WO2013171923A1 - Inductor element - Google Patents

Inductor element Download PDF

Info

Publication number
WO2013171923A1
WO2013171923A1 PCT/JP2012/077498 JP2012077498W WO2013171923A1 WO 2013171923 A1 WO2013171923 A1 WO 2013171923A1 JP 2012077498 W JP2012077498 W JP 2012077498W WO 2013171923 A1 WO2013171923 A1 WO 2013171923A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
sheets
linear
conductor
axis direction
Prior art date
Application number
PCT/JP2012/077498
Other languages
French (fr)
Japanese (ja)
Inventor
横山 智哉
佐藤 貴子
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to CN201280071818.1A priority Critical patent/CN104185883B/en
Priority to JP2014515455A priority patent/JP5867762B2/en
Publication of WO2013171923A1 publication Critical patent/WO2013171923A1/en
Priority to US14/505,617 priority patent/US9424981B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/003Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Definitions

  • the present invention relates to an inductor element, and more particularly to an inductor element applied as an antenna coil for near field communication.
  • the antenna coil has a magnetic core and a coil wound in the longitudinal direction thereof.
  • the antenna coil is manufactured by winding a resin film such as polyimide on which a coil pattern is printed around a ferrite core.
  • a main object of the present invention is to provide an inductor element capable of improving the operation performance.
  • An inductor element forms an inductor by connecting three or more sheets each having a main surface on which a plurality of linear conductors are formed, and a plurality of linear conductors connected to each other.
  • the inductor element includes a plurality of via-hole conductors or side-surface conductors provided in the multilayer body, and the pattern of the plurality of linear conductors is common between at least two sheets continuous in the stacking direction.
  • each of the three or more sheets has a main surface on which a plurality of first linear conductors are formed that are arranged at predetermined intervals in the first direction and each extend in a direction forming a first angle with respect to the first direction. And a main surface on which a plurality of second linear conductors are formed that extend in a direction that forms a second angle with respect to the second direction and that is arranged at a predetermined interval in the second direction.
  • a plurality of second sheets (SH3, SH4).
  • the first direction and the second direction coincide with each other, and the first linear conductor and the second linear conductor follow the main surface when viewed from the stacking direction.
  • the first linear conductor and the second linear conductor follow the main surface when viewed from the stacking direction.
  • the sheet sandwiched between the first linear conductor and the second linear conductor among the one or more first sheets and the plurality of second sheets corresponds to a magnetic sheet.
  • a sheet different from the sheet sandwiched between the first linear conductor and the second linear conductor among the one or more first sheets and the plurality of second sheets corresponds to a non-magnetic sheet.
  • the present invention by sharing a plurality of linear conductor patterns between at least two sheets, a plurality of convex portions having a pattern corresponding to this pattern appear on the main surface of the inductor element.
  • the heat dissipation performance is improved.
  • the DC resistance component of the inductor element is suppressed.
  • the operation performance of the element is improved.
  • FIG. 4 is an illustrative view showing a structure of an AA cross section of the inductor element shown in FIG.
  • (A) is an illustration figure which shows a part of manufacturing process of nonmagnetic material sheet SH1a
  • (B) is an illustration figure which shows another part of manufacturing process of nonmagnetic material sheet SH1a.
  • (A) is an illustrative view showing another part of the manufacturing process of the nonmagnetic sheet SH1a
  • (B) is an illustrative view showing still another part of the manufacturing process of the nonmagnetic sheet SH1a.
  • (A) is an illustration figure which shows a part of manufacturing process of nonmagnetic material sheet SH1b
  • (B) is an illustration figure which shows another part of manufacturing process of nonmagnetic material sheet SH1b.
  • (A) is an illustrative view showing another part of the manufacturing process of the nonmagnetic sheet SH1b
  • (B) is an illustrative view showing still another part of the manufacturing process of the nonmagnetic sheet SH1b.
  • (A) is an illustrative view showing a part of the manufacturing process of the magnetic sheet SH2
  • (B) is an illustrative view showing another part of the manufacturing process of the magnetic sheet SH2
  • (C) is a magnetic substance. It is an illustration figure which shows the other part of manufacturing process of sheet
  • (A) is an illustration figure which shows a part of manufacturing process of magnetic material sheet SH3,
  • (B) is an illustration figure which shows another part of manufacturing process of magnetic material sheet SH3.
  • (A) is an illustrative view showing another part of the manufacturing process of the magnetic sheet SH3, and (B) is an illustrative view showing still another part of the manufacturing process of the magnetic sheet SH3.
  • (A) is an illustration figure which shows a part of manufacturing process of nonmagnetic material sheet SH4,
  • (B) is an illustration figure which shows a part of other manufacturing process of nonmagnetic material sheet SH4.
  • (A) is an illustrative view showing another part of the manufacturing process of the nonmagnetic sheet SH4, and (B) is an illustrative view showing still another part of the manufacturing process of the nonmagnetic sheet SH4.
  • (A) is an illustrative view showing a part of the inductor element manufacturing process
  • (B) is an illustrative view showing another part of the inductor element manufacturing process
  • (C) is an inductor element manufacturing process. It is an illustration figure which shows a part of others.
  • the coil antenna element 10 of this embodiment includes nonmagnetic sheets SH0, SH1a, SH1b, SH4, SH5 and magnetic sheets SH2 to SH3, each of which has a rectangular main surface. These sheets are laminated in the order of “SH0”, “SH1a”, “SH1b”, “SH2”, “SH3”, “SH4”, “SH5”, and thereby a rectangular parallelepiped laminated body 12 is produced.
  • the long side and the short side of the rectangle forming the main surface of the laminate 12 extend along the X axis and the Y axis, respectively, and the thickness of the laminate 12 increases along the Z axis.
  • Conductive terminals 14a and 14b are provided on the lower surface of the laminated body 12 corresponding to the positions at both ends in the X-axis direction.
  • the sizes of the main surfaces coincide with each other among the sheets SH0, SH1a, SH1b, and SH2 to SH5.
  • the sheets SH0, SH1a, SH1b, SH4, and SH5 are made of nonmagnetic ferrite, and the sheets SH2 and SH3 are made of magnetic ferrite.
  • one main surface and the other main surface of the laminate 12 or the sheets SH0, SH1a, SH1b, SH2 to SH5 are referred to as “upper surface” and “lower surface”, respectively, as necessary.
  • a plurality of linear conductors 16, 16,... are formed on the upper surfaces of the nonmagnetic sheets SH1a and SH1b.
  • a plurality of linear conductors 18a, 18a,... are formed on the top surface of the magnetic sheet SH3.
  • a plurality of linear conductors 18b, 18b,... are formed on the upper surface of the nonmagnetic sheet SH4.
  • the linear conductor does not exist on the upper surface of the magnetic sheet SH2, and the magnetic body appears over the entire upper surface.
  • the linear conductors 16 are arranged obliquely with respect to the Y axis and arranged at a distance D1 in the X axis direction, and both ends in the length direction of the linear conductors 16 are in the Y axis direction of the upper surface of the nonmagnetic sheet SH1a or SH1b. Reach both ends. Further, the two linear conductors 16 and 16 on both sides in the X-axis direction are disposed inside the X-axis direction both ends of the upper surface of the nonmagnetic sheet SH1a or SH1b.
  • the linear conductors 18a are arranged at a distance D1 in the X-axis direction in a posture extending along the Y-axis, and both ends in the length direction of the linear conductors 18a reach both ends in the Y-axis direction on the upper surface of the magnetic sheet SH3. Also, the two linear conductors 18a, 18a on both sides in the X-axis direction are disposed on the inner side of the X-axis direction both ends of the upper surface of the magnetic sheet SH3.
  • the linear conductor 18b extends along the Y axis and is arranged at a distance D1 in the X axis direction, and both ends in the length direction of the linear conductor 18b reach both ends in the Y axis direction on the upper surface of the nonmagnetic material sheet SH4. Further, the two linear conductors 18b, 18b on both sides in the X-axis direction are disposed inside the both ends in the X-axis direction on the upper surface of the magnetic sheet SH4.
  • the arrangement of the linear conductors 18b on the nonmagnetic sheet SH4 matches the arrangement of the linear conductors 18a on the magnetic sheet SH3. Therefore, when viewed from the Z-axis direction, the linear conductor 18b completely overlaps the linear conductor 18a.
  • the distance in the X-axis direction from one end of the linear conductor 16 to the other end corresponds to “D1”.
  • the difference between the distance in the X-axis direction from one end of the linear conductor 16 to the other end and the distance in the X-axis direction from one end of the linear conductor 18a (or 18b) to the other end is "D1 ".
  • linear conductor 16 when viewed from the Z-axis direction, most portions of the linear conductor 16 are sandwiched between two adjacent linear conductors 18a and 18a (or two adjacent linear conductors 18b and 18b). That is, when viewed from the Z-axis direction, the linear conductors 16 and 18a (or 18b) are alternately arranged in the X-axis direction.
  • Plate-shaped conductors 20a and 20b are also formed on the upper surfaces of the nonmagnetic sheets SH1a and SH1b.
  • the plate-like conductor 20a is provided at a position slightly on the negative side with respect to the positive end portion in the X-axis direction and corresponding to the positive end portion in the Y-axis direction.
  • the plate-like conductor 20b is provided at a position slightly on the positive side with respect to the negative side end in the X-axis direction and corresponding to the negative side end in the Y-axis direction.
  • the distance from one end of the linear conductor 16 present on the most positive side in the X-axis direction to the plate-shaped conductor 20a corresponds to “D1”, and the other end of the linear conductor 16 present on the most negative side in the X-axis direction.
  • the distance from the plate-like conductor 20b also corresponds to “D1”.
  • the plate-like conductor 20a provided on each of the nonmagnetic sheets SH1a and SH1b is connected to the conductive terminal 14a through the via-hole conductor 22a. Further, the plate-like conductor 20b provided on each of the nonmagnetic sheets SH1a and SH1b is connected to the conductive terminal 14b via the via-hole conductor 22b.
  • a plurality of via-hole conductors (or side conductors) 24a, 24a,... Each extending in the Z-axis direction are formed on the positive side surface in the Y-axis direction of laminate 12. Further, a plurality of via-hole conductors (or side conductors) 24b, 24b,... Each extending in the Z-axis direction are formed on the negative side surface in the Y-axis direction of the multilayer body 12.
  • the number of via-hole conductors 24a matches the number of linear conductors 18a (or the number of linear conductors 18b), and the number of via-hole conductors 24b also matches the number of linear conductors 18a (or the number of linear conductors 18b).
  • Each of the via-hole conductors 24a and 24b is arranged in the X-axis direction with a distance D1 therebetween. Furthermore, the via-hole conductor 24a present on the most positive side in the X-axis direction is connected to the plate-like conductor 20a, and the via-hole conductor 24b present on the most negative side in the X-axis direction is connected to the plate-like conductor 20b.
  • a coil conductor (winding body) is formed by the linear conductor 16 formed on the nonmagnetic sheet SH1b, the linear conductor 18a formed on the magnetic sheet SH3, and the via-hole conductors 24a and 24b.
  • a magnetic body is provided inside the coil conductor.
  • the two linear conductors 16 and 16 that overlap when viewed from the Z-axis direction are connected in parallel with a non-magnetic material interposed therebetween.
  • the two linear conductors 18a and 18b that overlap when viewed from the Z-axis direction are also connected in parallel with the nonmagnetic material in between.
  • a plurality of convex portions CN1, CN1,... Appear on the upper surface of the inductor element 10 in the X-axis direction with a distance D1 and extending along the Y-axis. Further, on the lower surface of the inductor element 10, a plurality of convex portions CN2, CN2,... Appear in the X-axis direction with a distance D1 and extend obliquely with respect to the Y-axis.
  • the appearance of the convex portions CN1 and CN2 is caused by laminating a plurality of sheets having a common conductor pattern. Further, the convex portions CN1 and CN2 appear at the time when the firing described later is completed.
  • the heat dissipation performance of the inductor element 10 is improved.
  • the DC resistance component of the inductor element 10 is suppressed by connecting in parallel the two linear conductors 16 and 16 (or 18a and 18b) that overlap when viewed from the Z-axis direction. Thereby, the operating performance of the inductor element 10 can be enhanced.
  • the non-magnetic sheet SH1a is manufactured in the manner shown in FIGS. 5A to 5B and FIGS. 6A to 6B.
  • a ceramic green sheet made of a nonmagnetic ferrite material is prepared as a mother sheet BS1a (see FIG. 5A).
  • a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
  • a plurality of through holes HL1a, HL1a,... are formed in the mother sheet BS1 corresponding to the vicinity of the broken line intersections (see FIG. 5B), and the conductive paste PS1a is filled into the through holes HL1a (FIG. 6). (See (A)).
  • the filled conductive paste PS1a forms a via-hole conductor 22a or 22b.
  • the coil pattern CP1a forming the linear conductor 16 and the plate-like conductors 20a and 20b is printed on one main surface of the mother sheet BS1a (see FIG. 6B).
  • the non-magnetic sheet SH0 is formed with the same through hole as the through hole HL1b shown in FIG. 5B on the mother board, filled with the conductive paste, and printed with the conductive terminals 14a and 14b on the lower surface. It is produced by this.
  • the non-magnetic sheet SH1b is manufactured in the manner shown in FIGS. 7A to 7B and FIGS. 8A to 8B.
  • a ceramic green sheet made of a nonmagnetic ferrite material is prepared as a mother sheet BS1b (see FIG. 7A).
  • a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
  • a plurality of through holes HL1b_1, HL1b_1,... are formed in the mother sheet BS1b corresponding to the vicinity of the intersection of the broken lines, and the plurality of through holes HL1b_2, HL1b_2,. (See FIG. 7B).
  • the through hole HL1b_1 is filled with the conductive paste PS1b_1
  • the through hole HL1b_2 is filled with the conductive paste PS1b_2 (see FIG. 8A).
  • the conductive paste PS1b_1 forms a via-hole conductor 22a or 22b
  • the conductive paste PS1b_2 forms a via-hole conductor 24a or 24b.
  • the coil pattern CP1b that forms the linear conductor 16 and the plate-like conductors 20a and 20b is printed on one main surface of the mother sheet BS1b (see FIG. 8B).
  • the magnetic sheet SH2 is manufactured in the manner shown in FIGS. 9 (A) to 9 (C).
  • a ceramic green sheet made of a magnetic ferrite material is prepared as a mother sheet BS2 (see FIG. 9A).
  • a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
  • a plurality of through holes HL2, HL2,... are formed in the mother sheet BS2 along a broken line extending in the X-axis direction (see FIG. 9B), and the conductive paste PS2 forming the via hole conductor 24a or 24b is formed in the through hole.
  • HL2 is filled (see FIG. 9C).
  • the magnetic sheet SH3 is produced in the manner shown in FIGS. 10A to 10B and FIGS. 11A to 11B.
  • a ceramic green sheet made of a magnetic ferrite material is prepared as a mother sheet BS3 (see FIG. 10A).
  • a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
  • a plurality of through holes HL3, HL3,... are formed in the mother sheet BS3 along a broken line extending in the X-axis direction (see FIG. 10B), and the conductive paste PS3 forming the via hole conductor 24a or 24b is formed in the through hole.
  • HL3 is filled (see FIG. 11A).
  • the coil pattern CP3 forming the linear conductor 18a is printed on one main surface of the mother sheet BS3 (see FIG. 11B).
  • the magnetic sheet SH4 is manufactured in the manner shown in FIGS. 12A to 12B and FIGS. 13A to 13B.
  • a ceramic green sheet made of a nonmagnetic ferrite material is prepared as a mother sheet BS4 (see FIG. 12A).
  • a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
  • a plurality of through holes HL4, HL4,... are formed in the mother sheet BS4 along a broken line extending in the X-axis direction (see FIG. 12B), and the conductive paste PS4 forming the via hole conductor 24a or 24b is formed in the through hole.
  • the HL4 is filled (see FIG. 13A).
  • the coil pattern CP4 forming the linear conductor 18b is printed on one main surface of the mother sheet BS4 (see FIG. 13B).
  • the mother sheets BS1a, BS1b, BS2 to BS4, the mother sheet BS0 corresponding to the nonmagnetic sheet SH0, and the mother sheet BS5 corresponding to the nonmagnetic sheet SH5 that have undergone the above-described steps are as shown in FIG. They are crimped together in a laminated state.
  • the mother sheets BS0, BS1a, BS1b, BS2 to BS5 are laminated in this order.
  • the stacking positions of the sheets are adjusted so that the broken lines assigned to the sheets overlap each other when viewed from the Z-axis direction.
  • the pressure-bonded laminate is cut into individual sides by cutting along the broken line before firing (see FIG. 14B).
  • the individual sides are subsequently subjected to a series of barrel polishing, firing and plating processes (see FIG. 14C), whereby the inductor element 10 is completed.
  • the multilayer body 12 includes non-magnetic sheets SH1a, SH1b, a plurality of linear conductors 18a, 18a,... Each having an upper surface on which a plurality of linear conductors 16, 16,. Are laminated and a non-magnetic sheet SH4 having a top surface on which a plurality of linear conductors 18b, 18b,... Are formed.
  • a plurality of via-hole conductors 24a, 24a,..., 24b, 24b,... are provided in the laminate 12 so that these linear conductors are connected to each other to form an inductor.
  • the pattern of the plurality of linear conductors is common between at least two sheets that are continuous in the stacking direction.
  • a plurality of linear conductors 16, 16,... Arranged on the upper surface of each of the nonmagnetic sheets SH1a and SH1b at a distance D1 in the X-axis direction and extending in an oblique direction with respect to the Y-axis. Is formed. Further, a plurality of linear conductors 18a, 18a,... Or 18b, 18b,... Are arranged on the upper surface of each of the magnetic sheets SH3 and SH4 with a distance D1 in the X-axis direction and extending in the Y-axis direction. It is formed.
  • the non-magnetic sheets SH1a and SH1b and the magnetic sheets SH3 and SH4 are common sheets in a posture in which the linear conductors 16 and 18a (or 18b) are alternately arranged along the upper surface when viewed from the Z-axis direction. It is laminated every time.
  • the difference between the distance in the X-axis direction from one end of the linear conductor 16 to the other end and the distance in the X-axis direction from one end to the other end of the linear conductor 18a (or 18b) corresponds to the distance D1. To do.
  • a via-hole conductor 24 a extending in the Z-axis direction from one end of the linear conductor 16 and a via-hole conductor 24 b extending in the Z-axis direction from the other end of the linear conductor 16 are provided in the multilayer body 12.
  • the heat dissipation performance is improved.
  • via-hole conductors 24a and 24b extending in the Z-axis direction from one end and the other end of the linear conductor 16 a coil conductor is formed, and 2 exists at a common position when viewed from the Z-axis direction.
  • Two linear conductors 16 and 16 or linear conductors 18a and 18b are connected in parallel. Thereby, the DC resistance component of the inductor element 10 is suppressed. Thereby, the operation performance of the element can be enhanced.
  • non-magnetic sheets SH1a and SH1b having a certain conductor pattern are stacked, and further, a magnetic sheet SH2 and a non-magnetic sheet SH4 having another conductor pattern are stacked.
  • a magnetic sheet SH2 and a non-magnetic sheet SH4 having another conductor pattern are stacked.
  • the linear conductor 16 extends in an oblique direction with respect to the Y axis, while the linear conductors 18a and 18b extend in the Y axis direction.
  • the difference between the distance in the X-axis direction from one end of the linear conductor 16 to the other end and the distance in the X-axis direction from the one end to the other end of the linear conductor 18a (or 18b) is adjusted to the distance D1.
  • the linear conductors 18a and 18b may extend in an oblique direction.
  • the via hole conductor 24a that is present on the most positive side in the X-axis direction is connected to the conductive terminal 14a via the plate-like conductor 20a and via-hole conductor 22a, and the via hole that is present on the most negative side in the X-axis direction.
  • the conductor 24b is connected to the conductive terminal 14b through the plate-like conductor 20b and the via-hole conductor 22b (see FIGS. 1, 2A, and 3).
  • the side conductors of the inductor element 10 are mounted on the printed wiring board as terminal electrodes, the plate conductors 20a and 20b, the via-hole conductors 22a and 22b, and the conductive terminals 14a and 14b are not necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

In the present invention, a laminate body (12) results from laminating: non-magnetic body sheets (SH1a, SH1b) each having an upper surface to which a plurality of linear conductors (16, 16,...) have been formed; a magnetic body sheet (SH3) having an upper surface to which a plurality of linear conductors (18a, 18a,...) have been formed; and a non-magnetic body sheet (SH4) having an upper surface to which a plurality of linear conductors (18b, 18b,...) have been formed. A via-hole conductor or a lateral surface conductor is provided to the laminate body (12) in order to connect the linear conductors to each other to form an inductor. Here, the pattern of the plurality of linear conductors is shared among at least two successive sheets in the direction of lamination.

Description

インダクタ素子Inductor element
 この発明は、インダクタ素子に関し、特に近距離無線通信用のアンテナコイルとして適用される、インダクタ素子に関する。 The present invention relates to an inductor element, and more particularly to an inductor element applied as an antenna coil for near field communication.
 この種の素子の一例が、特許文献1に開示されている。この背景技術によれば、アンテナコイルは、磁性体コアとその長手方向に巻回されたコイルとを有する。また、このアンテナコイルは、コイルパターンが印刷されたポリイミド等の樹脂フィルムをフェライトコアに巻き付けることで作製される。 An example of this type of element is disclosed in Patent Document 1. According to this background art, the antenna coil has a magnetic core and a coil wound in the longitudinal direction thereof. The antenna coil is manufactured by winding a resin film such as polyimide on which a coil pattern is printed around a ferrite core.
特開2008-35464号公報JP 2008-35464 A
 しかし、背景技術では、樹脂フィルムをフェライトコアに巻き付けたに過ぎないため、素子の動作性能に限界がある。 However, in the background art, since the resin film is merely wound around the ferrite core, the operation performance of the element is limited.
 それゆえに、この発明の主たる目的は、動作性能を高めることができる、インダクタ素子を提供することである。 Therefore, a main object of the present invention is to provide an inductor element capable of improving the operation performance.
 この発明に従うインダクタ素子は、複数の線状導体が形成された主面を各々が有する3つ以上のシートを積層してなる積層体、および複数の線状導体を互いに接続してインダクタを形成するべく積層体に設けられた複数のビアホール導体または側面導体を備えるインダクタ素子であって、複数の線状導体のパターンは積層方向において連続する少なくとも2つのシートの間で共通する。 An inductor element according to the present invention forms an inductor by connecting three or more sheets each having a main surface on which a plurality of linear conductors are formed, and a plurality of linear conductors connected to each other. Thus, the inductor element includes a plurality of via-hole conductors or side-surface conductors provided in the multilayer body, and the pattern of the plurality of linear conductors is common between at least two sheets continuous in the stacking direction.
 好ましくは、3つ以上のシートは、第1方向に既定間隔で並びかつ第1方向に対して第1角度をなす方向に各々が延びる複数の第1線状導体が形成された主面を各々が有する1または2以上の第1シート、および第2方向に既定間隔で並びかつ第2方向に対して第2角度をなす方向に各々が延びる複数の第2線状導体が形成された主面を各々が有する複数の第2シート(SH3, SH4)を含む。 Preferably, each of the three or more sheets has a main surface on which a plurality of first linear conductors are formed that are arranged at predetermined intervals in the first direction and each extend in a direction forming a first angle with respect to the first direction. And a main surface on which a plurality of second linear conductors are formed that extend in a direction that forms a second angle with respect to the second direction and that is arranged at a predetermined interval in the second direction. A plurality of second sheets (SH3, SH4).
 或る局面では、第1シートおよび第2シートは、第1方向および第2方向が互いに一致し、かつ積層方向から眺めたときに第1線状導体および第2線状導体が主面に沿って交互に並ぶ姿勢で共通のシート毎に積層され、第1線状導体の一方端から他方端までの第1方向における距離と第2線状導体の一方端から他方端までの第2方向における距離との差分は既定間隔に相当する。 In one aspect, in the first sheet and the second sheet, the first direction and the second direction coincide with each other, and the first linear conductor and the second linear conductor follow the main surface when viewed from the stacking direction. Are stacked for each common sheet in an alternately arranged posture, and the distance in the first direction from one end of the first linear conductor to the other end and the second direction from the one end of the second linear conductor to the other end The difference from the distance corresponds to a predetermined interval.
 他の局面では、1または2以上の第1シートおよび複数の第2シートのうち第1線状導体および第2線状導体によって挟まれるシートは磁性体シートに相当する。 In another aspect, the sheet sandwiched between the first linear conductor and the second linear conductor among the one or more first sheets and the plurality of second sheets corresponds to a magnetic sheet.
 その他の局面では、1または2以上の第1シートおよび複数の第2シートのうち第1線状導体および第2線状導体によって挟まれるシートと異なるシートは非磁性体シートに相当する。 In other aspects, a sheet different from the sheet sandwiched between the first linear conductor and the second linear conductor among the one or more first sheets and the plurality of second sheets corresponds to a non-magnetic sheet.
 この発明によれば、複数の線状導体のパターンを少なくとも2つのシートの間で共通化することで、このパターンに相当するパターンを有する複数の凸部がインダクタ素子の主面に現われる。これによって、放熱性能が向上する。また、共通のパターンを有する複数の線状導体が形成されたシートを積層方向において連続させることで、積層方向に並ぶ複数の線状導体が並列的に接続される。これによって、インダクタ素子の直流抵抗成分が抑制される。こうして、素子の動作性能が向上する。 According to the present invention, by sharing a plurality of linear conductor patterns between at least two sheets, a plurality of convex portions having a pattern corresponding to this pattern appear on the main surface of the inductor element. Thereby, the heat dissipation performance is improved. Moreover, the sheet | seat in which the some linear conductor which has a common pattern was continued in the lamination direction, and the several linear conductor arranged in the lamination direction is connected in parallel. As a result, the DC resistance component of the inductor element is suppressed. Thus, the operation performance of the element is improved.
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この実施例のインダクタ素子を分解した状態を示す図解図である。It is an illustration figure which shows the state which decomposed | disassembled the inductor element of this Example. (A)はインダクタ素子を形成する非磁性体シートSH1aまたはSH1bの一例を示す平面図であり、(B)はインダクタ素子を形成する磁性体シートSH3の一例を示す平面図であり、(C)はインダクタ素子を形成する非磁性体シートSH4の一例を示す平面図である。(A) is a plan view showing an example of a non-magnetic sheet SH1a or SH1b forming an inductor element, (B) is a plan view showing an example of a magnetic sheet SH3 forming an inductor element, (C) These are top views which show an example of the nonmagnetic material sheet SH4 which forms an inductor element. この実施例のインダクタ素子の外観を示す斜視図である。It is a perspective view which shows the external appearance of the inductor element of this Example. 図3に示すインダクタ素子のA-A断面の構造を示す図解図である。FIG. 4 is an illustrative view showing a structure of an AA cross section of the inductor element shown in FIG. 3; (A)は非磁性体シートSH1aの製造工程の一部を示す図解図であり、(B)は非磁性体シートSH1aの製造工程の他の一部を示す図解図である。(A) is an illustration figure which shows a part of manufacturing process of nonmagnetic material sheet SH1a, (B) is an illustration figure which shows another part of manufacturing process of nonmagnetic material sheet SH1a. (A)は非磁性体シートSH1aの製造工程のその他の一部を示す図解図であり、(B)は非磁性体シートSH1aの製造工程のさらにその他の一部を示す図解図である。(A) is an illustrative view showing another part of the manufacturing process of the nonmagnetic sheet SH1a, and (B) is an illustrative view showing still another part of the manufacturing process of the nonmagnetic sheet SH1a. (A)は非磁性体シートSH1bの製造工程の一部を示す図解図であり、(B)は非磁性体シートSH1bの製造工程の他の一部を示す図解図である。(A) is an illustration figure which shows a part of manufacturing process of nonmagnetic material sheet SH1b, (B) is an illustration figure which shows another part of manufacturing process of nonmagnetic material sheet SH1b. (A)は非磁性体シートSH1bの製造工程のその他の一部を示す図解図であり、(B)は非磁性体シートSH1bの製造工程のさらにその他の一部を示す図解図である。(A) is an illustrative view showing another part of the manufacturing process of the nonmagnetic sheet SH1b, and (B) is an illustrative view showing still another part of the manufacturing process of the nonmagnetic sheet SH1b. (A)は磁性体シートSH2の製造工程の一部を示す図解図であり、(B)は磁性体シートSH2の製造工程の他の一部を示す図解図であり、(C)は磁性体シートSH2の製造工程のその他の一部を示す図解図である。(A) is an illustrative view showing a part of the manufacturing process of the magnetic sheet SH2, (B) is an illustrative view showing another part of the manufacturing process of the magnetic sheet SH2, and (C) is a magnetic substance. It is an illustration figure which shows the other part of manufacturing process of sheet | seat SH2. (A)は磁性体シートSH3の製造工程の一部を示す図解図であり、(B)は磁性体シートSH3の製造工程の他の一部を示す図解図である。(A) is an illustration figure which shows a part of manufacturing process of magnetic material sheet SH3, (B) is an illustration figure which shows another part of manufacturing process of magnetic material sheet SH3. (A)は磁性体シートSH3の製造工程のその他の一部を示す図解図であり、(B)は磁性体シートSH3の製造工程のさらにその他の一部を示す図解図である。(A) is an illustrative view showing another part of the manufacturing process of the magnetic sheet SH3, and (B) is an illustrative view showing still another part of the manufacturing process of the magnetic sheet SH3. (A)は非磁性体シートSH4の製造工程の一部を示す図解図であり、(B)は非磁性体シートSH4の製造工程の他の一部を示す図解図である。(A) is an illustration figure which shows a part of manufacturing process of nonmagnetic material sheet SH4, (B) is an illustration figure which shows a part of other manufacturing process of nonmagnetic material sheet SH4. (A)は非磁性体シートSH4の製造工程のその他の一部を示す図解図であり、(B)は非磁性体シートSH4の製造工程のさらにその他の一部を示す図解図である。(A) is an illustrative view showing another part of the manufacturing process of the nonmagnetic sheet SH4, and (B) is an illustrative view showing still another part of the manufacturing process of the nonmagnetic sheet SH4. (A)はインダクタ素子の製造工程の一部を示す図解図であり、(B)はインダクタ素子の製造工程の他の一部を示す図解図であり、(C)はインダクタ素子の製造工程のその他の一部を示す図解図である。(A) is an illustrative view showing a part of the inductor element manufacturing process, (B) is an illustrative view showing another part of the inductor element manufacturing process, and (C) is an inductor element manufacturing process. It is an illustration figure which shows a part of others.
 図1を参照して、この実施例のコイルアンテナ素子10は、各々の主面が長方形をなす非磁性体シートSH0,SH1a,SH1b,SH4,SH5と磁性体シートSH2~SH3を含む。これらのシートは“SH0”,“SH1a”,“SH1b”,“SH2”,“SH3”,“SH4”,“SH5”の順で積層され、これによって直方体状の積層体12が作製される。積層体12の主面をなす長方形の長辺および短辺はそれぞれX軸およびY軸に沿って延び、積層体12の厚みはZ軸に沿って増大する。積層体12の下面には、X軸方向両端の位置に対応して、導電端子14aおよび14bが設けられる。 Referring to FIG. 1, the coil antenna element 10 of this embodiment includes nonmagnetic sheets SH0, SH1a, SH1b, SH4, SH5 and magnetic sheets SH2 to SH3, each of which has a rectangular main surface. These sheets are laminated in the order of “SH0”, “SH1a”, “SH1b”, “SH2”, “SH3”, “SH4”, “SH5”, and thereby a rectangular parallelepiped laminated body 12 is produced. The long side and the short side of the rectangle forming the main surface of the laminate 12 extend along the X axis and the Y axis, respectively, and the thickness of the laminate 12 increases along the Z axis. Conductive terminals 14a and 14b are provided on the lower surface of the laminated body 12 corresponding to the positions at both ends in the X-axis direction.
 なお、主面のサイズは、シートSH0,SH1a,SH1b,SH2~SH5の間で互いに一致する。また、シートSH0,SH1a,SH1b,SH4,SH5は非磁性のフェライトを材料とし、シートSH2,SH3は磁性のフェライトを材料とする。さらに、積層体12またはシートSH0,SH1a,SH1b,SH2~SH5の一方主面および他方主面はそれぞれ、必要に応じて“上面”および“下面”と呼ぶ。 Note that the sizes of the main surfaces coincide with each other among the sheets SH0, SH1a, SH1b, and SH2 to SH5. The sheets SH0, SH1a, SH1b, SH4, and SH5 are made of nonmagnetic ferrite, and the sheets SH2 and SH3 are made of magnetic ferrite. Further, one main surface and the other main surface of the laminate 12 or the sheets SH0, SH1a, SH1b, SH2 to SH5 are referred to as “upper surface” and “lower surface”, respectively, as necessary.
 図2(A)に示すように、非磁性体シートSH1aおよびSH1bの各々の上面には、複数の線状導体16,16,…が形成される。また、図2(B)に示すように、磁性体シートSH3の上面には、複数の線状導体18a,18a,…が形成される。さらに、図2(C)に示すように、非磁性体シートSH4の上面には、複数の線状導体18b,18b,…が形成される。なお、磁性体シートSH2の上面には線状導体が存在せず、磁性体が上面の全体にわたって現われる。同様に、非磁性体シートSH0およびSH5の上面にも線状導体は存在せず、非磁性体が上面の全体にわたって現われる。 As shown in FIG. 2A, a plurality of linear conductors 16, 16,... Are formed on the upper surfaces of the nonmagnetic sheets SH1a and SH1b. 2B, a plurality of linear conductors 18a, 18a,... Are formed on the top surface of the magnetic sheet SH3. Further, as shown in FIG. 2C, a plurality of linear conductors 18b, 18b,... Are formed on the upper surface of the nonmagnetic sheet SH4. In addition, the linear conductor does not exist on the upper surface of the magnetic sheet SH2, and the magnetic body appears over the entire upper surface. Similarly, there is no linear conductor on the top surfaces of the nonmagnetic sheets SH0 and SH5, and the nonmagnetic material appears over the entire top surface.
 線状導体16はY軸に対して斜め方向に延びる姿勢でX軸方向に距離D1を隔てて並び、線状導体16の長さ方向両端は非磁性体シートSH1aまたはSH1bの上面のY軸方向両端に達する。また、X軸方向両側の2つの線状導体16,16は、非磁性体シートSH1aまたはSH1bの上面のX軸方向両端よりも内側に配置される。 The linear conductors 16 are arranged obliquely with respect to the Y axis and arranged at a distance D1 in the X axis direction, and both ends in the length direction of the linear conductors 16 are in the Y axis direction of the upper surface of the nonmagnetic sheet SH1a or SH1b. Reach both ends. Further, the two linear conductors 16 and 16 on both sides in the X-axis direction are disposed inside the X-axis direction both ends of the upper surface of the nonmagnetic sheet SH1a or SH1b.
 線状導体18aはY軸に沿って延びる姿勢でX軸方向に距離D1を隔てて並び、線状導体18aの長さ方向両端は磁性体シートSH3の上面のY軸方向両端に達する。また、X軸方向両側の2つの線状導体18a,18aは、磁性体シートSH3の上面のX軸方向両端よりも内側に配置される。 The linear conductors 18a are arranged at a distance D1 in the X-axis direction in a posture extending along the Y-axis, and both ends in the length direction of the linear conductors 18a reach both ends in the Y-axis direction on the upper surface of the magnetic sheet SH3. Also, the two linear conductors 18a, 18a on both sides in the X-axis direction are disposed on the inner side of the X-axis direction both ends of the upper surface of the magnetic sheet SH3.
 線状導体18bはY軸に沿って延びる姿勢でX軸方向に距離D1を隔てて並び、線状導体18bの長さ方向両端は非磁性体シートSH4の上面のY軸方向両端に達する。また、X軸方向両側の2つの線状導体18b,18bは、磁性体シートSH4の上面のX軸方向両端よりも内側に配置される。 The linear conductor 18b extends along the Y axis and is arranged at a distance D1 in the X axis direction, and both ends in the length direction of the linear conductor 18b reach both ends in the Y axis direction on the upper surface of the nonmagnetic material sheet SH4. Further, the two linear conductors 18b, 18b on both sides in the X-axis direction are disposed inside the both ends in the X-axis direction on the upper surface of the magnetic sheet SH4.
 非磁性体シートSH4上の線状導体18bの配置は、磁性体シートSH3上の線状導体18aの配置と一致する。したがって、Z軸方向から眺めたとき、線状導体18bは線状導体18aと完全に重なる。 The arrangement of the linear conductors 18b on the nonmagnetic sheet SH4 matches the arrangement of the linear conductors 18a on the magnetic sheet SH3. Therefore, when viewed from the Z-axis direction, the linear conductor 18b completely overlaps the linear conductor 18a.
 これに対して、非磁性体シートSH1aまたはSH1bについては、線状導体16の一方端から他方端までのX軸方向における距離が“D1”に相当する。換言すれば、線状導体16の一方端から他方端までのX軸方向における距離と線状導体18a(または18b)の一方端から他方端までのX軸方向における距離との差分は、“D1”に相当する。 On the other hand, for the non-magnetic sheet SH1a or SH1b, the distance in the X-axis direction from one end of the linear conductor 16 to the other end corresponds to “D1”. In other words, the difference between the distance in the X-axis direction from one end of the linear conductor 16 to the other end and the distance in the X-axis direction from one end of the linear conductor 18a (or 18b) to the other end is "D1 ".
 また、線状導体16の一方端の位置は、Z軸方向から眺めて線状導体18aまたは18bの一方端と重なる位置に調整される。さらに、線状導体16の数は、線状導体18aの数(=線状導体18bの数)よりも1つ少ない。 Further, the position of one end of the linear conductor 16 is adjusted to a position overlapping with one end of the linear conductor 18a or 18b when viewed from the Z-axis direction. Further, the number of linear conductors 16 is one less than the number of linear conductors 18a (= the number of linear conductors 18b).
 したがって、Z軸方向から眺めると、線状導体16のほとんどの部分が隣り合う2つの線状導体18a,18a(または隣り合う2つの線状導体18b,18b)によって挟まれる。つまり、Z軸方向から眺めたとき、線状導体16および18a(または18b)はX軸方向に交互に並ぶ。 Therefore, when viewed from the Z-axis direction, most portions of the linear conductor 16 are sandwiched between two adjacent linear conductors 18a and 18a (or two adjacent linear conductors 18b and 18b). That is, when viewed from the Z-axis direction, the linear conductors 16 and 18a (or 18b) are alternately arranged in the X-axis direction.
 非磁性体シートSH1aおよびSH1bの各々の上面には、板状導体20aおよび20bも形成される。板状導体20aは、X軸方向の正側端部よりもやや負側でかつY軸方向の正側端部に相当する位置に設けられる。また、板状導体20bは、X軸方向の負側端部よりもやや正側でかつY軸方向の負側端部に相当する位置に設けられる。X軸方向において最も正側に存在する線状導体16の一方端から板状導体20aまでの距離は“D1”に相当し、X軸方向において最も負側に存在する線状導体16の他方端から板状導体20bまでの距離も“D1”に相当する。 Plate-shaped conductors 20a and 20b are also formed on the upper surfaces of the nonmagnetic sheets SH1a and SH1b. The plate-like conductor 20a is provided at a position slightly on the negative side with respect to the positive end portion in the X-axis direction and corresponding to the positive end portion in the Y-axis direction. The plate-like conductor 20b is provided at a position slightly on the positive side with respect to the negative side end in the X-axis direction and corresponding to the negative side end in the Y-axis direction. The distance from one end of the linear conductor 16 present on the most positive side in the X-axis direction to the plate-shaped conductor 20a corresponds to “D1”, and the other end of the linear conductor 16 present on the most negative side in the X-axis direction. The distance from the plate-like conductor 20b also corresponds to “D1”.
 図1に示すように、非磁性体シートSH1aおよびSH1bの各々に設けられた板状導体20aは、ビアホール導体22aを介して導電端子14aと接続される。また、非磁性体シートSH1aおよびSH1bの各々に設けられた板状導体20bは、ビアホール導体22bを介して導電端子14bと接続される。 As shown in FIG. 1, the plate-like conductor 20a provided on each of the nonmagnetic sheets SH1a and SH1b is connected to the conductive terminal 14a through the via-hole conductor 22a. Further, the plate-like conductor 20b provided on each of the nonmagnetic sheets SH1a and SH1b is connected to the conductive terminal 14b via the via-hole conductor 22b.
 図3を参照して、積層体12のY軸方向における正側の側面には、各々がZ軸方向に延びる複数のビアホール導体(または側面導体)24a,24a,…が形成される。また、積層体12のY軸方向における負側の側面には、各々がZ軸方向に延びる複数のビアホール導体(または側面導体)24b,24b,…が形成される。 Referring to FIG. 3, a plurality of via-hole conductors (or side conductors) 24a, 24a,... Each extending in the Z-axis direction are formed on the positive side surface in the Y-axis direction of laminate 12. Further, a plurality of via-hole conductors (or side conductors) 24b, 24b,... Each extending in the Z-axis direction are formed on the negative side surface in the Y-axis direction of the multilayer body 12.
 ビアホール導体24aの数は線状導体18aの数(または線状導体18bの数)と一致し、ビアホール導体24bの数も線状導体18aの数(または線状導体18bの数)と一致する。また、ビアホール導体24aおよび24bの各々は、距離D1を隔ててX軸方向に並ぶ。さらに、X軸方向において最も正側に存在するビアホール導体24aは板状導体20aと接続され、X軸方向において最も負側に存在するビアホール導体24bは板状導体20bと接続される。 The number of via-hole conductors 24a matches the number of linear conductors 18a (or the number of linear conductors 18b), and the number of via-hole conductors 24b also matches the number of linear conductors 18a (or the number of linear conductors 18b). Each of the via- hole conductors 24a and 24b is arranged in the X-axis direction with a distance D1 therebetween. Furthermore, the via-hole conductor 24a present on the most positive side in the X-axis direction is connected to the plate-like conductor 20a, and the via-hole conductor 24b present on the most negative side in the X-axis direction is connected to the plate-like conductor 20b.
 したがって、非磁性体シートSH1bに形成された線状導体16と磁性体シートSH3に形成された線状導体18aとビアホール導体24aおよび24bとによって、コイル導体(巻回体)が形成される。コイル導体の内側には、磁性体が設けられる。さらに、Z軸方向から眺めたときに重なり合う2つの線状導体16,16は、非磁性体を挟んで並列的に接続される。Z軸方向から眺めたときに重なり合う2つの線状導体18a,18bも、非磁性体を挟んで並列的に接続される。 Therefore, a coil conductor (winding body) is formed by the linear conductor 16 formed on the nonmagnetic sheet SH1b, the linear conductor 18a formed on the magnetic sheet SH3, and the via- hole conductors 24a and 24b. A magnetic body is provided inside the coil conductor. Furthermore, the two linear conductors 16 and 16 that overlap when viewed from the Z-axis direction are connected in parallel with a non-magnetic material interposed therebetween. The two linear conductors 18a and 18b that overlap when viewed from the Z-axis direction are also connected in parallel with the nonmagnetic material in between.
 図4を作成して、インダクタ素子10の上面には、距離D1を隔ててX軸方向に並びかつY軸に沿って各々が延びる複数の凸部CN1,CN1,…が現われる。また、インダクタ素子10の下面には、距離D1を隔ててX軸方向に並びかつY軸に対して斜め方向に各々が延びる複数の凸部CN2,CN2,…が現われる。 As shown in FIG. 4, a plurality of convex portions CN1, CN1,... Appear on the upper surface of the inductor element 10 in the X-axis direction with a distance D1 and extending along the Y-axis. Further, on the lower surface of the inductor element 10, a plurality of convex portions CN2, CN2,... Appear in the X-axis direction with a distance D1 and extend obliquely with respect to the Y-axis.
 凸部CN1およびCN2の出現は、共通の導体パターンを有する複数のシートを積層したことに起因する。また、凸部CN1およびCN2は、後述する焼成が完了した時点で出現する。こうして凸部CN1およびCN2を形成することで、インダクタ素子10の放熱性能が向上する。また、Z軸方向から眺めたときに重なり合う2つの線状導体16,16(または18a,18b)を並列的に接続することで、インダクタ素子10の直流抵抗成分が抑制される。これによって、インダクタ素子10の動作性能を高めることができる。 The appearance of the convex portions CN1 and CN2 is caused by laminating a plurality of sheets having a common conductor pattern. Further, the convex portions CN1 and CN2 appear at the time when the firing described later is completed. By forming the convex portions CN1 and CN2 in this way, the heat dissipation performance of the inductor element 10 is improved. Moreover, the DC resistance component of the inductor element 10 is suppressed by connecting in parallel the two linear conductors 16 and 16 (or 18a and 18b) that overlap when viewed from the Z-axis direction. Thereby, the operating performance of the inductor element 10 can be enhanced.
 非磁性体シートSH1aは、図5(A)~図5(B)および図6(A)~図6(B)に示す要領で作製される。まず、非磁性のフェライト材料からなるセラミックグリーンシートがマザーシートBS1aとして用意される(図5(A)参照)。ここで、X軸方向およびY軸方向に延びる複数の破線は切り出し位置を示す。 The non-magnetic sheet SH1a is manufactured in the manner shown in FIGS. 5A to 5B and FIGS. 6A to 6B. First, a ceramic green sheet made of a nonmagnetic ferrite material is prepared as a mother sheet BS1a (see FIG. 5A). Here, a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
 次に、複数の貫通孔HL1a,HL1a,…が破線の交点近傍に対応してマザーシートBS1に形成され(図5(B)参照)、導電ペーストPS1aが貫通孔HL1aに充填される(図6(A)参照)。充填された導電ペーストPS1aは、ビアホール導体22aまたは22bをなす。 Next, a plurality of through holes HL1a, HL1a,... Are formed in the mother sheet BS1 corresponding to the vicinity of the broken line intersections (see FIG. 5B), and the conductive paste PS1a is filled into the through holes HL1a (FIG. 6). (See (A)). The filled conductive paste PS1a forms a via- hole conductor 22a or 22b.
 導電ペーストPS1aの充填が完了すると、線状導体16,板状導体20a,20bをなすコイルパターンCP1aがマザーシートBS1aの一方主面に印刷される(図6(B)参照)。 When the filling of the conductive paste PS1a is completed, the coil pattern CP1a forming the linear conductor 16 and the plate- like conductors 20a and 20b is printed on one main surface of the mother sheet BS1a (see FIG. 6B).
 なお、非磁性体シートSH0は、図5(B)に示す貫通孔HL1bと同じ貫通孔をマザーボードに形成し、この貫通孔に導電ペーストを充填し、そして下面に導電端子14aおよび14bを印刷することで作製される。 The non-magnetic sheet SH0 is formed with the same through hole as the through hole HL1b shown in FIG. 5B on the mother board, filled with the conductive paste, and printed with the conductive terminals 14a and 14b on the lower surface. It is produced by this.
 非磁性体シートSH1bは、図7(A)~図7(B)および図8(A)~図8(B)に示す要領で作製される。まず、非磁性のフェライト材料からなるセラミックグリーンシートがマザーシートBS1bとして用意される(図7(A)参照)。ここで、X軸方向およびY軸方向に延びる複数の破線は切り出し位置を示す。 The non-magnetic sheet SH1b is manufactured in the manner shown in FIGS. 7A to 7B and FIGS. 8A to 8B. First, a ceramic green sheet made of a nonmagnetic ferrite material is prepared as a mother sheet BS1b (see FIG. 7A). Here, a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
 次に、複数の貫通孔HL1b_1,HL1b_1,…が破線の交点近傍に対応してマザーシートBS1bに形成され、複数の貫通孔HL1b_2,HL1b_2,…がX軸方向に延びる破線に沿ってマザーシートBS1bに形成される(図7(B)参照)。貫通孔HL1b_1には導電ペーストPS1b_1が充填され、貫通孔HL1b_2には導電ペーストPS1b_2が充填される(図8(A)参照)。導電ペーストPS1b_1はビアホール導体22aまたは22bをなし、導電ペーストPS1b_2はビアホール導体24aまたは24bをなす。 Next, a plurality of through holes HL1b_1, HL1b_1,... Are formed in the mother sheet BS1b corresponding to the vicinity of the intersection of the broken lines, and the plurality of through holes HL1b_2, HL1b_2,. (See FIG. 7B). The through hole HL1b_1 is filled with the conductive paste PS1b_1, and the through hole HL1b_2 is filled with the conductive paste PS1b_2 (see FIG. 8A). The conductive paste PS1b_1 forms a via- hole conductor 22a or 22b, and the conductive paste PS1b_2 forms a via- hole conductor 24a or 24b.
 導電ペーストPS1b_1またはPS1b_2の充填が完了すると、線状導体16,板状導体20a,20bをなすコイルパターンCP1bがマザーシートBS1bの一方主面に印刷される(図8(B)参照)。 When the filling of the conductive paste PS1b_1 or PS1b_2 is completed, the coil pattern CP1b that forms the linear conductor 16 and the plate- like conductors 20a and 20b is printed on one main surface of the mother sheet BS1b (see FIG. 8B).
 磁性体シートSH2は、図9(A)~図9(C)に示す要領で作製される。まず、磁性のフェライト材料からなるセラミックグリーンシートがマザーシートBS2として用意される(図9(A)参照)。ここで、X軸方向およびY軸方向に延びる複数の破線は切り出し位置を示す。次に、複数の貫通孔HL2,HL2,…がX軸方向に延びる破線に沿ってマザーシートBS2に形成され(図9(B)参照)、ビアホール導体24aまたは24bをなす導電ペーストPS2が貫通孔HL2に充填される(図9(C)参照)。 The magnetic sheet SH2 is manufactured in the manner shown in FIGS. 9 (A) to 9 (C). First, a ceramic green sheet made of a magnetic ferrite material is prepared as a mother sheet BS2 (see FIG. 9A). Here, a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions. Next, a plurality of through holes HL2, HL2,... Are formed in the mother sheet BS2 along a broken line extending in the X-axis direction (see FIG. 9B), and the conductive paste PS2 forming the via hole conductor 24a or 24b is formed in the through hole. HL2 is filled (see FIG. 9C).
 磁性体シートSH3は、図10(A)~図10(B)および図11(A)~図11(B)に示す要領で作製される。まず、磁性のフェライト材料からなるセラミックグリーンシートがマザーシートBS3として用意される(図10(A)参照)。ここで、X軸方向およびY軸方向に延びる複数の破線は切り出し位置を示す。 The magnetic sheet SH3 is produced in the manner shown in FIGS. 10A to 10B and FIGS. 11A to 11B. First, a ceramic green sheet made of a magnetic ferrite material is prepared as a mother sheet BS3 (see FIG. 10A). Here, a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
 次に、複数の貫通孔HL3,HL3,…がX軸方向に延びる破線に沿ってマザーシートBS3に形成され(図10(B)参照)、ビアホール導体24aまたは24bをなす導電ペーストPS3が貫通孔HL3に充填される(図11(A)参照)。導電ペーストPS3の充填が完了すると、線状導体18aをなすコイルパターンCP3がマザーシートBS3の一方主面に印刷される(図11(B)参照)。 Next, a plurality of through holes HL3, HL3,... Are formed in the mother sheet BS3 along a broken line extending in the X-axis direction (see FIG. 10B), and the conductive paste PS3 forming the via hole conductor 24a or 24b is formed in the through hole. HL3 is filled (see FIG. 11A). When the filling of the conductive paste PS3 is completed, the coil pattern CP3 forming the linear conductor 18a is printed on one main surface of the mother sheet BS3 (see FIG. 11B).
 磁性体シートSH4は、図12(A)~図12(B)および図13(A)~図13(B)に示す要領で作製される。まず、非磁性体のフェライト材料からなるセラミックグリーンシートがマザーシートBS4として用意される(図12(A)参照)。ここで、X軸方向およびY軸方向に延びる複数の破線は切り出し位置を示す。 The magnetic sheet SH4 is manufactured in the manner shown in FIGS. 12A to 12B and FIGS. 13A to 13B. First, a ceramic green sheet made of a nonmagnetic ferrite material is prepared as a mother sheet BS4 (see FIG. 12A). Here, a plurality of broken lines extending in the X-axis direction and the Y-axis direction indicate cutout positions.
 次に、複数の貫通孔HL4,HL4,…がX軸方向に延びる破線に沿ってマザーシートBS4に形成され(図12(B)参照)、ビアホール導体24aまたは24bをなす導電ペーストPS4が貫通孔HL4に充填される(図13(A)参照)。導電ペーストPS4の充填が完了すると、線状導体18bをなすコイルパターンCP4がマザーシートBS4の一方主面に印刷される(図13(B)参照)。 Next, a plurality of through holes HL4, HL4,... Are formed in the mother sheet BS4 along a broken line extending in the X-axis direction (see FIG. 12B), and the conductive paste PS4 forming the via hole conductor 24a or 24b is formed in the through hole. The HL4 is filled (see FIG. 13A). When the filling of the conductive paste PS4 is completed, the coil pattern CP4 forming the linear conductor 18b is printed on one main surface of the mother sheet BS4 (see FIG. 13B).
 上述の工程を経たマザーシートBS1a,BS1b,BS2~BS4,非磁性体シートSH0に相当するマザーシートBS0,および非磁性体シートSH5に相当するマザーシートBS5は、図14(A)に示す要領で積層された状態で互いに圧着される。図14(A)によれば、マザーシートBS0,BS1a,BS1b,BS2~BS5がこの順序で積層される。このとき、各シートの積層位置は、各シートに割り当てられた破線がZ軸方向から眺めて互いに重なるように調整される。 The mother sheets BS1a, BS1b, BS2 to BS4, the mother sheet BS0 corresponding to the nonmagnetic sheet SH0, and the mother sheet BS5 corresponding to the nonmagnetic sheet SH5 that have undergone the above-described steps are as shown in FIG. They are crimped together in a laminated state. According to FIG. 14A, the mother sheets BS0, BS1a, BS1b, BS2 to BS5 are laminated in this order. At this time, the stacking positions of the sheets are adjusted so that the broken lines assigned to the sheets overlap each other when viewed from the Z-axis direction.
 圧着された積層体は、焼成前に上記破線に沿ってカットされることにより個辺化される(図14(B)参照)。個辺は、その後にバレル研磨,焼成およびメッキ処理の一連の処理を施され(図14(C)参照)、これによってインダクタ素子10が完成する。 The pressure-bonded laminate is cut into individual sides by cutting along the broken line before firing (see FIG. 14B). The individual sides are subsequently subjected to a series of barrel polishing, firing and plating processes (see FIG. 14C), whereby the inductor element 10 is completed.
 以上の説明から分かるように、積層体12は、複数の線状導体16,16,…が形成された上面を各々が有する非磁性体シートSH1a,SH1b、複数の線状導体18a,18a,…が形成された上面を有する磁性体シートSH3、および複数の線状導体18b,18b,…が形成された上面を有する非磁性体シートSH4を積層してなる。複数のビアホール導体24a,24a,…および24b,24b,…は、これらの線状導体を互いに接続してインダクタを形成するべく、積層体12に設けられる。ここで、複数の線状導体のパターンは、積層方向において連続する少なくとも2つのシートの間で共通する。 As can be seen from the above description, the multilayer body 12 includes non-magnetic sheets SH1a, SH1b, a plurality of linear conductors 18a, 18a,... Each having an upper surface on which a plurality of linear conductors 16, 16,. Are laminated and a non-magnetic sheet SH4 having a top surface on which a plurality of linear conductors 18b, 18b,... Are formed. A plurality of via- hole conductors 24a, 24a,..., 24b, 24b,... Are provided in the laminate 12 so that these linear conductors are connected to each other to form an inductor. Here, the pattern of the plurality of linear conductors is common between at least two sheets that are continuous in the stacking direction.
 複数の線状導体のパターンを少なくとも2つのシートの間で共通化することで、このパターンに相当するパターンを有する複数の凸部CN1,CN1,…およびCN2,CN2,…がインダクタ素子10の主面に現われる。これによって、放熱性能が向上する。また、共通のパターンを有する複数の線状導体が形成されたシートを積層方向において連続させることで、積層方向に並ぶ複数の線状導体が並列的に接続される。これによって、インダクタ素子10の直流抵抗成分が抑制される。こうして、インダクタ素子10の動作性能が向上する。 By sharing a plurality of linear conductor patterns between at least two sheets, a plurality of convex portions CN1, CN1,..., CN2, CN2,. Appears on the surface. Thereby, the heat dissipation performance is improved. Moreover, the sheet | seat in which the some linear conductor which has a common pattern was continued in the lamination direction, and the several linear conductor arranged in the lamination direction is connected in parallel. Thereby, the DC resistance component of the inductor element 10 is suppressed. Thus, the operating performance of the inductor element 10 is improved.
 より詳しくは、非磁性体シートSH1aおよびSH1bの各々の上面には、X軸方向に距離D1を隔てて並びかつY軸に対して斜め方向に各々が延びる複数の線状導体16,16,…が形成される。また、磁性体シートSH3およびSH4の各々の上面には、X軸方向に距離D1を隔てて並びかつY軸方向に各々が延びる複数の線状導体18a,18a,…または18b,18b,…が形成される。 More specifically, a plurality of linear conductors 16, 16,... Arranged on the upper surface of each of the nonmagnetic sheets SH1a and SH1b at a distance D1 in the X-axis direction and extending in an oblique direction with respect to the Y-axis. Is formed. Further, a plurality of linear conductors 18a, 18a,... Or 18b, 18b,... Are arranged on the upper surface of each of the magnetic sheets SH3 and SH4 with a distance D1 in the X-axis direction and extending in the Y-axis direction. It is formed.
 ここで、非磁性体シートSH1a,SH1bおよび磁性体シートSH3,SH4は、Z軸方向から眺めたときに線状導体16および18a(または18b)が上面に沿って交互に並ぶ姿勢で共通のシート毎に積層される。また、線状導体16の一方端から他方端までのX軸方向における距離と線状導体18a(または18b)の一方端から他方端までのX軸方向における距離との差分は、距離D1に相当する。さらに、線状導体16の一方端からZ軸方向に延びるビアホール導体24aと線状導体16の他方端からZ軸方向に延びるビアホール導体24bとが、積層体12に設けられる。 Here, the non-magnetic sheets SH1a and SH1b and the magnetic sheets SH3 and SH4 are common sheets in a posture in which the linear conductors 16 and 18a (or 18b) are alternately arranged along the upper surface when viewed from the Z-axis direction. It is laminated every time. The difference between the distance in the X-axis direction from one end of the linear conductor 16 to the other end and the distance in the X-axis direction from one end to the other end of the linear conductor 18a (or 18b) corresponds to the distance D1. To do. Furthermore, a via-hole conductor 24 a extending in the Z-axis direction from one end of the linear conductor 16 and a via-hole conductor 24 b extending in the Z-axis direction from the other end of the linear conductor 16 are provided in the multilayer body 12.
 共通の導体パターンを有する複数のシートを積層することで、X軸方向に距離D1を隔てて並びかつY軸方向に各々が延びる複数の凸部CN1,CN1,…がインダクタ素子10の上面に現われる。これによって、放熱性能が向上する。また、線状導体16の一方端および他方端からZ軸方向にそれぞれ延びるビアホール導体24aおよび24bを設けることで、コイル導体が形成されるとともに、Z軸方向から眺めて共通の位置に存在する2つの線状導体16,16または線状導体18a,18bが並列的に接続される。これによって、インダクタ素子10の直流抵抗成分が抑制される。これによって、素子の動作性能を高めることができる。 By laminating a plurality of sheets having a common conductor pattern, a plurality of convex portions CN1, CN1,... Arranged on the X-axis direction with a distance D1 and extending in the Y-axis direction respectively appear on the upper surface of the inductor element 10. . Thereby, the heat dissipation performance is improved. Further, by providing via- hole conductors 24a and 24b extending in the Z-axis direction from one end and the other end of the linear conductor 16, a coil conductor is formed, and 2 exists at a common position when viewed from the Z-axis direction. Two linear conductors 16 and 16 or linear conductors 18a and 18b are connected in parallel. Thereby, the DC resistance component of the inductor element 10 is suppressed. Thereby, the operation performance of the element can be enhanced.
 なお、この実施例では、或る導体パターンを共通的に有する非磁性体シートSH1aおよびSH1bが積層され、さらに別の導体パターンを共通的に有する磁性体シートSH2および非磁性体シートSH4が積層される。しかし、非磁性体シートSH1aおよびSH4の少なくとも一方が存在すれば、放熱性能は向上する。したがって、非磁性体シートSH1aおよびSH4の一方を残し、他方を省くようにしてもよい。 In this embodiment, non-magnetic sheets SH1a and SH1b having a certain conductor pattern are stacked, and further, a magnetic sheet SH2 and a non-magnetic sheet SH4 having another conductor pattern are stacked. The However, if at least one of the nonmagnetic sheets SH1a and SH4 exists, the heat dissipation performance is improved. Therefore, one of the nonmagnetic sheets SH1a and SH4 may be left and the other may be omitted.
 また、この実施例では、線状導体16はY軸に対して斜め方向に延びる一方、線状導体18aおよび18bはY軸方向に延びる。しかし、線状導体16の一方端から他方端までのX軸方向における距離と線状導体18a(または18b)の一方端から他方端までのX軸方向における距離との差分を距離D1に調整する限り、線状導体18a,18bも斜め方向に延ばすようにしてもよい。 In this embodiment, the linear conductor 16 extends in an oblique direction with respect to the Y axis, while the linear conductors 18a and 18b extend in the Y axis direction. However, the difference between the distance in the X-axis direction from one end of the linear conductor 16 to the other end and the distance in the X-axis direction from the one end to the other end of the linear conductor 18a (or 18b) is adjusted to the distance D1. As long as the linear conductors 18a and 18b extend, the linear conductors 18a and 18b may extend in an oblique direction.
 さらに、この実施例では、X軸方向において最も正側に存在するビアホール導体24aを板状導体20aおよびビアホール導体22aを介して導電端子14aと接続し、X軸方向において最も負側に存在するビアホール導体24bを板状導体20bおよびビアホール導体22bを介して導電端子14bと接続するようにしている(図1,図2(A),図3参照)。しかし、インダクタ素子10の側面導体を端子電極としてプリント配線板に実装する場合は、板状導体20aおよび20b,ビアホール導体22aおよび22b,ならびに導電端子14aおよび14bは不要となる。 Further, in this embodiment, the via hole conductor 24a that is present on the most positive side in the X-axis direction is connected to the conductive terminal 14a via the plate-like conductor 20a and via-hole conductor 22a, and the via hole that is present on the most negative side in the X-axis direction. The conductor 24b is connected to the conductive terminal 14b through the plate-like conductor 20b and the via-hole conductor 22b (see FIGS. 1, 2A, and 3). However, when the side conductors of the inductor element 10 are mounted on the printed wiring board as terminal electrodes, the plate conductors 20a and 20b, the via- hole conductors 22a and 22b, and the conductive terminals 14a and 14b are not necessary.
 この発明が詳細に説明され図示されたが、それは単なる図解および一例として用いたものであり、限定であると解されるべきではないことは明らかであり、この発明の精神および範囲は添付されたクレームの文言によってのみ限定される。 Although the present invention has been described and illustrated in detail, it is clear that it has been used merely as an illustration and example and should not be construed as limiting, and the spirit and scope of the present invention are attached Limited only by the wording of the claims.
 10 …インダクタ素子
 SH0,SH1a,SH1b,SH4,SH5 …非磁性体シート
 SH2,SH3 …磁性体シート
 16,18a,18b …線状導体
 22a,22b,24a,24b …ビアホール導体
DESCRIPTION OF SYMBOLS 10 ... Inductor element SH0, SH1a, SH1b, SH4, SH5 ... Non-magnetic material sheet SH2, SH3 ... Magnetic material sheet 16, 18a, 18b ... Linear conductor 22a, 22b, 24a, 24b ... Via-hole conductor

Claims (5)

  1.  複数の線状導体が形成された主面を各々が有する3つ以上のシートを積層してなる積層体、および
     前記複数の線状導体を互いに接続してインダクタを形成するべく前記積層体に設けられた複数のビアホール導体または側面導体を備えるインダクタ素子であって、
     前記複数の線状導体のパターンは積層方向において連続する少なくとも2つのシートの間で共通する、インダクタ素子。
    A laminate formed by laminating three or more sheets each having a main surface on which a plurality of linear conductors are formed; and the laminate is provided to connect the plurality of linear conductors to each other to form an inductor. An inductor element comprising a plurality of via-hole conductors or side conductors,
    The inductor element, wherein the plurality of linear conductor patterns are common between at least two sheets that are continuous in the stacking direction.
  2.  前記3つ以上のシートは、第1方向に既定間隔で並びかつ前記第1方向に対して第1角度をなす方向に各々が延びる複数の第1線状導体が形成された主面を各々が有する1または2以上の第1シート、および第2方向に前記既定間隔で並びかつ前記第2方向に対して第2角度をなす方向に各々が延びる複数の第2線状導体が形成された主面を各々が有する複数の第2シートを含む、請求項1記載のインダクタ素子。 Each of the three or more sheets has a principal surface on which a plurality of first linear conductors are formed that are arranged at predetermined intervals in a first direction and extend in a direction that forms a first angle with respect to the first direction. And a main sheet formed with a plurality of second linear conductors arranged in the second direction at the predetermined interval and extending in a direction forming a second angle with respect to the second direction. The inductor element according to claim 1, comprising a plurality of second sheets each having a surface.
  3.  前記第1シートおよび前記第2シートは、前記第1方向および前記第2方向が互いに一致し、かつ積層方向から眺めたときに前記第1線状導体および前記第2線状導体が前記主面に沿って交互に並ぶ姿勢で共通のシート毎に積層され、
     前記第1線状導体の一方端から他方端までの前記第1方向における距離と前記第2線状導体の一方端から他方端までの前記第2方向における距離との差分は前記既定間隔に相当する、請求項2記載のインダクタ素子。
    In the first sheet and the second sheet, the first direction and the second direction coincide with each other, and the first linear conductor and the second linear conductor are the main surface when viewed from the stacking direction. Are stacked for each common sheet in a posture alternately arranged along the
    The difference between the distance in the first direction from one end of the first linear conductor to the other end and the distance in the second direction from one end to the other end of the second linear conductor corresponds to the predetermined interval. The inductor element according to claim 2.
  4.  前記1または2以上の第1シートおよび前記複数の第2シートのうち前記第1線状導体および前記第2線状導体によって挟まれるシートは磁性体シートに相当する、請求項2または3記載のインダクタ素子。 4. The sheet sandwiched between the first linear conductor and the second linear conductor among the one or more first sheets and the plurality of second sheets corresponds to a magnetic sheet. 5. Inductor element.
  5.  前記1または2以上の第1シートおよび前記複数の第2シートのうち前記第1線状導体および前記第2線状導体によって挟まれるシートと異なるシートは非磁性体シートに相当する、請求項2ないし4のいずれかに記載のインダクタ素子。 The sheet different from the sheet sandwiched between the first linear conductor and the second linear conductor among the one or more first sheets and the plurality of second sheets corresponds to a nonmagnetic sheet. 5. The inductor element according to any one of 4 to 4.
PCT/JP2012/077498 2012-05-15 2012-10-24 Inductor element WO2013171923A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280071818.1A CN104185883B (en) 2012-05-15 2012-10-24 Inductance element
JP2014515455A JP5867762B2 (en) 2012-05-15 2012-10-24 Inductor element
US14/505,617 US9424981B2 (en) 2012-05-15 2014-10-03 Inductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012111300 2012-05-15
JP2012-111300 2012-05-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/505,617 Continuation US9424981B2 (en) 2012-05-15 2014-10-03 Inductor element

Publications (1)

Publication Number Publication Date
WO2013171923A1 true WO2013171923A1 (en) 2013-11-21

Family

ID=49583359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077498 WO2013171923A1 (en) 2012-05-15 2012-10-24 Inductor element

Country Status (4)

Country Link
US (1) US9424981B2 (en)
JP (1) JP5867762B2 (en)
CN (1) CN104185883B (en)
WO (1) WO2013171923A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212990A1 (en) * 2016-06-07 2017-12-14 株式会社村田製作所 Electronic component, diaphragm, electronic device and method for producing electronic component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150002256A1 (en) * 2013-03-11 2015-01-01 Bourns, Inc. Devices and methods related to laminated polymeric planar magnetics
DE102015111038B4 (en) * 2015-07-08 2021-05-06 Infineon Technologies Ag A vertical ferrite antenna with prefabricated connection components

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252117A (en) * 2000-12-19 2002-09-06 Murata Mfg Co Ltd Laminated coil component and its manufacturing method
JP2002252116A (en) * 2001-02-23 2002-09-06 Toko Inc Laminated electronic component and its manufacturing method
JP2003017325A (en) * 2001-06-27 2003-01-17 Murata Mfg Co Ltd Lamination type metal magnetic electronic component and its manufacturing method
JP2003059722A (en) * 2001-08-10 2003-02-28 Murata Mfg Co Ltd Laminated inductor and its manufacturing method
JP2004311830A (en) * 2003-04-09 2004-11-04 Mitsubishi Materials Corp Stacked common mode choke coil and its manufacturing method
JP2005167098A (en) * 2003-12-04 2005-06-23 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2006186137A (en) * 2004-12-28 2006-07-13 Sumida Corporation Magnetic element
JP2007027649A (en) * 2005-07-21 2007-02-01 Murata Mfg Co Ltd Laminated coil component and its manufacturing method
WO2010113751A1 (en) * 2009-03-31 2010-10-07 戸田工業株式会社 Composite rf tag and tool provided with the composite rf tag

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594031B1 (en) * 2003-07-04 2004-11-24 株式会社村田製作所 Multilayer ceramic electronic component, multilayer coil component, and method of manufacturing multilayer ceramic electronic component
US7176772B2 (en) * 2003-10-10 2007-02-13 Murata Manufacturing Co. Ltd. Multilayer coil component and its manufacturing method
JP2005184343A (en) * 2003-12-18 2005-07-07 Murata Mfg Co Ltd Laminated ceramic electronic part
US8072387B2 (en) * 2005-07-07 2011-12-06 Toda Kogyo Corporation Magnetic antenna and board mounted with the same
JP3933191B1 (en) 2006-03-13 2007-06-20 株式会社村田製作所 Portable electronic devices
WO2009130901A1 (en) * 2008-04-25 2009-10-29 戸田工業株式会社 Magnetic antenna, substrate with the magnetic antenna mounted thereon, and rf tag
US8279037B2 (en) * 2008-07-11 2012-10-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252117A (en) * 2000-12-19 2002-09-06 Murata Mfg Co Ltd Laminated coil component and its manufacturing method
JP2002252116A (en) * 2001-02-23 2002-09-06 Toko Inc Laminated electronic component and its manufacturing method
JP2003017325A (en) * 2001-06-27 2003-01-17 Murata Mfg Co Ltd Lamination type metal magnetic electronic component and its manufacturing method
JP2003059722A (en) * 2001-08-10 2003-02-28 Murata Mfg Co Ltd Laminated inductor and its manufacturing method
JP2004311830A (en) * 2003-04-09 2004-11-04 Mitsubishi Materials Corp Stacked common mode choke coil and its manufacturing method
JP2005167098A (en) * 2003-12-04 2005-06-23 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2006186137A (en) * 2004-12-28 2006-07-13 Sumida Corporation Magnetic element
JP2007027649A (en) * 2005-07-21 2007-02-01 Murata Mfg Co Ltd Laminated coil component and its manufacturing method
WO2010113751A1 (en) * 2009-03-31 2010-10-07 戸田工業株式会社 Composite rf tag and tool provided with the composite rf tag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212990A1 (en) * 2016-06-07 2017-12-14 株式会社村田製作所 Electronic component, diaphragm, electronic device and method for producing electronic component
JPWO2017212990A1 (en) * 2016-06-07 2018-11-08 株式会社村田製作所 Electronic components, diaphragms and electronic equipment
US10796837B2 (en) 2016-06-07 2020-10-06 Murata Manufacturing Co., Ltd. Electronic component, diaphragm, and electronic device

Also Published As

Publication number Publication date
CN104185883B (en) 2019-04-19
CN104185883A (en) 2014-12-03
JPWO2013171923A1 (en) 2016-01-07
US20150022307A1 (en) 2015-01-22
US9424981B2 (en) 2016-08-23
JP5867762B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5482554B2 (en) Multilayer coil
WO2016006542A1 (en) Electronic component
JP6030512B2 (en) Multilayer electronic components
JP2013140958A (en) Multilayer inductor
JP2012064683A (en) Lamination coil
US11031168B2 (en) Laminated coil component
JP6528075B2 (en) Laminated coil parts
JP6750756B2 (en) Resin multilayer substrate, actuator, and method for manufacturing resin multilayer substrate
JP5867762B2 (en) Inductor element
WO2012144103A1 (en) Laminated inductor element and method for manufacturing same
JP2010034171A (en) Laminated coil
JP5674077B2 (en) Inductor element
JP7147342B2 (en) Trance
JP5516552B2 (en) Electronic component and manufacturing method thereof
JP2012182286A (en) Coil component
WO2018074104A1 (en) Magnetic element
JP2003217935A (en) Layered inductor array
JP2010192643A (en) Common mode noise filter
JP2013207151A (en) Transformer
JP2013207150A (en) Common mode filter
WO2018047486A1 (en) Laminated toroidal coil and method for manufacturing same
KR20140084970A (en) multilayer chip inductor
JP6132027B2 (en) Manufacturing method of multilayer inductor element and multilayer inductor element
JP3189995U (en) Multilayer antenna element
KR20190014727A (en) Dual Core Planar Transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876826

Country of ref document: EP

Kind code of ref document: A1