WO2013162334A1 - Light-emitting nanoparticles having improved light emission characteristics and having zinc-silver-indium-sulfide composition and method for preparing same using combinatorial chemistry - Google Patents

Light-emitting nanoparticles having improved light emission characteristics and having zinc-silver-indium-sulfide composition and method for preparing same using combinatorial chemistry Download PDF

Info

Publication number
WO2013162334A1
WO2013162334A1 PCT/KR2013/003650 KR2013003650W WO2013162334A1 WO 2013162334 A1 WO2013162334 A1 WO 2013162334A1 KR 2013003650 W KR2013003650 W KR 2013003650W WO 2013162334 A1 WO2013162334 A1 WO 2013162334A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
silver
indium
nanoparticles
light
Prior art date
Application number
PCT/KR2013/003650
Other languages
French (fr)
Korean (ko)
Inventor
박정규
이승재
김미애
정종진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120044608A external-priority patent/KR101360087B1/en
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2013162334A1 publication Critical patent/WO2013162334A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium

Definitions

  • the present invention relates to luminescent nanoparticles having an improved composition of zinc-silver-indium-sulfide, and a method for preparing the same using combination chemistry.
  • methods for producing light emitting nanoparticles include pyrolysis and ultrasonic irradiation.
  • the synthesis of luminescent nanoparticles was carried out mainly by pyrolysis, and is still mainly used.
  • the method for preparing nanoparticles by pyrolysis is a hot organic solvent containing alkylphosphine, alkylphosphine oxide, alkylamine, etc. having a long chain.
  • a method of forming a metal complex by reacting metal raw materials with water to form a metal complex, rather than adding a metal raw material directly to an organic solvent, and then synthesizing by thermal decomposition by adding the metal complex compound to an organic solvent is also used.
  • metal acetate and metal chloride are used as a metal raw material in a solvent such as alcohol, water, and amine, and sulfur, thioacetamide, and thiourea are dissolved as a raw material of sulfur and irradiated with ultrasonic waves.
  • a solvent such as alcohol, water, and amine
  • sulfur, thioacetamide, and thiourea are dissolved as a raw material of sulfur and irradiated with ultrasonic waves.
  • metal and sulfur raw materials may be dissolved in a solvent, and then light emitting nanoparticles may be synthesized by ultrasonic irradiation.
  • combinatorial chemistry when a compound composing a plurality of components is synthesized, a method is used to create a library using various combinations of components, and to select a compound having excellent functions according to the purpose in the process.
  • An object of the present invention is to provide a light emitting nanoparticle having a composition of zinc-silver-indium-sulfide and a method of manufacturing the same using light emitting nanoparticles and combination chemistry.
  • Light emission with a composition of zinc-silver-indium-sulfide ((Zn x Ag y In z ) S 2 ) (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l, 0.1 ⁇ ⁇ 1, x + y + z l) It provides light emitting nanoparticles with improved properties (first light emitting nanoparticles).
  • the present invention
  • the present invention provides zinc-silver-sulphur-sulfide ((Zn x Ag y In z ) 3 ⁇ 4) (0.15 ⁇ x ⁇ 0.25,
  • step 2 preparing a metal precursor solution by introducing a zinc precursor silver precursor, an indium precursor and a vulcanizing agent according to the library configured in step 1 into each of the different reactors containing a solvent (step 2);
  • step 3 Irradiating ultrasonic waves to the metal precursor solution in each reactor prepared in step 2 (step 3);
  • step 3 In the step 3 to the ultrasonic irradiation alcohol-based solvent, a hydrocarbon solvent or zinc by the addition of these solvents heunhap-silver-indium-sulfonic step of 3 ⁇ precipitate Id particles (step 4); : 31> removing the supernatant after the particles precipitate in step 4 (step 5) and
  • step 6 32> confirming the luminescence properties of the zinc-silver-indium-sulfide nanoparticles from which the supernatant was removed in step 5 (step 6);
  • It provides a method for producing the first light-emitting nanoparticles with improved luminescence properties using a combination chemistry characterized in that it comprises a.
  • the optimized light emitting nanoparticles can be found.
  • Figure 1 is a schematic diagram of the composition of the library according to the composition
  • FIG. 2 is a schematic diagram illustrating a process of synthesizing luminescent nanoparticles by irradiating ultrasonic waves to each reactor manufactured according to a library;
  • FIG. 9 (a) is a graph showing the light emission characteristics of the light emitting nanoparticles prepared in Examples 1 to 8 and Comparative Examples 1 to 11 of the present invention
  • 3 (b) is a graph showing the light emission characteristics of the light emitting nanoparticles prepared in Examples 9 to 55 of the present invention
  • Figure 4 is a light emitting nanoparticles prepared in Examples 30 and 35 of the present invention An image of the particles observed with a transmission electron microscope;
  • FIG. 5 is an X-ray diffraction image of luminescent nanoparticles prepared in Examples 30, 35, and 36;
  • FIG. 6 is an energy equity X-ray spectrometer analysis image of luminescent nanoparticles prepared in Examples 30 and 35 of the present invention.
  • FIG. 7 is a graph comparing light emission characteristics according to changes in excitation wavelengths of light emitting nanoparticles prepared in Examples 30 and 35 of the present invention.
  • An object of the present invention is to provide a light emitting nanoparticles with improved luminescent properties and a method of manufacturing the same using combination chemistry.
  • the present invention provides zinc-silver-indium-sulfide ((Zn x Ag y In z ) S 2 ) (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l, 0.1 ⁇ z ⁇ l, x + y + A light emitting nanoparticle having a light emitting property having a composition of z ⁇ l) is flavored 1 (first light emitting nanoparticle).
  • the light emitting nanoparticles have the light emission intensity and light emission wavelength due to the composition range.
  • appropriately selected within the composition range can be useful for light-emitting nanoparticles exhibit the desired emission characteristics.
  • the present invention is a zinc-silver-indium-sulfide ((Zn x Ag y In 2 ) 3 ⁇ 4) (where x, y, z is 0 ⁇ x
  • the luminescent nanoparticles can be applied to bio-regions such as bio-optical imaging.
  • the luminescent nanoparticles must have an effective luminescence in a long wavelength light source that does not directly damage cells.
  • conventional light emitting particles have a problem of directly damaging cells by emitting light from an excitation wavelength having a short wavelength having high energy.
  • Zinc-Silver-Indium-Sulfide ((Zn x Ag y In z ) S 2 ) provided by the present invention (0.15 ⁇ x ⁇ 0.25, 0.35 ⁇ y ⁇ 0.45,
  • the present invention ro> constructing a library for the composition of zinc-silver-indium (step 1);
  • step 3 irradiating ultrasonic waves to the metal precursor solution in each reactor prepared in step 2 (step 3);
  • step 63 precipitating zinc-silver-rhythm-sulfide particles by adding an alcohol solvent, a hydrocarbon solvent or a mixed solvent thereof after ultrasonication in step 3 (step 4); 64> removing the supernatant after the particles are precipitated in step 4 (step 5)
  • step 6 Checking the luminescence properties of the zinc-silver-indium-sulfide nanoparticles from which the supernatant was removed in step 5 (step 6);
  • step ⁇ is a step of constructing a library for the composition of zinc-silver-rhythm. Increase zinc and silver from 0 to 1 in 0.1 increments, and increase indium from 1 to 1 in 0.1 increments.
  • the schematic of the structure of the library which concerns on the said composition is shown in FIG.
  • the step 2 is a metal precursor solution by introducing a zinc precursor, a silver precursor, an indium precursor and a vulcanizing agent according to the library configured in the step 1 to each of the different reactors containing a solvent.
  • the metal precursors are, for example, zinc nitrate hydrate as the zinc precursor, silver nitrate as the silver precursor, indium nitrate hydrate as the rhythm precursor, and dimethyldiocarbamate as the vulcanizing agent. (diniethyldithiocarbamate) may be used and dodecylamine may be used as a solvent, but is not necessarily limited to the above content as long as it meets the object of the present invention. is.
  • the solvent of step 2 is preferably at least one selected from ether-based, hydrocarbon-based, alcohol-based, and amine-based solutions.
  • the ether-based solution is preferably at least one selected from the group consisting of octyl ether, butyl ether, nuclear chamber ether, benzyl ether, phenyl ether and decyl ether.
  • the solutions are high boiling point solvents to increase the reaction temperature in a short time during ultrasonic irradiation, and also has the advantage of maintaining a high temperature state.
  • the hydrocarbon-based solution is preferably at least one selected from the group consisting of nucleic acid, toluene, xylene, chlorobenzoic acid, benzene, nucleodesine, tetradecine and octadecine.
  • the solutions are high boiling point solvents to increase the reaction temperature in a short time when the ultrasonic irradiation, and also has the advantage of maintaining a high temperature state.
  • the alcohol-based solution is octyl alcohol, decanol, nuxadecanol, ethylene glycol, 1,2-octanediol, 1,2-dodecanediol and 1, It is preferable that it is at least 1 type selected from the group which consists of 2-nuxadecane diol.
  • the solutions have the advantage of stabilizing the nanoparticles formed by having a hydroxyl group at the end of the long alkyl chain.
  • the amine solution is at least one member selected from the group consisting of dodecylamine, nucleated decylamine, octylamine, trioctylamine, dimethyloctylamine and dimethyldodecylamine. It is desirable.
  • the solutions have the advantage of stabilizing the nanoparticles formed by having an amine group at the end of the long alkyl phosphorus.
  • step 3 is a step of irradiating ultrasonic waves to the metal precursor solution in each semi-unggi prepared in step 2.
  • Ultrasonic irradiation produces fine cavitation inside the solution due to the ultrasonic waves. Energy is transferred in the process of destruction, and there is a catalytic effect on the light emitting nanoparticles.
  • All. 2 is a schematic diagram illustrating a process of synthesizing light emitting nanoparticles by irradiating ultrasonic waves to each reactor manufactured according to a library.
  • the ultrasonic irradiation in the step 3 is preferably performed for 1 minute to 12 hours in the range of 2 200 kHz. If the frequency is less than 2 kHz, there is a problem that the generation of light emitting nanoparticles is poor because the energy is not supplied through the ultrasonic waves, and if the frequency is more than 200 kHz, the energy supplied to generate the nanoparticles is excessive and suitable for producing the nanoparticles. There is a problem that it is difficult to adjust.
  • the step 4 is a step of precipitating the zinc-silver-indium-sulfide particles by adding an alcohol solvent, a hydrocarbon solvent or a mixed solvent thereof after ultrasonic irradiation in the step 3
  • the alcohol-based solution of step 4 is preferably at least one selected from the group consisting of ethanol, methanol and octyl alcohol.
  • the solution has an advantage that it is easy to separate the nanoparticles prepared by inducing precipitation of nanoparticles dispersed in a nonpolar solvent as a polar solvent.
  • the hydrocarbon-based solution of step 4 is preferably at least one selected from the group consisting of nucleic acid, toluene and chloroform.
  • the solution has the advantage of being able to uniformly disperse the nanoparticles stabilized by the alkyl chain as a nonpolar solvent.
  • step 5 is a step of removing the supernatant after the particles are precipitated in step 4, the method of removing the supernatant is preferably centrifugation. Centrifugal separation allows the separation of undissolved light emitting nanomaterials mixed with solvents in the reaction vessel using the difference in centrifugal force and specific gravity.
  • step 6 is a step of checking the luminescence properties of the zinc-silver-indium-sulfide nanoparticles from which the supernatant was removed in step 5.
  • bracket By transmitting light sources of different wavelengths and confirming the light emission characteristics thereof, it is possible to find nanoparticles with high luminous efficiency in long wavelength bands.
  • Example 1-55 Preparation of light emitting nanoparticles having a composition of zinc silver indium sulfide
  • Step 1 The ternary library was fabricated in 0.1 increments from 0 to 1 for zinc, 0 to 1 for silver and 0.1 to 1 for indium.
  • Step 2 According to the composition of the library prepared in step 1, 0.7 g of zinc nitrate hydrate, silver nitrate and indium nitrate hydrate and the vulcanizing agent solid dimethyl diocarbamate 10 ml of dodecylamine It was put in each flask containing.
  • Step 3 The ultrasonic wave was irradiated to the metal precursor solution in each flask prepared in Step 2 using a sonic dismembrator at 20 kHz for 10 minutes.
  • Step 5 After the particles of zinc-silver-sulphur-sulfide were precipitated in step 4, centrifugation was performed using a centrifuge for 10 minutes to remove the supernatant and zinc of various compositions as shown in Table 1 below. Light-emitting nanoparticles having a composition of silver-indium-sulfide were prepared.
  • Step 6> The emission spectra of the various composition zinc-silver-indium-sulfide particles prepared in step 5 were changed by 365 nm, 405 nra, 450 nm, 465 nm ⁇ with a fluorescence spectrometer (PerkinElmer LS50B). The characteristics were confirmed, and the composition of the light emitting nanoparticles having excellent luminescent properties was confirmed therefrom.
  • the light emitting nanoparticles were prepared in the same manner as in Example 1, and the light emission characteristics of the prepared light emitting nanoparticles were confirmed.
  • the zinc-silver-sulphur-sulfide light emitting nanoparticles prepared according to Examples 1 to 55 of the present invention emit light with different emission intensities at different wavelength bands. You can see that.
  • Experimental Example 2 Investment Microscopy
  • the zinc-silver-sulphur-sulfide light emitting nanoparticles prepared according to Example 30 of the present invention are spherical particles having an average size of 4.1 nm, and zinc-silver-indium- according to Example 36. It can be seen that the sulfide light emitting nanoparticles are spherical particles having an average size of 3.9 nm.
  • Example 30 Example 30 and according to the present invention .
  • the energy dispersive X-ray spectrometer analysis of Example 35 was performed using an energy dispersive X-ray spectrometer (Quantax 200), and the results are shown in FIG. 6.
  • Zn element is present in the zinc-silver-indium-sulfide light emitting nanoparticles prepared according to Example 30 according to the present invention, the zinc-silver-indium-sulfide light emitting nanoparticles of Example 35 Zn does not exist.
  • the zinc produced according to (1) according to the present invention silver-indium-composition of the sulfide luminescent nanoparticles comprising zinc (. Zn 0.2 Ag 0 4 In 0.4) S 2 can verify that, in Example 35 the zinc prepared in accordance with the-silver-indium composition of the light-emitting eu sulfide nanoparticles that do not contain zinc (.. 5 in 0 Zn 0 Ag 0 5) is able to confirm that S 2.
  • Example 30 and Example 35 of the present invention the emission intensity was measured while gradually increasing the excitation wavelength, and the results are shown in FIG. 7.
  • the emission wavelength was measured by increasing the excitation wavelength to 365 nm, 405 nm, 450 nm, and 465 nm in the zinc-silver-sulphur-sulfide light emitting nanoparticles prepared according to Example 30 of the present invention.
  • the luminescence intensity gradually increased.
  • the excitation wavelength was increased to 405 nm, 450 nm, and 465 nni, and the emission intensity was gradually decreased.
  • the zinc-silver-indium-sulfide luminescent nanoparticles herbicided according to Example 30 of the present invention have more effective luminescence in a long wavelength light source .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to light-emitting nanoparticles having improved light emission characteristics and having a zinc-silver-indium-sulfide composition and to a method for preparing same using combinatorial chemistry. To this end, the present invention provides light-emitting nanoparticles having improved light emission characteristics and having a zinc-silver-indium-sulfide ((ZnxAgyInz)S2)(0≤x≤1, 0≤y≤1, 0.1≤z≤1, x+y+z=1) composition. Furthermore, the present invention provides a method for preparing the light-emitting nanoparticles, comprising: a step (step 1) of constructing a library for a zinc-silver-indium composition; a step (step 2) of introducing a zinc precursor, a silver precursor and an indium precursor and a vulcanizing agent based on the library constructed in step 1 to each of different reactors including a solvent to prepare a metal precursor solution; a step (step 3) of irradiating the metal precursor solution with ultrasonic waves in each reactor prepared by step 2; a step (step 4) of adding an alcohol-based solvent, a hydrocarbon-based solvent or a mixture solvent thereof to the metal precursor solution after the ultrasonic wave irradiation of step 3 so as to precipitate zinc-silver-indium-sulfide particles; a step (step 5) of removing supernatant after the precipitation of the particles in step 4; and a step (step 6) of checking the light emission characteristics of the zinc-silver-indium-sulfide nanoparticles from which the supernatant is removed in step 5. According to the present invention, light-emitting nanoparticles having various compositions can be quickly prepared, and light emission characteristics are checked to find light-emitting nanoparticles optimized to a desired composition.

Description

【명세세  [Specifications
【발명의 명칭】  [Name of invention]
아연 -실버 -인듐 -설파이드의 조성을 갖는 발광특성이 향상된 발광나노입자와 조합화학을 이용한 이의 제조방법  Light-emitting nanoparticles with improved composition of zinc-silver-indium-sulfide and their preparation method using combinatorial chemistry
【기술분야】 Technical Field
<1> 본 발명은 아연-실버—인듐 -설파이드의 조성을 갖는 발광특성이 향상된 발광 나노입자 및 조합화학을 이용한 이의 제조방법에 관한 것이다.  The present invention relates to luminescent nanoparticles having an improved composition of zinc-silver-indium-sulfide, and a method for preparing the same using combination chemistry.
<2>  <2>
【배경기술】  Background Art
<3> 일반적으로 발광 나노입자를 제조하는 방법은 열분해법, 초음파 조사법 등이 있다. 초기의 발광 나노입자 합성은 주로 열분해법에 의해서 합성이 진행되었고, 현재까지도 주로 사용되고 있다. 열분해법에 의한 나노입자의 제조방법은 긴 체인 을 가지는 알킬포스핀, 알킬포스핀 산화물, 알킬아민 등이 포함된 뜨거운 유기용매 In general, methods for producing light emitting nanoparticles include pyrolysis and ultrasonic irradiation. In the early stages, the synthesis of luminescent nanoparticles was carried out mainly by pyrolysis, and is still mainly used. The method for preparing nanoparticles by pyrolysis is a hot organic solvent containing alkylphosphine, alkylphosphine oxide, alkylamine, etc. having a long chain.
(150-350)에 금속 전구체를 빠르게 첨가하여 제조하는 것이다 . It is prepared by quickly adding a metal precursor to (150-350).
<4>  <4>
<5> 대한민국 공개특허 제 10-2007—0068492 ^에 따르면, 계면활성제를 이용한 구리나노입자의 열분해합성법에 관해 개시하고¾다. 구체적으로, 이온결합을—통하 여 구리 -올리에이트 복합체를 형성하고 이에 열분해법을 이용하여 구리나노입자를 대량으로 합성하는 방법이 기재되어 있다.  According to Korean Patent Laid-Open Publication No. 10-2007—0068492 ^, a thermal decomposition synthesis method of copper nanoparticles using a surfactant is disclosed. Specifically, a method of forming copper-oleate complexes through ionic bonds and using them to thermally synthesize copper nanoparticles in large quantities is described.
<6>  <6>
<7> 대한민국 공개특허 제 10-2004-0084241 호에 따르면, 분무열분해법으로 나노 형광체 분말을 제조함에 있어서 응제를 첨가한 분무 용액을 사용하거나 분무열분해 공정에 의해 제조되어진 형광체 입자에 응제를 첨가하여 열처리조건을 조절함으로 써 형태가 일정한 나노형광체를 제조하는 방법이 기재되어 있다.  According to Korean Patent Laid-Open Publication No. 10-2004-0084241, in the preparation of nano-phosphor powder by spray pyrolysis, a spray solution containing the agent is used, or the agent is added to the phosphor particles prepared by the spray pyrolysis process. A method for producing a nanophosphor having a uniform shape by controlling heat treatment conditions is described.
<8> - <8>-
<9> 나아가, 유기용매에 직접 금속원료를 첨가하여 합성하는 것이 아니라 금속 원료들을 물에 반응시켜 금속 착화합물을 형성한 후 이 금속 착화합물을 유기용매 에 첨가하여 열분해에 의하여 합성을 하는 방법도사용되고 있다 . In addition, a method of forming a metal complex by reacting metal raw materials with water to form a metal complex, rather than adding a metal raw material directly to an organic solvent, and then synthesizing by thermal decomposition by adding the metal complex compound to an organic solvent is also used. .
<10>  <10>
<π> 그러나 열분해법에 의한 발광 나노입자의 합성은 높은 온도에서 진행되고, 반웅 시 물이나 산소를 차단해야하며, 긴 반응 시간이 요구된다는 단점이 있다. 또 한, 열분해법은 한 번의 반응에 하나의 발광 나노입자만을 합성할 수 있기 때문에 다량의 시료 합성에는 용이하지 않다ᅳ 발광 나노입자를 합성하는 또 다른 방법인 초음파 조사법에 따르면, 동시에 다량의 시료 합성이 가능하고, 고온으로 가열할 필요가 없어 공정에너지면에서 경 제적이다. 초음파 조사법에는 알코올, 물, 아민계 등의 용매에 금속 원료로 금속 아세테이트, 염화 금속을 사용하고, 황의 원료로 황, 티오아세트아미드, 티오요소 를 녹여 초음파를 조사한다. 예를들어, 금속과 황 원료를 용매에 녹인 후 초음파를 조사하여 발광 나노입자를 합성할수 있다. 한편, 조합화학은 복수의 구성요소를 구성하는 화합물을 합성하는 경우, 구 성요소의 여러가지 조합으로 라이브러리를 생성하여 그 증에서 목적에 맞게 뛰어난 기능이 있는 화합물을 선발하는 방법으로, 새로운 선도물질을 찾기 위하여 오래전 부터 폭넓게 활용되어왔다. 구조적으로 유사한 많은 수의 화합물들을 단시간에 합 성할 수 있다는 장점으로 인하여 우수한 물성을 지닌 선도물질의 라이브러리를 확 보하기 위한 효율적인 전략으로 조합화학을 채택하여, 신약개발 및 신소재 개발에 필요한 시간을 최소화할수 있는 연구가 수행되고 있다. 이에 본 발명의 발명자들은 조합화학을 이용하면 물질의 조성을 빠른 시간 내로 최적화하여 원하는 특성을 가진 발광나노입자를 제조할 수 있음을 알게되어, 본 발명을 완성하였다. <π> However, the synthesis of light emitting nanoparticles by pyrolysis proceeds at high temperature, requires reaction to block water or oxygen, and requires a long reaction time. In addition However, pyrolysis is not easy to synthesize a large amount of samples because only one light emitting nanoparticle can be synthesized in one reaction. According to the ultrasonic irradiation method, another method for synthesizing light emitting nanoparticles, It is economical in terms of process energy since it does not need to be heated to high temperatures. In the ultrasonic irradiation method, metal acetate and metal chloride are used as a metal raw material in a solvent such as alcohol, water, and amine, and sulfur, thioacetamide, and thiourea are dissolved as a raw material of sulfur and irradiated with ultrasonic waves. For example, metal and sulfur raw materials may be dissolved in a solvent, and then light emitting nanoparticles may be synthesized by ultrasonic irradiation. On the other hand, in combinatorial chemistry, when a compound composing a plurality of components is synthesized, a method is used to create a library using various combinations of components, and to select a compound having excellent functions according to the purpose in the process. It has been widely used for a long time. Due to the advantage that a large number of structurally similar compounds can be synthesized in a short time, it is possible to minimize the time required for new drug development and new material development by adopting combinatorial chemistry as an effective strategy to secure a library of leading materials with excellent properties. Research is being conducted. Thus, the inventors of the present invention have found that by using the combination chemistry, the composition of the material can be optimized in a short time to produce light emitting nanoparticles having desired characteristics, thereby completing the present invention.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 목적은 아연 -실버 -인듐 -설파이드의 조성을 갖는 발광특성이 향상 된 발광나노입자 및 조합화학을 .이용한 이의 제조방법을 제공하는 데 있다.  Disclosure of Invention An object of the present invention is to provide a light emitting nanoparticle having a composition of zinc-silver-indium-sulfide and a method of manufacturing the same using light emitting nanoparticles and combination chemistry.
【기술적 해결방법】 Technical Solution
이를 위하여, 본 발명은  To this end, the present invention
아연-실버-인듐-설파이드 ((ZnxAgyInz)S2)(0≤x≤l, 0<y<l, 0.1<ζ<1, x+y+z=l)의 조성을 갖는 발광특성이 향상된 발광나노입자를 제공한다 (제 1 발광 나 노입자). :23> 또한, 본 발명은 Light emission with a composition of zinc-silver-indium-sulfide ((Zn x Ag y In z ) S 2 ) (0≤x≤l, 0 <y <l, 0.1 <ζ <1, x + y + z = l) It provides light emitting nanoparticles with improved properties (first light emitting nanoparticles). In addition, the present invention
:24> 아연-실버-인듐-설파이드 ((ZnxAgyInz)S2) (상기 x,y,z는 0<x<0.4, 0.1<y<: 24> Zinc-Silver-Indium-Sulfide ((Zn x Ag y In z ) S 2 ) (The above x, y, z is 0 <x <0.4, 0.1 <y <
0.9, 0.1<ζ<0·9, x+y+z=l; x= 0.5, 0.1<y<0.3, 0.2<z<0.4, x+y+z=l; 및 x = 0.6, y = 0.1, z = 0.3;으로 이루어진 군으로부터 선택되는 1종)의 조성을 갖는 발 광특성이 향상된 발광나노입자를 제공한다 (제 2 발광 나노입자). 0.9, 0.1 <ζ <0 · 9, x + y + z = l; x = 0.5, 0.1 <y <0.3, 0.2 <z <0.4, x + y + z = l; And x = 0.6, y = 0.1, and z = 0.3; and light emitting nanoparticles having improved composition (light emitting nanoparticles) having a composition (second light emitting nanoparticle).
:25> 또한, 본 발명은 아연-실버-인듬-설파이드 ((ZnxAgyInz)¾)(0.15≤x≤0.25,In addition, the present invention provides zinc-silver-sulphur-sulfide ((Zn x Ag y In z ) ¾) (0.15≤x≤0.25,
0.35<y<0.45, 0.35<z<0.45, x+y+z=l)의 조성을 갖는 발광특성이 향상된 발광나 노입자를 제공한다 (제 3 발광 나노입자).Provided is light emission or no-particles with improved light emission characteristics having a composition of 0.35 <y <0.45, 0.35 <z <0.45, x + y + z = l) (third light emitting nanoparticle).
26> 나아가, 본 발명은 26> Furthermore, the present invention
:27> 아연-실버-인듐의 조성에 대한 라이브러리 ^를 구성하는 단계 (단계 1); : 27> constructing a library ^ for the composition of zinc-silver-indium (step 1);
:28> 용매를 포함하는 서로 다른 반응기 각각에 상기 단계 1에서 구성한 라이브러 리에 따른 아연 전구체 실버 전구체 및 인듐 전구체와 가황제를 도입하여 금속 전 구체 용액을 제조하는 단계 (단계 2); : 28) preparing a metal precursor solution by introducing a zinc precursor silver precursor, an indium precursor and a vulcanizing agent according to the library configured in step 1 into each of the different reactors containing a solvent (step 2);
:29> 상기 단계 2에서 제조된 각 반응기 내의 금속 전구체 용액에 초음파를 조사 하는 단계 (단계 3); : Irradiating ultrasonic waves to the metal precursor solution in each reactor prepared in step 2 (step 3);
:30> 상기 단계 3에서 초음파조사 후 알콜계 용매, 탄화수소계 용매 또는 이들의 흔합용매를 첨가하여 아연-실버—인듐-설 3}이드 입자를 침전시키는 단계 (단계 4); :31> 상기 단계 4에서 상기 입자들이 침전된 후 상층액을 제거하는 단계 (단계 5) 및 30> In the step 3 to the ultrasonic irradiation alcohol-based solvent, a hydrocarbon solvent or zinc by the addition of these solvents heunhap-silver-indium-sulfonic step of 3} precipitate Id particles (step 4); : 31> removing the supernatant after the particles precipitate in step 4 (step 5) and
:32> 상기 단계 5에서 상층액이 제거된 아연-실버-인듐—설파이드 나노입자의 발광 특성을확인하는 단계 (단계 6);  : 32> confirming the luminescence properties of the zinc-silver-indium-sulfide nanoparticles from which the supernatant was removed in step 5 (step 6);
=33> 를 포함하는 것을 특징으로 하는 조합화학을 이용한 발광특성이 향상된 상기 제 1 발광 나노입자의 제조방법을 제공한다ᅳ  It provides a method for producing the first light-emitting nanoparticles with improved luminescence properties using a combination chemistry characterized in that it comprises a.
:34>  : 34>
【유리한 효과】  Advantageous Effects
;35> 본 발명에 따르면 아연-실버-인듐-설파이드 ((Z AgyInz)S2)(0≤x≤l, 0<y<35. According to the present invention, zinc-silver-indium-sulfide ((Z Ag y In z ) S 2 ) (0 ≦ x ≦ l, 0 <y <
1, 0.1<ζ<1, x+y+z=l)의 조성을 갖는 발광 나노입자는 발광파장 및 발광강도가 다양한 발광특성을 가진다. 또한, 아연—실베인듐-설파이드 ((Z AgyInz)S2) (상기 x,y,z는 0<x<0.4, 0.1<y<0.9, 0.1<z<0.9, x+y+z=l; x= 0.5, 0.1<y<0.3, 0.2<z<0.4, x+y+z=l; 및 x = 0.6, y = 0.1, z = 0.3;으로 이루어진 군으로부터 선택되는 1종)의 조성을 갖는 발광 나노입자는 발광강도가 상대적으로 더욱 우수하 여 발광특성이 향상된다. 이때ᅳ 아연-실버-인듐-설파이드 ((ZnxAgyInz)S2)(0.15<x≤1, 0.1 <ζ <1, x + y + z = l) light emitting nanoparticles have various light emission characteristics and light emission intensity. In addition, zinc-sylvindium-sulfide ((Z Ag y In z ) S 2 ) (where x, y, z is 0 <x <0.4, 0.1 <y <0.9, 0.1 <z <0.9, x + y + z = l; x = 0.5, 0.1 <y <0.3, 0.2 <z <0.4, x + y + z = l; and x = 0.6, y = 0.1, z = 0.3; one kind selected from the group consisting of The light emitting nanoparticles having the composition have relatively higher emission intensity. Luminous properties are improved. ᅳ Zinc-Silver-Indium-Sulfide ((Zn x Ag y In z ) S 2 ) (0.15 <x≤
0.25, 0.35<y<0.45, 0.35<z<0.45, x+y+z=l)의 조성을 갖는 발광나노입자는 400 nm이상의 장파장 영역의 여기파장일수록 발광효율이 증가하는 특징을 가지므로, 단 파장광원이 가지는 에너지로 인하여 세포에 직접적인 데미지를 입히는 현상을 방지 할 수 있으므로 생체 광학 이미징 등의 바이오 영역에 적용될 수 있다. 또한, 조합 화학을 이용하여 발광 나노입자의 조성에 따른 라이브러리를 제공하고 라이브러리 에 따른 발광나노입자에 초음파를 조사하여 다양한 조성을 가진 발광 나노입자를 빠르게 제조하게됨으로써, 제조된 다양한 발광 노입자의 발광특성을 단시간에 검 사하여 원하는 조성으로 최적화된 발광 나노입자를 찾아낼 수 있다.The light emitting nanoparticles having the composition of 0.25, 0.35 <y <0.45, 0.35 <z <0.45, x + y + z = l) have the characteristic that the luminous efficiency increases as the excitation wavelength of the long wavelength region of 400 nm or more increases. Since the energy of the light source can prevent a phenomenon of directly damaging the cell, it can be applied to a bio area such as bio-optical imaging. In addition, by providing a library according to the composition of the light emitting nanoparticles using a combination chemistry and by emitting ultrasonic waves to the light emitting nanoparticles according to the library to quickly produce light emitting nanoparticles having a variety of compositions, the light emission characteristics of the various light emitting nanoparticles produced In a short time, the optimized light emitting nanoparticles can be found.
6> 6>
【도면의 간단한 설명】 [Brief Description of Drawings]
7> 도 1은 조성에 따른 라이브러리의 구성에 대한모식도이고;7> Figure 1 is a schematic diagram of the composition of the library according to the composition;
8> 도 2는 라이브러리에 따라 제작된 각 반응기에 초음파를 조사하여 발광나노 입자를 합성하는 과정에 대한모식도이고;8> FIG. 2 is a schematic diagram illustrating a process of synthesizing luminescent nanoparticles by irradiating ultrasonic waves to each reactor manufactured according to a library;
9> 도 3(a)는 본 발명의 실시예 1 내지 실시예 8 및 비교예 1 내지 비교예 11에 서 제조된 발광나노입자의 발광특성을 나타낸 그래프이고; 3(b)는 본 발명의 실시 예 9 내지 실시예 55에서 제조된 발광나노입자의 발광특성을 나타낸 그래프이고;()> 도 4는 본 발명의 실시예 30 및 실시예 35에서 제조된 발광나노입자를 투과 전자현미경으로 관찰한 이미지이고;9 (a) is a graph showing the light emission characteristics of the light emitting nanoparticles prepared in Examples 1 to 8 and Comparative Examples 1 to 11 of the present invention; 3 (b) is a graph showing the light emission characteristics of the light emitting nanoparticles prepared in Examples 9 to 55 of the present invention; (4) Figure 4 is a light emitting nanoparticles prepared in Examples 30 and 35 of the present invention An image of the particles observed with a transmission electron microscope;
i> 도 5는 본 발명의 실시예 30, 실시예 35 및 실시예 36에서 제조된 발광나노 입자의 X-선 회절분석 이미지이고;i> FIG. 5 is an X-ray diffraction image of luminescent nanoparticles prepared in Examples 30, 35, and 36;
2> 도 6은 본 발명의 실시예 30 및 실시예 35에서 제조된 발광 나노입자의 에너 지분산 X-선 분광계 분석 이미지이고;2> FIG. 6 is an energy equity X-ray spectrometer analysis image of luminescent nanoparticles prepared in Examples 30 and 35 of the present invention; FIG.
3> 도 7는 본 발명의 실시예 30 및 실시예 35에서 제조된 발광 나노입자의 여기 파장 변화에 따른 발광특성을 비교한 그래프이다3> FIG. 7 is a graph comparing light emission characteristics according to changes in excitation wavelengths of light emitting nanoparticles prepared in Examples 30 and 35 of the present invention.
4> 4>
【발명의 실시를 위한 최선의 형태】 Best Mode for Implementation of the Invention
5> 본 발명의 목적은 발광특성이 향상된 발광나노입자 및 조합화학을 이용한 이 의 제조방법을 제공하는 데 있다.5> An object of the present invention is to provide a light emitting nanoparticles with improved luminescent properties and a method of manufacturing the same using combination chemistry.
6>6>
7> 이하, 본 발명을 상세히 설명한다.7> Hereinafter, the present invention will be described in detail.
8> 9> 본 발명은 아연-실버-인듐-설과이드 ((ZnxAgyInz)S2)(0≤x<l, 0<y<l, 0.1< z≤l, x+y+z^l)의 조성을 갖는 발광특성이 향싱 1된 발광나노입자를 제공한다 (제 1 발광 나노입자). 8> 9> The present invention provides zinc-silver-indium-sulfide ((Zn x Ag y In z ) S 2 ) (0 ≦ x <l, 0 <y <l, 0.1 < z ≦ l, x + y + A light emitting nanoparticle having a light emitting property having a composition of z ^ l) is flavored 1 (first light emitting nanoparticle).
;o> 상기 발광나노입자는 상기 조성범위를 가짐으로써 발광강도 및 발광파장이 다양한 발광특성을 가진다. 이에, 상기 조성 범위내에서 적절히 선택하여 원하는 발광특성을 나타내는 발광나노입자를 유용할수 있다'. o> The light emitting nanoparticles have the light emission intensity and light emission wavelength due to the composition range. Thus, appropriately selected within the composition range can be useful for light-emitting nanoparticles exhibit the desired emission characteristics.
;2> 또한, 본 발명은 아연-실버-인듐-설파이드 ((ZnxAgyIn2)¾) (상기 x,y,z는 0≤x; 2> In addition, the present invention is a zinc-silver-indium-sulfide ((Zn x Ag y In 2 ) ¾) (where x, y, z is 0≤x
<0.4, 0.1<y<0.9, 0.1<z<0.9, x+y+z=l; x= 0.5, 0.1<y<0.3, 0.2<z<0.4, x+y+z=l; 및 x = 0.6, y = 0.1, z = 0.3;으로 이루어진 군으로부터 선택되는 1종) 의 조성을 갖는 발광특성이 향상된 발광나노입자를 제공한다 (제 2 발광 나노입자). <0.4, 0.1 <y <0.9, 0.1 <z <0.9, x + y + z = l; x = 0.5, 0.1 <y <0.3, 0.2 <z <0.4, x + y + z = l; And x = 0.6, y = 0.1, and z = 0.3; and a light emitting nanoparticle having an improved light emitting characteristic having a composition (second light emitting nanoparticle).
>4> 상기 발광나노입자는 ((ZnxAgyInz)S2)(0<x<l, 0<y<l, 0.1<ζ<1, x+y+z=l)의 조성을 가지는 발광 나노입자보다 상대적으로 더욱 우수한 발광특성을 가진다. 구체적으로, 상기 발광 나노입자는 500 nm 내지 750 nm의 발광파장에서 발 광강도가 최대 700 배에 이르는 발광특성을 가진다. 이에, 상기 조성 범위내에서 적절히 선택하여 원하는 발광특성을 나타내는 발광나노입자를 유용할 수 있다. The light emitting nanoparticles have a composition of ((Zn x Ag y In z ) S 2 ) (0 <x <l, 0 <y <l, 0.1 <ζ <1, x + y + z = l) It has relatively better luminescent properties than luminescent nanoparticles. Specifically, the light emitting nanoparticles have light emission characteristics up to 700 times the light emission intensity at the light emission wavelength of 500 nm to 750 nm. Therefore, the light emitting nanoparticles having appropriately selected light emission characteristics within the composition range may be useful.
55> ,  55>,
56> 또한,' 본 발명은 아연-실버-인듐-설파이드 ((ZnxAgyInz)S2)의 조성을 갖는 발 광특성이 향상된 발광나노입자 (0.15≤x≤0.25, 0.35<y<0.45, 0.35<z<0.45, x+y+z=l)를 제공한다 (제 3 발광 나노입자). 56> In addition, the 'present invention is a zinc-silver-indium-sulfide ((Zn x Ag y In z ) S 2) having improved light emission characteristics nanoparticles to light having a composition of (0.15≤x≤0.25, 0.35 <y <0.45 , 0.35 <z <0.45, x + y + z = l) (third luminescent nanoparticle).
57> 발광 나노입자는 생체 광학 이미징 등의 바이오 영역에 적용될 수 있는데, 이를 위하여는 세포에 직접적인 데미지를 주지 않는 장파장 광원에서 효과적인 발 광을 가져야한다. 그러나 기존의 발광입자들은 고에너지를 가지는 단파장의 여기파 장에서 발광하여 세포에 직접적으로 데미지를 주는 문제점이 있었다. 본 발명이 제 공하는 아연-실버—인듐-설파이드 ((ZnxAgyInz)S2)(0.15≤x≤0.25, 0.35<y<0.45,The luminescent nanoparticles can be applied to bio-regions such as bio-optical imaging. For this purpose, the luminescent nanoparticles must have an effective luminescence in a long wavelength light source that does not directly damage cells. However, conventional light emitting particles have a problem of directly damaging cells by emitting light from an excitation wavelength having a short wavelength having high energy. Zinc-Silver-Indium-Sulfide ((Zn x Ag y In z ) S 2 ) provided by the present invention (0.15≤x≤0.25, 0.35 <y <0.45,
0.35<z<0.45, x+y+z=l)의 조성을 갖는 발광특성이 향상된 발광나노입자는 400 nm 이상의 장파장 영역의 여기파장일수록 발광효율이 증가하는 특징을 가지므로 바이 오 영역에 적용되어 사용될 수 있다. , The light emitting nanoparticles having the luminescence properties having the composition of 0.35 <z <0.45, x + y + z = l) have the characteristic that the luminescence efficiency increases as the excitation wavelength of the long wavelength region of 400 nm or more is used in the bio region. Can be. ,
58>  58>
59> 또한, 본 발명은 r.o> 아연-실버-인듐의 조성에 대한 라이브러리를 구성하는 단계 (단계 1); 59> In addition, the present invention ro> constructing a library for the composition of zinc-silver-indium (step 1);
r>i> 용매흘 포함하는 서로 다른 반웅기 각각에 상기 단계 1에서 구성한 라이브러 리에 따른 아연 전구체, 실버 전구체 및 인듐 전구체와 가황제를 도입하여 금속 전 체 용액을 제조하는 단계 (단계 2); r> i> introducing a zinc precursor, a silver precursor, an indium precursor, and a vulcanizing agent according to the library configured in step 1 to each of the different reaction groups including the solvent, thereby preparing a metal whole solution (step 2);
62> 상기 단계 2에서 제조된 각 반응기 내의 금속 전구체 용액에 초음파를 조사 하는 단계 (단계 3); 62> irradiating ultrasonic waves to the metal precursor solution in each reactor prepared in step 2 (step 3);
63> 상기 단계 3에서 초음파조사 후 알콜계 용매, 탄화수소계 용매 또는 이들의 흔합용매를 첨가하여 아연-실버-인듬-설파이드 입자를 침전시키는 단계 (단계 4); 64> 상기 단계 4에서 상기 입자들이 침전된 후 상층액을 제거하는 단계 (단계 5)  63) precipitating zinc-silver-rhythm-sulfide particles by adding an alcohol solvent, a hydrocarbon solvent or a mixed solvent thereof after ultrasonication in step 3 (step 4); 64> removing the supernatant after the particles are precipitated in step 4 (step 5)
65> 상기 단계 5에서 상층액이 제거된 아연-실버—인듐-설파이드 나노입자의 발광 특성을 확인하는 단계 (단계 6); Checking the luminescence properties of the zinc-silver-indium-sulfide nanoparticles from which the supernatant was removed in step 5 (step 6);
66> 를 포함하는 것을 특징으로 하는 조합화학을 이용한 발광특성이 향상된 상기 제 1 발광 나노입자의 제조방법을 제공한다. ·  It provides a method for producing the first light-emitting nanoparticles with improved light emission characteristics using a combination chemistry comprising a. ·
67>  67>
68> 이하, 본 발명에 따른 발광나노입자의 제조방법올 각 단계별로 상세히 설명 한다.  68> Hereinafter, a method of manufacturing light emitting nanoparticles according to the present invention will be described in detail for each step.
6 >  6>
70> 본 발명의 제조방법에 있어서, 상기 단계 Ί은 아연-실버-인듬의 조성에 대한 라이브러리를 구성하는 단계이다. 아연 및 실버를 0에서 1까지 0.1 간격으로 증가 시키고, 인듐을 으 1에서 1까지 0.1 간격으로 증가시키며 삼성분계의 라이브러리를 구성한 후 각 조성에 따라 숫자를 붙인다. 상기 조성에 따른 라이브러리의 구성에 대한모식을 도 1에 나타내었다.  In the manufacturing method of the present invention, step Ί is a step of constructing a library for the composition of zinc-silver-rhythm. Increase zinc and silver from 0 to 1 in 0.1 increments, and increase indium from 1 to 1 in 0.1 increments. The schematic of the structure of the library which concerns on the said composition is shown in FIG.
:71>  : 71>
:72> 본 발명의 제조방법에 있어서, 상기 단계 2는 용매를 포함하는 서로 다른 반 응기 각각에 상기 단계 1에서 구성한 라이브러리에 따른 아연 전구체, 실버 전구체 및 인듐 전구체와 가황제를 도입하여 금속 전구체 용액을 제조하는 단계이다. 이때 금속 전구체들은 예를들어, 아연전구체로 아연 나이트레이트 하이드레이트를 사용 하고, 실버 전구체로 실버 나이트레이드를 사용하고, 인듬 전구체로 인듐 나이트레 이드 하이드레이트를 사용하며, 가황제로 다이메틸다이싸이오카바메이트 (diniethyldithiocarbamate)를 사용할 수 있고 용매로는 도데실아민 등을 사용할 수 있으나, 본 발명의 목적에 부합하는 이상 반드시 상기 내용에 한정되는 것은 아 니다. In the manufacturing method of the present invention, the step 2 is a metal precursor solution by introducing a zinc precursor, a silver precursor, an indium precursor and a vulcanizing agent according to the library configured in the step 1 to each of the different reactors containing a solvent. To prepare. The metal precursors are, for example, zinc nitrate hydrate as the zinc precursor, silver nitrate as the silver precursor, indium nitrate hydrate as the rhythm precursor, and dimethyldiocarbamate as the vulcanizing agent. (diniethyldithiocarbamate) may be used and dodecylamine may be used as a solvent, but is not necessarily limited to the above content as long as it meets the object of the present invention. is.
74> 본 발명에 따른 제조방법에 있어세 상기 단계 2의 용매는 에테르계, 탄화수 소계, 알콜계 및 아민계 용액으로부터 선택되는 1종 이상인 것이 바람직하다. In the manufacturing method according to the present invention, the solvent of step 2 is preferably at least one selected from ether-based, hydrocarbon-based, alcohol-based, and amine-based solutions.
75>  75>
76> 본 발명에 따른 제조방법에 있어서, 상기 에테르계 용액은 옥틸에테르, 부 틸에테르, 핵실에테르, 벤질에테르, 페닐에테르 및 데실에테르로 이루어진 군으로 부터 선택되는 1종 이상인 것이 바람직하다 . 상기 용액들은 고비점 용매로써 초음 파조사시 짧은 시간에 반응 온도를 높게 올리고, 또한 고온상태를 유지하게 해주는 장점이 있다.  In the preparation method according to the present invention, the ether-based solution is preferably at least one selected from the group consisting of octyl ether, butyl ether, nuclear chamber ether, benzyl ether, phenyl ether and decyl ether. The solutions are high boiling point solvents to increase the reaction temperature in a short time during ultrasonic irradiation, and also has the advantage of maintaining a high temperature state.
77>  77>
78> 본 발명에 따른 제조방법에 있어서, 상기 탄화수소계 용액은 핵산, 톨루엔, 크실렌, 클로로벤조익산, 벤젠, 핵사데신, 테트라데신 및 옥타데신으로 이루어진 군으로부터 선택되는 1종 이상인 것이 바람직하다. 상기 용액들은 고비점 용매로써 초음파조사시 짧은 시간에 반응 온도를 높게 올리고, 또한 고온상태를 유지하게 해 주는 장점이 있다.  In the preparation method according to the present invention, the hydrocarbon-based solution is preferably at least one selected from the group consisting of nucleic acid, toluene, xylene, chlorobenzoic acid, benzene, nucleodesine, tetradecine and octadecine. The solutions are high boiling point solvents to increase the reaction temperature in a short time when the ultrasonic irradiation, and also has the advantage of maintaining a high temperature state.
79>  79>
8()> 본 발명에 따른 제조방법에 있어서, 상기 알콜계 용액은 옥틸알콜, 데카놀 , 핵사데카놀, 에틸렌글뫼콜, 1,2-옥테인디올, 1,2-도데케인디올 및 1,2-핵사데케인 디올으로 이루어진 군으로부터 선택되는 1종 이상인 것이 바람직하다. 상기 용액들 은 긴 알킬체인의 말단에 하이드록시기를 가지고 있어 형성된 나노입자를 안정화시 키는 장점이 있다.  8 ()> In the preparation method according to the present invention, the alcohol-based solution is octyl alcohol, decanol, nuxadecanol, ethylene glycol, 1,2-octanediol, 1,2-dodecanediol and 1, It is preferable that it is at least 1 type selected from the group which consists of 2-nuxadecane diol. The solutions have the advantage of stabilizing the nanoparticles formed by having a hydroxyl group at the end of the long alkyl chain.
:81>  : 81>
:82> 본 발명에 따른 제조방법에 있어서, 상기 아민계 용액은 도데실아민, 핵사 데실아민, 옥틸아민, 트리옥틸아민, 디메틸옥틸아민 및 디메틸도데실아민으로 이루 어진 군으로부터 선택되는 1종 이상인 것이 바람직하다 . 상기 용액들은 긴 알킬체 인의 말단에 아민기를 가지고 있어 형성된 나노입자를 안정화시키는 장점이 있다. In the production method according to the present invention, the amine solution is at least one member selected from the group consisting of dodecylamine, nucleated decylamine, octylamine, trioctylamine, dimethyloctylamine and dimethyldodecylamine. It is desirable. The solutions have the advantage of stabilizing the nanoparticles formed by having an amine group at the end of the long alkyl phosphorus.
:83> : 83>
:84> 본 발명에 따른 제조방법에 있어서, 상기 단계 3은 상기 단계 2에서 제조된 각 반웅기 내의 금속 전구체 용액에 초음파를 조사하는 단계이다. 초음파 조사를 하면 용액 내부에서 초음파로 인하여 미세 공동 (cavitation)이 생성되었다 파괴되 는 과정에서 에너지가 전달되어 반응상 촉매 효과가 있어서 발광나노입자가 합성된 다. 라이브러리에 따라 제작된 각 반응기에 초음파를 조사하여 발광나노입자를 합 성하는 과정에 대한모식을 도 2에 나타내었다. In the manufacturing method according to the present invention, step 3 is a step of irradiating ultrasonic waves to the metal precursor solution in each semi-unggi prepared in step 2. Ultrasonic irradiation produces fine cavitation inside the solution due to the ultrasonic waves. Energy is transferred in the process of destruction, and there is a catalytic effect on the light emitting nanoparticles. All. 2 is a schematic diagram illustrating a process of synthesizing light emitting nanoparticles by irradiating ultrasonic waves to each reactor manufactured according to a library.
56> 본 발명에 따른 제조방법에 있어서, 상기 단계 3의 초음파조사는 2 200 kHz의 범위에서 1분 내지 12 시간 동안 수행되는 것이 바람직하다. 주파수가 2 kHz 미만인 경우 초음파를 통하여 층분한 에너지가 공급되지 않아 발광나노입자의 생성 이 저조하다는 문제점이 있고, 200 kHz 이상인 경우 나노입자를 생성하기 위해 공 급되는 에너지가 과도하여 나노입자 생성에 적절하도록 조절하기 어렵다는 문제점 이 있다. 또한, 초음파 조사가 1분;미만으로 수행되는 경우 초음파조사가 층분히 이루어지지 않아 발광나노입자가 합성이 저조하다는 문제점이 있고, 12시간을 초과 하는 경우 과도한 에너지의 공급으로 나노입자가 아닌 거대 (bulk) 입자가 형성된다 는 문제점이 있다. 8> 본 발명에 따른 제조방법에 있어서, 상기 단계 4는 상기 단계 3에서 초음파 조사 후 알콜계 용매 , 탄화수소계 용매 또는 이들의 흔합용매를 첨가하여 아연-실 버-인듐-설파이드 입자를 침전시키는 단계로, 상기 단계 4의 알콜계 용액은 에탄 올, 메탄올 및 옥틸알콜로 이루어진 군으로부터 선택되는 1종 이상인 것이 바람직 하다. 상기 용액은 극성 용매로써 무극성 용매에 분산되어 있는 나노입자의 침전을 유도하여 제조된 나노입자의 분리를 쉽게 할수 있다는 장점이 있다. In the manufacturing method according to the present invention, the ultrasonic irradiation in the step 3 is preferably performed for 1 minute to 12 hours in the range of 2 200 kHz. If the frequency is less than 2 kHz, there is a problem that the generation of light emitting nanoparticles is poor because the energy is not supplied through the ultrasonic waves, and if the frequency is more than 200 kHz, the energy supplied to generate the nanoparticles is excessive and suitable for producing the nanoparticles. There is a problem that it is difficult to adjust. In addition, ultrasonic irradiation was performed for 1 minute ; If it is performed less than the ultrasonic irradiation is not made enough due to poorly synthesized light emitting nanoparticles, there is a problem that the bulk particles, not nanoparticles are formed due to excessive energy supply over 12 hours There is this. 8> In the manufacturing method according to the present invention, the step 4 is a step of precipitating the zinc-silver-indium-sulfide particles by adding an alcohol solvent, a hydrocarbon solvent or a mixed solvent thereof after ultrasonic irradiation in the step 3 As such, the alcohol-based solution of step 4 is preferably at least one selected from the group consisting of ethanol, methanol and octyl alcohol. The solution has an advantage that it is easy to separate the nanoparticles prepared by inducing precipitation of nanoparticles dispersed in a nonpolar solvent as a polar solvent.
89>  89>
90> 본 발명에 따른 제조방법에 있어서, 상기 단계 4의 탄화수소계 용액은 핵산, 틀루엔 및 클로로포름으로 이루어진 군으로부터 선택되는 1종 이상인 것이 바람직 하다. 상기 용액은 무극성 용매로써 알킬체인에 의하여 안정화된 나노입자들을 균 일하게 분산시킬 수 있다는 장점이 있다ᅳ  In the preparation method according to the present invention, the hydrocarbon-based solution of step 4 is preferably at least one selected from the group consisting of nucleic acid, toluene and chloroform. The solution has the advantage of being able to uniformly disperse the nanoparticles stabilized by the alkyl chain as a nonpolar solvent.
91>  91>
92> 본 발명에 따른 제조방법에 있어서, 상기 단계 5는 상기 단계 4에서 상기 입 자들이 침전된 후 상층액을 제거하는 단계로, 상기 상층액을 제거하는 방법은 원심 분리법인 것이 바람직하다. 원심분리법을 사용하면 원심력과 비중의 차이를 이용하 여 반웅기 내의 용매와 섞여있는 용해되지 않은 발광나노물질을 분리할수 있다. In the manufacturing method according to the present invention, step 5 is a step of removing the supernatant after the particles are precipitated in step 4, the method of removing the supernatant is preferably centrifugation. Centrifugal separation allows the separation of undissolved light emitting nanomaterials mixed with solvents in the reaction vessel using the difference in centrifugal force and specific gravity.
: 3> : 3>
: 4> 본 발명에 따른 제조방법에 있어서 상기 단계 6은 상기 단계 5에서 상층액 이 제거된 아연-실버-인듐-설파이드 나노입자의 발광특성을 확인하는 단계이다. 각 기 다른 파장대의 광원을 투과하고 그에 따른 발광특성을 확인하여, 장파장 대에서 발광효율이 높은 나노입자를 찾아낼 수 있다.: 4> In the manufacturing method according to the present invention, step 6 is a step of checking the luminescence properties of the zinc-silver-indium-sulfide nanoparticles from which the supernatant was removed in step 5. bracket By transmitting light sources of different wavelengths and confirming the light emission characteristics thereof, it is possible to find nanoparticles with high luminous efficiency in long wavelength bands.
5>  5>
96> 이하 본 발명을 실시예를 통하여 더욱 구체적으로 설명한다. 단, 하기 실시 예들은 본 발명의 설명을 위한 것일 뿐 본 발명의 범위가 하기 실시예에 의하여 한 정되는 것은 아니다.  Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for the description of the present invention and the scope of the present invention is not limited by the following examples.
97>  97>
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<실시예 1-55> 아연 실버 인듐 설파이드의 조성을 가지는 발광 나노입자의 제조 Example 1-55 Preparation of light emitting nanoparticles having a composition of zinc silver indium sulfide
9> 단계 1: 아연에 대하여 0 - 1, 실버에 대하여 0 - 1, 인듐에 대하여 0.1 - 1 까지 0.1 간격으로 증가시키며 삼성분계 라이브러리를 제작하였다.  9> Step 1: The ternary library was fabricated in 0.1 increments from 0 to 1 for zinc, 0 to 1 for silver and 0.1 to 1 for indium.
oo> 단계 2: 상기 단계 1에서 제작한 라이브러리의 조성에 따라 아연 나이트레이 트 하이드레이트, 실버 나이트레이드 및 인듐 나이트레이드 하이드레이트와 가황제 인 고체상 다이메틸다이싸이오카바메이트 0.7 g을 도데실아민 10 ml가 들어있는 각 각의 플라스크에 투입하였다. oo> Step 2: According to the composition of the library prepared in step 1, 0.7 g of zinc nitrate hydrate, silver nitrate and indium nitrate hydrate and the vulcanizing agent solid dimethyl diocarbamate 10 ml of dodecylamine It was put in each flask containing.
()|> 단계 3: 상기 단계 2에서 제조된 각 플라스크 내의 금속 전구체 용액에 10분 간 20 kHz로 초음파조사기 (sonic dismembrator)를 이용하여 초음파를 조사하였다. () |> Step 3: The ultrasonic wave was irradiated to the metal precursor solution in each flask prepared in Step 2 using a sonic dismembrator at 20 kHz for 10 minutes.
02> 단계 4: 상기 반응용액에 5 ml의 클로로포름과 5 ml의 메탄올을 첨가하여 나 노입자의 침전을 유도하였다. -Step 4> 5 ml of chloroform and 5 ml of methanol were added to the reaction solution to induce precipitation of nanoparticles. -
03> 단계 5: 상기 단계 4에서 아연 -실버 -인듬 -설파이드의 입자들이 침전된 후 원 심분리기를 이용하여 10 분간 원심분리를 수행하여 상층액을 제거하여 하기 표 1과 같은 다양한 조성의 아연—실버 -인듐 -설파이드의 조성을 가지는 발광나노입자를 제 조하였다. Step 5: After the particles of zinc-silver-sulphur-sulfide were precipitated in step 4, centrifugation was performed using a centrifuge for 10 minutes to remove the supernatant and zinc of various compositions as shown in Table 1 below. Light-emitting nanoparticles having a composition of silver-indium-sulfide were prepared.
04> 단계 6: 상기 단계 5에서 제조된 다양한조성의 아연-실버-인듐-설파이드 입 자들에 대하여 형광 분광기 (PerkinElmer LS50B)로 여기파장을 365 nm, 405 nra, 450 nm, 465 nm^ 변화시키며 발광특성을 확인하고, 이로부터 발광특성이 우수한 발광 나노입자의 조성을 확인하였다.  Step 6> The emission spectra of the various composition zinc-silver-indium-sulfide particles prepared in step 5 were changed by 365 nm, 405 nra, 450 nm, 465 nm ^ with a fluorescence spectrometer (PerkinElmer LS50B). The characteristics were confirmed, and the composition of the light emitting nanoparticles having excellent luminescent properties was confirmed therefrom.
05>  05>
06> 【표 1】  06> [Table 1]
07>
Figure imgf000012_0001
Figure imgf000013_0001
07>
Figure imgf000012_0001
Figure imgf000013_0001
()8> ■  () 8> ■
oy> <비교예 1-11>아연 실버 인듐 설파이드 (ZnxAgyInz)S2 발광 나노입자의 제조 ιο> 본 발명에 따른 실시예 1의 단계 1에서 아연에 대하여 0 - 1, 실버에 대하여o y ><Comparative Example 1-11> Preparation of zinc silver indium sulfide (Zn x Ag y In z ) S 2 luminescent nanoparticles ιο> In the step 1 of Example 1 according to the present invention, 0-1 , About silver
0 - 1, 인듐에 대하여 0 으로 0.1 간격으로 증가시키며 삼성분계 라이브러리를 제 작하여 제조된 발광 나노입자의 조성이 하기 표 2와 같은 것을 제외하고는 실시예0-1, except that the composition of the luminescent nanoparticles prepared by fabricating a ternary library with an increment of 0.1 to 0 with respect to indium is shown in Table 2 below.
1과 동일한 방법으로 발광 나노입자를 제조하였고 제조된 발광 나노입자의 발광특 성을 확인하였다. The light emitting nanoparticles were prepared in the same manner as in Example 1, and the light emission characteristics of the prepared light emitting nanoparticles were confirmed.
12> 【표 2】 12> [Table 2]
Figure imgf000013_0002
Figure imgf000013_0002
<실험예 1>발광나노입자의 발광곡선 Experimental Example 1 Emission Curve of Light Emitting Nanoparticles
본 발명에 따른 실시예 1 내지 실시예 55 및 비교예 1 내지 비교예 11의 단 계 6에서 형광 분광기 (PerkinElnier LS50B)를 이용하여 측정된, 파장에 따른 발광강 도를 도 3(a) 및 도 3(b)에 나타내었다.  The emission intensity according to the wavelength measured by using a fluorescence spectrometer (PerkinElnier LS50B) in step 6 of Examples 1 to 55 and Comparative Examples 1 to 11 according to the present invention is shown in FIGS. It is shown to 3 (b).
도 3(a) 및 도 3(b)에 따르면, 본 발명의 실시예 1 내지 실시예 55에 따라 제조된 아연—실버-인듬-설파이드 발광나노입자가 각기 다른 파장대에서 서로 다른 발광강도로 발광하는 것을 확인할 수 있다. > <실험예 2>투자전자현미경 분석3 (a) and 3 (b), the zinc-silver-sulphur-sulfide light emitting nanoparticles prepared according to Examples 1 to 55 of the present invention emit light with different emission intensities at different wavelength bands. You can see that. Experimental Example 2 Investment Microscopy
> 본 발명에 따른 실시예 30 및 실시예 35의 투과전자현미경 분석을 투과전자 현미경 (JEM-2100F)을 이용하여 수행하였고, 그 결과를 도 4에 나타내었다.Transmission electron microscope analysis of Examples 30 and 35 according to the present invention was performed using a transmission electron microscope (JEM-2100F), and the results are shown in FIG. 4.
> 도 4에 따르면, 본 발명의 실시예 30에 따라 제조된 아연-실버-인듬-설파이 드 발광나노입자는 평균 크기가 4.1 nm인 구형이고, 실시예 36에 따라 제조된 아연 -실버-인듐-설파이드 발광나노입자는 평균 크기가 3.9 nm인 구형인 입자임을 알 수 있다. ' > <실험예 3> X-선 회절분석4, the zinc-silver-sulphur-sulfide light emitting nanoparticles prepared according to Example 30 of the present invention are spherical particles having an average size of 4.1 nm, and zinc-silver-indium- according to Example 36. It can be seen that the sulfide light emitting nanoparticles are spherical particles having an average size of 3.9 nm. '' Experimental Example 3 X-ray Diffraction Analysis
> 본 발명에 따른 실시예 30, 실시예 35 및 '실시예 36의 X-선 회절분석을 X-선 회절분석기 (Rigaku D/MAX-2200V)를 이용하여 수행하였고, 그 결과를 도 5에 나타내 었다. ᅳX-ray diffraction analysis of Examples 30, 35 and 36 according to the present invention was performed using an X-ray diffractometer (Rigaku D / MAX-2200V), and the results are shown in FIG. It was. ᅳ
> 도 5에 따르면, 실시예 35에 따라 제조된 아연 -실버 -인듐 -설파이드는조성이5, zinc-silver-indium-sulfide prepared according to Example 35
(Zn0Ag0.5In0.5)S2이므로, 아연이 들어가지 않은 조성으로써 (112), (204), (312)의 결정면을 가지는 실버-인듐-설파이드 조성과 정확히 일치하나, 본 발명의 실시예 1 과 실시예 36에 따라 제조된 아연 -실버 -인듐 -설파이드의 경우 아연이 들어있는 조 성으로써 실시예 36의 피크의 위치와는 다른 것을 확인할 수 있다. 이를통해, 서 로 다른 조성의 아연-실버-인듬-설파이드 발광나노입자가 제조되었음을 알 수 있 다. (. Zn 0 Ag 0 5 In 0.5) because S 2, zinc as that of example composition 112, 204, the silver having a crystal plane of a 312-indium-one match exactly sulfide composition of the present invention In the case of zinc-silver-indium-sulfide prepared according to Example 1 and Example 36, the composition containing zinc can be confirmed to be different from the position of the peak of Example 36. Through this, it can be seen that zinc-silver-sulphur-sulfide light emitting nanoparticles having different compositions were prepared.
>>
> <실험예 4>에너지분산 X-선 분광계 분석Experimental Example 4 Analysis of Energy Dispersive X-ray Spectrometer
> 본 발명에 따른 실시예 30과.실시예 35의 에너지분산 X-선 분광계 분석을 에 너지분산 X-선 분광기 (Quantax 200)를 이용하여 수행하였고, 그 결과를 도 6에 나 타내었다.> Example 30 and according to the present invention . The energy dispersive X-ray spectrometer analysis of Example 35 was performed using an energy dispersive X-ray spectrometer (Quantax 200), and the results are shown in FIG. 6.
> 도 6에 따르면, 본 발명에 따른 실시예 30에 따라 제조된 아연-실버-인듐-설 파이드 발광나노입자에는 Zn 원소가 존재하나, 실시예 35의 아연-실버-인듐-설파이 드 발광나노입자에는 Zn 원소가 존재하지 않는다. 이를 통해 본 발명에 따른 실시 예 1에 따라 제조된 아연-실버-인듐-설파이드 발광나노입자의 조성은 아연을 포함 하는 (Zn0.2Ag0.4In0.4)S2임을 확인할 수 있고, 실시예 35에 따라 제조된 아연-실버-인 듐ᅳ설파이드 발광나노입자의 조성은 아연을 포함하지 않는 (Zn0Ag0.5In0.5)S2임을 확 인할수 있다. > <실험예 5> 최대발광파장에 의한 여기곡선 비교> According to Figure 6, Zn element is present in the zinc-silver-indium-sulfide light emitting nanoparticles prepared according to Example 30 according to the present invention, the zinc-silver-indium-sulfide light emitting nanoparticles of Example 35 Zn does not exist. Through this embodiment the zinc produced according to (1) according to the present invention silver-indium-composition of the sulfide luminescent nanoparticles comprising zinc (. Zn 0.2 Ag 0 4 In 0.4) S 2 can verify that, in Example 35 the zinc prepared in accordance with the-silver-indium composition of the light-emitting eu sulfide nanoparticles that do not contain zinc (.. 5 in 0 Zn 0 Ag 0 5) is able to confirm that S 2. Experimental Example 5 Comparison of Excitation Curves by Maximum Emission Wavelength
i> 본 발명의 실시예 30과 실시예 35에 여기 파장을 점차 증가시키며 발광강도 를 측정하였고, 그 결과를 도 7에 나타내었다.i> In Example 30 and Example 35 of the present invention, the emission intensity was measured while gradually increasing the excitation wavelength, and the results are shown in FIG. 7.
> 도 7에 따르면, 본 발명의 실시예 30에 따라 제조된 아연-실버-인듬-설파이 드 발광나노입자에 여기파장을 365 nm, 405 nm, 450 nm, 465 nm로 증가시키며 발광 강도를 측정한 결과 발광강도가 점차 증가하는 양상을 보였다. 실시예 35에 따라 제조된 아연-실버-인듐-설파이드 발광나노입자에 여기파장을 405 nm, 450 nm, 465 nni로 증가시키며 발광강도를 측정한 결과 발광강도가 점차 감소하는 양상을 보였 다. 이를 통해, 본 발명의 실시예 30에 따라 제초된 아연-실버-인듐-설파이드 발광 나노입자가 장파장 광원에서 더욱 효과적인 발광을 가진다는 사실을 확인할 수 있 4. ' . > According to FIG. 7, the emission wavelength was measured by increasing the excitation wavelength to 365 nm, 405 nm, 450 nm, and 465 nm in the zinc-silver-sulphur-sulfide light emitting nanoparticles prepared according to Example 30 of the present invention. As a result, the luminescence intensity gradually increased. In the zinc-silver-indium-sulfide light emitting nanoparticles prepared according to Example 35, the excitation wavelength was increased to 405 nm, 450 nm, and 465 nni, and the emission intensity was gradually decreased. Through this, it can be confirmed that the zinc-silver-indium-sulfide luminescent nanoparticles herbicided according to Example 30 of the present invention have more effective luminescence in a long wavelength light source .
3> 3>

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
아연-실버-인듐-설파이드 ((ZnxAgyInz)S2)의 조성을 갖는 발광특성이 향상된 발광나노입자: Luminescent nanoparticles having improved luminescence properties having a composition of zinc-silver-indium-sulfide ((Zn x Ag y In z ) S 2 ):
(상기에서 , 0<x<l, 0<y≤l, 0.1<ζ<1, x+y+z=l) .  (In the above, 0 <x <l, 0 <y ≦ l, 0.1 <ζ <1, x + y + z = l).
【청구항 2】 ' ' [Claim 2] ''
아연-실버-인듐-설파이드 ((Z AgyInz)S2)의 조성을 갖는 발광특성이 향상된 발광나노입자: Luminescent nanoparticles with improved luminescence properties having a composition of zinc-silver-indium-sulfide ((Z Ag y In z ) S 2 ):
(상기 x,y,z는 0<x<().4, 0.1<y<0.9, 0.1<z<0.9, x+y+z=l;  (Where x, y, z is 0 <x <(). 4, 0.1 <y <0.9, 0.1 <z <0.9, x + y + z = l);
x = 0.5, 0.1<y<0.3, 0.2<z<0.4, x+y+z=l; 및  x = 0.5, 0.1 <y <0.3, 0.2 <z <0.4, x + y + z = l; And
x = 0.6, y = 0.1, z = 0.3;으로 이루어진 군으로부터 선택되는 1종).  x = 0.6, y = 0.1, z = 0.3; 1 type selected from the group consisting of.
【청구항 3】 · [Claim 3]
아연-실버-인듬-설파이드 ((ZnxAgyInz)S2)의 조성을 갖는 발광특성이 향상된 발광나노입자: Luminescent nanoparticles with improved luminescence properties having a composition of zinc-silver-sulphur-sulfide ((Zn x Ag y In z ) S 2 ):
(상기에서, 0.15<x<0.25, 0.35<y<0.45, 0.35<z<0.45, x+y+z=l) . 【청구항 4】  (In the above, 0.15 <x <0.25, 0.35 <y <0.45, 0.35 <z <0.45, x + y + z = l). [Claim 4]
아연-실버-인듐의 조성에 대한 라이브러리를 구성하는 단계 (단계 1);  Constructing a library for the composition of zinc-silver-indium (step 1);
용매를 포함하는 서로 다른 반응기 각각에 상기 단계 1에서 구성한 라이브러 리에 따른 아연 전구체, 실버 전구체 및 인듐 전구체와 가황제를 도입하여 금속 전 구체 용액을 제조하는 단계 (단계 2);  Preparing a metal precursor solution by introducing zinc precursor, silver precursor, indium precursor, and a vulcanizing agent according to the library configured in Step 1 into each of the different reactors including the solvent (step 2);
상기 단계 2에서 제조된 각 반응기 내의 금속 전구체 용액에 초음파를 조사 하는 단계 (단계 3); .  Irradiating ultrasonic waves to the metal precursor solution in each reactor prepared in step 2 (step 3); .
상기 단계 3에서 초음파조사 후 알콜계 용매, 탄화수소계 용매 또는 이들의 흔합용매를 첨가하여 아연-실버-인듐-설파이드 입자를 침전시키는 단계  Ultrasonic irradiation in step 3 to the step of precipitating the zinc-silver-indium-sulfide particles by adding an alcohol solvent, a hydrocarbon solvent or a mixed solvent thereof
(단계 4); 상기 단계 4에서 상기 입자들이 침전된 후 상층액을 제거하는 단계 (단계 5) 상기 단계 5에서 상층액이 제거된 아연-실버-인듐-설파이드 나노입자의 발광 특성을 확인하는 단계 (단계 6); 를 포함하는 것을 특징으로 하는 조합화학을 이용한 발광특성이 향상된 제 1 항에 따른 발광나노입자의 제조방법 . (Step 4); Removing the supernatant after the particles are precipitated in step 4 (step 5) checking the luminescence properties of the zinc-silver-indium-sulfide nanoparticles from which the supernatant is removed in step 5 (step 6); Method for producing a light emitting nanoparticles according to claim 1, wherein the light emission characteristics are improved using a combination chemistry comprising a.
【청구항 5】 '[Claim 5] ' ;
제 4항에 있어서,  The method of claim 4,
상기 단계 2의 용매는 에테르 탄화수소계, 알콜계 및 아민계 용액으로부 터 선택되는 1종 이상인 것을 특징으로 하는 조합화학을 이용한 발광특성이 향상된 제 1 항에 따른 발광나노입자의 제조방법 .  The solvent of step 2 is a method for producing the light-emitting nanoparticles according to claim 1, wherein the luminescent properties are improved using a combination chemistry, characterized in that at least one selected from ether hydrocarbon-based, alcohol-based and amine-based solution.
【청구항 6】 [Claim 6]
. 제 5 항에 있어서, . The method of claim 5,
. 상기 에테르계 용액은 옥틸에테르, 부틸에테르, 핵실에테르, 벤질에테르, 페 닐에테르 및 데실에테르로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으 로 하는 조합화학을 이용한 발광특성이 향상된 제 1 항에 따른 발광나노입자의 제 조방법 .  . According to claim 1, wherein the ether solution is at least one selected from the group consisting of octyl ether, butyl ether, nuclear chamber ether, benzyl ether, phenyl ether and decyl ether. Manufacturing Method of Light Emitting Nanoparticles.
【청구항 7】 [Claim 7]
제 5항에 있어서,  The method of claim 5,
상기 탄화수소계 용액은 핵산, 톨루엔, 크실렌, 클로로벤조익산, 벤젠, 핵사 데신, 테트라데신 및 옥타데신으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 조합화학을 이용한 발광특성이 향,,상된 제 1 항에 따른 발광나노입자 의 제조방법. The hydrocarbon solution is a light-emitting characteristics using combinatorial chemistry, characterized in that at least one member selected from hexane, toluene, xylene, chloro-benzo acid, benzene, hex decyne, tetra-decyne and octanoyl group consisting of decyne incense, corrupt the Method for producing light emitting nanoparticles according to claim 1.
【청구항 8] [Claim 8]
제 5항에 있어서,  The method of claim 5,
상기 알콜계 용액은 옥틸알콜, 데카놀, 핵사데카놀, 에틸렌글리콜, 1,2-옥테 인디올, 1,2-도데케인디올 및 12-핵사데케인디올으로 이루어진 군으로부터 선택되 는 1종 이상인 것을 특징으로 하는 조합화학을 이용한 발광특성이 향상된 제 1 항 에 따른 발광나노입자의 제조방법 .  The alcoholic solution is at least one selected from the group consisting of octyl alcohol, decanol, nuxadecanol, ethylene glycol, 1,2-octeindiol, 1,2-dodecanediol and 12-nuxadecanediol A method of manufacturing the light emitting nanoparticles according to claim 1, wherein the luminescence properties are improved by using combinatorial chemistry.
【청구항 9】 [Claim 9]
제 5항에 있어서 상기 아민계 용액은 도데실아민., 핵사데실' :아민 , 옥틸아민, 트리옥틸아민, 디 메틸옥틸아민 및 디메틸도데실아민으로 이루어 진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 조합화학을 이용한 발광특성 이 향상된 제 1 항에 따른 발광나 노입자의 제조방법 ᅳ The method of claim 5 The amine-based solution is dodecylamine, nucleodecyl ' : amine, octylamine, trioctylamine, dimethyloctylamine and dimethyldodecylamine using at least one selected from the group consisting of combinatorial chemistry, characterized in that Method of manufacturing light emission or old particles according to claim 1 with improved light emission characteristics
【청구항 10】 [Claim 10]
제 4 항에 있어서,  The method of claim 4,
상기 단계 3의 초음파조사는 2 - 200 kHz의 범위에서 1분 내지 12 시간 동안 수행되는 것을 특징으로 하는 조합화학을 이용한 발광특성 이 향상된 제 1 항에 따 른 발광나노입자의 제조방법 .  Ultrasonic irradiation of step 3 is a method for producing light-emitting nanoparticles according to claim 1, wherein the luminescence properties are improved using combination chemistry, characterized in that performed for 1 minute to 12 hours in the range of 2-200 kHz.
【청구항 11】 [Claim 11]
제 4 항에 있어서 ,  The method of claim 4,
상기 단계 4의 알콜계 용액은 에탄을, 메탄올 및 옥틸알콜으로 이루어진 군 으로부터 선택되는 1종 이상인 것을 특징으로 하는 조합화학을 이용한 발광특성 이 향상된 제 1 항에 따른 발광나노입자의 제조방법 .  The alcohol-based solution of step 4 is a method for producing the light-emitting nanoparticles according to claim 1, wherein the luminescent properties are improved by using a combination chemistry, characterized in that at least one selected from the group consisting of ethane, methanol and octyl alcohol.
【청구항 12】 , 【Claim 12】,
제 4 항에 있어서,  The method of claim 4,
상기 단계 4의 탄화수소계 용액은 핵산, 를루엔 및 클로로포름으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 조합화학을 이용한 발광특성 이 향상된 제 1 항에 따른 발광나노입자의 제조방법 . ―  The method of claim 4, wherein the hydrocarbon-based solution of step 4 is one or more selected from the group consisting of nucleic acid, toluene and chloroform. ―
PCT/KR2013/003650 2012-04-27 2013-04-26 Light-emitting nanoparticles having improved light emission characteristics and having zinc-silver-indium-sulfide composition and method for preparing same using combinatorial chemistry WO2013162334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0044608 2012-04-27
KR1020120044608A KR101360087B1 (en) 2012-02-20 2012-04-27 Luminescence nanoparticle improving light emitting efficiency comprising zinc-silver-indium-sulfide and the method for manufacturing thereof by combichemistry

Publications (1)

Publication Number Publication Date
WO2013162334A1 true WO2013162334A1 (en) 2013-10-31

Family

ID=49484510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003650 WO2013162334A1 (en) 2012-04-27 2013-04-26 Light-emitting nanoparticles having improved light emission characteristics and having zinc-silver-indium-sulfide composition and method for preparing same using combinatorial chemistry

Country Status (1)

Country Link
WO (1) WO2013162334A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3072941A1 (en) 2015-03-23 2016-09-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for increasing the internal quantum efficiency of photoluminescent nanocrystals, especially agins2-zns nanocrystals
KR20220110486A (en) 2019-12-02 2022-08-08 신에쓰 가가꾸 고교 가부시끼가이샤 Quantum dots, wavelength conversion materials, backlight units, image display devices, and methods for manufacturing quantum dots
EP4245821A1 (en) * 2022-03-18 2023-09-20 Samsung Electronics Co., Ltd. Color conversion panel including luminescent nanoparticles, nanoparticles, and electronic device including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621309B1 (en) * 2004-04-20 2006-09-14 삼성전자주식회사 Method for Preparing Metal Sulfide Nanocrystal Using Thiol Compound As Sulfur Precursor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621309B1 (en) * 2004-04-20 2006-09-14 삼성전자주식회사 Method for Preparing Metal Sulfide Nanocrystal Using Thiol Compound As Sulfur Precursor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANG, JU YEON ET AL.: "Non-blinking, photostable luminescence upconversion from (ZnAgIn)S2 nanocrystals", 109TH ASSEMBLY AND CONFERENCE OF KCSNET, 25 May 2012 (2012-05-25), pages 428 *
MAO, B. ET AL., THE JOURNAL OF PHYSICAL CHEMISTRY C, 2011, pages 8945 - 8953 *
ZOU, C. ET AL., CRYSTENGCOMM, vol. 13, 2011, pages 3515 - 3520 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3072941A1 (en) 2015-03-23 2016-09-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for increasing the internal quantum efficiency of photoluminescent nanocrystals, especially agins2-zns nanocrystals
KR20220110486A (en) 2019-12-02 2022-08-08 신에쓰 가가꾸 고교 가부시끼가이샤 Quantum dots, wavelength conversion materials, backlight units, image display devices, and methods for manufacturing quantum dots
EP4245821A1 (en) * 2022-03-18 2023-09-20 Samsung Electronics Co., Ltd. Color conversion panel including luminescent nanoparticles, nanoparticles, and electronic device including the same

Similar Documents

Publication Publication Date Title
Xu et al. Ln3+ (Ln= Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties
Long et al. High-throughput and tunable synthesis of colloidal CsPbX 3 perovskite nanocrystals in a heterogeneous system by microwave irradiation
Sczancoski et al. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal
KR101360087B1 (en) Luminescence nanoparticle improving light emitting efficiency comprising zinc-silver-indium-sulfide and the method for manufacturing thereof by combichemistry
KR101486529B1 (en) Quantum Dot and Method of Manufacturing The Same
KR101473329B1 (en) Luminescent core-shell nanoparticles including zinc-silver-indium-sulfide core and shell surrounding the core, and the method for manufacturing thereof
JP5162742B2 (en) Semiconductor nanoparticles and manufacturing method thereof
WO2010024724A2 (en) Method for synthesising semiconductor quantum dots
JP6085880B2 (en) Carbon quantum dot manufacturing method and carbon quantum dot
WO2013162334A1 (en) Light-emitting nanoparticles having improved light emission characteristics and having zinc-silver-indium-sulfide composition and method for preparing same using combinatorial chemistry
JP5594326B2 (en) Dispersion of zinc oxide fine particles
JP6351157B2 (en) Tellurium compound nanoparticles and production method thereof
Kang et al. Green synthetic strategy of BCNO nanostructure and phosphor-based light–Emitting diodes
KR102401044B1 (en) Method of manufacturing cesium lead halide perovskite crystal
US20070098988A1 (en) Method of preparing biocompatible silicon nanoparticles
CN109762560B (en) Preparation method for synthesizing two kinds of fluorescent graphene quantum dots at one time
Amini et al. Structure and optical properties of new lead (II) coordination polymers and PbO nanoparticles core of polymer
Jia et al. Synthesis and characterization of highly uniform Lu 2 O 3: Ln3+ (Ln= Eu, Er, Yb) luminescent hollow microspheres
JP5125817B2 (en) Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method
JP2019183047A (en) Fluorescent nanoparticle and method for producing same
Zeng et al. Multicolor properties and applications of Ln 3+ doped hierarchical NaY (WO 4) 2 via a facile solvothermal process
JP7510206B2 (en) Novel phthalocyanine nanowires and their applications
JP7248242B2 (en) Method for producing black phosphorus-containing composition and black phosphorus-containing composition
JP5062065B2 (en) Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method
KR101212015B1 (en) Method for preparing II to VI group semiconductor compound quantum dot or nanoparticles through sonochemical method under multi-bubble sonoluminescence conditions, and method for controlling size of the quantum dot or the nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780655

Country of ref document: EP

Kind code of ref document: A1