WO2013168708A1 - Thermopile infrared sensor and method for manufacturing same - Google Patents

Thermopile infrared sensor and method for manufacturing same Download PDF

Info

Publication number
WO2013168708A1
WO2013168708A1 PCT/JP2013/062842 JP2013062842W WO2013168708A1 WO 2013168708 A1 WO2013168708 A1 WO 2013168708A1 JP 2013062842 W JP2013062842 W JP 2013062842W WO 2013168708 A1 WO2013168708 A1 WO 2013168708A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermopile
infrared
infrared sensor
range
film
Prior art date
Application number
PCT/JP2013/062842
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 尾崎
渡部 弘也
聡 和賀
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2013168708A1 publication Critical patent/WO2013168708A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid

Definitions

  • the present invention relates to a thermopile type infrared sensor and a manufacturing method thereof, and more particularly, to a thermopile type infrared sensor having an infrared absorption film and a manufacturing method thereof.
  • Infrared sensors are used in industrial equipment, thermometers, and the like to detect infrared rays from an object without contact and measure the temperature.
  • a thermopile type infrared sensor is known as such an infrared sensor.
  • the conventional thermopile type infrared sensor includes a base material, a thermopile element in which two different materials are alternately connected in series, and an infrared absorption film.
  • the base material includes a membrane as a thin portion and a base portion as a thick portion formed around the thin portion.
  • the thermopile element has a hot junction and a cold junction, and the cold junction is formed on the base as a thick portion, and the hot junction is formed on a membrane as a thin portion.
  • thermopile infrared sensors In recent years, mounting of thermopile infrared sensors to mobile devices has been studied, and miniaturization is desired. In this case, since the distance between the cold junction and the hot junction of the thermopile element is reduced and it is difficult to increase the temperature difference between the contacts, the sensitivity of the thermopile infrared sensor is lowered. In order to improve the sensitivity even when the thermopile type infrared sensor is downsized, an infrared absorption film is provided so as to cover the hot junction, and infrared rays incident from the outside are absorbed by the infrared absorption film, And it is converted into heat. As a result, the temperature of the hot junction increases, the temperature difference between the cold junction and the hot junction can be effectively increased, and the sensitivity of the thermopile infrared sensor can be improved.
  • thermopile type infrared sensor having an infrared absorption film is described in, for example, Patent Document 1 below.
  • FIG. 13 is a plan view for explaining the problems of the thermopile infrared sensor 101 of the conventional example
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • the thermopile element 130 in which the first thermoelectric material layer 131 and the second thermoelectric material layer 132 are alternately connected is formed on the base 110.
  • the hot junction 134 to which the first thermoelectric material layer 131 and the second thermoelectric material layer 132 are connected is formed in the membrane 112 as the thin portion 112a, and the cold junction 135 is the thick portion 111a.
  • An infrared absorption film 121 is formed at the center of the membrane 112 so as to cover the hot junction 134.
  • the infrared absorbing film 121 is formed by applying a solution containing an infrared absorbing material by a screen printing method and then curing. However, since the solution containing the infrared absorbing material has fluidity, it flows outside the initial solution formation range 121a when applied and expands to the actual formation range 121b. Therefore, as shown in FIGS. 13 and 14, the infrared absorption film 121 may be formed so as to cover the cold junction 135.
  • thermopile infrared sensor 101 when the thermopile infrared sensor 101 is downsized, the distance between the cold junction 135 and the hot junction 134 is reduced, so that the solution containing the infrared absorbing material flows and spreads, and the cold junction 135 is easily covered. Further, the distance between the adjacent first thermoelectric material layer 131 and the second thermoelectric material layer 132 is also reduced. As a result, the solution containing the infrared absorbing material easily flows through the narrow concave groove formed between the adjacent thermoelectric material layers. For this reason, the actual formation range 121b extends outside the initial solution formation range 121a.
  • thermopile type infrared sensor 101 it is necessary to increase the temperature difference between the cold junction 135 and the hot junction 134.
  • the infrared absorbing film 121 in the vicinity of the hot junction 134 is to be formed thick, the actual formation range 121b of the solution containing the infrared absorbing material is more easily spread outward than the initial solution forming range 121a.
  • the absorption film 121 is formed to cover the cold junction 135.
  • thermopile infrared sensor 101 when the solution containing the infrared absorbing material spreads and reaches the place where it covers the cold junction 135 and is cured to form the infrared absorbing film 121, the thermopile infrared sensor 101 is formed.
  • infrared rays are received, not only the hot junction 134 but also the cold junction 135 rises in temperature due to the infrared absorption film 121, so the temperature difference between the hot junction 134 and the cold junction 135 becomes small. For this reason, the subject that the sensitivity of the thermopile type infrared sensor 101 falls arises.
  • the present invention provides a thermopile type infrared sensor capable of improving the sensitivity by solving the above problems and preventing the infrared absorption film from being formed so as to cover the cold junction, and a method for manufacturing the same. With the goal.
  • thermopile type infrared sensor of the present invention includes a base material, a thermopile element, and an infrared absorption film, and the thermopile element and the infrared absorption film are formed on the base material, and the thermopile element is cooled.
  • a thermopile infrared sensor capable of detecting a temperature difference between a contact point and a hot contact point, and a range regulating member for regulating a formation range of the infrared absorption layer is formed between the infrared absorption layer and the cold junction. It is characterized by being.
  • the flow of the solution containing the infrared absorbing material is regulated by the range regulating member. That is, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the initial solution formation range. Thereby, it can prevent that an infrared rays absorption film is formed so that a cold junction may be covered.
  • the infrared rays from the outside are received, since the cold junction is not covered with the infrared absorption film, the temperature rise is suppressed and the temperature difference between the hot junction and the cold junction can be increased. Therefore, even if the area is reduced, the sensor output from the thermopile element can be increased, and the sensitivity of the thermopile infrared sensor can be improved.
  • thermopile type infrared sensor of the present invention it is possible to improve the sensitivity by preventing the infrared absorption film from being formed to cover the cold junction.
  • thermopile type infrared sensor of the present invention it is preferable that the range regulating member is formed between the hot junction and the cold junction, and the infrared absorbing film is formed so as to cover the hot junction. is there.
  • the range regulating member between the hot junction and the cold junction, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the formation range of the initial solution. . Therefore, it is possible to prevent the infrared absorption film from being formed so as to cover the cold junction.
  • the infrared absorption film is formed so as to cover the hot junction, it is possible to suppress the temperature rise of the cold junction and effectively increase the temperature of the hot junction. Therefore, the temperature difference between the cold junction and the hot junction can be increased, and the sensitivity of the thermopile infrared sensor can be effectively improved.
  • thermopile type infrared sensor of the present invention it is preferable that the range restricting member is formed on the warm contact and the infrared absorbing film is formed close to the warm contact. According to this, by forming the range regulating member on the hot junction, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the formation range of the initial solution. Therefore, it is possible to prevent the infrared absorption film from being formed so as to cover the cold junction. Further, since the infrared absorption film is formed close to the hot junction, it is possible to suppress the temperature rise of the cold junction and effectively increase the temperature of the hot junction. Therefore, the temperature difference between the cold junction and the hot junction can be increased, and the sensitivity of the thermopile infrared sensor can be effectively improved.
  • thermopile element has a planar pattern having a meander-shaped thermoelectric material, and the range restricting member in a cross-sectional view in the width direction of the meander-shaped thermopile element. Is preferably formed by filling gaps between the thermoelectric materials.
  • the base material has a thin portion and a thick portion formed around the thin portion, and the hot junction is formed in the thin portion and the cold junction. Is formed in the thick portion, and the range restricting member is preferably formed so as to surround a central portion of the thin portion. According to this, since the hot junction and the infrared absorption film are formed in a thin portion having a small heat capacity, and the cold junction is formed in a thick portion having a large heat capacity, the temperature difference between the hot junction and the cold junction is further increased. Is possible.
  • the range restricting member so as to surround the central portion of the thin-walled portion, the flow of the solution containing the infrared absorbing material is restricted, and the solution containing the infrared absorbing material is outside the initial solution forming range. Can be reliably prevented from flowing and spreading. Therefore, the sensitivity of the thermopile infrared sensor can be effectively improved.
  • the range restricting member is a convex wall portion. According to this, when the infrared absorption film is formed, the solution containing the infrared absorption material is blocked by the convex wall portion and reliably prevents the solution from flowing to the cold junction side from the formation range of the infrared absorption film. can do.
  • thermopile type infrared sensor of the present invention it is preferable that the infrared absorption film is formed higher than a height of the range regulating member. By so doing, the infrared absorption amount of the infrared absorption film is increased, and the temperature difference between the hot junction and the cold junction can be increased, so that the sensitivity of the thermopile infrared sensor can be further improved.
  • thermopile type infrared sensor of the present invention is: (A) preparing the base material on which the thermopile element is formed, setting a formation range of the infrared absorption film, and setting a range regulating member for regulating the formation range of the infrared absorption film as the formation range Forming between the cold junctions; (B) applying a solution containing an infrared absorbing material to the formation range to form the infrared absorbing film.
  • the solution containing the infrared absorbing material is regulated by the range regulating member. That is, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the initial solution formation range. Thereby, it can prevent that an infrared rays absorption film is formed so that a cold junction may be covered. Moreover, when the infrared rays from the outside are received, since the cold junction is not covered with the infrared absorption film, the temperature rise is suppressed and the temperature difference between the hot junction and the cold junction can be increased. Therefore, even if the area is reduced, the sensor output from the thermopile element can be increased, and the sensitivity of the thermopile infrared sensor can be improved.
  • thermopile type infrared sensor of the present invention it is possible to prevent the infrared absorption film from being formed so as to cover the cold junction and to improve the sensitivity.
  • thermopile type infrared sensor of the present invention it is preferable that after the step (a), a step of forming a thin portion by removing the base material at a position overlapping the hot junction by etching is included. Thereby, the heat capacity of the location where the hot junction is formed can be reduced, and the temperature difference between the hot junction and the cold junction can be increased.
  • the range regulating member is formed so as to surround the central portion of the thin portion. According to this, the flow of the solution containing the infrared absorbing material is regulated, and the solution containing the infrared absorbing material can be reliably prevented from flowing and spreading outside the initial solution formation range. Therefore, it is possible to improve the sensitivity of the thermopile type infrared sensor by preventing the infrared absorption film from being formed so as to cover the cold junction.
  • thermopile type infrared sensor of the present invention it is preferable that in the step (b), the solution is applied so that the solution is higher than the height of the range regulating member.
  • the infrared absorption film can be formed thick using the surface tension of the solution. Therefore, the infrared absorption amount of the infrared absorption film is increased, the temperature difference between the hot junction and the cold junction can be increased, and the sensitivity of the thermopile infrared sensor can be further improved.
  • the solution is preferably applied by an ink jet printing method. According to this, when applying the solution containing the infrared absorbing material, the thin portion can be applied and formed in a non-contact manner, and the thin portion can be prevented from being destroyed in the manufacturing process.
  • the infrared absorbing film is preferably formed by curing the solution by heat curing or ultraviolet curing. According to this, the infrared ray absorbing film can be formed by curing the solution containing the infrared ray absorbing material in a short time with a simple process.
  • thermopile type infrared sensor and the method of manufacturing the same of the present invention even when the solution containing the infrared absorbing material flows when forming the infrared absorbing film, the flow of the solution containing the infrared absorbing material by the range regulating member Is regulated. That is, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the initial solution formation range. Thereby, it can prevent that an infrared rays absorption film is formed so that a cold junction may be covered.
  • thermopile infrared sensor when the infrared rays from the outside are received, since the cold junction is not covered with the infrared absorption film, the temperature rise is suppressed and the temperature difference between the hot junction and the cold junction can be increased. Therefore, even if the area is reduced, the sensor output from the thermopile element can be increased, and the sensitivity of the thermopile infrared sensor can be improved.
  • thermopile type infrared sensor and the manufacturing method thereof of the present invention it is possible to prevent the infrared absorption film from being formed so as to cover the cold junction and to improve the sensitivity.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • region A enclosed with the dashed-two dotted line of FIG. 1, and a partial expanded sectional view (b) are shown.
  • FIG. 5 shows a cross-sectional view taken along line VV in FIG. 4.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. It is a graph which shows the relationship between the temperature of a measuring object, and a sensor output about the thermopile type infrared sensor of this embodiment. It is process drawing which shows the manufacturing method of a thermopile type infrared sensor. It is process drawing which shows the manufacturing method of a thermopile type infrared sensor. It is a top view of the thermopile type infrared sensor in a prior art example.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • thermopile type infrared sensor according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 the top view of the thermopile type infrared sensor 1 of this embodiment is shown.
  • FIG. 2 shows a cross-sectional view of the thermopile infrared sensor 1 taken along the line II-II in FIG. It should be noted that the dimensional ratios in the drawings are appropriately changed for easy understanding.
  • the thermopile type infrared sensor 1 of the present embodiment is configured to include a base material 10, a thermopile element 30 and an infrared absorption film 21 formed on the base material 10, as shown in FIGS.
  • the base material 10 includes a base 11 and a membrane 12.
  • a cavity 13 is formed at the center of the base 11, and a membrane 12 is formed so as to cover the cavity 13.
  • the membrane 12 is formed as a thin portion 12a, and a portion of the base 11 where the cavity 13 is not formed is formed around the membrane 12 as a thick portion 11a.
  • a silicon substrate can be used as the base 11, and an insulating thin film such as a silicon nitride film or a silicon oxide film is used for the membrane 12.
  • thermopile element 30 has a planar pattern having a meander-shaped thermoelectric material layer, and first thermoelectric material layers 31 and second thermoelectric material layers 32 are alternately arranged in series. Connected to form a meander. And among the connection parts of the 1st thermoelectric material layer 31 and the 2nd thermoelectric material layer 32, the location located in the membrane 12 as the thin part 12a and connected is made into the warm junction 34, and it is made into the thick part 11a. A location that is located and connected to the base 11 is referred to as a cold junction 35.
  • the first thermoelectric material layer 31 and the second thermoelectric material layer 32 are formed using different materials.
  • polysilicon is used as the first thermoelectric material layer 31
  • the second Aluminum is used as the thermoelectric material layer 32.
  • a thermocouple 33 is constituted by a pair of the first thermoelectric material layer 31 and the second thermoelectric material layer 32 and a temperature difference occurs between the hot junction 34 and the cold junction 35, each thermoelectric is caused by the Seebeck effect. A thermoelectromotive force is generated in the pair 33.
  • the thermopile element 30 is a thermocouple group in which a plurality of thermocouples 33 are connected in series, and the sum of electromotive forces of each thermocouple 33 is the output of the thermopile element 30.
  • thermopile element 30 The output of the thermopile element 30 is taken out from the connection terminals 36 formed at both ends of the thermopile element 30. As shown in FIGS. 1 and 2, the hot junction 34 is formed in the thin portion 12a having a small heat capacity, and the cold junction 35 is formed in the thick portion 11a having a large heat capacity. A larger output can be obtained by increasing the temperature difference between the contact 34 and the cold junction 35.
  • a range regulating member 20 and an infrared absorbing film 21 are formed on the membrane 12 as the thin portion 12a.
  • the infrared absorbing film 21 is formed at the center of the membrane 12 as the thin portion 12a so as to cover the hot junction 34.
  • the infrared absorption film 21 can efficiently convert heat by absorbing incident infrared rays, and can increase the temperature difference between the hot junction 34 and the cold junction 35 by increasing the temperature of the hot junction 34.
  • the infrared absorption film 21 can be applied and formed by a printing method such as ink jet printing or screen printing using a solution containing carbon black or metal oxide powder.
  • the range restricting member 20 is formed to restrict the formation range of the infrared absorbing film 21, and is positioned between the hot junction 34 and the cold junction 35 and has a thin portion. It is formed so as to surround the center of the membrane 12 as 12a. An infrared absorption film 21 is formed in a region surrounded by the range regulating member 20. That is, the range restricting member 20 is formed between the infrared absorption film 21 and the cold junction 35.
  • the range restricting member 20 can be formed of a silicon oxide film, a silicon nitride film, or the like, or may be formed of a resin material such as a resist material. As shown in FIG. 2, the range regulating member 20 is a wall having a convex cross section, and the range regulating member 20 is preferably formed to have a height of about 1 ⁇ m to 10 ⁇ m and a width of about 5 ⁇ m to 20 ⁇ m.
  • the range restricting member 20 By providing the range restricting member 20, when the infrared absorbing film 21 is applied and formed, even if a solution containing carbon black or a metal oxide powder flows, the range restricting member 20 can be used to clog. That is, it is possible to prevent the solution from flowing and spreading outside the initial formation range and covering the cold junction 35. Accordingly, as shown in FIGS. 1 and 2, the hot junction 34 is formed so as to be covered with the infrared absorption film 21, and the cold junction 35 located outside the range regulating member 20 is covered with the infrared absorption film 21. It is prevented.
  • thermopile infrared sensor 1 When the thermopile infrared sensor 1 receives infrared rays, the temperature of the hot junction 34 is efficiently increased by the infrared absorbing film 21, and the temperature difference from the cold junction 35 not covered with the infrared absorbing film 21 is increased. Can do. Thereby, the sensor output of the thermopile element 30 can be increased, and the sensitivity of the thermopile infrared sensor 1 can be improved.
  • the range regulating member 20 is provided even when the distance between the hot junction 34 and the cold junction 35 is formed as small as about 100 ⁇ m to 500 ⁇ m.
  • the infrared absorption film 21 when the infrared absorption film 21 is applied and formed, it is possible to reliably prevent the solution containing the infrared absorption material from flowing and spreading outside the initial solution formation range. Therefore, the temperature difference between the hot junction 34 and the cold junction 35 can be widened, and the sensitivity of the thermopile infrared sensor 1 can be improved.
  • the range restricting member 20 is configured by a wall section having a convex cross section. In this case, the solution containing the infrared absorbing material is blocked by the convex wall section, and the range of the infrared absorbing film 21 is formed. It is possible to reliably prevent the flow toward the cold junction 35 side.
  • the range restricting member 20 is not limited to such a shape, and the same effect can be obtained even if the cross-sectional shapes are different, and a configuration in which a plurality of range restricting members formed in a rod shape, an island shape, or the like is arranged. It may be.
  • thermopile element 30 includes a first thermoelectric material layer 31 and a second thermoelectric material layer 32 having a planar pattern connected in a meander shape.
  • the direction in which the first thermoelectric material layer 31 and the second thermoelectric material layer 32 of the thermopile element 30 extend by connecting the hot junction 34 and the cold junction 35 is the length direction (Y1-Y2 direction) of the thermopile element 30.
  • the direction perpendicular to the length direction of the thermopile element 30 is defined as the width direction (X1-X2 direction) of the thermopile element 30.
  • the length direction and the width direction of the thermopile element 30 change depending on the arrangement of the meandering plane pattern of the thermopile element 30, and for example, the meandering plane pattern arranged on the X1 side of the substrate 10 shown in FIG. In FIG. 2, the length direction of the thermopile element 30 is the X1-X2 direction, and the width direction is the Y1-Y2 direction.
  • the range regulating member 20 extends in the width direction of the thermopile element 30, and the first thermoelectric material layer 31, the second thermoelectric material layer 32, and the membrane 12 (thin wall portion 12a). Is formed on top. As shown in FIG. 3B, the range regulating member 20 is formed by filling a space between the first thermoelectric material layer 31 and the second thermoelectric material layer 32.
  • thermopile type infrared sensor 1 when miniaturization of the thermopile type infrared sensor 1 is attempted, the distance between the first thermoelectric material layer 31 and the second thermoelectric material layer 32 which are folded back and connected in a meander shape is reduced, and a narrow concave groove portion is formed. Form.
  • the solution containing the infrared ray absorbing material easily flows along the narrow concave groove.
  • the range regulating member 20 is formed by filling the space between the first thermoelectric material layer 31 and the second thermoelectric material layer 32.
  • the infrared absorption film 21 when the infrared absorption film 21 is formed, the solution containing the infrared absorption material hardly flows along the narrow concave groove. As a result, it is possible to reliably prevent the infrared absorption film 21 from being formed so as to cover the cold junction 35.
  • the infrared ray absorbing film 21 is thicker than the height of the range regulating member 20 while preventing the solution containing the infrared absorbing material from flowing and spreading by the range regulating member 20. Can be formed.
  • the infrared absorption film 21 is formed to have a curved surface protruding in the height direction (Z1 direction) from the top surface 20a of the range regulating member 20. Thereby, the volume of the infrared absorption film 21 can be increased, the amount of incident infrared rays can be increased, and the temperature of the hot junction 34 can be increased efficiently.
  • the graph shown in FIG. 10 shows the relationship between the temperature to be measured and the output of the thermopile type infrared sensor 1 for the thermopile type infrared sensor 1 of the present embodiment manufactured by changing the thickness of the infrared absorption film 21.
  • a thermopile type infrared sensor in which the infrared absorption film 21 is not formed is also shown.
  • the measurement is based on 25 ° C., a negative value is output at a temperature of 25 ° C. or lower, and a positive value is output at 25 ° C. or higher.
  • the sensor output tends to increase as the temperature of the measurement target increases. Moreover, it turns out that a bigger output is acquired as the infrared rays absorption film 21 is thickened compared with the case where the infrared rays absorption film 21 is not formed.
  • the target temperature is 150 ° C.
  • the thermopile infrared sensor 1 in which the film thickness of the infrared absorption film 21 is 4 ⁇ m can obtain about twice the sensor output as compared with the case where the infrared absorption film 21 is not formed. ing. Further, it was shown that about 1.2 times the sensor output can be obtained even when compared with the thermopile type infrared sensor 1 in which the film thickness of the infrared absorption film 21 is 2 ⁇ m.
  • thermopile type infrared sensor 1 of the present embodiment can reliably prevent the solution containing the infrared absorbing material from covering the cold junction 35 by the range regulating member 20 and increase the thickness of the infrared absorbing film 21. This indicates that the temperature difference between the hot junction 34 and the cold junction 35 can be increased to improve the sensor output.
  • the film thickness of the infrared absorption film 21 is 2 ⁇ m and 4 ⁇ m.
  • the present invention is not limited to this. It is also possible to further improve sensitivity by forming the infrared absorption film 21 thicker.
  • FIG. 4 shows a top view of the thermopile type infrared sensor 2 in the 1st modification of this embodiment.
  • FIG. 5 shows a cross-sectional view of the thermopile infrared sensor 2 cut along the line VV in FIG.
  • thermopile infrared sensor 2 of the first modification the configurations of the base material 10 (base 11 and membrane 12) and thermopile element 30 are the same as those shown in FIGS.
  • the range regulating member 20 is formed on the hot junction 34 as shown in FIG.
  • the range restricting member 20 is formed on each hot junction 34 so as to surround the center of the membrane 12, and the infrared absorption film 21 is formed inside the range restricting member 20.
  • the infrared absorption film 21 is located closer to the center of the membrane 12 than the warm contact 34 and is formed close to the warm contact 34.
  • the infrared absorption film 21 when the infrared absorption film 21 is formed, it is possible to prevent the solution containing the infrared absorption material from flowing and spreading outside the initial solution formation range to cover the cold junction 35. . Thereby, the infrared absorption film 21 is not formed so as to cover the cold junction 35. Further, since the infrared absorbing film 21 is formed close to the hot junction 34, when receiving infrared rays incident from the outside, the infrared absorbing film 21 absorbs the infrared rays and the temperature of the hot junction 34 rises. . Thereby, the temperature difference between the hot junction 34 and the cold junction 35 can be increased, and the sensitivity of the thermopile infrared sensor 2 can be improved.
  • the distance between the range regulating member 20 and the cold junction 35 is set as compared with the case where the range regulating member 20 is formed between the hot junction 34 and the cold junction 35 as shown in FIGS. Can be larger. Therefore, the influence on the cold junction 35 when the infrared absorption film 21 absorbs infrared rays and the temperature rises can be reduced, and the temperature rise of the cold junction 35 can be suppressed. Therefore, the temperature difference between the hot junction 34 and the cold junction 35 can be increased more effectively.
  • FIG. 6 the top view of the thermopile type infrared sensor 3 in the 2nd modification of this embodiment is shown.
  • FIG. 7 is a cross-sectional view of the thermopile infrared sensor 3 cut along the line VII-VII in FIG.
  • thermopile type infrared sensor 3 in the second modification differs from that shown in FIGS. 1 to 5 in that the range regulating member 20 is divided and arranged.
  • the configurations of the base material 10 (base 10 and membrane 12) and the thermopile element 30 are the same.
  • thermocouples 33 arranged adjacent to each other in the Y1-Y2 direction are used as a first thermocouple group 33a, and similarly, the X2 side of the base material 10
  • a plurality of thermocouples 33 arranged adjacent to each other on the Y1 side and the Y2 side are referred to as a second thermocouple group 33b, a third thermocouple group 33c, and a fourth thermocouple group 33d, respectively.
  • the first range restricting member 20a extends across each thermocouple 33 of the first thermocouple group 33a in a direction (Y1-Y2 direction) intersecting the extending direction of each thermocouple 33. Is formed.
  • thermocouple group 33b, the third thermocouple group 33c, and the fourth thermocouple group 33d include the second range regulating member 20b, the third range regulating member 20c, and the fourth range, respectively.
  • a regulating member 20d is formed.
  • the range regulating members 20a, 20b, 20c, and 20d are formed for each thermocouple group, when the infrared absorbing film 21 is formed, the solution is prevented from spreading to the cold junction 35 side, and the infrared rays are prevented.
  • the absorption film 21 can be prevented from being formed so as to cover the cold junction 35.
  • the range regulating member 20 by forming the range regulating member 20 in a divided manner, the formation range of the infrared absorption film 21 can be changed variously, and the degree of design freedom can be increased. Therefore, even when the arrangement of the thermopile elements 30 and the shapes of the base 10 and the membrane 12 are different, the solution containing the infrared absorbing material flows and spreads outside the formation range of the initial solution, so that the cold junction 35 is formed. Covering can be effectively prevented. Thereby, it can prevent that the infrared rays absorption film 21 is formed so that the cold junction 35 may be covered.
  • thermopile type infrared sensor 4 in the 3rd modification of this embodiment is shown.
  • 9 shows a cross-sectional view of the thermopile infrared sensor 4 cut along the line IX-IX in FIG.
  • the range regulating member 20 is formed so as to cover the base material 10 outside the formation range of the infrared absorption film 21. .
  • the range regulating member 20 is formed from between the hot junction 34 and the cold junction 35 to the outer edge of the substrate 10, and the infrared absorption film 21 is formed to cover the hot junction 34.
  • the cavity portion 13 of the base portion 11 is formed below the base portion 11.
  • the infrared ray absorbing film 21 is formed by the range regulating member 20, the solution containing the infrared ray absorbing material flows and spreads outside the formation range of the initial solution. Can be prevented. Thereby, it can prevent that the infrared rays absorption film 21 is formed so that the cold junction 35 may be covered.
  • the range regulating member 20 is formed on a convex wall portion, the height of the range regulating member 20 may be limited depending on the aspect ratio, but in this modification, the limitation due to the aspect ratio is reduced. The height of the range restricting member 20 can be set relatively freely. Therefore, the infrared absorption film 21 can also be formed thick, and the infrared absorption amount can be improved and the sensitivity of the thermopile infrared sensor 4 can be improved.
  • thermopile type infrared sensors 1, 2, and 3 shown in this embodiment and each modification it is formed in a state where the infrared ray absorbing film 21 is in contact with the range regulating member 20, and the formation range of the infrared ray absorbing film 21 and the range regulating member. A case where the area surrounded by 20 is almost equal is shown.
  • the present invention is not limited to such an embodiment, and it is sufficient that the range regulating member 20 is formed by preventing at least the infrared absorption film 21 from being formed so as to cover the cold junction 35.
  • the present invention can be applied and an equivalent effect can be achieved.
  • the cavity 13 may be formed from the lower surface side of the substrate 10.
  • the thermopile element 30 is configured by connecting a number of thermocouples 33 in which the first thermoelectric material layer 31 and the second thermoelectric material layer 32 are laminated via an insulating layer in series. Play.
  • FIG. 11 and FIG. 12 show process diagrams of a method for manufacturing the thermopile infrared sensor 1 of the present embodiment.
  • 11 (a), FIG. 11 (b), FIG. 12 (a), and FIG. 12 (b) each show a plan view, and each right diagram shows a line BB in FIG. 11 (a). Sectional drawing when each left figure is cut
  • thermoelectric material film 31 and the second thermoelectric material film 32 are respectively formed by patterning using a photolithography method, and the first thermoelectric material film 31 and the first thermoelectric material film 31 as shown in the left diagram of FIG.
  • a thermopile element 30 is formed in which two thermoelectric material films 32 are connected in series in a meander shape.
  • the formation range 21a of the infrared absorption film 21 to be formed in a later step is set.
  • the connection portion formed at a position facing the inside of the substrate 10 is used as the hot junction 34
  • the substrate A connecting portion formed at a position facing the outer periphery of the tenth is a cold junction 35.
  • the formation range 21 a of the present embodiment is a region that surrounds the central portion of the membrane 12 and includes the hot junction 34 of the thermopile element 30.
  • the range regulating member 20 is formed between the formation range 21 a and the cold junction 35.
  • the range restricting member 20 is a wall section having a convex cross section as shown in the right figure of FIG. 11B, and as shown in the left figure of FIG. And it is formed so that the hot junction 34 may be enclosed.
  • the range regulating member 20 is formed by forming a film using an insulating material such as silicon oxide or silicon nitride and patterning it by a photolithography method.
  • a plurality of etching holes 14 are formed at positions that do not overlap the thermopile element 30 of the membrane 12. Then, the base 11 is removed from the etching hole 14 by anisotropic etching using a strong alkaline etching solution such as potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH). Thereby, while forming the cavity 13 in the base 11, the membrane 12 as the thin part 12a can be formed.
  • KOH potassium hydroxide
  • TMAH tetramethylammonium hydroxide
  • the infrared absorption film 21 is formed in the formation range 21a set in the step of FIG.
  • the infrared absorbing film 21 is formed by coating by an ink jet printing method using a solution containing an infrared absorbing material such as carbon black or a metal oxide powder.
  • the infrared absorption film 21 is formed by ink-jet printing, it can be printed on the membrane 12 as the thin portion 12a in a non-contact manner, and the membrane 12 is prevented from being destroyed in the manufacturing process. it can.
  • the coating method is not limited to the ink jet printing method. For example, when forming by other coating methods such as a screen printing method, it is necessary to adjust the pressure applied to the membrane 12 to prevent the membrane 12 from being broken.
  • the solution containing the infrared absorbing material has fluidity, it tends to flow outside the initial solution formation range when applied.
  • the range regulating member 20 is formed between the formation range 21a and the cold junction 35, the solution containing the flowing infrared absorbing material is the range regulating member. It is possible to prevent the cold junction 35 from being covered by the dam 20.
  • the solution containing the infrared absorbing material can be formed higher than the height of the range regulating member 20 by utilizing the surface tension.
  • the infrared absorption film 21 is formed thicker with a curved surface protruding in the height direction than the top surface 20a of the range regulating member 20, so that the amount of infrared absorption is improved and heat conversion is efficiently performed. Is possible.
  • thermosetting resin or an ultraviolet curable resin as a solution containing an infrared absorbing material. If it carries out like this, after apply
  • the thermopile type infrared sensor 1 can be manufactured by the process as described above.
  • the infrared absorption film 21 is prevented from being formed to cover the cold junction 35 and the infrared absorption film 21 is formed to cover the hot junction 34. can do.
  • the infrared absorption film 21 absorbs the infrared rays and effectively raises the temperature of the hot junction 34. Therefore, the temperature difference between the hot junction 34 and the cold junction 35 is increased, and the sensitivity of the thermopile infrared sensor 1 can be improved.
  • thermopile infrared sensor 1 and the manufacturing method thereof according to the present embodiment are not limited to the configurations shown in FIGS.
  • the present invention can also be applied to the first modification example and the second modification example shown in FIGS.
  • Thermopile infrared sensor 10 Base material 11 Base portion 11a Thick portion 12 Membrane 12a Thin portion 13 Cavity 14 Etching hole 20 Range regulating member 20a Top surface 21 Infrared absorption film 21a Formation range 30 Thermopile element 31 1st Thermoelectric material layer 32 Second thermoelectric material layer 33 Thermocouple 34 Hot junction 35 Cold junction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a thermopile infrared sensor and a method for manufacturing same, in which sensitivity can be improved and the formation of an infrared-absorbing film that covers the cold junction is prevented. [Solution] A thermopile infrared sensor (10) having a substrate (11), a thermopile element (30), and an infrared-absorbing film (21), having the thermopile element (30) and the infrared-absorbing film (21) formed on the substrate (11), and having a temperature difference that can be detected between the heat junction (34) and the cold junction (35) of the thermopile element (30), wherein a range-restricting member (20) for restricting the formation range of the infrared-absorbing film (21) is formed between the infrared-absorbing film (21) and the cold junction (35).

Description

サーモパイル型赤外線センサ及びその製造方法Thermopile type infrared sensor and manufacturing method thereof
 本発明は、サーモパイル型赤外線センサ及びその製造方法に関し、特に、赤外線吸収膜を有するサーモパイル型赤外線センサ及びその製造方法に関する。 The present invention relates to a thermopile type infrared sensor and a manufacturing method thereof, and more particularly, to a thermopile type infrared sensor having an infrared absorption film and a manufacturing method thereof.
 産業機器や体温計などに、対象物からの赤外線を非接触で検知して温度を測定するために赤外線センサが用いられている。このような赤外線センサとして、サーモパイル型赤外線センサが知られている。 Infrared sensors are used in industrial equipment, thermometers, and the like to detect infrared rays from an object without contact and measure the temperature. A thermopile type infrared sensor is known as such an infrared sensor.
 従来例のサーモパイル型赤外線センサは、基材と、2つの異種材料が交互に直列接続されたサーモパイル素子と、赤外線吸収膜とを有して構成される。基材は、薄肉部としてのメンブレンと、薄肉部の周囲に形成された厚肉部としての基部とを有して構成される。また、サーモパイル素子は温接点と冷接点とを有しており、冷接点は厚肉部としての基部に形成され、温接点は薄肉部としてのメンブレンに形成されている。サーモパイル型赤外線センサが赤外線を受光したときに、冷接点と温接点とで温度差が生じて、ゼーベック効果により起電力が発生する。この起電力に基づいて赤外線が検知される。 The conventional thermopile type infrared sensor includes a base material, a thermopile element in which two different materials are alternately connected in series, and an infrared absorption film. The base material includes a membrane as a thin portion and a base portion as a thick portion formed around the thin portion. The thermopile element has a hot junction and a cold junction, and the cold junction is formed on the base as a thick portion, and the hot junction is formed on a membrane as a thin portion. When the thermopile type infrared sensor receives infrared rays, a temperature difference occurs between the cold junction and the hot junction, and an electromotive force is generated due to the Seebeck effect. Infrared rays are detected based on this electromotive force.
 近年、サーモパイル型赤外線センサのモバイル機器などへの搭載が検討されており、小型化が望まれている。この場合、サーモパイル素子の冷接点と温接点との距離が小さくなり、接点間の温度差を大きくすることが困難であるため、サーモパイル型赤外線センサの感度が低下する。サーモパイル型赤外線センサを小型化した場合であっても感度を向上させるために、温接点の上を覆うように赤外線吸収膜が設けられており、外部から入射した赤外線は赤外線吸収膜に吸収され、そして熱変換される。これによって、温接点の温度が上昇して、冷接点と温接点との温度差を効果的に大きくすることができ、サーモパイル型赤外線センサの感度を向上させることができる。 In recent years, mounting of thermopile infrared sensors to mobile devices has been studied, and miniaturization is desired. In this case, since the distance between the cold junction and the hot junction of the thermopile element is reduced and it is difficult to increase the temperature difference between the contacts, the sensitivity of the thermopile infrared sensor is lowered. In order to improve the sensitivity even when the thermopile type infrared sensor is downsized, an infrared absorption film is provided so as to cover the hot junction, and infrared rays incident from the outside are absorbed by the infrared absorption film, And it is converted into heat. As a result, the temperature of the hot junction increases, the temperature difference between the cold junction and the hot junction can be effectively increased, and the sensitivity of the thermopile infrared sensor can be improved.
 このような、赤外線吸収膜を有するサーモパイル型赤外線センサは、例えば下記特許文献1に記載されている。 Such a thermopile type infrared sensor having an infrared absorption film is described in, for example, Patent Document 1 below.
特開2000-065638号公報JP 2000-065638 A
 図13には、従来例のサーモパイル型赤外線センサ101の課題を説明するための平面図を示し、図14には、図13のXIV-XIV線で切断したときの断面図を示す。図13に示すように、基材110には、第1の熱電材料層131と第2の熱電材料層132とが交互に接続されたサーモパイル素子130が形成されている。図14に示すように、第1の熱電材料層131と第2の熱電材料層132とが接続された温接点134は薄肉部112aとしてのメンブレン112に形成され、冷接点135は厚肉部111aとしての基部111に位置して形成されている。そして、メンブレン112の中央部には温接点134を覆うように赤外線吸収膜121が形成されている。 FIG. 13 is a plan view for explaining the problems of the thermopile infrared sensor 101 of the conventional example, and FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. As shown in FIG. 13, the thermopile element 130 in which the first thermoelectric material layer 131 and the second thermoelectric material layer 132 are alternately connected is formed on the base 110. As shown in FIG. 14, the hot junction 134 to which the first thermoelectric material layer 131 and the second thermoelectric material layer 132 are connected is formed in the membrane 112 as the thin portion 112a, and the cold junction 135 is the thick portion 111a. As shown in FIG. An infrared absorption film 121 is formed at the center of the membrane 112 so as to cover the hot junction 134.
 赤外線吸収膜121は、赤外線吸収材料を含む溶液をスクリーン印刷法によって塗布した後に硬化して形成される。しかしながら、赤外線吸収材料を含む溶液は流動性を有しているため、塗布した際の初期の溶液の形成範囲121aよりも外側に流動して、実際の形成範囲121bまで拡がってしまう。そのため、図13及び図14に示すように、赤外線吸収膜121が冷接点135を覆うように形成される場合がある。 The infrared absorbing film 121 is formed by applying a solution containing an infrared absorbing material by a screen printing method and then curing. However, since the solution containing the infrared absorbing material has fluidity, it flows outside the initial solution formation range 121a when applied and expands to the actual formation range 121b. Therefore, as shown in FIGS. 13 and 14, the infrared absorption film 121 may be formed so as to cover the cold junction 135.
 特に、サーモパイル型赤外線センサ101の小型化を図る場合、冷接点135と温接点134との距離が小さくなるため、赤外線吸収材料を含む溶液が流動して拡がり、冷接点135を覆いやすくなる。また、隣り合う第1の熱電材料層131と第2の熱電材料層132との間隔も小さくなる。その結果、この隣り合う熱電材料層の間に形成される細い凹状の溝を伝って赤外線吸収材料を含む溶液が流動しやすくなる。そのため、実際の形成範囲121bが、初期の溶液の形成範囲121aよりも外側に拡がってしまう。 In particular, when the thermopile infrared sensor 101 is downsized, the distance between the cold junction 135 and the hot junction 134 is reduced, so that the solution containing the infrared absorbing material flows and spreads, and the cold junction 135 is easily covered. Further, the distance between the adjacent first thermoelectric material layer 131 and the second thermoelectric material layer 132 is also reduced. As a result, the solution containing the infrared absorbing material easily flows through the narrow concave groove formed between the adjacent thermoelectric material layers. For this reason, the actual formation range 121b extends outside the initial solution formation range 121a.
 さらにサーモパイル型赤外線センサ101の感度を向上させるためには、冷接点135と温接点134との温度差を大きくする必要がある。外部から赤外線が入射したときの温接点134の温度上昇を大きくするために、赤外線吸収膜121を厚く形成して赤外線の吸収量を高くすることが望ましい。しかし、温接点134近傍の赤外線吸収膜121を厚く形成しようとすると、赤外線吸収材料を含む溶液の実際の形成範囲121bが、初期の溶液の形成範囲121aよりも、より外側に拡がり易くなり、赤外線吸収膜121が冷接点135を覆って形成されてしまう。 Furthermore, in order to improve the sensitivity of the thermopile type infrared sensor 101, it is necessary to increase the temperature difference between the cold junction 135 and the hot junction 134. In order to increase the temperature rise of the hot junction 134 when infrared rays are incident from the outside, it is desirable to increase the absorption amount of infrared rays by forming the infrared absorption film 121 thick. However, if the infrared absorbing film 121 in the vicinity of the hot junction 134 is to be formed thick, the actual formation range 121b of the solution containing the infrared absorbing material is more easily spread outward than the initial solution forming range 121a. The absorption film 121 is formed to cover the cold junction 135.
 図13及び図14に示すように、赤外線吸収材料を含む溶液が冷接点135を覆うところまで拡がって流れ出た状態で硬化されて、赤外線吸収膜121が形成されると、サーモパイル型赤外線センサ101が赤外線を受光したときに、温接点134だけではなく冷接点135についても赤外線吸収膜121によって温度が上昇するため、温接点134と冷接点135との温度差が小さくなってしまう。このため、サーモパイル型赤外線センサ101の感度が低下するという課題が生じる。 As shown in FIG. 13 and FIG. 14, when the solution containing the infrared absorbing material spreads and reaches the place where it covers the cold junction 135 and is cured to form the infrared absorbing film 121, the thermopile infrared sensor 101 is formed. When infrared rays are received, not only the hot junction 134 but also the cold junction 135 rises in temperature due to the infrared absorption film 121, so the temperature difference between the hot junction 134 and the cold junction 135 becomes small. For this reason, the subject that the sensitivity of the thermopile type infrared sensor 101 falls arises.
 本発明は、上記課題を解決して、赤外線吸収膜が冷接点を覆うように形成されることを防止して、感度を向上させることが可能なサーモパイル型赤外線センサ及びその製造方法を提供することを目的とする。 The present invention provides a thermopile type infrared sensor capable of improving the sensitivity by solving the above problems and preventing the infrared absorption film from being formed so as to cover the cold junction, and a method for manufacturing the same. With the goal.
 本発明のサーモパイル型赤外線センサは、基材と、サーモパイル素子と、赤外線吸収膜とを有し、前記サーモパイル素子と前記赤外線吸収膜とは、前記基材に形成されており、前記サーモパイル素子の冷接点と温接点との温度差を検知可能としてなるサーモパイル型赤外線センサであって、前記赤外線吸収膜と前記冷接点との間には、前記赤外線吸収膜の形成範囲を規制する範囲規制部材が形成されていることを特徴とする。 The thermopile type infrared sensor of the present invention includes a base material, a thermopile element, and an infrared absorption film, and the thermopile element and the infrared absorption film are formed on the base material, and the thermopile element is cooled. A thermopile infrared sensor capable of detecting a temperature difference between a contact point and a hot contact point, and a range regulating member for regulating a formation range of the infrared absorption layer is formed between the infrared absorption layer and the cold junction. It is characterized by being.
 これによれば、赤外線吸収膜を形成する際に赤外線吸収材料を含む溶液が流動した場合であっても、範囲規制部材によって赤外線吸収材料を含む溶液の流動が規制される。すなわち、赤外線吸収材料を含む溶液が、初期の溶液の形成範囲よりも外側に流動して拡がってしまうことを防ぐことができる。これにより、赤外線吸収膜が冷接点を覆うように形成されることを防止することができる。また、外部からの赤外線を受光したときに、冷接点は赤外線吸収膜に覆われていないため温度上昇が抑制されて、温接点と冷接点との温度差を大きくすることができる。したがって、面積を小型化しても、サーモパイル素子からのセンサ出力を大きくすることができ、サーモパイル型赤外線センサの感度を向上させることが可能となる。 According to this, even when the solution containing the infrared absorbing material flows when forming the infrared absorbing film, the flow of the solution containing the infrared absorbing material is regulated by the range regulating member. That is, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the initial solution formation range. Thereby, it can prevent that an infrared rays absorption film is formed so that a cold junction may be covered. Moreover, when the infrared rays from the outside are received, since the cold junction is not covered with the infrared absorption film, the temperature rise is suppressed and the temperature difference between the hot junction and the cold junction can be increased. Therefore, even if the area is reduced, the sensor output from the thermopile element can be increased, and the sensitivity of the thermopile infrared sensor can be improved.
 本発明のサーモパイル型赤外線センサによれば、赤外線吸収膜が冷接点を覆うように形成されることを防止して、感度を向上させることが可能である。 According to the thermopile type infrared sensor of the present invention, it is possible to improve the sensitivity by preventing the infrared absorption film from being formed to cover the cold junction.
 本発明のサーモパイル型赤外線センサにおいて、前記範囲規制部材は前記温接点と前記冷接点との間に形成されているとともに前記赤外線吸収膜は前記温接点を覆うように形成されていることが好適である。前記温接点と前記冷接点との間に前記範囲規制部材が形成されることにより、赤外線吸収材料を含む溶液が、初期の溶液の形成範囲よりも外側に流動して拡がってしまうことを防止できる。そのため、赤外線吸収膜が冷接点を覆うように形成されることを防止できる。また、赤外線吸収膜が前記温接点を覆うように形成されるため、冷接点の温度上昇を抑制するとともに、温接点の温度を効果的に上昇させることが可能である。したがって、冷接点と温接点との温度差を大きくすることができ、サーモパイル型赤外線センサの感度を効果的に向上させることが可能となる。 In the thermopile type infrared sensor of the present invention, it is preferable that the range regulating member is formed between the hot junction and the cold junction, and the infrared absorbing film is formed so as to cover the hot junction. is there. By forming the range regulating member between the hot junction and the cold junction, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the formation range of the initial solution. . Therefore, it is possible to prevent the infrared absorption film from being formed so as to cover the cold junction. Moreover, since the infrared absorption film is formed so as to cover the hot junction, it is possible to suppress the temperature rise of the cold junction and effectively increase the temperature of the hot junction. Therefore, the temperature difference between the cold junction and the hot junction can be increased, and the sensitivity of the thermopile infrared sensor can be effectively improved.
 本発明のサーモパイル型赤外線センサにおいて、前記範囲規制部材は前記温接点の上に形成されるとともに前記赤外線吸収膜は前記温接点に近接して形成されていることが好適である。これによれば、温接点の上に前記範囲規制部材が形成されることにより、赤外線吸収材料を含む溶液が初期の溶液の形成範囲よりも外側に流動して拡がってしまうことを防止できる。そのため、赤外線吸収膜が冷接点を覆うように形成されることを防止できる。また、赤外線吸収膜が前記温接点に近接して形成されるため、冷接点の温度上昇を抑制するとともに、温接点の温度を効果的に上昇させることが可能である。したがって、冷接点と温接点との温度差を大きくすることができ、サーモパイル型赤外線センサの感度を効果的に向上させることが可能となる。 In the thermopile type infrared sensor of the present invention, it is preferable that the range restricting member is formed on the warm contact and the infrared absorbing film is formed close to the warm contact. According to this, by forming the range regulating member on the hot junction, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the formation range of the initial solution. Therefore, it is possible to prevent the infrared absorption film from being formed so as to cover the cold junction. Further, since the infrared absorption film is formed close to the hot junction, it is possible to suppress the temperature rise of the cold junction and effectively increase the temperature of the hot junction. Therefore, the temperature difference between the cold junction and the hot junction can be increased, and the sensitivity of the thermopile infrared sensor can be effectively improved.
 本発明のサーモパイル型赤外線センサにおいて、前記サーモパイル素子は、平面パターンがミアンダ状の熱電材料を有して構成されており、前記ミアンダ状の前記サーモパイル素子の幅方向における断面視において、前記範囲規制部材は、前記熱電材料の間に有する間隙を充填して形成されていることが好適である。このように範囲規制部材を形成することにより、赤外線吸収膜を形成する際に、赤外線吸収材料を含む溶液が、幅方向に隣り合う熱電材料の間の間隙を伝って流動し難くなる。その結果、赤外線吸収膜が冷接点を覆うように形成されることを確実に防止することができる。 In the thermopile type infrared sensor of the present invention, the thermopile element has a planar pattern having a meander-shaped thermoelectric material, and the range restricting member in a cross-sectional view in the width direction of the meander-shaped thermopile element. Is preferably formed by filling gaps between the thermoelectric materials. By forming the range regulating member in this manner, when the infrared absorption film is formed, the solution containing the infrared absorption material is less likely to flow through the gap between the thermoelectric materials adjacent in the width direction. As a result, it is possible to reliably prevent the infrared absorption film from being formed so as to cover the cold junction.
 本発明のサーモパイル型赤外線センサにおいて、前記基材は、薄肉部と、前記薄肉部の周囲に形成された厚肉部とを有し、前記温接点は前記薄肉部に形成されるとともに前記冷接点は前記厚肉部に形成されており、前記範囲規制部材は、前記薄肉部の中央部を囲うように形成されていることが好ましい。これによれば、温接点及び赤外線吸収膜は、熱容量の小さい薄肉部に形成されて、冷接点は熱容量の大きい厚肉部に形成されるため、温接点と冷接点との温度差をより大きくすることが可能である。また、薄肉部の中央部を囲うように範囲規制部材を形成することにより、赤外線吸収材料を含む溶液の流動が規制されて、赤外線吸収材料を含む溶液が、初期の溶液の形成範囲よりも外側に流動して拡がってしまうことを確実に防止できる。したがって、サーモパイル型赤外線センサの感度を効果的に向上させることができる。 In the thermopile type infrared sensor of the present invention, the base material has a thin portion and a thick portion formed around the thin portion, and the hot junction is formed in the thin portion and the cold junction. Is formed in the thick portion, and the range restricting member is preferably formed so as to surround a central portion of the thin portion. According to this, since the hot junction and the infrared absorption film are formed in a thin portion having a small heat capacity, and the cold junction is formed in a thick portion having a large heat capacity, the temperature difference between the hot junction and the cold junction is further increased. Is possible. Further, by forming the range restricting member so as to surround the central portion of the thin-walled portion, the flow of the solution containing the infrared absorbing material is restricted, and the solution containing the infrared absorbing material is outside the initial solution forming range. Can be reliably prevented from flowing and spreading. Therefore, the sensitivity of the thermopile infrared sensor can be effectively improved.
 本発明のサーモパイル型赤外線センサにおいて、前記範囲規制部材は、凸形状の壁部であることが好ましい。これによれば、赤外線吸収膜を形成する際に、赤外線吸収材料を含む溶液が凸形状の壁部によりせき止められて、赤外線吸収膜の形成範囲よりも冷接点側に流動することを確実に防止することができる。 In the thermopile type infrared sensor of the present invention, it is preferable that the range restricting member is a convex wall portion. According to this, when the infrared absorption film is formed, the solution containing the infrared absorption material is blocked by the convex wall portion and reliably prevents the solution from flowing to the cold junction side from the formation range of the infrared absorption film. can do.
 本発明のサーモパイル型赤外線センサにおいて、前記赤外線吸収膜は、前記範囲規制部材の高さよりも高く形成されていることが好適である。こうすれば、赤外線吸収膜の赤外線吸収量が上昇して、温接点と冷接点との温度差をより大きくすることができることから、サーモパイル型赤外線センサの感度をより向上させることができる。 In the thermopile type infrared sensor of the present invention, it is preferable that the infrared absorption film is formed higher than a height of the range regulating member. By so doing, the infrared absorption amount of the infrared absorption film is increased, and the temperature difference between the hot junction and the cold junction can be increased, so that the sensitivity of the thermopile infrared sensor can be further improved.
 本発明のサーモパイル型赤外線センサの製造方法は、
(a)前記サーモパイル素子が形成された前記基材を用意して、前記赤外線吸収膜の形成範囲を設定するとともに、前記赤外線吸収膜の前記形成範囲を規制する範囲規制部材を、前記形成範囲と前記冷接点との間に形成する工程と、
(b)赤外線吸収材料を含む溶液を前記形成範囲に塗布して前記赤外線吸収膜を形成する工程と、を含むことを特徴とする。
The manufacturing method of the thermopile type infrared sensor of the present invention is:
(A) preparing the base material on which the thermopile element is formed, setting a formation range of the infrared absorption film, and setting a range regulating member for regulating the formation range of the infrared absorption film as the formation range Forming between the cold junctions;
(B) applying a solution containing an infrared absorbing material to the formation range to form the infrared absorbing film.
 これによれば、(b)の工程で赤外線吸収材料を含む溶液が流動した場合であっても、赤外線吸収材料を含む溶液が範囲規制部材によって規制される。すなわち、赤外線吸収材料を含む溶液が、初期の溶液の形成範囲よりも外側に流動して拡がってしまうことを防ぐことができる。これにより、赤外線吸収膜が冷接点を覆うように形成されることを防止することができる。また、外部からの赤外線を受光したときに、冷接点は赤外線吸収膜に覆われていないため温度上昇が抑制されて、温接点と冷接点との温度差を大きくすることができる。したがって、面積を小型化しても、サーモパイル素子からのセンサ出力を大きくすることができ、サーモパイル型赤外線センサの感度を向上させることが可能となる。 According to this, even when the solution containing the infrared absorbing material flows in the step (b), the solution containing the infrared absorbing material is regulated by the range regulating member. That is, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the initial solution formation range. Thereby, it can prevent that an infrared rays absorption film is formed so that a cold junction may be covered. Moreover, when the infrared rays from the outside are received, since the cold junction is not covered with the infrared absorption film, the temperature rise is suppressed and the temperature difference between the hot junction and the cold junction can be increased. Therefore, even if the area is reduced, the sensor output from the thermopile element can be increased, and the sensitivity of the thermopile infrared sensor can be improved.
 本発明のサーモパイル型赤外線センサの製造方法によれば、赤外線吸収膜が冷接点を覆うように形成されることを防止して、感度を向上させることが可能である。 According to the manufacturing method of the thermopile type infrared sensor of the present invention, it is possible to prevent the infrared absorption film from being formed so as to cover the cold junction and to improve the sensitivity.
 本発明のサーモパイル型赤外線センサの製造方法において、前記(a)の工程の後に、前記温接点と重なる位置における前記基材をエッチングにより除去して薄肉部を形成する工程を含むことが好ましい。これにより、温接点が形成された箇所の熱容量を小さくすることができ、温接点と冷接点との温度差を大きくすることができる。 In the method for manufacturing a thermopile type infrared sensor of the present invention, it is preferable that after the step (a), a step of forming a thin portion by removing the base material at a position overlapping the hot junction by etching is included. Thereby, the heat capacity of the location where the hot junction is formed can be reduced, and the temperature difference between the hot junction and the cold junction can be increased.
 前記(a)の工程において、前記薄肉部の中央部を囲うように前記範囲規制部材を形成することが好ましい。これによれば、赤外線吸収材料を含む溶液の流動が規制されて、赤外線吸収材料を含む溶液が、初期の溶液の形成範囲よりも外側に流動して拡がってしまうことを確実に防止できる。したがって、赤外線吸収膜が冷接点を覆うように形成されることを防止して、サーモパイル型赤外線センサの感度を向上させることができる。 In the step (a), it is preferable that the range regulating member is formed so as to surround the central portion of the thin portion. According to this, the flow of the solution containing the infrared absorbing material is regulated, and the solution containing the infrared absorbing material can be reliably prevented from flowing and spreading outside the initial solution formation range. Therefore, it is possible to improve the sensitivity of the thermopile type infrared sensor by preventing the infrared absorption film from being formed so as to cover the cold junction.
 本発明のサーモパイル型赤外線センサの製造方法は、前記(b)の工程において、前記範囲規制部材の高さよりも前記溶液が高くなるように前記溶液を塗布することが好適である。これによれば、溶液の表面張力を利用して赤外線吸収膜を厚く形成することができる。したがって、赤外線吸収膜の赤外線吸収量が上昇して、温接点と冷接点との温度差をより大きくすることができ、サーモパイル型赤外線センサの感度をより向上させることができる。 In the manufacturing method of the thermopile type infrared sensor of the present invention, it is preferable that in the step (b), the solution is applied so that the solution is higher than the height of the range regulating member. According to this, the infrared absorption film can be formed thick using the surface tension of the solution. Therefore, the infrared absorption amount of the infrared absorption film is increased, the temperature difference between the hot junction and the cold junction can be increased, and the sensitivity of the thermopile infrared sensor can be further improved.
 前記(b)の工程において、前記溶液をインクジェット印刷法により塗布することが好適である。これによれば、赤外線吸収材料を含む溶液を塗布する際に、薄肉部に非接触で塗布形成することができ、製造工程において薄肉部が破壊されることを防止できる。 In the step (b), the solution is preferably applied by an ink jet printing method. According to this, when applying the solution containing the infrared absorbing material, the thin portion can be applied and formed in a non-contact manner, and the thin portion can be prevented from being destroyed in the manufacturing process.
 前記(b)の工程において、前記溶液を熱硬化または紫外線硬化によって硬化することによって前記赤外線吸収膜を形成することが好ましい。これによれば、赤外線吸収材料を含む溶液を簡単な工程で短時間に硬化して、赤外線吸収膜を形成することができる。 In the step (b), the infrared absorbing film is preferably formed by curing the solution by heat curing or ultraviolet curing. According to this, the infrared ray absorbing film can be formed by curing the solution containing the infrared ray absorbing material in a short time with a simple process.
 本発明のサーモパイル型赤外線センサ及びその製造方法によれば、赤外線吸収膜を形成する際に赤外線吸収材料を含む溶液が流動した場合であっても、範囲規制部材によって赤外線吸収材料を含む溶液の流動が規制される。すなわち、赤外線吸収材料を含む溶液が、初期の溶液の形成範囲よりも外側に流動して拡がってしまうことを防ぐことができる。これにより、赤外線吸収膜が冷接点を覆うように形成されることを防止することができる。また、外部からの赤外線を受光したときに、冷接点は赤外線吸収膜に覆われていないため温度上昇が抑制されて、温接点と冷接点との温度差を大きくすることができる。したがって、面積を小型化しても、サーモパイル素子からのセンサ出力を大きくすることができ、サーモパイル型赤外線センサの感度を向上させることが可能となる。 According to the thermopile type infrared sensor and the method of manufacturing the same of the present invention, even when the solution containing the infrared absorbing material flows when forming the infrared absorbing film, the flow of the solution containing the infrared absorbing material by the range regulating member Is regulated. That is, it is possible to prevent the solution containing the infrared absorbing material from flowing and spreading outside the initial solution formation range. Thereby, it can prevent that an infrared rays absorption film is formed so that a cold junction may be covered. Moreover, when the infrared rays from the outside are received, since the cold junction is not covered with the infrared absorption film, the temperature rise is suppressed and the temperature difference between the hot junction and the cold junction can be increased. Therefore, even if the area is reduced, the sensor output from the thermopile element can be increased, and the sensitivity of the thermopile infrared sensor can be improved.
 本発明のサーモパイル型赤外線センサ及びその製造方法によれば、赤外線吸収膜が冷接点を覆うように形成されることを防止して、感度を向上させることが可能である。 According to the thermopile type infrared sensor and the manufacturing method thereof of the present invention, it is possible to prevent the infrared absorption film from being formed so as to cover the cold junction and to improve the sensitivity.
本発明の実施形態におけるサーモパイル型赤外線センサの平面図である。It is a top view of the thermopile type infrared sensor in the embodiment of the present invention. 図1のII-II線で切断したときの断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図1の二点鎖線で囲む領域Aの部分拡大平面図(a)、及び部分拡大断面図(b)を示す。The partial enlarged plan view (a) of the area | region A enclosed with the dashed-two dotted line of FIG. 1, and a partial expanded sectional view (b) are shown. 第1の変形例におけるサーモパイル型赤外線センサを示す平面図であるIt is a top view which shows the thermopile type infrared sensor in a 1st modification. 図4のV-V線で切断したときの断面図を示す。FIG. 5 shows a cross-sectional view taken along line VV in FIG. 4. 第2の変形例におけるサーモパイル型赤外線センサを示す平面図である。It is a top view which shows the thermopile type infrared sensor in a 2nd modification. 図6のVII-VII線で切断したときの断面図を示す。Sectional drawing when it cut | disconnects by the VII-VII line of FIG. 6 is shown. 第3の変形例におけるサーモパイル型赤外線センサを示す平面図である。It is a top view which shows the thermopile type infrared sensor in a 3rd modification. 図8のIX-IX線で切断したときの断面図を示す。FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 本実施形態のサーモパイル型赤外線センサについて、測定対象の温度とセンサ出力との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a measuring object, and a sensor output about the thermopile type infrared sensor of this embodiment. サーモパイル型赤外線センサの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a thermopile type infrared sensor. サーモパイル型赤外線センサの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a thermopile type infrared sensor. 従来例におけるサーモパイル型赤外線センサの平面図である。It is a top view of the thermopile type infrared sensor in a prior art example. 図13のXIV-XIV線で切断したときの断面図を示す。FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
 以下、図面を参照して本発明の実施形態のサーモパイル型赤外線センサについて説明する。図1に、本実施形態のサーモパイル型赤外線センサ1の平面図を示す。また、図2には、図1のII-II線で切断したときのサーモパイル型赤外線センサ1の断面図を示す。なお、各図面の寸法比率は、見やすくするために適宜変更して示している。 Hereinafter, a thermopile type infrared sensor according to an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the top view of the thermopile type infrared sensor 1 of this embodiment is shown. FIG. 2 shows a cross-sectional view of the thermopile infrared sensor 1 taken along the line II-II in FIG. It should be noted that the dimensional ratios in the drawings are appropriately changed for easy understanding.
 本実施形態のサーモパイル型赤外線センサ1は、図1及び図2に示すように、基材10と、基材10に形成されたサーモパイル素子30及び赤外線吸収膜21を有して構成される。図2に示すように、基材10は、基部11とメンブレン12とを有して構成される。基部11の中央部にはキャビティ13が形成されており、キャビティ13を覆うようにメンブレン12が形成されている。メンブレン12は、薄肉部12aとして形成されているとともに、基部11のキャビティ13が形成されていない部分が、厚肉部11aとしてメンブレン12の周囲に形成されている。本実施形態において、基部11としてシリコン基板を用いることができ、メンブレン12には、シリコン窒化膜やシリコン酸化膜などの絶縁薄膜が用いられる。 The thermopile type infrared sensor 1 of the present embodiment is configured to include a base material 10, a thermopile element 30 and an infrared absorption film 21 formed on the base material 10, as shown in FIGS. As shown in FIG. 2, the base material 10 includes a base 11 and a membrane 12. A cavity 13 is formed at the center of the base 11, and a membrane 12 is formed so as to cover the cavity 13. The membrane 12 is formed as a thin portion 12a, and a portion of the base 11 where the cavity 13 is not formed is formed around the membrane 12 as a thick portion 11a. In the present embodiment, a silicon substrate can be used as the base 11, and an insulating thin film such as a silicon nitride film or a silicon oxide film is used for the membrane 12.
 図1に示すように、サーモパイル素子30は、平面パターンがミアンダ状の熱電材料層を有して形成されており、第1の熱電材料層31と第2の熱電材料層32とが交互に直列接続されてミアンダ状に構成されている。そして、第1の熱電材料層31と第2の熱電材料層32との接続部のうち、薄肉部12aとしてのメンブレン12に位置して接続された箇所を温接点34とし、厚肉部11aとしての基部11に位置して接続された箇所を冷接点35とする。 As shown in FIG. 1, the thermopile element 30 has a planar pattern having a meander-shaped thermoelectric material layer, and first thermoelectric material layers 31 and second thermoelectric material layers 32 are alternately arranged in series. Connected to form a meander. And among the connection parts of the 1st thermoelectric material layer 31 and the 2nd thermoelectric material layer 32, the location located in the membrane 12 as the thin part 12a and connected is made into the warm junction 34, and it is made into the thick part 11a. A location that is located and connected to the base 11 is referred to as a cold junction 35.
 第1の熱電材料層31と第2の熱電材料層32とは、互いに異なる材料を用いて形成されており、本実施形態において、第1の熱電材料層31としてポリシリコンが用いられ、第2の熱電材料層32としてアルミニウムが用いられている。1対の第1の熱電材料層31と第2の熱電材料層32とで熱電対33が構成され、温接点34と冷接点35との間に温度差が生じた場合、ゼーベック効果により各熱電対33に熱起電力が発生する。サーモパイル素子30は複数の熱電対33が直列に接続された熱電対群であり、各熱電対33の起電力の総和がサーモパイル素子30の出力となる。サーモパイル素子30の出力は、サーモパイル素子30の両端に形成された接続端子36から外部へと取り出される。また、図1及び図2に示すように、温接点34は熱容量の小さい薄肉部12aに形成されており、冷接点35は熱容量の大きい厚肉部11aに位置して形成されているため、温接点34と冷接点35との温度差を大きくして、より大きい出力を得ることができる。 The first thermoelectric material layer 31 and the second thermoelectric material layer 32 are formed using different materials. In the present embodiment, polysilicon is used as the first thermoelectric material layer 31, and the second Aluminum is used as the thermoelectric material layer 32. When a thermocouple 33 is constituted by a pair of the first thermoelectric material layer 31 and the second thermoelectric material layer 32 and a temperature difference occurs between the hot junction 34 and the cold junction 35, each thermoelectric is caused by the Seebeck effect. A thermoelectromotive force is generated in the pair 33. The thermopile element 30 is a thermocouple group in which a plurality of thermocouples 33 are connected in series, and the sum of electromotive forces of each thermocouple 33 is the output of the thermopile element 30. The output of the thermopile element 30 is taken out from the connection terminals 36 formed at both ends of the thermopile element 30. As shown in FIGS. 1 and 2, the hot junction 34 is formed in the thin portion 12a having a small heat capacity, and the cold junction 35 is formed in the thick portion 11a having a large heat capacity. A larger output can be obtained by increasing the temperature difference between the contact 34 and the cold junction 35.
 図1及び図2に示すように、薄肉部12aとしてのメンブレン12には、範囲規制部材20と赤外線吸収膜21とが形成されている。 As shown in FIG. 1 and FIG. 2, a range regulating member 20 and an infrared absorbing film 21 are formed on the membrane 12 as the thin portion 12a.
 赤外線吸収膜21は、温接点34を覆うように薄肉部12aとしてのメンブレン12の中央部に形成されている。赤外線吸収膜21は、入射した赤外線を吸収して効率的に熱変換可能であり、温接点34の温度を上昇させて温接点34と冷接点35との温度差を大きくすることができる。赤外線吸収膜21はカーボンブラックや金属酸化物の粉末を含む溶液を用いて、インクジェット印刷やスクリーン印刷などの印刷法によって塗布形成することができる。 The infrared absorbing film 21 is formed at the center of the membrane 12 as the thin portion 12a so as to cover the hot junction 34. The infrared absorption film 21 can efficiently convert heat by absorbing incident infrared rays, and can increase the temperature difference between the hot junction 34 and the cold junction 35 by increasing the temperature of the hot junction 34. The infrared absorption film 21 can be applied and formed by a printing method such as ink jet printing or screen printing using a solution containing carbon black or metal oxide powder.
 本実施形態のサーモパイル型赤外線センサ1において、範囲規制部材20は赤外線吸収膜21の形成範囲を規制するために形成されており、温接点34と冷接点35との間に位置するとともに、薄肉部12aとしてのメンブレン12の中央部を囲むように形成されている。そして、範囲規制部材20に囲まれた領域内に赤外線吸収膜21は形成されている。すなわち、範囲規制部材20は赤外線吸収膜21と冷接点35との間に形成されることになる。 In the thermopile infrared sensor 1 of the present embodiment, the range restricting member 20 is formed to restrict the formation range of the infrared absorbing film 21, and is positioned between the hot junction 34 and the cold junction 35 and has a thin portion. It is formed so as to surround the center of the membrane 12 as 12a. An infrared absorption film 21 is formed in a region surrounded by the range regulating member 20. That is, the range restricting member 20 is formed between the infrared absorption film 21 and the cold junction 35.
 本実施形態において、範囲規制部材20は、シリコン酸化膜、シリコン窒化膜などにより形成することができ、あるいは、レジスト材料等の樹脂材料により形成しても良い。また、図2に示すように、範囲規制部材20は断面凸形状の壁部であり、範囲規制部材20の高さは1μm~10μm程度に、幅は5μm~20μm程度に形成することが好ましい。 In this embodiment, the range restricting member 20 can be formed of a silicon oxide film, a silicon nitride film, or the like, or may be formed of a resin material such as a resist material. As shown in FIG. 2, the range regulating member 20 is a wall having a convex cross section, and the range regulating member 20 is preferably formed to have a height of about 1 μm to 10 μm and a width of about 5 μm to 20 μm.
 範囲規制部材20を設けることにより、赤外線吸収膜21を塗布形成する際に、カーボンブラックや金属酸化物の粉末を含む溶液が流動した場合であっても、範囲規制部材20によってせき止められる。すなわち、溶液が、初期の形成範囲よりも外側に流動して拡がって冷接点35を覆うことを防止できる。したがって、図1及び図2に示すように、温接点34は赤外線吸収膜21に覆われて形成されるとともに、範囲規制部材20の外方に位置する冷接点35は赤外線吸収膜21に覆われることが防止される。サーモパイル型赤外線センサ1が赤外線を受光したときに、赤外線吸収膜21によって温接点34は効率よく温度が上昇して、赤外線吸収膜21に覆われていない冷接点35との温度差を大きくすることができる。これにより、サーモパイル素子30のセンサ出力を大きくすることができ、サーモパイル型赤外線センサ1の感度を向上させることが可能となる。 By providing the range restricting member 20, when the infrared absorbing film 21 is applied and formed, even if a solution containing carbon black or a metal oxide powder flows, the range restricting member 20 can be used to clog. That is, it is possible to prevent the solution from flowing and spreading outside the initial formation range and covering the cold junction 35. Accordingly, as shown in FIGS. 1 and 2, the hot junction 34 is formed so as to be covered with the infrared absorption film 21, and the cold junction 35 located outside the range regulating member 20 is covered with the infrared absorption film 21. It is prevented. When the thermopile infrared sensor 1 receives infrared rays, the temperature of the hot junction 34 is efficiently increased by the infrared absorbing film 21, and the temperature difference from the cold junction 35 not covered with the infrared absorbing film 21 is increased. Can do. Thereby, the sensor output of the thermopile element 30 can be increased, and the sensitivity of the thermopile infrared sensor 1 can be improved.
 特に、モバイル機器等へ搭載される小型のサーモパイル型赤外線センサ1において、温接点34と冷接点35との距離を100μm~500μm程度に小さく形成した場合であっても、範囲規制部材20を設けることにより、赤外線吸収膜21を塗布形成する際に、赤外線吸収材料を含む溶液が、初期の溶液の形成範囲よりも外側に流動して拡がってしまうことを確実に防止できる。したがって、温接点34と冷接点35との温度差を拡げることができ、サーモパイル型赤外線センサ1の感度を向上させることができる。 In particular, in the small thermopile type infrared sensor 1 mounted on a mobile device or the like, the range regulating member 20 is provided even when the distance between the hot junction 34 and the cold junction 35 is formed as small as about 100 μm to 500 μm. Thus, when the infrared absorption film 21 is applied and formed, it is possible to reliably prevent the solution containing the infrared absorption material from flowing and spreading outside the initial solution formation range. Therefore, the temperature difference between the hot junction 34 and the cold junction 35 can be widened, and the sensitivity of the thermopile infrared sensor 1 can be improved.
 また、範囲規制部材20は断面凸形状の壁部で構成されているが、こうすれば、赤外線吸収材料を含む溶液が凸形状の壁部によりせき止められて、赤外線吸収膜21の形成範囲よりも冷接点35側に流動することを確実に防止することができる。ただし範囲規制部材20はこのような形状に限定されず、断面形状が異なっていても同様の効果を奏し、また、棒状、島状等に形成された複数の範囲規制部材を配置するような構成であっても良い。 In addition, the range restricting member 20 is configured by a wall section having a convex cross section. In this case, the solution containing the infrared absorbing material is blocked by the convex wall section, and the range of the infrared absorbing film 21 is formed. It is possible to reliably prevent the flow toward the cold junction 35 side. However, the range restricting member 20 is not limited to such a shape, and the same effect can be obtained even if the cross-sectional shapes are different, and a configuration in which a plurality of range restricting members formed in a rod shape, an island shape, or the like is arranged. It may be.
 図3(a)は、図1の二点鎖線で囲む領域Aの部分拡大平面図を示し、図3(b)には、図3(a)のIII-III線で切断したときの部分拡大断面図を示す。図3(a)に示すように、サーモパイル素子30は平面パターンがミアンダ状に接続された第1熱電材料層31と第2熱電材料層32とを有して構成される。サーモパイル素子30の第1熱電材料層31及び第2熱電材料層32が温接点34と冷接点35とを結んで延在する方向をサーモパイル素子30の長さ方向(Y1-Y2方向)とする。また、サーモパイル素子30の長さ方向と直交する方向をサーモパイル素子30の幅方向(X1-X2方向)とする。サーモパイル素子30の長さ方向及び幅方向は、サーモパイル素子30のミアンダ状の平面パターンの配置によって変化し、例えば、図1に示す、基材10のX1側に配置されているミアンダ状の平面パターンにおいては、サーモパイル素子30の長さ方向はX1-X2方向であり、幅方向はY1-Y2方向である。 3A is a partially enlarged plan view of a region A surrounded by a two-dot chain line in FIG. 1, and FIG. 3B is a partially enlarged view taken along the line III-III in FIG. A cross-sectional view is shown. As shown in FIG. 3A, the thermopile element 30 includes a first thermoelectric material layer 31 and a second thermoelectric material layer 32 having a planar pattern connected in a meander shape. The direction in which the first thermoelectric material layer 31 and the second thermoelectric material layer 32 of the thermopile element 30 extend by connecting the hot junction 34 and the cold junction 35 is the length direction (Y1-Y2 direction) of the thermopile element 30. The direction perpendicular to the length direction of the thermopile element 30 is defined as the width direction (X1-X2 direction) of the thermopile element 30. The length direction and the width direction of the thermopile element 30 change depending on the arrangement of the meandering plane pattern of the thermopile element 30, and for example, the meandering plane pattern arranged on the X1 side of the substrate 10 shown in FIG. In FIG. 2, the length direction of the thermopile element 30 is the X1-X2 direction, and the width direction is the Y1-Y2 direction.
 図3(a)に示すように、範囲規制部材20は、サーモパイル素子30の幅方向に延在して第1の熱電材料層31、第2の熱電材料層32及びメンブレン12(薄肉部12a)の上に形成されている。そして、図3(b)に示すように、範囲規制部材20は、第1の熱電材料層31と第2の熱電材料層32との間を充填して形成されている。 As shown in FIG. 3 (a), the range regulating member 20 extends in the width direction of the thermopile element 30, and the first thermoelectric material layer 31, the second thermoelectric material layer 32, and the membrane 12 (thin wall portion 12a). Is formed on top. As shown in FIG. 3B, the range regulating member 20 is formed by filling a space between the first thermoelectric material layer 31 and the second thermoelectric material layer 32.
 特に、サーモパイル型赤外線センサ1の小型化を図る場合、ミアンダ状に折り返されて接続されている第1の熱電材料層31と第2の熱電材料層32との間隔が小さくなり、細い凹状の溝部を形成する。赤外線吸収膜を形成する際、赤外線吸収材料を含む溶液はこの細い凹状の溝部を伝って流動しやすくなる。本実施形態においては、図3(a)、図3(b)に示すように、第1の熱電材料層31と第2の熱電材料層32との間を充填して範囲規制部材20を形成することにより、赤外線吸収膜21を形成する際に、赤外線吸収材料を含む溶液が、細い凹状の溝部を伝って流動し難くなる。その結果、赤外線吸収膜21が冷接点35を覆うように形成されることを確実に防止することができる。 In particular, when miniaturization of the thermopile type infrared sensor 1 is attempted, the distance between the first thermoelectric material layer 31 and the second thermoelectric material layer 32 which are folded back and connected in a meander shape is reduced, and a narrow concave groove portion is formed. Form. When forming the infrared ray absorbing film, the solution containing the infrared ray absorbing material easily flows along the narrow concave groove. In the present embodiment, as shown in FIGS. 3A and 3B, the range regulating member 20 is formed by filling the space between the first thermoelectric material layer 31 and the second thermoelectric material layer 32. As a result, when the infrared absorption film 21 is formed, the solution containing the infrared absorption material hardly flows along the narrow concave groove. As a result, it is possible to reliably prevent the infrared absorption film 21 from being formed so as to cover the cold junction 35.
 温接点34と冷接点35との間の温度差をより大きくするためには、赤外線吸収膜21の赤外線の吸収量を大きくすることが望ましい。赤外線吸収膜21の赤外線吸収量を大きくする方法として、赤外線吸収膜21の体積を増やすことが考えられる。本実施形態においては、図2に示すように、範囲規制部材20によって赤外線吸収材料を含む溶液が流動して拡がることを防止しつつ、範囲規制部材20の高さよりも、赤外線吸収膜21が厚くなるように形成することができる。本実施例においては、範囲規制部材20の天面20aよりも高さ方向(Z1方向)に突出する曲面を有して赤外線吸収膜21が形成されている。これにより、赤外線吸収膜21の体積を大きくすることができ、入射する赤外線の吸収量を大きくすることができ、温接点34の温度を効率的に上昇させることができる。 In order to further increase the temperature difference between the hot junction 34 and the cold junction 35, it is desirable to increase the amount of infrared rays absorbed by the infrared absorption film 21. As a method of increasing the infrared absorption amount of the infrared absorption film 21, increasing the volume of the infrared absorption film 21 can be considered. In the present embodiment, as shown in FIG. 2, the infrared ray absorbing film 21 is thicker than the height of the range regulating member 20 while preventing the solution containing the infrared absorbing material from flowing and spreading by the range regulating member 20. Can be formed. In the present embodiment, the infrared absorption film 21 is formed to have a curved surface protruding in the height direction (Z1 direction) from the top surface 20a of the range regulating member 20. Thereby, the volume of the infrared absorption film 21 can be increased, the amount of incident infrared rays can be increased, and the temperature of the hot junction 34 can be increased efficiently.
 図10に示すグラフは、赤外線吸収膜21の厚さを変えて作製した本実施形態のサーモパイル型赤外線センサ1について、測定対象の温度とサーモパイル型赤外線センサ1の出力との関係を示す。比較例として赤外線吸収膜21を形成していないサーモパイル型赤外線センサについても同様に示している。なお、図10に示すグラフでは、25℃を基準として測定しているため、25℃以下の温度では負の値が出力され、25℃以上で正の値が出力される。 The graph shown in FIG. 10 shows the relationship between the temperature to be measured and the output of the thermopile type infrared sensor 1 for the thermopile type infrared sensor 1 of the present embodiment manufactured by changing the thickness of the infrared absorption film 21. As a comparative example, a thermopile type infrared sensor in which the infrared absorption film 21 is not formed is also shown. In the graph shown in FIG. 10, since the measurement is based on 25 ° C., a negative value is output at a temperature of 25 ° C. or lower, and a positive value is output at 25 ° C. or higher.
 図10に示すように、いずれの赤外線センサにおいても測定対象の温度が上昇するにしたがって、センサ出力が大きくなる傾向を示す。また、赤外線吸収膜21を形成していない場合と比較して、赤外線吸収膜21を厚くするにしたがって、より大きな出力が得られることがわかる。例えば、対象の温度が150℃の場合、赤外線吸収膜21の膜厚を4μmとしたサーモパイル型赤外線センサ1は、赤外線吸収膜21を形成しない場合に比べて、約2倍のセンサ出力が得られている。また、赤外線吸収膜21の膜厚を2μmで形成したサーモパイル型赤外線センサ1と比較しても約1.2倍のセンサ出力が得られることが示された。 As shown in FIG. 10, in any infrared sensor, the sensor output tends to increase as the temperature of the measurement target increases. Moreover, it turns out that a bigger output is acquired as the infrared rays absorption film 21 is thickened compared with the case where the infrared rays absorption film 21 is not formed. For example, when the target temperature is 150 ° C., the thermopile infrared sensor 1 in which the film thickness of the infrared absorption film 21 is 4 μm can obtain about twice the sensor output as compared with the case where the infrared absorption film 21 is not formed. ing. Further, it was shown that about 1.2 times the sensor output can be obtained even when compared with the thermopile type infrared sensor 1 in which the film thickness of the infrared absorption film 21 is 2 μm.
 したがって、本実施形態のサーモパイル型赤外線センサ1は、範囲規制部材20によって赤外線吸収材料を含む溶液が冷接点35を覆うことを確実に防止するとともに赤外線吸収膜21を厚くすることが可能であり、これにより、温接点34と冷接点35との温度差を大きくして、センサ出力を向上させることが可能であると示された。なお、図10に示すグラフでは赤外線吸収膜21の膜厚を2μm、4μmの場合について示したが、これに限定されるものではない。赤外線吸収膜21をより厚く形成してさらに感度を向上させることも可能である。 Therefore, the thermopile type infrared sensor 1 of the present embodiment can reliably prevent the solution containing the infrared absorbing material from covering the cold junction 35 by the range regulating member 20 and increase the thickness of the infrared absorbing film 21. This indicates that the temperature difference between the hot junction 34 and the cold junction 35 can be increased to improve the sensor output. In the graph shown in FIG. 10, the film thickness of the infrared absorption film 21 is 2 μm and 4 μm. However, the present invention is not limited to this. It is also possible to further improve sensitivity by forming the infrared absorption film 21 thicker.
 <第1の変形例>
 図4には、本実施形態の第1の変形例におけるサーモパイル型赤外線センサ2の平面図を示す。また、図5には、図4のV-V線で切断したサーモパイル型赤外線センサ2の断面図を示す。
<First Modification>
In FIG. 4, the top view of the thermopile type infrared sensor 2 in the 1st modification of this embodiment is shown. FIG. 5 shows a cross-sectional view of the thermopile infrared sensor 2 cut along the line VV in FIG.
 第1の変形例のサーモパイル型赤外線センサ2において、基材10(基部11及びメンブレン12)、及びサーモパイル素子30の構成については、図1及び図2に示したものと同様である。本変形例においては、図4に示すように、範囲規制部材20が温接点34の上に形成されている。範囲規制部材20は各温接点34の上にメンブレン12の中央部を囲むように形成されており、赤外線吸収膜21は範囲規制部材20の内側に形成されている。図5に示すように、赤外線吸収膜21は温接点34よりもメンブレン12の中央部側に位置して、温接点34と近接して形成されている。 In the thermopile infrared sensor 2 of the first modification, the configurations of the base material 10 (base 11 and membrane 12) and thermopile element 30 are the same as those shown in FIGS. In the present modification, the range regulating member 20 is formed on the hot junction 34 as shown in FIG. The range restricting member 20 is formed on each hot junction 34 so as to surround the center of the membrane 12, and the infrared absorption film 21 is formed inside the range restricting member 20. As shown in FIG. 5, the infrared absorption film 21 is located closer to the center of the membrane 12 than the warm contact 34 and is formed close to the warm contact 34.
 このような態様であっても、赤外線吸収膜21を形成する際に、赤外線吸収材料を含む溶液が初期の溶液の形成範囲よりも外側に流動して拡がって冷接点35を覆うことを防止できる。これにより、赤外線吸収膜21が冷接点35を覆うように形成されることがない。また、赤外線吸収膜21は温接点34と近接して形成されているため、外部から入射した赤外線を受光したときに、赤外線吸収膜21が赤外線を吸収して、温接点34の温度が上昇する。これにより、温接点34と冷接点35との間の温度差を大きくすることができ、サーモパイル型赤外線センサ2の感度を向上させることが可能となる。 Even in such an embodiment, when the infrared absorption film 21 is formed, it is possible to prevent the solution containing the infrared absorption material from flowing and spreading outside the initial solution formation range to cover the cold junction 35. . Thereby, the infrared absorption film 21 is not formed so as to cover the cold junction 35. Further, since the infrared absorbing film 21 is formed close to the hot junction 34, when receiving infrared rays incident from the outside, the infrared absorbing film 21 absorbs the infrared rays and the temperature of the hot junction 34 rises. . Thereby, the temperature difference between the hot junction 34 and the cold junction 35 can be increased, and the sensitivity of the thermopile infrared sensor 2 can be improved.
 本変形例においては、図1から図3に示した、範囲規制部材20を温接点34と冷接点35との間に形成する場合に比べて、範囲規制部材20と冷接点35との距離をより大きくすることができる。そのため、赤外線吸収膜21が赤外線を吸収して温度が上昇したときの、冷接点35への影響を小さくすることができ、冷接点35の温度上昇を抑制できる。したがって、温接点34と冷接点35との温度差をより効果的に大きくすることができる。 In this modification, the distance between the range regulating member 20 and the cold junction 35 is set as compared with the case where the range regulating member 20 is formed between the hot junction 34 and the cold junction 35 as shown in FIGS. Can be larger. Therefore, the influence on the cold junction 35 when the infrared absorption film 21 absorbs infrared rays and the temperature rises can be reduced, and the temperature rise of the cold junction 35 can be suppressed. Therefore, the temperature difference between the hot junction 34 and the cold junction 35 can be increased more effectively.
 <第2の変形例>
 図6には、本実施形態の第2の変形例におけるサーモパイル型赤外線センサ3の平面図を示す。また、図7には、図6のVII-VII線で切断したサーモパイル型赤外線センサ3の断面図を示す。
<Second Modification>
In FIG. 6, the top view of the thermopile type infrared sensor 3 in the 2nd modification of this embodiment is shown. FIG. 7 is a cross-sectional view of the thermopile infrared sensor 3 cut along the line VII-VII in FIG.
 第2の変形例におけるサーモパイル型赤外線センサ3は、範囲規制部材20を分割して配置している点で、図1から図5に示したものと異なる。なお、基材10(基部10、メンブレン12)、サーモパイル素子30の構成については同様である。 The thermopile type infrared sensor 3 in the second modification differs from that shown in FIGS. 1 to 5 in that the range regulating member 20 is divided and arranged. The configurations of the base material 10 (base 10 and membrane 12) and the thermopile element 30 are the same.
 図6に示すように、基材10のX1側において、Y1-Y2方向に隣り合って配置された複数の熱電対33を第1の熱電対群33aとして、同様に、基材10のX2側、Y1側、Y2側において隣り合って配置された複数の熱電対33をそれぞれ第2の熱電対群33b、第3の熱電対群33c、第4の熱電対群33dとする。本変形例においては、第1の熱電対群33aの各熱電対33に亘って、各熱電対33の延在する方向と交差する方向(Y1-Y2方向)に第1の範囲規制部材20aが形成されている。同様に、第2の熱電対群33b、第3の熱電対群33c、第4の熱電対群33dには、それぞれ第2の範囲規制部材20b、第3の範囲規制部材20c、第4の範囲規制部材20dが形成されている。 As shown in FIG. 6, on the X1 side of the base material 10, a plurality of thermocouples 33 arranged adjacent to each other in the Y1-Y2 direction are used as a first thermocouple group 33a, and similarly, the X2 side of the base material 10 A plurality of thermocouples 33 arranged adjacent to each other on the Y1 side and the Y2 side are referred to as a second thermocouple group 33b, a third thermocouple group 33c, and a fourth thermocouple group 33d, respectively. In the present modification, the first range restricting member 20a extends across each thermocouple 33 of the first thermocouple group 33a in a direction (Y1-Y2 direction) intersecting the extending direction of each thermocouple 33. Is formed. Similarly, the second thermocouple group 33b, the third thermocouple group 33c, and the fourth thermocouple group 33d include the second range regulating member 20b, the third range regulating member 20c, and the fourth range, respectively. A regulating member 20d is formed.
 このように、熱電対群ごとに範囲規制部材20a、20b、20c、20dを形成した場合でも、赤外線吸収膜21を形成する際に、溶液の冷接点35側への拡がりを防止して、赤外線吸収膜21が冷接点35を覆うように形成されることを防止できる。 Thus, even when the range regulating members 20a, 20b, 20c, and 20d are formed for each thermocouple group, when the infrared absorbing film 21 is formed, the solution is prevented from spreading to the cold junction 35 side, and the infrared rays are prevented. The absorption film 21 can be prevented from being formed so as to cover the cold junction 35.
 本変形例に示すように範囲規制部材20を分割して形成することにより、赤外線吸収膜21の形成範囲を様々に変えることが可能であり、設計の自由度を高くすることができる。したがって、サーモパイル素子30の配置や、基部10、メンブレン12の形状が異なる場合であっても、赤外線吸収材料を含む溶液が初期の溶液の形成範囲よりも外側に流動して拡がって冷接点35を覆うことを効果的に防止することができる。これにより、赤外線吸収膜21が冷接点35を覆うように形成されることを防止できる。 As shown in the present modification, by forming the range regulating member 20 in a divided manner, the formation range of the infrared absorption film 21 can be changed variously, and the degree of design freedom can be increased. Therefore, even when the arrangement of the thermopile elements 30 and the shapes of the base 10 and the membrane 12 are different, the solution containing the infrared absorbing material flows and spreads outside the formation range of the initial solution, so that the cold junction 35 is formed. Covering can be effectively prevented. Thereby, it can prevent that the infrared rays absorption film 21 is formed so that the cold junction 35 may be covered.
 <第3の変形例>
 図8には、本実施形態の第3の変形例におけるサーモパイル型赤外線センサ4の平面図を示す。また、図9には、図8のIX-IX線で切断したサーモパイル型赤外線センサ4の断面図を示す。
<Third Modification>
In FIG. 8, the top view of the thermopile type infrared sensor 4 in the 3rd modification of this embodiment is shown. 9 shows a cross-sectional view of the thermopile infrared sensor 4 cut along the line IX-IX in FIG.
 図8及び図9に示すように、第3の変形例におけるサーモパイル型赤外線センサ4において、範囲規制部材20は、赤外線吸収膜21の形成範囲外方の基材10を覆うように形成されている。また、範囲規制部材20は、温接点34と冷接点35との間から基材10の外縁に亘って形成されており、赤外線吸収膜21は温接点34を覆うように形成されている。なお、本変形例において、基部11のキャビティ部13は、基部11の下方側に形成されている。 As shown in FIGS. 8 and 9, in the thermopile type infrared sensor 4 in the third modified example, the range regulating member 20 is formed so as to cover the base material 10 outside the formation range of the infrared absorption film 21. . The range regulating member 20 is formed from between the hot junction 34 and the cold junction 35 to the outer edge of the substrate 10, and the infrared absorption film 21 is formed to cover the hot junction 34. In the present modification, the cavity portion 13 of the base portion 11 is formed below the base portion 11.
 このような態様であっても、範囲規制部材20によって、赤外線吸収膜21を形成する際に赤外線吸収材料を含む溶液が初期の溶液の形成範囲よりも外側に流動して拡がって、冷接点35を覆うことを防止できる。これにより、赤外線吸収膜21が冷接点35を覆うように形成されることを防止できる。また、範囲規制部材20を凸形状の壁部に形成した場合、そのアスペクト比によって範囲規制部材20の高さが限定される場合があるが、本変形例においては、アスペクト比による制限が小さくなり、範囲規制部材20の高さを比較的自由に設定することができる。したがって、赤外線吸収膜21についても厚く形成することが可能であり、赤外線吸収量を向上させて、サーモパイル型赤外線センサ4の感度を向上させることが可能となる。 Even in such an embodiment, when the infrared ray absorbing film 21 is formed by the range regulating member 20, the solution containing the infrared ray absorbing material flows and spreads outside the formation range of the initial solution. Can be prevented. Thereby, it can prevent that the infrared rays absorption film 21 is formed so that the cold junction 35 may be covered. In addition, when the range regulating member 20 is formed on a convex wall portion, the height of the range regulating member 20 may be limited depending on the aspect ratio, but in this modification, the limitation due to the aspect ratio is reduced. The height of the range restricting member 20 can be set relatively freely. Therefore, the infrared absorption film 21 can also be formed thick, and the infrared absorption amount can be improved and the sensitivity of the thermopile infrared sensor 4 can be improved.
 本実施形態及び各変形例に示すサーモパイル型赤外線センサ1、2、3では、範囲規制部材20に赤外線吸収膜21が接した状態で形成されており、赤外線吸収膜21の形成範囲と範囲規制部材20に囲まれた領域とがほぼ等しい場合について示している。しかし、このような態様に限定されず、少なくとも赤外線吸収膜21が冷接点35を覆うように形成されることを防止して範囲規制部材20が形成されていればよい。 In the thermopile type infrared sensors 1, 2, and 3 shown in this embodiment and each modification, it is formed in a state where the infrared ray absorbing film 21 is in contact with the range regulating member 20, and the formation range of the infrared ray absorbing film 21 and the range regulating member. A case where the area surrounded by 20 is almost equal is shown. However, the present invention is not limited to such an embodiment, and it is sufficient that the range regulating member 20 is formed by preventing at least the infrared absorption film 21 from being formed so as to cover the cold junction 35.
 また、本実施形態に示す基部11、メンブレン12等の構成を変更した場合であっても、本発明を適用することができ、同等の効果を奏することが可能である。例えば、図9に示すように、キャビティ13を基材10の下面側から形成した構成であっても良い。また、第1の熱電材料層31と第2の熱電材料層32とを絶縁層を介して積層した熱電対33を多数直列接続してサーモパイル素子30を構成した場合であっても同様の効果を奏する。 Moreover, even when the configuration of the base 11, the membrane 12, and the like shown in the present embodiment is changed, the present invention can be applied and an equivalent effect can be achieved. For example, as shown in FIG. 9, the cavity 13 may be formed from the lower surface side of the substrate 10. Further, the same effect can be obtained even when the thermopile element 30 is configured by connecting a number of thermocouples 33 in which the first thermoelectric material layer 31 and the second thermoelectric material layer 32 are laminated via an insulating layer in series. Play.
 <サーモパイル型赤外線センサの製造方法>
 図11、図12に本実施形態のサーモパイル型赤外線センサ1の製造方法の工程図を示す。図11(a)、図11(b)、図12(a)、図12(b)の各左図には平面図を示し、各右図には、図11(a)のB-B線に対応する箇所で各左図を切断したときの断面図を示す。
<Method for manufacturing thermopile infrared sensor>
FIG. 11 and FIG. 12 show process diagrams of a method for manufacturing the thermopile infrared sensor 1 of the present embodiment. 11 (a), FIG. 11 (b), FIG. 12 (a), and FIG. 12 (b) each show a plan view, and each right diagram shows a line BB in FIG. 11 (a). Sectional drawing when each left figure is cut | disconnected in the location corresponding to is shown.
 図11(a)の工程では、基部11としてシリコンウェハを用意して、基部11の表面にメンブレン12としてシリコン窒化膜やシリコン酸化膜などの絶縁膜を成膜する。そして、メンブレン12に第1の熱電材料膜31及び第2の熱電材料膜32としてポリシリコン膜及びアルミニウム膜を成膜する。第1の熱電材料膜31及び第2の熱電材料膜32は、それぞれフォトリソグラフィ法を用いてパターン形成されて、図11(a)左図に示すような、第1の熱電材料膜31と第2の熱電材料膜32とがミアンダ状に直列接続されたサーモパイル素子30が形成される。 11A, a silicon wafer is prepared as the base 11, and an insulating film such as a silicon nitride film or a silicon oxide film is formed as a membrane 12 on the surface of the base 11. As shown in FIG. Then, a polysilicon film and an aluminum film are formed on the membrane 12 as the first thermoelectric material film 31 and the second thermoelectric material film 32. The first thermoelectric material film 31 and the second thermoelectric material film 32 are respectively formed by patterning using a photolithography method, and the first thermoelectric material film 31 and the first thermoelectric material film 31 as shown in the left diagram of FIG. A thermopile element 30 is formed in which two thermoelectric material films 32 are connected in series in a meander shape.
 図11(b)の工程では、後の工程で形成する赤外線吸収膜21の形成範囲21aを設定する。本実施形態では、第1の熱電材料膜31と第2の熱電材料膜32との接続部分のうち、基材10の内方を臨む位置に形成された接続部分を温接点34とし、基材10の外周を臨む位置に形成された接続部分を冷接点35とする。本実施形態の形成範囲21aは、メンブレン12の中央部を囲み、かつ、サーモパイル素子30の温接点34を含む領域とした。そして、形成範囲21aと冷接点35との間に範囲規制部材20を形成する。範囲規制部材20は、図11(b)右図に示すように断面凸形状の壁部であり、また、図11(b)左図に示すように、メンブレン12の中央部を囲むように、かつ、温接点34を囲むように形成されている。 In the step of FIG. 11B, the formation range 21a of the infrared absorption film 21 to be formed in a later step is set. In the present embodiment, of the connection portions between the first thermoelectric material film 31 and the second thermoelectric material film 32, the connection portion formed at a position facing the inside of the substrate 10 is used as the hot junction 34, and the substrate A connecting portion formed at a position facing the outer periphery of the tenth is a cold junction 35. The formation range 21 a of the present embodiment is a region that surrounds the central portion of the membrane 12 and includes the hot junction 34 of the thermopile element 30. Then, the range regulating member 20 is formed between the formation range 21 a and the cold junction 35. The range restricting member 20 is a wall section having a convex cross section as shown in the right figure of FIG. 11B, and as shown in the left figure of FIG. And it is formed so that the hot junction 34 may be enclosed.
 範囲規制部材20は、酸化シリコンや窒化シリコン等の絶縁材料を用いて成膜して、フォトリソグラフィ法によりパターニングすることにより形成される。 The range regulating member 20 is formed by forming a film using an insulating material such as silicon oxide or silicon nitride and patterning it by a photolithography method.
 図12(a)の工程では、まず、メンブレン12のサーモパイル素子30と重ならない位置に、複数のエッチング孔14を形成する。そして、水酸化カリウム(KOH)や水酸化テトラメチルアンモニウム(TMAH)等の強アルカリエッチング液を用いて、エッチング孔14から基部11を異方性エッチングにより除去する。これにより、基部11にキャビティ13を形成するとともに、薄肉部12aとしてのメンブレン12を形成することができる。 In the step of FIG. 12A, first, a plurality of etching holes 14 are formed at positions that do not overlap the thermopile element 30 of the membrane 12. Then, the base 11 is removed from the etching hole 14 by anisotropic etching using a strong alkaline etching solution such as potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH). Thereby, while forming the cavity 13 in the base 11, the membrane 12 as the thin part 12a can be formed.
 図12(b)の工程では、図11(b)の工程で設定した形成範囲21aに赤外線吸収膜21を形成する。赤外線吸収膜21は、カーボンブラックや金属酸化物の粉末等の赤外線吸収材料を含む溶液を用いて、インクジェット印刷法により塗布形成される。 In the step of FIG. 12B, the infrared absorption film 21 is formed in the formation range 21a set in the step of FIG. The infrared absorbing film 21 is formed by coating by an ink jet printing method using a solution containing an infrared absorbing material such as carbon black or a metal oxide powder.
 本製造方法において、赤外線吸収膜21はインクジェット印刷法により塗布形成されるため、薄肉部12aとしてのメンブレン12に非接触で印刷形成することができ、製造工程においてメンブレン12が破壊されることを防止できる。塗布方法は、インクジェット印刷法に限定されるものではない。例えば、スクリーン印刷法などの他の塗布方法で形成する場合には、メンブレン12に加えられる圧力を調整して、メンブレン12の破壊を防止する必要がある。 In this manufacturing method, since the infrared absorption film 21 is formed by ink-jet printing, it can be printed on the membrane 12 as the thin portion 12a in a non-contact manner, and the membrane 12 is prevented from being destroyed in the manufacturing process. it can. The coating method is not limited to the ink jet printing method. For example, when forming by other coating methods such as a screen printing method, it is necessary to adjust the pressure applied to the membrane 12 to prevent the membrane 12 from being broken.
 また、赤外線吸収材料を含む溶液は流動性を有するため、塗布した際の初期の溶液の形成範囲よりも外側に流動しようとする。本実施形態のサーモパイル型赤外線センサ1の製造方法によれば、形成範囲21aと冷接点35との間に範囲規制部材20を形成しているため、流動した赤外線吸収材料を含む溶液が範囲規制部材20によってせき止められて、冷接点35を覆うことを防止できる。 Also, since the solution containing the infrared absorbing material has fluidity, it tends to flow outside the initial solution formation range when applied. According to the manufacturing method of the thermopile type infrared sensor 1 of the present embodiment, since the range regulating member 20 is formed between the formation range 21a and the cold junction 35, the solution containing the flowing infrared absorbing material is the range regulating member. It is possible to prevent the cold junction 35 from being covered by the dam 20.
 また、図12(b)に示すように、赤外線吸収材料を含む溶液は、表面張力を利用して範囲規制部材20の高さよりも高く形成することができる。こうすれば、範囲規制部材20の天面20aよりも高さ方向に突出する曲面を有して赤外線吸収膜21が厚く形成されるため、赤外線の吸収量が向上して効率よく熱変換することが可能である。 Further, as shown in FIG. 12B, the solution containing the infrared absorbing material can be formed higher than the height of the range regulating member 20 by utilizing the surface tension. By so doing, the infrared absorption film 21 is formed thicker with a curved surface protruding in the height direction than the top surface 20a of the range regulating member 20, so that the amount of infrared absorption is improved and heat conversion is efficiently performed. Is possible.
 図12(b)の工程では、赤外線吸収材料を含む溶液として熱硬化型樹脂または紫外線硬化型樹脂を含むものを用いることが好ましい。こうすれば、赤外線吸収材料を含む溶液を塗布形成した後に、加熱処理又は紫外線照射を行って樹脂を硬化させることができ、簡便な工程で短時間に赤外線吸収膜21を形成することができる。以上のような工程により、サーモパイル型赤外線センサ1を製造することができる。 In the step of FIG. 12B, it is preferable to use a solution containing a thermosetting resin or an ultraviolet curable resin as a solution containing an infrared absorbing material. If it carries out like this, after apply | coating and forming the solution containing an infrared rays absorption material, heat processing or ultraviolet irradiation can be performed and resin can be hardened, and the infrared rays absorption film 21 can be formed in a short time by a simple process. The thermopile type infrared sensor 1 can be manufactured by the process as described above.
 本実施形態のサーモパイル型赤外線センサ1の製造方法によれば、赤外線吸収膜21が冷接点35を覆うように形成されることを防止するとともに、赤外線吸収膜21が温接点34を覆うように形成することができる。これにより、外部からの赤外線を受光した場合に、赤外線吸収膜21が赤外線を吸収して、温接点34の温度を効果的に上昇させる。したがって、温接点34と冷接点35との温度差が拡大して、サーモパイル型赤外線センサ1の感度を向上させることができる。 According to the manufacturing method of the thermopile type infrared sensor 1 of the present embodiment, the infrared absorption film 21 is prevented from being formed to cover the cold junction 35 and the infrared absorption film 21 is formed to cover the hot junction 34. can do. Thereby, when the infrared rays from the outside are received, the infrared absorption film 21 absorbs the infrared rays and effectively raises the temperature of the hot junction 34. Therefore, the temperature difference between the hot junction 34 and the cold junction 35 is increased, and the sensitivity of the thermopile infrared sensor 1 can be improved.
 本実施形態のサーモパイル型赤外線センサ1及びその製造方法は、図11及び図12に示す構成に限定されるものではない。図4から図7に示した、第1の変形例及び第2の変形例においても適用することができる。 The thermopile infrared sensor 1 and the manufacturing method thereof according to the present embodiment are not limited to the configurations shown in FIGS. The present invention can also be applied to the first modification example and the second modification example shown in FIGS.
 1、2、3、4 サーモパイル型赤外線センサ
 10 基材
 11 基部
 11a 厚肉部
 12 メンブレン
 12a 薄肉部
 13 キャビティ
 14 エッチング孔
 20 範囲規制部材
 20a 天面
 21 赤外線吸収膜
 21a 形成範囲
 30 サーモパイル素子
 31 第1の熱電材料層
 32 第2の熱電材料層
 33 熱電対
 34 温接点
 35 冷接点
1, 2, 3, 4 Thermopile infrared sensor 10 Base material 11 Base portion 11a Thick portion 12 Membrane 12a Thin portion 13 Cavity 14 Etching hole 20 Range regulating member 20a Top surface 21 Infrared absorption film 21a Formation range 30 Thermopile element 31 1st Thermoelectric material layer 32 Second thermoelectric material layer 33 Thermocouple 34 Hot junction 35 Cold junction

Claims (13)

  1.  基材と、サーモパイル素子と、赤外線吸収膜とを有し、
    前記サーモパイル素子と前記赤外線吸収膜とは、前記基材に形成されており、
    前記サーモパイル素子の冷接点と温接点との温度差を検知可能としてなるサーモパイル型赤外線センサであって、
    前記赤外線吸収膜と前記冷接点との間には、前記赤外線吸収膜の形成範囲を規制する範囲規制部材が形成されていることを特徴とするサーモパイル型赤外線センサ。
    A substrate, a thermopile element, and an infrared absorption film;
    The thermopile element and the infrared absorbing film are formed on the base material,
    A thermopile infrared sensor capable of detecting a temperature difference between a cold junction and a hot junction of the thermopile element,
    A thermopile infrared sensor characterized in that a range regulating member that regulates the formation range of the infrared absorbing film is formed between the infrared absorbing film and the cold junction.
  2.  前記範囲規制部材は前記温接点と前記冷接点との間に形成されているとともに前記赤外線吸収膜は前記温接点を覆うように形成されていることを特徴とする請求項1に記載のサーモパイル型赤外線センサ。 2. The thermopile type according to claim 1, wherein the range regulating member is formed between the hot junction and the cold junction, and the infrared absorption film is formed to cover the hot junction. Infrared sensor.
  3.  前記範囲規制部材は前記温接点の上に形成されるとともに前記赤外線吸収膜は前記温接点に近接して形成されていることを特徴とする請求項1に記載のサーモパイル型赤外線センサ。 2. The thermopile type infrared sensor according to claim 1, wherein the range regulating member is formed on the hot junction and the infrared absorbing film is formed close to the hot junction.
  4.  前記サーモパイル素子は、平面パターンがミアンダ状の熱電材料を有して構成されており、
    前記ミアンダ状の前記サーモパイル素子の幅方向における断面視において、前記範囲規制部材は、前記熱電材料の間を充填して形成されていることを特徴とする請求項1から請求項3のいずれか1項に記載のサーモパイル型赤外線センサ。
    The thermopile element has a planar pattern having a meander-shaped thermoelectric material,
    4. The cross-sectional view in the width direction of the meander-shaped thermopile element, the range restricting member is formed by filling a space between the thermoelectric materials. The thermopile type infrared sensor described in the item.
  5.  前記基材は、薄肉部と、前記薄肉部の周囲に形成された厚肉部とを有し、
    前記温接点は前記薄肉部に形成されるとともに前記冷接点は前記厚肉部に形成されており、
    前記範囲規制部材は、前記薄肉部の中央部を囲うように形成されていることを特徴とする請求項1から請求項4のいずれか1項に記載のサーモパイル型赤外線センサ。
    The substrate has a thin part and a thick part formed around the thin part,
    The hot junction is formed in the thin portion and the cold junction is formed in the thick portion,
    The thermopile infrared sensor according to any one of claims 1 to 4, wherein the range restricting member is formed so as to surround a central portion of the thin portion.
  6.  前記範囲規制部材は、凸形状の壁部であることを特徴とする請求項1から請求項5のいずれか1項に記載のサーモパイル型赤外線センサ。 The thermopile infrared sensor according to any one of claims 1 to 5, wherein the range regulating member is a convex wall portion.
  7.  前記赤外線吸収膜は、前記範囲規制部材の高さよりも高く形成されていることを特徴とする請求項1から請求項6のいずれか1項に記載のサーモパイル型赤外線センサ。 The thermopile infrared sensor according to any one of claims 1 to 6, wherein the infrared absorbing film is formed higher than a height of the range regulating member.
  8.  基材と、サーモパイル素子と、赤外線吸収膜とを有し、
    前記サーモパイル素子と前記赤外線吸収膜とは、前記基材に形成されており、
    前記サーモパイル素子の冷接点と温接点との温度差を検知可能としてなるサーモパイル型赤外線センサの製造方法であって、
    (a)前記サーモパイル素子が形成された前記基材を用意して、前記赤外線吸収膜の形成範囲を設定するとともに、前記赤外線吸収膜の前記形成範囲を規制する範囲規制部材を、前記形成範囲と前記冷接点との間に形成する工程と、
    (b)赤外線吸収材料を含む溶液を前記形成範囲に塗布して前記赤外線吸収膜を形成する工程と、を含むことを特徴とするサーモパイル型赤外線センサの製造方法。
    A substrate, a thermopile element, and an infrared absorption film;
    The thermopile element and the infrared absorbing film are formed on the base material,
    A method for manufacturing a thermopile infrared sensor capable of detecting a temperature difference between a cold junction and a hot junction of the thermopile element,
    (A) preparing the base material on which the thermopile element is formed, setting a formation range of the infrared absorption film, and setting a range regulating member for regulating the formation range of the infrared absorption film as the formation range Forming between the cold junctions;
    And (b) applying a solution containing an infrared absorbing material to the formation range to form the infrared absorbing film, and a method for manufacturing a thermopile infrared sensor.
  9.  前記(a)の工程の後に、前記温接点と重なる位置における前記基材をエッチングにより除去して薄肉部を形成する工程を含むことを特徴とする請求項8に記載のサーモパイル型赤外線センサの製造方法。 9. The manufacturing of a thermopile type infrared sensor according to claim 8, further comprising a step of forming a thin portion by etching the base material at a position overlapping with the hot junction after the step (a). Method.
  10.  前記(a)の工程において、前記薄肉部の中央部を囲うように前記範囲規制部材を形成することを特徴とする請求項9に記載のサーモパイル型赤外線センサの製造方法。 10. The method for manufacturing a thermopile infrared sensor according to claim 9, wherein in the step (a), the range regulating member is formed so as to surround a central portion of the thin portion.
  11.  前記(b)の工程において、前記範囲規制部材の高さよりも前記溶液が高くなるように前記溶液を塗布することを特徴とする請求項8から請求項10のいずれか1項に記載のサーモパイル型赤外線センサの製造方法。 The thermopile mold according to any one of claims 8 to 10, wherein in the step (b), the solution is applied such that the solution is higher than a height of the range regulating member. Infrared sensor manufacturing method.
  12.  前記(b)の工程において、前記溶液をインクジェット印刷法により塗布することを特徴とする請求項8から請求項11のいずれか1項に記載のサーモパイル型赤外線センサの製造方法。 The method for manufacturing a thermopile infrared sensor according to any one of claims 8 to 11, wherein in the step (b), the solution is applied by an ink jet printing method.
  13.  前記(b)の工程において、前記溶液を熱硬化または紫外線硬化によって硬化することによって前記赤外線吸収膜を形成することを特徴とする、請求項8から請求項12のいずれか1項に記載のサーモパイル型赤外線センサの製造方法。 The thermopile according to any one of claims 8 to 12, wherein, in the step (b), the infrared absorption film is formed by curing the solution by heat curing or ultraviolet curing. Type infrared sensor manufacturing method.
PCT/JP2013/062842 2012-05-09 2013-05-07 Thermopile infrared sensor and method for manufacturing same WO2013168708A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012107686A JP2015132470A (en) 2012-05-09 2012-05-09 Thermopile-type infrared sensor, and method for manufacturing the same
JP2012-107686 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013168708A1 true WO2013168708A1 (en) 2013-11-14

Family

ID=49550743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062842 WO2013168708A1 (en) 2012-05-09 2013-05-07 Thermopile infrared sensor and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2015132470A (en)
WO (1) WO2013168708A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021005274T5 (en) * 2020-10-07 2023-10-12 Ophir Optronics Solutions Ltd. Thermopile laser sensor with response time acceleration and method of use and manufacture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543037U (en) * 1991-11-11 1993-06-11 株式会社村田製作所 Infrared detection thermopile
JP2005283482A (en) * 2004-03-30 2005-10-13 Tdk Corp Manufacturing method of humidity sensor element
JP2006071601A (en) * 2004-09-06 2006-03-16 Denso Corp Infrared sensor, infrared type gas detector, and infrared ray source
JP2006214758A (en) * 2005-02-01 2006-08-17 Denso Corp Infrared detector
JP2008196955A (en) * 2007-02-13 2008-08-28 Seiko Instruments Inc Capacitive humidity sensor and its manufacturing method
JP2009128306A (en) * 2007-11-27 2009-06-11 Nitto Denko Corp Substance detection sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543037U (en) * 1991-11-11 1993-06-11 株式会社村田製作所 Infrared detection thermopile
JP2005283482A (en) * 2004-03-30 2005-10-13 Tdk Corp Manufacturing method of humidity sensor element
JP2006071601A (en) * 2004-09-06 2006-03-16 Denso Corp Infrared sensor, infrared type gas detector, and infrared ray source
JP2006214758A (en) * 2005-02-01 2006-08-17 Denso Corp Infrared detector
JP2008196955A (en) * 2007-02-13 2008-08-28 Seiko Instruments Inc Capacitive humidity sensor and its manufacturing method
JP2009128306A (en) * 2007-11-27 2009-06-11 Nitto Denko Corp Substance detection sensor

Also Published As

Publication number Publication date
JP2015132470A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5824690B2 (en) Temperature sensor element and radiation thermometer using the same
US7525092B2 (en) Infrared sensor having thermo couple
EP2375228B1 (en) Optical sensor
US10015841B2 (en) Micro heater and micro sensor and manufacturing methods thereof
JP6398808B2 (en) Internal temperature measuring device and sensor package
JP2008157754A (en) Thermal mass flowmeter
JP6398807B2 (en) Temperature difference measuring device
TWI457547B (en) Photodetector
EP2946182B1 (en) Suspension and absorber structure for bolometer
WO2017183709A1 (en) Deep body thermometer
JP2006300623A (en) Infrared sensor
WO2013168708A1 (en) Thermopile infrared sensor and method for manufacturing same
CN105526983B (en) A kind of structure and its manufacturing method of gas flow sensor
KR100971962B1 (en) Non-contact ir temperature sensor module and method for manufacturing the same
JPH02165025A (en) Thermopile
KR101386594B1 (en) Implantable temperature sensor for micro device and method for manufacturing thereof
JP2008134113A (en) Infrared sensor, and manufacturing method of infrared sensor
CN211957687U (en) Thermopile chip
Salette et al. Thermal sensors cointegrated within a MEMS thermally actuated ultrathin membrane
JP6128877B2 (en) Temperature detector
WO2013183453A1 (en) Thermopile, thermopile sensor using same, and infrared sensor
JP4844198B2 (en) Semiconductor element, sensor device, and method for manufacturing semiconductor element
JP2010107374A (en) Infrared detection element and method for manufacturing the same
JP3435997B2 (en) Infrared detector
JP6685789B2 (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP