WO2013168245A1 - Phosphorous-collecting material, method for producing phosphorous-collecting material, and phosphorous collection method - Google Patents

Phosphorous-collecting material, method for producing phosphorous-collecting material, and phosphorous collection method Download PDF

Info

Publication number
WO2013168245A1
WO2013168245A1 PCT/JP2012/061893 JP2012061893W WO2013168245A1 WO 2013168245 A1 WO2013168245 A1 WO 2013168245A1 JP 2012061893 W JP2012061893 W JP 2012061893W WO 2013168245 A1 WO2013168245 A1 WO 2013168245A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
phosphorous
calcium silicate
amorphous calcium
silicate hydrate
Prior art date
Application number
PCT/JP2012/061893
Other languages
French (fr)
Japanese (ja)
Inventor
優作 天本
剛 明戸
一坪 幸輝
鈴木 務
信孝 美濃和
創 苅部
中村 寛
靖正 西村
Original Assignee
太平洋セメント株式会社
小野田化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社, 小野田化学工業株式会社 filed Critical 太平洋セメント株式会社
Priority to JP2014514294A priority Critical patent/JP5946105B2/en
Priority to PCT/JP2012/061893 priority patent/WO2013168245A1/en
Publication of WO2013168245A1 publication Critical patent/WO2013168245A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The present invention provides: a phosphorous-collecting material which has excellent phosphorous adsorption performance and can exhibit an excellent sedimentation property after adsorbing phosphorous; a method for producing the phosphorous-collecting material; and a phosphorous collection method. The phosphorous-collecting material according to the present invention comprises an amorphous calcium silicate hydrate alone or a complex of the amorphous calcium silicate hydrate and Ca(OH)2, wherein the amorphous calcium silicate hydrate is produced by mixing an aqueous sodium silicate solution with lime under non-heating conditions, and wherein the Ca/Si molar ratio in the hydrate alone or the complex is 0.8 to 20. The method for producing a phosphorous-collecting material according to the present invention comprises mixing an aqueous sodium silicate solution with lime under non-heating conditions to produce the amorphous calcium silicate hydrate alone or the complex of the amorphous calcium silicate hydrate and Ca(OH)2. The phosphorous collection method according to the present invention comprises mixing phosphorous-containing water with the amorphous calcium silicate hydrate alone or the complex of the amorphous calcium silicate hydrate and Ca(OH)2 to produce aggregates on which phosphorous is adsorbed and then subjecting the aggregates to solid/liquid separation to collect phosphorous.

Description

リン回収材、リン回収材の製造方法、およびリン回収方法Phosphorus recovery material, phosphorus recovery material manufacturing method, and phosphorus recovery method
 本発明は、リンを吸着する性能とリンを吸着した後の沈降性に優れるリン回収材、その製造方法、およびリン回収方法に関するものである。 The present invention relates to a phosphorus recovery material excellent in performance of adsorbing phosphorus and sedimentation after adsorbing phosphorus, a manufacturing method thereof, and a phosphorus recovery method.
 従来、珪酸カルシウムを主成分とする脱リン剤が知られている。例えば、特許文献1には、CaO/SiOモル比が1.5~5の非晶質珪酸カルシウム水和物を主成分とする物質を50~700℃で加熱して得られる水処理剤が記載されている。また、特許文献2には、珪酸質原料と石灰質原料とを主成分とする水スラリーに気泡剤を添加して得られた原料を、高圧高温下で水熱反応させて得られた非晶質珪酸カルシウム水和物からなる汚水の脱リン材が記載されている。さらに、特許文献3には、非晶質珪酸カルシウム水和物を主成分とした直径数ミリ程度の球状または中空状に成形した脱リン材が記載されている。また、特許文献4には、珪灰石を用いた脱リン方法が記載されている。 Conventionally, a dephosphorizing agent containing calcium silicate as a main component is known. For example, Patent Document 1 discloses a water treatment agent obtained by heating a substance mainly composed of amorphous calcium silicate hydrate having a CaO / SiO 2 molar ratio of 1.5 to 5 at 50 to 700 ° C. Are listed. Patent Document 2 discloses an amorphous material obtained by hydrothermal reaction of a raw material obtained by adding a foaming agent to a water slurry mainly composed of a siliceous raw material and a calcareous raw material under high pressure and high temperature. A wastewater dephosphorization material comprising calcium silicate hydrate is described. Furthermore, Patent Document 3 describes a dephosphorization material formed into a spherical or hollow shape having a diameter of about several millimeters, which is mainly composed of amorphous calcium silicate hydrate. Patent Document 4 describes a dephosphorization method using wollastonite.
 従来の珪酸カルシウムを主成分とする脱リン材を用いる処理方法は、回収物の脱水性や有機物混入の問題をある程度回避できるものの、リンとの反応速度が遅いため、回収物のリン濃度を上げるには長い反応時間を必要とする。また、回収物に含まれるリン含有量が少ないため、リン酸肥料として有効に利用できないなどの問題がある。 Although the conventional treatment method using a dephosphorization material mainly composed of calcium silicate can avoid the problem of dehydration and organic matter contamination of the recovered material to some extent, the reaction rate with phosphorus is slow, so the phosphorus concentration of the recovered material is increased. Requires a long reaction time. Moreover, since there is little phosphorus content contained in collection | recovery, there exists a problem that it cannot utilize effectively as a phosphate fertilizer.
 この問題を解決するリン回収資材として、平均粒子径(メジアン径)150μm以下の微粉末であって細孔容積0.3cm/g以上の多孔質非晶質珪酸カルシウム水和物からなるリン回収資材(特許文献5)や、平均粒子径(メジアン径)が10μm以上~150μm以下、BET比表面積80m/g以上、細孔容積0.5cm/g以上の多孔質および非晶質の非晶質珪酸カルシウム水和物からなるリン回収資材が知られている(特許文献6)。 As a phosphorus recovery material that solves this problem, phosphorus recovery is made of a porous amorphous calcium silicate hydrate having a fine particle size of median diameter (median diameter) of 150 μm or less and a pore volume of 0.3 cm 3 / g or more. Materials (Patent Document 5), porous and amorphous non-particles having an average particle diameter (median diameter) of 10 μm to 150 μm, a BET specific surface area of 80 m 2 / g or more, and a pore volume of 0.5 cm 3 / g or more A phosphorus recovery material made of crystalline calcium silicate hydrate is known (Patent Document 6).
特開昭61-263636号公報JP-A 61-263636 特公平02-020315号公報Japanese Examined Patent Publication No. 02-020315 特開平10-235344号公報Japanese Patent Laid-Open No. 10-235344 特開2000-135493号公報JP 2000-135493 A 特開2009-285635号公報JP 2009-285635 A 特開2009-285636号公報JP 2009-285636 A
 特許文献5および特許文献6に記載されているリン回収資材は、リンとの反応性が高く、ヒドロキシアパタイトを生成し、排水中のリン濃度を急激に低減することができ、消石灰など他の石灰質材料よりもリンの回収率が高い利点を有している。 The phosphorus recovery materials described in Patent Document 5 and Patent Document 6 are highly reactive with phosphorus, can produce hydroxyapatite, can rapidly reduce the phosphorus concentration in the wastewater, and other calcareous materials such as slaked lime This has the advantage of higher phosphorus recovery than the material.
 本発明は、前記リン回収資材の利点を有し、リンの吸着性能とリンを吸着した後の沈降性に優れるリン回収材、その製造方法、およびリン回収方法を提供する。 The present invention provides a phosphorus recovery material that has the advantages of the phosphorus recovery material and is excellent in phosphorus adsorption performance and sedimentation after the phosphorus is adsorbed, a manufacturing method thereof, and a phosphorus recovery method.
 本発明は、以下の構成により前記課題を解決したリン回収材、その製造方法、およびリン回収方法に関する。
[1]珪酸ナトリウム水溶液と石灰を、非加熱下で混合して生成し非晶質珪酸カルシウム水和物単体または非晶質珪酸カルシウム水和物とCa(OH)との複合物からなり、該水和物単体または該複合物のCa/Siモル比が0.8~20である、リン回収材。
 ここで非晶質珪酸カルシウム水和物(単体)とは、珪酸カルシウム水和物の内、結晶性とされるトバモライト(tobermorite)やゾノライト(xonotlite)を除いたものをいい、例えば、図2に示す、2θ=29.2°に最大ピークを示す結晶性の良好でない珪酸カルシウム水和物である。
[2]前記リン回収材中のカルシウム濃度とリン含有水中のリン濃度がCa/Pモル比で2になるように混合したときのリン回収率が65%以上である、前記[1]に記載のリン回収材。
[3]沈降性指標が60%以上である、前記[1]または[2]に記載のリン回収材。
[4]珪酸ナトリウム水溶液と石灰を非加熱下で混合して、前記非晶質珪酸カルシウム水和物単体または前記非晶質珪酸カルシウム水和物とCa(OH)との複合物を生成させる、リン回収材の製造方法。
[5]リン含有水と、前記非晶質珪酸カルシウム水和物単体、または前記非晶質珪酸カルシウム水和物とCa(OH)との複合物とを混合し、リンを吸着して生成した凝集物を固液分離して回収する、リン回収方法。
The present invention relates to a phosphorus recovery material, a manufacturing method thereof, and a phosphorus recovery method that have solved the above problems with the following configurations.
[1] A sodium silicate aqueous solution and lime are formed by mixing under non-heating, and consist of an amorphous calcium silicate hydrate alone or a composite of amorphous calcium silicate hydrate and Ca (OH) 2 . A phosphorus recovery material in which the Ca / Si molar ratio of the hydrate alone or the composite is 0.8 to 20.
Here, the amorphous calcium silicate hydrate (single substance) refers to a calcium silicate hydrate excluding tobermorite and xonotlite, which are crystalline, for example, FIG. This is a calcium silicate hydrate with poor crystallinity showing a maximum peak at 2θ = 29.2 °.
[2] The phosphorus recovery rate is 65% or more when mixed such that the calcium concentration in the phosphorus recovery material and the phosphorus concentration in the phosphorus-containing water are 2 in a Ca / P molar ratio. Phosphorus recovery material.
[3] The phosphorus recovery material according to [1] or [2], wherein the sedimentation index is 60% or more.
[4] A sodium silicate aqueous solution and lime are mixed without heating to form the amorphous calcium silicate hydrate alone or a composite of the amorphous calcium silicate hydrate and Ca (OH) 2 . The manufacturing method of phosphorus collection | recovery material.
[5] Phosphorus-containing water and the amorphous calcium silicate hydrate alone or a composite of the amorphous calcium silicate hydrate and Ca (OH) 2 are mixed and formed by adsorbing phosphorus. A phosphorus recovery method in which the aggregates are recovered by solid-liquid separation.
 本発明のリン回収材は、以下の効果を奏することができる。
(i)リンを吸着する性能が高いためリンの回収率が高い。
(ii)リンを吸着して生成した凝集物の沈降性に優れている。
 また、本発明のリン回収材の製造方法は、以下の効果を奏することができる。
(i)原料が珪酸ナトリウム水溶液(水ガラス)であるため、反応液中に非晶質珪酸カルシウム水和物やCa(OH)以外の不溶物は生成しない。したがって、非晶質珪酸カルシウム水和物単体や非晶質珪酸カルシウム水和物とCa(OH)との複合物の純度が高く、反応液(スラリー)をそのままリン回収材として使用することもできる。
(ii)常温で前記水和物やCa(OH)が生成するため、従来の非晶質珪酸カルシウム水和物のように高温で水熱合成を行わせる必要がなく、製造が容易で製造コストが低い。
 さらに、本発明のリン回収方法において、リン含有水とリン回収材の混合液は濾過性に優れるため、リンを吸着したリン回収材の分離時間を短縮することができる。
The phosphorus collection | recovery material of this invention can have the following effects.
(i) Since the performance of adsorbing phosphorus is high, the recovery rate of phosphorus is high.
(ii) The sedimentation property of the aggregate formed by adsorbing phosphorus is excellent.
Moreover, the manufacturing method of the phosphorus collection | recovery material of this invention can have the following effects.
(i) Since the raw material is a sodium silicate aqueous solution (water glass), insoluble matters other than amorphous calcium silicate hydrate and Ca (OH) 2 are not generated in the reaction solution. Therefore, the purity of the amorphous calcium silicate hydrate alone or the composite of amorphous calcium silicate hydrate and Ca (OH) 2 is high, and the reaction solution (slurry) can be used as a phosphorus recovery material as it is. it can.
(ii) Since the hydrate and Ca (OH) 2 are generated at room temperature, it is not necessary to perform hydrothermal synthesis at a high temperature as in the case of conventional amorphous calcium silicate hydrate. Cost is low.
Furthermore, in the phosphorus recovery method of the present invention, since the mixed solution of phosphorus-containing water and phosphorus recovery material is excellent in filterability, the separation time of the phosphorus recovery material adsorbing phosphorus can be shortened.
本発明の製造方法の1例を示す工程図である。It is process drawing which shows one example of the manufacturing method of this invention. 実施例1で製造した非晶質珪酸カルシウム水和物単体および非晶質珪酸カルシウム水和物とCa(OH)との複合物のXRDチャートである。 2 is an XRD chart of amorphous calcium silicate hydrate alone and a composite of amorphous calcium silicate hydrate and Ca (OH) 2 produced in Example 1. FIG. 実施例2のリン回収率を示すグラフであり、石灰に(a)は消石灰を、(b)は生石灰を用いた例である。It is a graph which shows the phosphorus collection | recovery rate of Example 2, (a) is slaked lime, (b) is an example which used quicklime for the lime.
 以下、本発明をリン回収材、その製造方法、およびリン回収方法に分けて説明する。なお以下、非晶質珪酸カルシウム水和物単体を「CSH」といい、非晶質珪酸カルシウム水和物とCa(OH)との複合物を「CSH複合物」という。 Hereinafter, the present invention will be described by dividing it into a phosphorus recovery material, a production method thereof, and a phosphorus recovery method. Hereinafter, the amorphous calcium silicate hydrate alone is referred to as “CSH”, and the composite of amorphous calcium silicate hydrate and Ca (OH) 2 is referred to as “CSH composite”.
1.リン回収材
 本発明のリン回収材は、珪酸ナトリウム水溶液(水ガラス)と石灰を混合して生成したCSHまたはCSH複合物からなるものである。前記「珪酸ナトリウム水溶液と石灰を混合する」とは、珪酸ナトリウム水溶液に対して石灰を添加して混合するか、または石灰に対して珪酸ナトリウム水溶液を添加して混合する行為のいずれも含む。
 また、CSHやCSH複合物のCa/Siモル比は0.8~20であり、好ましくは1.0~10である。該値が0.8未満ではリンの吸着性能が不十分であり、20を超えるとリンを吸着した後のリン回収材の沈降性が低下する。該値が0.8~20であればリン回収材のリンの吸着性能および沈降性はいずれも高く好ましい。ちなみに、前記複合物中のCa(OH)の含有率は、Ca/Siモル比が1.5の場合に約10wt%、5.5の場合に約50wt%、10の場合に約62wt%、20の場合に約86wt%である。
1. Phosphorus Recovery Material The phosphorus recovery material of the present invention is composed of CSH or CSH composite produced by mixing sodium silicate aqueous solution (water glass) and lime. The above-mentioned “mixing sodium silicate aqueous solution and lime” includes both adding and mixing lime to the sodium silicate aqueous solution, or adding and mixing the sodium silicate aqueous solution to lime.
The Ca / Si molar ratio of CSH or CSH composite is 0.8-20, preferably 1.0-10. If the value is less than 0.8, the phosphorus adsorption performance is insufficient, and if it exceeds 20, the settling property of the phosphorus recovery material after adsorbing phosphorus is lowered. A value of 0.8 to 20 is preferable because both the phosphorus adsorption performance and the sedimentation property of the phosphorus recovery material are high. Incidentally, the content of Ca (OH) 2 in the composite is about 10 wt% when the Ca / Si molar ratio is 1.5, about 50 wt% when 5.5, and about 62 wt% when 10. , 20 is about 86 wt%.
 前記石灰は消石灰および生石灰のいずれも用いることができる。珪酸ナトリウム水溶液に、CSHを生成する石灰量(当量)を超えて石灰を過剰に混合すると、CSHが余剰の石灰から生じるCa(OH)を取り込むため、CSHの内部にCa(OH)が分散した状態の複合物が生成する。
 前記複合物は、珪酸ナトリウム水溶液と石灰を当量混合して生成したCa(OH)を含まないCSHにCa(OH)を単に混合した混合物とは異なり、沈降性がより高いものである。
As the lime, both slaked lime and quicklime can be used. When lime is excessively mixed with the sodium silicate aqueous solution exceeding the amount of lime (equivalent) for generating CSH, CSH takes in Ca (OH) 2 generated from the excess lime, so Ca (OH) 2 is contained inside CSH. A composite in a dispersed state is formed.
The composite is higher in sedimentation than a mixture obtained by simply mixing Ca (OH) 2 into CSH containing no Ca (OH) 2 formed by mixing an equivalent amount of sodium silicate aqueous solution and lime.
 また、本発明のリン回収材は、リン回収材中のカルシウム濃度とリン含有水中のリン濃度がCa/Pモル比で2になるように混合したときのリン回収率が65%以上であるものが好ましく、70%以上であるものがより好ましい。該値が65%以上であれば、リンを吸着した後のリン回収材中のりん酸濃度は十分に高いため、肥料効果の高いりん酸肥料として利用することができる。
 ここで、リン回収率は下記式により算出する。
  R=100×(P-P)/P
 式中、Rはリン回収率(%)を表し、Pはリン回収材を添加する前のリン含有水中のリン濃度を表し、Pはリン回収材を添加してリンを吸着した後にリン含有水を濾過して得た濾液中のリン濃度を表す。
Further, the phosphorus recovery material of the present invention has a phosphorus recovery rate of 65% or more when mixed so that the calcium concentration in the phosphorus recovery material and the phosphorus concentration in the phosphorus-containing water are 2 in the Ca / P molar ratio. Is preferable, and 70% or more is more preferable. If this value is 65% or more, since the phosphoric acid concentration in the phosphorus recovery material after adsorbing phosphorus is sufficiently high, it can be used as a phosphoric acid fertilizer having a high fertilizer effect.
Here, the phosphorus recovery rate is calculated by the following formula.
R = 100 × (P 0 −P) / P 0
In the formula, R represents the phosphorus recovery rate (%), P 0 represents the phosphorus concentration in the phosphorus-containing water before adding the phosphorus recovery material, and P contains phosphorus after adsorbing phosphorus by adding the phosphorus recovery material. This represents the phosphorus concentration in the filtrate obtained by filtering water.
 また、本発明のリン回収材は、沈降性指標が60%以上のものが好ましく、75%以上のものがより好ましい。該値が60%以上であれば、リンを吸着した後の回収材の分離が容易であり、沈降したリン回収物スラリーの脱水ろ過量が減らせる。また、上澄みにリンを含有する懸濁物がないので、その他の成分に規制されなければ上澄みをろ過することなく排水できる。
 沈降性指標は以下の(i)~(v)により求める。
(i)リン回収材と、リン濃度(P)が既知のリン含有水を混合して所定時間撹拌し、混合液を調製する。
(ii)前記混合液の一部を濾過して濾液を分離し、濾液中のリン濃度(P)を測定してリン回収率Rを求める。リン濃度は、例えば、JIS K 0102「工場排水試験方法」に規定するモリブデン青吸光光度法に準拠して測定することができる。
(iii)混合液の残りを所定時間静置した後、デカンテーションにより上層の懸濁液を分離する。
(iv)前記分離した懸濁液に塩酸を添加してpH1にし、撹拌して懸濁物を溶解させた後、溶液中のリン濃度(P)を測定してリン回収率Rを求める。
(v)沈降性指標(S)は、下記式により算出する。
  S(%)={1-(R-R)/R}×100
The phosphorus recovery material of the present invention preferably has a sedimentation index of 60% or more, more preferably 75% or more. If this value is 60% or more, it is easy to separate the recovered material after adsorbing phosphorus, and the amount of dehydrated filtration of the precipitated phosphorus recovered product slurry can be reduced. Moreover, since there is no suspension containing phosphorus in the supernatant, the supernatant can be drained without being filtered unless restricted by other components.
The sedimentation index is obtained from the following (i) to (v).
(i) A phosphorus recovery material and phosphorus-containing water having a known phosphorus concentration (P 0 ) are mixed and stirred for a predetermined time to prepare a mixed solution.
(ii) the mixed solution portion of was filtered to separate the filtrate, obtaining the phosphorus recovery rate R 1 by measuring the phosphorus concentration (P) in the filtrate. The phosphorus concentration can be measured in accordance with, for example, the molybdenum blue absorptiometry specified in JIS K 0102 “Factory drainage test method”.
(iii) The rest of the mixed solution is allowed to stand for a predetermined time, and then the upper suspension is separated by decantation.
(iv) said the separated suspension by the addition of hydrochloric acid to pH 1, after dissolving the suspension was stirred to obtain the phosphorus recovery rate R 2 by measuring the phosphorus concentration (P) in solution.
(v) The sedimentation index (S) is calculated by the following formula.
S (%) = {1- (R 1 −R 2 ) / R 1 } × 100
 さらに、本発明のリン回収材のBET比表面積は30~80m/g、細孔容積は0.1~0.3cm/gが好ましい。BET比表面積および細孔容積が前記範囲にあれば、リンの吸着性能がより向上する。 Further, the phosphorus recovery material of the present invention preferably has a BET specific surface area of 30 to 80 m 2 / g and a pore volume of 0.1 to 0.3 cm 3 / g. When the BET specific surface area and the pore volume are in the above ranges, the phosphorus adsorption performance is further improved.
2.リン回収材の製造方法
 該製造方法は、珪酸ナトリウム水溶液と石灰を非加熱下で混合して、前記CSHまたは前記CSH複合物を生成させる方法である。CSHまたはCSH複合物が生成した反応液(スラリー)を、そのままリン回収に用いてもよく、また、該反応液からCSHまたはCSH複合物を固液分離した後にこれを乾燥してもよい。後者の製造方法の1例を図1に示す。
 原料の珪酸ナトリウム水溶液は市販品を用いることができる。珪酸ナトリウム水溶液は不純物が少ないため、製造工程においてCSHとCa(OH)以外の不溶解物が殆ど生じない。したがって、CSHまたはCSH複合物を分離する場合、CSHまたはCSH複合物から更に他の不溶物を分離する工程が不要となり、製造工程を簡略化できる。
2. Method for Producing Phosphorus Recovery Material The production method is a method for producing the CSH or the CSH composite by mixing an aqueous sodium silicate solution and lime without heating. The reaction liquid (slurry) produced by CSH or CSH composite may be used as it is for phosphorus recovery, or may be dried after solid-liquid separation of CSH or CSH composite from the reaction liquid. An example of the latter manufacturing method is shown in FIG.
A commercially available sodium silicate aqueous solution can be used. Since the sodium silicate aqueous solution has few impurities, insoluble matters other than CSH and Ca (OH) 2 hardly occur in the production process. Therefore, when separating CSH or CSH composite, the process which isolate | separates another insoluble matter from CSH or CSH composite becomes unnecessary, and can simplify a manufacturing process.
 原料である珪酸ナトリウム水溶液の粘性が高い場合は水で希釈して用いる。また、石灰は、珪酸ナトリウム水溶液との混合の際にフロックが生じないようにスラリーにして用いることができる。また、反応が均一に進むように、これらの原料は攪拌しながら混合することが好ましい。なお、該反応は室温下で進むため反応工程において、原則として加熱は不要である。
 石灰の混合量は、生成するCSHまたはCSH複合物のCa/Siモル比が0.8~20になる量であり、好ましくは1.0~10になる量である。
If the raw material sodium silicate aqueous solution has a high viscosity, it is diluted with water. Lime can be used as a slurry so that flocs do not occur during mixing with the aqueous sodium silicate solution. Moreover, it is preferable to mix these raw materials while stirring so that the reaction proceeds uniformly. Since the reaction proceeds at room temperature, heating is not necessary in the reaction step in principle.
The amount of lime mixed is such that the Ca / Si molar ratio of the produced CSH or CSH composite is 0.8-20, preferably 1.0-10.
3.リン回収方法
 該回収方法は、リン含有水と、CSHまたはCSH複合物を混合し、リンを吸着して生成した凝集物を固液分離して回収する方法である。
 ここで、リン含有水は、特に限定されず、下水処理場において発生した余剰汚泥の脱水濾液、リンを含む工場廃液等が挙げられる。
 CSHやCSH複合物は、スラリー(反応液を含む)、脱水ケーキ、または乾燥物(粉体)の態様でもリン回収に用いることができるが、CSHやCSH複合物を粉体で用いると白濁する場合があるためと、製造工程の簡略化のため、CSHやCSH複合物はスラリーの態様で用いるのが好ましい。
 また、CSHのスラリーまたはCSH複合物のスラリーは、CSHまたはCSH複合物の粉末を水に分散させて調製するか、または、前記のように、CSHまたはCSH複合物を含む反応液をそのまま用いてもよい。
 リン含有水と、CSHのスラリーまたはCSH複合物の粉体若しくはスラリーとを混合する時間は、混合量にもよるが、好ましくは10分以上であり、より好ましくは30分以上である。また、混合する液の温度は特に限定されず、一般に室温でよい。
 リンを吸着したリン回収材は、濾過、沈降分離、および遠心分離等により分離する。ここで分離して得たリン回収材はリンの含有量が高いため、りん酸質肥料の原料として用いることができる。
3. Phosphorus recovery method The recovery method is a method in which phosphorus-containing water is mixed with CSH or a CSH complex, and aggregates generated by adsorbing phosphorus are separated by solid-liquid separation and recovered.
Here, the phosphorus-containing water is not particularly limited, and examples thereof include a dehydrated filtrate of excess sludge generated at a sewage treatment plant, and factory waste liquid containing phosphorus.
CSH and CSH composite can also be used for phosphorus recovery in the form of slurry (including reaction liquid), dehydrated cake, or dried product (powder), but become cloudy when CSH or CSH composite is used as powder. In some cases and for simplification of the manufacturing process, it is preferable to use the CSH or CSH composite in the form of a slurry.
The slurry of CSH or CSH composite is prepared by dispersing CSH or CSH composite powder in water, or using the reaction solution containing CSH or CSH composite as it is as described above. Also good.
The time for mixing the phosphorus-containing water with the CSH slurry or CSH composite powder or slurry is preferably 10 minutes or more, more preferably 30 minutes or more, although it depends on the amount of mixing. Moreover, the temperature of the liquid to mix is not specifically limited, Generally room temperature may be sufficient.
The phosphorus recovery material adsorbing phosphorus is separated by filtration, sedimentation separation, centrifugation, or the like. Since the phosphorus collection | recovery material obtained by isolate | separating here has high phosphorus content, it can be used as a raw material of a phosphate fertilizer.
 以下、本発明を実施例により説明する。
1.実施例1(CSHとCSH複合物の製造)
 表1および表2に示す量の水道水を2等分して、それぞれ、表1および表2に示す量の珪酸ナトリウム水溶液(水ガラス3号)と石灰(消石灰と生石灰)に添加して撹拌し、珪酸ナトリウム水溶液の希釈液と石灰のスラリーを調製した。次に、該希釈液と該スラリーとを表1および表2に示すCa/Si配合比で混合して常温で1時間攪拌し、表1および表2に示すCa/Siモル比のCSHおよびCSH複合物を生成させた。ここで、Ca/Si配合比とは、原料である石灰中のCaと珪酸ナトリウム水溶液中のSiのモル比である。
Hereinafter, the present invention will be described with reference to examples.
1. Example 1 (Production of CSH and CSH composite)
Divide the amount of tap water shown in Table 1 and Table 2 into two equal parts and add to the amount of sodium silicate aqueous solution (water glass No. 3) and lime (slaked lime and quicklime) shown in Table 1 and Table 2, respectively, and stir. Then, a dilute solution of sodium silicate aqueous solution and a slurry of lime were prepared. Next, the diluted solution and the slurry were mixed at the Ca / Si compounding ratios shown in Tables 1 and 2 and stirred at room temperature for 1 hour. CSH and CSH having the Ca / Si molar ratios shown in Tables 1 and 2 A composite was produced. Here, the Ca / Si compounding ratio is a molar ratio of Ca in lime as a raw material to Si in a sodium silicate aqueous solution.
 スラリー状のCSHおよびCSH複合体におけるCa(OH)含有量を、示差熱分析(TG-DTA)を用いて測定した。また、Ca/Siモル比をJIS R 5202「ポルトランドセメントの化学分析方法」に準拠して測定した。これらの結果を表1と表2に示す。
 また、BET比表面積および細孔容積は、150℃で6時間真空脱気を行った試料について、Micrometrics社製の比表面積測定装置 ASAP-2400を用いて窒素吸着法(BJH法)により測定した。この結果を表1に示す。
 また、Ca/Siモル比が1.1の試料3と5.5の試料4の乾燥粉末のXRDチャートを図2に示す。このチャートに示すように、試料3はCSHのピークのみが現れており、試料4はCSHとCa(OH)のピークが現れている。
The Ca (OH) 2 content in the slurry-like CSH and CSH complex was measured using differential thermal analysis (TG-DTA). Moreover, Ca / Si molar ratio was measured based on JISR5202 "Chemical analysis method of Portland cement". These results are shown in Tables 1 and 2.
The BET specific surface area and the pore volume were measured by a nitrogen adsorption method (BJH method) using a specific surface area measuring device ASAP-2400 manufactured by Micrometrics for a sample that was vacuum degassed at 150 ° C. for 6 hours. The results are shown in Table 1.
Moreover, the XRD chart of the dry powder of the sample 3 of Ca / Si molar ratio 1.1 and the sample 4 of 5.5 is shown in FIG. As shown in this chart, only the CSH peak appears in the sample 3, and the CSH and Ca (OH) 2 peaks appear in the sample 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2.実施例2(リン吸着試験)
 リン含有水として、下水処理場において発生した余剰汚泥の脱水濾液(リン濃度(P)100mg/L)を用いた。
 該脱水濾液100gに対し、試料1~12のリン回収材のスラリー(反応液)を、リン回収材中のカルシウム濃度と脱水濾液中のリン濃度がCa/Pモル比で2になるように混合した後、該混合液を室温で1時間撹拌してリン回収材にリンを吸着させた。なお、参考例として消石灰(粉体)も用いた。
 次に、該混合液の一部を、濾紙5Cを用いて濾過し、得られた濾液中のリン濃度(P)を測定しリン回収率(R)を求めた。
 また、混合液の残りを100mLのメスシリンダーに入れ1時間静置した後、デカンテーションにより上層の懸濁液を分離した。前記分離した懸濁液に塩酸を添加してpHを1に調整し撹拌して懸濁物を溶解させた後、溶液中のリン濃度(P)を測定しリン回収率(R)を求め、さらに沈降性指標(S)を求めた。消石灰を用いた場合の結果を表3および図3(a)に、生石灰を用いた場合の結果を表4および図4(b)に示す。
 なお、リン濃度の測定は、JIS K 0102「工場排水試験方法」に規定するモリブデン青吸光光度法に準拠して行った。
2. Example 2 (phosphorus adsorption test)
As phosphorus-containing water, a dehydrated filtrate of excess sludge generated at a sewage treatment plant (phosphorus concentration (P 0 ) 100 mg / L) was used.
100 g of the dehydrated filtrate is mixed with a slurry (reaction liquid) of the phosphorus recovery material of Samples 1 to 12 so that the calcium concentration in the phosphorus recovery material and the phosphorus concentration in the dehydrated filtrate are 2 in terms of the Ca / P molar ratio. After that, the mixture was stirred at room temperature for 1 hour to adsorb phosphorus to the phosphorus recovery material. In addition, slaked lime (powder) was also used as a reference example.
Next, a part of the mixed solution was filtered using filter paper 5C, and the phosphorus concentration (P) in the obtained filtrate was measured to obtain the phosphorus recovery rate (R 1 ).
Moreover, after putting the remainder of a liquid mixture into a 100 mL measuring cylinder and leaving still for 1 hour, the upper layer suspension was isolate | separated by decantation. After adding hydrochloric acid to the separated suspension to adjust the pH to 1 and stirring to dissolve the suspension, the phosphorus concentration (P) in the solution is measured to determine the phosphorus recovery rate (R 2 ). Further, a sedimentation index (S) was obtained. The results when slaked lime is used are shown in Table 3 and FIG. 3A, and the results when quick lime is used are shown in Table 4 and FIG. 4B.
In addition, the measurement of phosphorus concentration was performed based on the molybdenum blue absorptiometric method prescribed | regulated to JISK0102 "Factory drainage test method".
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
3.リン回収率と沈降性指標について
 表3、表4および図3に示すように、リン回収率(R)は、Ca/Siモル比がいずれも0.5%である試料1と試料8では、それぞれ59%と52%であるのに対し、該比が0.8~20の範囲にある試料2~6と試料9~12では70~96%であることから、本発明のリン回収材のリン回収性能は格段に高い。
 また、表3、表4および図3に示すように、沈降性指標は、Ca/Siモル比が30.1の試料7では48%、消石灰では41%であるのに対し、該比が0.8~20の範囲にある試料2~6と試料9~12は65%以上であることから、本発明のリン回収材は沈降性に優れている。なかでも、該比が0.8~2の範囲にある試料2、3、9は沈降性指標が98%以上と、とくに沈降性が優れている。
 なお、Ca/Siモル比が0.5の試料1と試料8は沈降性指標が100%と高いが、リン回収率はそれぞれ53%、52%と低い。
 また、表1と表3に示すように、BET比表面積が30~78m/gおよび細孔容積が0.14~0.3cm/gである試料2~6は、リン回収率(R)および沈降性指標のいずれも高い。
3. Phosphorus recovery rate and sedimentation index As shown in Tables 3 and 4 and FIG. 3, the phosphorus recovery rate (R 1 ) is the same for Sample 1 and Sample 8 where the Ca / Si molar ratio is 0.5%. The ratios of 59% and 52% are 70% to 96% for samples 2 to 6 and samples 9 to 12 in which the ratio is in the range of 0.8 to 20, respectively. The phosphorus recovery performance is significantly higher.
Further, as shown in Tables 3 and 4 and FIG. 3, the sedimentation index is 48% for the sample 7 having a Ca / Si molar ratio of 30.1 and 41% for slaked lime, whereas the ratio is 0. Since the samples 2 to 6 and the samples 9 to 12 in the range of 8 to 20 are 65% or more, the phosphorus recovery material of the present invention is excellent in sedimentation. In particular, Samples 2, 3, and 9 having this ratio in the range of 0.8 to 2 have a sedimentation index of 98% or more, and are particularly excellent in sedimentation.
Sample 1 and sample 8 with a Ca / Si molar ratio of 0.5 have a high sedimentation index of 100%, but the phosphorus recovery rates are low at 53% and 52%, respectively.
In addition, as shown in Tables 1 and 3, Samples 2 to 6 having a BET specific surface area of 30 to 78 m 2 / g and a pore volume of 0.14 to 0.3 cm 3 / g have phosphorus recovery rates (R Both 1 ) and the sedimentation index are high.

Claims (5)

  1.  珪酸ナトリウム水溶液と石灰を、非加熱下で混合して生成した非晶質珪酸カルシウム水和物単体、または非晶質珪酸カルシウム水和物とCa(OH)との複合物からなり、該水和物単体または該複合物のCa/Siモル比が0.8~20である、リン回収材。 Amorphous calcium silicate hydrate alone or a composite of amorphous calcium silicate hydrate and Ca (OH) 2 formed by mixing an aqueous solution of sodium silicate and lime without heating, the water A phosphorus recovery material in which the Ca / Si molar ratio of the simple substance or the composite is 0.8 to 20.
  2.  前記リン回収材中のカルシウム濃度とリン含有水中のリン濃度がCa/Pモル比で2になるように混合したときのリン回収率が65%以上である、請求項1に記載のリン回収材。 The phosphorus collection | recovery material of Claim 1 when a phosphorus collection | recovery rate is 65% or more when it mixes so that the calcium concentration in the said phosphorus collection | recovery material and the phosphorus concentration in phosphorus containing water may be set to 2 by Ca / P molar ratio. .
  3.  沈降性指標が60%以上である、請求項1または請求項2に記載のリン回収材。 The phosphorus collection | recovery material of Claim 1 or Claim 2 whose sedimentation parameter | index is 60% or more.
  4.  珪酸ナトリウム水溶液と石灰を非加熱下で混合して、前記非晶質珪酸カルシウム水和物単体、または前記非晶質珪酸カルシウム水和物とCa(OH)との複合物を生成させる、リン回収材の製造方法。 An aqueous solution of sodium silicate and lime are mixed without heating to form the amorphous calcium silicate hydrate alone or a composite of the amorphous calcium silicate hydrate and Ca (OH) 2. A method for producing recovered material.
  5.  リン含有水と、前記非晶質珪酸カルシウム水和物単体または前記非晶質珪酸カルシウム水和物とCa(OH)との複合物とを混合し、リンを吸着して生成した凝集物を固液分離して回収する、リン回収方法。 Aggregates formed by mixing phosphorus-containing water with the amorphous calcium silicate hydrate alone or a composite of the amorphous calcium silicate hydrate and Ca (OH) 2 and adsorbing phosphorus. Phosphorus recovery method for solid-liquid separation and recovery.
PCT/JP2012/061893 2012-05-09 2012-05-09 Phosphorous-collecting material, method for producing phosphorous-collecting material, and phosphorous collection method WO2013168245A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014514294A JP5946105B2 (en) 2012-05-09 2012-05-09 Phosphorus recovery material and phosphorus recovery method
PCT/JP2012/061893 WO2013168245A1 (en) 2012-05-09 2012-05-09 Phosphorous-collecting material, method for producing phosphorous-collecting material, and phosphorous collection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061893 WO2013168245A1 (en) 2012-05-09 2012-05-09 Phosphorous-collecting material, method for producing phosphorous-collecting material, and phosphorous collection method

Publications (1)

Publication Number Publication Date
WO2013168245A1 true WO2013168245A1 (en) 2013-11-14

Family

ID=49550330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061893 WO2013168245A1 (en) 2012-05-09 2012-05-09 Phosphorous-collecting material, method for producing phosphorous-collecting material, and phosphorous collection method

Country Status (2)

Country Link
JP (1) JP5946105B2 (en)
WO (1) WO2013168245A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244466A (en) * 2012-05-25 2013-12-09 Taiheiyo Cement Corp Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
JP2019127413A (en) * 2018-01-24 2019-08-01 太平洋セメント株式会社 Production method of amorphous calcium silicate hydrate
CN112062115A (en) * 2020-09-16 2020-12-11 北京天盾新材科技有限公司 Recycling treatment method of acid waste liquid containing melamine and phosphorus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259414A (en) * 2000-03-23 2001-09-25 Mitsubishi Materials Corp Phosphorus recovering material
JP2004249263A (en) * 2003-02-21 2004-09-09 Mitsubishi Materials Corp Phosphorus recovering material and its production method
JP2009285635A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method for recovering phosphorus
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2012050975A (en) * 2010-08-03 2012-03-15 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method of manufacturing the same
JP2012086107A (en) * 2010-10-15 2012-05-10 National Agriculture & Food Research Organization Disinfectant for dephosphorizing/decoloring wastewater, and treatment method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263636A (en) * 1985-05-17 1986-11-21 Ube Ind Ltd Calcium silicate series water treating agent
JP5864045B2 (en) * 2011-02-28 2016-02-17 小野田化学工業株式会社 Method for producing phosphorus recovery material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259414A (en) * 2000-03-23 2001-09-25 Mitsubishi Materials Corp Phosphorus recovering material
JP2004249263A (en) * 2003-02-21 2004-09-09 Mitsubishi Materials Corp Phosphorus recovering material and its production method
JP2009285635A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method for recovering phosphorus
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2012050975A (en) * 2010-08-03 2012-03-15 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method of manufacturing the same
JP2012086107A (en) * 2010-10-15 2012-05-10 National Agriculture & Food Research Organization Disinfectant for dephosphorizing/decoloring wastewater, and treatment method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244466A (en) * 2012-05-25 2013-12-09 Taiheiyo Cement Corp Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
JP2019127413A (en) * 2018-01-24 2019-08-01 太平洋セメント株式会社 Production method of amorphous calcium silicate hydrate
CN112062115A (en) * 2020-09-16 2020-12-11 北京天盾新材科技有限公司 Recycling treatment method of acid waste liquid containing melamine and phosphorus

Also Published As

Publication number Publication date
JPWO2013168245A1 (en) 2015-12-24
JP5946105B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5972050B2 (en) Method for producing phosphorus recovery material
JP5201455B2 (en) Phosphorus recovery material, its manufacturing method and phosphorus recovery method
JP5931369B2 (en) Phosphorus recovery material and method for producing the same
Xia et al. Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO⿿ loaded diatomite
JP5864045B2 (en) Method for producing phosphorus recovery material
JP5201454B2 (en) Phosphorus recovery material and phosphorus recovery method
WO2012176579A1 (en) Method for recovering phosphorus and using same as fertilizer
JP5930535B2 (en) Phosphorus recovery and fertilizer method
CN1299977C (en) Method of fast eliminating solid matter and fluorine in wet method crude phoshporic acid
CN110127736B (en) Preparation method of high-viscosity macroporous pseudo-boehmite
JP2007296463A (en) Hydroxyapatite silica composite porous adsorbent and its manufacturing method
JP5164033B2 (en) Method for producing silica porous aggregate
JP5946105B2 (en) Phosphorus recovery material and phosphorus recovery method
CN111003781A (en) Application of sulphoaluminate cement and dephosphorization method
Lahnafi et al. NaA zeolite-clay composite membrane formulation and its use as cost-effective water softener
JP6670534B2 (en) Phosphorus recovery material and method for producing the same
JP2015171696A (en) Material for recovering phosphorus, production method of the material, and method for recovering phosphorus
JP6381035B2 (en) Method for manufacturing intermediate of phosphorus recovery material and method for manufacturing phosphorus recovery material
JP2013052346A (en) Phosphorus recovery material
JP2015196146A (en) Phosphorus recovery material for phosphorus-containing water and phosphorus recovery method using the phosphorus recovery material
JP4246648B2 (en) Method for producing zeolitic modified soil
JP2008188484A (en) Treatment method of fluorine-containing wastewater
JP6899650B2 (en) Phosphate fertilizer and its manufacturing method
JP2016203107A (en) Phosphorous recovery material, production method thereof, and phosphorous recovery method from wastewater containing phosphorous
JP4464157B2 (en) Method for producing zeolitic modified soil from purified water generated soil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876503

Country of ref document: EP

Kind code of ref document: A1