WO2013167334A1 - Verfahren zur aufbringung einer schutzschicht auf eine turbinenkomponente - Google Patents

Verfahren zur aufbringung einer schutzschicht auf eine turbinenkomponente Download PDF

Info

Publication number
WO2013167334A1
WO2013167334A1 PCT/EP2013/057418 EP2013057418W WO2013167334A1 WO 2013167334 A1 WO2013167334 A1 WO 2013167334A1 EP 2013057418 W EP2013057418 W EP 2013057418W WO 2013167334 A1 WO2013167334 A1 WO 2013167334A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofoil
solder
protective layer
base material
exothermic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2013/057418
Other languages
German (de)
English (en)
French (fr)
Inventor
Susanne Gollerthan
Torsten-Ulf Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to KR1020147031057A priority Critical patent/KR102070769B1/ko
Priority to JP2015510699A priority patent/JP5897766B2/ja
Priority to EP13719438.7A priority patent/EP2809826B1/de
Priority to US14/398,462 priority patent/US9309597B2/en
Priority to IN8271DEN2014 priority patent/IN2014DN08271A/en
Priority to CN201380024288.XA priority patent/CN104284999B/zh
Publication of WO2013167334A1 publication Critical patent/WO2013167334A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0006Exothermic brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to a method for producing a protective layer on a base material, wherein a nanofoil and a solder is arranged on the base material.
  • thermo-mechanical machines that are exposed to high temperatures are used in steam power plants and in combined-cycle gas turbine power plants.
  • Steam turbines have different turbine components and are generally designed with large volumes.
  • the abovementioned turbine components are exposed to both erosive and corrosive as well as mechanical wear.
  • This continual load on the turbine components leads to material disruptions and / or material losses.
  • the corrosive or erosive effects on the turbine components are, for example, erosion corrosion, drop impact erosion, sliding wear, rolling wear, corrosion and oxidation.
  • Layers provided which have a relation to the base material of the turbine component increased wear resistance and / or corrosion resistance are known.
  • Various methods are known for applying protective layers to a base material. Among others, known are: thermal spraying, brazing, CVD, PVD, electroplating and build-up welding.
  • thermal spraying may not be possible due to complicated turbine component geometry.
  • a furnace process could be eliminated by the sometimes very large component geometries.
  • Other processes can be eliminated if it is not the entire turbine component but only certain points of the turbine component that are to be coated for fatigue or cost reasons.
  • the invention has set itself the task of specifying a coating method which overcomes the aforementioned problems.
  • a nanofoil is applied to the base material of the turbine component.
  • This nanofoil becomes a solder arranged.
  • the nanofoil is locally ignited, resulting in an exothermic reaction, which leads to a melting of the solder on the base material.
  • An essential feature of the invention is therefore the use of a nanofoil, which is selected such that it shows an exothermic reaction at an initial ignition. This means that the nanofoil gives off a comparatively high temperature after initial ignition, which causes the base material to melt slightly and the solder to be completely melted. After cooling or solidification of the solder and nanofoil mixture, a protective layer is formed which protects the turbine component against the aforementioned attacks such as, for example, erosion or corrosion.
  • the nanofoil and the solder can be positioned in places that need to be protected from corrosion or erosion. Thus, it is not necessary to carry out the entire turbine component with the coating according to the invention. This leads to a cost saving, since it is effectively avoided to coat the entire turbine component.
  • the nanofoil and the solder are arranged one above the other, wherein the nanofoil locally z. B. is ignited at the edge.
  • This inflammation can be done by a laser beam or by other suitable energy transfer.
  • the exothermic reaction ends as soon as the film is used up.
  • the nanofoil must be selected in such a way that the locally generated heat is sufficient to exceed the liquidus of the solder material and thus to allow the connection of base material and solder.
  • the mixture of solder and spent nanofoil itself can serve as a protective layer.
  • Advantageous developments are specified in the subclaims.
  • an additional protective layer is arranged on the solder.
  • a three-layer system is applied to the base material consisting of nanofoil, solder and additional protective layer.
  • the material of the additional protective layer is selected in such a way that after the initial ignition the heat occurring is sufficient to melt the solder and to establish a connection between the solder and the additional protective layer as well as between the solder and the base material.
  • the additive protective layer is not mixed with the solder and the nanofoil to a new structure, but forms a protective layer on the turbine component, which protects the base material from external influences.
  • the additional protective layer consists of a ceramic material.
  • the ceramic systems in question are mainly carbides, but also borides or the like into consideration.
  • Tic, B 4 C, TiB 2 or similar compositions can be used.
  • intermetallic phases such as TiAl or hard alloys such.
  • a nanofoil with the following chemical composition is used: aluminum and palladium (Al / Pd), aluminum and nickel (Al / Ni), nickel oxide and nickel and aluminum (NiO-Ni / Al) and copper oxide and copper and Aluminum (CuO-Cu / Al).
  • the nanofoil comprises at least two chemical elements which are arranged one above the other in layers in the nanofoil.
  • a layer of aluminum is placed on a layer of nickel, and again a layer of aluminum is placed on the nickel layer, and this is built up alternately.
  • These Layers are formed in the micrometer or nanometer range.
  • a solder with the following chemical composition is used: Ag 59 Cu 27, 5 lni 2 , 5 Ti; TiCui 5 Nii 5 ; TiZr 3 7 i5 Cui 5 iio or similar compositions.
  • the method is extended in such a way that the nanofoil and the solder are arranged in such a way that, after the exothermic reaction, the remaining nanofoil hard materials are arranged in the shape of a tile or fish scale.
  • a reaction product remains which has intermetallic phases.
  • NiAl hard materials remain, which are arranged as platy hard materials in the fused solder.
  • the remaining nanofoil hard materials should be arranged such that they have a roof-tile-like or fish-scale-like structure. This means that, with a view to the base material, the nanofoil hard materials are opaque. This means that an external influence on the surface of the turbine component leads to the nanofoil hard materials forming an effective barrier against the base material. Among other things, this is advantageous for a particular wear mechanism such.
  • a significant advantage of the invention is that the heat generated by the nanofoil only arises locally and is not exposed to the entire turbine component of the heat. This avoids, for example, distortions of the turbine component as a result of different temperatures.
  • the nanofoil can be geometrically cut to suit the areas to be coated, so that the heat input takes place only where it is needed to form the compound. As a result, only local areas are formed with a protective layer according to the invention. Furthermore, it is advantageous that the heat generation is of a very short duration. Furthermore, coatings made to fit can be accurately positioned on which the respective components are applied. It can be produced by the nanofoil compounds of similar materials, which can lead to cost savings.
  • the layer according to the invention can advantageously be applied, above all, to inaccessible areas, since only one film is present a surface and finally a solder or a ceramic material must be attached.
  • Figure 1 is a cross-sectional view of an inventive
  • Figure 2 is a cross-sectional view of a turbine component prior to the exothermic reaction
  • Figure 3 is a cross-sectional view of a protective layer after the exothermic reaction
  • Figure 4 is a cross-sectional view of a turbine component prior to the exothermic reaction.
  • FIG. 1 shows a turbine component 1.
  • This turbine component 1 can be, for example, a component of a steam turbine, such as a steam turbine.
  • B. be an outer case, an inner case or a rotor.
  • the turbine component 1 comprises a base material 2, which is usually a steel in steam turbine construction.
  • This base material 2 has a base material surface 3, on which a nanofoil 4 is arranged in a first method step.
  • a solder 5 is attached.
  • the nanofoil 4 is formed from the following chemical elements: aluminum and palladium (Al / Pd), aluminum and nickel (Al / Ni), nickel oxide and nickel and aluminum (NiO-Ni / Al) and copper oxide and copper and aluminum (CuO).
  • Al aluminum and palladium
  • Al / Ni aluminum and nickel
  • NiO-Ni / Al nickel oxide and nickel and aluminum
  • CuO copper oxide and copper and aluminum
  • the solder has the following chemical composition: Ag 59 Cu27, 5 lni 2 , 5 Ti; TiCui 5 Nii 5 ; TiZr 3 7, 5 Cui 5 iio or similar compositions.
  • the nanofoil 4 is ignited at an initial point 6, which can be arranged, for example, on an edge. This ignition takes place by a brief heat input by, for example, a laser beam or by local heating. At this point, the nanofoil 4 heats up so strongly that the nanofoil 4 melts and thereby also causes the solder 5 to melt. The heat generated spreads in a direction 7 along the base material surface 3 from. After the exothermic reaction of the nanofoil 4, the solder 5 is fused with the nanofoil 4 and firmly connected to the base material 2.
  • FIG. 2 shows an extension of the arrangement shown in FIG. 1 for producing a protective layer.
  • a further additional protective layer 8 is arranged on the solder 5 before the ignition.
  • the generation of the protective layer is similar to that in FIG. 1 due to an ignition of the nanofoil at an initial point 6 and results in the development of heat in the direction 7.
  • the additional protective layer 8 may be a ceramic protective layer having the following composition.
  • the ceramic systems in question are mainly carbides, but also borides or the like into consideration. Examples would be Tic, B 4 C, TiB 2 or similar compositions.
  • intermetallic phases such as TiAl or hard alloys such. B. cobalt-based stellite into consideration.
  • FIG. 3 shows an arrangement of the base material 2 after the exothermic reaction.
  • the nanofoil 4 itself serves as a protective layer in connection with the solder 5.
  • This can be up a ceramic protective layer can be dispensed with.
  • the arrangement of the platy hard materials 9, which may be nickel-aluminum molecules, for example, is such that they are arranged one above the other in a viewing direction 10 that is orthogonal to the base material surface 3. This would then resemble a tile-like or fish scale-like structure. This means that in each case one end of the plate-like hard materials 9 is arranged above the other plate-like hard material 9.
  • FIG. 4 shows an arrangement of the nanofoil 4 and the solder 5 on the base material 2 before the exothermic reaction.
  • the difference to the arrangement according to FIG. 4 compared with the arrangement according to FIG. 1 is that now several layers of nanofoil 4 and solder 5 are used.
  • FIG. 4 as an example only one layer of two nanofoils 4 is shown. But there are also several layers of nanofoils 4 possible.
  • the platy hard materials 9 remain in the solder 5 and can be arranged (as shown in FIG. 3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
PCT/EP2013/057418 2012-05-07 2013-04-10 Verfahren zur aufbringung einer schutzschicht auf eine turbinenkomponente Ceased WO2013167334A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147031057A KR102070769B1 (ko) 2012-05-07 2013-04-10 터빈 컴포넌트에 보호층을 제공하기 위한 방법
JP2015510699A JP5897766B2 (ja) 2012-05-07 2013-04-10 タービン部品に保護層を適用するための方法
EP13719438.7A EP2809826B1 (de) 2012-05-07 2013-04-10 Verfahren zur aufbringung einer schutzschicht auf eine turbinenkomponente
US14/398,462 US9309597B2 (en) 2012-05-07 2013-04-10 Process for applying a protective layer to a turbine component
IN8271DEN2014 IN2014DN08271A (enExample) 2012-05-07 2013-04-10
CN201380024288.XA CN104284999B (zh) 2012-05-07 2013-04-10 用于将保护层施加到涡轮机部件上的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12166937.8 2012-05-07
EP20120166937 EP2662474A1 (de) 2012-05-07 2012-05-07 Verfahren zur Aufbringung einer Schutzschicht auf eine Turbinenkomponente

Publications (1)

Publication Number Publication Date
WO2013167334A1 true WO2013167334A1 (de) 2013-11-14

Family

ID=48227188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/057418 Ceased WO2013167334A1 (de) 2012-05-07 2013-04-10 Verfahren zur aufbringung einer schutzschicht auf eine turbinenkomponente

Country Status (8)

Country Link
US (1) US9309597B2 (enExample)
EP (2) EP2662474A1 (enExample)
JP (1) JP5897766B2 (enExample)
KR (1) KR102070769B1 (enExample)
CN (1) CN104284999B (enExample)
IN (1) IN2014DN08271A (enExample)
PL (1) PL2809826T3 (enExample)
WO (1) WO2013167334A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160003064A1 (en) * 2014-07-02 2016-01-07 United Technologies Corporation Abrasive Coating and Manufacture and Use Methods
US20160003065A1 (en) * 2014-07-02 2016-01-07 United Technologies Corporation Abrasive Coating and Manufacture and Use Methods
US10786875B2 (en) 2014-07-02 2020-09-29 Raytheon Technologies Corporation Abrasive preforms and manufacture and use methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9731384B2 (en) * 2014-11-18 2017-08-15 Baker Hughes Incorporated Methods and compositions for brazing
DE102014118430A1 (de) * 2014-12-11 2016-06-16 Endress + Hauser Gmbh + Co. Kg Aktivhartlotmaterial und Verfahren zur Aktivhartlötung von Bauteilen
CN110468406B (zh) * 2019-09-02 2020-12-15 中机智能装备创新研究院(宁波)有限公司 耐磨涂层及其制备方法、盾构滚刀的刀圈、盾构滚刀和盾构机
US11541470B2 (en) * 2021-04-02 2023-01-03 General Electric Company Methods of furnace-less brazing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE700083A (enExample) * 1966-10-14 1967-12-01
US20020075999A1 (en) * 2000-09-29 2002-06-20 Peter Rother Vacuum enclosure for a vacuum tube tube having an X-ray window
EP1391537A1 (en) * 2001-05-31 2004-02-25 Mitsubishi Heavy Industries, Ltd. Coating forming method and coating forming material, and abrasive coating forming sheet
EP1498682A1 (en) * 2002-04-22 2005-01-19 Tokyo Bureizu Kabushiki Kaisha Titanium-made plate-type heat exchanger and production method therefor
WO2009133105A1 (de) * 2008-04-28 2009-11-05 Siemens Aktiengesellschaft Verfahren zur erzeugung einer hermetisch dichten, elektrischen durchführung mittels exothermer nanofolie
WO2011000348A1 (de) * 2009-06-30 2011-01-06 Mtu Aero Engines Gmbh Beschichtung und verfahren zum beschichten eines bauteils
DE102010004193A1 (de) * 2010-01-08 2011-07-14 Siemens Electronics Assembly Systems GmbH & Co. KG, 81379 Vorrichtung, Bestückautomat und Verfahren zum thermischen Verbinden von Bauelementen an ein Substrat

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040124231A1 (en) 1999-06-29 2004-07-01 Hasz Wayne Charles Method for coating a substrate
JP2001099660A (ja) * 1999-09-30 2001-04-13 Toshiba Corp 無線通信によるガソリンスタンドに対する管理システム
US6736942B2 (en) * 2000-05-02 2004-05-18 Johns Hopkins University Freestanding reactive multilayer foils
US6991856B2 (en) * 2000-05-02 2006-01-31 Johns Hopkins University Methods of making and using freestanding reactive multilayer foils
US7361412B2 (en) * 2000-05-02 2008-04-22 Johns Hopkins University Nanostructured soldered or brazed joints made with reactive multilayer foils
US20010046597A1 (en) * 2000-05-02 2001-11-29 Weihs Timothy P. Reactive multilayer structures for ease of processing and enhanced ductility
US20050082343A1 (en) * 2000-05-02 2005-04-21 Jiaping Wang Method of joining using reactive multilayer foils with enhanced control of molten joining materials
FR2814473B1 (fr) * 2000-09-25 2003-06-27 Snecma Moteurs Procede de realisation d'un revetement de protection formant barriere thermique avec sous-couche de liaison sur un substrat en superalliage et piece obtenue
JP2007501715A (ja) * 2003-05-13 2007-02-01 リアクティブ ナノテクノロジーズ,インク. 反応性多層接合において熱波を制御する方法およびそれによって得られた製品
US20060220223A1 (en) * 2005-03-29 2006-10-05 Daoqiang Lu Reactive nano-layer material for MEMS packaging
US7354659B2 (en) * 2005-03-30 2008-04-08 Reactive Nanotechnologies, Inc. Method for fabricating large dimension bonds using reactive multilayer joining
WO2007112062A2 (en) 2006-03-24 2007-10-04 Parker-Hannifin Corporation Reactive foil assembly
US20070235500A1 (en) * 2006-03-31 2007-10-11 Daewoong Suh Room temperature joining process with piezoelectric ceramic-activated reactive multilayer foil
US20070257364A1 (en) * 2006-04-27 2007-11-08 Van Heerden David P Methods of reactive composite joining with minimal escape of joining material
US8728409B2 (en) * 2006-06-05 2014-05-20 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for suspension wicking of nanoparticles into microchannels
US8342383B2 (en) * 2006-07-06 2013-01-01 Praxair Technology, Inc. Method for forming sputter target assemblies having a controlled solder thickness
US20080110962A1 (en) * 2006-07-24 2008-05-15 Neeraj Saxena Process for joining materials using a metallic heat source within a controlled atmosphere
US20090186195A1 (en) * 2006-09-08 2009-07-23 Reactive Nanotechnologies, Inc. Reactive Multilayer Joining With Improved Metallization Techniques
US7837086B2 (en) * 2007-01-09 2010-11-23 Lockheed Martin Corporation System, method, and apparatus for forming ballistic armor from ceramic and shape memory metallic alloy materials
US8074869B2 (en) * 2007-09-24 2011-12-13 Baker Hughes Incorporated System, method, and apparatus for reactive foil brazing of cutter components for fixed cutter bit
US7724791B2 (en) * 2008-01-18 2010-05-25 Northrop Grumman Systems Corporation Method of manufacturing laser diode packages and arrays
US7644854B1 (en) * 2008-07-16 2010-01-12 Baker Hughes Incorporated Bead pack brazing with energetics
DE102008060116A1 (de) * 2008-12-03 2010-06-10 Ab Skf Verfahren zur Herstellung einer Lageranordnung und Lageranordnung
DE102009015502B4 (de) * 2009-04-02 2013-08-29 Ulrich Bingel Verfahren zum Herstellen eines reaktiven Halbzeuges und reaktives Halbzeug
US20110031301A1 (en) * 2009-08-06 2011-02-10 Segletes David S Joining of Electrical Generator Components
US20110114705A1 (en) * 2009-11-19 2011-05-19 Santa Barbara Infrared Method for creating thermal bonds while minimizing heating of parts
US20110135956A1 (en) * 2009-12-08 2011-06-09 General Electric Company Method of joining materials, and articles made therewith
TW201214909A (en) * 2010-09-30 2012-04-01 Arima Lasers Corp Conduction cooled package laser and packaging method thereof
US8987052B2 (en) * 2013-01-31 2015-03-24 Seagate Technology Llc Attachment of microelectronic components

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE700083A (enExample) * 1966-10-14 1967-12-01
US20020075999A1 (en) * 2000-09-29 2002-06-20 Peter Rother Vacuum enclosure for a vacuum tube tube having an X-ray window
EP1391537A1 (en) * 2001-05-31 2004-02-25 Mitsubishi Heavy Industries, Ltd. Coating forming method and coating forming material, and abrasive coating forming sheet
EP1498682A1 (en) * 2002-04-22 2005-01-19 Tokyo Bureizu Kabushiki Kaisha Titanium-made plate-type heat exchanger and production method therefor
WO2009133105A1 (de) * 2008-04-28 2009-11-05 Siemens Aktiengesellschaft Verfahren zur erzeugung einer hermetisch dichten, elektrischen durchführung mittels exothermer nanofolie
WO2011000348A1 (de) * 2009-06-30 2011-01-06 Mtu Aero Engines Gmbh Beschichtung und verfahren zum beschichten eines bauteils
DE102010004193A1 (de) * 2010-01-08 2011-07-14 Siemens Electronics Assembly Systems GmbH & Co. KG, 81379 Vorrichtung, Bestückautomat und Verfahren zum thermischen Verbinden von Bauelementen an ein Substrat

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160003064A1 (en) * 2014-07-02 2016-01-07 United Technologies Corporation Abrasive Coating and Manufacture and Use Methods
US20160003065A1 (en) * 2014-07-02 2016-01-07 United Technologies Corporation Abrasive Coating and Manufacture and Use Methods
US10012095B2 (en) * 2014-07-02 2018-07-03 United Technologies Corporation Abrasive coating and manufacture and use methods
US10018056B2 (en) * 2014-07-02 2018-07-10 United Technologies Corporation Abrasive coating and manufacture and use methods
US10786875B2 (en) 2014-07-02 2020-09-29 Raytheon Technologies Corporation Abrasive preforms and manufacture and use methods
US11752578B2 (en) 2014-07-02 2023-09-12 Rtx Corporation Abrasive preforms and manufacture and use methods

Also Published As

Publication number Publication date
CN104284999A (zh) 2015-01-14
US9309597B2 (en) 2016-04-12
EP2809826A1 (de) 2014-12-10
EP2809826B1 (de) 2016-06-22
EP2662474A1 (de) 2013-11-13
PL2809826T3 (pl) 2017-04-28
CN104284999B (zh) 2016-12-21
JP5897766B2 (ja) 2016-03-30
JP2015526624A (ja) 2015-09-10
KR102070769B1 (ko) 2020-01-29
IN2014DN08271A (enExample) 2015-05-15
KR20150009964A (ko) 2015-01-27
US20150110962A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
EP2809826B1 (de) Verfahren zur aufbringung einer schutzschicht auf eine turbinenkomponente
EP2317078B2 (de) Abrasive einkristalline Turbinenschaufel
EP2316988B1 (de) Verschleiss- und oxidationsbeständige Turbinenschaufel
EP2414125B1 (de) Doppellotelement umfassend eine erste schicht aus einem ni-basierten lot sowie eine zweite schicht mit aktivem element, verfahren zu dessen herstellung und verwendungen desselben ; gasturbinenkomponente
DE102012212954B4 (de) Kaltgesprühte und wärmebehandelte Beschichtung für Magnesium
DE102014103000A1 (de) Bauteil mit mikrogekühlter laserabgeschiedener Materialschicht und Verfahren zur Herstellung
CH704833A1 (de) Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente.
WO2016150720A1 (de) Verfahren zum erzeugen eines bauteiles aus einer superlegierung mit einem pulverbettbasierten additiven herstellungsverfahren und bauteil aus einer superlegierung
EP2078579A1 (de) Verfahren zum Löten eines Bauteils und Bauteil mit Löt- und Schweissstellen
DE102009031313B4 (de) Beschichtung und Verfahren zum Beschichten eines Bauteils
EP1707650A1 (de) Matrix und Schichtsystem
EP1759806B1 (de) Verfahren zur Reparatur eines Risses mittels Hartlöten
EP3153269B1 (de) Reparatur verschlissener bauteiloberflächen
DE112014003451T5 (de) Funktional gradiertes Wärmedämmschichtsystem
DE102005018062B4 (de) Verfahren zur Produktion von Heizeinrichtungen für Komponenten für Spritzgussgeräte
EP3475017A1 (de) Verfahren zur additiven herstellung mittels poröser hilfsstruktur, bauteil und vorrichtung
DE102018001460A1 (de) Verfahren und Vorrichtung zum stoffschlüssigen Verbinden metallischer Werkstoffe mittels zumindest einer Laserstrahlquelle
EP2845918A1 (de) Verfahren zur zumindest teilweisen Beschichtung einer Schaufel, eine Beschichtungsvorrichtung und eine Schaufel
EP1867423A1 (de) Verfahren zum Reparieren eines Bauteils durch Verlöten eines mit Lot beschichteten Bleches
EP1707301B1 (de) Verfahren zum Aufbringen von Fasermatten auf die Oberfläche oder in eine Vertiefung eines Bauteiles
WO2019076677A1 (de) Verfahren zur herstellung eines gleitlagers sowie ein mit dem verfahren hergestelltes gleitlager
EP1929060A1 (de) Verfahren zur herstellung einer schutzschicht, schutzschicht und bauteil mit einer schutzschicht
DE102006035765A1 (de) Verfahren und Anordnung zum Erzeugen einer Löt- oder Diffusionsverbindung von Bauteilen aus gleichen oder unterschiedlichen Werkstoffen
EP2128300A1 (de) Verfahren zum Hochgeschwindigkeits-Flammenspritzen
EP2145974A1 (de) Verfahren zum Hochgeschwindigkeits-Flammenspritzen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13719438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013719438

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015510699

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14398462

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147031057

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE