WO2013171918A1 - Piezoelectric actuator, piezoelectric vibration device, and mobile terminal - Google Patents

Piezoelectric actuator, piezoelectric vibration device, and mobile terminal Download PDF

Info

Publication number
WO2013171918A1
WO2013171918A1 PCT/JP2012/072264 JP2012072264W WO2013171918A1 WO 2013171918 A1 WO2013171918 A1 WO 2013171918A1 JP 2012072264 W JP2012072264 W JP 2012072264W WO 2013171918 A1 WO2013171918 A1 WO 2013171918A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric actuator
piezoelectric
electrode
main surface
display
Prior art date
Application number
PCT/JP2012/072264
Other languages
French (fr)
Japanese (ja)
Inventor
健 岡村
中村 成信
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020127025692A priority Critical patent/KR20140089031A/en
Publication of WO2013171918A1 publication Critical patent/WO2013171918A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion

Definitions

  • the present invention relates to a piezoelectric vibration device, a piezoelectric actuator suitable for a mobile terminal, a piezoelectric vibration device, and a mobile terminal.
  • a bimorph type piezoelectric element 10 in which a surface electrode 104 is formed on the surface of a laminate 103 in which a plurality of internal electrodes 101 and a plurality of piezoelectric layers 102 are laminated, (See Patent Document 1)
  • the piezoelectric element 10 and the flexible wiring board 105 are joined by the conductive connecting member 106, and the surface electrode 104 of the piezoelectric element 10 and the wiring conductor 107 of the flexible wiring board 105 are electrically connected. It is known (see Patent Document 2).
  • the piezoelectric actuator of the piezoelectric vibration device used for such portable terminals has been required to be used for a long time not only in a room temperature environment but also in a temperature environment below freezing point.
  • the surface electrode 104 and the wiring conductor 107 are electrically connected via the conductive connection member 106 (solder or conductive resin).
  • the conductive connection member 106 solder or conductive resin
  • a part of the flexible wiring board 105 is bonded to one main surface of the laminate 103.
  • the piezoelectric element 10 is repeatedly driven in a temperature environment below freezing point, the flexible wiring board 105 itself is harder than the room temperature environment. Therefore, the conductive connecting member 106 connecting the flexible wiring board 105 and the piezoelectric element 10 is used. There was a risk that stress was concentrated at the end of the metal and micro cracks were gradually generated, resulting in a decrease in bonding reliability.
  • the present invention has been devised in view of the above-mentioned problems, and its purpose is to improve the bonding reliability between the flexible wiring board and the piezoelectric element, and to stably drive the piezoelectric actuator for a long period of time and the piezoelectric vibration.
  • An apparatus and a mobile terminal are provided.
  • the piezoelectric actuator of the present invention includes a laminate in which an internal electrode and a piezoelectric layer are laminated, a surface electrode electrically connected to the internal electrode on at least one main surface of the laminate, and one on the one main surface. And a flexible wiring board having a wiring conductor electrically connected to the surface electrode, and a plurality of conductive particles interspersed with electrical connection between the surface electrode and the wiring conductor. It is characterized by that.
  • the piezoelectric vibration device includes the piezoelectric actuator and a vibration plate bonded to the other main surface of the piezoelectric element.
  • the portable terminal of the present invention includes the piezoelectric actuator, an electronic circuit, a display, and a housing, and the other main surface of the piezoelectric actuator is bonded to the display or the housing.
  • a piezoelectric actuator, a piezoelectric vibration device, and a portable terminal that can be stably driven for a long period of time by improving electrical and mechanical joint strength between a flexible wiring board and a piezoelectric element to improve joint reliability. can do.
  • a portable terminal capable of transmitting sound information with high reliability and high quality can be obtained even in a severe environment such as driving a piezoelectric element in a temperature environment below freezing point.
  • FIG. 1 is a schematic perspective view which shows an example of embodiment of the piezoelectric actuator of this invention
  • (b) is a schematic sectional drawing cut
  • (A) is a schematic perspective view which shows the other example of embodiment of the piezoelectric actuator of this invention
  • (b) is a schematic sectional drawing cut
  • FIG. 1 is a schematic perspective view schematically showing a piezoelectric vibration device according to an embodiment of the present invention. It is a schematic perspective view which shows typically the portable terminal of embodiment of this invention.
  • FIG. 10 is a schematic cross-sectional view taken along line AA shown in FIG. 9.
  • FIG. 10 is a schematic sectional view taken along line BB shown in FIG. 9.
  • FIG. 10 is a schematic perspective view which shows an example of embodiment of the conventional piezoelectric actuator, (b) is a schematic sectional drawing cut
  • FIG. 1 is a schematic perspective view showing an example of an embodiment of the piezoelectric actuator of the present invention
  • FIG. 2 (a) is a schematic cross-sectional view taken along line AA shown in FIG. 1 (b)
  • FIG. It is a schematic enlarged view of the area
  • the piezoelectric actuator 1 of this embodiment shown in FIG. 1 includes a laminate 4 in which an internal electrode 2 and a piezoelectric layer 3 are laminated, and a surface electrically connected to the internal electrode 2 on at least one main surface of the laminate 4.
  • the electrode 5 and a flexible wiring board 6 having a wiring conductor 61 partially joined to one main surface and electrically connected to the surface electrode 5 are provided.
  • the electrical connection between the surface electrode 5 and the wiring conductor 61 is provided. The connection is made by a plurality of conductive particles 7 which are scattered.
  • the piezoelectric actuator 1 includes a piezoelectric element 10, and a laminated body 4 constituting the piezoelectric element 10 is formed by laminating an internal electrode 2 and a piezoelectric layer 3, and an active portion in which a plurality of internal electrodes 2 overlap in the laminating direction. 41 and other inactive portions 42 are formed, for example, in a long shape.
  • the length of the laminate 4 is preferably, for example, 18 mm to 28 mm, and more preferably 22 mm to 25 mm.
  • the width of the laminate 4 is preferably 1 mm to 6 mm, and more preferably 3 mm to 4 mm.
  • the thickness of the laminate 4 is preferably 0.2 mm to 1.0 mm, and more preferably 0.4 mm to 0.8 mm.
  • the internal electrode 2 constituting the laminated body 4 is formed by simultaneous firing with ceramics forming the piezoelectric layer 3 and includes a first electrode 21 and a second electrode 22.
  • the first electrode 21 is a ground electrode
  • the second electrode 22 is a positive electrode or a negative electrode.
  • Piezoelectric layers 3 are alternately stacked to sandwich the piezoelectric layers 3 from above and below, and the first pole 21 and the second pole 22 are arranged in the stacking order, so that the piezoelectric body sandwiched between them.
  • a driving voltage is applied to the layer 3.
  • a conductor mainly composed of silver or a silver-palladium alloy having a low reactivity with piezoelectric ceramics, or a conductor containing copper, platinum, or the like can be used. You may make it contain.
  • the end portions of the first pole 21 and the second pole 22 are alternately led to a pair of side surfaces facing each other of the stacked body 4.
  • the length of the internal electrode 2 is preferably 17 mm to 25 mm, for example, and more preferably 21 mm to 24 mm.
  • the width of the internal electrode 2 is preferably 1 mm to 5 mm, and more preferably 2 mm to 4 mm.
  • the thickness of the internal electrode 2 is preferably 0.1 to 5 ⁇ m, for example.
  • the piezoelectric layer 3 constituting the multilayer body 4 is formed of ceramics having piezoelectric characteristics.
  • ceramics for example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ), Lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like can be used.
  • the thickness of one layer of the piezoelectric layer 3 is preferably set to 0.01 to 0.1 mm, for example, so as to be driven at a low voltage. In order to obtain a large bending vibration, it is preferable to have a piezoelectric d31 constant of 200 pm / V or more.
  • a surface electrode 5 electrically connected to the internal electrode 2 is provided on one main surface of the laminate 4.
  • the surface electrode 5 in the form shown in FIG. 1 includes a first surface electrode 51 having a large area, a second surface electrode 52 having a small area, and a third surface electrode 53.
  • the first surface electrode 51 is electrically connected to the internal electrode 2 to be the first electrode 21
  • the second surface electrode 52 is the internal electrode to be the second electrode 22 disposed on one main surface side.
  • the third surface electrode 53 is electrically connected to the internal electrode 2 serving as the second electrode 22 disposed on the other main surface side.
  • the length of the first surface electrode 51 is preferably, for example, 17 mm to 23 mm, and more preferably 19 mm to 21 mm.
  • the width of the first surface electrode 51 is preferably 1 mm to 5 mm, for example, and more preferably 2 mm to 4 mm.
  • the lengths of the second surface electrode 52 and the third surface electrode 53 are preferably 1 mm to 3 mm, for example.
  • the widths of the second surface electrode 52 and the third surface electrode 53 are preferably 0.5 mm to 1.5 mm, for example.
  • the piezoelectric actuator 1 also has a flexible wiring board 6 that is partly bonded to one main surface of the laminate 4 constituting the piezoelectric element 10.
  • the flexible wiring board 6 is a flexible printed wiring board in which, for example, two wiring conductors 61 are embedded in a resin film, and a connector (not shown) for connecting to an external circuit is connected to one end. Yes.
  • the surface electrode 5 and the wiring conductor 61 are electrically connected.
  • the electrical connection between the surface electrode 5 and the wiring conductor 61 is made by a plurality of conductive particles 7 which are scattered.
  • the conductive particles 7 include gold, silver, copper, an alloy such as silver-palladium, or metal particles obtained by plating gold on a metal such as Ni.
  • the conductive particles 7 have an average particle diameter of 0.05 to 50 ⁇ m. It is good. Further, it is preferable that the plurality of scattered conductive particles 7 are distributed, for example, 50 to 10,000 per 1 mm 2 .
  • the piezoelectric element 10 is driven in a harsh environment where shear stress tends to concentrate at the joint between the wiring conductor 61 and the conductive conductor 61 of the flexible wiring board 6 and the conductive connecting member, and further embrittlement occurs below freezing point. Then, microcracks are generated at the joint between the surface electrode 5 and the conductive connection member and at the joint between the wiring conductor 61 of the flexible wiring board 6 and the conductive connection member, and the piezoelectric actuator 1 may stop due to progress. was there.
  • the surface electrode 5 and the wiring conductor 61 are connected with a plurality of conductive particles 7 interspersed as in the present invention.
  • the surface is compared with the case where a conductive connecting member as a bulk body is used.
  • the difference in thermal expansion between the electrode 5 and the wiring conductor 61 can be reduced.
  • the piezoelectric element 10 is driven under a severe environment such as below freezing point, the occurrence of microcracks at the joints between the plurality of conductive particles 7 and the surface electrode 5 or the wiring conductor 61 is suppressed.
  • the displacement amount of 1 does not become small, or unnecessary vibrations are not generated and the vibration characteristics are not deteriorated, so that stable driving can be performed for a long time.
  • a resin adhesive 73 is provided between the plurality of conductive particles 7 scattered.
  • the resin adhesive 73 are those having a low elastic modulus (Young's modulus) such as polyimide, polyamideimide, silicone rubber, and synthetic rubber.
  • the bonding strength between the piezoelectric element 10 and the flexible wiring board 6 can be kept high while the stress due to the difference in thermal expansion remains low. Further, since the resin adhesive 73 having a low elastic modulus is provided, vibration that does not follow the vibration of the piezoelectric element 10 of the flexible wiring board 6 occurs due to external vibration or resonance of the flexible wiring board 6 itself. In addition, the stress concentration at the end portion such as the root of the joint portion of the flexible wiring board 6 can be suppressed.
  • the plurality of conductive particles 7 may be one in which the surface of a particle body 71 made of resin is coated with a conductive film 72.
  • the particle body 71 is made of a resin such as an acrylic resin, an imide resin, an amide resin, an epoxy resin, or a polypropylene resin having a high elastic modulus (Young's modulus).
  • the conductive film 72 covered on the surface of the particle body 71 is, for example, an Au plating film.
  • the conductive film 72 coated on the surface of the particle body 71 contributes to electrical bonding and is highly ductile even below freezing, it is possible to suppress deterioration such as embrittlement.
  • a part of the conductive film 72 coated on the surface of the particle body 71 may be missing.
  • a part of the conductive film 72 is missing at the contact point between the surface electrode 5 and the wiring conductor 61 in the conductive particle 7.
  • the electrical connection is formed by the particle body 71 having a high elastic modulus, and the electrical connection is made by connecting the conductive film 72 around the connection portion between the resin adhesive 73, the surface electrode 5, and the wiring conductor 61, thereby increasing the connection area.
  • An electrical connection is formed in the form. By doing in this way, mechanical connection can be strengthened more, the junction area of electrical connection can be expanded, and electrical resistance can be lowered.
  • the region lacking the conductive film 72 is provided in a region other than the contact point with the surface electrode 5 and the wiring conductor 61, but according to this configuration, the plurality of scattered conductive particles 7 are scattered.
  • the resin adhesive 73 is provided between the particles, the particle main body 71 and the resin adhesive 73 are directly bonded. Therefore, the conductive film 72 is bonded to the resin when the conductive particles 7 and the resin adhesive 73 flow in the bonding process. It can be reduced that the agent 73 is pulled and peeled off. As a result, the electrical connection between the surface electrode 5 and the wiring conductor 61 can be ensured.
  • the gap 74 contributes to stress relaxation as a result of lowering the elastic modulus of the resin adhesive 73 as a bulk.
  • a plurality of conductive particles 7 be disposed. This is because the thermal resistance can be lowered by arranging the plurality of conductive particles 7 having high thermal conductivity even at a location thicker than the region where the electrical junction is formed. Furthermore, for the same effect, it is preferable that a plurality of conductive particles 7 are also disposed in the insulating region outside the surface electrode 5.
  • one conductive particle 7 is in contact with the surface electrode 5 and the wiring conductor 61, that is, each conductive particle 7 between the surface electrode 5 and the wiring conductor 61. It is preferable that the surface electrode 5 and the wiring conductor 61 are in contact with each other.
  • the other main surface of the piezoelectric element 10 flat, for example, the other main surface is applied to an object (for example, a vibration plate described later) to which vibration is applied. When the surfaces are bonded together, it becomes easy to cause bending vibration integrally with the object to which vibration is applied, and the efficiency of bending vibration can be improved as a whole.
  • the piezoelectric actuator 1 shown in FIG. 1 is a so-called bimorph type piezoelectric actuator that receives an electric signal from the surface electrode 5 and bends and vibrates so that one main surface and the other main surface are bent surfaces.
  • the piezoelectric actuator of the present invention is not limited to the bimorph type, and may be a unimorph type. For example, by bending (bonding) the other main surface of the piezoelectric actuator to a diaphragm described later, the unimorph type is also bent and vibrated. Can be made.
  • a ceramic green sheet to be the piezoelectric layer 3 is produced. Specifically, a ceramic slurry is prepared by mixing a calcined powder of piezoelectric ceramic, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer. And a ceramic green sheet is produced using this ceramic slurry by using tape molding methods, such as a doctor blade method and a calender roll method.
  • the piezoelectric ceramic any material having piezoelectric characteristics may be used.
  • a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) can be used.
  • the plasticizer dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.
  • a conductive paste to be the internal electrode 2 is produced.
  • a conductive paste is prepared by adding and mixing a binder and a plasticizer to a silver-palladium alloy metal powder. This conductive paste is applied on the ceramic green sheet in the pattern of the internal electrode 2 using a screen printing method. Further, a plurality of ceramic green sheets printed with this conductive paste are laminated, subjected to a binder removal treatment at a predetermined temperature, fired at a temperature of 900 to 1200 ° C., and then subjected to a predetermined grinding using a surface grinder or the like. By performing a grinding process so as to obtain a shape, a laminated body 4 including the internal electrodes 2 and the piezoelectric body layers 3 that are alternately laminated is manufactured.
  • the laminate 4 is not limited to the one produced by the above manufacturing method, and any production method can be used as long as the laminate 4 formed by laminating a plurality of internal electrodes 2 and piezoelectric layers 3 can be produced. It may be produced.
  • a silver glass-containing conductive paste prepared by adding a binder, a plasticizer, and a solvent to a mixture of conductive particles mainly composed of silver and glass is used to form a main surface of the laminate 4 in a pattern of the surface electrode 5.
  • a baking process is performed at a temperature of 650 to 750 ° C. to form the surface electrode 5.
  • a via that penetrates the piezoelectric layer 3 may be formed or connected, or a side electrode may be formed on the side surface of the multilayer body 4. It may be produced by any manufacturing method.
  • the flexible wiring board 6 is connected and fixed (bonded) to the piezoelectric element 10 using a plurality of conductive particles 7 scattered.
  • a paste containing a plurality of conductive particles 7 and a resin adhesive 73 is applied and formed at a predetermined position of the piezoelectric element 10 using a technique such as screen printing. Then, the flexible wiring board 6 is connected and fixed to the piezoelectric element 10 by curing the paste with the flexible wiring board 6 in contact. This paste may be applied and formed on the flexible wiring board 6 side.
  • the paste is applied and formed at a predetermined position on the piezoelectric element 10 or the flexible wiring board 6, and then the piezoelectric element 10 and the flexible wiring board 6 are brought into contact with each other via the paste.
  • the thermoplastic resin softens and flows, and then returns to room temperature, whereby the thermoplastic resin is cured again, and the flexible wiring board 6 is connected and fixed to the piezoelectric element 10.
  • the piezoelectric vibration device of the present invention has a piezoelectric actuator 1 and a diaphragm 81 bonded to the other main surface of the piezoelectric actuator 1 as shown in FIG.
  • the diaphragm 81 has a rectangular thin plate shape.
  • the vibration plate 81 can be preferably formed using a material having high rigidity and elasticity such as acrylic resin or glass. Further, the thickness of the diaphragm 81 is set to 0.4 mm to 1.5 mm, for example.
  • the diaphragm 81 is joined to the other main surface of the piezoelectric actuator 1 via a joining member 82.
  • the entire surface of the other main surface may be bonded to the diaphragm 81 via the bonding member 82, or substantially the entire surface may be bonded.
  • the joining member 82 has a film shape. Further, the joining member 82 is formed of a material that is softer and more easily deformed than the diaphragm 81, and has a smaller elastic modulus and rigidity such as Young's modulus, rigidity, and bulk modulus than the diaphragm 81. That is, the joining member 82 is deformable and deforms more greatly than the diaphragm 81 when the same force is applied. Then, the other main surface (main surface on the ⁇ z direction side in the drawing) of the piezoelectric actuator 1 is fixed to the one main surface (main surface on the + z direction side in the drawing) of the bonding member 82 as a whole. A part of one main surface (main surface on the + z direction side in the drawing) of the diaphragm 81 is fixed to the other main surface (main surface on the ⁇ z direction side in the drawing).
  • the joining member 82 may be a single member or a composite composed of several members.
  • a joining member 82 for example, a double-sided tape in which a pressure-sensitive adhesive is attached to both surfaces of a substrate made of a nonwoven fabric or the like, various elastic adhesives which are adhesives having elasticity, and the like can be suitably used.
  • the thickness of the joining member 82 is desirably larger than the amplitude of the flexural vibration of the piezoelectric actuator 1, but if it is too thick, the vibration is attenuated, so it is set to 0.1 mm to 0.6 mm, for example.
  • the material of the bonding member 82 is not limited, and the bonding member 82 may be formed of a material that is harder and less deformable than the vibration plate 81. In some cases, a configuration without the joining member 82 may be used.
  • the piezoelectric vibration device of this example having such a configuration functions as a piezoelectric vibration device that causes the piezoelectric actuator 1 to bend and vibrate by applying an electric signal, thereby vibrating the vibration plate 81.
  • the other end in the length direction of the diaphragm 81 (the end in the ⁇ y direction in the figure, the peripheral edge of the diaphragm 81, and the like) may be supported by a support member (not shown).
  • the piezoelectric vibration device of this example is configured using the piezoelectric actuator 1 in which generation of unnecessary vibration is reduced, the piezoelectric vibration device in which generation of unnecessary vibration is reduced can be obtained.
  • the vibration plate 81 is joined to the other flat main surface of the piezoelectric actuator 1. Thereby, a piezoelectric vibration device in which the piezoelectric actuator 1 and the vibration plate 81 are firmly joined can be obtained.
  • the portable terminal of the present invention includes the piezoelectric actuator 1, an electronic circuit (not shown), a display 91, and a housing 92.
  • the main surface is joined to the housing 92.
  • 9 is a schematic perspective view schematically showing the portable terminal of the present invention
  • FIG. 10 is a schematic sectional view cut along the line AA shown in FIG. 9,
  • FIG. 11 is a line BB shown in FIG. It is the schematic sectional drawing cut
  • the piezoelectric actuator 1 and the housing 92 are joined using a deformable joining member. That is, in FIG. 5 and FIG. 6, the joining member 82 is a deformable joining member.
  • the deformable joining member 82 By joining the piezoelectric actuator 1 and the housing 92 with the deformable joining member 82, when the vibration is transmitted from the piezoelectric actuator 1, the deformable joining member 82 is deformed more greatly than the housing 92.
  • the piezoelectric actuator 1 transmits strong vibration to the casing 92 without being influenced by the surrounding vibration. Can be made.
  • the joining member 82 since at least a part of the joining member 82 is formed of a viscoelastic body, strong vibration from the piezoelectric actuator 1 is transmitted to the housing 92, while weak vibration reflected from the housing 92 is transmitted to the joining member 82. It is preferable in that it can be absorbed.
  • a double-sided tape in which a pressure-sensitive adhesive is attached to both surfaces of a base material made of a nonwoven fabric or the like, or a joining member including an adhesive having elasticity can be used, and the thickness thereof is, for example, 10 ⁇ m to 2000 ⁇ m Can be used.
  • the piezoelectric actuator 1 is attached to a part of the casing 92 that becomes the cover of the display 91, and a part of the casing 92 functions as the diaphragm 922.
  • the piezoelectric actuator 1 is bonded to the housing 92, but the piezoelectric actuator 1 may be bonded to the display 91.
  • the casing 92 includes a box-shaped casing main body 921 having one surface opened, and a diaphragm 922 that closes the opening of the casing main body 921.
  • the casing 92 (the casing main body 921 and the diaphragm 922) can be preferably formed using a material such as a synthetic resin having high rigidity and elastic modulus.
  • the peripheral edge of the diaphragm 922 is attached to the housing main body 921 via a bonding material 93 so as to vibrate.
  • the bonding material 93 is formed of a material that is softer and easier to deform than the diaphragm 922, and has a smaller elastic modulus and rigidity such as Young's modulus, rigidity, and bulk modulus than the diaphragm 922. That is, the bonding material 93 can be deformed, and deforms more greatly than the diaphragm 922 when the same force is applied.
  • the bonding material 93 may be a single material or a composite made up of several members.
  • a bonding material 93 for example, a double-sided tape in which an adhesive is attached to both surfaces of a base material made of a nonwoven fabric or the like can be suitably used.
  • the thickness of the bonding material 93 is set so that the vibration is not attenuated due to being too thick, and is set to, for example, 0.1 mm to 0.6 mm.
  • the material of the bonding material 93 is not limited, and the bonding material 93 may be formed of a material that is harder and more difficult to deform than the diaphragm 922. In some cases, a configuration without the bonding material 93 may be used.
  • Examples of the electronic circuit include a circuit that processes image information displayed on the display 91 and audio information transmitted by the mobile terminal, a communication circuit, and the like. At least one of these circuits may be included, or all the circuits may be included. Further, it may be a circuit having other functions. Furthermore, you may have a some electronic circuit.
  • the electronic circuit and the piezoelectric actuator 1 are connected by a connection wiring (not shown).
  • the display 91 is a display device having a function of displaying image information.
  • a known display such as a liquid crystal display, a plasma display, and an organic EL display can be suitably used.
  • the display 91 may have an input device such as a touch panel.
  • the cover (diaphragm 922) of the display 91 may have an input device such as a touch panel.
  • the entire display 91 or a part of the display 91 may function as a diaphragm.
  • the portable terminal of the present invention is characterized in that the display 91 or the casing 92 generates vibration that transmits sound information through the ear cartilage or air conduction.
  • the portable terminal of this example can transmit sound information by transmitting a vibration to the cartilage of the ear by bringing the diaphragm (display 91 or housing 92) into contact with the ear directly or via another object. That is, sound information can be transmitted by bringing a diaphragm (display 91 or housing 92) into direct or indirect contact with the ear and transmitting vibration to the cartilage of the ear.
  • a portable terminal capable of transmitting sound information even when the surroundings are noisy can be obtained.
  • the object interposed between the diaphragm (display 91 or housing 92) and the ear may be, for example, a cover of a mobile terminal, a headphone or an earphone, and any object that can transmit vibration. Anything can be used. Further, it may be a portable terminal that transmits sound information by propagating sound generated from the diaphragm (display 91 or housing 92) in the air. Furthermore, it may be a portable terminal that transmits sound information via a plurality of routes.
  • the portable terminal of this example transmits sound information using the piezoelectric actuator 1 in which occurrence of unnecessary vibration is reduced, it can transmit high-quality sound information.
  • a piezoelectric vibration device using the piezoelectric actuator shown in FIG. 7 was produced and its characteristics were measured.
  • the piezoelectric actuator had a long shape with a length of 23.5 mm, a width of 3.3 mm, and a thickness of 0.5 mm.
  • the piezoelectric actuator has a structure in which piezoelectric layers having a thickness of 30 ⁇ m and internal electrodes are alternately stacked, and the total number of piezoelectric layers is 16.
  • the piezoelectric layer was formed of lead zirconate titanate in which part of Zr was replaced with Sb.
  • the wiring conductor of the flexible wiring board and the surface electrode were electrically connected.
  • a conductive particle having a particle diameter of about 5 ⁇ m and a particle body made of acrylic resin coated with gold plating with Ni plating as a base coat is synthesized.
  • a paste dispersed in a rubber-based adhesive was prepared, printed on the surface electrode by screen printing, and then pressed while heating the flexible wiring board.
  • the resistance between the wiring conductor and the surface electrode changes to the high resistance side due to part of the conductive film being chipped. Then, the resistance value was measured while pressing the flexible wiring board, and after the conductive particles joined and the resistance value reached the lowest value and stabilized, the resistance value was changed by about 1% by applying pressure again. By the way, the pressure was released and cooling was performed.
  • the other main surface of the piezoelectric actuator was stuck to the center of one surface of the glass plate with a double-sided tape, and 1 mm away from the other surface of the glass plate A microphone was installed at the position.
  • Piezoelectric actuator 10 Piezoelectric element 2: Internal electrode 21: First pole 22: Second pole 3: Piezoelectric layer 4: Laminate 41: Active part 42: Inactive part 5: Surface electrode 51: First surface electrode 52: Second surface electrode 53: Third surface electrode 6: Flexible wiring board 61: Wiring conductor 7: Conductive particles 71: Particle body 72: Conductive film 73: Resin adhesive 81: Diaphragm 82: Joining member 91: Display 92: Housing 921: Housing body 922: Diaphragm 93: Bonding material

Abstract

[Problem] To provide a mobile terminal, a piezoelectric vibration device, and a piezoelectric actuator capable of improving bonding reliability between a flexible wiring board and a piezoelectric element, and capable of stably driving for extended periods of time. [Solution] This piezoelectric actuator (1) is characterized by being provided with: a stacked body (4) having, stacked therein, internal electrodes (2) and piezoelectric layers (3); surface electrodes (5) on at least one main surface of the stacked body (4), said surface electrodes (5) being electrically connected with the internal electrodes (2); and a flexible wiring board (6) which has a portion thereof bonded to the one main surface, and which is provided with a wiring conductor (61) electrically connected with the surface electrodes (5). The piezoelectric actuator (1) is further characterized in that the electric connection between the surface electrodes (5) and the wiring conductor (61) is formed by a plurality of interspersed conductive particles (7).

Description

圧電アクチュエータ、圧電振動装置および携帯端末Piezoelectric actuator, piezoelectric vibration device, and portable terminal
 本発明は、圧電振動装置、携帯端末に好適な圧電アクチュエータ、圧電振動装置および携帯端末に関するものである。 The present invention relates to a piezoelectric vibration device, a piezoelectric actuator suitable for a mobile terminal, a piezoelectric vibration device, and a mobile terminal.
 圧電アクチュエータとして、図12に示すように、内部電極101と圧電体層102とが複数積層された積層体103の表面に表面電極104を形成してなるバイモルフ型の圧電素子10を用いたものや(特許文献1を参照)、圧電素子10とフレキシブル配線基板105とを導電性接続部材106で接合して、圧電素子10の表面電極104とフレキシブル配線基板105の配線導体107とを電気的に接続させることが知られている(特許文献2を参照)。 As a piezoelectric actuator, as shown in FIG. 12, a bimorph type piezoelectric element 10 in which a surface electrode 104 is formed on the surface of a laminate 103 in which a plurality of internal electrodes 101 and a plurality of piezoelectric layers 102 are laminated, (See Patent Document 1) The piezoelectric element 10 and the flexible wiring board 105 are joined by the conductive connecting member 106, and the surface electrode 104 of the piezoelectric element 10 and the wiring conductor 107 of the flexible wiring board 105 are electrically connected. It is known (see Patent Document 2).
 更には、バイモルフ型の圧電素子の長さ方向における中央部や一端を振動板に固定した圧電振動装置が知られている(特許文献3、4を参照)。 Furthermore, there is known a piezoelectric vibration device in which a central portion or one end in the length direction of a bimorph type piezoelectric element is fixed to a diaphragm (see Patent Documents 3 and 4).
特開2002-10393号公報Japanese Patent Laid-Open No. 2002-10393 特開平6-14396号公報Japanese Patent Laid-Open No. 6-14396 国際公開第2005/004535号International Publication No. 2005/004535 特開2006-238072号公報JP 2006-238072 A
 近年、これら携帯端末等に用いられる圧電振動装置の圧電アクチュエータは、室温環境だけでなく、氷点下の温度環境でも長時間使用されることが求められてきた。 In recent years, the piezoelectric actuator of the piezoelectric vibration device used for such portable terminals has been required to be used for a long time not only in a room temperature environment but also in a temperature environment below freezing point.
 ここで、配線導体107を有するフレキシブル配線基板105と圧電素子10との接合において、導電性接続部材106(半田や導電性樹脂)を介して表面電極104と配線導体107とが電気的に接続されるようにフレキシブル配線基板105の一部が積層体103の一方主面上に接合されている。氷点下の温度環境で繰り返し圧電素子10を駆動させると、室温環境と比べてフレキシブル配線基板105自体が硬くなっているため、フレキシブル配線基板105と圧電素子10とを接続している導電性接続部材106の端部に応力が集中して徐々にマイクロクラックが生じ、接合信頼性が低下するおそれがあった。 Here, in joining of the flexible wiring board 105 having the wiring conductor 107 and the piezoelectric element 10, the surface electrode 104 and the wiring conductor 107 are electrically connected via the conductive connection member 106 (solder or conductive resin). As described above, a part of the flexible wiring board 105 is bonded to one main surface of the laminate 103. When the piezoelectric element 10 is repeatedly driven in a temperature environment below freezing point, the flexible wiring board 105 itself is harder than the room temperature environment. Therefore, the conductive connecting member 106 connecting the flexible wiring board 105 and the piezoelectric element 10 is used. There was a risk that stress was concentrated at the end of the metal and micro cracks were gradually generated, resulting in a decrease in bonding reliability.
 本発明は、上記の問題点に鑑みて案出されたものであり、その目的は、フレキシブル配線基板と圧電素子との接合信頼性を向上し、長期間安定して駆動する圧電アクチュエータ、圧電振動装置および携帯端末を提供することである。 The present invention has been devised in view of the above-mentioned problems, and its purpose is to improve the bonding reliability between the flexible wiring board and the piezoelectric element, and to stably drive the piezoelectric actuator for a long period of time and the piezoelectric vibration. An apparatus and a mobile terminal are provided.
 本発明の圧電アクチュエータは、内部電極および圧電体層が積層された積層体と、該積層体の少なくとも一方主面に前記内部電極と電気的に接続された表面電極と、前記一方主面に一部が接合され、前記表面電極と電気的に接続された配線導体を備えたフレキシブル配線基板とを備え、前記表面電極と前記配線導体との電気的な接続が点在する複数の導電粒子によってなされていることを特徴とするものである。 The piezoelectric actuator of the present invention includes a laminate in which an internal electrode and a piezoelectric layer are laminated, a surface electrode electrically connected to the internal electrode on at least one main surface of the laminate, and one on the one main surface. And a flexible wiring board having a wiring conductor electrically connected to the surface electrode, and a plurality of conductive particles interspersed with electrical connection between the surface electrode and the wiring conductor. It is characterized by that.
 また本発明の圧電振動装置は、前記圧電アクチュエータと、前記圧電素子の前記他方主面に接合された振動板とを有することを特徴とする。 The piezoelectric vibration device according to the present invention includes the piezoelectric actuator and a vibration plate bonded to the other main surface of the piezoelectric element.
 また本発明の携帯端末は、前記圧電アクチュエータと、電子回路と、ディスプレイと、筐体とを有しており、前記圧電アクチュエータの他方主面が前記ディスプレイまたは前記筐体に接合されていることを特徴とする。 The portable terminal of the present invention includes the piezoelectric actuator, an electronic circuit, a display, and a housing, and the other main surface of the piezoelectric actuator is bonded to the display or the housing. Features.
 本発明によれば、フレキシブル配線基板と圧電素子との電気的および機械的な接合強度を高めて接合信頼性を向上し、長期間安定して駆動する圧電アクチュエータ、圧電振動装置および携帯端末を提供することができる。例えば、氷点下の温度環境で圧電素子を駆動させる等の過酷な環境下での使用でも、信頼性が高く高品質な音情報を伝達可能な携帯端末を得ることができる。 According to the present invention, there are provided a piezoelectric actuator, a piezoelectric vibration device, and a portable terminal that can be stably driven for a long period of time by improving electrical and mechanical joint strength between a flexible wiring board and a piezoelectric element to improve joint reliability. can do. For example, a portable terminal capable of transmitting sound information with high reliability and high quality can be obtained even in a severe environment such as driving a piezoelectric element in a temperature environment below freezing point.
(a)は本発明の圧電アクチュエータの実施の形態の一例を示す概略斜視図であり、(b)は(a)に示すA-A線で切断した概略断面図である。(A) is a schematic perspective view which shows an example of embodiment of the piezoelectric actuator of this invention, (b) is a schematic sectional drawing cut | disconnected by the AA line | wire shown to (a). 図1(b)に示す領域Aの概略拡大図である。It is a schematic enlarged view of the area | region A shown in FIG.1 (b). (a)は本発明の圧電アクチュエータの実施の形態の他の例を示す概略斜視図であり、(b)は(a)に示すA-A線で切断した概略断面図である。(A) is a schematic perspective view which shows the other example of embodiment of the piezoelectric actuator of this invention, (b) is a schematic sectional drawing cut | disconnected by the AA line shown to (a). 図2の他の例を示す概略拡大図である。It is a schematic enlarged view which shows the other example of FIG. 図2の他の例を示す概略拡大図である。It is a schematic enlarged view which shows the other example of FIG. 図2の他の例を示す概略拡大図である。It is a schematic enlarged view which shows the other example of FIG. 本発明の圧電アクチュエータの実施の形態の他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of embodiment of the piezoelectric actuator of this invention. 本発明の実施の形態の圧電振動装置を模式的に示す概略斜視図である。1 is a schematic perspective view schematically showing a piezoelectric vibration device according to an embodiment of the present invention. 本発明の実施の形態の携帯端末を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically the portable terminal of embodiment of this invention. 図9に示すA-A線で切断した概略断面図である。FIG. 10 is a schematic cross-sectional view taken along line AA shown in FIG. 9. 図9に示すB-B線で切断した概略断面図である。FIG. 10 is a schematic sectional view taken along line BB shown in FIG. 9. 従来の圧電アクチュエータの実施の形態の一例を示す概略斜視図であり、(b)は(a)に示すA-A線で切断した概略断面図である。It is a schematic perspective view which shows an example of embodiment of the conventional piezoelectric actuator, (b) is a schematic sectional drawing cut | disconnected by the AA line shown to (a).
 本発明の圧電アクチュエータの実施の形態の一例について、図面を参照して詳細に説明する。 An example of an embodiment of a piezoelectric actuator of the present invention will be described in detail with reference to the drawings.
 図1は本発明の圧電アクチュエータの実施の形態の一例を示す概略斜視図であり、図2(a)は図1(b)に示すA-A線で切断した概略断面図、図2は図1(b)に示す領域Aの概略拡大図である。 FIG. 1 is a schematic perspective view showing an example of an embodiment of the piezoelectric actuator of the present invention, FIG. 2 (a) is a schematic cross-sectional view taken along line AA shown in FIG. 1 (b), and FIG. It is a schematic enlarged view of the area | region A shown to 1 (b).
 図1に示す本実施形態の圧電アクチュエータ1は、内部電極2および圧電体層3が積層された積層体4と、積層体4の少なくとも一方主面に内部電極2と電気的に接続された表面電極5と、一方主面に一部が接合され、表面電極5と電気的に接続された配線導体61を備えたフレキシブル配線基板6とを備え、表面電極5と配線導体61との電気的な接続が点在する複数の導電粒子7によってなされていることを特徴とする。 The piezoelectric actuator 1 of this embodiment shown in FIG. 1 includes a laminate 4 in which an internal electrode 2 and a piezoelectric layer 3 are laminated, and a surface electrically connected to the internal electrode 2 on at least one main surface of the laminate 4. The electrode 5 and a flexible wiring board 6 having a wiring conductor 61 partially joined to one main surface and electrically connected to the surface electrode 5 are provided. The electrical connection between the surface electrode 5 and the wiring conductor 61 is provided. The connection is made by a plurality of conductive particles 7 which are scattered.
 圧電アクチュエータ1は圧電素子10を含み、この圧電素子10を構成する積層体4は、内部電極2および圧電体層3が積層されてなるもので、複数の内部電極2が積層方向に重なる活性部41とそれ以外の不活性部42とを有し、例えば長尺状に形成されている。携帯端末のディスプレイまたは筐体に取り付ける圧電アクチュエータの場合には、積層体4の長さとしては、例えば18mm~28mmが好ましく、22mm~25mmが更に好ましい。積層体4の幅は、例えば1mm~6mmが好ましく、3mm~4mmが更に好ましい。積層体4の厚みは、例えば0.2mm~1.0mmが好ましく、0.4mm~0.8mmが更に好ましい。 The piezoelectric actuator 1 includes a piezoelectric element 10, and a laminated body 4 constituting the piezoelectric element 10 is formed by laminating an internal electrode 2 and a piezoelectric layer 3, and an active portion in which a plurality of internal electrodes 2 overlap in the laminating direction. 41 and other inactive portions 42 are formed, for example, in a long shape. In the case of a piezoelectric actuator attached to a display or casing of a mobile terminal, the length of the laminate 4 is preferably, for example, 18 mm to 28 mm, and more preferably 22 mm to 25 mm. For example, the width of the laminate 4 is preferably 1 mm to 6 mm, and more preferably 3 mm to 4 mm. For example, the thickness of the laminate 4 is preferably 0.2 mm to 1.0 mm, and more preferably 0.4 mm to 0.8 mm.
 積層体4を構成する内部電極2は、圧電体層3を形成するセラミックスと同時焼成により形成されたもので、第1の極21および第2の極22からなる。例えば、第1の極21がグランド極となり、第2の極22が正極または負極となる。圧電体層3と交互に積層されて圧電体層3を上下から挟んでおり、積層順に第1の極21および第2の極22が配置されることにより、それらの間に挟まれた圧電体層3に駆動電圧を印加するものである。この形成材料として、例えば圧電セラミックスとの反応性が低い銀や銀-パラジウム合金を主成分とする導体、あるいは銅、白金などを含む導体を用いることができるが、これらにセラミック成分やガラス成分を含有させてもよい。 The internal electrode 2 constituting the laminated body 4 is formed by simultaneous firing with ceramics forming the piezoelectric layer 3 and includes a first electrode 21 and a second electrode 22. For example, the first electrode 21 is a ground electrode, and the second electrode 22 is a positive electrode or a negative electrode. Piezoelectric layers 3 are alternately stacked to sandwich the piezoelectric layers 3 from above and below, and the first pole 21 and the second pole 22 are arranged in the stacking order, so that the piezoelectric body sandwiched between them. A driving voltage is applied to the layer 3. As this forming material, for example, a conductor mainly composed of silver or a silver-palladium alloy having a low reactivity with piezoelectric ceramics, or a conductor containing copper, platinum, or the like can be used. You may make it contain.
 図1に示す例では、第1の極21および第2の極22の端部がそれぞれ積層体4の対向する一対の側面に互い違いに導出されている。携帯端末のディスプレイまたは筐体に取り付ける圧電アクチュエータの場合には、内部電極2の長さは、例えば17mm~25mmが好ましく、21mm~24mmが更に好ましい。内部電極2の幅は、例えば1mm~5mmが好ましく、2mm~4mmが更に好ましい。内部電極2の厚みは、例えば0.1~5μmが好ましい。 In the example shown in FIG. 1, the end portions of the first pole 21 and the second pole 22 are alternately led to a pair of side surfaces facing each other of the stacked body 4. In the case of a piezoelectric actuator attached to a display or casing of a mobile terminal, the length of the internal electrode 2 is preferably 17 mm to 25 mm, for example, and more preferably 21 mm to 24 mm. For example, the width of the internal electrode 2 is preferably 1 mm to 5 mm, and more preferably 2 mm to 4 mm. The thickness of the internal electrode 2 is preferably 0.1 to 5 μm, for example.
 積層体4を構成する圧電体層3は、圧電特性を有するセラミックスで形成されたもので、このようなセラミックスとして、例えばチタン酸ジルコン酸鉛(PbZrO-PbTiO)からなるペロブスカイト型酸化物、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)などを用いることができる。圧電体層3の1層の厚みは、低電圧で駆動させるために、例えば0.01~0.1mmに設定することが好ましい。また、大きな屈曲振動を得るために、200pm/V以上の圧電d31定数を有することが好ましい。 The piezoelectric layer 3 constituting the multilayer body 4 is formed of ceramics having piezoelectric characteristics. As such ceramics, for example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ), Lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like can be used. The thickness of one layer of the piezoelectric layer 3 is preferably set to 0.01 to 0.1 mm, for example, so as to be driven at a low voltage. In order to obtain a large bending vibration, it is preferable to have a piezoelectric d31 constant of 200 pm / V or more.
 積層体4の一方主面には、内部電極2と電気的に接続された表面電極5が設けられている。図1に示す形態における表面電極5は、大きな面積の第1の表面電極51、小さな面積の第2の表面電極52および第3の表面電極53で構成されている。例えば、第1の表面電極51は第1の極21となる内部電極2と電気的に接続され、第2の表面電極52は一方主面側に配置された第2の極22となる内部電極2と電気的に接続され、第3の表面電極53は他方主面側に配置された第2の極22となる内部電極2と電気的に接続されている。携帯端末のディスプレイまたは筐体に取り付ける圧電アクチュエータの場合には、第1の表面電極51の長さは、例えば17mm~23mmが好ましく、19mm~21mmが更に好ましい。第1の表面電極51の幅は、例えば1mm~5mmが好ましく、2mm~4mmが更に好ましい。第2の表面電極52および第3の表面電極53の長さは、例えば1mm~3mmとするのが好ましい。第2の表面電極52および第3の表面電極53の幅は、例えば0.5mm~1.5mmとするのが好ましい。 A surface electrode 5 electrically connected to the internal electrode 2 is provided on one main surface of the laminate 4. The surface electrode 5 in the form shown in FIG. 1 includes a first surface electrode 51 having a large area, a second surface electrode 52 having a small area, and a third surface electrode 53. For example, the first surface electrode 51 is electrically connected to the internal electrode 2 to be the first electrode 21, and the second surface electrode 52 is the internal electrode to be the second electrode 22 disposed on one main surface side. 2 and the third surface electrode 53 is electrically connected to the internal electrode 2 serving as the second electrode 22 disposed on the other main surface side. In the case of a piezoelectric actuator attached to a display or casing of a portable terminal, the length of the first surface electrode 51 is preferably, for example, 17 mm to 23 mm, and more preferably 19 mm to 21 mm. The width of the first surface electrode 51 is preferably 1 mm to 5 mm, for example, and more preferably 2 mm to 4 mm. The lengths of the second surface electrode 52 and the third surface electrode 53 are preferably 1 mm to 3 mm, for example. The widths of the second surface electrode 52 and the third surface electrode 53 are preferably 0.5 mm to 1.5 mm, for example.
 また、圧電アクチュエータ1は、圧電素子10を構成する積層体4の一方主面に一部が接合されたフレキシブル配線基板6を有している。 The piezoelectric actuator 1 also has a flexible wiring board 6 that is partly bonded to one main surface of the laminate 4 constituting the piezoelectric element 10.
 フレキシブル配線基板6は、例えば樹脂フィルム中に2本の配線導体61が埋設されたフレキシブル・プリント配線基板であり、一方端には外部回路と接続するためのコネクタ(図示せず)が接続されている。 The flexible wiring board 6 is a flexible printed wiring board in which, for example, two wiring conductors 61 are embedded in a resin film, and a connector (not shown) for connecting to an external circuit is connected to one end. Yes.
 そして、表面電極5と配線導体61とが電気的に接続されている。ここで、表面電極5と配線導体61との電気的な接続は点在する複数の導電粒子7によってなされている。 The surface electrode 5 and the wiring conductor 61 are electrically connected. Here, the electrical connection between the surface electrode 5 and the wiring conductor 61 is made by a plurality of conductive particles 7 which are scattered.
 導電粒子7としては、例えば金、銀、銅や、銀-パラジウム等の合金、あるいはNi等の金属に金をメッキした金属粒子が挙げられ、例えば0.05~50μmの平均粒径を有するものであるのがよい。また、点在する複数の導電粒子7は、例えば1mmあたり50~10000個分布しているのがよい。 Examples of the conductive particles 7 include gold, silver, copper, an alloy such as silver-palladium, or metal particles obtained by plating gold on a metal such as Ni. For example, the conductive particles 7 have an average particle diameter of 0.05 to 50 μm. It is good. Further, it is preferable that the plurality of scattered conductive particles 7 are distributed, for example, 50 to 10,000 per 1 mm 2 .
 半田等の導電性接続部材で表面電極5と配線導体61とを接合する場合においては、導電性接続部材の熱膨張係数が大きく、圧電体層3に拘束された表面電極5と導電性接続部材との接合部およびフレキシブル配線基板6の配線導体61と導電性接続部材との接合部でせん断応力が集中しやすく、さらに氷点下での脆化を伴うような過酷な環境下で圧電素子10を駆動させると、表面電極5と導電性接続部材との接合部やフレキシブル配線基板6の配線導体61と導電性接続部材との接合部にマイクロクラックが発生し、進展して圧電アクチュエータ1が停止するおそれがあった。 When the surface electrode 5 and the wiring conductor 61 are joined by a conductive connecting member such as solder, the conductive electrode has a large coefficient of thermal expansion, and the surface electrode 5 and the conductive connecting member constrained by the piezoelectric layer 3. The piezoelectric element 10 is driven in a harsh environment where shear stress tends to concentrate at the joint between the wiring conductor 61 and the conductive conductor 61 of the flexible wiring board 6 and the conductive connecting member, and further embrittlement occurs below freezing point. Then, microcracks are generated at the joint between the surface electrode 5 and the conductive connection member and at the joint between the wiring conductor 61 of the flexible wiring board 6 and the conductive connection member, and the piezoelectric actuator 1 may stop due to progress. was there.
 これに対し、本発明のような点在した複数の導電粒子7により表面電極5と配線導体61とを接続することにより、バルク体としての導電性接続部材を用いた場合と比較して、表面電極5や配線導体61との熱膨張差を小さくすることができる。 On the other hand, by connecting the surface electrode 5 and the wiring conductor 61 with a plurality of conductive particles 7 interspersed as in the present invention, the surface is compared with the case where a conductive connecting member as a bulk body is used. The difference in thermal expansion between the electrode 5 and the wiring conductor 61 can be reduced.
 その結果、氷点下等の過酷な環境下で圧電素子10を駆動させたとしても、複数の導電粒子7と表面電極5や配線導体61との接合部にマイクロクラックが生じることが抑止され、圧電アクチュエータ1の変位量が小さくなったり、不要な振動が発生して振動特性が劣化したりすることが無くなり、長期間安定して駆動することができる。 As a result, even when the piezoelectric element 10 is driven under a severe environment such as below freezing point, the occurrence of microcracks at the joints between the plurality of conductive particles 7 and the surface electrode 5 or the wiring conductor 61 is suppressed. The displacement amount of 1 does not become small, or unnecessary vibrations are not generated and the vibration characteristics are not deteriorated, so that stable driving can be performed for a long time.
 ここで、図3に示すように、点在した複数の導電粒子7の間に樹脂接着剤73が設けられているのが好ましい。樹脂接着剤73としては、例えばポリイミド、ポリアミドイミド、シリコーンゴム、合成ゴムなどの弾性率(ヤング率)の低いものである。 Here, as shown in FIG. 3, it is preferable that a resin adhesive 73 is provided between the plurality of conductive particles 7 scattered. Examples of the resin adhesive 73 are those having a low elastic modulus (Young's modulus) such as polyimide, polyamideimide, silicone rubber, and synthetic rubber.
 このような構成とすることにより、圧電素子10が振動により発熱しても、熱膨張差による応力が低いままで圧電素子10とフレキシブル配線基板6との接合強度を高く保てる。また、弾性率の低い樹脂接着剤73が設けられているために、外部からの振動やフレキシブル配線基板6自体の共振等によりフレキシブル配線基板6の圧電素子10の振動に追随しない振動が発生しても、フレキシブル配線基板6の接合部の根元等の端部での応力集中を抑制できる。 With such a configuration, even if the piezoelectric element 10 generates heat due to vibration, the bonding strength between the piezoelectric element 10 and the flexible wiring board 6 can be kept high while the stress due to the difference in thermal expansion remains low. Further, since the resin adhesive 73 having a low elastic modulus is provided, vibration that does not follow the vibration of the piezoelectric element 10 of the flexible wiring board 6 occurs due to external vibration or resonance of the flexible wiring board 6 itself. In addition, the stress concentration at the end portion such as the root of the joint portion of the flexible wiring board 6 can be suppressed.
 さらに、図4に示すように、複数の導電粒子7は樹脂からなる粒子本体71の表面に導電膜72が被覆されたものであってもよい。 Furthermore, as shown in FIG. 4, the plurality of conductive particles 7 may be one in which the surface of a particle body 71 made of resin is coated with a conductive film 72.
 粒子本体71は、例えば弾性率(ヤング率)の高いアクリル樹脂、イミド樹脂、アミド樹脂、エポキシ樹脂、ポリプロピレン樹脂などの樹脂からなるものである。また、粒子本体71の表面に被覆された導電膜72は、例えばAuメッキ膜等である。 The particle body 71 is made of a resin such as an acrylic resin, an imide resin, an amide resin, an epoxy resin, or a polypropylene resin having a high elastic modulus (Young's modulus). The conductive film 72 covered on the surface of the particle body 71 is, for example, an Au plating film.
 粒子本体71の表面に被覆された導電膜72が電気的な接合に寄与し、氷点下でも延性に富んでいることから、脆化等の劣化に繋がるのを抑制することができる。 Since the conductive film 72 coated on the surface of the particle body 71 contributes to electrical bonding and is highly ductile even below freezing, it is possible to suppress deterioration such as embrittlement.
 さらに、図5または図6に示すように、粒子本体71の表面に被覆された導電膜72の一部が欠けていてもよい。 Furthermore, as shown in FIG. 5 or FIG. 6, a part of the conductive film 72 coated on the surface of the particle body 71 may be missing.
 図5では、導電粒子7における表面電極5および配線導体61との接点において導電膜72の一部が欠けているものであるが、この構成によれば、表面電極5と配線導体61との機械的接続を弾性率の高い粒子本体71で形成し、電気的接続は導電膜72が樹脂接着剤73と表面電極5および配線導体61との接続部のまわりに広がって接続面積が広くなった接続形態で電気的接続を形成するものである。このようにすることで、機械的接続をより強固に、電気的接続の接合面積を広げて電気抵抗を下げることができる。 In FIG. 5, a part of the conductive film 72 is missing at the contact point between the surface electrode 5 and the wiring conductor 61 in the conductive particle 7. The electrical connection is formed by the particle body 71 having a high elastic modulus, and the electrical connection is made by connecting the conductive film 72 around the connection portion between the resin adhesive 73, the surface electrode 5, and the wiring conductor 61, thereby increasing the connection area. An electrical connection is formed in the form. By doing in this way, mechanical connection can be strengthened more, the junction area of electrical connection can be expanded, and electrical resistance can be lowered.
 また図6では、導電膜72の欠けた領域が、表面電極5や配線導体61との接点以外の領域に設けられたものであるが、この構成によれば、点在した複数の導電粒子7の間に樹脂接着剤73が設けられている場合に、粒子本体71と樹脂接着剤73とを直接接合するため、接合プロセスにおける導電粒子7および樹脂接着剤73の流動時に導電膜72が樹脂接着剤73に引っ張られて剥がれることを低減できる。この結果として、表面電極5と配線導体61の電気的接続を確実なものにすることができる。 In FIG. 6, the region lacking the conductive film 72 is provided in a region other than the contact point with the surface electrode 5 and the wiring conductor 61, but according to this configuration, the plurality of scattered conductive particles 7 are scattered. When the resin adhesive 73 is provided between the particles, the particle main body 71 and the resin adhesive 73 are directly bonded. Therefore, the conductive film 72 is bonded to the resin when the conductive particles 7 and the resin adhesive 73 flow in the bonding process. It can be reduced that the agent 73 is pulled and peeled off. As a result, the electrical connection between the surface electrode 5 and the wiring conductor 61 can be ensured.
 また、図7に示すように、樹脂接着剤73の間に表面電極5から配線導体61に通じる空隙74を有することが好ましい。これは、空隙74がバルクとしての樹脂接着剤73の弾性率を低くする結果として応力緩和に貢献するからである。 In addition, as shown in FIG. 7, it is preferable to have a gap 74 between the surface electrode 5 and the wiring conductor 61 between the resin adhesives 73. This is because the gap 74 contributes to stress relaxation as a result of lowering the elastic modulus of the resin adhesive 73 as a bulk.
 さらに、図3、図7に示すように、表面電極5が積層体4の一方主面に複数隣り合って設けられている場合において、隣り合う表面電極5と表面電極5との間の絶縁領域にも複数の導電粒子7が配置されていることが好ましい。これは、電気的な接合を形成する領域より厚い個所においても熱伝導の高い複数の導電粒子7を配置することで熱抵抗を下げる効果があるためである。さらに、同様の効果のために、表面電極5の外側の絶縁領域にも複数の導電粒子7が配置されていることが好ましい。 Further, as shown in FIGS. 3 and 7, when a plurality of surface electrodes 5 are provided adjacent to one main surface of the laminate 4, an insulating region between the adjacent surface electrodes 5 and the surface electrodes 5 is used. In addition, it is preferable that a plurality of conductive particles 7 be disposed. This is because the thermal resistance can be lowered by arranging the plurality of conductive particles 7 having high thermal conductivity even at a location thicker than the region where the electrical junction is formed. Furthermore, for the same effect, it is preferable that a plurality of conductive particles 7 are also disposed in the insulating region outside the surface electrode 5.
 なお、図1乃至図7に示すように、一つの導電粒子7が表面電極5と配線導体61とに接している、すなわち、表面電極5と配線導体61との間にあるそれぞれの導電粒子7が表面電極5と配線導体61とに接しているのがよい
 また、圧電素子10の他方主面を平坦にしておくことにより、例えば振動を加える対象物(例えば後述する振動板など)に他方主面を貼り合わせたときに、振動を加える対象物と一体となって屈曲振動を起こしやすくなり、全体として屈曲振動の効率を上げることができる。
As shown in FIGS. 1 to 7, one conductive particle 7 is in contact with the surface electrode 5 and the wiring conductor 61, that is, each conductive particle 7 between the surface electrode 5 and the wiring conductor 61. It is preferable that the surface electrode 5 and the wiring conductor 61 are in contact with each other. By making the other main surface of the piezoelectric element 10 flat, for example, the other main surface is applied to an object (for example, a vibration plate described later) to which vibration is applied. When the surfaces are bonded together, it becomes easy to cause bending vibration integrally with the object to which vibration is applied, and the efficiency of bending vibration can be improved as a whole.
 図1に示す圧電アクチュエータ1は、いわゆるバイモルフ型の圧電アクチュエータであって、表面電極5から電気信号が入力されて一方主面および他方主面が屈曲面となるように屈曲振動するものであるが、本発明の圧電アクチュエータとしては、バイモルフ型に限られず、ユニモルフ型であってもよく、例えば後述する振動板に圧電アクチュエータの他方主面を接合する(貼り合わせる)ことで、ユニモルフ型でも屈曲振動させることができる。 The piezoelectric actuator 1 shown in FIG. 1 is a so-called bimorph type piezoelectric actuator that receives an electric signal from the surface electrode 5 and bends and vibrates so that one main surface and the other main surface are bent surfaces. The piezoelectric actuator of the present invention is not limited to the bimorph type, and may be a unimorph type. For example, by bending (bonding) the other main surface of the piezoelectric actuator to a diaphragm described later, the unimorph type is also bent and vibrated. Can be made.
 次に、本実施の形態の圧電アクチュエータ1の製造方法について説明する。 Next, a method for manufacturing the piezoelectric actuator 1 according to this embodiment will be described.
 まず、圧電体層3となるセラミックグリーンシートを作製する。具体的には、圧電セラミックスの仮焼粉末と、アクリル系,ブチラール系等の有機高分子からなるバインダーと、可塑剤とを混合してセラミックスラリーを作製する。そして、ドクターブレード法、カレンダーロール法等のテープ成型法を用いることにより、このセラミックスラリーを用いてセラミックグリーンシートを作製する。圧電セラミックスとしては圧電特性を有するものであればよく、例えば、チタン酸ジルコン酸鉛(PbZrO-PbTiO)からなるペロブスカイト型酸化物等を用いることができる。また、可塑剤としては、フタル酸ジブチル(DBP),フタル酸ジオクチル(DOP)等を用いることができる。 First, a ceramic green sheet to be the piezoelectric layer 3 is produced. Specifically, a ceramic slurry is prepared by mixing a calcined powder of piezoelectric ceramic, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer. And a ceramic green sheet is produced using this ceramic slurry by using tape molding methods, such as a doctor blade method and a calender roll method. As the piezoelectric ceramic, any material having piezoelectric characteristics may be used. For example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) can be used. As the plasticizer, dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.
 次に、内部電極2となる導電性ペーストを作製する。具体的には、銀-パラジウム合金の金属粉末にバインダーおよび可塑剤を添加混合することによって導電性ペーストを作製する。この導電性ペーストを上記のセラミックグリーンシート上に、スクリーン印刷法を用いて内部電極2のパターンで塗布する。さらに、この導電性ペーストが印刷されたセラミックグリーンシートを複数枚積層し、所定の温度で脱バインダー処理を行なった後、900~1200℃の温度で焼成し、平面研削盤等を用いて所定の形状になるよう研削処理を施すことによって、交互に積層された内部電極2および圧電体層3を備えた積層体4を作製する。 Next, a conductive paste to be the internal electrode 2 is produced. Specifically, a conductive paste is prepared by adding and mixing a binder and a plasticizer to a silver-palladium alloy metal powder. This conductive paste is applied on the ceramic green sheet in the pattern of the internal electrode 2 using a screen printing method. Further, a plurality of ceramic green sheets printed with this conductive paste are laminated, subjected to a binder removal treatment at a predetermined temperature, fired at a temperature of 900 to 1200 ° C., and then subjected to a predetermined grinding using a surface grinder or the like. By performing a grinding process so as to obtain a shape, a laminated body 4 including the internal electrodes 2 and the piezoelectric body layers 3 that are alternately laminated is manufactured.
 積層体4は、上記の製造方法によって作製されるものに限定されるものではなく、内部電極2と圧電体層3とを複数積層してなる積層体4を作製できれば、どのような製造方法によって作製されてもよい。 The laminate 4 is not limited to the one produced by the above manufacturing method, and any production method can be used as long as the laminate 4 formed by laminating a plurality of internal electrodes 2 and piezoelectric layers 3 can be produced. It may be produced.
 その後、銀を主成分とする導電粒子とガラスとを混合したものに、バインダー,可塑剤および溶剤を加えて作製した銀ガラス含有導電性ペーストを、表面電極5のパターンで積層体4の主面および側面にスクリーン印刷法等によって印刷して乾燥させた後、650~750℃の温度で焼き付け処理を行ない、表面電極5を形成する。 Thereafter, a silver glass-containing conductive paste prepared by adding a binder, a plasticizer, and a solvent to a mixture of conductive particles mainly composed of silver and glass is used to form a main surface of the laminate 4 in a pattern of the surface electrode 5. After the surface is printed by screen printing or the like and dried, a baking process is performed at a temperature of 650 to 750 ° C. to form the surface electrode 5.
 なお、表面電極5と内部電極2とを電気的に接続する場合、圧電体層3を貫通するビアを形成して接続しても、積層体4の側面に側面電極を形成しても良く、どのような製造方法によって作製されてもよい。 When the surface electrode 5 and the internal electrode 2 are electrically connected, a via that penetrates the piezoelectric layer 3 may be formed or connected, or a side electrode may be formed on the side surface of the multilayer body 4. It may be produced by any manufacturing method.
 次に、点在する複数の導電粒子7を用いて、フレキシブル配線基板6を圧電素子10に接続固定(接合)する。 Next, the flexible wiring board 6 is connected and fixed (bonded) to the piezoelectric element 10 using a plurality of conductive particles 7 scattered.
 まず、圧電素子10の所定の位置に複数の導電粒子7および樹脂接着剤73を含むペーストをスクリーン印刷等の手法を用いて塗布形成する。その後、フレキシブル配線基板6を当接させた状態で上記ペーストを硬化させることにより、フレキシブル配線基板6を圧電素子10に接続固定する。なお、このペーストは、フレキシブル配線基板6側に塗布形成しておいてもよい。 First, a paste containing a plurality of conductive particles 7 and a resin adhesive 73 is applied and formed at a predetermined position of the piezoelectric element 10 using a technique such as screen printing. Then, the flexible wiring board 6 is connected and fixed to the piezoelectric element 10 by curing the paste with the flexible wiring board 6 in contact. This paste may be applied and formed on the flexible wiring board 6 side.
 樹脂接着剤が熱可塑性樹脂からなる場合は、ペーストを圧電素子10またはフレキシブル配線基板6の所定の位置に塗布形成した後、圧電素子10とフレキシブル配線基板6とを上記ペーストを介して当接させた状態で加熱加圧することで、熱可塑性樹脂が軟化流動し、その後常温に戻すことで、再び熱可塑性樹脂が硬化し、フレキシブル配線基板6が圧電素子10に接続固定される。 When the resin adhesive is made of a thermoplastic resin, the paste is applied and formed at a predetermined position on the piezoelectric element 10 or the flexible wiring board 6, and then the piezoelectric element 10 and the flexible wiring board 6 are brought into contact with each other via the paste. By heating and pressing in this state, the thermoplastic resin softens and flows, and then returns to room temperature, whereby the thermoplastic resin is cured again, and the flexible wiring board 6 is connected and fixed to the piezoelectric element 10.
 特に、近接する導電粒子7が接触しないように加圧量を制御する必要がある。 In particular, it is necessary to control the amount of pressurization so that adjacent conductive particles 7 do not come into contact.
 本発明の圧電振動装置は、図8に示すように、圧電アクチュエータ1と、圧電アクチュエータ1の他方主面に接合された振動板81とを有するものである。 The piezoelectric vibration device of the present invention has a piezoelectric actuator 1 and a diaphragm 81 bonded to the other main surface of the piezoelectric actuator 1 as shown in FIG.
 振動板81は、矩形の薄板状の形状を有している。振動板81は、アクリル樹脂やガラス等の剛性および弾性が大きい材料を好適に用いて形成することができる。また、振動板81の厚みは、例えば0.4mm~1.5mmに設定される。 The diaphragm 81 has a rectangular thin plate shape. The vibration plate 81 can be preferably formed using a material having high rigidity and elasticity such as acrylic resin or glass. Further, the thickness of the diaphragm 81 is set to 0.4 mm to 1.5 mm, for example.
 振動板81は、圧電アクチュエータ1の他方主面に、接合部材82を介して接合されている。接合部材82を介して、振動板81に他方主面の全面が接合されていてもよく、略全面が接合されていてもよい。 The diaphragm 81 is joined to the other main surface of the piezoelectric actuator 1 via a joining member 82. The entire surface of the other main surface may be bonded to the diaphragm 81 via the bonding member 82, or substantially the entire surface may be bonded.
 接合部材82は、フィルム状の形状を有している。また、接合部材82は、振動板81よりも柔らかく変形しやすいもので形成されており、振動板81よりもヤング率,剛性率,体積弾性率等の弾性率や剛性が小さい。すなわち、接合部材82は、変形可能であり、同じ力が加わったときに、振動板81よりも大きく変形する。そして、接合部材82の一方主面(図の+z方向側の主面)には圧電アクチュエータ1の他方主面(図の-z方向側の主面)が全体的に固着され、接合部材82の他方主面(図の-z方向側の主面)には振動板81の一方主面(図の+z方向側の主面)の一部が固着されている。 The joining member 82 has a film shape. Further, the joining member 82 is formed of a material that is softer and more easily deformed than the diaphragm 81, and has a smaller elastic modulus and rigidity such as Young's modulus, rigidity, and bulk modulus than the diaphragm 81. That is, the joining member 82 is deformable and deforms more greatly than the diaphragm 81 when the same force is applied. Then, the other main surface (main surface on the −z direction side in the drawing) of the piezoelectric actuator 1 is fixed to the one main surface (main surface on the + z direction side in the drawing) of the bonding member 82 as a whole. A part of one main surface (main surface on the + z direction side in the drawing) of the diaphragm 81 is fixed to the other main surface (main surface on the −z direction side in the drawing).
 接合部材82は、単一のものであっても、いくつかの部材からなる複合体であっても構わない。このような接合部材82としては、例えば、不織布等からなる基材の両面に粘着剤が付着された両面テープや、弾性を有する接着剤である各種弾性接着剤等を好適に用いることができる。また、接合部材82の厚みは、圧電アクチュエータ1の屈曲振動の振幅よりも大きいことが望ましいが、厚すぎると振動が減衰されるので、例えば、0.1mm~0.6mmに設定される。ただし、本発明の圧電振動装置においては、接合部材82の材質に限定はなく、接合部材82が振動板81よりも固く変形し難いもので形成されていても構わない。また、場合によっては、接合部材82を有さない構成であっても構わない。 The joining member 82 may be a single member or a composite composed of several members. As such a joining member 82, for example, a double-sided tape in which a pressure-sensitive adhesive is attached to both surfaces of a substrate made of a nonwoven fabric or the like, various elastic adhesives which are adhesives having elasticity, and the like can be suitably used. The thickness of the joining member 82 is desirably larger than the amplitude of the flexural vibration of the piezoelectric actuator 1, but if it is too thick, the vibration is attenuated, so it is set to 0.1 mm to 0.6 mm, for example. However, in the piezoelectric vibration device of the present invention, the material of the bonding member 82 is not limited, and the bonding member 82 may be formed of a material that is harder and less deformable than the vibration plate 81. In some cases, a configuration without the joining member 82 may be used.
 このような構成を備える本例の圧電振動装置は、電気信号を加えることによって圧電アクチュエータ1を屈曲振動させ、それによって、振動板81を振動させる圧電振動装置として機能する。なお、振動板81の長さ方向における他方端部(図の-y方向端部や振動板81の周縁部等を、図示せぬ支持部材によって支持しても構わない。 The piezoelectric vibration device of this example having such a configuration functions as a piezoelectric vibration device that causes the piezoelectric actuator 1 to bend and vibrate by applying an electric signal, thereby vibrating the vibration plate 81. Note that the other end in the length direction of the diaphragm 81 (the end in the −y direction in the figure, the peripheral edge of the diaphragm 81, and the like) may be supported by a support member (not shown).
 本例の圧電振動装置は、不要な振動の発生が低減された圧電アクチュエータ1を用いて構成されていることから、不要な振動の発生が低減された圧電振動装置とすることができる。 Since the piezoelectric vibration device of this example is configured using the piezoelectric actuator 1 in which generation of unnecessary vibration is reduced, the piezoelectric vibration device in which generation of unnecessary vibration is reduced can be obtained.
 また、本例の圧電振動装置は、圧電アクチュエータ1の平坦な他方主面に振動板81が接合されている。これにより、圧電アクチュエータ1と振動板81とが強固に接合された圧電振動装置とすることができる。 Further, in the piezoelectric vibration device of this example, the vibration plate 81 is joined to the other flat main surface of the piezoelectric actuator 1. Thereby, a piezoelectric vibration device in which the piezoelectric actuator 1 and the vibration plate 81 are firmly joined can be obtained.
 本発明の携帯端末は、図9~図11に示すように、圧電アクチュエータ1と、電子回路(図示せず)と、ディスプレイ91と、筐体92とを有しており、圧電アクチュエータ1の他方主面が筐体92に接合されたものである。なお、図9は本発明の携帯端末を模式的に示す概略斜視図であり、図10は図9に示すA-A線で切断した概略断面図、図11は図9に示すB-B線で切断した概略断面図である。 As shown in FIGS. 9 to 11, the portable terminal of the present invention includes the piezoelectric actuator 1, an electronic circuit (not shown), a display 91, and a housing 92. The main surface is joined to the housing 92. 9 is a schematic perspective view schematically showing the portable terminal of the present invention, FIG. 10 is a schematic sectional view cut along the line AA shown in FIG. 9, and FIG. 11 is a line BB shown in FIG. It is the schematic sectional drawing cut | disconnected by.
 ここで、圧電アクチュエータ1と筐体92とが変形可能な接合部材を用いて接合されているのが好ましい。すなわち、図5および図6においては接合部材82が変形可能な接合部材である。 Here, it is preferable that the piezoelectric actuator 1 and the housing 92 are joined using a deformable joining member. That is, in FIG. 5 and FIG. 6, the joining member 82 is a deformable joining member.
 変形可能な接合部材82で圧電アクチュエータ1と筐体92とを接合することで、圧電アクチュエータ1から振動が伝達されたとき、変形可能な接合部材82が筐体92よりも大きく変形する。 By joining the piezoelectric actuator 1 and the housing 92 with the deformable joining member 82, when the vibration is transmitted from the piezoelectric actuator 1, the deformable joining member 82 is deformed more greatly than the housing 92.
 このとき、筐体92から反射される逆位相の振動を変形可能な接合部材82で緩和することができるので、圧電アクチュエータ1が周囲の振動の影響を受けずに筐体92へ強い振動を伝達させることができる。 At this time, since the anti-phase vibration reflected from the casing 92 can be mitigated by the deformable joining member 82, the piezoelectric actuator 1 transmits strong vibration to the casing 92 without being influenced by the surrounding vibration. Can be made.
 中でも、接合部材82の少なくとも一部が粘弾性体で構成されていることで、圧電アクチュエータ1からの強い振動を筐体92へ伝える一方、筐体92から反射される弱い振動を接合部材82が吸収することができる点で好ましい。例えば、不織布等からなる基材の両面に粘着剤が付着された両面テープや、弾性を有する接着剤を含む構成の接合部材を用いることができ、これらの厚みとしては例えば10μm~2000μmのものを用いることができる。 In particular, since at least a part of the joining member 82 is formed of a viscoelastic body, strong vibration from the piezoelectric actuator 1 is transmitted to the housing 92, while weak vibration reflected from the housing 92 is transmitted to the joining member 82. It is preferable in that it can be absorbed. For example, a double-sided tape in which a pressure-sensitive adhesive is attached to both surfaces of a base material made of a nonwoven fabric or the like, or a joining member including an adhesive having elasticity can be used, and the thickness thereof is, for example, 10 μm to 2000 μm Can be used.
 そして、本例では、圧電アクチュエータ1はディスプレイ91のカバーとなる筐体92の一部に取り付けられ、この筐体92の一部が振動板922として機能するようになっている。 In this example, the piezoelectric actuator 1 is attached to a part of the casing 92 that becomes the cover of the display 91, and a part of the casing 92 functions as the diaphragm 922.
 なお、本例では圧電アクチュエータ1が筐体92に接合されたものを示したが、圧電アクチュエータ1がディスプレイ91に接合されていてもよい。 In this example, the piezoelectric actuator 1 is bonded to the housing 92, but the piezoelectric actuator 1 may be bonded to the display 91.
 筐体92は、1つの面が開口した箱状の筐体本体921と、筐体本体921の開口を塞ぐ振動板922とを有している。この筐体92(筐体本体921および振動板922)は、剛性および弾性率が大きい合成樹脂等の材料を好適に用いて形成することができる。 The casing 92 includes a box-shaped casing main body 921 having one surface opened, and a diaphragm 922 that closes the opening of the casing main body 921. The casing 92 (the casing main body 921 and the diaphragm 922) can be preferably formed using a material such as a synthetic resin having high rigidity and elastic modulus.
 振動板922の周縁部は、筐体本体921に接合材93を介して振動可能に取り付けられている。接合材93は、振動板922よりも柔らかく変形しやすいもので形成されており、振動板922よりもヤング率,剛性率,体積弾性率等の弾性率や剛性が小さい。すなわち、接合材93は変形可能であり、同じ力が加わったときに振動板922よりも大きく変形する。 The peripheral edge of the diaphragm 922 is attached to the housing main body 921 via a bonding material 93 so as to vibrate. The bonding material 93 is formed of a material that is softer and easier to deform than the diaphragm 922, and has a smaller elastic modulus and rigidity such as Young's modulus, rigidity, and bulk modulus than the diaphragm 922. That is, the bonding material 93 can be deformed, and deforms more greatly than the diaphragm 922 when the same force is applied.
 接合材93は、単一のものであっても、いくつかの部材からなる複合体であっても構わない。このような接合材93としては、例えば不織布等からなる基材の両面に粘着剤が付着された両面テープ等を好適に用いることができる。接合材93の厚みは、厚くなりすぎて振動が減衰されないように設定されており、例えば0.1mm~0.6mmに設定される。ただし、本発明の携帯端末においては、接合材93の材質に限定はなく、接合材93が振動板922よりも固く変形し難いもので形成されていても構わない。また、場合によっては、接合材93を有さない構成であっても構わない。 The bonding material 93 may be a single material or a composite made up of several members. As such a bonding material 93, for example, a double-sided tape in which an adhesive is attached to both surfaces of a base material made of a nonwoven fabric or the like can be suitably used. The thickness of the bonding material 93 is set so that the vibration is not attenuated due to being too thick, and is set to, for example, 0.1 mm to 0.6 mm. However, in the mobile terminal of the present invention, the material of the bonding material 93 is not limited, and the bonding material 93 may be formed of a material that is harder and more difficult to deform than the diaphragm 922. In some cases, a configuration without the bonding material 93 may be used.
 電子回路(図示せず)としては、例えば、ディスプレイ91に表示させる画像情報や携帯端末によって伝達する音声情報を処理する回路や、通信回路等が例示できる。これらの回路の少なくとも1つであってもよいし、全ての回路が含まれていても構わない。また、他の機能を有する回路であってもよい。さらに、複数の電子回路を有していても構わない。なお、電子回路と圧電アクチュエータ1とは図示しない接続用配線で接続されている。 Examples of the electronic circuit (not shown) include a circuit that processes image information displayed on the display 91 and audio information transmitted by the mobile terminal, a communication circuit, and the like. At least one of these circuits may be included, or all the circuits may be included. Further, it may be a circuit having other functions. Furthermore, you may have a some electronic circuit. The electronic circuit and the piezoelectric actuator 1 are connected by a connection wiring (not shown).
 ディスプレイ91は、画像情報を表示する機能を有する表示装置であり、例えば、液晶ディスプレイ,プラズマディスプレイ,および有機ELディスプレイ等の既知のディスプレイを好適に用いることができる。なお、ディスプレイ91は、タッチパネルのような入力装置を有するものであっても良い。また、ディスプレイ91のカバー(振動板922)が、タッチパネルのような入力装置を有するものであっても構わない。さらに、ディスプレイ91全体や、ディスプレイ91の一部が振動板として機能するようにしても構わない。 The display 91 is a display device having a function of displaying image information. For example, a known display such as a liquid crystal display, a plasma display, and an organic EL display can be suitably used. The display 91 may have an input device such as a touch panel. Further, the cover (diaphragm 922) of the display 91 may have an input device such as a touch panel. Further, the entire display 91 or a part of the display 91 may function as a diaphragm.
 また、本発明の携帯端末は、ディスプレイ91または筐体92が、耳の軟骨または気導を通して音情報を伝える振動を生じさせることを特徴とする。本例の携帯端末は、振動板(ディスプレイ91または筐体92)を直接または他の物を介して耳に接触させて、耳の軟骨に振動を伝えることによって音情報を伝達することができる。すなわち、振動板(ディスプレイ91または筐体92)を直接または間接的に耳に接触させて、耳の軟骨に振動を伝えることによって音情報を伝達することができる。これにより、例えば、周囲が騒がしいときにおいても音情報を伝達することが可能な携帯端末を得ることができる。なお、振動板(ディスプレイ91または筐体92)と耳との間に介在する物は、例えば、携帯端末のカバーであっても良いし、ヘッドホンやイヤホンでも良く、振動を伝達可能な物であればどんなものでも構わない。また、振動板(ディスプレイ91または筐体92)から発生する音を空気中に伝播させることにより、音情報を伝達するような携帯端末であっても構わない。さらに、複数のルートを介して音情報を伝達するような携帯端末であっても構わない。 In addition, the portable terminal of the present invention is characterized in that the display 91 or the casing 92 generates vibration that transmits sound information through the ear cartilage or air conduction. The portable terminal of this example can transmit sound information by transmitting a vibration to the cartilage of the ear by bringing the diaphragm (display 91 or housing 92) into contact with the ear directly or via another object. That is, sound information can be transmitted by bringing a diaphragm (display 91 or housing 92) into direct or indirect contact with the ear and transmitting vibration to the cartilage of the ear. Thereby, for example, a portable terminal capable of transmitting sound information even when the surroundings are noisy can be obtained. Note that the object interposed between the diaphragm (display 91 or housing 92) and the ear may be, for example, a cover of a mobile terminal, a headphone or an earphone, and any object that can transmit vibration. Anything can be used. Further, it may be a portable terminal that transmits sound information by propagating sound generated from the diaphragm (display 91 or housing 92) in the air. Furthermore, it may be a portable terminal that transmits sound information via a plurality of routes.
 本例の携帯端末は、不要な振動の発生が低減された圧電アクチュエータ1を用いて音情報を伝達することから、高品質な音情報を伝達することができる。 Since the portable terminal of this example transmits sound information using the piezoelectric actuator 1 in which occurrence of unnecessary vibration is reduced, it can transmit high-quality sound information.
 次に、本発明の圧電振動装置の具体例について説明する。図7に示した圧電アクチュエータを用いた圧電振動装置を作製し、その特性を測定した。 Next, a specific example of the piezoelectric vibration device of the present invention will be described. A piezoelectric vibration device using the piezoelectric actuator shown in FIG. 7 was produced and its characteristics were measured.
 圧電アクチュエータは、長さが23.5mm、幅が3.3mm、厚みが0.5mmの長尺状とした。また、圧電アクチュエータは、厚みが30μmの圧電体層と内部電極とが交互に積層された構造とし、圧電体層の総数は16層とした。圧電体層は、Zrの一部をSbで置換したチタン酸ジルコン酸鉛で形成した。 The piezoelectric actuator had a long shape with a length of 23.5 mm, a width of 3.3 mm, and a thickness of 0.5 mm. The piezoelectric actuator has a structure in which piezoelectric layers having a thickness of 30 μm and internal electrodes are alternately stacked, and the total number of piezoelectric layers is 16. The piezoelectric layer was formed of lead zirconate titanate in which part of Zr was replaced with Sb.
 次に、フレキシブル配線基板の配線導体と表面電極とを電気的に接続した。ここで、フレキシブル配線基板の配線導体と表面電極とを接続するには、粒径約5μmの導電粒子として、アクリル樹脂からなる粒子本体に下地コートとしてNiメッキを施した金メッキをコートしたものを合成ゴム系接着剤に分散したペーストを準備して、スクリーン印刷で表面電極に印刷した後に、フレキシブル配線基板を加熱しながら押圧した。 Next, the wiring conductor of the flexible wiring board and the surface electrode were electrically connected. Here, in order to connect the wiring conductor of the flexible wiring board and the surface electrode, a conductive particle having a particle diameter of about 5 μm and a particle body made of acrylic resin coated with gold plating with Ni plating as a base coat is synthesized. A paste dispersed in a rubber-based adhesive was prepared, printed on the surface electrode by screen printing, and then pressed while heating the flexible wiring board.
 導電粒子が押しつぶされると導電膜の一部が樹脂からはがれて欠けが生じるが、導電膜の一部が欠けることで配線導体と表面電極との間の抵抗が高抵抗側に変化することを利用して、フレキシブル配線基板を加熱しながら押圧しながら抵抗値を測定し、導電粒子が接合して抵抗値が最低値に達して安定した後に、再度圧力を加えて1%程度抵抗値が変化したところで、圧力を解除して冷却した。 When the conductive particles are crushed, a part of the conductive film is peeled off from the resin, resulting in chipping. However, the resistance between the wiring conductor and the surface electrode changes to the high resistance side due to part of the conductive film being chipped. Then, the resistance value was measured while pressing the flexible wiring board, and after the conductive particles joined and the resistance value reached the lowest value and stabilized, the resistance value was changed by about 1% by applying pressure again. By the way, the pressure was released and cooling was performed.
 そして、金属製の枠にガラス板を両面テープで張り付けるとともに、ガラス板の一方の表面の中央に、圧電アクチュエータの他方主面を両面テープで貼り付け、ガラス板の他方の表面から1mm離れた位置にマイクを設置した。 And while sticking a glass plate to a metal frame with a double-sided tape, the other main surface of the piezoelectric actuator was stuck to the center of one surface of the glass plate with a double-sided tape, and 1 mm away from the other surface of the glass plate A microphone was installed at the position.
 そして、周波数を0.3~3.4kHzの範囲で変化させた実効値3.0Vの正弦波信号を圧電アクチュエータに入力し、マイクで検出される音圧を測定した。さらに、10万サイクルの正弦波信号を連続で加えて、連続測定の前後の音圧レベルを比較した。 Then, a sine wave signal having an effective value of 3.0 V with the frequency changed in the range of 0.3 to 3.4 kHz was input to the piezoelectric actuator, and the sound pressure detected by the microphone was measured. Furthermore, 100,000 cycles of sine wave signals were continuously added to compare the sound pressure levels before and after the continuous measurement.
 その結果、ともに低入力でも高い音圧特性が得られていた。これにより、フレキシブル配線基板と圧電素子との接合信頼性がよく、長期間安定して駆動することが確認できた。 As a result, high sound pressure characteristics were obtained even with low input. As a result, it was confirmed that the bonding reliability between the flexible wiring board and the piezoelectric element was good, and it was driven stably for a long time.
1:圧電アクチュエータ
10:圧電素子
2:内部電極
21:第1の極
22:第2の極
3:圧電体層
4:積層体
41:活性部
42:不活性部
5:表面電極
51:第1の表面電極
52:第2の表面電極
53:第3の表面電極
6:フレキシブル配線基板
61:配線導体
7:導電粒子
71:粒子本体
72:導電膜
73:樹脂接着剤
81:振動板
82:接合部材
91:ディスプレイ
92:筐体
921:筐体本体
922:振動板
93:接合材
1: Piezoelectric actuator
10: Piezoelectric element 2: Internal electrode
21: First pole
22: Second pole 3: Piezoelectric layer 4: Laminate
41: Active part
42: Inactive part 5: Surface electrode
51: First surface electrode
52: Second surface electrode
53: Third surface electrode 6: Flexible wiring board
61: Wiring conductor 7: Conductive particles
71: Particle body
72: Conductive film
73: Resin adhesive
81: Diaphragm
82: Joining member
91: Display
92: Housing
921: Housing body
922: Diaphragm
93: Bonding material

Claims (12)

  1.  内部電極および圧電体層が積層された積層体と、該積層体の少なくとも一方主面に前記内部電極と電気的に接続された表面電極と、前記一方主面に一部が接合され、前記表面電極と電気的に接続された配線導体を備えたフレキシブル配線基板とを備え、
    前記表面電極と前記配線導体との電気的な接続が点在する複数の導電粒子によってなされていることを特徴とする圧電アクチュエータ。
    A laminated body in which an internal electrode and a piezoelectric layer are laminated; a surface electrode electrically connected to the internal electrode on at least one main surface of the laminated body; A flexible wiring board having wiring conductors electrically connected to the electrodes,
    A piezoelectric actuator comprising a plurality of conductive particles interspersed with electrical connection between the surface electrode and the wiring conductor.
  2.  前記複数の導電粒子の間に樹脂接着剤が設けられていることを特徴とする請求項1に記載の圧電アクチュエータ。 2. The piezoelectric actuator according to claim 1, wherein a resin adhesive is provided between the plurality of conductive particles.
  3.  前記複数の導電粒子は、樹脂からなる粒子本体の表面に導電膜が被覆されたものであることを特徴とする請求項1または請求項2に記載の圧電アクチュエータ。 3. The piezoelectric actuator according to claim 1, wherein the plurality of conductive particles are obtained by coating a conductive film on a surface of a particle main body made of a resin.
  4.  前記粒子本体の表面に被覆された導電膜の一部が欠けていることを特徴とする請求項3に記載の圧電アクチュエータ。 4. The piezoelectric actuator according to claim 3, wherein a part of the conductive film coated on a surface of the particle main body is missing.
  5.  前記樹脂接着剤の間に前記表面電極から前記配線導体に通じる空隙を有することを特徴とする請求項2に記載の圧電アクチュエータ。 3. The piezoelectric actuator according to claim 2, wherein a gap is provided between the resin adhesive and communicated from the surface electrode to the wiring conductor.
  6.  前記表面電極は前記積層体の一方主面に複数隣り合って設けられていて、隣り合う表面電極間の絶縁領域にも前記複数の導電粒子が配置されていることを特徴とする請求項1乃至請求項5のうちのいずれかに記載の圧電アクチュエータ。 The plurality of surface electrodes are provided adjacent to one main surface of the laminate, and the plurality of conductive particles are also disposed in an insulating region between adjacent surface electrodes. The piezoelectric actuator according to claim 5.
  7.  一つの前記導電粒子が、前記表面電極と前記配線導体とに接していることを特徴とする請求項1乃至請求項6のうちのいずれかに記載の圧電アクチュエータ。 7. The piezoelectric actuator according to claim 1, wherein the one conductive particle is in contact with the surface electrode and the wiring conductor.
  8.  請求項1乃至請求項7のうちのいずれかに記載の圧電アクチュエータと、前記圧電素子の前記他方主面に接合された振動板とを有することを特徴とする圧電振動装置。 8. A piezoelectric vibration device comprising: the piezoelectric actuator according to claim 1; and a vibration plate joined to the other main surface of the piezoelectric element.
  9.  前記圧電アクチュエータと前記振動板とが変形可能な接合部材を用いて接合されていることを特徴とする請求項8に記載の圧電振動装置。 9. The piezoelectric vibration device according to claim 8, wherein the piezoelectric actuator and the diaphragm are joined using a deformable joining member.
  10.  請求項1乃至請求項7のうちのいずれかに記載の圧電アクチュエータと、電子回路と、ディスプレイと、筐体とを有しており、
    前記圧電アクチュエータの他方主面が前記ディスプレイまたは前記筐体に接合されていることを特徴とする携帯端末。
    The piezoelectric actuator according to any one of claims 1 to 7, an electronic circuit, a display, and a housing,
    A portable terminal, wherein the other main surface of the piezoelectric actuator is joined to the display or the housing.
  11.  前記圧電アクチュエータと前記ディスプレイまたは前記筐体とが変形可能な接合部材を用いて接合されていることを特徴とする請求項10に記載の携帯端末。 11. The portable terminal according to claim 10, wherein the piezoelectric actuator and the display or the casing are joined using a deformable joining member.
  12.  前記ディスプレイまたは前記筐体は、耳の軟骨または気導を通して音情報を伝える振動を生じさせることを特徴とする請求項10または請求項11に記載の携帯端末。 The mobile terminal according to claim 10 or 11, wherein the display or the casing generates vibrations for transmitting sound information through ear cartilage or air conduction.
PCT/JP2012/072264 2012-05-15 2012-08-31 Piezoelectric actuator, piezoelectric vibration device, and mobile terminal WO2013171918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127025692A KR20140089031A (en) 2012-05-15 2012-08-31 Piezoelectric actuator, piezoelectric vibration apparatus and portable terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-111707 2012-05-15
JP2012111707 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013171918A1 true WO2013171918A1 (en) 2013-11-21

Family

ID=49583356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072264 WO2013171918A1 (en) 2012-05-15 2012-08-31 Piezoelectric actuator, piezoelectric vibration device, and mobile terminal

Country Status (3)

Country Link
JP (1) JPWO2013171918A1 (en)
KR (1) KR20140089031A (en)
WO (1) WO2013171918A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005537A (en) * 2015-06-11 2017-01-05 京セラ株式会社 Piezoelectric actuator and piezoelectric vibration device including the same, acoustic generator, acoustic generation device, and electronic device
JP2019149495A (en) * 2018-02-28 2019-09-05 太陽誘電株式会社 Piezoelectric actuator, vibration generation device, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180009003A1 (en) * 2015-03-05 2018-01-11 Jung-Hoon Kim Piezoelectric element vibration apparatus that provides real-time vibration feedback

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215729A (en) * 1998-08-28 2000-08-04 Matsushita Electric Ind Co Ltd Conductive paste, conductive structure using it, electronic component, mounting body, circuit board, electrical connection, manufacture of circuit board and manufacture of ceramic electronic component
JP2004187031A (en) * 2002-12-04 2004-07-02 Temuko Japan:Kk Mobile phone using bone conduction speaker
WO2006093315A1 (en) * 2005-03-04 2006-09-08 Sony Chemical & Information Device Corporation Anisotropic conductive adhesive and method of electrode connection therewith
WO2006114985A1 (en) * 2005-04-22 2006-11-02 Sharp Kabushiki Kaisha Card type device and method for manufacturing same
JP2007082009A (en) * 2005-09-15 2007-03-29 Nec Saitama Ltd Panel speaker
JP2008211047A (en) * 2007-02-27 2008-09-11 Canon Inc Piezoelectric element and its manufacturing method, vibrating plate, as well as vibration wave driving device
JP2011243456A (en) * 2010-05-19 2011-12-01 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive materials, and connection structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217547A (en) * 1998-01-30 1999-08-10 Shigeru Koshibe Bonding unit for semiconductor
JP4673116B2 (en) * 2004-11-01 2011-04-20 タツタ電線株式会社 Anisotropic conductive adhesive and electronic device formed using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215729A (en) * 1998-08-28 2000-08-04 Matsushita Electric Ind Co Ltd Conductive paste, conductive structure using it, electronic component, mounting body, circuit board, electrical connection, manufacture of circuit board and manufacture of ceramic electronic component
JP2004187031A (en) * 2002-12-04 2004-07-02 Temuko Japan:Kk Mobile phone using bone conduction speaker
WO2006093315A1 (en) * 2005-03-04 2006-09-08 Sony Chemical & Information Device Corporation Anisotropic conductive adhesive and method of electrode connection therewith
WO2006114985A1 (en) * 2005-04-22 2006-11-02 Sharp Kabushiki Kaisha Card type device and method for manufacturing same
JP2007082009A (en) * 2005-09-15 2007-03-29 Nec Saitama Ltd Panel speaker
JP2008211047A (en) * 2007-02-27 2008-09-11 Canon Inc Piezoelectric element and its manufacturing method, vibrating plate, as well as vibration wave driving device
JP2011243456A (en) * 2010-05-19 2011-12-01 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive materials, and connection structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005537A (en) * 2015-06-11 2017-01-05 京セラ株式会社 Piezoelectric actuator and piezoelectric vibration device including the same, acoustic generator, acoustic generation device, and electronic device
JP2019149495A (en) * 2018-02-28 2019-09-05 太陽誘電株式会社 Piezoelectric actuator, vibration generation device, and electronic device
US11469363B2 (en) 2018-02-28 2022-10-11 Taiyo Yuden Co., Ltd. Piezoelectric actuator, vibration generating device and electronic equipment
JP7211577B2 (en) 2018-02-28 2023-01-24 太陽誘電株式会社 Piezoelectric actuators, vibration generators, and electronic devices

Also Published As

Publication number Publication date
KR20140089031A (en) 2014-07-14
JPWO2013171918A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5902831B2 (en) Piezoelectric actuator, piezoelectric vibration device, and portable terminal
JP6140731B2 (en) Piezoelectric actuator, piezoelectric vibration device, and portable terminal
JP5474261B1 (en) Piezoelectric actuator, piezoelectric vibration device, and portable terminal
JP5537733B2 (en) Piezoelectric actuator, piezoelectric vibration device, and portable terminal
JP5788110B2 (en) Piezoelectric element and piezoelectric vibration device including the same, portable terminal, acoustic generator, acoustic generator, and electronic device
WO2015129061A1 (en) Piezoelectric actuator, and piezoelectric vibration device, portable terminal, acoustic generator, acoustic generation device, and electronic device provided therewith
TWI520390B (en) Piezoelectric actuators, piezoelectric vibrators and mobile terminals
WO2013171918A1 (en) Piezoelectric actuator, piezoelectric vibration device, and mobile terminal
JP2015126605A (en) Piezoelectric actuator, piezoelectric vibration device having the same, portable terminal, acoustic generator, and electronic apparatus
JP5730452B1 (en) Piezoelectric actuator, piezoelectric vibration device including the same, portable terminal, sound generator, sound generator, electronic device
JP5865963B2 (en) Piezoelectric actuator, piezoelectric vibration device, and portable terminal
WO2014050240A1 (en) Piezoelectric actuator, piezoelectric oscillation device and portable terminal
JP6193748B2 (en) Piezoelectric actuator, piezoelectric vibration device including the same, portable terminal, acoustic generator, electronic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127025692

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013526226

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876762

Country of ref document: EP

Kind code of ref document: A1