WO2013163777A1 - 一种非隔离光伏并网逆变器及其控制方法 - Google Patents
一种非隔离光伏并网逆变器及其控制方法 Download PDFInfo
- Publication number
- WO2013163777A1 WO2013163777A1 PCT/CN2012/000592 CN2012000592W WO2013163777A1 WO 2013163777 A1 WO2013163777 A1 WO 2013163777A1 CN 2012000592 W CN2012000592 W CN 2012000592W WO 2013163777 A1 WO2013163777 A1 WO 2013163777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power switch
- grid
- power
- inverter
- frequency
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4291—Arrangements for improving power factor of AC input by using a Buck converter to switch the input current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the invention relates to the field of new energy power generation technology, and in particular to a power converter and a corresponding control method. Background technique
- Photovoltaic grid-connected power generation is the most important way of solar power generation applications. According to statistics, the world exceeds
- Photovoltaic grid-connected inverter is a bridge connecting solar photovoltaic power generation equipment and power grid, and is one of the most critical equipment in photovoltaic grid-connected power generation system.
- Classified according to isolation PV grid-connected inverters can be divided into power frequency transformer isolation type, high frequency transformer isolation type and non-isolated type.
- non-isolated PV grid-connected inverters have the advantages of high efficiency, small size, light weight and low cost, so they have gained more attention and application in recent years.
- the high-frequency time-varying voltage generated by the high-frequency switching action of the photovoltaic grid-connected inverter power switch tube may cause a serious leakage current through the parasitic capacitance.
- High-frequency leakage currents cause conduction and radiation interference on the one hand, resulting in increased harmonics and losses of grid-connected currents, and on the other hand, jeopardizing equipment and personal safety. Therefore, various countries and organizations have established corresponding standards.
- the leakage current of the grid inverter is strictly limited.
- Patent EP1369985A2 proposes to introduce two-way between the midpoints of the bridge arms of the full-bridge circuit.
- the controllable switch group constructs a new freewheeling circuit, which realizes the separation of the grid and the photovoltaic cell in the freewheeling phase of the grid-connected inverter.
- the patent US7411802 B2 introduces a high-frequency switch at the positive side of the battery side, which also realizes the solar energy in the free-wheeling stage. The battery end is disconnected from the grid.
- the asymmetrical circuit structure and circuit operation mode are the main reasons for the common mode current generation. Therefore, if the circuit structure and working mode of the grid-connected inverter can be completely symmetrical , can also effectively eliminate leakage current.
- the half-bridge grid-connected inverter can also eliminate the leakage current of the grid-connected inverter, but the voltage on the DC input side of the grid-connected inverter is more than twice the peak value of the grid voltage, resulting in an increase in the voltage stress of the power switch tube, thereby increasing System cost, reduced system efficiency and reliability.
- the invention provides a non-isolated photovoltaic grid-connected inverter for the shortcomings of the existing photovoltaic grid-connected inverter in eliminating leakage current technology.
- a non-isolated photovoltaic grid-connected inverter comprises a power circuit (10), a high frequency chopper circuit (20) and a low frequency inverter circuit (30), wherein the power circuit (10) is composed of a photovoltaic array and an input filter capacitor.
- the high frequency chopper circuit (20) is composed of a first power switch tube (&), a second power switch tube (&), a first diode first filter inductor (Z), and a second filter.
- the circuit (30) is composed of third, fourth, fifth and sixth power switch tubes (&, &, &,;
- the positive polarity input end of the photovoltaic array is respectively connected to the positive polarity end of the input filter capacitor and the drain of the first power switch tube (&), and the source of the first power switch tube is respectively connected to the first diode ( ⁇ One end of the cathode and the first filter inductor, the anode of the first diode ( ⁇ ) is respectively connected to the drain of the second power switch (&) and one end of the second filter inductor ( 2 ), the second power switch
- the source of the transistor 03 ⁇ 4) is respectively connected to the negative polarity end of the input filter capacitor and the negative polarity output end of the photovoltaic array, and the other end of the first filter inductor is respectively connected to the drain and the fifth power of the third power switch tube (&)
- the drain of the switching transistor (&), the source of the third power switching transistor (&) is respectively connected to the drain of the fourth power switching transistor (&) and one end of the power grid, and the sources of the fourth power switching transistor are respectively connected The other end of
- a non-isolated photovoltaic grid-connected inverter control method the specific process is as follows:
- the first power switch tube ( ) and the second power switch tube (&) are unipolar SPWM mode high frequency switch, third to sixth power switch tubes (&, &, &, low frequency switch and switching frequency and grid voltage The same frequency;
- the first power switch (&) and the second power switch (&) are simultaneously turned on and off;
- the fourth power shutoff pipe 03 ⁇ 4) and the fifth power switch pipe (&) are turned on in the positive half cycle of the grid voltage (" G ", Shut off at a negative half cycle of the grid voltage;
- the third power switch (&) and the sixth power switch (&) are turned on during the negative half cycle of the grid voltage and are turned off during the positive half cycle of the grid voltage.
- the non-isolated photovoltaic grid-connected inverter of the invention can effectively eliminate the leakage current of the photovoltaic grid-connected inverter, reduce the grid-connected current harmonics, and improve the grid-connected waveform quality; the non-isolated photovoltaic grid-connected inverter of the invention only needs to be used Two high-frequency power switch tubes, and diodes are used to complete the freewheeling of the grid-connected current, and the reverse recovery loss is small, and the conversion efficiency is high.
- FIG. 1 is a circuit diagram of a non-isolated photovoltaic grid-connected inverter of the present invention
- FIG. 2 is a waveform diagram of the working principle of the non-isolated photovoltaic grid-connected inverter of the present invention
- 3a is an equivalent circuit diagram of a non-isolated photovoltaic grid-connected inverter of the present invention in a positive half cycle of a grid voltage, and a filter inductor storage mode;
- 3b is an equivalent circuit diagram of the non-isolated photovoltaic grid-connected inverter of the present invention in the positive half cycle of the grid voltage and the freewheeling mode of the filter inductor;
- 3c is an equivalent circuit diagram of the non-isolated photovoltaic grid-connected inverter of the present invention in a negative half cycle of the grid voltage and a filter inductor storage mode;
- FIG. 3d is an equivalent circuit diagram of the non-isolated photovoltaic grid-connected inverter of the present invention in the negative half cycle of the grid voltage and the freewheeling mode of the filter inductor.
- Fig. 1 The main circuit of the non-isolated photovoltaic grid-connected inverter provided by the present invention is as shown in Fig. 1, which comprises a power supply circuit (10), a high frequency chopper circuit (20) and a low frequency inverter circuit (30).
- the power supply circuit (10) is composed of a photovoltaic array and an input filter capacitor
- the high frequency chopper circuit (20) is composed of a first power switch tube ( ), a second power switch tube (&), a first diode 0, a first
- the filter inductor and the second filter inductor 2 ) constitute a low frequency inverter circuit (30) composed of third, fourth, fifth and sixth power switch tubes (&, &, .
- the positive input terminals of the photovoltaic array are respectively connected to the positive polarity end of the input filter capacitor (( , ⁇ ) and the drain of the first power switch tube (&), and the sources of the first power switch tube ⁇ ) are respectively connected to the first a cathode of the diode (A) and a first filter inductor (one end of the Z ⁇ , the anode of the first diode (A) is respectively connected to the drain of the second power switch (&) and the second filter inductor ( At one end of ⁇ ), the source of the second power switch (&) is connected to the negative terminal of the input filter capacitor (C, mecanic) and the negative output terminal of the photovoltaic array, respectively, and the other end of the first filter inductor is connected to The drain of the third power switch (&) and the drain of the fifth power switch (&), the source of the third power switch (&) is respectively connected to the drain of the fourth power switch (&) One end of the power grid, the source of the fourth power switch tube ⁇
- the first power switch tube (&) and the second power switch tube (&) are unipolar SPWM mode high frequency switch, the third to sixth power switch tubes (&, S 5 , low frequency switch and switching frequency and The frequency of the grid voltage is the same;
- the fourth power switch tube (3) and the fifth power switch tube (&) are turned on in the positive half cycle of the grid voltage ( ⁇ :), and turned off in the negative half cycle of the grid voltage (w c );
- the third power switch (&) and the sixth power switch (&) are turned on during the negative half cycle of the grid voltage ( We :), and are turned off during the positive half cycle of the grid voltage.
- the waveform of the operation principle of the non-isolated photovoltaic grid-connected inverter corresponding to the above control process is as shown in FIG. 2.
- the grid-connected inverter has four working modes, and the equivalent circuits of different working modes are shown in Figures 3a-3d.
- the grid-connected inverter is in the inductor freewheeling phase, because the first and second switching tubes (S1, S2) are all turned off, therefore, The photovoltaic cell is in a separated state from the power grid, that is, the transmission path of the leakage current is eliminated, so that the grid-connected inverter leakage current can be effectively reduced; on the other hand, the working mode equivalent circuit shown in FIGS. 3a-3d is used.
- the working circuit of the grid-connected inverter has a completely symmetrical circuit structure at any time. Therefore, the circuit structure of the grid-connected inverter of the present invention can also suppress the leakage current of the grid-connected inverter. effect.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
提供了一种非隔离光伏并网逆变器及其控制方法。该逆变器包括电源电路(10)、高频斩波电路(20)和低频逆变电路(30)。其中,电源电路(10)由光伏阵列(PV)和输入滤波电容(Cin)构成;高频斩波电路(20)由第一、第二功率开关管(S1,S2),第一二极管(D1)及第一、第二滤波电感(L1,L2)构成;低频逆变电路(30)由第三、第四、第五和第六功率开关管(S3,S4,S5,S6)构成。第一、第二功率开关管(S1,S2)高频开关,第三至第六功率开关管(S3,S4,S5,S6)低频开关。该逆变器能够消除并网逆变器漏电流,提高并网电流波形质量,具有效率高、控制简单、可靠性高的优点。
Description
一种非隔离光伏并网逆变器及其控制方法 技术领域
本发明涉及新能源发电技术领域, 具体涉及功率变换器以及相应 的控制方法。 背景技术
光伏并网发电是太阳能发电应用最主要的方式, 据统计, 全世界超过
90%的光伏发电设备安装容量为并网应用。
光伏并网逆变器是太阳能光伏发电设备与电网连接的桥梁, 是光伏并 网发电系统中最关键的设备之一。 按照隔离方式进行分类, 光伏并网逆变 器可以分为工频变压器隔离型、 高频变压器隔离型和非隔离型。 相对于其 它两种光伏并网逆变器, 非隔离光伏并网逆变器具有效率高、 体积小、 重 量轻和成本低等优势, 因此近年来获得了较多的关注与应用。 由于电池板 对地寄生电容的存在, 光伏并网逆变器功率开关管的高频开关动作产生的 高频时变电压通过寄生电容, 有可能产生严重的漏电流。 高频漏电流一方 面会产生传导和辐射干扰, 导致并网电流谐波和损耗的增加, 另一方面还 会危及设备和人身安全, 因此, 各个国家和组织都制定了相应的标准, 对 并网逆变器的漏电流进行严格限制。
分析表明, 若在并网逆变器的续流阶段能够使电网与光伏电池脱离, 则可以有效消除并网逆变器的漏电流, 专利 EP1369985A2提出在全桥电路 的桥臂中点间引入双向可控开关组构造新的续流回路, 实现了并网逆变器 续流阶段电网和光伏电池的分离,专利 US7411802 B2在电池侧正端引入一 只高频开关, 同样实现了续流阶段太阳能电池端与电网脱离。 另一方面, 从漏电流传输的角度来看, 不对称的电路结构及电路工作方式是共模电流 产生的主要原因, 因此, 若并网逆变器的电路结构及工作方式能够做到完 全对称, 也可以有效消除漏电流。
传统的光伏并网逆变器通常采用全桥或半桥电路, 两种电路都拥有对 称的电路结构。 全桥并网逆变器采用双极型调制时的工作方式属于完全对 称的工作方式, 因此能够有效消除并网逆变器的漏电流, 但导致并网逆变
器损耗增加、 效率降低, 且并网电流谐波较大, 导致并网逆变器滤波电感 的体积、 重量、 成本增加。 半桥并网逆变器也能够消除并网逆变器的漏电 流, 但并网逆变器直流输入侧的电压为两倍以上的电网电压峰值, 导致功 率开关管电压应力增加, 从而增加了系统成本、 降低了系统效率和可靠性。 发明内容
本发明针对现有光伏并网逆变器在消除漏电流技术方面的不足, 提供 一种非隔离光伏并网逆变器。
为了达到上述目的, 本发明采用如下技术方案:
一种非隔离光伏并网逆变器, 包括电源电路 (10)、 高频斩波电路 (20)和 低频逆变电路 (30), 其中电源电路 (10)由光伏阵列 和输入滤波电容 构成, 高频斩波电路 (20)由第一功率开关管 (&)、第二功率开关管 (&)、第一 二极管 第一滤波电感 (Z )和第二滤波.电感 构成, 低频逆变电路 (30) 由第三、 第四、 第五和第六功率开关管 (&、 &、 &、 构成;
光伏阵列 (Ρί 的正极性输入端分别连于输入滤波电容 的正极性端 和第一功率开关管 (&)的漏极, 第一功率开关管 的源极分别连于第一二 极管 (Α)的阴极和第一滤波电感 的一端, 第一二极管 (^)的阳极分别连 于第二功率开关管 (&)的漏极和第二滤波电感 ( 2)的一端, 第二功率开关管 0¾)的源极分别连于输入滤波电容 的负极性端和光伏阵列 的负极性 输出端, 第一滤波电感 的另一端分别连于第三功率开关管 (&)的漏极和 第五功率开关管 (&)的漏极, 第三功率开关管 (&)的源极分别连于第四功率 开关管 (&)的漏极和电网 的一端,第四功率幵关管 的源极分别连于第 二滤波电感 的另一端和第六功率开关管 0¾)的源极,第六功率开关管 (&) 的漏极分别连于第五功率幵关管 (&)的源极和电网 的另一端。
一种非隔离光伏并网逆变器控制方法, 具体过程如下:
第一功率开关管 ( )和第二功率开关管 (&)按单极性 SPWM方式高频开 关, 第三至第六功率开关管 (&、 &、 &、 低频开关且开关频率与电网电 压 的频率相同;
第一功率开关管 (&)和第二功率开关管 (&)同时开通与关断;
第四功率幵关管 0¾)和第五功率开关管 (&)在电网电压 (《G)正半周导通,
在电网电压 负半周关断;
第三功率开关管 (&)和第六功率开关管 (&)在电网电压 负半周导通, 在电网电压 正半周关断。
本发明非隔离光伏并网逆变器能够有效消除光伏并网逆变器的漏电 流, 减小并网电流谐波, 改善并网波形质量; 本发明非隔离光伏并网逆变 器仅需要使用两个高频功率开关管, 且采用二极管完成并网电流的续流, 反向恢复损耗小, 变换效率高。 附图说明
以下结合附图和具体实施方式来进一步说明本发明。
图 1为本发明非隔离光伏并网逆变器电路图;
图 2为本发明非隔离光伏并网逆变器工作原理波形图;
图 3a为本发明非隔离光伏并网逆变器处于电网电压正半周,滤波电感 储能模态的等效电路图;
图 3b为本发明非隔离光伏并网逆变器处于电网电压正半周,滤波电感 续流模态的等效电路图;
图 3c为本发明非隔离光伏并网逆变器处于电网电压负半周, 滤波电感 储能模态的等效电路图;
图 3d为本发明非隔离光伏并网逆变器处于电网电压负半周,滤波电感 续流模态的等效电路图。
图中符号说明: 1 —电源电路; 20~ -高频斩波电路; 30~低频逆变电 路; —光伏阵列, t//,「光伏组件输出电压; 一输入滤波电容; &、 &、 &、 S4、 S5、 S「 一、 第二、 第三、 第四、 第五及第六功率开关管; 、 L2~%—、 第二滤波电感; ¾σ—电网电压; iL1、 一第一、 第二电感电流;
UGS、、 UGS2、 «G53 "GS4、 "GS5、 "GS6―第一、 第二、 第三、 第四、 第五及第六 功率开关管的驱动信号。 具体实施方式
为了使本发明实现的技术手段、 创作特征、 达成目的与功效易于明白 了解, 下面结合具体图示, 进一步阐述本发明。
本发明提供的非隔离光伏并网逆变器的主电路如附图 1所示, 其包括 电源电路 (10)、 高频斩波电路 (20)和低频逆变电路 (30)。
其中电源电路 ( 10)由光伏阵列 和输入滤波电容 构成 , 高频斩波 电路 (20)由第一功率开关管 ( )、 第二功率开关管 (&)、 第一二极管 0、 第 一滤波电感 和第二滤波电感 2)构成, 低频逆变电路 (30)由第三、 第四、 第五和第六功率开关管 (&、 &、 构成。
光伏阵列 的正极性输入端分别连于输入滤波电容 (( ,·„)的正极性端 和第一功率开关管 (&)的漏极, 第一功率开关管^)的源极分别连于第一二 极管 (A)的阴极和第一滤波电感 (Z ^的一端, 第一二极管 (A)的阳极分别连 于第二功率开关管 (&)的漏极和第二滤波电感 (^)的一端, 第二功率开关管 (&)的源极分别连于输入滤波电容 (C,„)的负极性端和光伏阵列 的负极性 输出端, 第一滤波电感 的另一端分别连于第三功率开关管 (&)的漏极和 第五功率开关管 (&)的漏极, 第三功率开关管 (&)的源极分别连于第四功率 开关管 (&)的漏极和电网 的一端,第四功率开关管 0¾)的源极分别连于第 二滤波电感 (Z2)的另一端和第六功率开关管 的源极,第六功率开关管 (S6) 的漏极分别连于第五功率开关管 (&)的源极和电网 的另一端。
由上述技术方案形成的非隔离光伏并网逆变器在运行时, 采用如下的 控制过程:
( 1 ) 第一功率开关管 (&)和第二功率开关管 (&)按单极性 SPWM方式 高频开关, 第三至第六功率开关管 (&、 S5、 低频开关且开关频率与 电网电压 的频率相同;
(2) 第一功率开关管 (&)和第二功率开关管 (&)同时开通与关断;
(3 ) 第四功率开关管 0¾)和第五功率开关管 (&)在电网电压 ( ^:)正半周 导通, 在电网电压 (wc)负半周关断;
(4) 第三功率开关管 (&)和第六功率开关管 (&)在电网电压 (We:)负半周 导通, 在电网电压 正半周关断。
与上述控制过程相对应的非隔离光伏并网逆变器工作原理波形如附图 2所示。按照上述控制过程, 并网逆变器共有四种工作模态, 不同工作模态 的等效电路如附图 3a-3d所示。 当第一、 第二功率开关管 (&、 &)导通时, 第一、第二滤波电感 ( 、 储能, 当第一、第二功率开关管 (&、 &)关断时,
第一、 第二滤波电感 ( 、 经过第一二极管 (D 续流。
根据上述工作过程及附图 3所示的各工作模态等效电路可知, 并网逆 变器在电感续流阶段, 由于第一、 第二开关管 (Sl、 S2)全部关断, 因此, 光伏电池与电网处于分离状态, 也就是消除了漏电流的传输路径, 因此能 够有效减小并网逆变器漏电流; 另一方面, 根据附图 3a-3d所示的工作模 态等效电路可知, 在任意时刻, 并网逆变器的工作电路都具有完全对称的 电路结构, 因此, 本发明并网逆变器的电路结构对并网逆变器漏电流也能 够起到很好的抑制作用。
以上显示和描述了本发明的基本原理、 主要特征和本发明的优点。 本 行业的技术人员应该了解, 本发明不受上述实施例的限制, 上述实施例和 说明书中描述的只是说明本发明的原理, 在不脱离本发明精神和范围的前 提下, 本发明还会有各种变化和改进, 这些变化和改进都落入要求保护的 本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims
1、一种非隔离光伏并网逆变器,包括电源电路 (10)、高频斩波电路 (20) 和低频逆变电路 (30), 其特征在于, 电源电路 (10)由光伏阵列 和输入滤 波电容 构成, 高频斩波电路 (20)由第一功率开关管 (5*0、 第二功率开关 管 ( &)、 第一二极管 (A)、 第一滤波电感 ( )和第二滤波电感 (^)构成, 低频 逆变电路 (30)由第三、 第四、 第五和第六功率开关管 (&、 <¾、 S5、 构成; 光伏阵列 (Ρί 的正极性输入端分别连于输入滤波电容 (C,.„)的正极性端 和第一功率开关管 (&)的漏极, 第一功率开关管 (&)的源极分别连于第一二 极管 (A)的阴极和第一滤波电感 的一端, 第一二极管 (A)的阳极分别连 于第二功率开关管 (&)的漏极和第二滤波电感 (^)的一端, 第二功率幵关管 (&)的源极分别连于输入滤波电容 (C,„)的负极性端和光伏阵列 的负极性 输出端, 第一滤波电感 (Z )的另一端分别连于第三功率开关管 (&)的漏极和 第五功率开关管 (&)的漏极, 第三功率开关管 (&)的源极分别连于第四功率 开关管 C¾)的漏极和电网 的一端,第四功率开关管 (&)的源极分别连于第 二滤波电感 ( 2)的另一端和第六功率开关管 (&)的源极,第六功率开关管 (&) 的漏极分别连于第五功率开关管 (&)的源极和电网 (Mc)的另一端。
2、 一种非隔离光伏并网逆变器控制方法, 其特征在于, 所述控制方法 具体过程如下:
第一功率开关管 (&)和第二功率开关管 (&)按单极性 SPWM方式高频开 关, 第三至第六功率开关管 (&、 54> S5、 低频开关且开关频率与电网电 压 的频率相同;
第一功率开关管 (&)和第二功率开关管 (&)同时幵通与关断;
第四功率开关管 (&)和第五功率开关管 (&)在电网电压 正半周导通, 在电网电压 负半周关断;
第三功率开关管 (&)和第六功率开关管 (S6)在电网电压 负半周导通, 在电网电压 (Wc)正半周关断。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/000592 WO2013163777A1 (zh) | 2012-05-02 | 2012-05-02 | 一种非隔离光伏并网逆变器及其控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/000592 WO2013163777A1 (zh) | 2012-05-02 | 2012-05-02 | 一种非隔离光伏并网逆变器及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013163777A1 true WO2013163777A1 (zh) | 2013-11-07 |
Family
ID=49514163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/000592 WO2013163777A1 (zh) | 2012-05-02 | 2012-05-02 | 一种非隔离光伏并网逆变器及其控制方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013163777A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3012957A1 (en) * | 2014-10-23 | 2016-04-27 | Honeywell International Inc. | Non-isolated power supply output chassis ground fault detection and protection system |
CN106130383A (zh) * | 2016-07-04 | 2016-11-16 | 燕山大学 | 一种三相耦合电感光伏并网逆变器漏电流抑制方法 |
CN108494003A (zh) * | 2018-04-25 | 2018-09-04 | 国网黑龙江省电力有限公司牡丹江供电公司 | 一种抑制光伏并网系统漏电流的抑制方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005047373A1 (de) * | 2005-09-28 | 2007-04-05 | Schekulin, Dirk, Dr. Ing. | Tiefsetzstellerschaltung und Wechselrichter-Schaltungsanordnung |
US20090316458A1 (en) * | 2006-07-31 | 2009-12-24 | Ingeteam Energy, S.A. | Single-phase inverter circuit to condition and transform direct current electric power into alternating current electric power |
CN102684522A (zh) * | 2011-03-09 | 2012-09-19 | 上海康威特吉能源技术有限公司 | 一种非隔离光伏并网逆变器及其控制方法 |
-
2012
- 2012-05-02 WO PCT/CN2012/000592 patent/WO2013163777A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005047373A1 (de) * | 2005-09-28 | 2007-04-05 | Schekulin, Dirk, Dr. Ing. | Tiefsetzstellerschaltung und Wechselrichter-Schaltungsanordnung |
US20090316458A1 (en) * | 2006-07-31 | 2009-12-24 | Ingeteam Energy, S.A. | Single-phase inverter circuit to condition and transform direct current electric power into alternating current electric power |
CN102684522A (zh) * | 2011-03-09 | 2012-09-19 | 上海康威特吉能源技术有限公司 | 一种非隔离光伏并网逆变器及其控制方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3012957A1 (en) * | 2014-10-23 | 2016-04-27 | Honeywell International Inc. | Non-isolated power supply output chassis ground fault detection and protection system |
CN105552850A (zh) * | 2014-10-23 | 2016-05-04 | 霍尼韦尔国际公司 | 非隔离式电源输出机壳接地故障检测和保护系统 |
US9705306B2 (en) | 2014-10-23 | 2017-07-11 | Honeywell International Inc. | Non-isolated power supply output chassis ground fault detection and protection system |
CN105552850B (zh) * | 2014-10-23 | 2019-06-18 | 霍尼韦尔国际公司 | 非隔离式电源输出机壳接地故障检测和保护系统 |
CN106130383A (zh) * | 2016-07-04 | 2016-11-16 | 燕山大学 | 一种三相耦合电感光伏并网逆变器漏电流抑制方法 |
CN106130383B (zh) * | 2016-07-04 | 2018-09-04 | 燕山大学 | 一种三相耦合电感光伏并网逆变器漏电流抑制方法 |
CN108494003A (zh) * | 2018-04-25 | 2018-09-04 | 国网黑龙江省电力有限公司牡丹江供电公司 | 一种抑制光伏并网系统漏电流的抑制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103051233B (zh) | 一种非隔离型单相光伏并网逆变器及其开关控制时序 | |
CN101980437B (zh) | 一种五电平并网逆变器 | |
CN101707442A (zh) | 一种无变压器型逆变器 | |
CN205647288U (zh) | 一种非隔离型光伏并网逆变器 | |
WO2013082858A1 (zh) | 单相不对称全桥非隔离光伏并网逆变器 | |
CN105281361B (zh) | 一种五电平双降压式并网逆变器 | |
WO2013163779A1 (zh) | 一种多输入反激式光伏并网逆变器 | |
Chen et al. | Current distortion correction in dual buck photovoltaic inverter with a novel PWM modulation and control method | |
CN102088252B (zh) | 一种开关电容实现无变压器型逆变器及应用 | |
CN201536328U (zh) | 一种并网逆变器 | |
CN102684530A (zh) | 一种具有无功补偿功能的无变压器型逆变器的控制方法 | |
CN102684522A (zh) | 一种非隔离光伏并网逆变器及其控制方法 | |
CN202713179U (zh) | 双变压器串联谐振式微型光伏逆变器 | |
CN102403920B (zh) | 三电平半桥光伏并网逆变器 | |
WO2013163777A1 (zh) | 一种非隔离光伏并网逆变器及其控制方法 | |
CN111917321B (zh) | 一种单母线隔离双向箝位十开关三相逆变器拓扑 | |
CN201515320U (zh) | 一种并网逆变器 | |
CN103269174B (zh) | 一种低共模电压的单相光伏并网逆变器 | |
CN104467501A (zh) | 防直通中点箝位型单相非隔离光伏逆变器拓扑 | |
CN203691279U (zh) | 一种微型光伏逆变器拓扑结构电路 | |
CN202957614U (zh) | 一种高效无变压器单相光伏并网逆变器 | |
CN109088560A (zh) | 一种单相有源钳位非隔离光伏并网逆变器 | |
CN104539180A (zh) | 一种减小系统漏电流的单相无变压器结构逆变器 | |
CN102412748B (zh) | 一种光伏并网逆变器及其控制方法 | |
CN212518833U (zh) | 一种新型单相npc非隔离光伏并网逆变电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12875787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12875787 Country of ref document: EP Kind code of ref document: A1 |