.1質量%~5質量%の範囲で使用することが、密着性及び導電性に優れ、かつ、前記耐久性に優れた導電性パターンを形成できるため好ましい。 Although the crosslinking agent (D) varies depending on the type and the like, it is usually preferable to use in the range of 0.01% by mass to 60% by mass with respect to 100 parts by mass of the total resin contained in the primer. More preferably, it is used in the range of 1% by mass to 10% by mass, and in the range of 0.1% by mass to 5% by mass is excellent in adhesion and conductivity and excellent in the durability. It is preferable because a conductive pattern can be formed.
 また、前記架橋剤(D)は、本発明のプライマーを支持体表面に塗工又は含浸する前に、予め添加して使用することが好ましい。 Moreover, it is preferable that the crosslinking agent (D) is added and used in advance before the primer of the present invention is applied or impregnated on the surface of the support.
 また、前記添加剤としては、無機粒子等の各種充填材を使用することもできる。しかし、本発明のプライマーとしては、前記充填材等の使用量はできるだけ少ないことが好ましく、本発明のプライマーの全量に対して5質量%以下であることがより好ましい。 Further, as the additive, various fillers such as inorganic particles can be used. However, the amount of the filler used in the primer of the present invention is preferably as small as possible, and more preferably 5% by mass or less based on the total amount of the primer of the present invention.
 前記添加剤の使用量は、本発明の効果を損なわない範囲であれば特に限定しないが、プライマー中の固形分の全量に対して0.01質量%~40質量%の範囲であることが好ましい。 The amount of the additive used is not particularly limited as long as the effect of the present invention is not impaired, but is preferably in the range of 0.01% by mass to 40% by mass with respect to the total amount of solids in the primer. .
 次に、本発明の導電性パターンの製造方法について説明する。
 本発明の導電性パターンは、前記支持体の表面の一部または全部にプライマーを塗布し、次いで、前記プライマーを用いて形成された塗膜(x)の表面の一部または全部に、前記流動体(a)を塗布した後、加熱することによって製造することができる。
Next, the manufacturing method of the electroconductive pattern of this invention is demonstrated.
In the conductive pattern of the present invention, a primer is applied to part or all of the surface of the support, and then the fluid is applied to part or all of the surface of the coating film (x) formed using the primer. It can manufacture by heating after apply | coating a body (a).
 はじめに、前記支持体の表面の一部または全部にプライマーを塗布することによって塗膜(x)を形成する方法について説明する。 First, a method for forming a coating film (x) by applying a primer to a part or all of the surface of the support will be described.
 前記塗膜(x)は、前記流動体(a)が塗布された後、加熱されることによってプライマー層(X)を形成する。前記塗膜(x)は、前記支持体に前記プライマーを塗布し、前記プライマー中に含まれる溶媒を除去する方法によって形成することができる。 The coating film (x) forms the primer layer (X) by being heated after the fluid (a) is applied. The said coating film (x) can be formed by the method of apply | coating the said primer to the said support body, and removing the solvent contained in the said primer.
 前記支持体の表面の一部または全部に塗布し塗膜(x)を形成しうるプライマーは、本発明の導電性パターンのプライマー層(X)を形成しうるものである。 The primer that can be applied to part or all of the surface of the support to form the coating film (x) can form the primer layer (X) of the conductive pattern of the present invention.
 前記プライマーを前記支持体の表面に塗布する方法としては、例えばグラビア法、コーティング法、スクリーン法、ローラー法、ロータリー法、スプレー法、スピンコーター法、インクジェット法等の方法が挙げられる。 Examples of a method for applying the primer to the surface of the support include a gravure method, a coating method, a screen method, a roller method, a rotary method, a spray method, a spin coater method, and an ink jet method.
 また、前記プライマー中に含まれる溶媒を除去する方法としては、例えば乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ支持体に悪影響を与えない範囲の温度に設定すればよい。  Further, as a method for removing the solvent contained in the primer, for example, a method of drying using a dryer and volatilizing the solvent is common. The drying temperature may be set to a temperature that can volatilize the solvent and does not adversely affect the support. *
 支持体上への前記プライマーの塗布量は、優れた密着性と導電性を付与する観点から、前記塗膜(x)の膜厚が0.01μm~300μmとなる範囲であることが好ましく、0.05μm~20μmとなる範囲であることがより好ましい。 The coating amount of the primer on the support is preferably in the range where the film thickness of the coating film (x) is 0.01 μm to 300 μm from the viewpoint of imparting excellent adhesion and conductivity. A range of 0.05 μm to 20 μm is more preferable.
 前記方法で得られた塗膜(x)の膜厚は、最終的に得られる導電性パターンを構成する前記プライマー層(X)の厚さが0.01μm~300μmとなる範囲で使用することが好適である。 The film thickness of the coating film (x) obtained by the above method may be used in a range where the thickness of the primer layer (X) constituting the finally obtained conductive pattern is 0.01 μm to 300 μm. Is preferred.
 前記塗膜(x)は、25℃の環境下において、エタノールを、前記塗膜(x)の質量に対して20質量%~500質量%の吸収しうる塗膜であることが、前記課題を解決するうえで必須である。 The above-mentioned problem is that the coating film (x) is a coating film capable of absorbing 20% by mass to 500% by mass with respect to the mass of the coating film (x) in an environment of 25 ° C. Indispensable to resolve.
 前記塗膜(x)の質量に対する、前記塗膜(x)が吸収するエタノールの質量割合[エタノールの吸収率]は、以下の方法によって測定することによって得られた値である。 The mass ratio of ethanol absorbed by the coating film (x) to the mass of the coating film (x) [absorption rate of ethanol] is a value obtained by measurement by the following method.
 前記プライマーを、アプリケーターを用いて離型紙表面に塗布し、乾燥した後、前記離型紙を除去することによって、縦3cm、横3cm及び厚さ50μmの塗膜を作成する。 The primer is applied to the surface of the release paper using an applicator, dried, and then the release paper is removed to form a coating film having a length of 3 cm, a width of 3 cm, and a thickness of 50 μm.
 次に、前記で得た塗膜の質量を測定する。 Next, the mass of the coating film obtained above is measured.
 次に、前記塗膜を、25℃の環境下で、25℃に調整したエタノール30g中に浸漬する。 Next, the coating film is immersed in 30 g of ethanol adjusted to 25 ° C. in an environment of 25 ° C.
 次に、前記塗膜を前記エタノール中に浸漬した時から30秒後に、前記塗膜をエタノール中から取り出し、それを、ベンコットを3枚重ねた上に置き、その上にベンコットを3枚重ね、さらに500gの分銅を載せた状態で、10秒放置する。 Next, 30 seconds after the coating film was immersed in the ethanol, the coating film was taken out from the ethanol, and it was placed on a stack of three becots, on which three becots were stacked, Further, leave it on for 10 seconds with a weight of 500 g.
 前記10秒後、塗膜の質量を測定し、前記浸漬後の塗膜に吸収されたエタノールの質量を求める。 After 10 seconds, the mass of the coating film is measured, and the mass of ethanol absorbed in the coating film after the immersion is determined.
 次に、前記浸漬後の塗膜に吸収されたエタノールの質量を、前記浸漬前の塗膜の質量で除し、100を乗じることによって得られた質量割合を、前記エタノールの吸収率とした。 Next, the mass ratio obtained by dividing the mass of ethanol absorbed in the coating film after immersion by the mass of the coating film before immersion and multiplying by 100 was defined as the ethanol absorption rate.
 ここで、前記エタノールの吸収率が20質量%未満である場合、具体的には10質量%である塗膜に対して、前記流動体(a)を塗布等した場合、導電性の低下や密着性の低下を引き起こす場合がある。具体的には、流動体(a)に含まれる溶媒が塗膜(x)に吸収されにくいために、塗膜(x)と導電性パターンの密着性を悪化させる場合がある。 Here, when the ethanol absorptivity is less than 20% by mass, specifically, when the fluid (a) is applied to a coating film of 10% by mass, the decrease in conductivity and adhesion May cause decreased sex. Specifically, since the solvent contained in the fluid (a) is not easily absorbed by the coating film (x), the adhesion between the coating film (x) and the conductive pattern may be deteriorated.
 一方、前記エタノールの吸収率が500質量%を超える場合、導電性を悪化させる場合がある。 On the other hand, when the ethanol absorption rate exceeds 500 mass%, the conductivity may be deteriorated.
 前記エタノールの吸収率は、より一層優れた密着性と導電性とを付与する観点から、20質量%~300質量%の範囲であることが好ましく、20質量%~200質量%の範囲であることがより好ましく、45質量%~190質量%の範囲であることがさらに好ましい。 The ethanol absorptivity is preferably in the range of 20% by mass to 300% by mass and more preferably in the range of 20% by mass to 200% by mass from the viewpoint of imparting even better adhesion and conductivity. Is more preferable, and the range of 45% by mass to 190% by mass is more preferable.
 また、本発明では、単に前記所定の吸収率を有する塗膜(x)を使用すればよいのではなく、前記塗膜(x)に対して前記所定の流動体(a)を用いてパターンを印刷することによって、はじめて、前記課題を解決できる。 In the present invention, it is not only necessary to use the coating film (x) having the predetermined absorption rate, but a pattern is formed using the predetermined fluid (a) on the coating film (x). The problem can be solved only by printing.
 なお、前記導電性パターンを構成する前記プライマー層(X)は、必ずしも前記所定の吸収率を有する必要はない。前記加熱前であり、かつ、前記流動体(a)が塗布される前の塗膜(x)が、前記所定の吸収率を有していることが、前記課題を解決するうえで必須である。 Note that the primer layer (X) constituting the conductive pattern does not necessarily have the predetermined absorption rate. It is essential to solve the above-mentioned problems that the coating film (x) before the heating and before the fluid (a) is applied has the predetermined absorption rate. .
 前記塗膜(x)は、前記流動体(a)に含まれる溶媒によって適度に溶解され、前記溶媒を吸収することで、前記流動体(a)に含まれる金属等の導電性物質(a2)を精度よく定着することが可能な膨潤タイプの受容層であるため、にじみのない導電性パターンを得ることに寄与できる。また、前記塗膜(x)を用いることによって、従来知られる多孔質タイプの受容層と比較して透明なプライマー層を形成することが可能である。 The coating film (x) is appropriately dissolved by the solvent contained in the fluid (a) and absorbs the solvent, whereby a conductive substance (a2) such as a metal contained in the fluid (a). Therefore, it is possible to contribute to obtaining a conductive pattern without bleeding. Further, by using the coating film (x), it is possible to form a transparent primer layer as compared with a conventionally known porous type receiving layer.
 次に、前記で得た塗膜(x)の表面の一部または全部に、前記流動体(a)を塗布した後、それを加熱することによって導電性パターンを製造する方法について説明する。 Next, a method for producing a conductive pattern by applying the fluid (a) to a part or all of the surface of the coating film (x) obtained above and heating it will be described.
 前記塗膜(x)の表面の一部または全部に前記流動体(a)を塗布する方法としては、例えば凸版反転印刷法等の反転印刷法をはじめ、インクジェット印刷法、スクリーン印刷法、オフセット印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等を用い、前記受容基材等に、前記導電性インクを直接、または反転して印刷する方法等が挙げられる。 Examples of the method for applying the fluid (a) to part or all of the surface of the coating film (x) include a reverse printing method such as a letterpress reverse printing method, an ink jet printing method, a screen printing method, and an offset printing method. Using a coating method, spin coating method, spray coating method, bar coating method, die coating method, slit coating method, roll coating method, dip coating method, etc., the conductive ink is directly or inverted on the receiving substrate. Examples include a printing method.
 なかでも、前記流動体(a)を、電子回路等の高密度化を実現する際に求められる概ね0.01μm~100μm程度の細線状に塗布(印刷)する場合には、インクジェット印刷法を採用することが好ましい。 In particular, when the fluid (a) is applied (printed) in the form of a thin wire of about 0.01 μm to 100 μm, which is required when realizing high density electronic circuits, etc., an ink jet printing method is adopted. It is preferable to do.
 前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを使用することができる。具体的には、コニカミノルタEB100、XY100(コニカミノルタIJ株式会社製)、ダイマティックス・マテリアルプリンターDMP-3000、ダイマティックス・マテリアルプリンターDMP-2831(富士フィルム株式会社製)等が挙げられる。 As the ink jet printing method, what is generally called an ink jet printer can be used. Specific examples include Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), and the like.
 前記流動体(a)の塗布(印刷)されたものは、前記流動体(a)中に含まれる金属等の導電性物質(a2)間を密着し接合することで導電性を付与する観点から、加熱されることが好ましい。 From the viewpoint of imparting conductivity by applying (printing) the fluid (a), the conductive material (a2) such as metal contained in the fluid (a) is in close contact and joined. It is preferable to be heated.
 前記加熱は、概ね80℃~300℃の範囲で、概ね2分~200分程度行うことが好ましい。前記加熱は大気中で行っても良いが、前記金属の酸化を防止する観点から、加熱工程の一部または全部を還元雰囲気下で行っても良い。また、本発明の導電性パターンは、概ね80℃~120℃の比較的低温で加熱した場合であっても、密着性及び導電性優れたパターンを形成できる。 The heating is preferably performed in the range of approximately 80 ° C. to 300 ° C. for approximately 2 minutes to 200 minutes. Although the said heating may be performed in air | atmosphere, from a viewpoint of preventing the oxidation of the said metal, you may perform a part or all of heating process in a reducing atmosphere. In addition, the conductive pattern of the present invention can form a pattern with excellent adhesion and conductivity even when heated at a relatively low temperature of about 80 ° C. to 120 ° C.
 また、前記加熱工程は、例えばオーブン、熱風式乾燥炉、赤外線乾燥炉、レーザー照射、マイクロウェーブ等を用いて行うことができる。 The heating step can be performed using, for example, an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwaves, or the like.
 また、前記プライマーに含まれる樹脂として、比較的高温で架橋反応しうる架橋性官能基を有する樹脂を用いる場合、前記架橋剤(d1-2)を用いることによって、前記流動体(a)を塗布(印刷)した後に、プライマー層(X)中に架橋構造を形成しようとする場合には、前記加熱工程を経ることによって、塗布(印刷)後に架橋構造が形成される。これにより、導電性パターンの耐久性を各段に向上することができる。 Further, when a resin having a crosslinkable functional group capable of undergoing a crosslinking reaction at a relatively high temperature is used as the resin contained in the primer, the fluid (a) is applied by using the crosslinking agent (d1-2). When a crosslinked structure is to be formed in the primer layer (X) after (printing), the crosslinked structure is formed after coating (printing) by passing through the heating step. Thereby, durability of a conductive pattern can be improved to each step.
 前記架橋反応工程と前記加熱工程とをかねる場合、前記加熱温度は、使用する前記架橋剤(D)等の種類や架橋性官能基の組み合わせ等によって異なるが、概ね80℃~300℃の範囲であることが好ましく、100℃~300℃がより好ましく、120℃~300℃が特に好ましい。なお、前記支持体が比較的熱に弱い場合には、温度の上限が好ましくは150℃以下、より好ましくは120℃以下である。 When the crosslinking reaction step and the heating step are carried out, the heating temperature varies depending on the type of the crosslinking agent (D) used, the combination of the crosslinkable functional groups, etc., but is generally in the range of 80 ° C. to 300 ° C. It is preferably 100 ° C to 300 ° C, particularly preferably 120 ° C to 300 ° C. When the support is relatively weak against heat, the upper limit of the temperature is preferably 150 ° C. or less, more preferably 120 ° C. or less.
 前記加熱工程を経ることによって得られた導電性パターンの表面には、流動体(a)中に含まれる金属等の導電性物質によって導電性パターンが形成される。かかる導電性パターンは、銀インク等を用いた電子回路の形成、有機太陽電池、電子書籍端末、有機EL、有機トランジスタ、フレキシブルプリント基板、RFID等を構成する各層、周辺配線の形成、プラズマディスプレイの電磁波シールドの配線等のプリンテッド・エレクトロニクス分野等でも好適にすることができる。 On the surface of the conductive pattern obtained through the heating step, a conductive pattern is formed by a conductive material such as a metal contained in the fluid (a). Such conductive patterns include the formation of electronic circuits using silver ink or the like, organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed boards, formation of RFID, peripheral wiring formation, plasma display It can be made suitable also in the field of printed electronics such as wiring of an electromagnetic wave shield.
 また、前記導電性パターンとしては、長期間にわたり断線等を引き起こすことなく、良好な導電性を維持可能な信頼性の高い配線パターンを形成するうえで、銅等の金属によるめっき処理が施されたものを使用することができる。具体的には、前記導電性パターンとしては、例えば前記支持体の表面の一部または全部に、前記プライマーを用いて形成された塗膜(x)を有し、その塗膜(x)表面の一部または全部に、前記流動体(a)としてのめっき核剤を塗布(印刷)することによって、前記塗膜(x)の表面にめっき核を担持し、必要に応じて加熱工程等を経た後、電解めっき処理、無電解めっき処理、または、前記無電解めっき処理後に更に電解めっき処理を施すことによって形成されるめっき被膜からなるめっき層(Z)を有するものが挙げられる。 The conductive pattern was plated with a metal such as copper in order to form a highly reliable wiring pattern capable of maintaining good conductivity without causing disconnection or the like over a long period of time. Things can be used. Specifically, as the conductive pattern, for example, a part or all of the surface of the support has a coating film (x) formed using the primer, and the surface of the coating film (x) By applying (printing) the plating nucleating agent as the fluid (a) to a part or all of the coating nuclei, the plating nuclei are supported on the surface of the coating film (x), and a heating step or the like is performed as necessary. Then, what has a plating layer (Z) which consists of an electroplating process, an electroless-plating process, or the plating film formed by performing an electroplating process after the said electroless-plating process is mentioned.
 前記無電解めっき処理工程は、例えばパラジウムや銀等のめっき核が前記プライマー層(X)に担持されたものの表面に、無電解めっき液を接触することで、前記無電解めっき液中に含まれる銅等の金属を析出させ金属被膜からなる無電解めっき層(被膜)を形成する工程である。 The electroless plating treatment step is included in the electroless plating solution by bringing the electroless plating solution into contact with the surface of a plating nucleus such as palladium or silver supported on the primer layer (X). In this step, a metal such as copper is deposited to form an electroless plating layer (coating) made of a metal coating.
 前記無電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属からなる導電性物質と、還元剤と、水性媒体または有機溶剤等の溶媒とを含有するものを使用することができる。 As the electroless plating solution, for example, a solution containing a conductive substance made of a metal such as copper, nickel, chromium, cobalt, tin, a reducing agent, and a solvent such as an aqueous medium or an organic solvent is used. Can do.
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等を使用することができる。 As the reducing agent, for example, dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like can be used.
 また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸;グリシン、アラニン、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸等の有機酸、これらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンなどのアミン等の錯化剤を含有するものであってもよい。 In addition, as the electroless plating solution, if necessary, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acids such as malonic acid, succinic acid, adipic acid, maleic acid, fumaric acid; malic acid, lactic acid, glycolic acid Hydroxycarboxylic acids such as gluconic acid and citric acid; amino acids such as glycine, alanine, arginine, aspartic acid and glutamic acid; aminopolycarboxylic acids such as iminodiacetic acid, nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid The organic acid may contain a complexing agent such as an organic acid, a soluble salt of these organic acids (sodium salt, potassium salt, ammonium salt, etc.), an amine such as ethylenediamine, diethylenetriamine, and triethylenetetramine.
 前記めっき核剤中のめっき核が担持されたプライマー層(X)の表面に、前記無電解めっき液を接触する際の前記無電解めっき液の温度は、概ね20℃~98℃の範囲であることが好ましい。 The temperature of the electroless plating solution when the electroless plating solution is brought into contact with the surface of the primer layer (X) carrying the plating nucleus in the plating nucleating agent is generally in the range of 20 ° C to 98 ° C. It is preferable.
 また、電解めっき処理工程は、例えば前記めっき核が担持されたプライマー層(X)の表面、または、前記無電解処理によって形成された無電解めっき層(被膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、負極に設置した前記プライマー層(X)または前記無電解処理によって形成された無電解めっき層(被膜)の表面に析出させ、電解めっき被膜(金属被膜)を形成する工程である。 Further, the electrolytic plating treatment step is performed by bringing an electrolytic plating solution into contact with, for example, the surface of the primer layer (X) carrying the plating nucleus or the surface of the electroless plating layer (coating) formed by the electroless treatment. The surface of the primer layer (X) placed on the negative electrode or the electroless plating layer (coating) formed by the electroless treatment is obtained by energizing the electroplating solution. And forming an electrolytic plating film (metal film).
 前記電解めっき液としては、銅、ニッケル、クロム、コバルト、スズ等の金属からなる導電性物質と、硫酸等と、水性媒体とを含有するものを使用することができる。 As the electrolytic plating solution, a solution containing a conductive substance made of a metal such as copper, nickel, chromium, cobalt, tin, sulfuric acid, and an aqueous medium can be used.
 前記めっき核剤中のめっき核が担持された前記プライマー層(X)の表面に、前記電解めっき液を接触する際の前記電解めっき液の温度は、概ね20℃~98℃の範囲であることが好ましい。 The temperature of the electrolytic plating solution when the electrolytic plating solution is brought into contact with the surface of the primer layer (X) carrying the plating nuclei in the plating nucleating agent is generally in the range of 20 ° C to 98 ° C. Is preferred.
 前記したような無電解めっき処理及び電解めっき処理の工程では、前記したような強酸または強アルカリ性のめっき液を使用する場合が多いため、通常の前記プライマー層(X)では、その前記プライマー層(X)が侵され、前記前記プライマー層(X)の支持体からの剥離を引き起こす場合が多い。 In the electroless plating process and the electrolytic plating process as described above, a strong acid or strong alkaline plating solution as described above is often used. Therefore, in the normal primer layer (X), the primer layer ( X) is often attacked to cause peeling of the primer layer (X) from the support.
 一方、前記めっき核剤等の流動体(a)を用いて印刷した後に、前記前記プライマー層(X)中の架橋構造を形成したものについては、前記めっき処理工程において、支持体に対する前記プライマー層(X)の剥離を引き起こすことがない。特に、前記支持体がポリイミド樹脂等からなるものであっても、前記プライマー層(X)の剥離を引き起こすことがないため、前記導電性パターンの製造に極めて好適に使用することができる。 On the other hand, after printing using the fluid (a) such as the plating nucleating agent, the primer layer with respect to the support is formed in the plating step for the primer layer (X) in which the crosslinked structure is formed. (X) does not cause peeling. In particular, even when the support is made of a polyimide resin or the like, the primer layer (X) is not peeled off, and therefore can be used very suitably for the production of the conductive pattern.
 以上のような導電性パターンは、例えば、銀インク等を用いた電子回路の形成、有機太陽電池、電子書籍端末、有機EL、有機トランジスタ、フレキシブルプリント基板、RFID等を構成する各層、周辺配線の形成、プラズマディスプレイの電磁波シールドの配線等を製造する際の導電性パターン、より具体的には回路基板の形成に好適に使用することが可能である。 Such conductive patterns include, for example, formation of electronic circuits using silver ink, organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed circuit boards, layers constituting RFID, etc., peripheral wiring It can be suitably used for forming and forming a conductive pattern, more specifically, a circuit board in manufacturing an electromagnetic wave shield wiring of a plasma display.
 また、前記方法で得られた導電性パターンのうち、導電性インクまたはめっき核剤等の流動体(a)を塗布(印刷)した後に、その前記プライマー層(X)中に架橋構造を形成して得られた導電性パターンは、めっき処理工程を経た場合であっても、前記プライマー層(X)の支持体からの剥離等を引き起こすことなく、良好な導電性を維持可能なレベルの、格段に優れた耐久性を付与できることから、銀インク等を用いた電子回路、集積回路等に使用される回路形成用基板の形成、有機太陽電池、電子書籍端末、有機EL、有機トランジスタ、フレキシブルプリント基板、RFID等を構成する各層、周辺配線の形成、プラズマディスプレイの電磁波シールドの配線等のうち、特に耐久性の求められる用途に好適に使用することができる。特に、前記めっき処理の施された導電性パターンは、長期間にわたり断線等を引き起こすことなく、良好な導電性を維持可能な信頼性の高い配線パターンを形成できることから、例えば、一般に銅張積層板(CCL:Copper Clad Laminate)といわれ、フレキシブルプリント基板(FPC)、テープ自動ボンディング(TAB)、チップオンフィルム(COF)、及びプリント配線板(PWB)等の用途に使用することが可能である。 Moreover, after apply | coating (printing) fluid (a), such as electroconductive ink or a plating nucleating agent among the electroconductive patterns obtained by the said method, a crosslinked structure is formed in the said primer layer (X). Even when the conductive pattern obtained through the plating treatment step has a level at which good conductivity can be maintained without causing peeling of the primer layer (X) from the support. Can be imparted with excellent durability, formation of circuit forming substrates used in electronic circuits, integrated circuits, etc. using silver ink, organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed boards Of various layers constituting RFID, formation of peripheral wiring, wiring for electromagnetic wave shield of plasma display, etc., it can be suitably used for applications requiring particularly durability.In particular, the conductive pattern subjected to the plating treatment can form a highly reliable wiring pattern capable of maintaining good conductivity without causing disconnection or the like over a long period of time. (CCL: Copper Clad Laminate) and can be used for applications such as flexible printed circuit board (FPC), automatic tape bonding (TAB), chip-on-film (COF), and printed wiring board (PWB).
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
 [調製例1]プライマー1の調製
 撹拌機、還流冷却管、窒素導入管、温度計、滴下漏斗を備えた反応容器に脱イオン水115質量部、ラテムルE-118B(花王(株)製:有効成分25質量%)4質量部を入れ、窒素を吹き込みながら75℃まで昇温した。
[Preparation Example 1] Preparation of Primer 1 In a reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel, 115 parts by mass of deionized water, Latemul E-118B (manufactured by Kao Corporation: effective (25% by mass of component) 4 parts by mass was added, and the temperature was raised to 75 ° C. while blowing nitrogen.
 撹拌下、反応容器中にメタクリル酸メチル60質量部、メタクリル酸3質量部、アクリル酸n-ブチル37質量部からなるビニル単量体混合物とアクアロンKH-1025(第一工業製薬(株)製:有効成分25質量%)4質量部と脱イオン水15質量部とを混合して得られたモノマープレエマルジョンの一部(5質量部)を添加し、続いて過硫酸カリウム0.1質量部を添加し、反応容器内温度を75℃に保ちながら60分間で重合させた。 Under stirring, a vinyl monomer mixture consisting of 60 parts by weight of methyl methacrylate, 3 parts by weight of methacrylic acid and 37 parts by weight of n-butyl acrylate and Aqualon KH-1025 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: 25 parts by mass of active ingredient) A part (5 parts by mass) of a monomer pre-emulsion obtained by mixing 4 parts by mass and 15 parts by mass of deionized water was added, followed by 0.1 parts by mass of potassium persulfate. The polymerization was carried out for 60 minutes while maintaining the temperature in the reaction vessel at 75 ° C.
 次に、反応容器内の温度を75℃に保ちながら、残りのモノマープレエマルジョン(114質量部)と、過硫酸カリウムの水溶液(有効成分1質量%)30質量部とを、各々別の滴下漏斗を使用して、180分間かけて滴下した。滴下終了後、同温度にて60分間撹拌した。 Next, while maintaining the temperature in the reaction vessel at 75 ° C., the remaining monomer pre-emulsion (114 parts by mass) and 30 parts by mass of an aqueous solution of potassium persulfate (active ingredient 1% by mass) were separately added to each dropping funnel. Was added dropwise over 180 minutes. After completion of dropping, the mixture was stirred at the same temperature for 60 minutes.
 前記反応容器内の温度を40℃に冷却し、反応容器中の水分散体のpHが8.5になるようにアンモニア水(有効成分10質量%)を使用した。 The temperature in the reaction vessel was cooled to 40 ° C., and aqueous ammonia (active ingredient 10% by mass) was used so that the pH of the aqueous dispersion in the reaction vessel was 8.5.
 次に、不揮発分が30質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、プライマー1を調製した。 Next, primer 1 was prepared by using deionized water so that the non-volatile content was 30% by mass and then filtering with a 200 mesh filter cloth.
 [調製例2]プライマー2の調製
 はじめに、温度計、撹拌装置、還流冷却管及び滴下装置を備えた4ツ口フラスコに、ポリエチレングリコール-ジグリシジルエーテル(エポキシ当量185g/当量。)543質量部を仕込んだ後、フラスコ内を窒素置換した。
 前記フラスコ内の温度が70℃になるまでオイルバスを用いて加熱した後、滴下装置を使用してジ-n-ブチルアミン380質量部を30分間で滴下し、滴下終了後、70℃で10時間反応させた。反応終了後、赤外分光光度計(FT/IR-460Plus、日本分光株式会社製)を用いて、反応生成物のエポキシ基に起因する842cm-1付近の吸収ピークが消失していることを確認し、3級アミノ基を有するポリオールK(アミン当量315g/当量、水酸基当量315g/当量。)を調製した。
[Preparation Example 2] Preparation of Primer 2 First, 543 parts by mass of polyethylene glycol-diglycidyl ether (epoxy equivalent 185 g / equivalent) was added to a four-necked flask equipped with a thermometer, a stirring device, a reflux condenser, and a dropping device. After charging, the inside of the flask was purged with nitrogen.
After heating using an oil bath until the temperature in the flask reached 70 ° C., 380 parts by mass of di-n-butylamine was added dropwise over 30 minutes using a dropping device. Reacted. After completion of the reaction, using an infrared spectrophotometer (FT / IR-460Plus, manufactured by JASCO Corporation), it was confirmed that the absorption peak near 842 cm −1 due to the epoxy group of the reaction product had disappeared. Polyol K having a tertiary amino group (amine equivalent 315 g / equivalent, hydroxyl equivalent 315 g / equivalent) was prepared.
 次に、温度計、撹拌装置、還流冷却管及び滴下装置を備えた4ツ口フラスコに、ネオペンチルグリコールと1,4-ブタンジオールとアジピン酸とを反応させて得られたポリエステルポリオールP(数平均分子量2,000)を1070質量部、酢酸エチルを770質量部加え、攪拌しながら70℃に昇温した。それらを攪拌し混合した後、ジシクロヘキシルメタンジイソシアネート281質量部とオクチル酸第一錫0.2質量部とを加え、70℃で2時間反応させた。 Next, a polyester polyol P (several number) obtained by reacting neopentyl glycol, 1,4-butanediol and adipic acid in a four-necked flask equipped with a thermometer, a stirring device, a reflux condenser, and a dropping device. 1070 parts by mass and 770 parts by mass of ethyl acetate were added, and the temperature was raised to 70 ° C. with stirring. After stirring and mixing them, 281 parts by mass of dicyclohexylmethane diisocyanate and 0.2 parts by mass of stannous octylate were added and reacted at 70 ° C. for 2 hours.
 前記反応終了後、前記で得た3級アミノ基を有するポリオールKを84質量部添加し、4時間反応させた後、架橋構造を形成しうる成分として「アミノシランA1100」〔日本ユニカー株式会社製、γ-アミノプロピルトリエトキシシラン〕36質量部を添加して、1時間反応させることにより、シリル基を有するウレタンプレポリマー溶液を調製した。次に、前記ウレタンプレポリマー溶液にN-アミノエチルエタノールアミン38質量部を加え、鎖伸長反応を1時間行うことによって、カチオン性ウレタン樹脂の有機溶剤溶液を得た。 After completion of the reaction, 84 parts by mass of the polyol K having a tertiary amino group obtained above was added and reacted for 4 hours, and as a component capable of forming a crosslinked structure, “aminosilane A1100” [manufactured by Nippon Unicar Co., Ltd., [γ-Aminopropyltriethoxysilane] 36 parts by mass was added and reacted for 1 hour to prepare a urethane prepolymer solution having a silyl group. Next, 38 parts by mass of N-aminoethylethanolamine was added to the urethane prepolymer solution, and a chain extension reaction was performed for 1 hour to obtain an organic solvent solution of a cationic urethane resin.
 次に、酢酸エチルを1710質量部及び酢酸22質量部を添加し、45℃で1時間保持した後、40℃に冷却し、イオン交換水3850質量部を添加することにより、水分散体を調製した。この水分散体を減圧蒸留することにより、不揮発分が30質量%であるプライマー2を調製した。 Next, 1710 parts by mass of ethyl acetate and 22 parts by mass of acetic acid were added and held at 45 ° C. for 1 hour, then cooled to 40 ° C., and 3850 parts by mass of ion-exchanged water was added to prepare an aqueous dispersion. did. Primer 2 having a non-volatile content of 30% by mass was prepared by subjecting this aqueous dispersion to distillation under reduced pressure.
 [調製例3]プライマー3の調製
 はじめに、温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオールQ(前記ポリエステルポリオールQ中の水酸基当量1000g/当量)100質量部、2,2―ジメチロールプロピオン酸17.6質量部、1,4-シクロヘキサンジメタノール21.7質量部、及び、ジシクロヘキシルメタンジイソシアネート106.2質量部を、メチルエチルケトン178質量部の中で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
[Preparation Example 3] Preparation of Primer 3 First, 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid were reacted in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas inlet tube, and a stirrer. 100 parts by mass of the polyester polyol Q (hydroxyl group equivalent 1000 g / equivalent in the polyester polyol Q) thus obtained, 17.6 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol Then, by reacting 106.2 parts by mass of dicyclohexylmethane diisocyanate in 178 parts by mass of methyl ethyl ketone, an organic solvent solution of a urethane prepolymer having an isocyanate group at the terminal was obtained.
 次に、前記ウレタンプレポリマーの有機溶剤溶液にトリエチルアミンを13.3質量部加えることで、前記ウレタンプレポリマーが有するカルボキシル基の一部または全部を中和し、さらに水380質量部を加え十分に攪拌することにより、ウレタンプレポリマーの水性分散液を得た。 Next, 13.3 parts by mass of triethylamine is added to the organic solvent solution of the urethane prepolymer to neutralize part or all of the carboxyl groups of the urethane prepolymer, and 380 parts by mass of water is further added to the solution. By stirring, an aqueous dispersion of urethane prepolymer was obtained.
 次に、前記水性分散液に、25質量%のエチレンジアミン水溶液を8.8質量部加え、攪拌することによって、ポリウレタンプレポリマーを鎖伸長させ、エージング・脱溶剤することによって、固形分濃度30質量%のウレタン樹脂(L-1)の水性分散液を得た。ここで得られたウレタン樹脂(L-1)は、酸価が30、重量平均分子量が53,000であった。 Next, 8.8 parts by mass of a 25% by mass ethylenediamine aqueous solution is added to the aqueous dispersion, and the polyurethane prepolymer is chain-extended by stirring and subjected to aging and desolvation, whereby a solid content concentration of 30% by mass is obtained. An aqueous dispersion of urethane resin (L-1) was obtained. The urethane resin (L-1) obtained here had an acid value of 30 and a weight average molecular weight of 53,000.
 次に、攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、前記で得たウレタン樹脂(L-1)の水分散体100質量部を入れ、窒素を吹き込みながら80℃まで昇温した。 Next, 140 parts by mass of deionized water in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, a dropping funnel for dropping the monomer mixture, and a dropping funnel for dropping the polymerization catalyst, the urethane resin obtained above 100 parts by mass of the aqueous dispersion of (L-1) was added, and the temperature was raised to 80 ° C. while blowing nitrogen.
 80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル50質量部、アクリル酸n-ブチル50質量部を含有する単量体混合物と、過硫酸アンモニウム水溶液(不揮発分0.5質量%)20質量部を別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。 A monomer mixture containing 50 parts by weight of methyl methacrylate and 50 parts by weight of n-butyl acrylate and an aqueous ammonium persulfate solution (nonvolatile content: 0.5% by weight) in a reaction vessel heated to 80 ° C. with stirring. 20 parts by mass were dropped from a separate dropping funnel over 120 minutes while maintaining the temperature in the reaction vessel at 80 ± 2 ° C., and polymerized.
 滴下終了後、同温度にて60分間攪拌することによって、前記ウレタン樹脂(L-1)からなるシェル層と、前記単量体混合物が重合して形成されるビニル重合体からなるコア層とによって構成されるウレタン-アクリル複合樹脂の水分散体を得た。 After completion of dropping, the mixture is stirred for 60 minutes at the same temperature, and the shell layer made of the urethane resin (L-1) and the core layer made of the vinyl polymer formed by polymerizing the monomer mixture. An aqueous dispersion of urethane-acrylic composite resin constituted was obtained.
 前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が20質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、プライマー3を調製した。 The temperature in the reaction vessel was cooled to 40 ° C., then deionized water was used so that the non-volatile content was 20% by mass, and then filtered with a 200 mesh filter cloth to prepare Primer 3.
 [調製例4]プライマー4の調製 [Preparation Example 4] Preparation of primer 4
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、前記で得たウレタン樹脂(L-1)の水分散体100質量部を入れ、窒素を吹き込みながら80℃まで昇温した。 A reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, dropping funnel for dropping the monomer mixture, dropping funnel for dropping the polymerization catalyst, 140 parts by mass of deionized water, and the urethane resin (L- 100 parts by mass of the aqueous dispersion 1) was added, and the temperature was raised to 80 ° C. while blowing nitrogen.
 80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル50質量部、アクリル酸n-ブチル45質量部、N-n-ブトキシメチルアクリルアミド5質量部を含む単量体混合物と、過硫酸アンモニウム水溶液(不揮発分0.5質量%)20質量部を別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。 A monomer mixture containing 50 parts by weight of methyl methacrylate, 45 parts by weight of n-butyl acrylate and 5 parts by weight of Nn-butoxymethylacrylamide, and ammonium persulfate in a reaction vessel heated to 80 ° C. with stirring. 20 parts by mass of an aqueous solution (non-volatile content: 0.5% by mass) was dropped from a separate dropping funnel over 120 minutes while maintaining the temperature in the reaction vessel at 80 ± 2 ° C. to polymerize.
 滴下終了後、同温度にて60分間攪拌することによって、前記ウレタン樹脂(L-1)からなるシェル層と、前記単量体混合物が重合して形成されるビニル重合体からなるコア層とによって構成されるウレタン-アクリル複合樹脂の水分散体を得た。 After completion of dropping, the mixture is stirred for 60 minutes at the same temperature, and the shell layer made of the urethane resin (L-1) and the core layer made of the vinyl polymer formed by polymerizing the monomer mixture. An aqueous dispersion of urethane-acrylic composite resin constituted was obtained.
 前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が20質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、プライマー4を調製した。 The temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content was 20% by mass, followed by filtration with a 200 mesh filter cloth to prepare Primer 4.
 [調製例5]プライマー5の調製 [Preparation Example 5] Preparation of primer 5
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、前記で得たウレタン樹脂(L-1)の水分散体333質量部を入れ、窒素を吹き込みながら80℃まで昇温した。 A reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, dropping funnel for dropping the monomer mixture, dropping funnel for dropping the polymerization catalyst, 140 parts by mass of deionized water, and the urethane resin (L- 333 parts by mass of the aqueous dispersion 1) was added, and the temperature was raised to 80 ° C. while blowing nitrogen.
 80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル50質量部、アクリル酸n-ブチル45質量部、N-n-ブトキシメチルアクリルアミド5質量部を含む単量体混合物と、過硫酸アンモニウム水溶液(不揮発分0.5質量%)20質量部を別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。 A monomer mixture containing 50 parts by weight of methyl methacrylate, 45 parts by weight of n-butyl acrylate and 5 parts by weight of Nn-butoxymethylacrylamide, and ammonium persulfate in a reaction vessel heated to 80 ° C. with stirring. 20 parts by mass of an aqueous solution (non-volatile content: 0.5% by mass) was dropped from a separate dropping funnel over 120 minutes while maintaining the temperature in the reaction vessel at 80 ± 2 ° C. to polymerize.
 滴下終了後、同温度にて60分間攪拌することによって、前記ウレタン樹脂(L-1)からなるシェル層と、前記単量体混合物が重合して形成されるビニル重合体からなるコア層とによって構成されるウレタン-アクリル複合樹脂の水分散体を得た。 After completion of dropping, the mixture is stirred for 60 minutes at the same temperature, and the shell layer made of the urethane resin (L-1) and the core layer made of the vinyl polymer formed by polymerizing the monomer mixture. An aqueous dispersion of urethane-acrylic composite resin constituted was obtained.
 前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が20質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、プライマー5を調製した。 The temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content became 20% by mass, followed by filtering with a 200 mesh filter cloth to prepare Primer 5.
 [調製例6]プライマー6の調製
 はじめに、温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオールQ(前記ポリエステルポリオール中の水酸基当量1000g/当量)100質量部、前記ポリエステルポリオール中の水酸基当量1000g/当量)100質量部、2,2―ジメチロールプロピオン酸17.6質量部、1,4-シクロヘキサンジメタノール21.7質量部、ジシクロヘキシルメタンジイソシアネート106.2質量部を、メチルエチルケトン178質量部の中で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
[Preparation Example 6] Preparation of Primer 6 First, 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid were reacted in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas inlet tube, and a stirrer. 100 parts by mass of the obtained polyester polyol Q (hydroxyl group equivalent in the polyester polyol 1000 g / equivalent) 100 parts by mass, hydroxyl group equivalent 1000 g in the polyester polyol 1000 parts by mass, 2,2-dimethylolpropionic acid 17.6 parts by mass Part of 1,4-cyclohexane dimethanol 21.7 parts by mass, dicyclohexylmethane diisocyanate 106.2 parts by mass in methyl ethyl ketone 178 parts by mass, an organic solvent solution of urethane prepolymer having an isocyanate group at the terminal Got.
 次に、前記ウレタンプレポリマーの有機溶剤溶液に、「アミノシランA1100」〔日本ユニカー株式会社製、γ-アミノプロピルトリエトキシシラン〕10質量部を混合し、前記ウレタンプレポリマーとγ-アミノプロピルトリエトシキシランとを反応させることで、ウレタン樹脂の有機溶剤溶液を得た。 Next, 10 parts by mass of “aminosilane A1100” (manufactured by Nippon Unicar Co., Ltd., γ-aminopropyltriethoxysilane) was mixed with the organic solvent solution of the urethane prepolymer, and the urethane prepolymer and γ-aminopropyltriethoxysilane were mixed. By reacting with silane, an organic solvent solution of urethane resin was obtained.
 次に、前記ウレタン樹脂の有機溶剤溶液にトリエチルアミンを13.3質量部加えることで前記ウレタン樹脂が有するカルボキシル基の一部または全部を中和し、さらに水380質量部を加え十分に攪拌することによりウレタン樹脂の水性分散液を得た。 Next, 13.3 parts by mass of triethylamine is added to the organic solvent solution of the urethane resin to neutralize part or all of the carboxyl groups of the urethane resin, and 380 parts by mass of water is further added and sufficiently stirred. As a result, an aqueous dispersion of urethane resin was obtained.
 次に、前記水性分散液に、25質量%のエチレンジアミン水溶液を8.8質量部加え、攪拌することによって、ウレタン樹脂を鎖伸長させ、エージング・脱溶剤することによって、固形分濃度30質量%のウレタン樹脂(L-2)の水性分散液を得た。ここで得られたウレタン樹脂(L-2)は、酸価が30、重量平均分子量が88,000であった。 Next, 8.8 parts by mass of a 25% by mass aqueous ethylenediamine solution is added to the aqueous dispersion, and the urethane resin is chain-extended by stirring and subjected to aging and desolvation, whereby a solid content concentration of 30% by mass is obtained. An aqueous dispersion of urethane resin (L-2) was obtained. The urethane resin (L-2) obtained here had an acid value of 30 and a weight average molecular weight of 88,000.
 次に、攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、前記で得たウレタン樹脂(L-2)の水分散体100質量部を入れ、窒素を吹き込みながら80℃まで昇温した。 Next, 140 parts by mass of deionized water in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, a dropping funnel for dropping the monomer mixture, and a dropping funnel for dropping the polymerization catalyst, the urethane resin obtained above 100 parts by mass of the aqueous dispersion (L-2) was added, and the temperature was raised to 80 ° C. while blowing nitrogen.
 80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル50質量部、アクリル酸n-ブチル50質量部を含む単量体混合物と、過硫酸アンモニウム水溶液(不揮発分0.5質量%)20質量部を別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。 In a reaction vessel heated to 80 ° C., with stirring, a monomer mixture containing 50 parts by weight of methyl methacrylate and 50 parts by weight of n-butyl acrylate and an aqueous ammonium persulfate solution (nonvolatile content 0.5% by weight) 20 A part by mass was dropped from a separate dropping funnel over 120 minutes while maintaining the temperature in the reaction vessel at 80 ± 2 ° C., and polymerization was performed.
 滴下終了後、同温度にて60分間攪拌することによって、前記ウレタン樹脂(L-2)からなるシェル層と、前記単量体混合物が重合して形成されるビニル重合体からなるコア層とによって構成されるウレタン-アクリル複合樹脂の水分散体を得た。 After completion of the dropping, the shell layer made of the urethane resin (L-2) and the core layer made of a vinyl polymer formed by polymerizing the monomer mixture by stirring for 60 minutes at the same temperature. An aqueous dispersion of urethane-acrylic composite resin constituted was obtained.
 前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が20質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、プライマー6を調製した。 The temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content was 20% by mass, followed by filtration with a 200 mesh filter cloth to prepare primer 6.
 [調製例7]比較例用のプライマー7の調製
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、エチレングリコールと1,4-ブタンジオールとイソフタル酸とテレフタル酸とを反応させて得られる芳香族構造を有するポリエステルポリオールS(水酸基当量840g/当量)64質量部、1,4-シクロヘキサンジメタノール6質量部、2,2-ジメチロールプロピオン酸7質量部、及び、ジシクロヘキシルメタンジイソシアネート47質量部を、メチルエチルケトン80質量部に混合し、前記反応容器中の温度80度の条件下で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
[Preparation Example 7] Preparation of primer 7 for comparative example In a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, ethylene glycol, 1,4-butanediol, isophthalic acid, terephthalic acid Polyester polyol S having an aromatic structure obtained by reacting (hydroxyl equivalent 840 g / equivalent) 64 parts by mass, 1,4-cyclohexanedimethanol 6 parts by mass, 2,2-dimethylolpropionic acid 7 parts by mass, and 47 parts by mass of dicyclohexylmethane diisocyanate was mixed with 80 parts by mass of methyl ethyl ketone, and reacted under conditions of a temperature of 80 ° C. in the reaction vessel to obtain an organic solvent solution of a urethane prepolymer having an isocyanate group at the terminal.
 次に、前記ウレタンプレポリマーの有機溶剤溶液と、トリエチルアミン5質量部とを混合することで前記ウレタンプレポリマーが有するカルボキシル基の一部または全部を中和した後、更に水264質量部を加え十分に撹拌し、20質量%のエチレンジアミン水溶液を7質量部加え鎖伸長反応させ、更に減圧蒸留することによって、不揮発分が35質量%で、pHが8であるウレタン樹脂(L-3)の水性分散液からなる比較用のプライマー7を得た。前記ウレタン樹脂(L-3)の重量平均分子量は、50,000であった。 Next, after neutralizing a part or all of the carboxyl groups of the urethane prepolymer by mixing an organic solvent solution of the urethane prepolymer and 5 parts by mass of triethylamine, 264 parts by mass of water is further added and sufficient. The aqueous solution of urethane resin (L-3) having a nonvolatile content of 35% by mass and a pH of 8 is obtained by adding 7 parts by mass of a 20% by mass ethylenediamine aqueous solution and subjecting it to chain extension reaction. A comparative primer 7 comprising a liquid was obtained. The weight average molecular weight of the urethane resin (L-3) was 50,000.
 前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が20質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、比較例用のプライマー7を調製した。 After cooling the temperature in the reaction vessel to 40 ° C., using deionized water so that the non-volatile content becomes 20% by mass, and then filtering with a 200 mesh filter cloth, the primer 7 for comparative example is obtained. Prepared.
 [調製例8]比較例用のプライマー8の調製
 はじめに、温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、数平均分子量600のポリエチレングリコールを100質量部、2,2―ジメチロールプロピオン酸17.6質量部、1,4-シクロヘキサンジメタノール21.7質量部、ジシクロヘキシルメタンジイソシアネート106.2質量部を、メチルエチルケトン178質量部の中で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
[Preparation Example 8] Preparation of Primer 8 for Comparative Example First, 100 parts by mass of polyethylene glycol having a number average molecular weight of 600 in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, By reacting 17.6 parts by mass of 2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol, and 106.2 parts by mass of dicyclohexylmethane diisocyanate in 178 parts by mass of methyl ethyl ketone, isocyanate is terminated at the end. An organic solvent solution of a urethane prepolymer having a group was obtained.
 次に、前記ウレタンプレポリマーの有機溶剤溶液にトリエチルアミンを13.3質量部加えることで、前記ウレタンプレポリマーが有するカルボキシル基の一部または全部を中和し、さらに水380質量部を加え十分に攪拌することにより、ウレタンプレポリマーの水性分散液を得た。 Next, 13.3 parts by mass of triethylamine is added to the organic solvent solution of the urethane prepolymer to neutralize part or all of the carboxyl groups of the urethane prepolymer, and 380 parts by mass of water is further added to the solution. By stirring, an aqueous dispersion of urethane prepolymer was obtained.
 次に、前記水性分散液に、25質量%のエチレンジアミン水溶液を8.8質量部加え、攪拌することによって、ポリウレタンプレポリマーを鎖伸長させ、エージング・脱溶剤することによって、固形分濃度30質量%のウレタン樹脂(L-4)の水性分散液を得た。ここで得られたウレタン樹脂(L-4)は、酸価が30、重量平均分子量が30,000であった。 Next, 8.8 parts by mass of a 25% by mass ethylenediamine aqueous solution is added to the aqueous dispersion, and the polyurethane prepolymer is chain-extended by stirring and subjected to aging and desolvation, whereby a solid content concentration of 30% by mass is obtained. An aqueous dispersion of urethane resin (L-4) was obtained. The urethane resin (L-4) obtained here had an acid value of 30 and a weight average molecular weight of 30,000.
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、前記で得たウレタン樹脂(L-4)の水分散体333質量部を入れ、窒素を吹き込みながら80℃まで昇温した。 A reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, dropping funnel for dropping the monomer mixture, dropping funnel for dropping the polymerization catalyst, 140 parts by mass of deionized water, and the urethane resin (L- 4) 333 parts by mass of the aqueous dispersion was added, and the temperature was raised to 80 ° C. while blowing nitrogen.
 80℃まで昇温した反応容器内に、攪拌下、アクリル酸エチル100質量部を含む単量体混合物と、過硫酸アンモニウム水溶液(不揮発分0.5質量%)20質量部を別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。 In a reaction vessel heated up to 80 ° C., a monomer mixture containing 100 parts by mass of ethyl acrylate and 20 parts by mass of an aqueous ammonium persulfate solution (non-volatile content 0.5% by mass) were stirred from a separate dropping funnel. While maintaining the temperature in the reaction vessel at 80 ± 2 ° C., polymerization was carried out dropwise over 120 minutes.
 滴下終了後、同温度にて60分間攪拌することによって、前記ウレタン樹脂(L-4)からなるシェル層と、前記単量体混合物が重合して形成されるビニル重合体からなるコア層とによって構成されるウレタン-アクリル複合樹脂の水分散体を得た。 After the completion of dropping, the shell layer made of the urethane resin (L-4) and the core layer made of a vinyl polymer formed by polymerizing the monomer mixture by stirring for 60 minutes at the same temperature. An aqueous dispersion of urethane-acrylic composite resin constituted was obtained.
 前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が20.0質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、比較例用のプライマー8を調製した。 The temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was used so that the non-volatile content was 20.0% by mass, followed by filtration with a 200 mesh filter cloth. 8 was prepared.
 [プライマーを用いて形成された塗膜のエタノール吸収率の測定方法]
 前記エタノール吸収率は、前記プライマーを用いて得られた塗膜の質量に対する、前記塗膜が吸収するエタノールの質量割合である。
[Method for measuring ethanol absorption rate of coating film formed using primer]
The said ethanol absorption rate is a mass ratio of the ethanol which the said coating film absorbs with respect to the mass of the coating film obtained using the said primer.
 前記プライマーを、アプリケーターを用いて離型紙表面に塗布し、乾燥した後、前記離型紙を除去することによって、縦3cm、横3cm及び厚さ50μmの塗膜を作成した。 The primer was applied to the surface of the release paper using an applicator, dried, and then the release paper was removed to prepare a coating film having a length of 3 cm, a width of 3 cm, and a thickness of 50 μm.
 次に、前記で得た塗膜の質量を測定した。 Next, the mass of the coating film obtained above was measured.
 次に、前記塗膜を、25℃の環境下で、25℃に調整したエタノール30g中に浸漬した。 Next, the coating film was immersed in 30 g of ethanol adjusted to 25 ° C. in an environment of 25 ° C.
 次に、前記塗膜を前記エタノール中に浸漬した時から30秒後に、前記塗膜をエタノール中から取り出し、それを、ベンコットを3枚重ねた上に置き、その上にベンコットを3枚重ね、さらに500gの分銅を載せた状態で、10秒放置した。 Next, 30 seconds after the coating film was immersed in the ethanol, the coating film was taken out from the ethanol, and it was placed on a stack of three becots, on which three becots were stacked, Furthermore, it was left to stand for 10 seconds with a weight of 500 g placed thereon.
 前記10秒後、塗膜の質量を測定することによって、前記浸漬後の塗膜に吸収されたエタノールの質量を求めた。 After 10 seconds, the mass of the coating film after the immersion was determined by measuring the mass of the coating film.
 次に、前記浸漬後の塗膜に吸収されたエタノールの質量を、前記浸漬前の塗膜の質量で除し、100を乗じることによって得られた質量割合を、前記エタノールの吸収率とした。 Next, the mass ratio obtained by dividing the mass of ethanol absorbed in the coating film after immersion by the mass of the coating film before immersion and multiplying by 100 was defined as the ethanol absorption rate.
 [流動体(a-1)の調製]
 1,3-ブチレングリコール30質量部と、イオン交換水37質量部とグリセリン3質量部からなる混合溶媒に、平均粒径30nmの銀粒子30質量部を分散させ、ミクロポアフィルターで濾過することによって、導電性インクである流動体(a-1)を調製した。
[Preparation of fluid (a-1)]
By dispersing 30 parts by mass of silver particles having an average particle diameter of 30 nm in a mixed solvent consisting of 30 parts by mass of 1,3-butylene glycol, 37 parts by mass of ion-exchanged water and 3 parts by mass of glycerin, and filtering with a micropore filter, A fluid (a-1) which is a conductive ink was prepared.
 [流動体(a-2)の調製]
 1,3-ブチレングリコール15質量部と、イオン交換水40質量部と、グリセリン15質量部からなる混合溶媒に、平均粒径30nmの銀粒子30質量部を分散させ、ミクロポアフィルターで濾過することによって、導電性インクである流動体(a-2)を調製した。
[Preparation of fluid (a-2)]
By dispersing 30 parts by mass of silver particles having an average particle diameter of 30 nm in a mixed solvent consisting of 15 parts by mass of 1,3-butylene glycol, 40 parts by mass of ion-exchanged water, and 15 parts by mass of glycerin, and filtering through a micropore filter. Then, a fluid (a-2) which is a conductive ink was prepared.
 [流動体(a-3)の調製]
 1,3-ブチレングリコール10質量部と、イオン交換水6質量部と、グリセリン4質量部と、平均粒径30nmの銀粒子80質量部を攪拌機ディスパーサーで混合攪拌することによって、導電性インクである流動体(a-3)を調製した。
[Preparation of fluid (a-3)]
By mixing and stirring 10 parts by mass of 1,3-butylene glycol, 6 parts by mass of ion-exchanged water, 4 parts by mass of glycerin, and 80 parts by mass of silver particles having an average particle size of 30 nm with a stirrer disperser, A fluid (a-3) was prepared.
 [流動体(a’-1)の調製]
 イオン交換水37質量部と、グリセリン3質量部からなる混合溶媒に、平均粒径30nmの銀粒子60質量部を分散させ、ミクロポアフィルターで濾過することによって、導電性インクである流動体(a’-1)を調製した。
[Preparation of fluid (a′-1)]
By dispersing 60 parts by mass of silver particles having an average particle diameter of 30 nm in a mixed solvent consisting of 37 parts by mass of ion-exchanged water and 3 parts by mass of glycerin and filtering with a micropore filter, a fluid (a ′ -1) was prepared.
 実施例1<導電性パターンの作製>
 前記で得たプライマー1を、ポリイミドフィルム(東レ・デュポン株式会社製Kapton200H,厚さ50μm)からなる支持体の一方の表面全面に、乾燥後の塗膜の膜厚が3μmとなるように、バーコーターを用いて塗布した。次いで、熱風乾燥機を用いて70℃で3分間乾燥することによって、前記支持体の表面に塗膜が形成した受容基材(1)を得た。
Example 1 <Production of Conductive Pattern>
The primer 1 obtained above was placed on the entire surface of one side of a support made of a polyimide film (Kapton 200H manufactured by Toray DuPont Co., Ltd., thickness 50 μm) so that the thickness of the coating film after drying would be 3 μm. It was applied using a coater. Subsequently, the receiving base material (1) in which the coating film formed on the surface of the said support body was obtained by drying for 3 minutes at 70 degreeC using a hot air dryer.
 前記で得た受容基材(1)を構成する前記プライマーを用いて形成された塗膜の表面に、前記流動体(a-1)及び前記流動体(a-2)を、インクジェットプリンター(コニカミノルタIJ(株)製インクジェット試験機EB100、評価用プリンタヘッドKM512L、吐出量42pl)を用い、それぞれ、縦3cm、横1cmの長方形の範囲(面積)を、膜厚0.5μmで印刷し、次いで120℃の条件下で30分間乾燥することによって2種類の導電性パターンを得た。 The fluid (a-1) and the fluid (a-2) are applied to the surface of the coating film formed using the primer constituting the receiving substrate (1) obtained above, by an inkjet printer (Konica). Using a Minolta IJ Co., Ltd. inkjet testing machine EB100, evaluation printer head KM512L, discharge amount 42 pl), a rectangular area (area) of 3 cm in length and 1 cm in width was printed with a film thickness of 0.5 μm, respectively. Two types of conductive patterns were obtained by drying for 30 minutes at 120 ° C.
 また、前記で得た受容基材(1)を構成する前記プライマーを用いて形成された塗膜の表面に、前記流動体(a-3)をメタルメッシュ250のスクリーン版を用いて、縦3cm、横1cmの長方形の範囲(面積)を、膜厚1μm印刷し、次いで120℃の条件下で30分間乾燥することによって導電性パターンを得た。 Further, on the surface of the coating film formed using the primer constituting the receiving substrate (1) obtained above, the fluid (a-3) is 3 cm long using a screen plate of a metal mesh 250. A conductive pattern was obtained by printing a rectangular range (area) 1 cm wide and printing at a film thickness of 1 μm and then drying at 120 ° C. for 30 minutes.
 実施例2<導電性パターンの作製>
 前記プライマー1の代わりに、プライマー2を使用すること以外は、実施例1と同様の方法で、3種類の導電性パターンを得た。前記導電性パターンを構成するプライマー層及びそれを形成する塗膜は、架橋構造を有するものであった。
Example 2 <Production of Conductive Pattern>
Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 2 was used instead of primer 1. The primer layer constituting the conductive pattern and the coating film forming the primer layer had a crosslinked structure.
 実施例3<導電性パターンの作製>
 前記プライマー1の代わりに、プライマー3を使用すること以外は、実施例1と同様の方法で、3種類の導電性パターンを得た。
Example 3 <Production of Conductive Pattern>
Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 3 was used instead of primer 1.
 実施例4<導電性パターンの作製>
 前記プライマー1の代わりに、プライマー4を使用すること以外は、実施例1と同様の方法で、3種類の導電性パターンを得た。前記導電性パターンを構成するプライマー層は、前記流動体の塗布後に架橋構造を形成したものであった。
Example 4 <Production of Conductive Pattern>
Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 4 was used instead of primer 1. The primer layer constituting the conductive pattern had a crosslinked structure formed after application of the fluid.
 実施例5<導電性パターンの作製>
 前記プライマー1の代わりに、プライマー5を使用すること以外は、実施例1と同様の方法で、3種類の導電性パターンを得た。前記導電性パターンを構成するプライマー層は、前記流動体の塗布後に架橋構造を形成したものであった。
Example 5 <Production of Conductive Pattern>
Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 5 was used instead of primer 1. The primer layer constituting the conductive pattern had a crosslinked structure formed after application of the fluid.
 実施例6<導電性パターンの作製>
 前記プライマー1の代わりに、プライマー6を使用すること以外は、実施例1と同様の方法で、3種類の導電性パターンを得た。前記導電性パターンを構成するプライマー層及びそれを形成する塗膜は、架橋構造を有するものであった。
Example 6 <Production of Conductive Pattern>
Three types of conductive patterns were obtained in the same manner as in Example 1 except that primer 6 was used instead of primer 1. The primer layer constituting the conductive pattern and the coating film forming the primer layer had a crosslinked structure.
 比較例1<導電性パターンの作製>
 前記プライマー1の代わりに、比較例用のプライマー7を使用すること以外は、実施例1と同様の方法で、3種類の導電性パターンを得た。
Comparative Example 1 <Production of Conductive Pattern>
Three types of conductive patterns were obtained in the same manner as in Example 1 except that the primer 7 for comparative example was used instead of the primer 1.
 比較例2<導電性パターン(2’)の作製>
 前記プライマー1の代わりに、比較例用のプライマー8を使用すること以外は、実施例1と同様の方法で、3種類の導電性パターンを得た。
Comparative Example 2 <Production of Conductive Pattern (2 ')>
Three types of conductive patterns were obtained in the same manner as in Example 1 except that the primer 8 for comparative example was used instead of the primer 1.
 比較例3<導電性パターンの作製>
 前記流動体(a-1)~流動体(a-3)の代わりに、前記流動体(a’-1)を使用すること以外は、実施例3と同様の方法で、1種類の導電性パターンを得た。
Comparative Example 3 <Production of Conductive Pattern>
One type of conductivity is obtained in the same manner as in Example 3 except that the fluid (a′-1) is used instead of the fluid (a-1) to the fluid (a-3). Got a pattern.
 [プライマー層と導電層との密着性の評価方法]
 前記方法で得られた導電性パターンを構成する導電層の表面にセロハン粘着テープ(ニチバン(株)製,CT405AP-24,24mm)を指で圧着した後、前記セロハン粘着テープを剥離した。剥離したセロハン粘着テープの粘着面を目視で観察し、その付着物の有無に基づいて前記密着性を評価した。
[Method for evaluating adhesion between primer layer and conductive layer]
A cellophane adhesive tape (manufactured by Nichiban Co., Ltd., CT405AP-24, 24 mm) was pressure-bonded to the surface of the conductive layer constituting the conductive pattern obtained by the above method, and then the cellophane adhesive tape was peeled off. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesiveness was evaluated based on the presence or absence of the adhering matter.
 前記剥離したセロハン粘着テープの粘着面に、導電性パターンを構成する導電層が全く付着していなかったものを「A」、導電層のごく一部の付着がみられたものの、導電性パターン(線部)の断線を生じていないものを「B」、導電層全体の面積に対し約30%~50%の範囲の導電層が前記粘着面へ付着し、断線が生じていたものを「C」、導電層全体の面積に対し約50%以上の範囲の導電層が前記粘着面へ付着し、断線が生じていたものを「D」と評価した。 On the adhesive surface of the peeled cellophane adhesive tape, “A” indicates that the conductive layer constituting the conductive pattern was not attached at all, and a small portion of the conductive layer was observed. “B” indicates that no disconnection occurs in the wire portion), and “C” indicates that the conductive layer in the range of about 30% to 50% of the entire conductive layer adheres to the adhesive surface and the disconnection occurs. “A conductive layer in a range of about 50% or more with respect to the entire area of the conductive layer adhered to the adhesive surface, and a disconnection was evaluated as“ D ”.
 [導電性(抵抗値)の評価方法]
 前記で得た導電性パターンの表面に形成された縦3cm、横1cmの長方形の範囲の導電性物質からなる層表面の体積抵抗率を、ロレスタ指針計(三菱化学(株)製MCP-T610)を用いて測定した。体積抵抗率が5×10-6Ω・cm未満であったものを「A」、5×10-6以上9×10-6Ω・cm未満であり十分使用可能なレベルであるものを「B」、9×10-6以上5×10-5Ω・cm未満であって使用可能であるレベルのものを「C」、5×10-5以上9×10-5Ω・cm未満であるものを「D」、9×10-5以上であって実用上使用することが困難であるものを「E」と評価した。
[Evaluation method of conductivity (resistance value)]
The volume resistivity of the surface of the layer made of a conductive material having a rectangular area of 3 cm in length and 1 cm in width formed on the surface of the conductive pattern obtained above was measured using a Loresta pointer meter (MCP-T610 manufactured by Mitsubishi Chemical Corporation). It measured using. What volume resistivity is less than 5 × 10 -6 Ω · cm "A", 5 × 10 -6 or 9 × 10 -6 Ω · less than cm "B what is sufficient available levels “C”, a level that is 9 × 10 −6 or more and less than 5 × 10 −5 Ω · cm and that can be used, and “C” that is 5 × 10 −5 or more and less than 9 × 10 −5 Ω · cm Was evaluated as “E” when it was “D”, 9 × 10 −5 or more and difficult to use practically.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 [無電解めっき処理後の密着性の評価方法]
 前記実施例1及び比較例1~3で得た導電性パターンを、キャタリスト浴(奥野製薬工業株式会社製OPC-SALM/OPC-80)に5分間浸漬した後、水洗いした。
[Method for evaluating adhesion after electroless plating]
The conductive patterns obtained in Example 1 and Comparative Examples 1 to 3 were immersed in a catalyst bath (OPC-SALM / OPC-80 manufactured by Okuno Pharmaceutical Co., Ltd.) for 5 minutes and then washed with water.
 次に、それを、25℃に調整したアクセラレーター浴(奥野製薬工業株式会社製OPC-555)に5分間浸漬し、水洗した後、30℃に調整した無電解銅めっき浴(奥野製薬工業株式会社製 ATSアドカッパー)に浸漬し、水洗することによって、厚さが8μmのめっき層を形成した。 Next, it was immersed in an accelerator bath (OPC-555 manufactured by Okuno Pharmaceutical Co., Ltd.) adjusted to 25 ° C. for 5 minutes, washed with water, and then an electroless copper plating bath (Okuno Pharmaceutical Co., Ltd.) adjusted to 30 ° C. A plating layer having a thickness of 8 μm was formed by immersing in a company-made ATS ad-copper and washing with water.
 これにより、前記めっき核の担持された表面に、銅からなるめっき被膜が形成された導電性パターンからなるめっき構造体を得た。 Thereby, a plating structure made of a conductive pattern in which a plating film made of copper was formed on the surface on which the plating nucleus was carried was obtained.
 前記で得ためっき構造体のめっき層の表面に、セロハン粘着テープ(ニチバン(株)製,CT405AP-24,24mm)を指で圧着した後、前記セロハン粘着テープを、めっき構造体の表面に対して90度方向に剥離した。剥離したセロハン粘着テープの粘着面を目視で観察し、その付着物の有無に基づいて前記密着性を評価した。 After the cellophane adhesive tape (manufactured by Nichiban Co., Ltd., CT405AP-24, 24 mm) is pressure-bonded to the surface of the plating layer of the plating structure obtained above with the finger, the cellophane adhesive tape is applied to the surface of the plating structure. And peeled in the direction of 90 degrees. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesiveness was evaluated based on the presence or absence of the adhering matter.
 前記剥離したセロハン粘着テープの粘着面に、付着物が全く見られなかったものを「A」、粘着テープの貼付面積に対して約5%未満の範囲でめっき層や導電層のいずれかが支持体から剥離し、粘着テープに付着したものを「B」、粘着テープの貼付面積に対して約5%以上50%未満の範囲でめっき層や導電層のいずれかが支持体から剥離し、粘着テープに付着したものを「C」、粘着テープの貼付面積に対して約50%以上の範囲でめっき層や導電層のいずれかが支持体から剥離し、粘着テープに付着したものを「D」と評価した。 The adhesive surface of the peeled cellophane pressure-sensitive adhesive tape is “A” where no deposits are seen, and is supported by either the plating layer or the conductive layer in a range of less than about 5% of the adhesive tape application area. "B" peels off the body and adheres to the adhesive tape, and either the plating layer or the conductive layer peels off from the support within a range of about 5% to less than 50% of the adhesive tape application area. “C” indicates that the material adheres to the tape, and “D” indicates that either the plating layer or the conductive layer peels off from the support within a range of about 50% or more of the adhesive tape application area, and adheres to the adhesive tape. It was evaluated.
 [電解めっき処理後の密着性の評価方法]
 前記実施例1及び比較例1~3で得た導電性パターンの表面(導電層)を陰極に設定し、含リン銅を陽極に設定し、硫酸銅を含む電気めっき液を用いて電流密度2A/dmで15分間電気めっきを行うことによって、前記導電層の表面に、厚さ8μmの銅めっき層を積層した。前記電気めっき液としては、硫酸銅70g/リットル、硫酸200g/リットル、塩素イオン50mg/リットル、トップルチナSF(奥野製薬工業株式会社製の光沢剤)5g/リットルを使用した。
[Method for evaluating adhesion after electrolytic plating]
The surface (conductive layer) of the conductive pattern obtained in Example 1 and Comparative Examples 1 to 3 is set as a cathode, phosphorous copper is set as an anode, and current density is 2 A using an electroplating solution containing copper sulfate. By performing electroplating at / dm 2 for 15 minutes, a copper plating layer having a thickness of 8 μm was laminated on the surface of the conductive layer. As the electroplating solution, copper sulfate 70 g / liter, sulfuric acid 200 g / liter, chloride ion 50 mg / liter, Top Lucina SF (brightener manufactured by Okuno Pharmaceutical Co., Ltd.) 5 g / liter was used.
 以上の方法によって、めっき構造体の銅からなるめっき被膜の表面に、銅からなるめっき被膜が積層しためっき構造体を得た。 By the above method, a plating structure in which a plating film made of copper was laminated on the surface of the plating film made of copper of the plating structure was obtained.
 前記で得ためっき構造体のめっき膜表面に、セロハン粘着テープ(ニチバン(株)製,CT405AP-24,24mm)を指で圧着した後、前記セロハン粘着テープを、めっき構造体の表面に対して90度方向に剥離した。剥離したセロハン粘着テープの粘着面を目視で観察し、その付着物の有無に基づいて前記密着性を評価した。 After the cellophane adhesive tape (manufactured by Nichiban Co., Ltd., CT405AP-24, 24 mm) is pressure-bonded to the plating film surface of the plating structure obtained above with a finger, the cellophane adhesive tape is applied to the surface of the plating structure. Peeled in the direction of 90 degrees. The adhesive surface of the peeled cellophane adhesive tape was visually observed, and the adhesiveness was evaluated based on the presence or absence of the adhering matter.
 前記剥離したセロハン粘着テープの粘着面に、付着物が全く見られなかったものを「A」、粘着テープの貼付面積に対して約5%未満の範囲でめっき層や導電層のいずれかが支持体から剥離し、粘着テープに付着したものを「B」粘着テープの貼付面積に対して約5%以上50%未満の範囲でめっき層や導電層のいずれかが支持体から剥離し、粘着テープに付着したものを「C」、粘着テープの貼付面積に対して約50%以上の範囲でめっき層や導電層のいずれかが支持体から剥離し、粘着テープに付着したものを「D」と評価した。 The adhesive surface of the peeled cellophane pressure-sensitive adhesive tape is “A” where no deposits are seen, and is supported by either the plating layer or the conductive layer in a range of less than about 5% of the adhesive tape application area. Either the plating layer or the conductive layer is peeled off from the support within the range of about 5% or more and less than 50% of the adhesive area of the “B” pressure-sensitive adhesive tape. “C” is attached to the adhesive, and “D” is attached to the adhesive tape when either the plating layer or the conductive layer is peeled off from the support in a range of about 50% or more of the adhesive tape sticking area. evaluated.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 エタノール吸収率が26質量%であるプライマー層を備えた受容基材に1,3-ブチレングリコールを含有する流動体を用いて印刷することによって製造した実施例1記載の導電性パターンは、プライマー層と導電層との良好な密着性を有し、導電性に優れたものであった。
 エタノール吸収率が28質量%であるプライマー層を備えた受容基材に1,3-ブチレングリコールを含有する流動体を用いて印刷することによって製造した実施例2記載の導電性パターンは、プライマー層と導電層との密着性に優れ、導電性にも優れたものであった。
 エタノール吸収率が180質量%及び174質量%である受容基材に1,3-ブチレングリコールを含有する流動体を用いて印刷することによって製造した実施例3及び4記載の導電性パターンは、プライマー層と導電層との密着性及び導電性の点で特に優れたものであった。
 エタノール吸収率が50質量%及び21質量%である受容基材に1,3-ブチレングリコールを含有する流動体を用いて印刷することによって製造した実施例5及び6記載の導電性パターンは、プライマー層と導電層との密着性の点で特に優れ、導電性も優れたものであった。
 一方、エタノール吸収率が1質量%であるプライマー層を備えた受容基材に1,3-ブチレングリコールを含有する流動体を用いて印刷することによって製造した比較例1記載の導電性パターンは、プライマー層と導電層との密着性の点で実用上十分でなく、導電性の点で不十分であった。
 エタノール吸収率が550質量%であるプライマー層を備えた受容基材に1,3-ブチレングリコールを含有する流動体を用いて印刷することによって製造した比較例2記載の導電性パターンは、プライマー層と導電層との密着性及び導電性の点で実用上十分でなかった。
 エタノール吸収率が180質量%であるプライマー層を備えた受容基材に1,3-ブチレングリコールを含有しない流動体(a’-1)を用いて印刷することによって製造した比較例3記載の導電性パターンは、プライマー層と導電層との密着性及び導電性の点で実用上十分でなかった。
The conductive pattern described in Example 1 produced by printing on a receiving substrate provided with a primer layer having an ethanol absorption rate of 26% by mass using a fluid containing 1,3-butylene glycol is the primer layer Have good adhesion to the conductive layer and excellent conductivity.
The conductive pattern described in Example 2 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate provided with a primer layer having an ethanol absorption rate of 28% by mass is the primer layer It was excellent in adhesion between the conductive layer and the conductive layer, and also excellent in conductivity.
The conductive patterns described in Examples 3 and 4 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate having an ethanol absorption rate of 180% by mass and 174% by mass are primers It was particularly excellent in terms of adhesion between the layer and the conductive layer and conductivity.
The conductive patterns described in Examples 5 and 6 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate having an ethanol absorption rate of 50% by mass and 21% by mass are the primers It was particularly excellent in terms of adhesion between the layer and the conductive layer, and the conductivity was also excellent.
On the other hand, the conductive pattern described in Comparative Example 1 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate provided with a primer layer having an ethanol absorption rate of 1% by mass, In terms of adhesion between the primer layer and the conductive layer, it was not practically sufficient, and was insufficient in terms of conductivity.
The conductive pattern described in Comparative Example 2 produced by printing using a fluid containing 1,3-butylene glycol on a receiving substrate provided with a primer layer having an ethanol absorption rate of 550% by mass is the primer layer In terms of adhesion and conductivity between the conductive layer and the conductive layer, it was not practically sufficient.
The conductive material according to Comparative Example 3 produced by printing using a fluid (a′-1) containing no 1,3-butylene glycol on a receiving substrate provided with a primer layer having an ethanol absorption rate of 180% by mass. The nature pattern was not practically sufficient in terms of adhesion between the primer layer and the conductive layer and conductivity.

Claims (10)

  1. 支持体の表面の一部または全部にプライマーを塗布し、次いで、前記プライマーを用いて形成された塗膜(x)の表面の一部または全部に、下記一般式(I)で示される構造を有するジオール(a1-1)を含む多価アルコール(a1)と導電性物質(a2)とを含有する流動体(a)を塗布した後、加熱することによって得られる、支持体と、前記塗膜(x)が加熱されることによって形成したプライマー層(X)と、前記導電性物質(a2)を含む層(Y)とが積層された導電性パターンであって、前記塗膜(x)が、25℃の環境下でエタノールを、前記塗膜(x)の質量に対して20質量%~500質量%吸収するものであることを特徴とする導電性パターン。
    Figure JPOXMLDOC01-appb-I000001
    (一般式(I)中のRは、水素原子またはアルキル基を表す。)
    A primer is applied to part or all of the surface of the support, and then the structure represented by the following general formula (I) is applied to part or all of the surface of the coating film (x) formed using the primer. A support obtained by applying a fluid (a) containing a polyhydric alcohol (a1) containing a diol (a1-1) and a conductive substance (a2) and then heating the coating, and the coating film (X) is a conductive pattern in which a primer layer (X) formed by heating and a layer (Y) containing the conductive substance (a2) are laminated, wherein the coating film (x) is A conductive pattern which absorbs 20% by mass to 500% by mass of ethanol in an environment of 25 ° C. with respect to the mass of the coating film (x).
    Figure JPOXMLDOC01-appb-I000001
    (R in the general formula (I) represents a hydrogen atom or an alkyl group.)
  2. 25℃の環境下で前記塗膜(x)をエタノール中に浸漬した時から30秒後に、前記塗膜(x)が、浸漬前の前記塗膜(x)の質量に対して、20質量%~500質量%のエタノールを吸収するものである請求項1に記載の導電性パターン。 30 seconds after the coating film (x) was immersed in ethanol under an environment of 25 ° C., the coating film (x) was 20% by mass with respect to the mass of the coating film (x) before immersion. The conductive pattern according to claim 1, which absorbs up to 500% by mass of ethanol.
  3. 前記一般式(I)で示されるジオール(a1-1)が、イソプレングリコールまたは1,3-ブチレングリコールである請求項1に記載の導電性パターン。 The conductive pattern according to claim 1, wherein the diol (a1-1) represented by the general formula (I) is isoprene glycol or 1,3-butylene glycol.
  4. 前記ジオール(a1-1)が、前記流動体(a)の全量に対して10質量%~60質量%の範囲で含まれる請求項1に記載の導電性パターン。 The conductive pattern according to claim 1, wherein the diol (a1-1) is contained in the range of 10% by mass to 60% by mass with respect to the total amount of the fluid (a).
  5. 前記塗膜(x)が、ポリカーボネート構造を有するウレタン樹脂、脂肪族ポリエステル構造を有するウレタン樹脂、ウレタン-アクリル複合樹脂、及び、メタクリル酸メチル由来の構造単位を有するアクリル樹脂からなる群より選ばれる1種以上の樹脂(x-1)を含有する層である請求項1に記載の導電性パターン。 The coating film (x) is selected from the group consisting of a urethane resin having a polycarbonate structure, a urethane resin having an aliphatic polyester structure, a urethane-acrylic composite resin, and an acrylic resin having a structural unit derived from methyl methacrylate. The conductive pattern according to claim 1, wherein the conductive pattern is a layer containing at least one kind of resin (x-1).
  6. 前記プライマー層(X)が架橋構造を有するものである請求項1に記載の導電性パターン。 The conductive pattern according to claim 1, wherein the primer layer (X) has a crosslinked structure.
  7. 前記架橋構造の形成に関与する架橋性官能基が、メチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上の熱架橋性官能基である請求項6に記載の導電性パターン。 The conductive pattern according to claim 6, wherein the crosslinkable functional group involved in the formation of the crosslinked structure is one or more thermally crosslinkable functional groups selected from the group consisting of a methylolamide group and an alkoxymethylamide group.
  8. 前記導電性物質を含む層(Y)の表面に、更にめっき層(Z)を有する請求項1記載の導電性パターン。 The electroconductive pattern of Claim 1 which has a plating layer (Z) further on the surface of the layer (Y) containing the said electroconductive substance.
  9. 請求項1~8のいずれか1項に記載の導電性パターンからなる導電回路。 A conductive circuit comprising the conductive pattern according to any one of claims 1 to 8.
  10. 支持体の表面の一部または全部に、プライマーを塗布し乾燥することによって、前記プライマーを用いて形成される塗膜(x)の質量に対して、25℃環境下でエタノールを20質量%~500質量%吸収する塗膜(x)を形成し、次いで、前記塗膜(x)の表面の一部または全部に、下記一般式(I)で示される構造を有するジオール(a1-1)を含む多価アルコール(a1)と導電性物質(a2)とを含有する流動体(a)を塗布し、次いで加熱することを特徴とする、支持体と、前記塗膜(x)が加熱されることによって形成したプライマー層(X)と、前記導電性物質(a2)を含む層(Y)とが積層された導電性パターンの製造方法。
    Figure JPOXMLDOC01-appb-I000002
    (一般式(I)中のRは、水素原子またはアルキル基を表す。)
    By applying a primer to a part or all of the surface of the support and drying, 20 mass% or more ethanol in a 25 ° C. environment with respect to the mass of the coating film (x) formed using the primer. A coating film (x) that absorbs 500% by mass is formed, and then a diol (a1-1) having a structure represented by the following general formula (I) is applied to a part or all of the surface of the coating film (x). The support and the coating film (x) are heated, wherein the fluid (a) containing the polyhydric alcohol (a1) and the conductive substance (a2) is applied and then heated. The manufacturing method of the electroconductive pattern in which the primer layer (X) formed by this and the layer (Y) containing the said electroconductive substance (a2) were laminated | stacked.
    Figure JPOXMLDOC01-appb-I000002
    (R in the general formula (I) represents a hydrogen atom or an alkyl group.)
PCT/JP2013/062910 2012-05-14 2013-05-08 Conductive pattern, conductive circuit, and method for producing conductive pattern WO2013172229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014514965A JPWO2013172229A1 (en) 2012-05-14 2013-05-08 Conductive pattern, conductive circuit, and method of manufacturing conductive pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-110556 2012-05-14
JP2012110556 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172229A1 true WO2013172229A1 (en) 2013-11-21

Family

ID=49583636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062910 WO2013172229A1 (en) 2012-05-14 2013-05-08 Conductive pattern, conductive circuit, and method for producing conductive pattern

Country Status (3)

Country Link
JP (1) JPWO2013172229A1 (en)
TW (1) TW201406710A (en)
WO (1) WO2013172229A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143021A (en) * 2013-12-27 2015-08-06 トッパン・フォームズ株式会社 laminate and electronic equipment
JP2016120604A (en) * 2014-12-24 2016-07-07 Dic株式会社 Laminate, conductive pattern and electronic circuit
JP6053246B1 (en) * 2015-07-30 2016-12-27 バンドー化学株式会社 Electrode manufacturing method
WO2017017911A1 (en) * 2015-07-30 2017-02-02 バンドー化学株式会社 Method for producing electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024526A (en) * 2008-07-23 2010-02-04 Tosoh Corp Copper particulate dispersion and production method therefor
JP2010225659A (en) * 2009-03-19 2010-10-07 Fujifilm Corp Method of manufacturing electronic circuit board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010548A (en) * 2008-06-30 2010-01-14 Konica Minolta Holdings Inc Ink acceptable base material, and method of manufacturing conductive pattern using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024526A (en) * 2008-07-23 2010-02-04 Tosoh Corp Copper particulate dispersion and production method therefor
JP2010225659A (en) * 2009-03-19 2010-10-07 Fujifilm Corp Method of manufacturing electronic circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143021A (en) * 2013-12-27 2015-08-06 トッパン・フォームズ株式会社 laminate and electronic equipment
JP2016120604A (en) * 2014-12-24 2016-07-07 Dic株式会社 Laminate, conductive pattern and electronic circuit
JP6053246B1 (en) * 2015-07-30 2016-12-27 バンドー化学株式会社 Electrode manufacturing method
WO2017017911A1 (en) * 2015-07-30 2017-02-02 バンドー化学株式会社 Method for producing electrode

Also Published As

Publication number Publication date
TW201406710A (en) 2014-02-16
JPWO2013172229A1 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5382279B1 (en) Conductive pattern, electric circuit, electromagnetic wave shield, and conductive pattern manufacturing method
JP5177607B1 (en) RECEPTION LAYER FORMING RESIN COMPOSITION AND RECEPTION SUBSTRATE, PRINTED MATERIAL, CONDUCTIVE PATTERN AND ELECTRIC CIRCUIT OBTAINED USING THE SAME
JP5713223B2 (en) LAMINATE, CONDUCTIVE PATTERN AND METHOD FOR PRODUCING LAMINATE
JP5733481B2 (en) Method for forming conductive high-definition pattern, conductive high-definition pattern, and electric circuit
JP5652687B1 (en) High-definition metal pattern forming method, high-definition metal pattern, and electronic component
JP5696825B2 (en) LAMINATE, CONDUCTIVE PATTERN, ELECTRIC CIRCUIT, AND LAMINATE MANUFACTURING METHOD
WO2013172229A1 (en) Conductive pattern, conductive circuit, and method for producing conductive pattern
WO2013179965A1 (en) Conductive pattern, conductive circuit, and method for producing conductive pattern
JP6160863B2 (en) Conductive pattern and conductive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791316

Country of ref document: EP

Kind code of ref document: A1