DE102013015082A1 - Archimedischer Speicherpark - Google Patents

Archimedischer Speicherpark Download PDF

Info

Publication number
DE102013015082A1
DE102013015082A1 DE201310015082 DE102013015082A DE102013015082A1 DE 102013015082 A1 DE102013015082 A1 DE 102013015082A1 DE 201310015082 DE201310015082 DE 201310015082 DE 102013015082 A DE102013015082 A DE 102013015082A DE 102013015082 A1 DE102013015082 A1 DE 102013015082A1
Authority
DE
Germany
Prior art keywords
storage power
pumped storage
power plants
storage
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201310015082
Other languages
English (en)
Inventor
Anmelder Gleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE201310015082 priority Critical patent/DE102013015082A1/de
Publication of DE102013015082A1 publication Critical patent/DE102013015082A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

Die Erfindung betrifft ein Verband eines Pumpspeicher-Kraftwerkstyps, der in Gewässern, vorwiegend in den Meeren angeordnet wird. Der Kern des Speicherkraftwerks sind vertikal übereinanderliegende Kammern, mit denen „Füll- und Entleer Vorgänge” des Mediums Wasser zur Schaffung von potentieller Energie, bzw. Gefällhöhe und daraus eine Stromproduktion bewirkbar wird. Die oberen Kammern sind über regelbare Strömungskanäle mit den unteren Kammern verbunden, durch die Wasserturbinen in den unteren Kammern zum Antrieb von elektrischen Generatoren zur Abgabe von elektrischer Energie in Form von Strom beaufschlagbar sind. Der Speicher wird in der Weise gefüllt, dass Wasserpumpen, die durch Elektromotoren mittels dem Überschußstrom angetrieben werden, aus den unteren Kammern Wasser ins Meer pumpen, wodurch die Wandlung in potentielle Energie des Wassers im oberen Speicher aus dem zugeführten Strom zur Speicherung bewerkstelligt wird. Das Pumpspeicher-Kraftwerk, genannt Archimedisches Speicherkraftwerk, dient als Modul für den Verband des Archimedischen Speicherparks, der auch Windkraftanlagen eine schwimmende Basis für deren Anordnung im Meer bieten. Die Pumpspeicher-Kraftwerke im Meer als Verband des Archimedischen Speicherparks bieten vorzugsweise die notwendigen Speichermöglichkeiten für alternative Kraftwerke, wie die der Windkraft- oder der Solarkraftwerke jeglicher Art ohne mit Knappheit des Mediums Wassers zur Schaffung der nutzbaren potenziellen Energie rechnen zu müssen.

Description

  • Die Erfindung betrifft ein Pumpspeicher-Kraftwerk, das auf der Anmeldeschrift DE 10 2012 008 876.0 ( PCT/DE2013/000237 ) und DE 10 2013 011 476 basiert und nach Patentanspruch 1 und den folgenden Ansprüchen die absolute Speicherkapazität durch eine Vervielfachung der autarken Pumpspeicher-Kraftwerke in einem Verband, genannt Archimedischer Speicherpark, erhöht.
  • Pumpspeicher-Kraftwerke auf dem Lande sind seit mehr als einem Jahrhundert als Stand der Technik bekannt, um Überschüsse der Stromerzeugung in potenzielle Energie mittels dem Medium Wasser für eine spätere Nutzung mit einem gewissen Wirkungsgradabschlag zu speichern. Das Wasser wird dazu durch Pumpen auf eine höhere geodätische Höhe in einen Speicher, bzw. in einen höher liegenden See gepumpt. Besteht ein hoher Strombedarf, der von den aktiven Kraftwerken nicht unmittelbar gedeckt werden kann, steht dem Verbraucher diese potenzielle Energie über die Fallhöhe des Wassers zur Umwandlung in den Wasserturbinen in mechanische Arbeit und den daran gekoppelten elektrischen Generatoren für einen schnellen Stromabruf zur Verfügung. Ein gewichtiger Nachteil der bekannten Pumpspeicher-Kraftwerke ist der erhebliche Platzbedarf, falls es sich um ein vollsynthetisch erstelltes Kraftwerk handelt. Des Weiteren korreliert die Realisierung eines Pumpspeicher-Kraftwerks häufig nicht mit den Interessen vieler Gruppierungen, insbesondere nicht mit den Belangen der Naturschutzverbände. Trotz dem wachsenden Strombedarf und dem geplanten Ersatz der Atomkraftwerke durch alternative Kraftwerke, insbesondere durch Wind- und Sonnenkraftwerke aller Art, gibt es aus politischer Sicht erhebliche Probleme die notwendigen Speichertechnologien für eine vorteilhafte Netzstabilisierung durchzusetzen.
  • Auch besteht eine große Abhängigkeit der vorliegenden Wasser-Speicher-Kraftwerke vom Geschehen des Wetters, bzw. von den Ereignissen der Regenhäufigkeit. Da in heißen Wetterphasen eine nicht unerhebliche Verdampfungsrate vorliegt und die betreffenden Gewässer auch für die Trinkwasserversorgung meist eine wesentliche Rolle spielen, kann es zur ernsthaften Wasser-Knappheit kommen, die den Speicherprozess stören, bzw. sogar temporär unmöglich machen. Bewegen wir uns aus dem europäischen Raum in die Bereiche, die weiträumig um den Äquator liegen, finden wir riesige Land-Zonen, die ein hohes Potenzial an Wind- und Sonnenenergie für die Stromerzeugung aufweisen. Eine einfache Speicherung der Energie mittels der herkömmlichen Pumpspeicher-Technologien kann jedoch wegen dem fehlenden Wasser als Speichermedium und den fehlenden notwendigen Erhebungen in den wenigsten Fällen erfolgen.
  • Es ist daher Aufgabe der Erfindung, ein Typ von Pumpspeicher-Kraftwerken zu konzipieren, der auf dem bekannten, einfachen und herkömmlichen physikalischen Prinzip basiert und weder Platzprobleme mit sich bringt noch in absehbarer Zeit Knappheit des Hauptmediums Wasser aufweisen wird.
  • Neben den übersichtlichen physikalischen Gegebenheiten, dürften dann die politischen Bedingungen für die Umsetzungen des Speichertyps weltweit nicht ungünstig sein. Der Energieumwandlung mit alternativen Kraftwerken wird somit eine weitere Ausgangsbasis geboten, die mit dieser einfachen Speichertechnologie in Verbindung steht. Es ist zu erwarten, dass unter neuen günstigen Randbedingungen mit der Entwickelbarkeit der einfachen Speichertechnologie ein Durchbruch der alternativen Stromversorgung ohne größere politische Widerstände wahrscheinlicher wird.
  • Die Aufgabenstellungen werden durch den Pumpspeicher-Kraftwerkstyp, genannt „Archimedisches Speicherkraftwerk” im Verband des erfindungsgemäßen Archimedischen Speicherpark, mit den Merkmalen des Patentanspruchs 1, zusammen mit den nachfolgenden Ansprüchen gelöst. Vorteilhafte Ausgestaltungen der alternativen Kraftwerke im Verband des Archimedischen Speicherpark mit zweckmäßigen und nicht-trivialen Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen gegeben.
  • Das wesentliche Merkmal der vertikal übereinander angeordneten Kammern, die durch Strömungskanäle verbunden sind, ist die Platzierbarkeit innerhalb von Gewässern, im Besonderen innerhalb von Meeren als Kern von Off-Shore-Speicher-Kraftwerken. Mittels der beiden übereinander liegenden Kammern besteht die Basis für die Erzeugung des Fallhöhen-Potenzials des dazu benötigten Wassers während der Schwimmphase des Kraftwerks. Da sich das Pumpspeicher-Kraftwerk vorzugsweise innerhalb des Meeres befindet, gibt es praktisch zu keinem Zeitpunkt Knappheit an dem zentralen Medium Wasser, das hier für die Energiespeicherung notwendig ist.
  • Die Örtlichkeit des Speicherkraftwerks würde man üblicherweise zur Kleinhaltung der Übertragungsverluste in der Nähe von alternativen Kraftwerken beheimaten, wo die Speicherung der überschüssigen Energie dann als Zwischen-Puffer wirkungsgradgünstig direkt erfolgen kann. Die Speicherkraftwerke bieten sogar sehr günstige Bedingungen gerade für Windkraftanlagen als „schwimmendes Fundament”, wodurch eine direkte Verbindung des Apparates der Stromerzeugung zur darunter liegenden Speichereinheit gegeben ist. Erfindungsgemäß erfolgt zu Steigerung der Speicherkapazität, bzw. der Entwicklung des Archimedischen Speicherparks zu großen Einheiten nach Anspruch 1 die Kopplung zu mindestens einem weiteren Pumpspeicherkraftwerk des Typs des Archimedischen Speicherkraftwerks. Im Entwicklungsverlauf des Speicherparks entstehen Größenordnungen von Verbänden mit z. B. hundert oder mehreren hundert autarker Speicher-Einheiten, die über ein Regelungsnetz in ihren Funktionen nach den Gegebenheiten als eine große Einheit, bzw. Park kontrolliert werden. Die schwimmenden und tauchenden Speicher-Einheiten bieten Windkraftanlagen die Basis, bzw. das Fundament, für deren schwimmende Anordnung. Nach Anspruch 2 ergibt sich somit eine Integration und feste Zuordnung von Windkraftanlagen zu deren Speichereinheiten.
  • In den unteren Kammern wird die Anordnung der Wasserpumpen mit den Elektromotoren getätigt, die mittels den von den betreffenden Kraftwerken gelieferten Überschussströmen angetrieben werden. Die Wasserpumpen fördern das Wasser aus den unteren Kammern über ihren Austrittskanal in die Meeresumgebung, um somit Platz zu schaffen für die Energieumwandlung des geodätisch höher liegenden Wassers aus der oberen Kammer.
  • Die oberen Kammern würde man in der einen Version z. B. für die die Definition der Schwimmphase als Volumina geringerer Größe ausbilden, in dem die regelbaren Öffnungen und Strömungszuführungen und die -Verteilung zu den Fallkanälen, die mit den unteren großvolumigen Kammern verbunden sind, untergebracht sind. Somit könnte man bei dem wichtigen Parameter der Fallhöhe in den Betriebsphasen, in denen man vom Speicherkraftwerk Energie in Form von Strom abruft, auch in Schwimmphasen direkt von der Oberfläche des Gewässers, bzw. der Meeresoberfläche ausgehen. In den unteren großvolumigen Kammern steigt die Wasseroberfläche mit den Wassermengen an, die durch die Fallkanäle über die Wasserturbinen einströmen, wodurch sich eine Minderung der Fallhöhe während der Nutzung der Speicherenergie ergibt, was ein wesentlicher Parameter bei der Auslegung des Kraftwerkstyps bedeutet. Zum Schutz von Lebewesen, insbesondere der Fische, werden in den oberen Kammern und/oder zusätzlich auch in den Ansaugkanälen der Turbinen wasserdurchlässige Rückhaltevorrichtungen zu deren Schutz angebracht. Durch die sehr vorteilhafte Tauchfähigkeit wird die prozentuale Minderung der spezifischen Leistung, bzw. spezifische Speicherfähigkeit durch den Wasseranstieg in der unteren Kammer reduziert. Die zu speichernden Überschussenergien, z. B. der Wind-Kraftwerke, betreffen also die Stromzuführungen zu den Elektromotoren, die die Wasserpumpen in den unteren Kammern antreiben und dadurch zur Schaffung des Massen- und Höhenpotenzials des Wassers genutzt werden, das dann aus dem Meer durch von Schiebern oder Ventilen kontrollierten Öffnungen auf dem geodätisch höheren Niveau in die oberen Kammern einströmt. Die Auslegung des Kraftwerks auf die entsprechenden Speicher-Kapazitäten erfordert den Einsatz bestimmter Werkstoffe mit höheren Dichten als Wasser, wie z. B. Stahlbeton, wobei die Stärken der Wandungen den Wasserdrücken in den angestrebten Tiefen angepasst werden müssen, da auch das permanente zyklische Ab- und Auftauchen neben dem maximalen Druckniveau der Belastungen auch mit nicht zu vernachlässigenden Low Cycle Fatigue Beanspruchungen in Verbindung steht.
  • Findet nun die Anforderung statt, dass der Speicher Energie in Form einer Stromlieferung abgeben soll, werden die Wasserturbinen, die ebenfalls in den unteren Kammern positioniert sind, durch das Wasser der oberen Kammer über die Verbindungskanäle bei der aktuell vorliegenden Fallhöhe, ggf. mit einem gewissen Vordruck der betreffenden Tauchtiefe, beaufschlagt. Die Wasserturbinen sind an die elektrischen Generatoren gekoppelt, die die mechanische Leistung der Turbinen in elektrische Energie umwandeln. Der Transport der elektrischen Energie der Generatoren erfolgt über Leitungen und Kontaktschienen, die z. B. in den Führungspfeilern des Kraftwerks integriert sind, zu verschiedenen Wandlern in das oder die Netze, bzw. wird den Verbrauchern mit den gewünschten Spannungen zugeführt. Zur Beeinflussung des dynamischen Verhaltens des Pumpspeicherkraftwerks in den Abtauch- wie auch Auftauchphasen besitzt das Kraftwerk die entsprechenden Messgeräte, die jederzeit das augenblickliche dynamische Verhalten wie auch die Örtlichkeit feststellen können. Das dynamische und stationäre Verhalten des Kraftwerks an den betreffenden Soll-Örtlichkeiten, bzw. Tauchtiefen wird durch Regeleingriffe spezieller Regeleinrichtungen kontrolliert. Hierzu werden mindestens die Erfassung der Geschwindigkeit und deren Änderungen mit der Identifikation der Örtlichkeit des Kraftwerks bezüglich dem Gewässergrund und der Gewässeroberfläche getätigt. Mittels der Regelung wird der Turbinenbetrieb, wie auch der Pumpbetrieb, die in bestimmten Tauch- oder Schwimmphasen auch simultan ablaufen können, in Abhängigkeit der Forderungen hinsichtlich der Bewegungsdynamik und der Soll-Örtlichkeit, kontrolliert und beeinflusst. Hierzu sind auch Volumina, die mit Wasser gefüllt und entleert werden können, für die Feinabstimmung des Kraftwerksgewichts vorgesehen, die unabhängig und wasserdicht trennbar vom Speichervolumen der unteren und oberen Kammern in der Kraftwerkswandung untergebracht sind. Als eine Soll-Hauptführungsgröße der im allgemein gekoppelten Regelungen dient der aktuelle Quotient der global wirksamen Kraftwerksdichte zur lokalen Wasserdichte des Wassers um das Speicherkraftwerk herum, um die Regelung der Ventile, Motoren, Pumpen und Turbinen in gewünschter Form zielgerichtet, jetzt für den gesamten Speicherpark zu beeinflussen. Hierzu wird im Speicherpark ein „Führungskraftwerk” definiert. Zu diesem „Führungskraftwerk” werden die erlaubten Toleranzen, im Besonderen hinsichtlich der Bewegungen der restlichen Kraftwerke, überwacht.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den nachfolgenden Beschreibungen mehrerer Ausführungsbeispiele sowie anhand der Zeichnungen. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren allein gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegeben Kombination sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Die Figuren zeigen:
  • 1 eine Prinzip Darstellung der Hauptkomponenten eines Off-Shore-Pumpspeicher-Kraftwerks in der Schwimmphase, wobei die offene, obere Kammer relativ kleinvolumig gestaltet ist und die regelbaren Öffnungs- und Schließvorrichtungen für das ein/ausströmende Wasser und die Kopplungs- und Dämpfungsvorrichtung für die lose Verbindung der autarken Einheiten enthält;
  • 2 eine Prinzip Darstellung des Off-Shore-Speicherparks mit einem „Führungskraftwerk mit der internen Netzregelung des Speicherparks, wobei auch die vorteilhafte Integration von Windkraftwerken dargelegt wird.
  • Die 1 zeigt prinzipiell das Pumpspeicher-Kraftwerk 1 mit integrierten Windkraftanlagen 100 in der Schwimmphase mit den z. B. nach oben offenen Kammern 2, die die regelbaren Öffnungen 8 mit z. B. regelbaren Schiebern 9 beinhalten. Zum Schutz von Lebewesen wird über der Ansaugöffnung der Turbine des Kanals 4 eine wasserdurchlässige Rückhaltevorrichtung 34 angebracht. Die Kammern 2 haben die wesentliche Aufgabe ihre Wasser-Oberflächen 23 nahe zur geodätischen Höhe der Meeresoberfläche 22 als obere Potenzialfläche für die aktuelle Fallhöhe weitgehend gleich zu halten. Das bedeutet, dass der Wasserdurchsatz aus dem Meer durch die regelbaren Öffnungen 8, bzw. den Ventilen und Schiebern 9 in die offenen Kammern 2 nur geringe Abschläge an der Fallhöhe bewirken und somit die Wasseroberfläche 23 nur geringfügig von der Meeresoberfläche 22 abweicht. Wird das regelbare Ventil 7 des Verbindungskanals 4 geöffnet, findet die Beaufschlagung der Wasserturbinen 10 mit einer Fallhöhe 6 statt. Das Regelventil 7 ließe sich in der Schwimmphase einsparen, falls die Regelung für den Wasserturbinenbetrieb durch die regelbaren Öffnungen 8 der relativ kleinvolumigen Kammer 2 bewerkstelligt werden würde. Das Wasser der oberen Kammer 2 durchströmt also die Wasserturbine 10 und gelangt über den Turbinenaustritt in die untere großvolumige Kammer 3, die über deren Längen-Dimensionierungen mit dem Gesamtgewicht des Speicherkraftwerks und den ggf. positionieren Windkraftanlagen im Wesentlichen die Speicherkapazität des Pumpspeicher-Kraftwerks 1 in der Schwimmphase festlegt. Möchte man in der Schwimmphase eine Speicherkapazität von z. B. 100 MWh realisieren, wird man bei einer vorgesehenen mittlere Fallhöhe 6 von z. B. 10 m und einer unteren Kammerhöhe von ebenfalls 10 m eine Fläche von über 3.7 × 105 m2 benötigen, was einer Quadratlänge von ca. 610 m entspricht. Sind die Randbedingungen für eine sehr große Fallhöhe 6 mit 100 m bei gleicher Kammerhöhe gegeben, lässt sich das Speichervolumen und der Flächenbedarf auf 3.7 × 104 m2 zehnteln, was dann einer Quadratlänge von weniger als 200 m für einen 100 MWh-Speicher entspricht. Die Aufwendungen pro MWh für das Pumpspeicher-Kraftwerk im Meer ist bei vorgegebenem Speichervolumen sehr stark abhängig von den Dimensionierungsmöglichkeiten der zu realisierenden Fallhöhen 6, die durch die Erstreckung von der Meeresoberfläche 22 bis zur mittleren Wasseroberfläche 24 in der unteren Kammer 3 gegeben ist. Wie schon erwähnt, wird die potenzielle Energie in den Wasserturbinen 10 mit den angekoppelten elektrischen Generatoren 11 unter Berücksichtigung der Komponentenwirkungsgrade in elektrische Energie umgewandelt. Der erzeugte Strom wird dann über die Leitungen 27 an das Netz für die Verteilung an die Verbraucher abgeführt. Besteht von den alternativen Kraftwerken oder über das Netz ein Stromüberschuss wird der Strom über die Leitungen 26 den Elektromotoren 13 der Wasserpumpen 12 in der unteren Kammer 3 zum „Füllen” des Energiespeichers durch ein Herauspumpen des Wassers aus der Kammer 3 bewerkstelligt. Da es sich um Stromübertragungen eines beweglichen Kraftwerks handelt, wird es sinnvoll sein, einen Stromfluss über Gleitkontakte 18, bzw. Gleitschienen 28 zu ermöglichen. Vorteilhafterweise wird man die Gleitkontakte 18 stationär in mindestens einem Führungspfeiler 20 vorsehen. Entgegen der Darstellung in 1, erbringt es für eine störungsfreie Vertikalbewegung und die sichere horizontale Führung Vorteile, wenn der Führungspfeiler 20 durch eine kraftwerksinnere Öffnung, die im Bereich des Kraftwerksschwerpunkts liegt, geführt wird und somit durch eine kraftwerkszentrale Führungsschacht örtlich mit definiert wird. Vorstellbar ist die Anordnung eines zentralen Gleitkontaktes im „Führungsspeicherkraftwerk” 300, der in seiner Dimensionierung auch zur Fixierung des gesamten Speicherparks mit weiteren Verankerungen ausgerichtet sein könnte. Das Pumpspeicher-Kraftwerk 1 wird entsprechend der Bedürfnisse und Randbedingungen – „Energie Speichern”, „Strom in vorgegebener Menge liefen” und – weitere Prozessanforderungen, wie z. B. Ab- oder Auftauchen – die der Kraftwerksregelung 15, 25 über Signale mitgeteilt werden, die betreffenden Signale an die Vorrichtungen, bzw. Aktuatoren der maßgebenden Komponenten, wie z. B. Ventile 7, 9, 14, Pumpen und Elektromotoren 12, 13 oder Wasserturbinen und Generatoren 10, 11 an die Kraftwerkseinheiten aussenden. Die Erhöhung der spezifischen Speicherfähigkeit des Kraftwerks, wird durch eine beispielsweise von den Windkraftwerken 100 begrenzte Tauchfähigkeit erzeugt. Hierzu wird die Tauchfähigkeit des Archimedischen Speicherkraftwerks in der Weise genutzt, dass die obere offene Kammer 2 bis zum Sperrventil 7 einen zusätzlichen Vordruck durch die darüber stehende Wassersäule, die sich bis zur Meeresoberfläche 22 erstreckt, verspürt. Die Turbine besitzt somit für die Umwandlung der potenziellen Energie eine Fallhöhe 6, die man von der Meeresoberfläche 22 bis zur Wasseroberfläche 24 der unteren Kammer misst. Zur Versorgung des Tauchkraftwerks mit Luft, werden Be- und Entlüftungsleitungen 5 von über der Meeresoberfläche bis zum Kraftwerk geführt, wobei der Atmosphärendruck der Umgebung durch diese Leitungen vorwiegend in die untere Kammer 3 oder in Räumlichkeiten, in denen sich Menschen aufhalten können, geführt werden. Hierdurch besteht ein definierter Gasdruck über der Wasseroberfläche 24. Falls keine Luft unter Umgebungsdruck benötigt wird, lassen sich diese Leitungen 5 einsparen. Die Zusatzgewichte der Speicherkraftwerke 1 durch die integrierten Windkraftanlagen 100 führen zur Erhöhung der Speicherfähigkeit, wobei die Gewichtsverteilung im Speicherkraftwerk und die Absenkung des Gesamtschwerpunkts auf größere Wassertiefen eine wesentliche Rolle zur sicheren Funktion der Gesamteinheit (1, 100) bei den vorherrschenden Kräften und Momenten, die von den Windkraftwerken bei hohen Betriebsleistungen ausgehen. Um die zu erwartenden maximalen Windkräfte hinsichtlich der entstehenden Neigung des Turms teilweise zu kompensieren kann es sinnvoll sein die Lage der Gesamtschwerpunkte asymmetrisch außerhalb der Speicherkraftwerk-Achsen vorzusehen. Die 2 gibt in einer Draufsicht einen prinzipiellen Überblick über die mit zylindrischen Außenwandungen 38 gestalteten Speicherkraftwerken 1, die mit Kopplungs- und Dämpfungsvorrichtungen 35 miteinander mehr oder weniger lose verbunden sind, wodurch Relativbewegungen zueinander möglich sind. Es kann auch zur Anpassung der Kraftwerke zueinander vorteilhaft sein, die Grundform 38 als Sechseck auszulegen, wodurch für die Kopplung, Dämpfung und Kraftübertragungen zwischen den autarken Einheiten 1 größere benachbarte Flächen vorliegen. Aus Kostengründen wird man bei der Vervielfachung dieser Speicherkraftwerke zur Schaffung und Entwicklung großer Speicherparks anstreben, weitgehend identisch gleiche Module zu realisieren. Aufgrund von abweichenden Aufgabenstellungen bestimmter Kraftwerkseinheiten im Verband des Speicherparks 200 sind jedoch auch Unterschiede der Größen und Außenformen der Kraftwerke innerhalb des Parks 200 zur Aufgabenerfüllung häufig notwendig.
  • Bezugszeichenliste
  • 1
    Pumpspeicher-Kraftwerk
    2
    Obere Kammern (ggf. zur Luftatmosphäre offen, bzw. keine Decke)
    3
    Untere Kammern
    4
    Verbindungskanäle
    5
    Be- und Entlüftungskanäle der unteren Kammern, Schnorchel, optional
    6
    Fallhöhe
    7
    Regelbare Ventile der Verbindungskanäle
    8
    Regelbare Öffnungen der oberen Kammern
    9
    Verschließvorrichtungen, z. B. Schieber
    10
    Wasserturbinen
    11
    el. Generatoren mit Wasserturbinen verbunden
    12
    Wasserpumpen
    13
    Elektromotoren mit Wasserpumpen verbunden
    14
    verschließbare Austrittskanäle stromab Wasserpumpen
    15
    Regelung für Bewegung und Stillstand der Speicherkraftwerke
    16
    Stromleitungen für el. Motoren der Wasserpumpen
    17
    Stromleitungen der el. Generatoren
    18
    Stromkontakt bewegliches Kraftwerk zum Führungspfeiler
    19
    Kraftwerkswandungen
    20
    Führungspfeiler: Anordnung vorzugsweise Verlauf im Bereich durch einen Kraftwerksschwerpunkt-Schacht (in Figuren nicht dargestellt)
    21
    Dämpfungsvorrichtungen
    22
    Gewässeroberfläche (Meeresoberfläche)
    23
    Wasseroberfläche obere Kammer 2
    24
    Wasseroberfläche untere Kammer 3
    25
    Kraftwerksregelung zum Füllung und Entleerung der Speicher
    26
    Stromzuführleitungen, z. B. von Wind- oder Photovoltaik-Kraftwerken
    27
    Stromabführleitungen des Pumpspeicher-Kraftwerks
    28
    Stromleitschiene
    30
    Gewässerboden (Meeresboden)
    31
    Geschwindigkeitsmesser, Beschleunigungsmesser, Verzögerungsmesser
    32
    Tiefenmesser, Abstandsmesser zum Gewässerboden 30
    33
    Vorrichtung zur Dichteabstimmung Kraftwerk/Gewässer: Volumen mit Pumpen und Ventilen zur Feinabstimmung des Kraftwerkgewichts
    34
    Sicherheitssystem für Lebewesen in Kammer 2 oder im Turbinenansaugtrakt 4
    35
    Befestigungsvorrichtungen mit elastischer und dämpfender Wirkung
    36
    Signalleitungen zur Regelungen des Speicherpark-Netzes
    37
    Auflagefläche
    38
    Außenwandungsform Pumpspeicher-Kraftwerk
    100
    Windkraftwerke intergiert auf Speicherkraftwerk 1
    200
    Verband Pumpspeicher-Kraftwerke, Speicherpark
    300
    „Führungs-Pumpspeicher-Kraftwerk” des Speicherparks
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102012008876 [0001]
    • DE 2013/000237 [0001]
    • DE 102013011476 [0001]

Claims (10)

  1. Pumpspeicher-Kraftwerk (1) in Gewässern angeordnet, bestehend aus mindestens einer oberen Kammer (2) und mindestens aus einer unteren Kammer (3), die durch Strömungskanäle (4) vorwiegend vertikal miteinander verbunden sind, dadurch gekennzeichnet, dass das Pumpspeicher-Kraftwerk (1) als autarke Einheit gestaltet ist, die mit mindestens einem zweiten Pumpspeicher-Kraftwerk (1) gekoppelt ist.
  2. Pumpspeicher-Kraftwerke (1) nach Anspruch 1 dadurch gekennzeichnet, dass der im Verband (200) der Pumpspeicher-Kraftwerke (1) zumindest teilweise Windkraftwerke (100) auf den Pumpspeicher-Kraftwerken (1) angeordnet sind.
  3. Pumpspeicher-Kraftwerke (1) nach Anspruch 1 und 2 dadurch gekennzeichnet, dass im Verband (200) die Pumpspeicher-Kraftwerke (1) durch elastische und dämpfende Kopplungselemente (35) als bewegliche Einheiten miteinander fixiert sind.
  4. Pumpspeicher-Kraftwerke (1) nach Anspruch 1 bis 3 dadurch gekennzeichnet, dass im Verband (200) der Pumpspeicherkraftwerke Regelungsvorrichtungen (15, 25, 36) angeordnet sind, die die Wasserbewegungen im Zusammenspiel der Strom Zu- und Abfuhr über die Leitungen (26, 27) in Abhängigkeit zu dem aktuellen stationären und dynamischen Verhalten des Kraftwerks und dessen Örtlichkeit in Bezug zum Gewässergrund (30, 37) und der Gewässeroberfläche (22) kontrollieren.
  5. Pumpspeicher-Kraftwerke (1) nach Anspruch 3 dadurch gekennzeichnet, dass die Regelung (15) Aktuatoren der Ventile und Pumpen von Kraftwerksdichte-Abstimmungsvolumina (33) und damit das Gesamtgewicht, in einer Feinabstimmung kontrolliert und die Gesamtheit der Kraftwerke (1) zueinander über die Netz-Signalleitungen 36 verbunden ist.
  6. Pumpspeicher-Kraftwerke (1) nach obigen Ansprüchen dadurch gekennzeichnet, dass mit der Gestaltung der Außenwandungsform des Pumpspeicher-Kraftwerks (1) die maximale Anzahl der direkten Nachbar-Pumpspeicher-Kraftwerke (1) eine Festlegung erfährt.
  7. Pumpspeicher-Kraftwerke (1) nach Anspruch 6 dadurch gekennzeichnet, dass die Pumpspeicherkraftwerke (1) im Verband (200) als weitgehend identische Module gestaltet sind.
  8. Pumpspeicher-Kraftwerke (1) nach Anspruch 6 dadurch gekennzeichnet, dass die Außenwandungsform (38) in vertikaler Erstreckung zumindest bereichsweise einem Zylinder entspricht.
  9. Pumpspeicher-Kraftwerke (1) nach Anspruch 6 dadurch gekennzeichnet, dass die Außenwandungsform (38) in vertikaler Erstreckung zumindest bereichsweise einem Sechseck entspricht.
  10. Pumpspeicher-Kraftwerke (1) nach Anspruch 6 dadurch gekennzeichnet, dass Pumpspeicherkraftwerke (1) im Verband (200) unterschiedliche Größen und Außenwandungsformen (38) in horizontaler und vertikaler Richtung besitzen.
DE201310015082 2013-09-08 2013-09-08 Archimedischer Speicherpark Withdrawn DE102013015082A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201310015082 DE102013015082A1 (de) 2013-09-08 2013-09-08 Archimedischer Speicherpark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310015082 DE102013015082A1 (de) 2013-09-08 2013-09-08 Archimedischer Speicherpark

Publications (1)

Publication Number Publication Date
DE102013015082A1 true DE102013015082A1 (de) 2015-03-12

Family

ID=52478271

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201310015082 Withdrawn DE102013015082A1 (de) 2013-09-08 2013-09-08 Archimedischer Speicherpark

Country Status (1)

Country Link
DE (1) DE102013015082A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085950A1 (de) * 2015-04-24 2016-10-26 Kepco Engineering & Construction Company, Inc. Schwimmender offshore-stromgenerator
EP3085951A1 (de) * 2015-04-24 2016-10-26 Kepco Engineering & Construction Company, Inc. Schwimmender offshore-stromgenerator
CN110344378A (zh) * 2019-06-19 2019-10-18 浙江中新电力工程建设有限公司自动化分公司 智能化城市电力照明物联网管理系统
DE102019005002A1 (de) * 2019-07-17 2021-01-21 Roger Krupinski Einsparung eines Teils der Windenergie durch Vermeidung von zu viel Speichern für einige Anwendungen
CN114046225A (zh) * 2021-11-29 2022-02-15 上海电气风电集团股份有限公司 浮式风力发电基础结构及风力发电机系统
WO2023174549A1 (de) * 2022-03-17 2023-09-21 Rh Power Gmbh Pumpspeicherkraftwerk

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163979A2 (de) 2012-05-01 2013-11-07 Siegfried Sumser Off-shore-pumpspeicher-kraftwerk
DE102013011476A1 (de) 2013-07-07 2015-01-08 Siegfried Sumser Archimedisches Speicherkraftwerk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163979A2 (de) 2012-05-01 2013-11-07 Siegfried Sumser Off-shore-pumpspeicher-kraftwerk
DE102012008876A1 (de) 2012-05-01 2013-11-21 Siegfried Sumser Off-Shore-Pumpspeicher-Kraftwerk
DE102013011476A1 (de) 2013-07-07 2015-01-08 Siegfried Sumser Archimedisches Speicherkraftwerk

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085950A1 (de) * 2015-04-24 2016-10-26 Kepco Engineering & Construction Company, Inc. Schwimmender offshore-stromgenerator
EP3085951A1 (de) * 2015-04-24 2016-10-26 Kepco Engineering & Construction Company, Inc. Schwimmender offshore-stromgenerator
CN106065844A (zh) * 2015-04-24 2016-11-02 韩国电力技术株式会社 海上浮式发电机
CN106065843A (zh) * 2015-04-24 2016-11-02 韩国电力技术株式会社 海上浮式发电机
CN106065843B (zh) * 2015-04-24 2019-01-01 韩国电力技术株式会社 海上浮式发电机
CN106065844B (zh) * 2015-04-24 2019-02-01 韩国电力技术株式会社 海上浮式发电机
CN110344378A (zh) * 2019-06-19 2019-10-18 浙江中新电力工程建设有限公司自动化分公司 智能化城市电力照明物联网管理系统
DE102019005002A1 (de) * 2019-07-17 2021-01-21 Roger Krupinski Einsparung eines Teils der Windenergie durch Vermeidung von zu viel Speichern für einige Anwendungen
CN114046225A (zh) * 2021-11-29 2022-02-15 上海电气风电集团股份有限公司 浮式风力发电基础结构及风力发电机系统
WO2023174549A1 (de) * 2022-03-17 2023-09-21 Rh Power Gmbh Pumpspeicherkraftwerk

Similar Documents

Publication Publication Date Title
DE112013002285B4 (de) Off-Shore-Pumpspeicher-Kraftwerk
EP2776705B1 (de) Pumpspeicherkraftwerk
EP2681445B1 (de) Hydraulischer energiespeicher
DE102013015082A1 (de) Archimedischer Speicherpark
DE102009024276A1 (de) Wellenenergiekraftwerk nach dem Prinzip der oszillierenden Wassersäule
DE102006059233A1 (de) Verfahren zur wechselweisen Ein- und Ausspeicherung von Energie sowie Speichervorrichtung hierfür
DE102008054229A1 (de) Verbundsystem zur Erzeugung und elektromechanischen Speicherung von elektrischer Energie
DE10028431A1 (de) Wasserkraftwerk
DE102015002654B4 (de) Verfahren und Vorrichtuung zur Speicherung eines Energieträgermediums
DE10055973A1 (de) Verfahren und Vorrichtung zur bedarfsabhängigen Regelung der Ausgangsleistung eines küstennahen Hochsee-Kraftwerks
DE202007016031U1 (de) Hybridanlage mit einem Wasserrad
DE102014000811A1 (de) Hochleistungs-Pumpspeicherkraftwerk
WO2014072415A1 (de) Pumpspeicher-wasserkraftwerk und energieerzeugungs- und speichersystem mit einem solchen kraftwerk
DE102009005360B4 (de) Künstliche Landschaft und Verfahren zur Errichtung einer künstlichen Landschaft
WO1999011927A1 (de) Erzeugung von elektrischem strom und wasserrückgewinnung aus der atmosphäre mit solar und windenergie
DE102014104675B3 (de) Windenergieanlage mit zusätzlicher Energieerzeugungseinrichtung
DE102010054277A1 (de) Pumpspeicherkraftwerk mit Solar- und Windkraftwerk, Grundwasserstausee und Hochbehälter
WO2016110278A1 (de) Energiegewinnung mit einer autarken wasserkraftanlage vom typ 4
DE102013011476A1 (de) Archimedisches Speicherkraftwerk
DE2927498A1 (de) Vorrichtung zur stromerzeugung mittels des hydrostatischen druckes in einem gewaesser
DE102007022779A1 (de) Hybridanlage mit einem Wasserrad
DE102014115860A1 (de) Gasdruckenergiespeichernetz mit natürlicher Druckhaltung sowie Komponenten hierfür
DE102018127869A1 (de) Vorrichtung zur Gewinnung von elektrischer Energie sowie entsprechendes Verfahren
DE102019121603A1 (de) Turbine-Generator-Pump-Stadt-Kraftwerk
DE102013019229A1 (de) Gezeitengenerator

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee