WO2013166971A1 - 混凝土结构温差收缩效应的分析方法 - Google Patents

混凝土结构温差收缩效应的分析方法 Download PDF

Info

Publication number
WO2013166971A1
WO2013166971A1 PCT/CN2013/075355 CN2013075355W WO2013166971A1 WO 2013166971 A1 WO2013166971 A1 WO 2013166971A1 CN 2013075355 W CN2013075355 W CN 2013075355W WO 2013166971 A1 WO2013166971 A1 WO 2013166971A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature difference
construction
structural
internal force
effect
Prior art date
Application number
PCT/CN2013/075355
Other languages
English (en)
French (fr)
Inventor
傅学怡
孙璨
吴兵
Original Assignee
悉地国际设计顾问(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 悉地国际设计顾问(深圳)有限公司 filed Critical 悉地国际设计顾问(深圳)有限公司
Publication of WO2013166971A1 publication Critical patent/WO2013166971A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the invention relates to the technical field of structural engineering, in particular to an analysis method for temperature difference shrinkage effect of a concrete structure.
  • the existing calculation models and analysis methods have problems such as rough algorithm, wrong constraints, unable to reflect the actual generation process of the structure and low accuracy of calculation results, which is difficult to be accurate. It is difficult to predict and solve the problems existing in the construction of the concrete structure, and it is difficult to adapt to the design and construction needs of the concrete structure.
  • the technical problem to be solved by the invention is to provide an analysis method for the temperature difference shrinkage effect of the concrete structure, and the internal force and the deformation amount of the temperature difference at any time during the whole process of the concrete structure construction can be obtained, thereby fundamentally solving the temperature difference shrinkage effect of the concrete structure.
  • Solving the problem accurately reveals the development law of the temperature difference shrinkage effect of the concrete structure, and provides the basis for the structural design and the targeted control measures during construction.
  • An analysis method for temperature difference shrinkage effect of a concrete structure comprising:
  • Formulate the construction schedule plan determine the construction period of each sub-structure during the construction process, the construction period of the post-casting belt closing stage and the construction period of the later decoration stage;
  • the whole process simulation is carried out.
  • the formation process of the concrete structure is gradually simulated based on the structural model, and at the same time, the generation process of the concrete structure is combined, and the time effect is considered.
  • the nonlinear finite element method is used to calculate the structural internal force and structural deformation caused by the accumulation of temperature difference contraction effect.
  • the linear finite element method calculates the structural internal force and the structural deformation caused by the accumulation of the temperature difference contraction effect, and specifically includes: Step A: Simulating a first substructure on the structural model according to the progress of the construction simulation, the first sub The structure is a substructure that is in the construction period according to the simulated construction progress;
  • Step B applying an initial temperature difference to the first substructure generated by the simulation, applying a temperature difference increment to the substructures other than the first substructure that have been generated in the structural model, and calculating each by a nonlinear finite element method
  • the structural internal force and the structural deformation amount of the substructure due to the environmental temperature difference, the initial temperature difference is the difference between the lowest temperature of the current construction period and the temperature of the concrete pouring during the construction simulation, and the temperature difference is increased.
  • the amount is the difference between the lowest temperature of the current construction period minus the minimum temperature of the completed previous construction period;
  • Step c Considering the creep and shrinkage effects of the concrete, correcting the calculated internal force and structural deformation of the structure, and obtaining the internal force and the structural deformation amount of the temperature difference contraction structure considering the time effect;
  • Steps A, B, and C are repeated in accordance with the construction schedule, until the construction simulation of all of the substructures is completed.
  • the construction process of the concrete structure is gradually simulated based on the structural model according to the construction progress of the simulation, and the generation process of the concrete structure is combined with the consideration of the time effect.
  • the nonlinear finite element method calculates the structural internal force and the structural deformation caused by the accumulation of the temperature difference contraction effect, and specifically includes: performing a construction simulation of the post-casting belt closing on the structural model, and simulating the post-casting belt on the structural model;
  • the nonlinear finite element method is used to calculate the structural internal force and the structural deformation caused by the accumulation of the temperature difference contraction effect, and specifically includes: applying the temperature difference increment of the post-decoration stage to the overall structure of the structural model, and calculating the nonlinear finite element method by using the nonlinear finite element method The structural internal force and structural deformation caused by the environmental temperature difference of the structural model;
  • the method for temperature difference contraction effect of the concrete structure further comprises: structural internal force and structural change caused by the calculated accumulation of the temperature difference contraction effect Shape, find the component and the area where the stress or deformation is relatively large in the structural model under the effect of temperature difference contraction.
  • the method for the temperature difference contraction effect of the concrete structure further includes: optimizing the parameters introduced in the construction simulation according to the calculated structural internal force and structural deformation caused by the accumulation of the temperature difference contraction effect or After the construction schedule is revised, the temperature difference shrinkage effect of the concrete structure is re-analyzed.
  • the analysis method of the temperature difference shrinkage effect of the concrete structure in the invention the construction simulation of the whole process is carried out according to the pre-established construction period plan, and the concrete structure generation process is gradually simulated along with the simulation construction progress, and the structure generation process is considered in consideration of the time.
  • the nonlinear finite element method of the effect is used to calculate the internal force and structural deformation caused by the accumulation of the temperature difference contraction effect.
  • the structural internal force and structural deformation at any time during the construction of the concrete structure can be obtained, and the problem of solving the temperature difference contraction effect is fundamentally solved.
  • the method of the invention has important practical value and guiding significance especially for engineering design and construction control of complex and long concrete structures.
  • FIG. 1 is a flow chart 1 of an analysis method for a temperature difference contraction effect of a concrete structure according to an embodiment of the present invention
  • Figure 2 is a practical engineering application case of the present invention - a schematic diagram of the division of the 2-layer basement post-casting zone;
  • FIG. 3 is a flow chart of an analysis method for temperature difference shrinkage effect of a substructure during construction in the embodiment of the present invention
  • FIG. 4 is a second flow chart of an analysis method for temperature difference shrinkage effect of a concrete structure according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides an analysis method for the temperature difference shrinkage effect of the concrete structure, and the internal force and the deformation amount of the temperature difference at any time during the whole process of the concrete structure construction can be obtained, which provides a basis for the structural design and the targeted control measures during the construction.
  • Embodiments of the present invention provide an analysis method for a temperature difference contraction effect of a concrete structure. As shown in FIG. 1, the method includes:
  • the width of the post-casting strip is generally about 800 ⁇ 1000mm.
  • the setting position and spacing of the post-casting strip mainly depends on two aspects: First, the temperature difference of the location of the project is changed. When the temperature difference is large, the post-casting strip can be appropriately reduced. The spacing of the project; the second is the actual structure of the project, the design and division of the post-casting belt should be combined with the actual structure of the project, pay attention to whether it is convenient to construct.
  • the concrete structure is divided into relatively independent sub-structures (or construction structure groups) according to the construction schedule of each stage.
  • the substructure is only a representation of the relative structure.
  • the specific configuration of the substructure can be combined with the structural composition and construction process of the specific analysis object.
  • the natural components corresponding to the construction phase in the analysis object are included, including several units such as beams and plates. , column, etc., such as a floor structure can be considered as a substructure.
  • a large complex structure is drawn It is divided into several sub-structures, and the substructure is used to analyze and calculate the overall structure, which can effectively improve the calculation efficiency.
  • the stiffness matrix of the newly generated substructure and the existing substructure (the generated substructure) is established by combining the construction progress of each stage, and a large complex structure is divided into several substructures, which are determined separately.
  • the stiffness matrix of each substructure is assembled into a whole structure, and finally the stiffness matrix of the overall structure is determined.
  • a floor structure can be considered as a substructure. Before the post-casting belt is closed, the sub-structures do not affect each other in the horizontal direction, and work independently, and only the interaction of the sub-structures exists between the upper and lower layers.
  • a structural model is established for the concrete structure that needs to be analyzed for the temperature difference contraction effect, a post-casting belt is set on the structural model, and the structural model is divided into several sub-structures.
  • Fig. 2 it is a schematic diagram of a 2-layer basement post-casting belt according to an embodiment of the present invention.
  • the construction process is generally divided into: sub-structure construction stage, post-casting belt closing stage and post-decoration stage.
  • the construction stage of the substructure the main structure of the building is formed layer by layer, and the post-casting belt is poured into the post-casting belt to form the whole structure, and the later decorative stage is filled with covering, exterior decoration and interior decoration. Therefore, the construction schedule generally includes: the construction period of each substructure of the substructure construction stage, the construction period of the post-construction closure stage and the construction period of the later decoration stage.
  • the construction schedule can be formulated according to the actual conditions of the project, and the construction period Generally, it is in units of months, and may also be days. This embodiment does not limit this.
  • a specific embodiment of the present invention has a 2-story basement with a 5-story tower. It is assumed that construction starts in March, and a basement structure is completed every two months. One floor tower (5 floors in total) is completed in one month, and the decoration stage is half a year.
  • the approximate plan for the construction period is as follows:
  • the construction simulation of the whole process is carried out according to the construction period plan determined in 1 12, and the substructure and the post-casting zone are gradually formed on the structural model according to the construction progress, and the structural information and construction information of the substructure or the post-casting zone are introduced.
  • Etc. including: the properties of the elements in the substructure, the load information, the material properties, the constraints, and the parameters in time, the structural model is gradually refined into a solid model close to the entity; while the structural generation process is simulated, the temperature difference shrinks in parallel The internal force of the structure and the amount of structural deformation caused by the accumulation of effects.
  • the analysis method of the temperature difference shrinkage effect of the concrete structure according to the embodiment is carried out according to a pre-established construction schedule, and the construction process of the whole process is carried out according to the construction progress of the simulation, and the concrete structure generation process is gradually simulated, and the structure generation process is considered together.
  • the time-effect nonlinear finite element method is used to calculate the internal force and structural deformation caused by the accumulation of temperature difference contraction effect, and the internal force and structural deformation of the concrete structure can be obtained at any time during the construction process of the concrete structure, and the solution to the temperature difference contraction effect is fundamentally solved. , to provide a basis for the structural design of the concrete structure and the targeted control during construction.
  • the method of the invention has important practical value and guiding significance especially for engineering design and construction control of complex and super long concrete structures.
  • the specific calculation process of the construction simulation and the structural internal force and the structural deformation amount caused by the accumulation of the temperature difference contraction effect shown in the step 1 13 is as follows.
  • step 1 13 when performing the construction simulation of the substructure construction stage, step 1 13 includes:
  • the first substructure is simulated on the structural model, and the first substructure is a substructure that is in the construction period according to the simulated construction progress;
  • initial temperature difference is the difference between the lowest temperature of the current construction period and the temperature of the concrete pouring during the construction simulation.
  • the temperature difference increment is the lowest temperature of the current construction period minus the lowest of the previous construction period of the completed construction simulation. The difference in temperature;
  • the temperature difference of the concrete structure changes from the beginning of construction to the decoration period, and the overall structure temperature difference shrinkage effect is usually the most unfavorable.
  • the temperature difference of the concrete structure is mainly divided into two types: temperature difference (positive temperature difference) and temperature difference (negative temperature difference).
  • the expansion deformation of the concrete structure under the positive temperature difference can partially offset the shrinkage deformation of the concrete material, and the shrinkage deformation trend of the concrete structure under the negative temperature difference is consistent with the shrinkage deformation of the concrete material, and the two are superimposed on the concrete shrinkage deformation and tension.
  • the control of stress levels is even more unfavorable. Therefore, the analysis of the temperature difference effect of the concrete structure mainly considers the most unfavorable negative temperature difference conditions experienced during the whole construction process.
  • the initial temperature difference and the temperature difference increment in step B also consider the most unfavorable negative temperature difference experienced by each substructure.
  • the minimum temperature of each construction period is determined according to the statistical material of the temperature of the concrete structure, and the initial temperature difference is calculated. And the temperature difference is increased.
  • the difference between the lowest temperature of the first substructure during the construction period minus the temperature of the first substructure is the initial temperature difference applied to the first substructure, where the temperature during the pouring refers to the construction simulation of the first substructure.
  • the ambient temperature at which the imported concrete is poured.
  • the lowest temperature of the first substructure during the construction period minus the completed construction simulation, the difference in the lowest temperature during the construction period of the previous substructure is the increase in the temperature difference applied to the remaining substructures other than the first substructure. the amount.
  • the structural model is divided into i sub-structures, which are named sub-structure 1, sub-structure 2, sub-structure 3, ... sub-junction in the order of construction.
  • Construction i, construction simulation includes i+1 structural construction phase and 1 later decoration phase.
  • the specific process of temperature difference contraction analysis method is shown in Figure 4.
  • the first substructure (substructure 1) generated in the construction simulation is first calculated from time t. Start to the moment ⁇ End at the initial temperature difference eight! Under the action, the element in sub-structure 1 (which can be a rod unit or a planar unit) has an initial strain of ⁇ . .
  • the substructure includes several components such as beams, plates, columns, etc., which are collectively referred to as cells. Taking the space rod unit as an example, ignoring the lateral temperature deformation and shear deformation of the rod section, the rod unit has an initial strain along the axial direction:
  • ⁇ ⁇ is the temperature difference of substructure 1 in period 1 (time t. to time, optionally, ⁇ ⁇ can be substituted into the initial temperature difference of substructure 1.
  • the actual integral form of (3) can vary depending on the shape of the unit (rod, shell, solid).
  • ⁇ ⁇ ⁇ dv ⁇ [ ⁇ w T dv
  • the displacement vector under the global coordinate of the whole structure can be solved, and then the internal force and structural deformation caused by the environmental temperature difference can be obtained, that is, the initial temperature difference deformation of each unit node. , and the initial temperature difference internal force «. .
  • the calculated structural internal force and structural deformation amount are corrected to obtain the internal force and structural deformation amount of the temperature difference contraction considering the time effect.
  • the initial loading age for calculating the creep effect of concrete and the initial calculation period of concrete shrinkage strain are taken as ⁇ .
  • the initial strain, the initial stress ⁇ (considering the time t, the concrete creep in the time phase, the strain increment cA generated by the shrinkage effect, and the stress increment ⁇ 1) are established by the initial temperature difference as follows:
  • ⁇ s cs (t,) ⁇ ( ⁇ 0 ) ⁇ (t 1 ? t 0 ) + ⁇ + ⁇ (tp to) ( 8 )
  • E c is the elastic modulus of the concrete, from the time t.
  • the concrete creep coefficient corresponding to the time, ⁇ ⁇ ( , is the concrete shrinkage strain from time t to time.
  • the finite element format of the unit is:
  • [the unit stiffness matrix (W.) is the concrete aging coefficient corresponding to the time from the moment to the moment.
  • the corresponding long-term effect displacement increment of the generated global structural model can be solved, and then the displacement increment and internal force increment of each unit node can be obtained, and the calculated structural internal force and structural deformation amount can be corrected and obtained.
  • the temperature effect of the time effect shrinks the internal force of the structure and the amount of structural deformation, and the construction simulation process of the substructure 1 is completed.
  • the construction simulation process of substructure 2 (the second generated substructure) is as follows: After the substructure 2 is generated, the initial temperature difference is applied to the substructure 2 while the substructure 1 is applied with the temperature difference increment based on the analysis result of the previous stage, combined The substructure 1 and the newly generated substructure 2 are formed to form a new overall structural stiffness matrix, and the internal force and displacement increment of each unit under the temperature difference in this phase (construction phase-2, construction period of substructure 2) are calculated. .
  • step 1 13 specifically includes:
  • the construction simulation of the post-casting belt is closed, and the post-casting belt is generated on the structural model simulation, and the overall structure of the structural model is formed;
  • step 1 13 specifically includes:
  • the construction period of the later decoration stage is generally long, when the temperature difference increment of the subsequent decoration stage is applied to the whole structure, it is generally applied monthly, so as to obtain the structural internal force and structural deformation amount of the structural model of the later decoration stage.
  • the finite element calculation principle and the process of the structural internal force and the structural deformation amount are substantially similar to the calculation process of the sub-structure construction stage, and any person skilled in the art is within the technical scope disclosed by the present invention.
  • the temperature difference shrinkage effect analysis of the post-casting belt closing stage and the decorative stage can be easily accomplished by changing or replacing, and is not repeated here.
  • the analysis method of the temperature difference shrinkage effect of the concrete structure according to the embodiment of the present invention may also The temperature difference shrinkage effect during the use after completion acceptance is analyzed.
  • the specific step method is similar to the decoration stage. It is also considering the environmental temperature difference first, then considering the concrete creep and shrinkage effects. It is also best to accumulate monthly when the temperature difference increment is applied.
  • the analysis method of the temperature difference contraction effect of the concrete structure gradually simulates the formation process of the concrete structure with the simulation construction progress, and at the same time, the structural internal force and the structural deformation caused by the accumulation of the junction effect, the concrete structure can be obtained.
  • the structural internal force and structural deformation at any point during the construction process and after the completion of the acceptance test fundamentally solve the problem of solving the temperature difference shrinkage effect, and provide a basis for the structural design of the concrete structure and the targeted control during construction.
  • the concrete can be properly divided and set, and the low temperature closure of the concrete can be reasonably controlled during construction, thereby effectively reducing the adverse effects of the temperature difference shrinkage effect of the structure.
  • the method for analyzing the temperature difference shrinkage effect of the concrete structure according to the embodiment in addition to the steps 1 1 1 to 1 13 , further includes:
  • Step 1 14 According to the calculated internal force and structural deformation caused by the accumulation of the temperature difference contraction effect, find a component and a region where the stress or deformation is relatively large on the structural model under the effect of the temperature difference contraction. In order to find out the most unfavorable components and parts of the concrete structure under the action of the temperature difference contraction effect, in order to strengthen the unfavorable components and parts revealed by the calculation results in the construction process.
  • the method for analyzing the temperature difference contraction effect of the concrete structure further includes: Step 1 1 5, introducing the structural internal force and structural deformation amount caused by the accumulated temperature difference contraction effect accumulation, and introducing into the construction simulation After the parameters are optimized or the construction schedule is modified, the temperature difference shrinkage effect of the concrete structure is re-analyzed.
  • the parameters introduced in the construction simulation are optimized, and the essence is to change the building materials, structural dimensions, or construction control schemes.
  • the parameters representing the quantity or strength of the embedded steel bars introduced in the construction simulation may be modified.
  • the construction control plan refers to the amount of control during construction, such as the temperature during concrete pouring, and the curing conditions.
  • the finite stiffness is used to simulate the foundation. Or the constraint effect of the pile foundation on the foundation of the concrete structure, considering the actual translation and rotation of the foundation in the foundation soil, and the limited constraint effect of the foundation soil on the foundation.
  • the action response of the structure mainly comes from the load itself. Therefore, the bottom foundation usually adopts the assumption of the solid end constraint with infinite stiffness, and the internal force and deformation of the structure under the load effect are analyzed. The effect of the result is small and negligible.
  • the non-load effect analysis such as temperature difference, the influence on the structure mainly comes from the structural constraints.
  • the internal force and the deformation amount of the temperature difference at any time during the construction process and the use of the concrete structure can be obtained, and the simulation analysis and comparison by various construction plans are obtained. Elected, scientific and reasonable determination of the construction progress control plan.
  • the rational selection of engineering design and construction control schemes for concrete structures has important practical value and guiding significance, and effectively improves the technical and economic indicators of engineering projects.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course also by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种混凝土结构温差收缩效应的分析方法,包括:建立混凝土结构的结构模型,在结构模型上划分后浇带,进行子结构设置;制定施工工期计划;按施工工期计划进行全过程的施工模拟,随模拟的施工进度,基于结构模型逐步模拟混凝土结构的生成过程,同时结合混凝土结构的生成过程采用考虑时间效应的非线性有限元法计算温差收缩效应累积引起的结构内力和结构变形量。通过上述方法,可获得混凝土结构在施工过程以及竣工验收后使用过程中任一时间点的温差作用内力和变形量,为结构设计以及施工时采取针对性控制措施提供依据。

Description

混凝土结构温差收缩效应的分析方法 本申请要求于 2 01 2 年 05 月 08 日提交中国专利局、 申请号为 2 01 2 1 01 4 02 38. 5 , 发明名称为 "混凝土结构温差收缩效应的分析方 法" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。
技术领域
本发明涉及结构工程技术领域, 尤其涉及一种混凝土结构温差 收缩效应的分析方法。
背景技术
随着当前国内外建筑功能需求和结构体系设计的日益复杂化, 在建筑结构体系, 特别是在扩大地下室和混凝土楼盖体系中, 经常 出现体型超长且平面布置复杂的混凝土结构, 这种混凝土结构对环 境温差、 混凝土收缩、 徐变等因素十分敏感, 如果分析、 设计或施 工构造时措施不当, 极易引起混凝土结构 (如混凝土楼盖或其它结 构构件) 受拉开裂, 产生较大裂缝, 且不易修复, 影响建筑的使用 功能, 使整体结构存在安全隐患。
针对考虑环境温差, 混凝土收缩、 徐变等因素的温差收缩效应, 现有计算模型及分析方法存在算法粗略、 约束条件有误、 不能反映 结构实际生成过程以及计算结果准确性低等问题, 难以准确地揭示 混凝土结构温差收缩效应的发展规律, 也难以预测及解决施工中存 在的问题, 无法适应混凝土结构的设计施工需要。
发明内容
本发明所要解决的技术问题在于提供一种混凝土结构温差收缩 效应的分析方法, 可获得混凝土结构施工全过程任一时间点的温差 作用内力和变形量, 从而在根本上解决混凝土结构温差收缩效应的 求解问题, 准确揭示了混凝土结构温差收缩效应的发展规律, 为结 构设计以及施工时釆取针对性控制措施提供依据。 为达到上述目的, 本发明的实施例釆用如下技术方案:
一种混凝土结构温差收缩效应的分析方法, 包括:
建立欲分析混凝土结构的结构模型, 在所述结构模型上划分后 浇带, 进行子结构设置;
制定施工工期计划, 确定施工过程中每一所述子结构的施工工 期, 后浇带合拢阶段的施工工期和后期装饰阶段的施工工期;
按所述施工工期计划进行全过程的施工模拟, 随模拟的施工进 度, 基于所述结构模型逐步模拟所述混凝土结构的生成过程, 同时 结合所述混凝土结构的生成过程, 釆用考虑时间效应的非线性有限 元法计算温差收缩效应累积引起的结构内力和结构变形量。
进行子结构施工阶段的施工模拟时, 所述随模拟的施工进度, 基于所述结构模型逐步模拟所述混凝土结构的生成过程, 同时结合 所述混凝土结构的生成过程, 釆用考虑时间效应的非线性有限元法 计算温差收缩效应累积引起的结构内力和结构变形量, 具体包括: 步骤 A、 按照所述施工模拟的进度, 在所述结构模型上模拟生 成第一子结构, 所述第一子结构为按照模拟的施工进度正处于施工 工期的子结构;
步骤 B、 对模拟生成的第一子结构施加初始温差, 对所述结构 模型中已生成的除所述第一子结构之外的子结构施加温差增量, 釆 用非线性有限元法计算每一所述子结构因环境温差产生的结构内力 及结构变形量, 所述初始温差为所述施工模拟进行到的当前施工工 期内的最低温度减去混凝土浇筑时温度所得差值, 所述温差增量为 当前施工工期内的最低温度减去已完成的前一施工工期内的最低温 度所得差值;
步骤 c、 考虑混凝土徐变、 收缩效应, 对计算出的所述结构内 力和结构变形量进行修正, 获得考虑时间效应的温差收缩作用结构 内力及结构变形量;
按照所述施工工期计划, 重复执行步骤 A、 B 和 C , 直到完成 所有所述子结构的施工模拟。 进行后浇带合拢阶段的施工模拟时, 所述随模拟的施工进度, 基于所述结构模型逐步模拟所述混凝土结构的生成过程, 同时结合 所述混凝土结构的生成过程, 釆用考虑时间效应的非线性有限元法 计算温差收缩效应累积引起的结构内力和结构变形量, 具体包括: 在所述结构模型上进行后浇带合拢的施工模拟, 在所述结构模 型上模拟生成后浇带;
对所述后浇带施加初始温差, 对所述结构模型中已生成的子结 构施加所述后浇带合拢阶段的温差增量, 釆用非线性有限元法计算 所述结构模型因环境温差产生的结构内力及结构变形量;
考虑混凝土徐变、 收缩效应, 对计算出的所述结构内力和结构 变形量进行修正, 获得考虑时间效应的温差收缩作用结构内力及结 构变形量。
进行所述后期装饰阶段的施工模拟时,所述随模拟的施工进度, 基于所述结构模型逐步模拟所述混凝土结构的生成过程, 同时结合 所述混凝土结构的生成过程, 釆用考虑时间效应的非线性有限元法 计算温差收缩效应累积引起的结构内力和结构变形量, 具体包括: 对所述结构模型的整体结构施加所述后期装饰阶段的温差增 量, 釆用非线性有限元法计算所述结构模型因环境温差产生的结构 内力及结构变形量;
考虑混凝土徐变、 收缩效应, 对计算出的所述结构内力和结构 变形量进行修正, 获得考虑时间效应的温差收缩作用结构内力及结 构变形量。
计算因环境温差产生的所述结构内力及结构变形量或者对计算 出的所述结构内力和结构变形量进行修正时, 釆用有限刚度模拟地 基或桩基对所述混凝土结构的基础的约束作用, 考虑所述基础在地 基土中的实际的平动和转动, 以及地基土对所述基础的有限约束作 用。
进一步地, 所述混凝土结构温差收缩效应的方法, 还包括: 根据计算出的所述温差收缩效应累积引起的结构内力及结构变 形量, 找出在温差收缩效应作用下所述结构模型中应力或变形相对 较大的构件及所在区域。
进一步地, 所述混凝土结构温差收缩效应的方法, 还包括: 根据计算出的所述温差收缩效应累积引起的结构内力及结构变 形量, 对所述施工模拟中引入的参数进行优化或者对所述施工工期 计划进行修改后, 重新分析所述混凝土结构的温差收缩效应。
本发明中的混凝土结构温差收缩效应的分析方法, 按预先制定 的施工工期计划进行全过程的施工模拟, 随模拟的施工进度, 逐步 模拟混凝土结构的生成过程, 同时结合结构生成过程釆用考虑时间 效应的非线性有限元法计算温差收缩效应累积引起的结构内力和结 构变形量, 可获得混凝土结构施工过程任一时间点的结构内力和结 构变形量, 在根本上解决温差收缩效应的求解问题, 为混凝土结构 的结构设计以及施工时釆取针对性控制提供依据。 本发明所述方法 尤其对复杂超长的混凝土结构的工程设计和施工控制具有重要的实 用价值和指导意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例中混凝土结构温差收缩效应的分析方法流 程图一;
图 2本发明的实际工程应用案例 -2层地下室后浇带划分的示意 图;
图 3 为本发明实施例中子结构施工阶段温差收缩效应的分析方 法流程图;
图 4为本发明实施例中混凝土结构温差收缩效应的分析方法流 程图二。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
本发明实施例提供一种混凝土结构温差收缩效应的分析方法, 可获得混凝土结构施工全过程任一时间点的温差作用 内力和变形 量, 为结构设计以及施工时釆取针对性控制措施提供依据。
实施例:
本发明实施例提供一种混凝土结构温差收缩效应的分析方法, 如图 1所示, 该方法包括:
1 1 1、 建立欲分析混凝土结构的结构模型, 在结构模型上划分后 浇带, 进行子结构设置;
在混凝土结构的施工过程中, 由于缺少空调以及覆土、 装饰等 有利条件, 常会经历最不利的温差变化过程, 因此在混凝土结构(尤 其是超长复杂的混凝土结构) 的设计施工中, 后浇带的设置及后浇、 后合拢等措施十分必要。实际施工时后浇带宽度一般取 800〜1000mm 左右, 后浇带的设置位置及间距主要取决于两方面: 一是工程所在 地的温差变化幅度, 温差变化幅度较大时可适当减小后浇带的间距; 二是工程的实际结构体型, 后浇带的设计及划分要结合工程的实际 结构体型, 要注意考虑是否方便施工。
完成后浇带的设置后, 根据各阶段施工进度计划, 将混凝土结 构划分为相对独立的多个子结构 (或称施工结构组)。 子结构只是相 对整体结构的一个表述, 子结构的具体设置可结合具体分析对象的 结构构成和施工过程进行, 一般取分析对象中与施工阶段相对应的 自然构成部分, 包括若干单元如梁、 板、 柱等, 例如一层楼盖结构 即可认为是一个子结构。
分析混凝土结构的温差收缩效应时, 将一个大型的复杂结构划 分为若干子结构, 利用子结构对整体结构进行分析计算, 可有效提 高计算效率。 具体实施时, 结合各阶段的施工进度建立该阶段新生 成的子结构及既有子结构 ( 已生成的子结构) 各自的刚度矩阵, 将 一个大型的复杂结构划分为若干子结构, 先分别确定各子结构的刚 度矩阵, 再将各子结构装配成整体结构, 最后确定整体结构的刚度 矩阵。 可选地, 在混凝土楼盖体系中, 一层楼盖结构即可认为是一 个子结构。 在后浇带合拢前, 各子结构在水平方向互不影响, 独立 工作, 而只在上下层间存在子结构的相互作用。
本步骤中对需要进行温差收缩效应分析的混凝土结构, 建立结 构模型, 在结构模型上设置后浇带, 并将结构模型划分为若干个子 结构。 如图 2所示, 为本发明的一个具体实施例 -2层地下室后浇带 划分的示意图。
1 12、 制定施工工期计划, 确定施工过程中每一子结构的施工工 期、 后浇带合拢阶段的施工工期和后期装饰阶段的施工工期;
按施工顺序, 施工过程一般被依次划分为: 子结构施工阶段、 后浇带合拢阶段和后期装饰阶段。 子结构施工阶段逐层形成建筑的 主体结构, 后浇带合拢阶段浇筑后浇带形成整体结构, 后期装饰阶 段进行填土覆盖、 建筑外装饰和室内装饰装修等。 所以, 施工工期 计划一般包括: 子结构施工阶段每一子结构的施工工期、 后浇带合 拢阶段的施工工期和后期装饰阶段的施工工期, 施工工期计划可根 据工程项目 的实际情况制定, 施工工期一般以月为单位, 亦可以天 为单位, 本实施例对此不加限定。 例如, 本发明的一个具体实施例 共有 2层地下室 5层塔楼, 假设从 3 月份开始施工, 每两个月完成 一层地下室结构, 一个月完成一层塔楼(共 5层), 装饰阶段为半年, 施工工期的大致计划如下:
3、 4月施工 -2层地下室;
5、 6月施工 - 1层地下室, -2层地下室后浇带合拢;
7月施工 1层塔楼, - 1层地下室后浇带合拢;
8月〜 1 1 月施工 2 ~ 5层塔楼; 12月〜次年 5月后期装饰。
1 13、 按施工工期计划进行全过程的施工模拟, 随模拟的施工进 度, 基于结构模型逐步模拟混凝土结构的生成过程, 同时结合混凝 土结构的生成过程, 釆用考虑时间效应的非线性有限元法计算温差 收缩效应累积引起的结构内力和结构变形量。
本步骤中, 按 1 12 中确定的施工工期计划进行全过程的施工模 拟, 随施工进度, 在结构模型上逐步生成子结构和后浇带, 导入子 结构或后浇带的结构信息、 施工信息等, 具体包括: 子结构中单元 的属性、 荷载信息、 材料属性、 约束条件及时随参数等, 结构模型 逐步细化为接近实体的实体模型; 在进行结构生成过程模拟的同时, 并行计算温差收缩效应累积引起的结构内力和结构变形量。
本实施例所述混凝土结构温差收缩效应的分析方法, 按预先制 定的施工工期计划进行全过程的施工模拟, 随模拟的施工进度, 逐 步模拟混凝土结构的生成过程, 同时结合结构生成过程釆用考虑时 间效应的非线性有限元法计算温差收缩效应累积引起的结构内力和 结构变形量, 可获得混凝土结构施工过程任一时间点的结构内力和 结构变形量, 在根本上解决温差收缩效应的求解问题, 为混凝土结 构的结构设计以及施工时釆取针对性控制提供依据。 本发明所述方 法尤其对复杂超长的混凝土结构的工程设计和施工控制具有重要的 实用价值和指导意义。
具体地, 步骤 1 13 所示的施工模拟以及温差收缩效应累积引起 的结构内力和结构变形量的具体计算过程如下所述。
如图 3所示, 进行子结构施工阶段的施工模拟时, 步骤 1 13具 体包括:
A、 按照施工模拟的进度, 在结构模型上模拟生成第一子结构, 所述第一子结构为按照模拟的施工进度正处于施工工期的子结构;
B、 对模拟生成的第一子结构施加初始温差, 对结构模型中已 生成的除第一子结构之外的子结构施加温差增量, 釆用非线性有限 元法计算每一子结构因环境温差产生的结构内力及结构变形量, 初 始温差为施工模拟进行到的当前施工工期内的最低温度减去混凝土 浇筑时温度所得差值, 温差增量为当前施工工期内的最低温度减去 已完成施工模拟的前一施工工期内的最低温度所得差值;
与建筑的长期使用阶段相比, 混凝土结构从开始施工至装饰期 内温差变化幅度更大, 整体结构温差收缩效应通常最为不利。 从施 工开始算起, 混凝土结构的温差取值主要分为升温温差 (正温差) 及降温温差 ( 负温差) 两种。 正温差作用下混凝土结构的膨胀变形 与混凝土材料的收缩变形可部分相抵, 而负温差作用下混凝土结构 的收缩变形趋势则与混凝土材料的收缩变形一致, 二者叠加对混凝 土缩裂变形及受拉应力水平的控制更加不利。 因此, 混凝土结构温 差效应分析时主要考虑施工全过程所经历的最不利负温差工况。
所以, 步骤 B 中的初始温差和温差增量也考虑各子结构所经历 的最不利负温差, 具体实施中先根据混凝土结构所在地气温的统计 材料确定各施工工期内的最低温度, 再计算初始温差和温差增量。 第一子结构施工工期内的最低温度减去第一子结构浇筑时温度所得 差值即为对第一子结构施加的初始温差, 此处所述浇筑时温度指在 第一子结构的施工模拟时导入的混凝土浇筑时的环境温度。 第一子 结构施工工期内的最低温度减去已完成施工模拟的, 前一子结构施 工工期内的最低温度所得差值, 即为对除第一子结构之外的其余子 结构施加的温差增量。
C、 考虑混凝土徐变、 收缩效应, 对计算出的结构内力和结构 变形量进行修正, 获得考虑时间效应的温差收缩作用结构内力及结 构变形量;
按照施工工期计划, 重复执行步骤 A、 B 和 C , 直到完成所有 子结构的施工模拟。
下面对步骤 B和 C中釆用非线性有限元法计算温差收缩效应下 的结构内力及结构变形量的具体计算过程进行详细叙述。
一个具体的实施例中, 结构模型被划分为 i 个子结构, 按施工 顺序这些子结构依次命名为子结构 1 , 子结构 2 , 子结构 3 , ... 子结 构 i, 施工模拟包括 i+1个结构施工阶段和 1个后期装饰阶段, 温差 收缩效应分析方法的具体流程如图 4所示。
为便于理解, 先对施工模拟中第一个生成的子结构 (子结构 1 ) 进行计算, 从时刻 t。开始到时刻 ^结束在初始温差八!^作用下, 子结 构 1 中的单元 (可为杆单元或平面单元) 节点初始应变为 ^。 。 子 结构中包括若干构件如梁、 板、 柱等, 这些构件通称单元。 以空间 杆单元为例, 忽略杆件截面横向温度变形及剪切变形, 杆单元有沿 轴向的初应变:
s0 e=acATn ( 丄) 式中 ΔΊ 为子结构 在时段 内的温差, ^为混凝土线膨胀系数。
ΔΤη为子结构 1在时段 1 内 (时刻 t。到时刻 的温差, 可选地, ΔΤη 可代入子结构 1 的初始温差值。
设单元应力 -应变关系矩阵 [D] , 则单元考虑初应变时的实际应 变-应力关系的有限元格式为:
e W: ----- ( 2 ) 上式中(σ 为单元初始应力向量, 为单元初始应变向量, 为单元初应变向量。
引入单位虚功向量, 则单元内力虚功的积分表达式为:
Figure imgf000011_0001
[D]{s0} dV ( 3 )
( 3 ) 式的实际积分形式可根据单元的外形 (杆、 壳、 实体) 有 所变化。
设单元应变矩阵为 £为单元虚位移向量, ^ 为 1。时刻单 元位移向量, 则有:
{ =剛:。 ..... ( 4)
代入 ( 3 ) 式可得:
ί Γ { dv = Γ [ Γ wT dv
= Γ( ]Ί¾- W }:。) ----- ( 5 ) 上式中, [ = _[[sf , [ f = _[[sf 。 集合整体坐标下整体结构 (该阶段已生成的所有结构)的总的 内力虚功表达式为:
,。 = Wr([H [ ] },。) ..... ( 6 ) 只考虑温差效应而无外荷载作用时,外荷载所做总的虚功 零, 所以可建立子结构 1 内、外力总虚功的平衡方程 '。=(),且计及 }≠(), 则有
iKMt0=^{ ..... ( 7 )
由上式可求解整体结构整体坐标下的位移向量 ,进而得到因 环境温差产生的结构内力及结构变形量, 即各单元节点初始温差变 形 。, 及初始温差内力 «。。
然后考虑混凝土徐变、 收缩效应 (长期效应), 对计算出的结构 内力和结构变形量进行修正, 以获得考虑时间效应的温差收缩作用 结构内力及结构变形量。
为简化表达, 计算混凝土徐变效应的初始加载龄期及混凝土收 缩应变初始计算龄期均取为 ^。 由初始温差作用下初始应变 、 初 始应力 σ( , 考虑时刻 t。到时刻 阶段内混凝土徐变、 收缩效应产生 的应变增量 cA)、 应力增量 Δσ 1)建立关系表达式如下:
Δ scs (t,) = ε (ί0 )φ (t1 ? t0) + Δ + ^ (tp to) ( 8 )
其中, Ec 为混凝土的弹性模量, 为从时刻 t。到时刻 对应 的混凝土徐变系数, Δ^( , 为从时刻 t。到时刻 对应的混凝土收缩应 变。
单元的有限元格式为:
]{Δ , =[ }: + HD]{Assh}lA _____ ( 9 ) 上式化为应力增量表达式:
{Α }^ =[Z)]({Af}:sii -{f}i (fl,fo)-{A^};o ii) ( 10 ) 则有单元应力增量虚功方程: J{ } {^}:dV=}M W (")- ( .... ( 11 ) 即: }[ t )
Figure imgf000013_0001
- ( 12 )
上式中,
Figure imgf000013_0002
其中, [ 为单元刚度矩阵 (W。)为从时刻 开始到时刻 时对 应的混凝土老化系数。
集合整体坐 下子结构 1 总的虚功方程, 计及内、 外力总的虚 功增量为零, 且^}≠(), 则有
[ ] {^ =^M{F}to H 9]{Assh}toA -- ( 13 )
由上式可求解整体坐标下已生成的整体结构模型相应的长期效 应位移增量, 进而得到各单元节点位移增量及内力增量, 对计算出 的结构内力和结构变形量进行修正, 获得考虑时间效应的温差收缩 作用结构内力及结构变形量, 完成子结构 1 的施工模拟过程。
子结构 2 (第二个生成的子结构) 的施工模拟过程如下: 子结构 2生成后, 对子结构 2施加初始温差 同时子结构 1 施加温差增量 在前一阶段的分析结果基础上, 结合已有子结构 1和新生成的子结构 2,形成新的整体结构刚度矩阵,计算本阶段(施 工阶段 -2, 子结构 2 的施工工期) 内温差作用下各单元的结构内力 及位移增量。
考虑混凝土长期效应即混凝土徐变、 收缩效应,根据本阶段(施 工阶段 -2 ) 内温差作用引起的内力、 位移增量这些分析结果, 进一 步计算至本阶段结束时实际的考虑时间效应的温差收缩作用结构内 力及位移增量变化, 具体的有限元计算原理和过程与施工阶段 -1 子 结构 1 施工模拟的计算过程大致类似。 以此类推, 结合子结构生成 过程交替迭代计算, 依次通过非线性有限元法计算出在各子结构施 工阶段温差收缩效应累积引起的结构内力和结构变形量。
具体地, 在进行后浇带合拢阶段的施工模拟时, 步骤 1 13 具体 包括:
在结构模型上进行后浇带合拢的施工模拟, 在结构模型模拟上 生成后浇带, 结构模型的整体结构形成;
对结构模型中的后浇带施加初始温差, 对结构模型中已生成的 子结构施加后浇带合拢阶段的温差增量, 釆用非线性有限元法计算 结构模型因环境温差产生的结构内力及结构变形量;
考虑混凝土徐变、 收缩效应, 对计算出的结构内力和结构变形 量进行修正, 获得考虑时间效应的温差收缩作用结构内力及结构变 形量。
具体地, 在进行后期装饰阶段的施工模拟时, 步骤 1 13 具体包 括:
对结构模型的整体结构施加后期装饰阶段的温差增量, 釆用非 线性有限元法计算结构模型因环境温差产生的结构内力及结构变形 量;
考虑混凝土徐变、 收缩效应, 对计算出的结构内力和结构变形 量进行修正, 获得考虑时间效应的温差收缩作用结构内力及结构变 形量。
因后期装饰阶段施工工期一般比较长, 所以对整体结构施加后 期装饰阶段的温差增量时, 一般逐月 累计施加, 以便得到后期装饰 阶段结构模型每个月的结构内力及结构变形量。 在后浇带合拢阶段 和装饰阶段, 结构内力及结构变形量的有限元计算原理和过程与子 结构施工阶段的计算过程大致类似, 任何熟悉本技术领域的技术人 员在本发明揭露的技术范围内, 均可通过变化或替换轻易地完成后 浇带合拢阶段和装饰阶段的温差收缩效应分析, 在此不再——赘述。
本发明实施例所述混凝土结构温差收缩效应的分析方法, 还可 对竣工验收后使用过程中的温差收缩效应进行分析, 具体步骤方法 与装饰阶段类似, 也是先考虑环境温差, 再考虑混凝土徐变、 收缩 效应, 温差增量施加时也最好逐月 累计。
综上所述, 本发明实施例所述混凝土结构温差收缩效应的分析 方法, 随模拟的施工进度逐步模拟混凝土结构的生成过程, 同时结 效应累积引起的结构内力和结构变形量, 可获得混凝土结构在施工 过程以及竣工验收后使用过程中任一时间点的结构内力和结构变形 量, 在根本上解决温差收缩效应的求解问题, 为混凝土结构的结构 设计以及施工时釆取针对性控制提供依据。 例如, 根据分析结果, 可通过合理划分、 设置混凝土后浇带, 施工中合理控制混凝土低温 合拢, 有效减小结构的温差收缩效应的不利后果。
进一步地,本实施例所述混凝土结构温差收缩效应的分析方法, 除步骤 1 1 1〜1 13外, 还包括:
步骤 1 14、 根据计算出的所述温差收缩效应累积引起的所述结 构内力及结构变形量, 找出在温差收缩效应作用下所述结构模型上 应力或形变相对较大的构件及所在区域, 以摸清混凝土结构在温差 收缩效应作用下受力最不利的构件及部位, 以便在施工过程中有针 对性地对计算结果揭示的受力不利构件及部位进行加强。
进一步地, 所述混凝土结构温差收缩效应的分析方法, 还包括: 步骤 1 1 5、 根据计算出的所述温差收缩效应累积引起的所述结 构内力及结构变形量, 对所述施工模拟中引入的参数进行优化或者 对所述施工工期计划进行修改后, 重新分析所述混凝土结构的温差 收缩效应。
本步骤中对施工模拟中引入的参数进行优化, 其实质是改变建 筑材料, 结构尺寸, 或者施工控制方案等。 例如为了对计算结果揭 示的受力不利构件及部位进行加强, 可在施工模拟中引入的代表预 埋钢筋的数量或强度的参数进行修改。 其中所述施工控制方案指施 工时的控制量, 如混凝土浇筑时的温度, 养护条件等。 步骤 1 1 5对设计方案、 施工控制方案等进行修改后, 再次对混 凝土结构的温差收缩效应进行分析计算, 根据分析计算的结果, 对 混凝土结构的工程设计和施工控制方案的合理性作出评价。
可选地, 在所述计算因环境温差产生的结构内力及结构变形量 (温差作用内力和变形量) 或者对计算出的所述结构内力和结构变 形量进行修正时, 釆用有限刚度模拟地基或桩基对所述混凝土结构 的基础的约束作用, 考虑所述基础在地基土中的实际的平动和转动, 以及地基土对所述基础的有限约束作用。
混凝土结构受一般荷载作用的有限元分析模型中, 结构的作用 响应主要来自荷载作用 自身, 因而底部基础通常釆用刚度无穷大的 固端约束假定时, 对荷载效应作用下的结构内力、 变形等分析结果 影响很小可忽略; 而在温差等非荷载效应分析中, 对结构产生的影 响作用主要来自于结构的约束条件, 若混凝土结构基础仍釆用约束 刚度无穷大的假定, 对温差等非荷载效应的分析结果影响极大, 所 以在考虑最不利负温差及混凝土收缩效应叠加作用时, 应摒弃基础 固定端或不动铰的假定, 而考虑混凝土结构基础在地基土中的实际 的平动和转动, 以及地基土对混凝土结构基础的有限约束作用, 釆 用有限刚度模拟地基或桩基对结构模型的基础的约束作用。 具体可 参考 《建筑桩基技术规范》 ( JGJ 94-2008 )进行计算模拟, 如釆用非 线性弹簧模型, 假定当基础水平变形或基础转角位移超过一定限值 时, 地基土进入塑性状态, 地基土对结构基础的约束刚度将进一步 退化。
本发明所述混凝土结构温差收缩效应的分析方法, 可获得混凝 土结构在施工过程以及竣工验收后使用过程中任一时间点的温差作 用内力和变形量, 通过多种施工计划方案的模拟分析和比选, 能科 学、 合理地确定工程施工进度控制计划。 对混凝土结构 (尤其是复 杂超长的混凝土结构) 的工程设计和施工控制方案的合理选择具有 重要的实用价值和指导意义, 有效提升工程项目 的技术、 经济指标。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地 了解到本发明可借助软件加必需的通用硬件的方式来实现, 当然也 可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的 理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分 可以以软件产品的形式体现出来, 该计算机软件产品存储在可读取 的存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若干指令用 以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设 备等) 执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种混凝土结构温差收缩效应的分析方法, 其特征在于, 包 括:
建立欲分析混凝土结构的结构模型,在所述结构模型上划分后浇 带, 进行子结构设置;
制定施工工期计划, 确定施工过程中每一所述子结构的施工工 期, 后浇带合拢阶段的施工工期和后期装饰阶段的施工工期;
按所述施工工期计划进行全过程的施工模拟, 随模拟的施工进 度, 基于所述结构模型逐步模拟所述混凝土结构的生成过程, 同时结 合所述混凝土结构的生成过程, 釆用考虑时间效应的非线性有限元法 计算温差收缩效应累积引起的结构内力和结构变形量。
2、 根据权利要求 1 所述的方法, 其特征在于, 进行子结构施工 阶段的施工模拟时, 所述随模拟的施工进度, 基于所述结构模型逐步 模拟所述混凝土结构的生成过程, 同时结合所述混凝土结构的生成过 程, 釆用考虑时间效应的非线性有限元法计算温差收缩效应累积引起 的结构内力和结构变形量, 具体包括:
步骤 A、 按照所述施工模拟的进度, 在所述结构模型上模拟生成 第一子结构, 所述第一子结构为按照模拟的施工进度正处于施工工期 的子结构;
步骤 B、 对模拟生成的第一子结构施加初始温差, 对所述结构模 型中已生成的除所述第一子结构之外的子结构施加温差增量, 釆用非 线性有限元法计算每一所述子结构因环境温差产生的结构内力及结 构变形量, 所述初始温差为所述施工模拟进行到的当前施工工期内的 最低温度减去混凝土浇筑时温度所得差值, 所述温差增量为当前施工 工期内的最低温度减去已完成的前一施工工期内的最低温度所得差 值;
步骤 C、 考虑混凝土徐变、 收缩效应, 对计算出的所述结构内力 和结构变形量进行修正, 获得考虑时间效应的温差收缩作用结构内力 及结构变形量; 按照所述施工工期计划, 重复执行步骤 A、 B 和 C , 直到完成所 有所述子结构的施工模拟。
3、 根据权利要求 1 所述的方法, 其特征在于, 进行后浇带合拢 阶段的施工模拟时, 所述随模拟的施工进度, 基于所述结构模型逐步 模拟所述混凝土结构的生成过程, 同时结合所述混凝土结构的生成过 程, 釆用考虑时间效应的非线性有限元法计算温差收缩效应累积引起 的结构内力和结构变形量, 具体包括:
在所述结构模型上进行后浇带合拢的施工模拟,在所述结构模型 上模拟生成后浇带;
对所述后浇带施加初始温差,对所述结构模型中已生成的子结构 施加所述后浇带合拢阶段的温差增量, 釆用非线性有限元法计算所述 结构模型因环境温差产生的结构内力及结构变形量;
考虑混凝土徐变、 收缩效应, 对计算出的所述结构内力和结构变 形量进行修正, 获得考虑时间效应的温差收缩作用结构内力及结构变 形量。
4、 根据权利要求 1 所述的方法, 其特征在于, 进行所述后期装 饰阶段的施工模拟时, 所述随模拟的施工进度, 基于所述结构模型逐 步模拟所述混凝土结构的生成过程, 同时结合所述混凝土结构的生成 过程, 釆用考虑时间效应的非线性有限元法计算温差收缩效应累积 ] 起的结构内力和结构变形量, 具体包括:
对所述结构模型的整体结构施加所述后期装饰阶段的温差增量, 釆用非线性有限元法计算所述结构模型因环境温差产生的结构内力 及结构变形量;
考虑混凝土徐变、 收缩效应, 对计算出的所述结构内力和结构变 形量进行修正, 获得考虑时间效应的温差收缩作用结构内力及结构变 形量。
5、 根据权利要求 2 - 4任一项所述的方法, 其特征在于, 所述计 算因环境温差产生的结构内力及结构变形量或者对计算出的所述结 构内力和结构变形量进行修正时, 釆用有限刚度模拟地基或桩基对所 述混凝土结构的基础的约束作用, 考虑所述基础在地基土中的实际的 平动和转动, 以及地基土对所述基础的有限约束作用。
6、 根据权利要求 5所述的方法, 其特征在于, 还包括: 根据计算出的所述温差收缩效应累积引起的结构内力及结构变 形量, 找出在温差收缩效应作用下所述结构模型中应力或变形相对较 大的构件及所在区域。
7、 根据权利要求 6所述的方法, 其特征在于, 还包括: 根据计算出的所述温差收缩效应累积引起的结构内力及结构变 形量, 对所述施工模拟中引入的参数进行优化或者对所述施工工期计 划进行修改后, 重新分析所述混凝土结构的温差收缩效应。
PCT/CN2013/075355 2012-05-08 2013-05-08 混凝土结构温差收缩效应的分析方法 WO2013166971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210140238.5 2012-05-08
CN2012101402385A CN102663213A (zh) 2012-05-08 2012-05-08 混凝土结构温差收缩效应的分析方法

Publications (1)

Publication Number Publication Date
WO2013166971A1 true WO2013166971A1 (zh) 2013-11-14

Family

ID=46772704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075355 WO2013166971A1 (zh) 2012-05-08 2013-05-08 混凝土结构温差收缩效应的分析方法

Country Status (2)

Country Link
CN (1) CN102663213A (zh)
WO (1) WO2013166971A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512657A (zh) * 2019-09-26 2019-11-29 中国建筑第七工程局有限公司 一种用于地下室外墙后浇带支设的预制模板
CN113191041A (zh) * 2021-04-13 2021-07-30 武昌理工学院 城门洞型断面衬砌混凝土温控防裂参数计算方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663213A (zh) * 2012-05-08 2012-09-12 中建国际(深圳)设计顾问有限公司 混凝土结构温差收缩效应的分析方法
CN102880769B (zh) * 2012-10-23 2015-09-09 上海建工集团股份有限公司 大跨径混凝土斜拉桥的施工控制方法与预拱度计算方法
CN106570268B (zh) * 2016-11-04 2019-10-18 中南大学 混凝土梁结构温度-变形耦合分析方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979802A (zh) * 2010-11-05 2011-02-23 中国建筑第八工程局有限公司 超大面积混凝土施工方法
US20110257912A1 (en) * 2010-04-20 2011-10-20 Fuji Electric Holdings Co., Ltd. Apparatus for analysis and evaluation of characteristics of series-connected solar battery cells
CN102433930A (zh) * 2011-08-26 2012-05-02 中国建筑东北设计研究院有限公司 地上地下双向超长混凝土无缝设计方法
CN102663213A (zh) * 2012-05-08 2012-09-12 中建国际(深圳)设计顾问有限公司 混凝土结构温差收缩效应的分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100580676C (zh) * 2008-01-23 2010-01-13 中建国际(深圳)设计顾问有限公司 建筑钢结构施工过程温度应力仿真分析方法
CN101976279A (zh) * 2010-10-13 2011-02-16 东南大学 工程结构有限元模型评估方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110257912A1 (en) * 2010-04-20 2011-10-20 Fuji Electric Holdings Co., Ltd. Apparatus for analysis and evaluation of characteristics of series-connected solar battery cells
CN101979802A (zh) * 2010-11-05 2011-02-23 中国建筑第八工程局有限公司 超大面积混凝土施工方法
CN102433930A (zh) * 2011-08-26 2012-05-02 中国建筑东北设计研究院有限公司 地上地下双向超长混凝土无缝设计方法
CN102663213A (zh) * 2012-05-08 2012-09-12 中建国际(深圳)设计顾问有限公司 混凝土结构温差收缩效应的分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU, XUEYI ET AL.: "Analysis and calculation of temperature variation and shrinkage effects on RC building structures.", CHINA CIVIL ENGINEERING JOURNAL., vol. 40, no. 10, October 2007 (2007-10-01), pages 50 - 59 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512657A (zh) * 2019-09-26 2019-11-29 中国建筑第七工程局有限公司 一种用于地下室外墙后浇带支设的预制模板
CN113191041A (zh) * 2021-04-13 2021-07-30 武昌理工学院 城门洞型断面衬砌混凝土温控防裂参数计算方法及系统

Also Published As

Publication number Publication date
CN102663213A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
Milani et al. Failure analysis of seven masonry churches severely damaged during the 2012 Emilia-Romagna (Italy) earthquake: Non-linear dynamic analyses vs conventional static approaches
Lagomarsino et al. TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings
Milani Lesson learned after the Emilia-Romagna, Italy, 20–29 May 2012 earthquakes: A limit analysis insight on three masonry churches
Kolozvari et al. State-of-the-art in nonlinear finite element modeling of isolated planar reinforced concrete walls
Roca et al. Continuum FE models for the analysis of Mallorca Cathedral
CN106049951B (zh) 多级地震作用下工程结构抗震性能设计评估方法
Aguilar et al. Investigations on the structural behaviour of archaeological heritage in Peru: From survey to seismic assessment
Theodossopoulos et al. A review of analytical methods in the current design processes and assessment of performance of masonry structures
WO2013166971A1 (zh) 混凝土结构温差收缩效应的分析方法
Sharma et al. Pushover experiment and analysis of a full scale non-seismically detailed RC structure
Gao et al. Structural deformation monitoring and numerical simulation of a supertall building during construction stage
Xie et al. Rotational behaviors of fork-column dou-gong: experimental tests and hysteresis model
Miglietta et al. Finite/discrete element modelling of reversed cyclic tests on unreinforced masonry structures
Ruggieri et al. A numerical procedure for modeling the floor deformability in seismic analysis of existing RC buildings
CN103488909A (zh) 基于虚拟荷载的施工过程结构内力计算方法
Brandonisio et al. Closed form solution for predicting the horizontal capacity of masonry portal frames through limit analysis and comparison with experimental test results
Buddika et al. Seismic shear forces in post-tensioned hybrid precast concrete walls
Yu et al. Incremental sequentially linear analysis to control failure for quasi-brittle materials and structures including non-proportional loading
Tiberti et al. Experimental and numerical analysis of historical aseismic construction system
Xiang et al. An extended modal pushover procedure for estimating the in-plane seismic responses of latticed arches
Dutu et al. Shear spring model proposed for seismic evaluation of a timber framed masonry infilled wall
CN106599509A (zh) 一种模拟弦支穹顶结构施加预应力的方法
Wang et al. Equivalent constitutive model of steel with cumulative degradation and damage
Karatzetzou et al. Soil–foundation–structure interaction and vulnerability assessment of the Neoclassical School in Rhodes, Greece
Long et al. Experimental research on the anti-seismic properties of a five-stamping Tou-Kung joint of ancient Chinese buildings in the Ming Dynasty: A case study of Guang-yue Tower in Liaocheng City, Shandong Province

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.04.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13787505

Country of ref document: EP

Kind code of ref document: A1