WO2013162124A1 - Mill for food materials - Google Patents

Mill for food materials Download PDF

Info

Publication number
WO2013162124A1
WO2013162124A1 PCT/KR2012/005486 KR2012005486W WO2013162124A1 WO 2013162124 A1 WO2013162124 A1 WO 2013162124A1 KR 2012005486 W KR2012005486 W KR 2012005486W WO 2013162124 A1 WO2013162124 A1 WO 2013162124A1
Authority
WO
WIPO (PCT)
Prior art keywords
food materials
food
pair
mill
impeller
Prior art date
Application number
PCT/KR2012/005486
Other languages
French (fr)
Korean (ko)
Inventor
이현유
정진웅
권기현
박종대
금준석
조진호
Original Assignee
한국식품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국식품연구원 filed Critical 한국식품연구원
Priority to CN201280072675.6A priority Critical patent/CN104271245B/en
Publication of WO2013162124A1 publication Critical patent/WO2013162124A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/163Stirring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/11Details
    • B02C7/12Shape or construction of discs
    • B02C7/13Shape or construction of discs for grain mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0012Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain)
    • B02C19/005Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain) the materials to be pulverised being disintegrated by collision of, or friction between, the material particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/10Mills in which a friction block is towed along the surface of a cylindrical or annular member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/18Disc mills specially adapted for grain

Definitions

  • the present invention relates to a food raw material grinder, and more particularly to a food raw material grinder capable of finely grinding food raw materials into uniform particles while maintaining the quality of dry and wet food raw materials.
  • Commonly used food raw material grinder is used to grind grains by using a grinding blade, and most of them do not grind to the required particle size through one grinding process. It was repeatedly supplied and ground to a desired particle size. Therefore, there is a problem that not only takes a lot of work time according to the manual grinding process but also decreases the work efficiency. Therefore, in order to solve this problem, the number of pulverized food ingredients is increased several times by automatically supplying a pulverized product in one grain crusher instead of a worker's hand.
  • the pulverized blade powder is mixed with the pulverized material due to friction between the pulverized blades, thereby obtaining a pure food pulverized product.
  • the quality of the food raw material is degraded directly by the grinding blade, if the grinding blade becomes dull after a certain period of time, the time taken to grind the food raw material to the desired particle size increases, and if heat is generated during the grinding process, In the case of cereals, the problem of gelatinization occurs.
  • the problem to be solved by the present invention is to provide a food raw material grinder capable of finely grinding the food raw material into uniform particles while maintaining the quality of dry and wet food raw materials.
  • a housing including a feed port into which the food material is input and the discharge port is discharged unpulverized food raw material;
  • a pair of impellers extending in a radially outward direction from the center and including a plurality of wings and installed in the housing;
  • the wing portion is formed with a vortex surface formed with a concave groove
  • the pair of impellers provide a food material grinder installed to face the vortex surface formed on each of the impellers.
  • the groove is circular in front shape.
  • the pair of impellers have the same shape.
  • the driving body is a motor
  • the motor and the impeller are interlocked by a rod-shaped rotating shaft beam.
  • the separation interval between the pair of impeller by the rotating shaft beam is adjusted.
  • the wing is formed on the rear surface opposite the vortex surface
  • the rear surface is preferably formed to protrude more convexly than the central portion.
  • the wing portion is preferably formed so that the vortex surface protrudes more convex than the central portion.
  • the plurality of wings is preferably any one of four blades, six blades, and eight blades.
  • the present invention by pulverizing the food material by the collision between the food raw materials and the collision of the food raw materials and the air during the grinding process, it is possible to prevent the mixing of foreign matters in the pulverized food raw material, dry and wet food raw materials Not only is applied to, but also indirectly pulverized by the operation of the pulverizer, not directly pulverized by the pulverizer can maintain the quality of the food raw materials.
  • by forming a multi-tornado by the shape of the impeller it is possible to prevent the food material from being caught in one position of the device, and finely pulverized into uniform particles.
  • the low temperature state can be maintained even when the food raw material grinder is driven, it is possible to prevent the food raw material from being deteriorated by temperature.
  • FIG. 1 is a schematic diagram of a food raw material mill according to an embodiment of the present invention.
  • FIG. 2 is a perspective view and a cross-sectional view of an impeller according to an embodiment of the present invention.
  • Example 4 is an enlarged photograph of non-glutinous rice flour powder prepared according to Example 1 and Comparative Example 1;
  • FIG. 5 is a graph of grain size of non-glutinous rice prepared by Example and Comparative Example 1.
  • the food raw material grinder includes: a housing 110 including a supply port 112 into which a food material is input and an outlet 114 from which unpulverized food material is discharged;
  • a pair of impellers 120 formed in the housing 110 and including a plurality of wing portions 124 extending from the center portion 122 and spaced apart from each other in the radially outward direction;
  • the wing portion 124 is formed with a vortex surface 124a having a concave groove 124c formed therein,
  • the pair of impellers 120 are installed to face the vortex surfaces 124a formed in the respective impellers 120.
  • Mills can be classified into roll mills, millstone mills, air mills, cyclone mills, high-speed mills and the like according to the driving method thereof.
  • the cyclone mill is suitable for producing fine particle powder, miniaturizing machinery, and suitable for mass production as well as small amount.
  • the particle size of the powder can be controlled by rotation speed or wind speed and can be dried simultaneously with grinding.
  • Stable food processing requires fine and uniform fine powder. Therefore, the finely ground fine flour is not only fine and uneven, but also leaves much starch on the surface of the fine powder. That is, starch damage glass is low, and the processing suitability to a product becomes excellent.
  • the cyclone mill is a self-pulverizing method in which the pulverized materials collide with each other, the pulverized blade or the like can be prevented from being mixed with the pulverized powder.
  • the amount of air generated and the temperature rise is small, it is possible to prevent the particles to be gelatinized during the grinding process.
  • the present invention specifies the shape of the wing portion 124 formed on the vortex surface 124a of the impeller 120, so that the food material is more smoothly crushed by the flow of air generated in the wing portion 124.
  • FIG. 1 is a schematic view of a foodstuff grinder according to an embodiment of the present invention
  • Figure 2 is a front view and a side view of the impeller 120 according to an embodiment of the present invention.
  • the food raw material introduced into the supply port 112 of the housing 110 flows by the flow of air generated by the rotation of the impeller 120.
  • crushing occurs due to the shear force generated when the air and the food material collide with each other, or the shear force generated when the food material flowing by the air flow collides with each other.
  • the food material which has been pulverized, is discharged to the outlet 114 of the housing 110. Grinding particle size of the food raw material can be adjusted in proportion to the flow rate of the air driven in the housing 110 and the time exposed to the flowing air.
  • the air flow type pulverizer according to the present invention is to control the time or crushing strength of the pulverization process in order to control the particle size because the pulverized particles are evenly pulverized.
  • the present invention by adjusting the rotational speed of the impeller 120 and the time the impeller 120 is rotationally driven before the food material is input and discharged in order to control the particle size of the food material, thereby controlling the particle size of the food material being crushed It is.
  • the impeller 120 driven to indirectly grind food ingredients may be divided into a central portion 122 and a wing portion 124 as shown in FIGS. 1 and 2.
  • the center of the center 122, the rotary shaft for driving the impeller 120 is coupled, the wing portion 124 is coupled around the center (122).
  • the wing 124 is a plurality of wing 124 is formed in one central portion 122, according to an embodiment of the present invention, when the central portion 122 rotates, the wing portion 124 is the central portion (
  • the wing parts 124 are formed at equal intervals.
  • the wing 124 extends radially outwardly at a predetermined angle from the center of the central portion 122.
  • the impeller may be formed of any one of four blades having four wing portions 124, six blades having six wing portions, and eight blades having eight wing portions.
  • the pair of impellers 120 are rotated in opposite directions with each other by a driving body for driving each of them. That is, since the driving direction of each of the impeller 120 is different, it is provided with a driving body for driving it.
  • a driving body for driving it.
  • the driving body is selected as the motor 130
  • a rod-shaped rotating shaft beam 140 is provided between the impeller 120 and the motor 130 such that the impeller 120 is driven by the driving of the motor 130 or the motor
  • the impeller 120 may be directly rotated by being directly linked to the 130. That is, the method of rotating the impeller 120 is not limited to any one, and may be driven by various methods such as a general motor 130 or a device driven by rotation using magnetic force.
  • the present invention forms a bend on the vortex surface 124a and the rear surface 124b which are the front face of the shape of the impeller 120, so that the food material can smoothly flow in the housing 110.
  • the wing 124 has a rear surface 124b formed on the opposite side of the vortex surface 124a, and the rear surface 124b of the wing portion 124 is formed to protrude more convexly than the central portion 122.
  • the wing portion 124, the vortex surface (124a) is preferably formed to protrude more than the central portion (122).
  • the pair of impellers 120 are provided to face each other with the vortex surfaces 124a respectively formed on the front surface of the wing portion 124. Therefore, when the vortex surface 124a of the wing portion 124 is convexly formed, if the vortex surface 124a faces each other during the process of the impeller 120 rotating, the vortex surface 124a and the vortex surface ( As a narrow space is formed between 124a), throttling occurs. Therefore, as the wind speed increases instantaneously, the raw material can be smoothly flowed, and the raw material is more smoothly crushed.
  • the groove 124c in the vortex surface 124a the vortex is generated in the groove 124c so that the food material is flowed evenly once again while the shear force is applied to the food material.
  • the particle size of the food raw material can be adjusted to be customized, it is not necessary to pulverize the food raw material repeatedly at the same time, thereby reducing energy consumption.
  • Conventional foodstuff pulverizers do not form multiple tornadoes, so in the case of wet foodstuffs, the specific gravity is high, so they are frequently sandwiched between the grinding blades or gaps of the apparatus before pulverization.
  • the present invention is caused by the multiple tornado generated by the driving of the vortex and the impeller generated in the grooves (124c) to be crushed again to the other food raw materials and air and shear occurs as one more floating. Can be. Therefore, it can be smoothly crushed by the shear force, rather than being pinched by the device or the like.
  • the interval between the pair of impeller 120 it is possible to adjust the interval between the pair of impeller 120.
  • the impeller 120 is coupled to each other by the rotating shaft beam 140, by providing a screw structure or a sliding composition, etc. in the rotating shaft beam 140, by adjusting the position of the impeller 120 from the end of the rotating shaft, The distance between the vortex surface 124a of the pair of impellers 120 can be adjusted. Due to this it is possible to adjust the wind speed generated between the impeller 120, thereby adjusting the particle size of the crushed food raw material in a variety of ranges.
  • the groove 124c formed in the vortex surface 124a of the wing portion 124 is preferably circular in shape, as seen from the front. That is, the food material flowing in the streamlined groove 124c by being concavely formed in a part of a spherical shape and the food material introduced through the fast flow rate in the narrow gap between the vortex surfaces 124a facing each other smoothly with each other. It can be provided to hit.
  • the pair of impellers 120 have the same shape. That is, when the impeller 120 is rotated in the opposite direction at the position facing each other, the shape of the groove 124c and the radially inner and radially outer side of the groove 124c at the moment when the surface of the wing 124 coincides. By narrowing the narrow gap position of the vortex surface 124a located, the shear force acting on the food material is uniform.
  • the wing 124 is a four-blade shape extending from the central portion 122 in the radially outer four directions, but the number of the wing 124 is not limited thereto, and may be provided in a six-blade or eight-blade. .
  • Loss rate was determined by measuring input and output weights. The yield was calculated by measuring the time from input to yield. The calculated values are shown in Table 1 below.
  • the loss rate of the Example was 0.5% lower than or equal to that of Comparative Example 1 when the grooved impeller was mounted.
  • the loss rate of the Example was 1% lower or the same. Due to the difference in the loss rate, the Example can produce up to 0.96 kg more per hour than Comparative Examples 1 and 2, and it can be seen that at least 0.6 kg can be produced more per hour.
  • the moisture content of rice flour was 105 °C atmospheric pressure drying method, and 2g of powder was added to the water-filled water dispenser for each treatment, and dried using a dry oven (Korea Integrated Equipment Manufacturer, Korea). After the drying was repeated until the constant amount, the average value was obtained.
  • the water absorption index and the water dissolution index were measured by applying Anderson's method. 40 ml of distilled water was mixed in a 2.5 g sample into a centrifuge tube, left to stand at room temperature for 30 minutes, and then centrifuged at 8000 rpm for 10 minutes.
  • WSI was calculated as a percentage of 2.5 g of the solids obtained by adding the supernatant to a dry water obtained in advance, and WAI was obtained by measuring the weight of the precipitate.
  • A is the weight of the sample (g)
  • B is the weight of the dried solids (g)
  • C is the weight of the precipitate (g)
  • WAI is shown in Equation 1
  • Micrographs of non-grinded rice by Example and Comparative Example 1 are shown in FIG. 4. The microscope magnification is 160 times.
  • Particle size analysis was measured using a particle size analyzer (CILAS 1064, France), and the particle size was observed by classifying the sample according to the grinding equipment and varieties.
  • FIG. 5 shows graphs of non-grinded rice by Example and Comparative Example 1.
  • the finely divided food material particle size range is shown in red. That is, as shown in FIG. 5A, the non-rice milled by the food raw material mill of the embodiment has a width of the particle size of 1 ⁇ m to 60 ⁇ m, and the difference between the sections is 60. On the other hand, in the case of Comparative Example 1, as shown in FIG. 5B, the interval difference reaches 300 until the width of the particle size reaches 1 ⁇ m to 300 ⁇ m. In this case, it is difficult to produce a good powder due to the non-uniform particle size, and because the particles of 100 ⁇ m or more in addition to the bimodal graph remains, the process must be performed again through a separate screening process. That is, it can be seen that the finely ground non-milled rice can be obtained in a short time because the grain size is uniformly ground.

Abstract

The present invention relates to a mill for food materials. The food mill for food material according to the present invention comprises: a housing having a inlet port for feeding in food materials and an outlet port for discharging the ground food materials; a pair of impellers having a central portion and a plurality of blade portions extending radially outwardly from the center portion such that the blade portions are spaced apart from each other, the pair of impellers being installed inside the housing; and a pair of driving bodies for driving the pair of impellers, respectively. The blade portions include vortex sides having recessed grooves, and the pair of impellers is arranged such that the vortex sides of the blade portions are opposite each other. The mill for food materials of the present invention grinds food materials by means of the mutual collision among the food materials and the collision between the food materials and the air during grinding, thus preventing foreign substances from being mixed with the unground food materials. The mill for food materials of the present invention can be used for dry or wet food materials, and may indirectly grind food materials by the operation of the mill rather than by direct grinding, thus maintaining the quality of the food materials. The mill for food materials of the present invention may include an impeller having a shape capable of forming a section in which the velocity is higher than the rotational speed of the impeller, thus enabling the food materials to be finely ground into uniform particles. Further, the mill for food materials of the present invention may maintain a low-temperature state during operation, thereby preventing the food materials from becoming spoiled due to high temperatures.

Description

식품원료 분쇄기Food Raw Material Grinder
본 발명은 식품원료 분쇄기에 관한 것으로, 건식 및 습식의 식품원료의 품질을 유지하면서 식품원료를 균일한 입자로 미분쇄할 수 있는 식품원료 분쇄기에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a food raw material grinder, and more particularly to a food raw material grinder capable of finely grinding food raw materials into uniform particles while maintaining the quality of dry and wet food raw materials.
일반적으로 사용되는 식품원료 분쇄기는 분쇄날을 이용하여 곡물을 분쇄할 때 사용하는 것으로, 대부분이 한 번의 분쇄공정을 통해서는 필요로 하는 입도까지의 분쇄가 이루어지지 않아 작업자가 분쇄된 피분쇄물을 재차 반복공급하여 원하는 입도로 분쇄하였다. 따라서, 수작업의 분쇄공정에 따른 많은 작업시간이 소요됨은 물론 작업효율성 또한 저하된다는 문제점이 있었다. 따라서, 이러한 문제점을 해결하기 위하여 하나의 곡물 분쇄기에서 분쇄된 분쇄물을 작업자의 수작업이 아닌 자동으로 공급하여 여러 번에 걸쳐 식품원료를 분쇄하는 횟수를 증가시켰다. 그러나, 상기와 같이 분쇄날을 사용하여 다수에 걸쳐 피분쇄물을 식품원료 분쇄기를 통과시킬 경우, 분쇄날 간의 마찰에 의하여 피분쇄물에 분쇄날 가루가 혼합되어 순수한 식품분쇄물을 얻을 수가 없었다. 또한, 분쇄날에 의해 직접 분쇄되기 때문에 식품원료의 품질이 저하되고, 일정 기간이 경과하여 분쇄날이 무뎌지면 원하는 입도크기로 식품원료를 분쇄하는데 걸리는 시간이 증가하며, 분쇄과정 중에 발열이 발생하면 곡류의 경우 호화되는 문제가 발생한다. Commonly used food raw material grinder is used to grind grains by using a grinding blade, and most of them do not grind to the required particle size through one grinding process. It was repeatedly supplied and ground to a desired particle size. Therefore, there is a problem that not only takes a lot of work time according to the manual grinding process but also decreases the work efficiency. Therefore, in order to solve this problem, the number of pulverized food ingredients is increased several times by automatically supplying a pulverized product in one grain crusher instead of a worker's hand. However, when the pulverized material is passed through the food raw material pulverizer using a pulverized blade as described above, the pulverized blade powder is mixed with the pulverized material due to friction between the pulverized blades, thereby obtaining a pure food pulverized product. In addition, since the quality of the food raw material is degraded directly by the grinding blade, if the grinding blade becomes dull after a certain period of time, the time taken to grind the food raw material to the desired particle size increases, and if heat is generated during the grinding process, In the case of cereals, the problem of gelatinization occurs.
따라서, 근래에는 식품원료가 분쇄되는 과정에서 불순물이 섞이는 것을 방지할 수 있고, 식품원료의 품질을 유지하면서 발열을 최소화할 수 있고 균일한 입도로 식품원료를 분쇄할 수 있는 식품원료 분쇄기의 필요성이 대두된다.Therefore, in recent years, the necessity of a food raw material grinder capable of preventing the mixing of impurities in the process of crushing the food raw materials, minimizing heat generation while maintaining the quality of the food raw materials, and crushing the food raw materials with a uniform particle size is required. Soybeans.
본 발명이 해결하고자 하는 과제는, 건식 및 습식의 식품원료의 품질을 유지하면서 식품원료를 균일한 입자로 미분쇄할 수 있는 식품원료 분쇄기를 제공하는 것이다.The problem to be solved by the present invention is to provide a food raw material grinder capable of finely grinding the food raw material into uniform particles while maintaining the quality of dry and wet food raw materials.
본 발명은 상기 과제를 해결하기 위하여, 식품원료가 투입되는 공급구 및 미분쇄된 식품원료가 배출되는 배출구를 포함하는 하우징;The present invention, in order to solve the above problems, a housing including a feed port into which the food material is input and the discharge port is discharged unpulverized food raw material;
중심부, 상기 중심부로부터 방사상 외측 방향으로 서로 이격되게 연장형성되는 것으로 복수 개의 날개부를 포함하고 상기 하우징 내에 설치되는 한 쌍의 임펠러; 및A pair of impellers extending in a radially outward direction from the center and including a plurality of wings and installed in the housing; And
상기 한 쌍의 임펠러를 각각 구동시키는 한 쌍의 구동체;를 포함하되,Including; a pair of driving bodies for driving the pair of impellers respectively;
상기 날개부에는 오목한 홈이 형성된 와류면이 형성되고, The wing portion is formed with a vortex surface formed with a concave groove,
상기 한 쌍의 임펠러는 각각에 형성된 상기 와류면이 마주보도록 설치되는 식품원료 분쇄기를 제공한다.The pair of impellers provide a food material grinder installed to face the vortex surface formed on each of the impellers.
본 발명의 일 실시예에 따르면, 상기 홈은 정면형상이 원형인 것이 바람직하다.According to one embodiment of the invention, it is preferable that the groove is circular in front shape.
또한, 상기 한 쌍의 임펠러는 동일 형상인 것이 바람직하다.In addition, it is preferable that the pair of impellers have the same shape.
또한, 상기 구동체는 모터이고,In addition, the driving body is a motor,
상기 모터와 상기 임펠러는 봉 형상의 회전축 빔에 의해 연동되는 것이 바람직하다.Preferably, the motor and the impeller are interlocked by a rod-shaped rotating shaft beam.
또한, 상기 회전축 빔에 의해 상기 한 쌍의 임펠러 간의 이격 간격이 조절되는 것이 바람직하다.In addition, it is preferable that the separation interval between the pair of impeller by the rotating shaft beam is adjusted.
또한, 상기 날개부는 상기 와류면의 반대쪽 면에 배면이 형성되고,In addition, the wing is formed on the rear surface opposite the vortex surface,
상기 배면은 상기 중심부보다 볼록하게 돌출형성되는 것이 바람직하다.The rear surface is preferably formed to protrude more convexly than the central portion.
또한, 상기 날개부는 상기 와류면이 상기 중심부보다 볼록하게 돌출형성되는 것이 바람직하다.In addition, the wing portion is preferably formed so that the vortex surface protrudes more convex than the central portion.
또한, 상기 복수개의 날개부는 4날, 6날, 및 8날 중 어느 하나인 것이 바람직하다.In addition, the plurality of wings is preferably any one of four blades, six blades, and eight blades.
본 발명에 의하면, 분쇄과정 중 식품원료 간의 충돌 및 식품원료와 공기와의 충돌에 의해 식품원료를 분쇄시킴으로써, 미분쇄된 식품원료에 이물질이 혼합되는 것을 방지할 수 있고, 건식 및 습식의 식품원료에도 적용될 뿐만 아니라 분쇄기에 의한 직접 분쇄가 아닌, 분쇄기의 구동에 의해 간접 분쇄되기 때문에 식품원료의 품질을 유지할 수 있다. 또한, 임펠러의 형상에 의해 다중 토네이도를 형성함으로써 식품원료가 장치의 일 위치에 끼이는 것을 방지하고, 균일한 입자로 미분쇄할 수 있다. 또한, 식품원료 분쇄기가 구동되어도 저온상태를 유지할 수 있기 때문에 식품원료가 온도에 의해 변질되는 것을 방지할 수 있다.According to the present invention, by pulverizing the food material by the collision between the food raw materials and the collision of the food raw materials and the air during the grinding process, it is possible to prevent the mixing of foreign matters in the pulverized food raw material, dry and wet food raw materials Not only is applied to, but also indirectly pulverized by the operation of the pulverizer, not directly pulverized by the pulverizer can maintain the quality of the food raw materials. In addition, by forming a multi-tornado by the shape of the impeller, it is possible to prevent the food material from being caught in one position of the device, and finely pulverized into uniform particles. In addition, since the low temperature state can be maintained even when the food raw material grinder is driven, it is possible to prevent the food raw material from being deteriorated by temperature.
도 1은 본 발명의 일 실시예에 따른 식품원료 분쇄기의 개략도이다.1 is a schematic diagram of a food raw material mill according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 임펠러의 사시도 및 단면도이다. 2 is a perspective view and a cross-sectional view of an impeller according to an embodiment of the present invention.
도 3은 실시예 및 비교예에 사용되는 사이클론 밀 및 임펠러의 사진이다.3 is a photograph of a cyclone mill and an impeller used in Examples and Comparative Examples.
도 4는 실시예 및 비교예1에 의해 제조된 멥쌀 분말 입자의 확대 사진이다.4 is an enlarged photograph of non-glutinous rice flour powder prepared according to Example 1 and Comparative Example 1;
도 5는 실시예 및 비교예1에 의해 제조된 멥쌀 분말 입도의 그래프이다.5 is a graph of grain size of non-glutinous rice prepared by Example and Comparative Example 1. FIG.
본 발명에 따른 식품원료 분쇄기는, 도 1에 도시된 바와 같이, 식품원료가 투입되는 공급구(112) 및 미분쇄된 식품원료가 배출되는 배출구(114)를 포함하는 하우징(110);As shown in FIG. 1, the food raw material grinder according to the present invention includes: a housing 110 including a supply port 112 into which a food material is input and an outlet 114 from which unpulverized food material is discharged;
중심부(122), 상기 중심부(122)로부터 방사상 외측 방향으로 서로 이격되게 연장형성되는 것으로 복수 개의 날개부(124)를 포함하고 상기 하우징(110) 내에 설치되는 한 쌍의 임펠러(120); 및A pair of impellers 120 formed in the housing 110 and including a plurality of wing portions 124 extending from the center portion 122 and spaced apart from each other in the radially outward direction; And
상기 한 쌍의 임펠러(120)를 각각 구동시키는 한 쌍의 구동체;를 포함하되,Including; a pair of driving bodies for driving the pair of impellers 120, respectively,
상기 날개부(124)에는 오목한 홈(124c)이 형성된 와류면(124a)이 형성되고, The wing portion 124 is formed with a vortex surface 124a having a concave groove 124c formed therein,
상기 한 쌍의 임펠러(120)는 각각에 형성된 상기 와류면(124a)이 마주보도록 설치된다.The pair of impellers 120 are installed to face the vortex surfaces 124a formed in the respective impellers 120.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited thereby.
분쇄기는 그 구동방법에 따라 롤분쇄기, 멧돌식 분쇄기, 기류분쇄기, 사이클론 밀, 고속 분쇄기 등으로 분류할 수 있다. 그 중 사이크론 밀은 미세입자 가루를 제조하기에 적절하고, 기계설비를 소형화할 수 있으며, 소량뿐만 아니라 대량생산에도 적합하다. 분말의 입도는 회전속도나 풍속으로 조절 가능하고 분쇄와 동시에 건조가 가능하다. 안정된 식품가공에는 미세하고 입도가 균일한 미분이 필요하다 따라서, 사이크론 밀에서 제분한 미분은 미세하고 편차가 없을 뿐만 아니라 미분 표면에 전분이 많이 남게 된다. 즉, 전분 손상유리 낮아서 제품으로의 가공 적정성이 우수해진다. 사이클론밀은 피분쇄물끼리 부딪혀서 분쇄되는 자기 분쇄방식이기 때문에 분쇄날 등이 마모되어 피분쇄물 분말에 섞이는 것을 방지할 수 있다. 또한 공기의 발생량이 많고 온도 상승이 적어서 분쇄과정중에 피분쇄물이 호화되는 것을 방지할 수 있다. Mills can be classified into roll mills, millstone mills, air mills, cyclone mills, high-speed mills and the like according to the driving method thereof. Among them, the cyclone mill is suitable for producing fine particle powder, miniaturizing machinery, and suitable for mass production as well as small amount. The particle size of the powder can be controlled by rotation speed or wind speed and can be dried simultaneously with grinding. Stable food processing requires fine and uniform fine powder. Therefore, the finely ground fine flour is not only fine and uneven, but also leaves much starch on the surface of the fine powder. That is, starch damage glass is low, and the processing suitability to a product becomes excellent. Since the cyclone mill is a self-pulverizing method in which the pulverized materials collide with each other, the pulverized blade or the like can be prevented from being mixed with the pulverized powder. In addition, the amount of air generated and the temperature rise is small, it is possible to prevent the particles to be gelatinized during the grinding process.
본 발명은 임펠러(120)의 와류면(124a)에 형성된 날개부(124)의 형상을 특정화함으로써, 날개부(124)에서 발생하는 공기의 흐름에 의해 식품원료가 더욱 원활하게 분쇄되도록 한다.The present invention specifies the shape of the wing portion 124 formed on the vortex surface 124a of the impeller 120, so that the food material is more smoothly crushed by the flow of air generated in the wing portion 124.
도 1에는 본 발명의 일 실시예에 따른 식품원료 분쇄기의 개략도가 도시되어있고, 도 2에는 본 발명의 일 실시예에 따른 임펠러(120)의 정면도 및 측면도가 도시되어 있다. 1 is a schematic view of a foodstuff grinder according to an embodiment of the present invention, Figure 2 is a front view and a side view of the impeller 120 according to an embodiment of the present invention.
하우징(110)의 공급구(112)로 유입되는 식품원료는 임펠러(120)의 회전에 의해 발생한 공기의 흐름에 의해 유동된다. 이 과정에서 공기와 식품원료가 부딪히며 발생하는 전단력, 또는 공기의 흐름에 의해 유동하는 식품원료가 서로 부딪히며 발생하는 전단력에 의해 분쇄가 발생하게 된다. 이 과정에서 분쇄가 완료된 식품원료는 하우징(110)의 배출구(114)로 배출된다. 식품원료의 분쇄 입도는 하우징(110) 내에서 회전구동되는 공기의 유속과 유동하는 공기에 노출된 시간에 비례하여 조절할 수 있다. 즉, 본 발명과 같은 기류식 분쇄기는 분쇄입자가 고르게 분쇄되기 때문에 입도를 조절하기 위해서는 분쇄하는 공정에 걸리는 시간이나 분쇄 강도를 조절하는 것이다. 이를 위하여 본 발명은 식품원료의 입도를 조절하기 위하여 임펠러(120)의 회전속도 및 식품원료가 투입되고 배출되기 전까지 임펠러(120)가 회전 구동하는 시간을 조절함으로써, 분쇄되는 식품원료의 입도를 조절하는 것이다. The food raw material introduced into the supply port 112 of the housing 110 flows by the flow of air generated by the rotation of the impeller 120. In this process, crushing occurs due to the shear force generated when the air and the food material collide with each other, or the shear force generated when the food material flowing by the air flow collides with each other. In this process, the food material, which has been pulverized, is discharged to the outlet 114 of the housing 110. Grinding particle size of the food raw material can be adjusted in proportion to the flow rate of the air driven in the housing 110 and the time exposed to the flowing air. That is, the air flow type pulverizer according to the present invention is to control the time or crushing strength of the pulverization process in order to control the particle size because the pulverized particles are evenly pulverized. To this end, the present invention by adjusting the rotational speed of the impeller 120 and the time the impeller 120 is rotationally driven before the food material is input and discharged in order to control the particle size of the food material, thereby controlling the particle size of the food material being crushed It is.
식품원료를 간접분쇄하기 위하여 구동되는 임펠러(120)는 도 1 및 도 2에 도시된 바와 같이, 크게 중심부(122)와 날개부(124)로 구분할 수 있다. 중심부(122)의 센터에는 임펠러(120)를 회전구동시키는 회전축이 결합되고, 중심부(122)를 중심으로 날개부(124)가 결합된다. 여기서 날개부(124)는 하나의 중심부(122)에 복수개의 날개부(124)가 연결형성되는데, 본 발명의 일 실시예에 의하면 중심부(122)가 회전할 때 날개부(124)가 중심부(122)로부터 편심되게 연결형성된 상태에서 임펠러(120)가 구동되는 것을 방지하도로, 날개부(124)를 등간격으로 이격 형성한다. 즉, 중심부(122)의 센터로부터 일정 각도 간격으로 날개부(124)가 방사상 외측을 향해 연장 형성되는 것이다. 이 때, 임펠러는 4개의 날개부(124)가 형성된 4날, 6개의 날개부가 형성된 6날, 8개의 날개부로 형성된 8날 중 어느 하나로 형성될 수 있다. The impeller 120 driven to indirectly grind food ingredients may be divided into a central portion 122 and a wing portion 124 as shown in FIGS. 1 and 2. The center of the center 122, the rotary shaft for driving the impeller 120 is coupled, the wing portion 124 is coupled around the center (122). Here, the wing 124 is a plurality of wing 124 is formed in one central portion 122, according to an embodiment of the present invention, when the central portion 122 rotates, the wing portion 124 is the central portion ( In order to prevent the impeller 120 from being driven in an eccentrically connected state from the 122, the wing parts 124 are formed at equal intervals. That is, the wing 124 extends radially outwardly at a predetermined angle from the center of the central portion 122. In this case, the impeller may be formed of any one of four blades having four wing portions 124, six blades having six wing portions, and eight blades having eight wing portions.
한 쌍의 임펠러(120)는 각각을 구동시키는 구동체에 의하여 서로 역방향으로 회전구동된다. 즉, 임펠러(120) 각각의 구동방향이 상이하기 때문에 이를 구동시키는 구동체를 각각 구비하는 것이다. 여기서 구동체를 모터(130)로 선택할 경우, 임펠러(120)와 모터(130) 사이에는 봉 형상의 회전축 빔(140)이 구비되어 임펠러(120)가 모터(130)의 구동에 현동되거나 모터(130)에 직접 연동되어 임펠러(120)가 직접 회전구동될 수도 있다. 즉, 임펠러(120)가 회전구동되는 방법은 어느 하나에 한정되지 않고, 일반적인 모터(130)나, 자기력 등을 이용하여 회전구동되는 장치 등 여러 가지 방법에 의해서 구동될 수 있다. 정회전 하는 임펠러(120)와 역회전 하는 임펠러(120)의 와류면(124a)이 서로 마주보도록 형성함으로써, 임펠라에 의하여 식품원료에 전단력을 발생시키는 기류가 발생하게 된다. 또한 이 기류를 따라 이동하는 식품원료가 서로 부딪히면서 전단력이 발생하기도 한다.The pair of impellers 120 are rotated in opposite directions with each other by a driving body for driving each of them. That is, since the driving direction of each of the impeller 120 is different, it is provided with a driving body for driving it. In this case, when the driving body is selected as the motor 130, a rod-shaped rotating shaft beam 140 is provided between the impeller 120 and the motor 130 such that the impeller 120 is driven by the driving of the motor 130 or the motor ( The impeller 120 may be directly rotated by being directly linked to the 130. That is, the method of rotating the impeller 120 is not limited to any one, and may be driven by various methods such as a general motor 130 or a device driven by rotation using magnetic force. By forming the vortex surface 124a of the forward rotating impeller 120 and the reverse rotating impeller 120 to face each other, an air flow generating shear force in the food material is generated by the impeller. In addition, shear forces are generated when food materials moving along this airflow collide with each other.
본 발명은 임펠러(120)의 형상의 정면인 와류면(124a) 및 배면(124b)에 굴곡을 형성함으로써, 하우징(110) 내에서 식품원료가 원활하기 유동할 수 있도록 한다. 먼저, 날개부(124)는 상기 와류면(124a)의 반대쪽 면에 배면(124b)이 형성되고, 날개부(124)의 배면(124b)은 상기 중심부(122)보다 볼록하게 돌출형성된다. 이러한 형상적인 특징에 의해 임펠러(120)의 중심보다 방사상 외측에 위치한 날개부(124)의 중량이 증가하면서 임펠러(120)가 균일하게 회전 구동되도록 함으로써, 식품원료에 전단력이 균일하게 작용할 수 있도록 한다.The present invention forms a bend on the vortex surface 124a and the rear surface 124b which are the front face of the shape of the impeller 120, so that the food material can smoothly flow in the housing 110. First, the wing 124 has a rear surface 124b formed on the opposite side of the vortex surface 124a, and the rear surface 124b of the wing portion 124 is formed to protrude more convexly than the central portion 122. By such a feature that the weight of the wing 124 located radially outward from the center of the impeller 120 is increased so that the impeller 120 is driven to rotate uniformly, so that the shear force acts uniformly on the food material. .
또한, 상기 날개부(124)는 상기 와류면(124a)이 상기 중심부(122)보다 돌출형성되는 것이 바람직하다. 한 쌍의 임펠러(120)는 날개부(124)의 정면에 각각 형성된 와류면(124a)을 서로 마주보도록 구비한다. 따라서, 날개부(124)의 와류면(124a)을 볼록하게 돌출형성할 경우, 임펠러(120)가 회전하는 과정 중에 와류면(124a)이 서로 마주보게 되면, 와류면(124a)과 와류면(124a) 사이에 좁은 공간이 형성되면서, 교축현상이 발생한다. 따라서 순간적으로 풍속이 높아지면서 식품원료에 원활하게 유동되도록 할 수 있고, 식품원료가 더욱 원활하게 파쇄된다. 또한 와류면(124a)에 홈(124c)을 형성함으로써, 홈(124c)에서 와류가 발생하여 식품원료가 다시 한번 골고루 유동되도록 하면서 식품원료에 전단력이 가해지도록 한다. In addition, the wing portion 124, the vortex surface (124a) is preferably formed to protrude more than the central portion (122). The pair of impellers 120 are provided to face each other with the vortex surfaces 124a respectively formed on the front surface of the wing portion 124. Therefore, when the vortex surface 124a of the wing portion 124 is convexly formed, if the vortex surface 124a faces each other during the process of the impeller 120 rotating, the vortex surface 124a and the vortex surface ( As a narrow space is formed between 124a), throttling occurs. Therefore, as the wind speed increases instantaneously, the raw material can be smoothly flowed, and the raw material is more smoothly crushed. In addition, by forming the groove 124c in the vortex surface 124a, the vortex is generated in the groove 124c so that the food material is flowed evenly once again while the shear force is applied to the food material.
이와 같이 날개부(124)의 배면(124b)과 와류면(124a) 형상을 형성함으로써, 식품 원료를 분쇄하는 과정에서 발생하는 열을 최소화할 수 있다. 따라서, 식품원료가 열에 의해 품질이 저하되는 것을 방지하고, 날개부(124)와 공기의 마찰에 의해 형성되는 다중 토네이도에 의하여 생산량이 증가되고, 하우징(110) 내부의 공기 흐름을 원활하게 함으로써 분쇄시간을 최소화할 수 있다. As such, by forming the back surface 124b and the vortex surface 124a of the wing portion 124, heat generated in the process of crushing the food raw material can be minimized. Therefore, the food material is prevented from being degraded by heat, and the output is increased by multiple tornadoes formed by the friction between the wing 124 and the air, thereby smoothing the air flow inside the housing 110. Time can be minimized.
또한, 맞춤형으로 식품원료 입자의 입도를 조절할 수 있기 때문에 정밀도가 향상됨과 동시에 반복해서 식품원료를 미분쇄시킬 필요가 없고, 이로 인하여 소비 에너지를 절감할 수 있다. 게다가 분쇄하고자 하는 식품원료의 종류에 따라 혼합도 가능할 뿐만 아니라 습식형 식품원료와도 혼합하여 분쇄할 수 있다. 종래의 식품원료 분쇄장치는 다중 토네이도가 형성되지 않기 때문에 습식형 식품원료의 경우, 비중이 높아 분쇄되기 전에 분쇄날이나 장치의 틈 사이에 빈번하게 끼였다. 그러나 본원 발명은 홈(124c)에서 발생되는 와류 및 임펠러의 구동에 의해 발생하는 다중의 토네이도에 의해 분쇄 중인 식품원료가 한 번 더 부상하면서 타 식품원료 및 공기와 전단이 발생하게 되어 재차 분쇄되도록 할 수 있다. 따라서, 장치 등에 끼어 짓이겨지는 것이 아니라 전단력을 받아 원활이 분쇄되도록 할 수 있다. In addition, since the particle size of the food raw material can be adjusted to be customized, it is not necessary to pulverize the food raw material repeatedly at the same time, thereby reducing energy consumption. In addition, it is possible not only to mix depending on the type of food ingredients to be crushed, but also to mix and grind the wet food ingredients. Conventional foodstuff pulverizers do not form multiple tornadoes, so in the case of wet foodstuffs, the specific gravity is high, so they are frequently sandwiched between the grinding blades or gaps of the apparatus before pulverization. However, the present invention is caused by the multiple tornado generated by the driving of the vortex and the impeller generated in the grooves (124c) to be crushed again to the other food raw materials and air and shear occurs as one more floating. Can be. Therefore, it can be smoothly crushed by the shear force, rather than being pinched by the device or the like.
여기서 분쇄하고자 하는 식품원료의 입도를 조절하기 위한 또 하나의 방법으로 한 쌍의 임펠러(120) 간의 간격을 조절할 수 있다. 예를 들어 임펠러(120)가 회전축 빔(140)에 의하여 각각 결합된 경우, 회전축 빔(140)에 나사구조 또는 슬라이딩 구도 등을 구비함으로써, 회전축 말단으로부터 임펠러(120)의 위치를 조절함으로써, 한 쌍의 임펠러(120)의 와류면(124a) 간의 간격을 조절할 수 있는 것이다. 이로 인하여 임펠러(120) 사이에서 발생하는 풍속을 조절할 수 있고, 이로 인하여 식품원료의 분쇄 입도를 다양한 범위로 조절할 수 있다.Here, as another method for adjusting the particle size of the food material to be pulverized, it is possible to adjust the interval between the pair of impeller 120. For example, when the impeller 120 is coupled to each other by the rotating shaft beam 140, by providing a screw structure or a sliding composition, etc. in the rotating shaft beam 140, by adjusting the position of the impeller 120 from the end of the rotating shaft, The distance between the vortex surface 124a of the pair of impellers 120 can be adjusted. Due to this it is possible to adjust the wind speed generated between the impeller 120, thereby adjusting the particle size of the crushed food raw material in a variety of ranges.
날개부(124)의 와류면(124a)에 형성된 홈(124c)은 도 2a에 도시된 바와 같이, 정면에서 볼 때의 모양인 정면형상이 원형인 것이 바람직하다. 즉, 구형의 일부 형상으로 오목하게 형성되도록 함으로써 유선형상의 홈(124c) 내에서 유동하는 식품원료와, 서로 마주보는 와류면(124a)의 좁은 틈에서 빨라진 유속을 통해 유입된 식품원료가 서로 원활하게 부딪히도록 구비할 수 있는 것이다. As shown in FIG. 2A, the groove 124c formed in the vortex surface 124a of the wing portion 124 is preferably circular in shape, as seen from the front. That is, the food material flowing in the streamlined groove 124c by being concavely formed in a part of a spherical shape and the food material introduced through the fast flow rate in the narrow gap between the vortex surfaces 124a facing each other smoothly with each other. It can be provided to hit.
여기서 한 쌍의 임펠러(120)는 서로 동일한 형상인 것이 바람직하다. 즉, 서로 마주보는 위치에서 각각의 임펠러(120)가 역방향으로 회전구동될 때 날개부(124)의 면이 일치하는 순간에 홈(124c)의 형상 및 홈(124c)의 방사상 내측 및 방사상 외측에 위치한 와류면(124a)의 좁은 틈 위치 역시 일치되도록 함으로써, 식품원료에 작용하는 전단력을 균일하게 하는 것이다. 여기서 상기 날개부(124)는 중심부(122)로부터 방사상 외측 4방향으로 연장 형성된 4날형인 것을 도시하였지만, 날개부(124)의 갯수는 이에 한정되지 않고, 6날형 또는 8날형으로 구비될 수 있다. Here, it is preferable that the pair of impellers 120 have the same shape. That is, when the impeller 120 is rotated in the opposite direction at the position facing each other, the shape of the groove 124c and the radially inner and radially outer side of the groove 124c at the moment when the surface of the wing 124 coincides. By narrowing the narrow gap position of the vortex surface 124a located, the shear force acting on the food material is uniform. Here, the wing 124 is a four-blade shape extending from the central portion 122 in the radially outer four directions, but the number of the wing 124 is not limited thereto, and may be provided in a six-blade or eight-blade. .
이하 실시예 및 비교예를 들어 본 발명을 더욱 상세하게 설명하고자 한다. Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
실시예EXAMPLE
1) 장치 1) device
도 3a의 싸이클론 밀에, 도 3b의 임펠러를 적용하였다.In the cyclone mill of FIG. 3a, the impeller of FIG. 3b was applied.
2) 투입 식품원료2) Input food ingredients
경기도 양평에서 2011년에 수확한 멥쌀, 충북 진천에서 2011년에 수확한 찹쌀, 및 강원도 철원에서 2011년에 수확한 현미를 사용하였다.We used non-glutinous rice harvested in Yangpyeong, Gyeonggi-do in 2011, glutinous rice harvested in 2011 in Jincheon, Chungbuk, and brown rice harvested in 2011 in Cheorwon, Gangwon-do.
비교예1Comparative Example 1
1) 장치 1) device
도 3a의 싸이클론 밀에, 도 3c의 임펠러를 적용하였다.In the cyclone mill of FIG. 3a, the impeller of FIG. 3c was applied.
2) 투입 식품원료2) Input food ingredients
실시예와 동일Same as Example
비교예2Comparative Example 2
1) 장치 1) device
도 3a의 싸이클론 밀에, 도 3d의 임펠러를 적용하였다.In the cyclone mill of FIG. 3a, the impeller of FIG. 3d was applied.
2) 투입 식품원료2) Input food ingredients
실시예와 동일Same as Example
실험예Experimental Example
실시예 및 비교예의 식품원료 분쇄기를 임펠러 속도 7000rpm, 블로워 속도 2000rpm, 투입속도 20Hz의 조건으로 구동한 뒤 각각의 실험을 수행하였다.Each experiment was performed after driving the raw material grinders of Examples and Comparative Examples under conditions of an impeller speed of 7000 rpm, a blower speed of 2000 rpm, and an input speed of 20 Hz.
1) 분말의 손실률(%) 및 생산량(kg/hr) 측정1) Measurement of the loss rate (%) and production rate (kg / hr) of the powder
투입 중량 및 산출 중량을 측정하여 손실률을 측정하였다. 생산량은 투입 후 산출되기까지의 시간을 측정하여 시간당 생산량을 계산하였다. 계산한 수치는 아래의 표 1 같다.Loss rate was determined by measuring input and output weights. The yield was calculated by measuring the time from input to yield. The calculated values are shown in Table 1 below.
표 1
Figure PCTKR2012005486-appb-T000001
Table 1
Figure PCTKR2012005486-appb-T000001
표 1의 결과에 따르면 홈이 형성된 임펠러를 장착하였을 때 비교예1과 대비하여 실시예의 손실률이 0.5% 낮거나 동일하였다. 또한, 비교예2와 대비하여 실시예의 손실률이 1% 낮거나 동일하였다. 이러한 손실률의 차이로 인하여 실시예는 비교예1 및 비교예2에 비하여 시간당 최고 0.96kg 더 생산할 수 있으며, 적어도 시간당 0.6kg을 더 생산할 수 있다는 것을 확인할 수 있다. According to the results of Table 1, the loss rate of the Example was 0.5% lower than or equal to that of Comparative Example 1 when the grooved impeller was mounted. In addition, compared with Comparative Example 2, the loss rate of the Example was 1% lower or the same. Due to the difference in the loss rate, the Example can produce up to 0.96 kg more per hour than Comparative Examples 1 and 2, and it can be seen that at least 0.6 kg can be produced more per hour.
2) 소음2) noise
실시예 및 비교예1 및 비교예2의 사이클론 밀을 구동할 때 발생하는 소음을 측정하였다. 측정값은 아래의 표 2와 같다 Noise generated when driving the cyclone mills of Examples and Comparative Examples 1 and 2 was measured. The measured values are shown in Table 2 below.
표 2
Figure PCTKR2012005486-appb-T000002
TABLE 2
Figure PCTKR2012005486-appb-T000002
상기 표 2의 결과에 따르면, 실시예의 식품원료 분쇄기에서 발생한 소음이 비교예1 및 비교예2과 비교했을 때 큰 차이가 없는 것을 확인할 수 있다.According to the results of Table 2, it can be seen that the noise generated in the food raw material grinder of the embodiment does not have a large difference when compared with Comparative Example 1 and Comparative Example 2.
3) 방출풍속3) emission wind speed
임펠라를 7000rpm으로 회전시 발생하는 풍속을 측정하였다. 측정값은 아래의 표 3과 같다.The wind speed generated when rotating the impeller at 7000 rpm was measured. The measured values are shown in Table 3 below.
표 3
Figure PCTKR2012005486-appb-T000003
TABLE 3
Figure PCTKR2012005486-appb-T000003
상기 표 3의 결과에 따르면 실시예의 경우, 임펠라를 회전시킬 때, 발생하는 방출 풍속이 비교예1 및 비교예2와 큰 차이가 없는 것을 확인할 수 있다. According to the results of Table 3, in the case of the embodiment, when the impeller rotates, it can be seen that the generated discharge wind speed is not significantly different from Comparative Example 1 and Comparative Example 2.
4) 수분함량에 따른 수분흡수지수 및 수분용해지수4) Water absorption index and water dissolution index according to the water content
쌀가루의 수분함량은 105℃ 상압수분건조법을 이용하였으며, 각 처리구별로 항량이 된 수기에 분말 2g을 취하여 드라이 오븐(한국종합기기제작소, 한국)을 이용하여 건조를 실시하였다. 항량이 될 때까지 건조를 반복한 후 평균값을 구하였다. 수분흡수지수 및 수분용해지수는 Anderson 등의 방법을 응용하여 측정하였다. 2.5g의 시료에 40ml의 증류수를 원심분리관에 넣어 혼합하여 실온에서 30분간 방치한 다음 8000rpm에서 10분동안 원심분리하였다. 미리 항량을 구한 수기에 상등액을 넣어 건조하여 얻은 고형분량을 시료 2.5g에 대한 백분률로 WSI를 구하였으며, 침전물의 무게를 측정하여 WAI를 구하였다. 이때 A는 시료의 무게(g), B는 건조된 고형분의 무게(g), C는 침전물의 무게(g)이다 WAI는 수학식 1에 나타내었고, WSI는 수학식 2에 나타내었다The moisture content of rice flour was 105 ℃ atmospheric pressure drying method, and 2g of powder was added to the water-filled water dispenser for each treatment, and dried using a dry oven (Korea Integrated Equipment Manufacturer, Korea). After the drying was repeated until the constant amount, the average value was obtained. The water absorption index and the water dissolution index were measured by applying Anderson's method. 40 ml of distilled water was mixed in a 2.5 g sample into a centrifuge tube, left to stand at room temperature for 30 minutes, and then centrifuged at 8000 rpm for 10 minutes. WSI was calculated as a percentage of 2.5 g of the solids obtained by adding the supernatant to a dry water obtained in advance, and WAI was obtained by measuring the weight of the precipitate. Where A is the weight of the sample (g), B is the weight of the dried solids (g), C is the weight of the precipitate (g) WAI is shown in Equation 1, WSI is shown in Equation 2
수학식 1
Figure PCTKR2012005486-appb-M000001
Equation 1
Figure PCTKR2012005486-appb-M000001
수학식 2
Figure PCTKR2012005486-appb-M000002
Equation 2
Figure PCTKR2012005486-appb-M000002
이때의 수분흡수지수 및 수분용해지수를 측정한 값은 표 4와 같다.The measured values of water absorption index and water dissolution index at this time are shown in Table 4.
표 4
Figure PCTKR2012005486-appb-T000004
Table 4
Figure PCTKR2012005486-appb-T000004
상기 표 4의 결과에 따르면, 실시예에서 분쇄된 식품원료는 비교예 1 및 비교예2에 비하여 수분함량이 0.5~2% 수준으로 낮아졌다. 또한, 비교예1 및 비교예 2에서는 수분함량에 따라 수분흡수지수와 수분용해지수가 모두 달라지는 반면, 실시예에 따른 식품원료 분쇄기를 사용함으로써, 유사한 수분흡수지수에서도 수분용해지수가 다른 제품을 구현할 수 있는 것을 알 수 있다. 따라서, 제조하고자 하는 음식에 따라 요구되어야 하는 동일한 수분흡수지수에서 필요한 수분용해지수에 해당하는 재료를 선별하여 조리할 수 있다.According to the results of Table 4, the food raw material pulverized in the Example was lowered to 0.5 to 2% water content compared to Comparative Example 1 and Comparative Example 2. In addition, in Comparative Examples 1 and 2, both the water absorption index and the water dissolution index vary depending on the moisture content, whereas by using the food raw material grinder according to the embodiment, it is possible to implement a product having a different water dissolution index even in a similar water absorption index. I can see. Therefore, it is possible to select and cook a material corresponding to the required water solubility index in the same water absorption index to be required according to the food to be prepared.
5) 미분된 입자상태5) Finely divided particle state
실시예 및 비교예 1에 의해 미분된 멥쌀의 현미경 사진을 도 4에 나타내었다. 현미경 배율은 160배이다.Micrographs of non-grinded rice by Example and Comparative Example 1 are shown in FIG. 4. The microscope magnification is 160 times.
도 4a에 의하면 실시예에 투입되어 미분된 멥쌀은 다중 토네이도 효과에 의해 원활하게 분쇄되었음을 알 수 있다. 그러나 도 4b에 의하면 비교예1에 투입되어 미분된 멥쌀이 표시된 부분과 같이 분쇄되지 않고 장치 등의 틈새에 끼어 눌린 상태의 입자가 그대로 남아있는 것을 알 수 있다. 즉, 실시예에서는 분쇄가 균일하게 일어남을 알 수 있다. According to Figure 4a it can be seen that the non-grinded rice in the embodiment was smoothly ground by the multiple tornado effect. However, according to Figure 4b it can be seen that the non-crushed non-grinded rice, which is added to Comparative Example 1, is not pulverized as shown in the figure, and the particles in the pressed state remain intact. That is, in the embodiment it can be seen that the grinding occurs uniformly.
6) 입도 범위6) particle size range
입도분석은 입도분석기(CILAS 1064, France)를 사용하여 측정하였으며, 분쇄설비와 품종에 따라서 시료를 구별하여 입도크기를 관찰하였다.Particle size analysis was measured using a particle size analyzer (CILAS 1064, France), and the particle size was observed by classifying the sample according to the grinding equipment and varieties.
실시예 및 비교예 1에 의하여 미분된 멥쌀의 그래프를 도 5에 나타내었다. 5 shows graphs of non-grinded rice by Example and Comparative Example 1. FIG.
도 5에 의하면 미분된 식품원료 입도 범위는 붉은색으로 도시되어 있다. 즉, 실시예의 식품원료 분쇄기에 의하여 분쇄된 멥쌀은 도 5a에 도시된 바와 같이, 입도 크기의 폭이 1㎛~60㎛로, 그 구간의 차가 60이 된다. 반면, 비교예 1의 경우, 도 5b에 도시된 바와 같이, 입도 크기의 폭이 1㎛~300㎛에 이르기까지 그 구간 차가 300에 이른다. 이러한 경우, 입도 크기가 불균일하여 양질의 분말을 제조하기 어려울 뿐만 아니라 쌍봉형의 그래프 외에 100㎛ 이상의 입자가 남아있기 때문에 별도의 선별작업을 거쳐 재차 분쇄하는 과정이 진행되어야만 한다. 즉, 실시예에 의해 미분된 멥쌀은 단번에 그 입도가 균일하게 분쇄되기 때문에 짧은 시간동안 양질의 분말을 얻을 수 있다는 것을 알 수 있다. According to Figure 5 the finely divided food material particle size range is shown in red. That is, as shown in FIG. 5A, the non-rice milled by the food raw material mill of the embodiment has a width of the particle size of 1 μm to 60 μm, and the difference between the sections is 60. On the other hand, in the case of Comparative Example 1, as shown in FIG. 5B, the interval difference reaches 300 until the width of the particle size reaches 1 μm to 300 μm. In this case, it is difficult to produce a good powder due to the non-uniform particle size, and because the particles of 100㎛ or more in addition to the bimodal graph remains, the process must be performed again through a separate screening process. That is, it can be seen that the finely ground non-milled rice can be obtained in a short time because the grain size is uniformly ground.
이와 같이 본 발명과 같이 와류면에 홈이 형성된 임펠러가 장착된 식품원료 분쇄기를 사용할 때 동일한 정숙도와 풍량에도 생산량이 증가될 뿐만 아니라 고른 입도로 분말을 생산할 수 있기 때문에 생산하고자 하는 고품질의 미분을 생산할 수 있다.Thus, when using a food raw material grinder equipped with an impeller grooved in the vortex as in the present invention, not only can the production be increased in the same quietness and air volume, but also the powder can be produced with an even granularity to produce high quality fine powder to be produced. Can be.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.All simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (8)

  1. 식품원료가 투입되는 공급구 및 미분쇄된 식품원료가 배출되는 배출구를 포함하는 하우징;A housing including a supply port through which food ingredients are introduced and an outlet through which unpulverized food materials are discharged;
    중심부, 상기 중심부로부터 방사상 외측 방향으로 서로 이격되게 연장형성되는 것으로 복수 개의 날개부를 포함하고 상기 하우징 내에 설치되는 한 쌍의 임펠러; 및A pair of impellers extending in a radially outward direction from the center and including a plurality of wings and installed in the housing; And
    상기 한 쌍의 임펠러를 각각 구동시키는 한 쌍의 구동체;를 포함하되,Including; a pair of driving bodies for driving the pair of impellers respectively;
    상기 날개부에는 오목한 홈이 형성된 와류면이 형성되고, The wing portion is formed with a vortex surface formed with a concave groove,
    상기 한 쌍의 임펠러는 각각에 형성된 상기 와류면이 마주보도록 설치되는 식품원료 분쇄기.The pair of impeller is a food raw material mill is installed so that the vortex surface formed in each facing.
  2. 제1항에 있어서,The method of claim 1,
    상기 홈은 정면형상이 원형인 것을 특징으로 하는 식품원료 분쇄기.The groove is a food material mill, characterized in that the front shape is circular.
  3. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 임펠러는 동일 형상인 것을 특징으로 하는 식품원료 분쇄기.The pair of impeller is a food material mill, characterized in that the same shape.
  4. 제1항에 있어서,The method of claim 1,
    상기 구동체는 모터이고,The drive body is a motor,
    상기 모터와 상기 임펠러는 봉 형상의 회전축 빔에 의해 연동되는 것을 특징으로 하는 식품원료 분쇄기.And the motor and the impeller are interlocked by a rod-shaped rotating shaft beam.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 회전축 빔에 의해 상기 한 쌍의 임펠러 간의 이격 간격이 조절되는 것을 특징으로 하는 식품원료 분쇄기.And a separation distance between the pair of impellers is controlled by the rotating shaft beam.
  6. 제1항에 있어서,The method of claim 1,
    상기 날개부는 상기 와류면의 반대쪽 면에 배면이 형성되고,The wing is formed on the rear surface opposite the vortex surface,
    상기 배면은 상기 중심부보다 볼록하게 돌출형성되는 것을 특징으로 하는 식품원료 분쇄기.The rear surface of the food raw material mill, characterized in that the convex projecting than the central portion.
  7. 제1항에 있어서,The method of claim 1,
    상기 날개부는 상기 와류면이 상기 중심부보다 볼록하게 돌출형성되는 것을 특징으로 하는 식품원료 분쇄기.Wherein the wing is characterized in that the vortex surface protrudes convex than the central portion of the food raw material mill.
  8. 제1항에 있어서,The method of claim 1,
    상기 복수개의 날개부는 4날, 6날, 및 8날 중 어느 하나인 것을 특징으로 하는 식품원료 분쇄기.Wherein the plurality of blades, characterized in that any one of four blades, six blades, and eight blades.
PCT/KR2012/005486 2012-04-24 2012-07-11 Mill for food materials WO2013162124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280072675.6A CN104271245B (en) 2012-04-24 2012-07-11 Food raw material pulverizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0042865 2012-04-24
KR1020120042865A KR101364955B1 (en) 2012-04-24 2012-04-24 Cyclone mill

Publications (1)

Publication Number Publication Date
WO2013162124A1 true WO2013162124A1 (en) 2013-10-31

Family

ID=49483391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005486 WO2013162124A1 (en) 2012-04-24 2012-07-11 Mill for food materials

Country Status (3)

Country Link
KR (1) KR101364955B1 (en)
CN (1) CN104271245B (en)
WO (1) WO2013162124A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107486316A (en) * 2016-11-15 2017-12-19 梁君毅 Vertical self-cleaning suspension high speed disintegrator
CN107185683B (en) * 2017-06-19 2023-02-03 陈启兴 Self-cooled efficient pulverizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028690A1 (en) * 1999-10-21 2001-04-26 Bcde Group Micronizing device and method for micronizing solid particles
JP2003001127A (en) * 2001-06-18 2003-01-07 Nikkiso Co Ltd Chopper
JP2003010712A (en) * 2001-06-27 2003-01-14 Nikkiso Co Ltd Method for pulverizing raw material such as powder and granular substance
JP2003071307A (en) * 2001-06-21 2003-03-11 Nikkiso Co Ltd Pulverizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167512C (en) * 2000-12-10 2004-09-22 甘肃雷诺换热设备有限公司 Propeller type disintegrator
CN2478681Y (en) * 2001-04-24 2002-02-27 广东梅州市梅雁螺旋藻高科技研究所 Disintegrating and screening machine
CN201271590Y (en) * 2008-06-27 2009-07-15 北京汇百川技术设计研究所 Turbo turbulent current type micro powder processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028690A1 (en) * 1999-10-21 2001-04-26 Bcde Group Micronizing device and method for micronizing solid particles
JP2003001127A (en) * 2001-06-18 2003-01-07 Nikkiso Co Ltd Chopper
JP2003071307A (en) * 2001-06-21 2003-03-11 Nikkiso Co Ltd Pulverizer
JP2003010712A (en) * 2001-06-27 2003-01-14 Nikkiso Co Ltd Method for pulverizing raw material such as powder and granular substance

Also Published As

Publication number Publication date
CN104271245B (en) 2016-06-08
KR101364955B1 (en) 2014-02-19
CN104271245A (en) 2015-01-07
KR20130119789A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP5854835B2 (en) Apparatus and method for producing fine flour and / or coarse flour
KR101842233B1 (en) High-throughput grinder, and method for manufacturing fine paper powder
CN103920555A (en) Tartary buckwheat non-thermal shucking method and Tartary buckwheat shucking device
WO2013162124A1 (en) Mill for food materials
JP2007111574A (en) Crusher
KR101247309B1 (en) Device for milling grain and device for manufacturing grain flour using the same
CN203184054U (en) Tartary buckwheat athermal unshelling device
CN207105368U (en) A kind of plastic rubber pulverizer
JPH04334559A (en) Method and equipment for milling
CN208302949U (en) A kind of ultra micro crusher for Chinese herbal medicine
JP2016209872A (en) Rice powder manufacturing apparatus
KR200182514Y1 (en) Crusher
CN2808302Y (en) Super-fine pulverizer
JPS60232257A (en) Vertical type roller mill
CN2383581Y (en) Small straw crusher
CN107139340A (en) A kind of admixture production system and blending material manufacturing technique
KR20150047273A (en) Multipurpose mill
CN110560212A (en) High-fineness powder selecting and crushing system
CN205550459U (en) Contrarotating rubbing crusher
JP2002001141A (en) Mechanical pulverizing machine
CN219187233U (en) Turbine refrigeration type dust-free pulverizer
JPH07185372A (en) High-speed pulverizing method and device therefor
CN211216842U (en) High-fineness powder selecting and crushing system
JP2011120960A (en) Crusher
CN106964435A (en) A kind of superfine grinding method of fluorescent pigment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875051

Country of ref document: EP

Kind code of ref document: A1