WO2013167341A1 - Cooled annular gas collector - Google Patents

Cooled annular gas collector Download PDF

Info

Publication number
WO2013167341A1
WO2013167341A1 PCT/EP2013/057647 EP2013057647W WO2013167341A1 WO 2013167341 A1 WO2013167341 A1 WO 2013167341A1 EP 2013057647 W EP2013057647 W EP 2013057647W WO 2013167341 A1 WO2013167341 A1 WO 2013167341A1
Authority
WO
WIPO (PCT)
Prior art keywords
apron
reactor
cooling
jacket
cooling gap
Prior art date
Application number
PCT/EP2013/057647
Other languages
English (en)
French (fr)
Inventor
Osman Turna
Frédéric Judas
Michael Kress
Mukesh Kumar
Jörg BETTNER
Original Assignee
L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude filed Critical L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority to CN201380024722.4A priority Critical patent/CN104321413B/zh
Priority to AU2013258337A priority patent/AU2013258337B2/en
Priority to KR1020147028299A priority patent/KR102032589B1/ko
Priority to EA201401239A priority patent/EA027447B1/ru
Priority to UAA201413169A priority patent/UA114197C2/uk
Priority to IN1843MUN2014 priority patent/IN2014MN01843A/en
Publication of WO2013167341A1 publication Critical patent/WO2013167341A1/en
Priority to ZA2014/05930A priority patent/ZA201405930B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • C10J3/42Rotary grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • F23G5/26Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber having rotating bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam

Definitions

  • This invention relates to an apparatus for charging a reactor operated under pressure with carbonaceous solids, in which the solids are gasified with oxygen and/or steam in a fixed bed, wherein the apparatus includes a ring-shaped apron open at the top and at the bottom, to which the solids are supplied through a lock, and furthermore to a reactor for the fixed-bed gasification with this apparatus and to a method for operating such a reactor.
  • Gasification is understood to be the conversion of a carbonaceous solid or liquid substance (e.g. coal, biomass or petroleum) with a gasification medium (oxygen/air, steam) into so-called synthesis gas.
  • this synthe- sis gas contains hydrogen (H 2 ), water (H 2 O), carbon monoxide (CO), carbon dioxide (CO 2 ), and methane (CH ).
  • CtL fuels Coal to Liquids
  • SNG Substitute Natural Gas, H 2 for ammonia/fertilizers/urea, meth- anol etc.
  • the synthesis gas also contains hydrogen sulfide (H 2 S), carbon oxide sulfide (COS), hydrochloric acid (HCI), ammonia (NH 3 ), hydrocyanic acid (HCN), partly hydrogen fluoride (HF) and possibly also higher hydrocarbons and tar oils.
  • the composition of the gas is dependent on the composition of the feedstock, the kind and quantity of the gasification media used, the reaction conditions and the kinetic boundary conditions of the occurring reactions as specified by the chosen gasification process.
  • three different types of processes for the gasification of solids are known: The gasification in fluidized beds, the gasification in a fixed bed formed of the solids, and finally the gasification in an entrained-bed reactor.
  • the different gasification technologies impose different requirements on the fuel, which must be taken into account correspondingly in the choice of the fuel or the conception of the fuel processing.
  • the actual reactor When the actual reactor is designed as fixed-bed reactor, it includes a substantially cylindrical vertical reactor with outer water jacket.
  • the solid carbonaceous fuel in general coal or biomass, is introduced from above through a lock into the coal distributor present in the interior of the reactor, wherein a fixed bed is formed, which rests on a rotary grate arranged in the lower region of the reactor. From this lower region, oxygen and steam are blown into the fixed bed. These hot gases flow through the fixed bed from the bottom to the top, whereas the solids are refilled from above through the lock system. Therefore, reference is also made to a counterflow fixed-bed gasification.
  • the entire fixed bed has a temperature profile in which the hottest part is located in the vicinity of the rotary grate and the temperature decreases upwards towards the solids supply. Corresponding to this temperature profile, different reactions take place inside the fixed bed. Therefore, reference often is also made to reaction zones, where there is no clear separation into individual regions, but the individual zones merge into each other.
  • reaction zones In the upper part of the gasifier in the vicinity of the refilled solids, drying and desorption of physisorbed gases are effected. Below the drying zone the so-called reaction zone is located, in whose upper part degassing of the solids is effected.
  • Degassing is followed by the actual gasification of the solids according to the Boudouard reaction as well as the water gas and water-gas shift reactions.
  • the combustion of the solids is effected.
  • the ash obtained in particular during the combustion falls through the rotary grate and is further discharged from there.
  • the non-converted gas fractions of the reactants mainly steam, nitrogen and argon, are withdrawn together with the formed synthesis gas via a gas draw provided above the fixed bed.
  • the lock system for supplying the fuel into the reactor is necessary, since the reactor is operated at a pressure of up to 100 barg, preferably up to 60 barg, particularly preferably at an operating pressure of at least 50 barg, and hence the solids must be introduced under pressure.
  • Introducing via a lock system is effected discontinuously, wherein the fuel first is introduced under atmospheric conditions into the lock terminated by the reactor, then is pressurized in the lock system and is filled into the reactor under this pressure. Subsequently, the reactor is again closed against the lock system.
  • a further solids reservoir must therefore be provided inside the reactor, which ensures that the fixed bed always has the same height.
  • Such apparatus is described for example in DE 1 1 2005 002 983 T5.
  • This is a cylindrical or inwardly tapering, i.e. hollow inversely frustoconical apron with open end, which hangs down from the head of the reactor, so that coal which is drained from the coal lock moves along the inside of the apron, so as to be distributed in the solids bed.
  • the lower end of the apron typically is located inside the fixed bed.
  • a ring-shaped gas collecting zone is formed, from which the raw gas collected there is withdrawn laterally through a gas outlet.
  • coals mostly are converted to synthesis gas in a fixed-bed gasification process, in which the outlet and reaction end temperatures are so low on average that the synthesis gas obtained is withdrawn from the reactor with temperatures between 200 and 300 °C (for moist lignites) or between 400 and 450 °C (for young hard coals).
  • temperatures between 200 and 300 °C (for moist lignites) or between 400 and 450 °C (for young hard coals).
  • the limit values of a plant for coal gasification in the fixed bed so far had to be defined such that at temperature peaks of 650 or 670 °C power reductions or even a shut-down of the reactor have become necessary, in order to limit the thermal load of the raw gas outlet. Poor coal qualities or properties and high loads increase the amplitude and frequency of such temperature peaks.
  • solids gasifiers Due to the increasing shortage of fossil raw materials, solids gasifiers have to be designed such in the future that not only for example moist lignite or younger hard coals, but also other coals with higher reaction end temperatures and inferior properties can be gasified.
  • the fixed-bed gasification of re- newable raw materials or secondary raw materials is gaining in importance, which mostly have inferior properties with respect to the fixed-bed gasification.
  • the temperatures resulting there canlead to gas outlet temperatures of at least 700 °C, preferably up to 800 °C, in part even up to 1000 °C. At these temperatures, the apron used is exposed to a distinctly greater material stress.
  • coals which have high contents of sulfur or halogens are gasified to an increasing extent.
  • the plant For changing the apron, the plant must be shut down, so that production losses will occur.
  • the apron is so large that the use of high-temperature resistant materials would cause a considerable increase in investment costs and therefore is uneconomic, all the more so as the use of high-temperature resistant materials would prevent corrosion e.g. by hydrogen halides only to a limited extent.
  • apron also referred to as annular gas collector
  • annular gas collector such that even at gasification temperatures above 450 °C and/or when using fuels containing sulfur and/or halogens long service lives of the plant become possible.
  • frequent temperature peaks have to be tolerated without enforcing a load reduction or a brief or longer-term shut-down of the reactor.
  • a charging device according to claim 1 .
  • the apron is cooled and for this purpose includes an inner jacket and an outer jacket, between which a cooling gap is formed with at least one inlet and outlet for the supply and discharge of a cooling medium.
  • the apron is formed rotation- ally symmetrical, in particular cylindrical, conical or partly conical.
  • a cylindrical shape has the advantage that the fuel introduced through the lock system is spread over the entire cross-section of the fuel bed.
  • the volume of the coal feeder chute thus can be maximized, so that with equal filling volume the same has a comparatively short length and the effective reactor height is not reduced decisively. Nevertheless, it is possible to take up that amount of coal which is required to bridge the time between two coal locking operations and possible irregularities of gasification and feeding.
  • the charging device should taper towards the fixed bed.
  • This has the advantage that the free exit surface for the raw gas from the fixed bed is as large as possible.
  • the respective gas velocity and hence the entrained amount of dust can be minimized.
  • the resulting gas collecting space has a volume as large as possible, so that the flow velocity of the raw gas also is decreased in the gas collecting space and the dust retention is improved.
  • the exit surface must be designed as large as possible, so that the raw gas can flow over the entire cross-section of the fuel bed more uniformly and the entrainment of coal particles is minimized. Cross flows should be reduced, in order to ensure homogeneous reaction conditions in the entire fixed bed.
  • a partly conical formation which is mounted on a cylindrical part, combines the advantages of both designs.
  • the cooling gap is charged with coolant, preferably boiler feed water. If water is used, the water must satisfy the guidelines for steam generators, in order to prevent deposits of carbonate or boiler scale.
  • the cooling gap must be designed such that the inflow of the coolant is provided at one edge and the outflow of the coolant at the opposite edge.
  • the cooling gap is designed liquid-impermeable at one edge, in that inner and outer jacket here are connected in a liquid-tight manner.
  • this edge faces the fixed bed, i.e. is arranged at the bottom in the reactor.
  • Charging the cooling gap with coolant can be effected via a common supply and discharge conduit, or at least one inlet and one outlet are provided.
  • the cooling gap is closed by a preferably ring-shaped cover in which numerous openings are provided for introducing and discharging the cooling medium. Cooling medium then can be introduced into the cooling gap over the entire circumference of the apron.
  • the cooling medium e.g. water
  • the hot synthesis gas ascending past the outside of the apron, it is evaporated and rises to the top, in order to escape in vaporous form from the cooling gap through the openings of the cover.
  • inner and outer jacket extend in parallel, since the apparatus thus can be fabricated easily and the resulting cooling gap has the same width at each point.
  • the cooling gap it is also conceivable here to form the cooling gap such that at those points at which the volume flow of the gas along the apron and thus the heat quantity to be dissipated is particularly high it has a greater width than at points traversed little.
  • the region facing the gas outlet is subjected to a great load.
  • a bulkhead is provided between inner and outer jacket of the apron, which preferably extends parallel to the inner and outer jacket, in order to provide for uniform charging with cooling liquid.
  • an inner and an outer cooling gap are formed, which are connected with each other at least at one point, preferably over the entire cir- cumference of the apron.
  • the connection between the inner and the outer cooling gap is accomplished particularly easily in that between the bulkhead and a jacket portion connecting the inner jacket with the outer jacket a free space is provided, i.e. the bulkhead does not extend down to the bottom of the apron.
  • the outer cooling gap adjoins the outer jacket of the apron, which is in direct contact with the gas collecting space and is exposed to the temperature of the ascending hot raw synthesis gas, so that it is heated up correspondingly.
  • the coolant in the inner cooling gap is connected with the re- filled solids which only have a temperature of about 40 °C.
  • the coolant in the outer cooling gap therefore is exposed to a distinctly higher heat transfer than the coolant in the inner cooling gap, so that a directional flow through the cooling gap occurs due to convection.
  • the boiling point of the water lies below the temperature of the hot raw synthesis gas. This also is the case when the cooling system is operated under pressure (30 bara: boiling point 234 °C; 51 bara: 265 °C). The resulting steam always will flow upwards to the outlet.
  • the coolant is supplied to the inner cooling gap and withdrawn from the outer cooling gap.
  • the introduced cooling water passes through the inner cooling gap, is slightly heated up by contact with the bulkhead, and passes this heat on to the refilled solids in the interior of the apron, which to a minor extent even leads to a decrease in the cooling water temperature, and then gets into the outer cooling gap.
  • the water is evaporated there and thus withdraws heat from the system.
  • the resulting steam flows out of the steam outlet provided in the outer cooling gap. Due to the escape of the steam, new cooling water continuously is conveyed from the inner cooling gap into the outer cooling gap. In this system, inner and outer cooling gap thus are traversed by natural convec- tion.
  • the natural convection is defined by the density difference of the water column in the inlet and the steam-water column in the outlet. This results in a so-called circulation number as quotient of steam generation and water circulation, which is limited by the pressure loss with a given geometry.
  • the apparatus operates particularly effectively when inflow and outflow of the cooling water are effected at the upper edge of the apron with a vertical construction of the reactor.
  • the bulkhead is to be designed such that the inner cooling gap has a smaller width than the outer cooling gap.
  • This has the advantage that when using water as coolant, the resulting steam provides sufficient volume in the outer cooling gap.
  • an optimum circulation number of water/steam can be made possible and the pressure loss can be minimized.
  • Subject-matter of the invention also is a reactor for gasifying carbonaceous solids with oxygen and steam with the features of claim 7.
  • Such reactor includes a rotary grate in the vicinity of the bottom and a solids lock at the head of the reactor, which is followed by the apron described above.
  • the reactor is formed such that the inlet and/or the outlet of the cooling gap of the apron is connected with a cooling system of the reactor itself.
  • a cooling system of the reactor itself This has the advantage that for cooling the apron no separate cooling circuit must be installed and investment costs thus can be lowered, and in addition the reliability and operational safety of the cooling system are increased.
  • the reactor itself likewise has a cooling jacket into which the cooling jacket of the apron is integrated.
  • apron and reactor preferably are welded to each other. This becomes possible in that by cooling the apparatus the temperature of inner and outer jacket can be lowered distinctly as compared to an uncooled apron.
  • the boiling temperature is about 265 °C and thus lies distinctly below the critical temperature of 300 °C, from which hot gas corrosions progressively occur for carbon steel.
  • the apron is protected against corrosion, but also against erosion as a result of the coal moving downwards, it no longer must be replaced regularly, so that expensive, releasable connections are not necessary.
  • the idea according to the invention also extends to a method for gasifying carbonaceous solids with oxygen and steam with the features of claim 10.
  • the gasification is carried out in a fixed bed, wherein the solids are introduced into the fixed bed of a reactor batch-wise via a lock and then continuously through the charging device according to the invention.
  • a cooling medium is introduced into the jacket in liquid form and withdrawn at least partly in vaporous form.
  • Such cooling is particularly advantageous when the steam withdrawn can be reused energetically inside the process as reactant/gasification medium.
  • the steam acts as "moderator", in order to limit the combustion temperature such that the coal ash is not molten.
  • the steam must be added in the excess.
  • the use of the steam turns out to be quite particularly advantageous when water is used as cooling liquid and the cooling water withdrawn in vaporous form itself can be used as reactant, i.e. that steam stream which is required for gasifying the solids in the fixed bed is partly fed with the steam generated in the cooling.
  • the steam requirement of the process thereby can be lowered, which lowers the operating costs.
  • the reactor itself also includes a water-cooled jacket and steam is formed here as well, about 20 vol-% of the required total steam quanti- ty can be saved by the collected recirculation of the steam from all cooled components.
  • Fig. 1 schematically shows a fixed-bed reactor operated in counterflow
  • Fig. 2 shows an annular gas collector according to the invention
  • Fig. 3 shows a cover of the annular gas collector according to the invention.
  • Fig. 1 schematically shows the reactor 10. It is a vertical fixed-bed reactor oper- ated in counterflow, which includes a rotary grate 1 1 in the vicinity of the bottom. On this rotary grate 1 1 a solids bed 12 is built up in operation. Via a feeder 13, steam and/or an oxygen-containing medium, such as air, oxygen-enriched air or also pure oxygen is introduced and injected into the bed 12 from below evenly distributed. Ash which is formed by reactions in the fixed bed 12 is discharged through the rotary grate 1 1 and removed via an ash draw 14 with succeeding ash lock.
  • the reactor 10 is water-cooled and includes a cooling gap 17 between an outer jacket 18 and an inner jacket 19 ( Figure 2).
  • a lock 20 is provided, via which coal or other carbona- ceous solids are supplied.
  • the lock 20 is followed by an apron 30 displayed in Figure 2, which serves as solids reservoir, so that the fixed bed 12 in the reactor 10 has a uniform and sufficient filling level, although charging with coal is effected discontinuously through the lock 20.
  • a free space is provided around the apron 30, in which reaction gases as well as unused steam are collected. The gases collected in this gas collecting space 15 are withdrawn via a gas draw 16.
  • Fig. 2 shows the right half of the charging device 1 according to the invention schematically and in section.
  • the gas draw 16 mostly is provided on one side of the reactor only.
  • the charging device 1 includes a double-walled apron 30 with an inner jacket 31 and an outer jacket 32, between which a cooling gap 33 is formed.
  • the inner jacket 31 and the outer jacket 32 are connected in a liquid-tight manner by a jacket portion 35.
  • a bulkhead 34 is provided between the inner jacket 31 and the outer jacket 32. This bulkhead 34 divides the cooling gap 33 formed between inner jacket 31 and outer jacket 32 into an inner cooling gap 33i and an outer cooling gap 33a.
  • the inner cooling gap 33i adjoins the solids retained in the apron 30 via the inner jacket 31
  • the outer cooling gap 33a adjoins the gas collecting space 15 and the fixed bed 12 via the outer jacket 32.
  • a free space 36 is provided, by which the inner cooling gap 33i and the outer cooling gap 33a are connected with each other at the lower end of the apron 30.
  • the cooling liquid preferably water
  • the cooling liquid is introduced between bulkhead 34 and inner jacket 31 , flows downwards by gravity and is in heat exchange with the cold coal (about 40 °C) provided inside the apron. Since the bulkhead 34 does not terminate flush with the jacket portion 35, the water can enter into the outer cooling gap 33a at the lower edge of the apron 30.
  • the cooling liquid is in direct heat exchange with the hot gas in the gas collecting space 15. Due to the temperature of the gas of up to 700 °C, preferably up to 800 °C, the water is heated to temperatures of the respective boiling point (at an operating pressure of 51 bara about 265 °C) and evaporated.
  • the steam rises upwards (convection) in the outer cooling gap 33a and can be withdrawn at the upper end of the cooling gap 33a.
  • the surface temperature of the outer jacket 32 will be higher than the cooling water temperature by up to 30° (depending on gas temperature and load), since the heat transfer is high on the gas side.
  • At the outer jacket 32 there will still be obtained a temperature slightly below 300 °C, which lies distinctly below the temperature obtained in an uncooled annular gas collector, which substantially corresponds to the gas temperature.
  • a hot gas corrosion of carbon steel can be avoided or at least greatly reduced.
  • the cooling gap 33 of the apron 30 preferably is connected with the cooling system of the reactor 10 such that the cooling water from the cooling gap 17 between outer jacket 18 and inner jacket 19 of the reactor 10 can also be utilized for charging the cooling gap 33 of the apron 30.
  • Fig. 3 shows a ring-shaped cover 40 which is mounted on the charging device 1 , preferably welded to the same, and at the same time represents the inflow and outflow of the coolant as well as the connection to the reactor 10.
  • a circular opening 41 is provided, through which the solids can get from the lock system 20 into the charging device 1 .
  • two rows of openings 42, 43 are provided on concentric circles, via which the coolant is introduced into the inner cooling gap 33i and withdrawn from the outer cooling gap 33a, respectively.
  • the cover 40 can be connected, e.g. welded to the inner jacket 19 of the reactor 10 (cf. Fig. 2).
  • the abrasion at the inner jacket due to the coal constantly passing by is greatly reduced by the lower wall temperature, and the possible service life thereby is prolonged. Due to the lower temperature, hot gas corrosions at the outer jacket are avoided or greatly reduced independent of the concentration of the corrosive components in the raw gas.
  • the corrosive components in the raw gas are determined by the coal composition.
  • the gas is slightly cooled at the outer jacket of the annular gas col- lector, which results in a lower temperature load of the succeeding plant sections.
  • the steam formed subsequently can be fed into the system as steam for the gasification, whereby the costs for the reactants to be provided can be lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Industrial Gases (AREA)
  • Processing Of Solid Wastes (AREA)
PCT/EP2013/057647 2012-05-11 2013-04-12 Cooled annular gas collector WO2013167341A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380024722.4A CN104321413B (zh) 2012-05-11 2013-04-12 冷环形气体收集器
AU2013258337A AU2013258337B2 (en) 2012-05-11 2013-04-12 Cooled annular gas collector
KR1020147028299A KR102032589B1 (ko) 2012-05-11 2013-04-12 냉각된 환형 가스 집속기
EA201401239A EA027447B1 (ru) 2012-05-11 2013-04-12 Охлаждаемый кольцевой газосборник
UAA201413169A UA114197C2 (uk) 2012-05-11 2013-04-12 Охолоджуваний кільцевий газозбірник
IN1843MUN2014 IN2014MN01843A (enrdf_load_stackoverflow) 2012-05-11 2013-04-12
ZA2014/05930A ZA201405930B (en) 2012-05-11 2014-08-13 Cooled annular gas collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012009265A DE102012009265B4 (de) 2012-05-11 2012-05-11 Gekühlter Ringgassammler
DE102012009265.2 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013167341A1 true WO2013167341A1 (en) 2013-11-14

Family

ID=48142762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/057647 WO2013167341A1 (en) 2012-05-11 2013-04-12 Cooled annular gas collector

Country Status (9)

Country Link
KR (1) KR102032589B1 (enrdf_load_stackoverflow)
CN (1) CN104321413B (enrdf_load_stackoverflow)
AU (1) AU2013258337B2 (enrdf_load_stackoverflow)
DE (1) DE102012009265B4 (enrdf_load_stackoverflow)
EA (1) EA027447B1 (enrdf_load_stackoverflow)
IN (1) IN2014MN01843A (enrdf_load_stackoverflow)
UA (1) UA114197C2 (enrdf_load_stackoverflow)
WO (1) WO2013167341A1 (enrdf_load_stackoverflow)
ZA (1) ZA201405930B (enrdf_load_stackoverflow)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014899A1 (de) 2014-07-29 2016-02-18 Bernd Meyer Verfahren und Vorrichtungen für die Festbettdruckvergasung zur statischen und dynamischen Vergleichmäßigung der Strömung
DE102014014193A1 (de) 2014-07-29 2016-02-04 Bernd Meyer Verfahren und Vorrichtung für die Festbettdruckvergasung zur statischen Vergleichmäßigung der Strömung
CN106574194B (zh) 2014-07-29 2021-03-09 伯恩特·迈耶 用于均匀化流动的固定床气化的方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US399795A (en) * 1889-03-19 Gas-producer
US1015296A (en) * 1908-11-23 1912-01-23 William B Chapman Gas-producer.
US1406637A (en) * 1922-02-14 Gas producer
DE19817298C1 (de) * 1998-04-18 1999-09-09 Schwarze Pumpe Energiewerke Ag Verfahren zur Nutzung des Manteldampfes aus Festbettdruckvergasern
WO2001061246A1 (de) * 2000-02-17 2001-08-23 Maschinen- Und Stahlbau Gmbh Roland Grüssing Reaktor und verfahren zum vergasen und/oder schmelzen von stoffen
DE112005002983T5 (de) 2004-12-08 2007-12-27 Sasol-Lurgi Technology Co. (Pty) Ltd. Festbettkohlevergaser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20020240U1 (de) * 2000-11-28 2001-01-25 Sekundärrohstoff-Verwertungszentrum Schwarze Pumpe GmbH, 02979 Spreetal Abfallvergaser
CN101845326B (zh) * 2009-10-23 2012-12-12 湖南安淳高新技术有限公司 旋流式熔融池气化炉
CN101949538A (zh) * 2010-09-06 2011-01-19 昆明理工大学 具有内外冷却通道的粉状炭质燃料气化用烧嘴
DE102011014349A1 (de) * 2011-03-18 2012-09-20 Ecoloop Gmbh Wanderbettreaktor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US399795A (en) * 1889-03-19 Gas-producer
US1406637A (en) * 1922-02-14 Gas producer
US1015296A (en) * 1908-11-23 1912-01-23 William B Chapman Gas-producer.
DE19817298C1 (de) * 1998-04-18 1999-09-09 Schwarze Pumpe Energiewerke Ag Verfahren zur Nutzung des Manteldampfes aus Festbettdruckvergasern
WO2001061246A1 (de) * 2000-02-17 2001-08-23 Maschinen- Und Stahlbau Gmbh Roland Grüssing Reaktor und verfahren zum vergasen und/oder schmelzen von stoffen
DE112005002983T5 (de) 2004-12-08 2007-12-27 Sasol-Lurgi Technology Co. (Pty) Ltd. Festbettkohlevergaser

Also Published As

Publication number Publication date
DE102012009265A1 (de) 2013-11-14
KR20150014909A (ko) 2015-02-09
IN2014MN01843A (enrdf_load_stackoverflow) 2015-07-03
EA027447B1 (ru) 2017-07-31
KR102032589B1 (ko) 2019-10-15
AU2013258337A1 (en) 2014-09-18
UA114197C2 (uk) 2017-05-10
DE102012009265B4 (de) 2013-12-05
CN104321413A (zh) 2015-01-28
EA201401239A1 (ru) 2015-02-27
AU2013258337B2 (en) 2017-07-27
CN104321413B (zh) 2017-05-10
ZA201405930B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
CA2842102C (en) Gasification system and method
KR20100063722A (ko) 가스화 반응기 및 분류층 가스화 방법
US20180142171A1 (en) Integrated drying and gasification process for simultaneously producing synthetic gas and high rank coal
CN108410515B (zh) 气化激冷系统
AU2013258337B2 (en) Cooled annular gas collector
KR102184265B1 (ko) 이단 가스화 장치 및 공급 원료 유연성을 갖는 가스화 공정
AU2013258336B2 (en) Gas draw for a gasification reactor
CA2852763C (en) Seal pot design
US20150307791A1 (en) Gasification process and system using dryer integrated with water-gas shift catalyst
RU2628390C2 (ru) Улучшенная газификация угля
JP4357484B2 (ja) 石炭ガス化の間に生成されるガス量の予測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13717480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013258337

Country of ref document: AU

Date of ref document: 20130412

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028299

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201407074

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 201401239

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 13717480

Country of ref document: EP

Kind code of ref document: A1