WO2013163979A2 - Centrale d'accumulation par pompage off-shore - Google Patents

Centrale d'accumulation par pompage off-shore Download PDF

Info

Publication number
WO2013163979A2
WO2013163979A2 PCT/DE2013/000237 DE2013000237W WO2013163979A2 WO 2013163979 A2 WO2013163979 A2 WO 2013163979A2 DE 2013000237 W DE2013000237 W DE 2013000237W WO 2013163979 A2 WO2013163979 A2 WO 2013163979A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
power plant
storage power
pumped storage
chambers
Prior art date
Application number
PCT/DE2013/000237
Other languages
German (de)
English (en)
Other versions
WO2013163979A3 (fr
Inventor
Siegfried Sumser
Original Assignee
Siegfried Sumser
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siegfried Sumser filed Critical Siegfried Sumser
Priority to DE112013002285.0T priority Critical patent/DE112013002285B4/de
Publication of WO2013163979A2 publication Critical patent/WO2013163979A2/fr
Publication of WO2013163979A3 publication Critical patent/WO2013163979A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a pumped storage power plant according to claim 1 and the following claims, which is placed in waters, mainly in the seas and as energy storage, for. B. can serve for wind farms and solar power plants of any kind.
  • a significant disadvantage of the known pumped storage power plants is the considerable space required, if it is a fully synthetic power plant. Furthermore, the realization of a pumped storage power plant often does not correlate with the interests of many groupings, in particular not with the interests of conservation organizations.
  • the essential feature of the vertically stacked chambers connected by flow channels is placement within waters, especially within seas, as the core of offshore storage power plants.
  • the basis for generating the fall height potential of the water required for this purpose Since the pumped storage power plant is preferably located within the sea, There are virtually no shortages of the central medium of water, which is necessary here for energy storage.
  • the locality of the storage power plant would usually be home to the low maintenance losses in the vicinity of alternative power plants, where the storage of excess energy can then be done directly as an intermediate buffer efficiency.
  • the arrangement of the water pump is made with the electric motors, which are driven by means of the excess power supplied by the respective power plants.
  • the water pumps deliver the water from the lower chambers via their exit channel into the marine environment, thus making room for the energy conversion of the geodesically higher water from the upper chamber.
  • the upper chambers would, in one version, advantageously be designed as low volume bulbs in which the controllable orifices and flow ducts and distribution are housed in the downcomers connected to the lower bulky chambers.
  • the controllable orifices and flow ducts and distribution are housed in the downcomers connected to the lower bulky chambers.
  • the water turbines which are likewise positioned in the lower chambers, are acted upon by the water of the upper chamber via the connection channels at the currently existing fall height.
  • Hydro turbines are coupled to the electric generators, which convert the mechanical power of the turbines into electrical energy.
  • the electrical energy of the generators is transported via lines which converters in the network or, is supplied to the consumers with the relevant voltages.
  • 1 is a schematic diagram of the main components of the off-shore
  • the open, upper chamber is designed small volume and contains the controllable opening and distribution devices for the incoming water;
  • the open, upper chamber is large volume designed as an intermediate water reservoir
  • Fig. 3 is a representational sketched off-shore pumped storage power plant in which the water in the intermediate water storage of the upper
  • Chamber with closed valve of the connecting channel flows and simultaneously water is pumped to the "storage filling" from the lower chamber into the sea;
  • Fig. 4 is a representational sketched off-shore pumped storage power plant, in which the intermediate water tank of the upper chamber as well as the lower chamber in the still running Beaufschlagungsphase the water turbine is already largely filled with water, which is almost the empty state of the memory displays;
  • Fig. 5 is a representational sketched off-shore pumped storage power plant in which the intermediate water storage of the upper chamber is full and the lower chamber contains a low water load and practically the indicates maximum energy storage of potential water energy.
  • Fig. 1 shows in principle the pumped storage power plant with the z. B. upwardly open chambers 2, the controllable openings 8 with z. B. controllable
  • Sliders 9 include.
  • the chambers 2 have the essential task to keep their water surfaces 23 close to the geodetic height of the sea surface 22 as upper potency surface for the current drop height largely constant. This means that the water flow from the sea through the controllable openings 8, and the valves and slides 9 in the open chambers 2 cause only small deductions at the height of fall and thus the water surface 23 deviates only slightly from the sea surface 22.
  • controllable valve 7 of the connecting channel 4 If the controllable valve 7 of the connecting channel 4 is opened, the admission of the water turbines 10 takes place with a fall height 6.
  • the directing valve 7 Nesse save if the regulation for the water turbine operation would be accomplished by the controllable openings 8 of the relatively small-volume chamber 2.
  • the water of the upper chamber 2 thus flows through the water turbine 10 and passes through the turbine outlet into the lower large-volume chamber 3, which defines the storage capacity of the pumped storage power plant 1 via the length dimensions thereof substantially.
  • Chamber height of 10 m also require an area of about 3.7 x 10 ⁇ m ⁇ , which corresponds to a square length of about 610 m. Are the boundary conditions for a very large fall height 6 with 100 m given the same chamber height leaves
  • the storage volume and the space requirement tenthin 3.7 x 10 m which then corresponds to a square length of less than 200 m for a 100 MWh memory.
  • the expenditure per MWh for the pumped storage power plant in the sea is very much dependent on the dimensioning possibilities of the falling heights 6 to be realized for a given storage volume, which is given by the extension from the sea surface 22 to the central water surface 24 in the lower chamber 3.
  • the pumped storage power plant of Fig. 1 is made variable in the distance from the seabed via devices and methods, so that the water cycle of the storage power plant in all the operating phases of the "filling” such as "emptying” and the changing conditions of the sea adaptable is.
  • controllable openings 8 in the connecting channel 4 to the marine environment are conceivable, which would have to be activated at the height changes of the power plant for turbine operation.
  • the power is supplied via the lines 26 to the electric motors 13 of the water pumps 12 in the lower chamber 3 for "filling" the energy store by pumping out the water from the chamber 3.
  • the pumped storage power plant will be informed according to the needs and constraints - "energy storage", "electricity in a predetermined amount” and - further process requirements - the power plant control 25 are communicated via the signals 29, the respective signals 28 to the devices, or Aktuato - of the relevant components, such as B. valves 7, 9, 14, pumps and electric motors 12, 13 or water turbines and generators 10, 11 emit.
  • the power plant 1 must be precisely defined in terms of its degrees of freedom of movement by guide, support pillars and damping devices 20, 21 despite the controllability of essential forces due to the often harsh weather conditions in its local area.
  • the large chambers 2 can be regarded as a buffer against the sea environment, the water surfaces 23 of the sea surface 22, based on the absolute drop height 6, can differ significantly per cent.
  • the large volume of the chambers 2 offers over the water filling rate the advantage for wide use of the mentioned options with regard to the floating or floating capability of the power plant. 1 Furthermore, this allows the resulting forces from the gravity and the lift on the Abstitzeben and dampers 20, 21 are kept adjustable small.
  • the power plant 1 can be assembled from many self-sufficient modules mountable.
  • "storage parks" in the sea could be gradually developed over many decades of immense sizes, which can adapt to the growing storage requirements of alternative or even conventional power plants without space problems.
  • 3, 4 and 5 show an objectively outlined representation of a pumped storage power plant 1, or a power plant module in different operating phases of the memory with the core units water pumps with electric motors 12, 13 and water turbines and generators 10.1 1, the valves 7,8, 14 and sliders 9, which are controlled by the control 25.
  • the water pumps 12 being driven by the power plant excess current, eg from the neighboring wind power park, by the electric motors 13 by means of the lines 26 and pumping the same
  • the energy of this surplus stream effects a potential transformation of the amount of water in the compartments 2 over the created drop height potential 6 between the water surfaces 23 and 24 in the water
  • the volume of the pumped-out water in chamber 3 is replaced by the ambient air flowing in through the ventilation channel 5.
  • the controllable openings 8 are set by the slide 9 in the direction "on", whereby the influx of seawater takes place.
  • Fig. 4 shows the memory of the power plant 1, by the filled volume of the chamber 3 just before its "empty state.”
  • the water turbine 10 may well over an existing drop height 6 the generator 1 1 with open valve 7 for a certain time with lower specific If the water in the chambers could rise into the ventilation piping 5, the drop height 6 would move to the value 0, which, however, would not take place in the real operating mode due to tolerance specifications of the lower drop height 6.
  • the supports and guides 20, 21 are activated via corresponding pillars which are anchored in the seabed as a support for the power plant 1 for height stabilization.
  • FIG. 5 An almost full memory state, which can be seen from the largely empty lower chambers 3, shows the Fig. 5.
  • the upper chambers 2 are also almost completely filled for a high drop height 6 in the example shown. Nevertheless, the average density of the entire power plant is still below the seawater density.
  • the draft of the power plant 1 was adjusted here by the total amount of water so that the position of the power plant 1 still adjusts with a slight distance to the support of the support and damping devices 20, 21 in the often optimal floating state.
  • the valves 7 are opened in front of the water turbines, whereby the drive of the generators for power production is made possible.
  • the volume values of the leegepumpten chambers 3 mainly for the dimensioning of the stored target energy amount and the volume values of the chambers 2 for the adjustment of the modes of operation of the entire pumped storage power plant 1 on a floating, possibly floating or sinking state with a high or low power requirement on the support and damping devices 20, 21, which must be received by corresponding pillars, and their seabed foundations.
  • Pumped-storage power plant modules 1 are preferably made of steel and malleable concrete on land, whereby also manufacturing methods of conventional shipyards will play a significant role.
  • reference numeral 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

L'invention concerne un type de centrale d'accumulation par pompage qui est situé dans des eaux, principalement dans les mers. Le coeur de la centrale d'accumulation est formé par des bassins disposés verticalement les uns au-dessus des autres, lesquels permettent la réalisation de processus de remplissage et de déversement du milieu constitué par l'eau, visant à générer une énergie potentielle, respectivement une hauteur de chute, et par conséquent, une production de courant électrique. Les bassins supérieurs communiquent avec les bassins inférieurs par des canaux d'écoulement réglables, des turbines hydrauliques qui se trouvent dans les bassins inférieurs étant sollicitées de façon à entraîner des générateurs électriques destinés à délivrer de l'énergie électrique sous forme de courant. Le réservoir est rempli de telle manière que des pompes à eau, qui sont entraînées par des moteurs électriques, pompent l'eau des bassins inférieurs et l'envoient dans la mer. Ainsi, on réussit à convertir en énergie potentielle l'eau du réservoir supérieur à partir du courant apporté afin d'accumuler l'énergie électrique destinée aux pompes à eau, en acceptant des réductions de rendement. Les centrales d'accumulation par pompage en mer offrent, de préférence, les possibilités d'accumulation nécessaires aux centrales électriques alternatives, telles que les parcs éoliens ou les centrales solaires de tout type, sans que le milieu constitué par l'eau ne vienne à manquer.
PCT/DE2013/000237 2012-05-01 2013-04-28 Centrale d'accumulation par pompage off-shore WO2013163979A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013002285.0T DE112013002285B4 (de) 2012-05-01 2013-04-28 Off-Shore-Pumpspeicher-Kraftwerk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012008876.0 2012-05-01
DE102012008876A DE102012008876A1 (de) 2012-05-01 2012-05-01 Off-Shore-Pumpspeicher-Kraftwerk

Publications (2)

Publication Number Publication Date
WO2013163979A2 true WO2013163979A2 (fr) 2013-11-07
WO2013163979A3 WO2013163979A3 (fr) 2013-12-27

Family

ID=48651871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/000237 WO2013163979A2 (fr) 2012-05-01 2013-04-28 Centrale d'accumulation par pompage off-shore

Country Status (2)

Country Link
DE (2) DE102012008876A1 (fr)
WO (1) WO2013163979A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140033700A1 (en) * 2011-02-28 2014-02-06 Universitat Innsbruck Hydraulic energy store
DE102013011476A1 (de) 2013-07-07 2015-01-08 Siegfried Sumser Archimedisches Speicherkraftwerk
DE102013015082A1 (de) 2013-09-08 2015-03-12 Siegfried Sumser Archimedischer Speicherpark
EP3085950A1 (fr) * 2015-04-24 2016-10-26 Kepco Engineering & Construction Company, Inc. Générateur de puissance flottante en mer
EP3085951A1 (fr) * 2015-04-24 2016-10-26 Kepco Engineering & Construction Company, Inc. Générateur de puissance flottante en mer
NO20160487A1 (no) * 2016-03-24 2017-09-25 Hydroelectric Corp Eiric Skaaren Vannelektrisitetsenhet
NO20170545A1 (en) * 2017-04-03 2018-10-04 Eiric Skaaren Offshore hydroelectric powerplant
CN110198048A (zh) * 2019-06-19 2019-09-03 浙江中新电力工程建设有限公司自动化分公司 基于电力物联网平台的电力实时监控系统
CN110198049A (zh) * 2019-06-19 2019-09-03 浙江中新电力工程建设有限公司自动化分公司 基于电力物联网的电力箱柜控制系统
CZ309913B6 (cs) * 2022-08-19 2024-01-31 Vysoká Škola Báňská - Technická Univerzita Ostrava Přečerpávací elektrárna pro přečerpávání mezi základní a plovoucí nádrží

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037681A2 (fr) * 2022-08-19 2024-02-22 Vysoká Škola Báňská - Technická Univerzita Ostrava Centrale électrique à accumulation par pompage modulaire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2843675C3 (de) * 1978-10-06 1982-02-25 Grüb, Rainer, Ing.(grad.), 7800 Freiburg Vorrichtung zur Stromerzeugung mittels eines Windrades
GB2032008A (en) 1978-10-25 1980-04-30 Zeyher C H Method of and means for generating hydro-electric power
DE202007016031U1 (de) 2007-05-15 2008-05-15 Natcon7 Gmbh Hybridanlage mit einem Wasserrad
US7804182B2 (en) * 2007-11-30 2010-09-28 Deangeles Steven J System and process for generating hydroelectric power
US7564143B1 (en) 2007-12-26 2009-07-21 Weber Harold J Staging of tidal power reserves to deliver constant electrical generation
WO2009111861A1 (fr) * 2008-03-13 2009-09-17 Parker V Martin Système de génération et de stockage immergé (subgenstor)
US8698338B2 (en) * 2010-03-08 2014-04-15 Massachusetts Institute Of Technology Offshore energy harvesting, storage, and power generation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617969B2 (en) * 2011-02-28 2017-04-11 Universität Innsbruck Hydraulic energy store
US20140033700A1 (en) * 2011-02-28 2014-02-06 Universitat Innsbruck Hydraulic energy store
DE102013011476A1 (de) 2013-07-07 2015-01-08 Siegfried Sumser Archimedisches Speicherkraftwerk
DE102013015082A1 (de) 2013-09-08 2015-03-12 Siegfried Sumser Archimedischer Speicherpark
CN106065843B (zh) * 2015-04-24 2019-01-01 韩国电力技术株式会社 海上浮式发电机
EP3085950A1 (fr) * 2015-04-24 2016-10-26 Kepco Engineering & Construction Company, Inc. Générateur de puissance flottante en mer
EP3085951A1 (fr) * 2015-04-24 2016-10-26 Kepco Engineering & Construction Company, Inc. Générateur de puissance flottante en mer
CN106065843A (zh) * 2015-04-24 2016-11-02 韩国电力技术株式会社 海上浮式发电机
CN106065844A (zh) * 2015-04-24 2016-11-02 韩国电力技术株式会社 海上浮式发电机
NO20160487A1 (no) * 2016-03-24 2017-09-25 Hydroelectric Corp Eiric Skaaren Vannelektrisitetsenhet
NO20170545A1 (en) * 2017-04-03 2018-10-04 Eiric Skaaren Offshore hydroelectric powerplant
CN110198048A (zh) * 2019-06-19 2019-09-03 浙江中新电力工程建设有限公司自动化分公司 基于电力物联网平台的电力实时监控系统
CN110198049A (zh) * 2019-06-19 2019-09-03 浙江中新电力工程建设有限公司自动化分公司 基于电力物联网的电力箱柜控制系统
CN110198048B (zh) * 2019-06-19 2024-01-02 浙江中新电力工程建设有限公司自动化分公司 基于电力物联网平台的电力实时监控系统
CN110198049B (zh) * 2019-06-19 2024-02-27 浙江中新电力工程建设有限公司自动化分公司 基于电力物联网的电力箱柜控制系统
CZ309913B6 (cs) * 2022-08-19 2024-01-31 Vysoká Škola Báňská - Technická Univerzita Ostrava Přečerpávací elektrárna pro přečerpávání mezi základní a plovoucí nádrží

Also Published As

Publication number Publication date
WO2013163979A3 (fr) 2013-12-27
DE112013002285A5 (de) 2015-01-22
DE112013002285B4 (de) 2021-10-07
DE102012008876A1 (de) 2013-11-21

Similar Documents

Publication Publication Date Title
WO2013163979A2 (fr) Centrale d'accumulation par pompage off-shore
EP2681445B1 (fr) Réservoir d'énergie hydraulique
EP2776705B1 (fr) Installation de stockage d'énergie par pompage
EP3123094B1 (fr) Accumulateur d'énergie, centrale électrique équipée d'accumulateur d'énergie et procédé pour les faire fonctionner
DE102013015082A1 (de) Archimedischer Speicherpark
DE102006059233A1 (de) Verfahren zur wechselweisen Ein- und Ausspeicherung von Energie sowie Speichervorrichtung hierfür
DE10028431A1 (de) Wasserkraftwerk
WO2014072415A1 (fr) Centrale hydraulique à accumulation par pompage et système de production et stockage d'énergie équipé d'une telle centrale
DE102014000811A1 (de) Hochleistungs-Pumpspeicherkraftwerk
DE102014104675B3 (de) Windenergieanlage mit zusätzlicher Energieerzeugungseinrichtung
DE202006008957U1 (de) Elementen-Kraftwerk (EKW) zur Elektrizitätsgewinnung
DE102010054277A1 (de) Pumpspeicherkraftwerk mit Solar- und Windkraftwerk, Grundwasserstausee und Hochbehälter
DE102009057758A1 (de) Unterirdischer Wasserspeicher zur Energiegewinnung und zur Wasserstandsregulierung eines Wasserlaufes
DE102014007657A1 (de) ln Windradtürme integrierte vertikale Wassertanks als Ersatz des Oberbeckens von Pumpspeicherkraftwerken zum Speichern elektrischer Energie
DE102013011476A1 (de) Archimedisches Speicherkraftwerk
WO2020169720A1 (fr) Centrale de pompage-turbinage, procédé pour faire fonctionner une centrale de pompage-turbinage et système de pompage-turbinage
DE102014115860A1 (de) Gasdruckenergiespeichernetz mit natürlicher Druckhaltung sowie Komponenten hierfür
DE102019121603A1 (de) Turbine-Generator-Pump-Stadt-Kraftwerk
WO2018108201A1 (fr) Centrale de pompage-turbinage
DE102020127762A1 (de) System zur Energiespeicherung und -rückgewinnung
WO2023174549A1 (fr) Centrale de stockage d'énergie par pompage
WO2023036372A1 (fr) Centrale hydroélectrique et centrale hydroélectrique à accumulation par pompage comprenant au moins une telle centrale
DE4124899A1 (de) Vorrichtung zur energieumwandlung
DE102021100873A1 (de) Hydromechanische Energiespeicher- und Energieumwandlungsvorrichtung
DE202023100781U1 (de) Kleinspeicherkraftwerke zur Energiespeicherung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13729582

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120130022850

Country of ref document: DE

Ref document number: 112013002285

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013002285

Country of ref document: DE

Effective date: 20150122

122 Ep: pct application non-entry in european phase

Ref document number: 13729582

Country of ref document: EP

Kind code of ref document: A2