WO2013166882A1 - 利用电厂余热淡化海水系统 - Google Patents

利用电厂余热淡化海水系统 Download PDF

Info

Publication number
WO2013166882A1
WO2013166882A1 PCT/CN2013/072511 CN2013072511W WO2013166882A1 WO 2013166882 A1 WO2013166882 A1 WO 2013166882A1 CN 2013072511 W CN2013072511 W CN 2013072511W WO 2013166882 A1 WO2013166882 A1 WO 2013166882A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
water
flash tank
condenser
waste heat
Prior art date
Application number
PCT/CN2013/072511
Other languages
English (en)
French (fr)
Inventor
钱学略
范永春
刘兵
张和福
Original Assignee
上海伏波环保设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012202003655U external-priority patent/CN202576022U/zh
Priority claimed from CN201210138159.0A external-priority patent/CN102642883B/zh
Application filed by 上海伏波环保设备有限公司 filed Critical 上海伏波环保设备有限公司
Publication of WO2013166882A1 publication Critical patent/WO2013166882A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the invention relates to the field of seawater desalination, in particular to a system for utilizing waste heat of a power plant to desalinate seawater. Background technique
  • Membrane method also known as reverse osmosis, uses the principle of osmotic pressure.
  • This method uses a semi-permeable membrane to achieve the purpose of separating fresh water from salt. Under normal circumstances, the semipermeable membrane allows the passage of solvent in the solution without allowing the solute to pass through. Due to the high salt content of seawater, if the seawater is separated from the fresh water by a semipermeable membrane, the fresh water will diffuse through the semipermeable membrane to one side of the seawater, so that the liquid level on the seawater side will rise, and pressure will be generated at a certain height. Fresh water no longer spreads.
  • the thermal method is generally divided into a distillation method and a flash method.
  • the distillation process is generally low temperature multi-effect distillation, and its main equipment is called an evaporator.
  • the seawater is heated by steam to a saturation temperature, and a part of the water vapor is evaporated, and the water vapor is condensed to be fresh water.
  • the flashing method is based on the principle of flashing, that is, seawater flashes a part of steam from a high pressure environment to a low pressure environment, and the part of the steam is condensed and then it is fresh water.
  • the reverse osmosis method it has the advantage that the obtained fresh water has higher water quality, and the disadvantage is that the energy consumed is larger.
  • the circulating water from the condenser is about 40 °C. If the temperature is flashed to obtain fresh water, the yield and your efficiency are very low. Suppose you use the 10 °0 temperature difference to flash the fresh water. The enthalpy drop is only 42 kj/kg, so the amount of flash fresh water per kilogram of 40 °C seawater is only about 0.017 kg. If we consider the power consumption cost, it is uneconomical to make fresh water. Compared with the condenser heat of the above power plant, the waste heat of the power plant boiler, although there is no more heat from the condenser, the energy level is much higher. We know that the boiler flue gas contains acid gas.
  • the smoke temperature When the smoke temperature is high, they will It flows through the heated surfaces of the boiler in gaseous form until it is removed into the desulfurization tower. When the temperature of the smoke is lower than a certain temperature, they will combine with the water vapor in the flue gas to form sulfuric acid and corrode the heat exchange equipment; in order to avoid acid dew corrosion on the heating surface of the boiler tail, the boiler exhaust gas temperature is usually designed to be higher, the power station boiler The exhaust gas temperature is about 140 °C. If this part of the heat source can cooperate with the condenser to desalinate the seawater, it will inevitably improve the efficiency of seawater desalination. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method for utilizing waste heat of a power plant to desalinate seawater, using waste heat of circulating water of a power plant condenser and waste heat of boiler flue gas to obtain fresh water by flashing, thereby reducing the cost of preparing fresh water and saving energy.
  • a system for utilizing waste heat from a power plant to desalinate seawater including:
  • the condenser circulates the seawater to take the water system, and connects the effluent water chamber that collects the effluent of the condenser; the seawater multi-stage flash sub-system, including a plurality of flash tanks, respectively, the first-stage flash tank and the second-stage flash tank ... the Nth stage flash tank, the seawater collected in the condenser water outlet chamber enters the condensation tube bundle of the N-1 stage flash tank, and the condensation tube bundle of the N-2 stage flash tank. Across the condensation tube bundle of the first stage flash tank; the condensation tube bundle of the Nth stage flash tank is connected to the final stage cooling system;
  • the boiler flue gas waste heat heating circulation sea moisture system comprises a flue gas waste heat recovery device, wherein the flue gas waste heat recovery device is disposed in the flue, and the seawater from the first stage flash tank condensation tube bundle passes through the flue gas waste heat recovery device and enters The first stage flash tank body, the second stage flash tank tank... up to the Nth stage flash tank body, the sea water is flashed in each flash tank, and the condensation of each flash tank Forming fresh water after contact with the tube bundle;
  • the vacuuming system comprising a vacuuming device, the vacuuming device being connected to each of the flash tanks;
  • Freshwater and seawater sewage subsystems including freshwater pipelines and sewage pipelines, which are connected to the freshwater outlets of the flash tanks, and the unflashed seawater passes through the Nth-stage flash tank and enters the sewage pipeline.
  • the condenser circulating seawater moisture taking system of the invention wherein the desalinated seawater is from the circulating water of the thermal power plant condenser, and the condenser circulating seawater water collecting system comprises: a condenser top tube bundle, a partition plate, a water outlet header, a filter screen, a seawater pretreatment device, a water pump; the top tube bundle of the condenser is located at the top of the condenser, The outlet water temperature of the annular water is higher than the temperature of the tube bundle at other parts of the condenser; the separator and the water outlet header separate the circulating water to be taken out from other circulating water to enter the water collecting header; It is connected to the filter screen, seawater pretreatment device and water pump to make the heated seawater enter the multi-stage flash system.
  • the seawater multi-stage flash sub-system of the present invention comprises one or more seawater flash tanks (shown as five stages), wherein each flash tank is connected in series, and the desalinated seawater from the seawater pretreatment apparatus is pressurized by the water pump Flowing into the fourth-stage flash tank condensing tube bundle, the third-stage flash tank condensing tube bundle, the second-stage flash tank condensing tube bundle, the first-stage flash tank condensing tube bundle, and then going to the boiler flue gas waste heat recovery device; The seawater is then flashed in the flash tank, and then flows into the first-stage flash tank, the check valve, the second-stage flash tank, the check valve, the third-stage flash tank, the check valve, and the check valve.
  • the fourth stage flash tank, the one-way valve, the fifth stage flash tank; the fresh water outlets of each stage are also connected in sequence;
  • the flash tank of the seawater multi-stage flash sub-system of the present invention comprises a flash tank condensing tube bundle, Balance vent, fresh water outlet, flash tank body, steam purification device, and a two-stage flash tank connected with a check valve;
  • the fifth-stage flash tank of the present invention is connected with a vacuuming subsystem, a fresh water and seawater sewage subsystem, and a final cooling system; the vacuuming system includes a vacuum pump and a vacuum gauge to maintain the vacuum in the flash tank, and pumping The vacuum system is connected to a balanced vent on the fifth stage flash tank.
  • the freshwater and seawater sewage subsystem includes a fresh water pump and a seawater sewage pump, and the fresh water pump is connected to the fresh water outlet of the fifth-stage flash tank, and the seawater sewage pump is connected with the one-way valve on the fifth-stage flash tank;
  • the stage cooling system is connected to the fifth stage flash tank condensing tube bundle, and the cooling water of the final stage cooling system is circulating water inlet and circulating water in the return water main pipe.
  • the boiler flue gas waste heat heating cycle sea moisture system of the invention adopts the form of corrosion-resistant flue gas waste heat recovery device, the heat source is the waste heat of the boiler exhaust gas, and the corrosion-resistant flue gas waste heat recovery device adopts the boiler economizer structure form, and the material adopts acid corrosion resistance sexual material.
  • the material of the corrosion-resistant flue gas waste heat recovery device of the boiler flue gas waste heat heating cycle sea moisture system of the invention may also be a common carbon steel material, which is determined according to the level of the boiler flue gas acid dew point;
  • the boiler flue gas waste heat heating cycle sea moisture system of the invention the boiler flue gas waste heat recovery device can also be divided into two parts: the boiler flue gas waste heat recovery heat release section and the boiler flue gas waste heat recovery heat absorption section, and the heat source is the boiler flue gas waste heat.
  • the circulating medium between the flue gas waste heat recovery exothermic section and the flue gas waste heat recovery endothermic section is high temperature circulating water or natural circulating saturated steam.
  • the invention can extract the high temperature section of the circulating water and the waste heat recovery of the boiler flue gas according to the treatment capacity of seawater desalination, carry out multi-stage flashing, prepare fresh water, supplement the fresh water required by the power plant, and obtain fresh distilled water for the fresh water obtained. , to save water treatment costs of power plant recharge water; recover waste heat from power plants, save energy and reduce emissions.
  • a system for utilizing waste heat from a power plant to desalinate seawater including:
  • a condenser circulating seawater moisture extraction system connected to the effluent water chamber of the condensate collecting water;
  • a seawater flashing sub-system including a flash tank, and the seawater collected in the condenser effluent water chamber enters the flash tank body,
  • the condensation tube bundle of the flash tank is further connected to a cooling system, and the sea water is flashed in the flash tank to form fresh water after contacting the condensation tube bundle of the flash tank;
  • the vacuum separation system comprising a vacuuming device, the vacuuming device being connected to the flash tank body;
  • Freshwater and seawater sewage subsystems including freshwater pipelines and sewage pipelines, which are connected to the steam recovery unit at the upper part of the flash tank, and the unflashed seawater enters the sewage pipeline.
  • the invention can also utilize the waste heat of the power plant condenser to desalinate the seawater separately, including the condenser of the thermal power plant and the water intake system connected thereto; and further comprises a flash tank and the vacuum system and the steam condensation system connected thereto And the sewage system; the condenser and the water intake system pipeline connected thereto can also be installed (or not installed) with an auxiliary heating system, and the heat source is other forms of waste heat of the power plant, and the hot sea water from the condenser is carried out. Heating, convenient for fresh water; Flash tank also includes auxiliary equipment such as folding plate and sewage system.
  • the folding plate acts to separate unflashed seawater and fresh water that has been condensed; when the unflashed seawater reaches a certain level, Seawater is drained from the sewage system.
  • the flash tank and the steam condensing system connected thereto, the steam condensing system mainly comprises a cooling water pipe bundle, and the cooling water is a low temperature circulating water of the power plant.
  • FIG. 1 is a schematic diagram of a desalination seawater system using a waste heat of a power plant according to the present invention.
  • FIG. 2 is a schematic view of a single flash tank in a desalination seawater system using a power plant waste heat in accordance with the present invention.
  • FIG. 3 is a schematic diagram of a condenser circulating water system including a power plant waste heat desalination seawater system according to the present invention.
  • Fig. 4 is a schematic view showing an embodiment of a flue gas waste heat recovery device 1 for utilizing a power plant waste heat desalination seawater system according to the present invention.
  • Fig. 5 is a schematic view showing another embodiment of a flue gas waste heat recovery device 1 for utilizing a power plant waste heat desalination seawater system according to the present invention.
  • Fig. 6 is a partial schematic view showing the water system of the condenser circulating seawater using the waste heat desalination seawater system of the power plant according to the present invention.
  • Figure 7 is a diagram showing the use of a single condenser of a power plant in a waste heat desalination seawater system for desalination of seawater System schematic.
  • FIG. 8 is a schematic illustration of an auxiliary heating system 30 utilizing a power plant waste heat desalination seawater system in accordance with the present invention. detailed description
  • FIG. 1 a schematic diagram of a desalination seawater system using a waste heat of a power plant according to the present invention is shown.
  • the use of power plant waste heat desalination seawater system including condenser circulating seawater water intake system, seawater multi-stage flash sub-system, boiler flue gas waste heat heating cycle sea moisture system, vacuum separation system, fresh water and seawater sewage subsystem.
  • the condenser circulating seawater moisture removal system is connected to the outlet water chamber 22 where the condenser is discharged.
  • the seawater multi-stage flash sub-system comprises a plurality of flash tanks, which are a first stage flash tank 3, a second stage flash tank 4... an Nth stage flash tank.
  • Fig. 2 there is shown a schematic diagram of a single flash tank in a desalination seawater system using a power plant waste heat in accordance with the present invention. Referring to Figure 1, the seawater collected in the condenser outlet water chamber 22 enters the condensation tube bundle 15 of the N-1 stage flash tank, and the condensation tube bundle 15 of the N-2 stage flash tank... Condenser bundle of primary flash tank 3
  • Condensation tube bundle of the Nth stage flash tank 15 is connected to the final stage cooling system.
  • the multi-stage flash tank has five stages, and the seawater enters from the condensing tube bundle 15 of the fourth-stage flash tank 6, and sequentially passes through the third, second, and first-stage flash tanks 5, 4, and 3.
  • the boiler flue gas waste heat heating circulation sea moisture system includes a flue gas waste heat recovery device 1, the flue gas waste heat recovery device 1 is disposed in the flue gas flue, and the seawater from the first stage flash tank 3 condensing tube bundle 15 passes through After the flue gas waste heat recovery device 1 is introduced into the first stage flash tank body 18, the second stage flash tank body 18, ...
  • the seawater sequentially enters the first, second, ... fifth-stage flash tank body 18.
  • the seawater is flashed in each of the flash tanks to form fresh water in contact with the condenser tubes of the respective flash tanks.
  • the vacuuming subsystem includes a vacuuming device that is coupled to each of the flash tanks 18.
  • the vacuuming apparatus includes a vacuum pump 10 and a plurality of vacuum gauges 13, the vacuum pump 10 being coupled to an Nth stage flash tank, the vacuum gauges 13 being disposed in each of the flash tanks.
  • Each of the flash tanks is provided with a balance vent 16 connected to the balance vent 16 of the Nth stage flash tank, and the balance vents 16 of the other flash tanks are disposed adjacent to the flash tank between.
  • the fresh water and seawater sewage subsystem comprises a fresh water pipeline and a sewage water pipeline, and the freshwater pipeline is connected with a fresh water outlet of each flash tank, and the unflashed seawater passes through the Nth flash tank body 18 and enters the sewage water pipeline. .
  • the invention relates to the use of a power plant waste heat desalination seawater system and a condenser circulating water system, see 3.
  • the condenser circulating water system comprises a circulating water inlet water main pipe and a circulating water return water main pipe, wherein the circulating water inlet water main pipe is respectively connected to the inlet of the condenser 23 (inlet water chamber 21), and Referring to the inlet of the final stage cooling system, the circulating water returning water main pipe is respectively connected to the return port of the condenser 23 (return water chamber 20), the outlet of the final stage cooling system, and the sewage water pipe Export.
  • FIG. 4 there is shown a schematic diagram of an embodiment of a flue gas waste heat recovery device 1 for utilizing a power plant waste heat desalination seawater system according to the present invention.
  • the flue gas waste heat recovery device 1 is a tube bundle, and seawater from the first stage flash tank 3 condensing tube bundle 15 enters from the tube bundle inlet of the flue 101, passes through the tube bundle, and exits from the tube bundle outlet of the flue 103.
  • the tube bundle of the flue gas waste heat recovery device 1 is made of an acid-resistant material or a common carbon steel material.
  • the flue gas waste heat recovery device 1 may be another form, see Fig. 5, which is a schematic view of another embodiment of the flue gas waste heat recovery device 1 utilizing the waste heat of the electric plant to desalinate the seawater system.
  • the flue gas waste heat recovery device 1 includes an exothermic section 105 and an endothermic section 104, and the exothermic section 105 and the endothermic section 104 are connected to form a circulation pipeline in which a circulating medium flows, the endothermic section 104 is disposed in the flue, and the seawater from the condensing tube bundle 15 of the first stage flash tank 3 is heated through the exothermic section 105 to enter the first stage flash tank body 18.
  • the circulating medium is high temperature circulating water or saturated steam of natural circulation.
  • FIG. 6 is a partial schematic diagram of a condenser water circulating water intake system using a power plant waste heat desalination seawater system according to the present invention.
  • a partition 222 is disposed in the outlet water chamber 22 of the condenser circulating seawater moisture removal system, and the partition 222 is disposed at the top of the outlet water chamber 22, and the condenser 222 is isolated from the condenser
  • the tube bundle is connected to the seawater multi-stage flash distillation system through the water outlet header 221, and the other effluent condenser tube bundles are concentrated in the return water chamber 20, and are connected to the circulating water return water main pipe through the circulating water outlet water main pipe.
  • the condenser circulating seawater moisture removal system further includes a sieve 19 and a seawater pretreatment device 11, wherein the seawater filter 19 and the seawater pretreatment device 11 that pass through the water chamber 22 enter the seawater.
  • Multi-stage flash sub-system Multi-stage flash sub-system.
  • the condenser 23 is composed of a large number of tube bundles, circulating water into the low temperature seawater pipe bundle from the water mother pipe, and outside the steam turbine from the steam turbine, when the steam coming from the steam turbine passes through the low temperature pipe bundle, Condensation releases residual heat, which turns into condensed water and goes to the hot well.
  • the circulating water from the circulating water into the water main pipe absorbs the residual heat of the exhaust steam and the temperature rises.
  • the temperature is generally close to 40 °C.
  • the present invention separates the circulating water of a plurality of condenser top tube bundles 231 through the partition plate 222 at the top of the outlet water chamber 22, and the water is collected.
  • Tube 221 leads out to the sea
  • the diaphragm 222 is as large as possible and has no dead angle, ensuring that the rubber balls of the cleaning condenser 23 can be freely accessed.
  • the seawater circulating water from the water header 221 first passes through the filter 19, which can filter the impurities in the circulating water on the one hand, and collect the rubber balls of the cleaning condenser 23 on the one hand, and the rubber ball in the power plant condenser 23 on the one hand. After rinsing, the filter 19 should be opened to remove the rubber ball and rinsed.
  • the seawater first enters the seawater pretreatment device 11, where impurities such as sediment are removed, and then the water pump 12 is input into the multi-stage flashing system, and the circulating seawater of about 40 °C is first introduced into the fourth-stage flash tank 6.
  • the flash tank condenses the bundle 15 at which the circulating seawater serves as the cooling water of the fourth-stage flash tank 6, condenses the flash steam of the fourth-stage flash tank 6, absorbs heat, and the temperature rises itself, assuming an increase to 45 ° C;
  • the temperature of the circulating seawater from the multi-stage flashing is 60 ° C, and then enters the boiler flue gas waste heat recovery device 1 to heat;
  • the boiler flue gas waste heat recovery device 1 of the present invention can be in two structural forms, one is corrosion-resistant flue gas waste heat In the form of the recycler 102; the acid gas contained in the power plant boiler flue gas is corrosive, so the flue gas waste heat recovery device 1 is made of a corrosion-resistant material, and the corrosion-resistant flue gas waste heat recovery device 102 is an economizer-type structure, and its inlet is connected to the smoke.
  • Lane 101 the outlet is connected to the flue 103; the flue gas passes through the corrosion-resistant flue gas waste heat recovery device 102, and transfers the waste heat of the flue gas to the seawater from the bundle of the condenser 23.
  • the exhaust temperature of the boiler is about At around 14 CTC, according to the desalination yield of seawater and the specific boiler flue gas volume, we assume that the circulating seawater is heated to about 80 °C.
  • the corrosion-resistant flue gas waste heat recovery device 102 can be made of a common material without being corroded by the boiler flue gas acid dew.
  • the flue gas waste heat recovery device 1 can also be in the form of Figure 5, which is divided into two parts: the boiler flue gas waste heat recovery and exothermic section 105 and the boiler flue gas waste heat recovery heat absorption section 104, the boiler smoke.
  • the gas passes through the boiler flue gas waste heat recovery heat absorption section 104, and transfers the flue gas waste heat to the circulating medium—high temperature circulating water or natural circulating saturated steam, and the high temperature circulating water transfers the heat in the boiler flue gas waste heat recovery and exothermic section 105.
  • the seawater to be heated is cooled by the high-temperature circulating water and then returned to the flue gas waste heat recovery heat absorption section 104 to be reheated, so that the waste water of the power plant boiler flue gas is transferred to the seawater of the multi-stage flashing system, and the circulating medium is controlled.
  • the temperature can prevent acid dew corrosion of the flue gas waste heat recovery heat absorption section 104.
  • the seawater desalination system is equipped with a vacuum system.
  • the vacuum system includes a vacuum pump 10 and a plurality of vacuum gauges 13 to maintain the respective flash tanks.
  • the vacuum system is connected to the balance vent 16 on the fifth stage flash tank 7.
  • Other balanced vents 16 are located between each two-stage flash tank to connect the multi-stage flash tanks as a single unit.
  • the present invention is equipped with a fresh water pump 9 and a seawater sewage pump 8.
  • the total energy consumption of the entire system consumes the power consumption of each pump, and the other does not require additional energy to heat the seawater, thus saving energy and environmental protection and reducing the processing cost of seawater desalination.
  • the invention shows only a part of the circulating water seawater desalination, and for the enlargement and industrialization, the circulating water of the entire effluent water chamber 22 can be taken out and desalted, and the principle and system flow are the same as those of the first embodiment. It is only a five-stage flash system. In the implementation process, according to the amount of fresh water treatment, the scale of waste heat recovery of the power plant can be designed as a required number of stages.
  • the invention utilizes the waste heat of the power plant to desalinate the seawater system, and can also use the residual heat of the condenser to desalinate the seawater. See Figure 7, which is a schematic diagram of the system for desalination of seawater with a single condenser. Including condenser circulating seawater moisture extraction system, seawater flashing subsystem, vacuum separation system, freshwater and seawater discharge subsystem.
  • the condenser circulating seawater moisture collecting system is connected to the effluent water chamber 22 of the condensing condenser 23 and the filter screen.
  • the seawater flashing sub-system includes a flash tank.
  • the flash tank may be a single unit, and the seawater collected in the outlet water chamber 22 of the condenser 23 passes through the filter screen and enters the flash tank body.
  • the condensing tube bundle 26 of the flash tank is further connected to a cooling system, and the circulating medium in the cooling system is low temperature circulating water or boiler low temperature replenishing water.
  • the seawater is flashed in the flash tank 27 and comes into contact with the condenser bundle 26 of the flash tank 27 to form fresh water.
  • the vacuuming subsystem includes a vacuuming device that is coupled to the tank of the flash tank 27.
  • the vacuuming device of the vacuuming system comprises an evacuation pump 25 coupled to the top of the flash tank 27.
  • the freshwater and seawater sewerage subsystem includes a fresh water pipeline connected to a steam recovery unit at the upper portion of the flash tank 27, and a fresh water pipeline connected to the steam recovery unit at the upper portion of the flash tank 27, and the unflashed seawater enters the sewage water pipeline through the sewage pump 31.
  • This form also includes a condenser circulating moisture system that includes circulating water into the system.
  • the jellyfish tube, the circulating water returning water main pipe, the circulating water inlet water main pipe is connected to the inlet of the cooling system through a valve 24, and the circulating water returning water main pipe is connected to the outlet of the cooling system through the valve 24.
  • a baffle 222 is disposed in the effluent water chamber 22 of the condenser circulating seawater moisture removal system, and the partition 222 is disposed at the top of the effluent water chamber 22, and the condensate bundle bundle separated by the partition 222 is
  • the seawater flashing system is connected, and the other outlet condenser tubes are connected to the circulating water returning water pipe through the circulating water outlet water main pipe.
  • the condenser circulating seawater moisture removal system further includes an auxiliary heating subsystem, the auxiliary heating subsystem includes a column heater 301, and the seawater of the outlet water chamber 22 is heated by the column heater 301 Entering the flash tank 27, the heat source of the column heater 301 is waste heat steam of the power plant.
  • the auxiliary heating subsystem includes a column heater 301, and the seawater of the outlet water chamber 22 is heated by the column heater 301 Entering the flash tank 27, the heat source of the column heater 301 is waste heat steam of the power plant.
  • the circulating seawater of 40 ° C from the condenser can be connected to the flash tank 27 , and the circulating seawater of about 40 ° C is rapidly flashed in the flash tank 27 due to the pressure drop sharply;
  • the condensing tube bundle 26 is condensed into fresh water for the purpose of separating fresh water and salt; the condensed water falls into the steam condensing recovery device 28 at the upper portion of the flash tank 27, and is taken out by the pipeline, and can be used as a make-up water for the water supply of the thermal power plant.
  • the low-temperature cold source as the condensing steam can be a small part of low-temperature circulating water, or it can be low-temperature water supply for the boiler.
  • the temperature should be lower than the flash temperature of the circulating seawater.
  • an auxiliary heating system 30 may be added to reheat the seawater circulating water from the condenser 23; the auxiliary heating system 30 may have the structure shown in FIG. 8: including a tube heat exchanger, a water intake device.
  • the seawater is heated by the column heater 301 and then sent to the flash tank 27 by the water pump 29.
  • the heat source of the heater 301 is the waste heat steam of the power plant, and the heated seawater is used to prevent scaling and the temperature is not too high. Generally less than 100 ° C o
  • the total energy consumption of the whole system is the vacuum pump plus the power consumption of the water pump. Others do not need extra energy to heat the seawater, so energy saving and environmental protection, reducing the treatment cost of seawater desalination.
  • the fresh water produced is distilled water. As the hydration of the boiler, it is better than the soft water treated by the power plant.
  • the invention can replace the water treatment device of the power plant and improve the economic efficiency of the power plant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种利用电厂余热淡化海水系统,包括按照需淡化海水的流向划分的凝汽器循环海水取水分系统、海水多级闪蒸分系统、锅炉烟气余热加热循环海水分系统;还包括抽真空分系统、淡水及海水排污分系统,它们作为辅助系统与海水多级闪蒸系统相连接。利用电厂凝汽器和锅炉烟气的余热,省去了传统蒸馏法淡化海水所需的能源,降低了蒸馏法淡化海水的运营成本,同时制取的淡水为蒸馏水,部分可用作电厂锅炉补水,节省电厂软化水的处理成本,节能环保。

Description

利用电厂余热淡化海水系统
技术领域
本发明涉及海水淡化领域, 特别涉及一种利用电厂余热淡化海水的系统。 背景技术
海水淡化的方法很多, 能做到大型化和产业化的主要是膜法和热法。膜法又称 为反渗透法, 它是利用了渗透压的原理。这种方法利用半透膜来达到将淡水与盐分 离的目的。 在通常情况下, 半透膜允许溶液中的溶剂通过, 而不允许溶质透过。 由 于海水含盐高, 如果用半透膜将海水与淡水隔开, 淡水会通过半透膜扩散到海水的 一侧, 从而使海水一侧的液面升高, 直到一定的高度产生压力, 使淡水不再扩散过 来。 这个过程是渗透。 如果反其道而行之, 要得到淡水, 只要对半透膜中的海水施 以压力, 就会使海水中的淡水渗透到半透膜外, 而盐却被膜阻挡在海水中, 这就是 反渗透法。 其主要优点为节省能源。
热法常用的又分为蒸馏法和闪蒸法。蒸馏法一般为低温多效蒸馏, 它的主设备 称为蒸发器。 在蒸发器中, 海水被蒸汽加热至饱和温度, 并蒸发出部分水蒸汽, 水 蒸汽凝结后即是淡水。 闪蒸法是通过闪蒸的原理, 即海水从压力高的环境至压力低 的环境会闪蒸出一部分蒸汽, 将这部分蒸汽凝结后即是淡水。它与反渗透法相比优 点为所得淡水的水质较高, 缺点为耗用的能源较大。
我国沿海地区人口众多, 工业发达, 很多火力发电厂考虑到燃料煤的运输方便 及大量的用水, 很多选址靠近海边。 火力发电厂的大量用水包括两个部分, 一部分 为锅炉所需要的烧成蒸汽的纯水及系统自身用水, 这一部分为处理过的淡水; 另一 部分为冷却汽轮机乏汽的循环水, 这一部分可以为河水或海水; 循环水在汽轮机后 的凝汽器中把做功后的汽轮机乏汽冷凝成水, 乏汽冷凝所放出的潜热由这部分循 环水带走, 对于海边的火力发电厂, 这部分升温后的循环水直接排入海中, 造成很 大的能源浪费, 然而目前对于这一低温热源的利用还没有很好、 可行的方法。
凝汽器出来的海水循环水大约 40 °C左右, 若由此温度进行闪蒸制取淡水, 无 论产量和你效率都是非常低下的, 假设利用 10 °0温差来闪蒸制取淡水, 其焓降仅 为 42 kj/kg, 因此每千克 40 °C海水来闪蒸淡水量仅约为 0.017 kg,若再考虑其电耗 成本, 以此制取淡水无疑是不经济的。 相较于上述电厂的凝汽器余热, 电厂锅炉的余热, 量虽然没有凝汽器余热多, 但是能量的品级要高出许多, 我们知道锅炉烟气中含有酸性气体, 烟温高时它们会 以气态的形式流经锅炉各受热面直至到脱硫塔里被除去。 当烟温低于某一温度时, 它们会与烟气中的水蒸气结合成硫酸而腐蚀换热设备;为避免锅炉尾部受热面的酸 露腐蚀, 通常锅炉排烟温度设计较高, 电站锅炉排烟温度约 140 °C左右, 这一部 分热源若能配合凝汽器进行海水淡化, 必然能提高海水淡化的效率。 发明内容
本发明要解决的技术问题是提供一种利用电厂余热淡化海水系统,利用电厂凝 汽器循环水的废热和锅炉烟气余热来进行闪蒸制取淡水,这样可以降低制取淡水的 成本, 节省能源。
本发明采用以下技术方案:
一种利用电厂余热淡化海水系统, 包括:
凝汽器循环海水取水分系统, 连接聚集凝汽器出水的出水水室; 海水多级闪蒸分系统, 包括多个闪蒸罐, 分别为第一级闪蒸罐、 第二级闪 蒸罐 ......第 N级闪蒸罐, 聚集在所述凝汽器出水水室的海水进入第 N-1级闪蒸罐 的冷凝管束、 第 N-2级闪蒸罐的冷凝管束 ......第一级闪蒸罐的冷凝管束; 第 N级 闪蒸罐的冷凝管束另连接末级冷却系统;
锅炉烟气余热加热循环海水分系统, 包括烟气余热回收装置, 所述烟气余 热回收装置设于烟道内,来自第一级闪蒸罐冷凝管束的海水经过所述烟气余热回收 装置后进入第一级闪蒸罐罐体、 第二级闪蒸罐罐体 ......直至第 N级闪蒸罐罐体, 海水在各闪蒸罐内闪蒸, 与各闪蒸罐的冷凝管束接触后形成淡水;
抽真空分系统, 所述抽真空分系统包括抽真空设备, 所述抽真空设备与各 闪蒸罐罐体连接;
淡水及海水排污分系统, 包括淡水管道与排污海水管道, 所述淡水管道与 各闪蒸罐的淡水出口连接, 未闪蒸的海水通过第 N级闪蒸罐罐体后进入排污海水 管道。
本发明的凝汽器循环海水取水分系统,其中需淡化的海水来自火力发电厂凝汽 器的循环水, 凝汽器循环海水取水系统包括: 凝汽器顶部管束、 隔板、 出水集管、 滤网、 海水预处理装置、 取水泵; 所述凝汽器顶部管束位于凝汽器的顶部, 这里循 环水的出水温度相较于凝汽器其它部位的管束的温度要高;隔板与出水集管把要取 出的循环水与其它循环水分隔开, 使其进入出水集管; 出水集管依次与滤网、海水 预处理装置、 取水泵相连, 使加热后的海水进入多级闪蒸系统。
本发明的海水多级闪蒸分系统包括一个或多个海水闪蒸罐 (图示为五级), 其 中每个闪蒸罐串联连接,海水预处理装置来的需淡化海水由取水泵加压依次流入第 四级闪蒸罐冷凝管束、第三级闪蒸罐冷凝管束、 第二级闪蒸罐冷凝管束、第一级闪 蒸罐冷凝管束, 然后去锅炉烟气余热回收装置; 加热后的海水再去闪蒸罐内闪蒸, 依次由单向阀流进第一级闪蒸罐、单向阀、第二级闪蒸罐、单向阀、第三级闪蒸罐、 单向阀、第四级闪蒸罐、单向阀、第五级闪蒸罐;各级的淡水出水口也依次相连接; 本发明的海水多级闪蒸分系统的闪蒸罐包括闪蒸罐冷凝管束、平衡通风口、淡 水出水口、 闪蒸罐罐体、 蒸汽净化装置, 两级闪蒸罐罐体间连接有单向阀;
本发明的第五级闪蒸罐连接有抽真空分系统、淡水及海水排污分系统、末级冷 却系统; 抽真空系统包括一抽真空泵, 真空表, 来维持闪蒸罐内的真空度, 抽真空 系统与第五级闪蒸罐上的平衡通风口连接。 淡水及海水排污分系统包括淡水输送 泵、海水排污泵, 淡水输送泵与第五级闪蒸罐上淡水出水口相连接, 海水排污泵与 第五级闪蒸罐上的单向阀连接; 末级冷却系统与第五级闪蒸罐冷凝管束相连接, 末 级冷却系统的冷却水为循环水进、 回水母管内循环海水。
本发明的锅炉烟气余热加热循环海水分系统,采用耐腐蚀烟气余热回收器形式 时, 热源为锅炉排烟余热, 耐腐蚀烟气余热回收器采取锅炉省煤器结构形式, 材质 采用耐酸腐蚀性材料。
本发明的锅炉烟气余热加热循环海水分系统的耐腐蚀烟气余热回收器其材质 也可为普通碳钢材质, 具体根据锅炉烟气酸露点高低而定;
本发明的锅炉烟气余热加热循环海水分系统,锅炉烟气余热回收装置还可以分 为锅炉烟气余热回收放热段和锅炉烟气余热回收吸热段两个部分,热源为锅炉烟气 余热; 烟气余热回收放热段和烟气余热回收吸热段两个部分之间循环介质为高温 循环水或自然循环的饱和蒸汽。
本发明可根据海水淡化的处理能力,抽取部分循环水的高温段配合锅炉烟气的 余热回收, 进行多级闪蒸, 制取淡水, 补充电厂自身所需淡水, 同时因取得的淡水 为粗蒸馏水, 节省电厂补给水的水处理成本; 回收电厂余热, 节能减排。
本发明或者可采用以下技术方案: 一种利用电厂余热淡化海水系统, 包括:
凝汽器循环海水取水分系统, 连接聚集凝汽器出水的出水水室; 海水闪蒸分系统, 包括闪蒸罐, 聚集在所述凝汽器出水水室的海水进入闪 蒸罐罐体, 所述闪蒸罐的冷凝管束另连接冷却系统, 海水在闪蒸罐内闪蒸, 与闪蒸 罐的冷凝管束接触后形成淡水;
抽真空分系统, 所述抽真空分系统包括抽真空设备, 所述抽真空设备与闪 蒸罐罐体连接;
淡水及海水排污分系统, 包括淡水管道与排污海水管道, 所述淡水管道与 闪蒸罐上部的蒸汽回收装置连接, 未闪蒸的海水进入排污海水管道。
本发明还可单独利用电厂凝汽器余热来淡化海水,包括火力发电厂的凝汽器及 与之相连接的取水系统; 还包括一闪蒸罐及与其相连接的抽真空系统、蒸汽冷凝系 统及排污系统;凝汽器及与之相连接的取水系统管路上,还可以加装(也可不加装) 一辅助加热系统, 热源为电厂其他形式的废热, 对凝汽器出来的热海水进行加热, 方便制取淡水; 闪蒸罐还包括折板及排污系统等辅助设备, 折板作用为分隔未闪蒸 的海水和已经冷凝好的淡水; 当未闪蒸的海水达到一定液位时, 海水从排污系统排 走。 闪蒸罐及与其相连的蒸汽冷凝系统, 蒸汽冷凝系统主要包括冷却水管束, 冷却 水为电厂的低温循环水。 附图说明
图 1为本发明涉及的利用电厂余热淡化海水系统的原理图。
图 2为本发明涉及地利用电厂余热淡化海水系统中单个闪蒸罐的示意图。 图 3 为本发明涉及的利用电厂余热淡化海水系统包括的凝汽器循环水分系统 的示意图。
图 4为本发明涉及的利用电厂余热淡化海水系统的烟气余热回收装置 1的一种 实施例的示意图。
图 5为本发明涉及的利用电厂余热淡化海水系统的烟气余热回收装置 1的另一 种实施例的示意图。
图 6 为本发明涉及的利用电厂余热淡化海水系统的凝汽器循环海水取水分系 统的部分示意图。
图 7 为本发明涉及的利用电厂余热淡化海水系统的单凝汽器余热淡化海水的 系统原理图。
图 8为本发明涉及的利用电厂余热淡化海水系统的辅助加热系统 30的示意图。 具体实施方式
参见图 1, 为本发明涉及的利用电厂余热淡化海水系统的原理图。 利用电厂余 热淡化海水系统, 包括凝汽器循环海水取水分系统、 海水多级闪蒸分系统、锅炉烟 气余热加热循环海水分系统、 抽真空分系统、 淡水及海水排污分系统。
所述凝汽器循环海水取水分系统连接聚集凝汽器出水的出水水室 22。 所述海 水多级闪蒸分系统包括多个闪蒸罐, 分别为第一级闪蒸罐 3、 第二级闪蒸罐 4...... 第 N级闪蒸罐。参见图 2, 为本发明涉及地利用电厂余热淡化海水系统中单个闪蒸 罐的示意图。 结合图 1, 聚集在所述凝汽器出水水室 22的海水进入第 N-1级闪蒸 罐的冷凝管束 15、 第 N-2级闪蒸罐的冷凝管束 15......第一级闪蒸罐 3的冷凝管束
15; 第 N级闪蒸罐的冷凝管束 15另连接末级冷却系统。 在本实施例中, 多级闪蒸 罐共有五级, 海水自第四级闪蒸罐 6的冷凝管束 15进入, 依次经过第三、 第二、 第一级闪蒸罐 5、 4、 3 的冷凝管束 15。 所述锅炉烟气余热加热循环海水分系统, 包括烟气余热回收装置 1, 所述烟气余热回收装置 1设于烟气烟道内, 来自第一级 闪蒸罐 3冷凝管束 15的海水经过所述烟气余热回收装置 1后进入第一级闪蒸罐罐 体 18、 第二级闪蒸罐罐体 18......直至第 N级闪蒸罐罐体 18, 在本实施例中, 海水 依次进入第一、 第二 ......第五级闪蒸罐罐体 18。 海水在各闪蒸罐内闪蒸, 与各闪 蒸罐的冷凝管束接触后形成淡水。
所述抽真空分系统包括抽真空设备,所述抽真空设备与各闪蒸罐罐体 18连接。 优选地, 抽真空设备包括抽真空泵 10和多个真空表 13, 所述抽真空泵 10与第 N 级闪蒸罐连接, 所述真空表 13设在各闪蒸罐中。 所述各闪蒸罐上都设有平衡通风 口 16, 所述抽真空泵 10与第 N级闪蒸罐的平衡通风口 16连接, 其它闪蒸罐的平 衡通风口 16设于相邻闪蒸罐之间。
所述淡水及海水排污分系统包括淡水管道与排污海水管道,所述淡水管道与各 闪蒸罐的淡水出口连接, 未闪蒸的海水通过第 N级闪蒸罐罐体 18后进入排污海水 管道。
本发明涉及的利用电厂余热淡化海水系统还包括凝汽器循环水分系统,参见图 3, 所述凝汽器循环水分系统包括循环水进水母管、 循环水回水母管, 所述循环水 进水母管分别连接所述凝汽器 23 的进口 (进水水室 21 ), 以及所述末级冷却系统 的进口, 所述循环水回水母管分别连接所述凝汽器 23 的回口 (回水水室 20), 所 述末级冷却系统的出口、 以及所述排污海水管道的出口。
参见图 4, 为本发明涉及的利用电厂余热淡化海水系统的烟气余热回收装置 1 的一种实施例的示意图。所述烟气余热回收装置 1为管束, 来自第一级闪蒸罐 3冷 凝管束 15的海水从烟道 101的管束进口进入, 通过管束后, 从烟道 103的管束出 口出来。 所述烟气余热回收装置 1 的管束的材质为耐酸腐蚀性材料或普通炭钢材 料。
烟气余热回收装置 1也可以是另一种形式, 参见图 5, 为本发明涉及的利用电 厂余热淡化海水系统的烟气余热回收装置 1的另一种实施例的示意图。所述烟气余 热回收装置 1包括放热段 105和吸热段 104, 所述放热段 105和吸热段 104连接, 形成循环管路, 管路中有循环介质流动, 所述吸热段 104设在烟道内, 来自第一级 闪蒸罐 3冷凝管束 15的海水经过所述放热段 105被加热后进入第一级闪蒸罐罐体 18。 循环介质为高温循环水或自然循环的饱和蒸汽。
参见图 6, 为本发明涉及的利用电厂余热淡化海水系统的凝汽器循环海水取水 分系统的部分示意图。 所述凝汽器循环海水取水分系统的出水水室 22中设有隔板 222, 而且所述隔板 222设于所述出水水室 22的顶部, 所述隔板 222隔离出的凝汽 器管束通过出水集管 221与所述海水多级闪蒸分系统连接,其它出水的凝汽器管束 集中在回水水室 20, 通过循环水出水母管与循环水回水母管连接。
回到图 3, 所述凝汽器循环海水取水分系统还包括滤网 19、和海水预处理装置 11, 所述通出水水室 22的海水过滤网 19、 海水预处理装置 11进入所述海水多级 闪蒸分系统。
现根据从海水到淡水的流程, 阐述本发明实施方案:
如图 3所示, 凝汽器 23由大量的管束组成, 循环水进水母管来的低温海水走 管束内, 汽轮机来的乏汽走管外, 当汽轮机来的乏汽经过低温管束时, 迅速冷凝放 出余热, 自身变为冷凝水去热井, 而循环水进水母管来的循环水吸收了乏汽冷凝放 出余热, 温度升高, 对于一般大中型电厂机组来说, 温度一般接近 40°C左右, 这 部分水直接由循环水出水母管排走, 造成很大的浪费; 本发明在出水水室 22顶部, 通过隔板 222分隔若干根凝汽器顶部管束 231的循环水,由出水集管 221引出去海 水多级闪蒸分系统, 隔板 222弧度尽可能地大, 无死角, 保证清洗凝汽器 23的胶 球可以自由地出入。
出水集管 221来的海水循环水, 先经过滤网 19, 此滤网 19一方面可过滤循环 水中杂质, 一方面可以收集清洗凝汽器 23的胶球, 当电厂凝汽器 23进行胶球冲洗 后, 此滤网 19应打开取出胶球, 冲洗。
海水先进入海水预处理装置 11, 在此去除泥沙等杂质, 然后再由取水泵 12输 入多级闪蒸分系统中, 40°C左右的循环海水, 先进入第四级闪蒸罐 6中的闪蒸罐冷 凝管束 15, 此时的循环海水作为第四级闪蒸罐 6 的冷却水, 冷凝第四级闪蒸罐 6 闪蒸的蒸汽, 吸收热量, 自身温度升高, 假设升高为 45°C ; 然后再去第三级闪蒸 罐 5冷凝第三级闪蒸罐 5闪蒸的蒸汽, 温度升高为 50°C, 依次流动, 当从第一级 闪蒸罐 3冷凝管束 15出来时, 此时需淡化循环海水的温度为 60°C。
多级闪蒸来的循环海水温度为 60°C, 此时再进入锅炉烟气余热回收装置 1加 热; 本发明锅炉烟气余热回收装置 1可以为两种结构形式,一为耐腐蚀烟气余热回 收器 102形式; 电厂锅炉烟气中含有酸性气体具有腐蚀性, 因此烟气余热回收装置 1选用耐腐蚀的材料制造, 耐腐蚀烟气余热回收器 102为省煤器形式结构, 其进口 连接烟道 101, 出口连接烟道 103; 烟气经过耐腐蚀烟气余热回收器 102, 把烟气 的余热传递给从凝汽器 23管束来的海水; 由技术背景资料可知, 锅炉的排烟温度 约为 14CTC左右, 根据海水的淡化产量及具体锅炉烟气量, 此时我们假设把循环海 水加热到 80°C左右。
若我们对锅炉烟气的特性进行计算, 我们可以得到不同烟气成分, 其烟气酸露 点的温度, 此时再根据海水的淡化产量及具体锅炉烟气量, 安排合适的进锅炉烟气 余热回收装置 1的海水的温度,此时耐腐蚀烟气余热回收器 102可选用普通材质制 造而不会被锅炉烟气酸露腐蚀。
同样为避免锅炉烟气酸露腐蚀, 烟气余热回收装置 1还可以为图 5形式, 分为 锅炉烟气余热回收放热段 105和锅炉烟气余热回收吸热段 104两个部分,锅炉烟气 经过锅炉烟气余热回收吸热段 104, 把烟气余热传递给循环介质——高温循环水或 自然循环的饱和蒸汽,高温循环水再在锅炉烟气余热回收放热段 105中把热量传递 给要加热的海水, 高温循环水冷却后又回到烟气余热回收吸热段 104重新加热, 如 此循环, 实现把电厂锅炉烟气余热传递给多级闪蒸系统来的海水, 通过控制循环介 质的温度可以防止烟气余热回收吸热段 104的酸露腐蚀。 经过锅炉烟气余热回收装置 1加热后的海水 80°C, 此时由单向阀 2进入第一 级闪蒸罐 3进行闪蒸,产生的蒸汽经过蒸汽净化装置 14后遇闪蒸罐冷凝管束 15冷 凝成蒸馏水, 由淡水出水口 17流向下一级闪蒸罐, 最后在第五级闪蒸罐 7由淡水 输送泵 9抽走; 未闪蒸的海水经过单向阀 2流向下一级闪蒸罐继续闪蒸, 直至第五 级闪蒸罐 7, 因此时的海水温度温度较低, 为得到更多淡水, 此时用循环水进回水 母管的冷却水来冷凝闪蒸的蒸汽。
为了海水闪蒸, 多级闪蒸罐需要维持一定的真空度, 本海水淡化系统配有抽真 空系统, 抽真空系统包括一抽真空泵 10, 多个真空表 13, 来维持各个闪蒸罐内的 真空度, 抽真空系统与第五级闪蒸罐 7上的平衡通风口 16连接。 其他平衡通风口 16位于每两级闪蒸罐之间, 把多级闪蒸罐连为一个整体。
由于多级闪蒸罐内相对于外界大气压为负压,因此制取的淡水和最后未闪蒸的 海水都需要由泵附加压力抽取出来, 本发明配有淡水输送泵 9、 海水排污泵 8。
整个系统总的能源消耗各个泵的电耗, 其他不需要额外的能源来加热海水, 因 此节能环保, 降低海水淡化的处理成本。本发明图 1所示仅仅为部分循环水海水淡 化, 对于大型化和产业化来说, 可以把整个出水水室 22的循环水引出进行淡化, 其原理、 系统流程和图一一样, 本发明仅为五级闪蒸系统, 在实施过程中根据淡水 处理量, 电厂余热回收规模, 可设计为某一需要级数。
本发明涉及的利用电厂余热淡化海水系统还可以单独利用凝汽器余热淡化海 水实施。 参见图 7, 为单凝汽器余热淡化海水的系统原理图。 包括凝汽器循环海水 取水分系统、 海水闪蒸分系统、 抽真空分系统、 淡水及海水排污分系统。 所述凝汽 器循环海水取水分系统连接聚集凝汽器 23出水的出水水室 22、 滤网。 所述海水闪 蒸分系统包括闪蒸罐, 在本实施例中, 闪蒸罐可以是单个, 聚集在所述凝汽器 23 出水水室 22的海水通过滤网进入闪蒸罐罐体,所述闪蒸罐的冷凝管束 26另连接冷 却系统, 所述冷却系统内的循环介质为低温循环水或锅炉低温补给水。海水在闪蒸 罐 27内闪蒸, 与闪蒸罐 27的冷凝管束 26接触后形成淡水。 所述抽真空分系统包 括抽真空设备, 所述抽真空设备与闪蒸罐 27罐体连接。 优选地, 所述抽真空分系 统的抽真空设备包括抽真空泵 25, 所述抽真空泵 25与闪蒸罐 27的顶部连接。 所 述淡水及海水排污分系统包括淡水管道与排污海水管道, 所述淡水管道与闪蒸罐 27上部的蒸汽回收装置连接, 未闪蒸的海水通过排污泵 31进入排污海水管道。
这种形式还包括凝汽器循环水分系统,所述凝汽器循环水分系统包括循环水进 水母管、 循环水回水母管, 所述循环水进水母管通过阀门 24连接所述冷却系统的 进口, 所述循环水回水母管通过阀门 24连接冷却系统的出口。
凝汽器循环海水取水分系统的出水水室 22中设有隔板 222,而且所述隔板 222 设于所述出水水室 22的顶部, 所述隔板 222隔离出的凝汽器管束与所述海水闪蒸 分系统连接, 其它出水凝汽器管束通过循环水出水母管与循环水回水母管连接。
另外, 所述凝汽器循环海水取水分系统还包括辅助加热分系统, 所述辅助加热 分系统包括列管加热器 301, 所述出水水室 22的海水经过所述列管加热器 301加 热后进入所述闪蒸罐 27, 所述列管加热器 301的热源为电厂的废热蒸汽。
本发明可把凝气器来的 40°C的循环海水接入闪蒸罐 27中, 40°C左右的循环海 水, 在闪蒸罐 27中, 由于压力急剧降低, 迅速闪蒸; 蒸汽向上经过冷凝管束 26, 冷凝成淡水, 达到淡水和盐分分离的目的; 冷凝水落入闪蒸罐 27上部的蒸汽冷凝 回收装置 28中, 再由管道引出, 可以做为火电厂自身给水的补给水, 也可作其它 用途; 循环海水中部分未蒸发的海水直接排入循环水回水母管中; 作为冷凝蒸汽的 低温冷源可以为一小部分的低温循环水, 也可以为锅炉低温补给水的, 其温度应比 循环海水的闪蒸温度低。
为了使循环海水闪蒸, 闪蒸罐 27内需要维持一定的真空度, 假设进入闪蒸罐 27的循环海水温度为 40°C, 其对应饱和水的压力为 P4Q, 因此, 此时闪蒸罐 27内 的绝对压力应小于 P4o, 使循环海水沸腾蒸发。 闪蒸罐 27内的真空度由真空泵来提 供并维持, 对于闪蒸罐 27内混有的不凝结气体也由真空泵一并吸走排出。
在取水系统中还可以增加一辅助加热系统 30, 把从凝汽器 23管束来的海水循 环水再加热; 辅助加热系统 30可以为图 8所示结构: 包括列管换热器, 取水装置 来的海水经过列管加热器 301加热后再由取水泵 29送入闪蒸罐 27内,列管加热器 301的热源为电厂的废热蒸汽, 加热后的海水为防止结垢, 温度不宜过高, 一般低 于 100°C o
整个系统总的能源消耗为真空泵加上取水泵的电耗,其他不需要额外的能源来 加热海水, 因此节能环保, 降低海水淡化的处理成本。
制取的淡水为蒸馏水, 作为锅炉的补水来说, 比电厂水处理的软水要好, 本发 明可以替换电厂的水处理装置, 提高电厂经济效益。

Claims

权利要求书
1. 一种利用电厂余热淡化海水系统, 其特征是包括:
凝汽器 (23) 循环海水取水分系统, 连接聚集凝汽器 (23) 出水的出水 水室 (22);
海水多级闪蒸分系统, 包括多个闪蒸罐, 分别为第一级闪蒸罐 (3)、 第 二级闪蒸罐 (4) ......第 N级闪蒸罐, 聚集在所述凝汽器 (23) 出水水室 (22) 的海水进入第 N-1 级闪蒸罐的冷凝管束 (15 )、 第 N-2 级闪蒸罐的冷凝管束 ( 15) ......第一级闪蒸罐(3)的冷凝管束(15); 第 N级闪蒸罐的冷凝管束(15) 另连接末级冷却系统;
锅炉烟气余热加热循环海水分系统, 包括烟气余热回收装置 (1 ), 来自 第一级闪蒸罐 (3)冷凝管束(15) 的海水经过所述烟气余热回收装置 (1 )后进 入第一级闪蒸罐罐体 (18)、 第二级闪蒸罐罐体 (18) ......直至第 N级闪蒸罐罐 体 (18), 海水在各闪蒸罐内闪蒸, 与各闪蒸罐的冷凝管束 (15 ) 接触后形成淡 水;
抽真空分系统, 所述抽真空分系统包括抽真空设备, 所述抽真空设备与 各闪蒸罐罐体 (18) 连接;
淡水及海水排污分系统, 包括淡水管道与排污海水管道, 所述淡水管道 与各闪蒸罐的淡水出口连接, 未闪蒸的海水通过第 N级闪蒸罐罐体 (18) 后进 入排污海水管道。
2. 根据权利要求 1所述的利用电厂余热淡化海水系统, 其特征是: 还包括凝汽 器循环水分系统, 所述凝汽器循环水分系统包括循环水进水母管、 循环水回 水母管, 所述循环水进水母管分别连接所述凝汽器 (23) 的进口, 以及所述 末级冷却系统的进口, 所述循环水回水母管分别连接所述凝汽器 (23) 的回 口, 以及所述末级冷却系统的出口。
3. 根据权利要求 1所述的利用电厂余热淡化海水系统, 其特征是: 还包括凝汽 器循环水分系统, 所述凝汽器循环水分系统包括循环水进水母管、 循环水回 水母管, 所述循环水进水母管连接所述凝汽器 (23 ) 的进口, 所述循环水回 水母管分别连接所述凝汽器 (23) 的回口, 以及所述排污海水管道的出口。
4. 根据权利要求 1所述的利用电厂余热淡化海水系统, 其特征是: 所述抽真空 分系统的抽真空设备包括抽真空泵(10)和多个真空表(13), 所述抽真空泵
( 10) 与第 N级闪蒸罐连接, 所述真空表 (13) 设在各闪蒸罐中。
5. 根据权利要求 4所述的利用电厂余热淡化海水系统, 其特征是: 所述各闪蒸 罐上都设有平衡通风口 (16), 所述抽真空泵 (10) 与第 N级闪蒸罐的平衡 通风口 (16) 连接, 其它闪蒸罐的平衡通风口 (16) 设于相邻闪蒸罐之间。
6. 根据权利要求 1所述的利用电厂余热淡化海水系统, 其特征是: 所述烟气余 热回收装置 (1 ) 为管束, 来自第一级闪蒸罐 (3 ) 冷凝管束 (15) 的海水从 烟气烟道 (103) 的管束进口进入, 通过管束后, 从烟气烟道 (101 ) 的管束 出口出来。
7. 根据权利要求 6所述的利用电厂余热淡化海水系统, 其特征是: 所述烟气余 热回收装置 (1 ) 的管束的材质为耐酸腐蚀性材料或普通炭钢材料。
8. 根据权利要求 1所述的利用电厂余热淡化海水系统, 其特征是: 所述烟气余 热回收装置 (1 )包括放热段 (105)和吸热段 (104), 所述放热段 (105)和 吸热段(104)连接,形成循环管路,管路中有循环介质流动,所述吸热段(104) 设于烟道内, 来自第一级闪蒸罐(3)冷凝管束(15) 的海水经过所述放热段
( 105) 被加热后进入第一级闪蒸罐罐体 (18)。
9. 根据权利要求 8所述的利用电厂余热淡化海水系统, 其特征是: 循环介质为 高温循环水或自然循环的饱和蒸汽。
10. 根据权利要求 1一 3中任一项所述的利用电厂余热淡化海水系统,其特征 是: 凝汽器循环海水取水分系统连接的出水水室 (22) 中设有隔板 (222), 而且所述隔板 (222) 设于所述出水水室 (22) 的顶部, 所述隔板 (222) 隔 离出的凝汽器管束通过出水集管(221 )与所述海水多级闪蒸分系统连接, 其 它出水凝汽器管束通过循环水出水母管与循环水回水母管连接。
11. 根据权利要求 10所述的利用电厂余热淡化海水系统,其特征是: 所述凝 汽器循环海水取水分系统还包括滤网 (19)、 和海水预处理装置 (11 ), 所述 出水水室 (22) 的海水通过滤网 (19)、 海水预处理装置 (11 )进入所述海水 多级闪蒸分系统。
12. 一种利用电厂余热淡化海水系统, 其特征是包括: 凝汽器循环海水取水分系统, 连接聚集凝汽器 (23 ) 出水的出水水 室 (22);
海水闪蒸分系统,包括闪蒸罐 (27),聚集在所述凝汽器出水水室 (22) 的海水进入闪蒸罐罐体, 所述闪蒸罐 (27) 的冷凝管束 (26) 另连接冷却系统, 海水在闪蒸罐(27) 内闪蒸, 与闪蒸罐(27)的冷凝管束(26)接触后形成淡水; 抽真空分系统,所述抽真空分系统包括抽真空设备, 所述抽真空设备 与闪蒸罐罐体连接;
淡水及海水排污分系统,包括淡水管道与排污海水管道, 所述淡水管 道与闪蒸罐 (27) 上部的蒸汽回收装置连接, 未闪蒸的海水进入排污海水管道。
13. 根据权利要求 12所述的利用电厂余热淡化海水系统,其特征是: 还包括 凝汽器循环水分系统, 所述凝汽器循环水分系统包括循环水进水母管、 循环 水回水母管, 所述循环水进水母管连接所述冷却系统的进口, 所述循环水回 水母管连接冷却系统的出口。
14. 根据权利要求 12所述的利用电厂余热淡化海水系统,其特征是: 所述抽 真空分系统的抽真空设备包括抽真空泵(25), 所述抽真空泵(25)与闪蒸罐
(27) 的顶部连接。
15. 根据权利要求 12所述的利用电厂余热淡化海水系统,其特征是: 所述冷 却系统内的循环介质为低温循环水或锅炉低温补给水。
16. 根据权利要求 12或 13所述的利用电厂余热淡化海水系统, 其特征是: 凝汽器循环海水取水分系统连接的出水水室 (22) 中设有隔板 (222), 而且 所述隔板 (222) 设于所述出水水室 (22) 的顶部, 所述隔板 (222) 隔离出 的凝汽器管束与所述海水闪蒸分系统连接, 其它出水凝汽器管束通过循环水 出水母管与循环水回水母管连接。
17. 根据权利要求 12所述的利用电厂余热淡化海水系统,其特征是: 所述凝 汽器循环海水取水分系统还包括滤网, 所述出水水室 (22) 的海水通过滤网 进入所述海水闪蒸分系统。
18. 根据权利要求 12所述的利用电厂余热淡化海水系统,其特征是: 所述凝 汽器循环海水取水分系统还包括辅助加热分系统, 所述辅助加热分系统包括 列管加热器 (301 ), 所述出水水室 (22) 的海水经过所述列管加热器 (301 ) 加热后进入所述闪蒸罐 (27), 所述列管加热器 (301) 的热源为电厂的废热
PCT/CN2013/072511 2012-05-07 2013-03-13 利用电厂余热淡化海水系统 WO2013166882A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201220200365.5 2012-05-07
CN2012202003655U CN202576022U (zh) 2012-05-07 2012-05-07 利用电厂余热淡化海水系统
CN201210138159.0 2012-05-07
CN201210138159.0A CN102642883B (zh) 2012-05-07 2012-05-07 利用电厂余热淡化海水系统

Publications (1)

Publication Number Publication Date
WO2013166882A1 true WO2013166882A1 (zh) 2013-11-14

Family

ID=49550142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072511 WO2013166882A1 (zh) 2012-05-07 2013-03-13 利用电厂余热淡化海水系统

Country Status (1)

Country Link
WO (1) WO2013166882A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880101A (zh) * 2014-02-19 2014-06-25 首钢京唐钢铁联合有限责任公司 高炉冲渣水余热实现低温多效海水淡化生产的系统及工艺
CN104261500A (zh) * 2014-10-05 2015-01-07 孔令斌 一种斯特林热泵多级蒸馏海水淡化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489652A (en) * 1966-04-18 1970-01-13 American Mach & Foundry Desalination process by multi-effect,multi-stage flash distillation combined with power generation
JPS4910169A (zh) * 1972-05-29 1974-01-29
US3926739A (en) * 1973-08-15 1975-12-16 Hitachi Ltd Multiple-effect multi-stage flash evaporation process and apparatus for demineralizing water
JPS5418469A (en) * 1977-07-11 1979-02-10 Sasakura Eng Co Ltd Brine recycle type multiistage flash evaporation method and apparatus
US5133837A (en) * 1990-09-10 1992-07-28 Kamyr, Inc. Dimpled plate multi-stage flash evaporator
CN101306846A (zh) * 2008-05-08 2008-11-19 泰山集团泰安市普瑞特机械制造有限公司 发动机尾气海水淡化装置
CN102642883A (zh) * 2012-05-07 2012-08-22 上海伏波环保设备有限公司 利用电厂余热淡化海水系统
CN202576022U (zh) * 2012-05-07 2012-12-05 上海伏波环保设备有限公司 利用电厂余热淡化海水系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489652A (en) * 1966-04-18 1970-01-13 American Mach & Foundry Desalination process by multi-effect,multi-stage flash distillation combined with power generation
JPS4910169A (zh) * 1972-05-29 1974-01-29
US3926739A (en) * 1973-08-15 1975-12-16 Hitachi Ltd Multiple-effect multi-stage flash evaporation process and apparatus for demineralizing water
JPS5418469A (en) * 1977-07-11 1979-02-10 Sasakura Eng Co Ltd Brine recycle type multiistage flash evaporation method and apparatus
US5133837A (en) * 1990-09-10 1992-07-28 Kamyr, Inc. Dimpled plate multi-stage flash evaporator
CN101306846A (zh) * 2008-05-08 2008-11-19 泰山集团泰安市普瑞特机械制造有限公司 发动机尾气海水淡化装置
CN102642883A (zh) * 2012-05-07 2012-08-22 上海伏波环保设备有限公司 利用电厂余热淡化海水系统
CN202576022U (zh) * 2012-05-07 2012-12-05 上海伏波环保设备有限公司 利用电厂余热淡化海水系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880101A (zh) * 2014-02-19 2014-06-25 首钢京唐钢铁联合有限责任公司 高炉冲渣水余热实现低温多效海水淡化生产的系统及工艺
CN103880101B (zh) * 2014-02-19 2016-01-27 首钢京唐钢铁联合有限责任公司 高炉冲渣水余热实现低温多效海水淡化生产的系统及工艺
CN104261500A (zh) * 2014-10-05 2015-01-07 孔令斌 一种斯特林热泵多级蒸馏海水淡化装置
CN104261500B (zh) * 2014-10-05 2016-01-13 孔令斌 一种斯特林热泵多级蒸馏海水淡化装置

Similar Documents

Publication Publication Date Title
CN102642883B (zh) 利用电厂余热淡化海水系统
US20120067046A1 (en) Power plant with co2 capture and water treatment plant
CN103387308B (zh) 多效膜蒸馏‐多级闪蒸海水淡化系统
CN103449548B (zh) 船用热管式海水淡化装置
KR100783686B1 (ko) 다단계 플래시 담수화 방법 및 플랜트
CN105923676A (zh) 高效太阳能海水淡化与空调制冷联合运行方法与系统
CN109432808B (zh) 节能环保的ddgs废热蒸发系统
WO2011085669A1 (zh) 低温热能驱动负压蒸发水溶液蒸馏分离装置和获得蒸馏水的方法
CN205035108U (zh) 一种用于海水淡化装置的淡水冷凝器
CN104190259A (zh) 减压多效膜蒸馏方法及其装置
CN101880068A (zh) 一种水处理装置和方法
US11465924B2 (en) Hybrid process and system for recovering water
CN203700098U (zh) 用火力发电厂蒸汽余热处理电厂废水装置
CN201834781U (zh) 单级真空蒸馏海水淡化装置
WO2013166882A1 (zh) 利用电厂余热淡化海水系统
CN202576022U (zh) 利用电厂余热淡化海水系统
CN105645491A (zh) 水净化系统及工艺
CN108675376A (zh) 一种船舶运用海水淡化装置
WO2022126670A1 (zh) 一种通过热泵将高含盐废水浓缩结晶含盐淡化水处理装置
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
CN110404281A (zh) 一种双效外循环蒸发器
CN216073129U (zh) 一种高浓垃圾渗滤液处理装置
KR20100108875A (ko) 폐열을 이용한 담수화장치 및 이에 따른 담수화방법
CN210645170U (zh) 一种双效外循环蒸发器
CN201793400U (zh) 一种水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/04/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13787452

Country of ref document: EP

Kind code of ref document: A1